
1

FD_CLR(3P) POSIX Programmer’s Manual FD_CLR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
FD_CLR — macros for synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

DESCRIPTION
Refer to pselect().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

_EXIT(3P) POSIX Programmer’s Manual _EXIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
_Exit, _exit — terminate a process

SYNOPSIS
#include <stdlib.h>

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

DESCRIPTION
For _Exit(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other value, though only the least
significant 8 bits (that is, status & 0377) shall be available from wait() and waitpid(); the full value shall be
available from waitid() and in the siginfo_t passed to a signal handler for SIGCHLD.

The _Exit() and _exit() functions shall be functionally equivalent.

The _Exit() and _exit() functions shall not call functions registered with atexit() nor any registered signal
handlers. Open streams shall not be flushed. Whether open streams are closed (without flushing) is imple-
mentation-defined. Finally, the calling process shall be terminated with the consequences described below.

Consequences of Process Termination
Process termination caused by any reason shall have the following consequences:

Note: These consequences are all extensions to the ISO C standard and are not further CX shaded.
However, functionality relating to the XSI option is shaded.

* All of the file descriptors, directory streams, conversion descriptors, and message catalog descriptors
open in the calling process shall be closed.

* If the parent process of the calling process has set its SA_NOCLDWAIT flag or has set the action for
the SIGCHLD signal to SIG_IGN:

-- The process’ status information (see Section 2.13, Status Information), if any, shall be discarded.

-- The lifetime of the calling process shall end immediately. If SA_NOCLDWAIT is set, it is imple-
mentation-defined whether a SIGCHLD signal is sent to the parent process.

-- If a thread in the parent process of the calling process is blocked in wait(), waitpid(), or waitid(),
and the parent process has no remaining child processes in the set of waited-for children, the
wait(), waitid(), or waitpid() function shall fail and set errno to [ECHILD].

Otherwise:

-- Status information (see Section 2.13, Status Information) shall be generated.

-- The calling process shall be transformed into a zombie process. Its status information shall be
made available to the parent process until the process’ lifetime ends.

-- The process’ lifetime shall end once its parent obtains the process’ status information via a cur-
rently-blocked or future call to wait(), waitid() (without WNOWAIT), or waitpid().

-- If one or more threads in the parent process of the calling process is blocked in a call to wait(),
waitid(), or waitpid() awaiting termination of the process, one (or, if any are calling waitid() with
WNOWAIT, possibly more) of these threads shall obtain the process’ status information as speci-
fied in Section 2.13, Status Information and become unblocked.

IEEE/The Open Group 2017 1

_EXIT(3P) POSIX Programmer’s Manual _EXIT(3P)

-- A SIGCHLD shall be sent to the parent process.

* Termination of a process does not directly terminate its children. The sending of a SIGHUP signal as
described below indirectly terminates children in some circumstances.

* The parent process ID of all of the existing child processes and zombie processes of the calling
process shall be set to the process ID of an implementation-defined system process. That is, these pro-
cesses shall be inherited by a special system process.

* Each attached shared-memory segment is detached and the value of shm_nattch (see shmget()) in the
data structure associated with its shared memory ID shall be decremented by 1.

* For each semaphore for which the calling process has set a semadj value (see semop()), that value shall
be added to the semval of the specified semaphore.

* If the process is a controlling process, the SIGHUP signal shall be sent to each process in the fore-
ground process group of the controlling terminal belonging to the calling process.

* If the process is a controlling process, the controlling terminal associated with the session shall be dis-
associated from the session, allowing it to be acquired by a new controlling process.

* If the exit of the process causes a process group to become orphaned, and if any member of the newly-
orphaned process group is stopped, then a SIGHUP signal followed by a SIGCONT signal shall be
sent to each process in the newly-orphaned process group.

* All open named semaphores in the calling process shall be closed as if by appropriate calls to
sem_close().

* Any memory locks established by the process via calls to mlockall() or mlock() shall be removed. If
locked pages in the address space of the calling process are also mapped into the address spaces of
other processes and are locked by those processes, the locks established by the other processes shall be
unaffected by the call by this process to _Exit() or _exit().

* Memory mappings that were created in the process shall be unmapped before the process is destroyed.

* Any blocks of typed memory that were mapped in the calling process shall be unmapped, as if mun-

map() was implicitly called to unmap them.

* All open message queue descriptors in the calling process shall be closed as if by appropriate calls to
mq_close().

* Any outstanding cancelable asynchronous I/O operations may be canceled. Those asynchronous I/O
operations that are not canceled shall complete as if the _Exit() or _exit() operation had not yet oc-
curred, but any associated signal notifications shall be suppressed. The _Exit() or _exit() operation may
block awaiting such I/O completion. Whether any I/O is canceled, and which I/O may be canceled
upon _Exit() or _exit(), is implementation-defined.

* Threads terminated by a call to _Exit() or _exit() shall not invoke their cancellation cleanup handlers or
per-thread data destructors.

* If the calling process is a trace controller process, any trace streams that were created by the calling
process shall be shut down as described by the posix_trace_shutdown() function, and mapping of trace
ev ent names to trace event type identifiers of any process built for these trace streams may be deallo-
cated.

RETURN VALUE
These functions do not return.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 2

_EXIT(3P) POSIX Programmer’s Manual _EXIT(3P)

APPLICATION USAGE
Normally applications should use exit() rather than _Exit() or _exit().

RATIONALE
Process Termination

Early proposals drew a distinction between normal and abnormal process termination. Abnormal termina-
tion was caused only by certain signals and resulted in implementation-defined ‘‘actions’’, as discussed be-
low. Subsequent proposals distinguished three types of termination: normal termination (as in the current
specification), simple abnormal termination, and abnormal termination with actions. Again the distinction
between the two types of abnormal termination was that they were caused by different signals and that im-
plementation-defined actions would result in the latter case. Given that these actions were completely im-
plementation-defined, the early proposals were only saying when the actions could occur and how their oc-
currence could be detected, but not what they were. This was of little or no use to conforming applications,
and thus the distinction is not made in this volume of POSIX.1-2017.

The implementation-defined actions usually include, in most historical implementations, the creation of a
file named core in the current working directory of the process. This file contains an image of the memory
of the process, together with descriptive information about the process, perhaps sufficient to reconstruct the
state of the process at the receipt of the signal.

There is a potential security problem in creating a core file if the process was set-user-ID and the current
user is not the owner of the program, if the process was set-group-ID and none of the user’s groups match
the group of the program, or if the user does not have permission to write in the current directory. In this sit-
uation, an implementation either should not create a core file or should make it unreadable by the user.

Despite the silence of this volume of POSIX.1-2017 on this feature, applications are advised not to create
files named core because of potential conflicts in many implementations. Some implementations use a
name other than core for the file; for example, by appending the process ID to the filename.

Terminating a Process
It is important that the consequences of process termination as described occur regardless of whether the
process called _exit() (perhaps indirectly through exit()) or instead was terminated due to a signal or for
some other reason. Note that in the specific case of exit() this means that the status argument to exit() is
treated in the same way as the status argument to _exit().

A language other than C may have other termination primitives than the C-language exit() function, and
programs written in such a language should use its native termination primitives, but those should have as
part of their function the behavior of _exit() as described. Implementations in languages other than C are
outside the scope of this version of this volume of POSIX.1-2017, however.

As required by the ISO C standard, using return from main() has the same behavior (other than with re-
spect to language scope issues) as calling exit() with the returned value. Reaching the end of the main()
function has the same behavior as calling exit(0).

A value of zero (or EXIT_SUCCESS, which is required to be zero) for the argument status conventionally
indicates successful termination. This corresponds to the specification for exit() in the ISO C standard. The
convention is followed by utilities such as make and various shells, which interpret a zero status from a
child process as success. For this reason, applications should not call exit(0) or _exit(0) when they terminate
unsuccessfully; for example, in signal-catching functions.

Historically, the implementation-defined process that inherits children whose parents have terminated with-
out waiting on them is called init and has a process ID of 1.

The sending of a SIGHUP to the foreground process group when a controlling process terminates corre-
sponds to somewhat different historical implementations. In System V, the kernel sends a SIGHUP on ter-
mination of (essentially) a controlling process. In 4.2 BSD, the kernel does not send SIGHUP in a case like
this, but the termination of a controlling process is usually noticed by a system daemon, which arranges to
send a SIGHUP to the foreground process group with the vhangup() function. However, in 4.2 BSD, due to
the behavior of the shells that support job control, the controlling process is usually a shell with no other
processes in its process group. Thus, a change to make _exit() behave this way in such systems should not

IEEE/The Open Group 2017 3

_EXIT(3P) POSIX Programmer’s Manual _EXIT(3P)

cause problems with existing applications.

The termination of a process may cause a process group to become orphaned in either of two ways. The
connection of a process group to its parent(s) outside of the group depends on both the parents and their
children. Thus, a process group may be orphaned by the termination of the last connecting parent process
outside of the group or by the termination of the last direct descendant of the parent process(es). In either
case, if the termination of a process causes a process group to become orphaned, processes within the group
are disconnected from their job control shell, which no longer has any information on the existence of the
process group. Stopped processes within the group would languish forever. In order to avoid this problem,
newly orphaned process groups that contain stopped processes are sent a SIGHUP signal and a SIGCONT
signal to indicate that they hav e been disconnected from their session. The SIGHUP signal causes the
process group members to terminate unless they are catching or ignoring SIGHUP. Under most circum-
stances, all of the members of the process group are stopped if any of them are stopped.

The action of sending a SIGHUP and a SIGCONT signal to members of a newly orphaned process group is
similar to the action of 4.2 BSD, which sends SIGHUP and SIGCONT to each stopped child of an exiting
process. If such children exit in response to the SIGHUP, any additional descendants receive similar treat-
ment at that time. In this volume of POSIX.1-2017, the signals are sent to the entire process group at the
same time. Also, in this volume of POSIX.1-2017, but not in 4.2 BSD, stopped processes may be orphaned,
but may be members of a process group that is not orphaned; therefore, the action taken at _exit() must con-
sider processes other than child processes.

It is possible for a process group to be orphaned by a call to setpgid() or setsid(), as well as by process ter-
mination. This volume of POSIX.1-2017 does not require sending SIGHUP and SIGCONT in those cases,
because, unlike process termination, those cases are not caused accidentally by applications that are un-
aw are of job control. An implementation can choose to send SIGHUP and SIGCONT in those cases as an
extension; such an extension must be documented as required in <signal.h>.

The ISO/IEC 9899: 1999 standard adds the _Exit() function that results in immediate program termination
without triggering signals or atexit()-registered functions. In POSIX.1-2008, this is equivalent to the _exit()
function.

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), exit(), mlock(), mlockall(), mq_close(), munmap(), posix_trace_create(), sem_close(), se-

mop(), setpgid(), setsid(), shmget(), wait(), waitid()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

_LONGJMP(3P) POSIX Programmer’s Manual _LONGJMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
_longjmp, _setjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

void _longjmp(jmp_buf env, int val);
int _setjmp(jmp_buf env);

DESCRIPTION
The _longjmp() and _setjmp() functions shall be equivalent to longjmp() and setjmp(), respectively, with the
additional restriction that _longjmp() and _setjmp() shall not manipulate the signal mask.

If _longjmp() is called even though env was nev er initialized by a call to _setjmp(), or when the last such
call was in a function that has since returned, the results are undefined.

RETURN VALUE
Refer to longjmp() and setjmp().

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If _longjmp() is executed and the environment in which _setjmp() was executed no longer exists, errors can
occur. The conditions under which the environment of the _setjmp() no longer exists include exiting the
function that contains the _setjmp() call, and exiting an inner block with temporary storage. This condition
might not be detectable, in which case the _longjmp() occurs and, if the environment no longer exists, the
contents of the temporary storage of an inner block are unpredictable. This condition might also cause un-
expected process termination. If the function has returned, the results are undefined.

Passing longjmp() a pointer to a buffer not created by setjmp(), passing _longjmp() a pointer to a buffer not
created by _setjmp(), passing siglongjmp() a pointer to a buffer not created by sigsetjmp(), or passing any of
these three functions a buffer that has been modified by the user can cause all the problems listed above,
and more.

The _longjmp() and _setjmp() functions are included to support programs written to historical system inter-
faces. New applications should use siglongjmp() and sigsetjmp() respectively.

RATIONALE
None.

FUTURE DIRECTIONS
The _longjmp() and _setjmp() functions may be removed in a future version.

SEE ALSO
longjmp(), setjmp(), siglongjmp(), sigsetjmp()

The Base Definitions volume of POSIX.1-2017, <setjmp.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 1

_LONGJMP(3P) POSIX Programmer’s Manual _LONGJMP(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

_TOLOWER(3P) POSIX Programmer’s Manual _TOLOWER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
_tolower — transliterate uppercase characters to lowercase

SYNOPSIS
#include <ctype.h>

int _tolower(int c);

DESCRIPTION
The _tolower() macro shall be equivalent to tolower(c) except that the application shall ensure that the ar-
gument c is an uppercase letter.

RETURN VALUE
Upon successful completion, _tolower() shall return the lowercase letter corresponding to the argument
passed.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the tolower() function instead of the obsolescent _tolower() function.

RATIONALE
None.

FUTURE DIRECTIONS
The _tolower() function may be removed in a future version.

SEE ALSO
tolower(), isupper()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

_TOUPPER(3P) POSIX Programmer’s Manual _TOUPPER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
_toupper — transliterate lowercase characters to uppercase

SYNOPSIS
#include <ctype.h>

int _toupper(int c);

DESCRIPTION
The _toupper() macro shall be equivalent to toupper() except that the application shall ensure that the argu-
ment c is a lowercase letter.

RETURN VALUE
Upon successful completion, _toupper() shall return the uppercase letter corresponding to the argument
passed.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the toupper() function instead of the obsolescent _toupper() function.

RATIONALE
None.

FUTURE DIRECTIONS
The _toupper() function may be removed in a future version.

SEE ALSO
islower(), toupper()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

A64L(3P) POSIX Programmer’s Manual A64L(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
a64l, l64a — convert between a 32-bit integer and a radix-64 ASCII string

SYNOPSIS
#include <stdlib.h>

long a64l(const char *s);
char *l64a(long value);

DESCRIPTION
These functions maintain numbers stored in radix-64 ASCII characters. This is a notation by which 32-bit
integers can be represented by up to six characters; each character represents a digit in radix-64 notation. If
the type long contains more than 32 bits, only the low-order 32 bits shall be used for these operations.

The characters used to represent digits are ’.’ (dot) for 0, ’/’ for 1, ’0’ through ’9’ for [2,11], ’A’ through
’Z’ for [12,37], and ’a’ through ’z’ for [38,63].

The a64l() function shall take a pointer to a radix-64 representation, in which the first digit is the least sig-
nificant, and return the corresponding long value. If the string pointed to by s contains more than six char-
acters, a64l() shall use the first six. If the first six characters of the string contain a null terminator, a64l()
shall use only characters preceding the null terminator. The a64l() function shall scan the character string
from left to right with the least significant digit on the left, decoding each character as a 6-bit radix-64 num-
ber. If the type long contains more than 32 bits, the resulting value is sign-extended. The behavior of a64l()
is unspecified if s is a null pointer or the string pointed to by s was not generated by a previous call to
l64a().

The l64a() function shall take a long argument and return a pointer to the corresponding radix-64 represen-
tation. The behavior of l64a() is unspecified if value is negative.

The value returned by l64a() may be a pointer into a static buffer. Subsequent calls to l64a() may overwrite
the buffer.

The l64a() function need not be thread-safe.

RETURN VALUE
Upon successful completion, a64l() shall return the long value resulting from conversion of the input string.
If a string pointed to by s is an empty string, a64l() shall return 0L.

The l64a() function shall return a pointer to the radix-64 representation. If value is 0L, l64a() shall return a
pointer to an empty string.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the type long contains more than 32 bits, the result of a64l(l64a(x)) is x in the low-order 32 bits.

RATIONALE
This is not the same encoding as used by either encoding variant of the uuencode utility.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

A64L(3P) POSIX Programmer’s Manual A64L(3P)

SEE ALSO
strtoul()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

The Shell and Utilities volume of POSIX.1-2017, uuencode

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ABORT(3P) POSIX Programmer’s Manual ABORT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
abort — generate an abnormal process abort

SYNOPSIS
#include <stdlib.h>

void abort(void);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The abort() function shall cause abnormal process termination to occur, unless the signal SIGABRT is be-
ing caught and the signal handler does not return.

The abnormal termination processing shall include the default actions defined for SIGABRT and may in-
clude an attempt to effect fclose() on all open streams.

The SIGABRT signal shall be sent to the calling process as if by means of raise() with the argument SIGA-
BRT.

The status made available to wait(), waitid(), or waitpid() by abort() shall be that of a process terminated by
the SIGABRT signal. The abort() function shall override blocking or ignoring the SIGABRT signal.

RETURN VALUE
The abort() function shall not return.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Catching the signal is intended to provide the application developer with a portable means to abort process-
ing, free from possible interference from any implementation-supplied functions.

RATIONALE
The ISO/IEC 9899: 1999 standard requires the abort() function to be async-signal-safe. Since
POSIX.1-2008 defers to the ISO C standard, this required a change to the DESCRIPTION from ‘‘shall in-
clude the effect of fclose()’’ to ‘‘may include an attempt to effect fclose().’’

The revised wording permits some backwards-compatibility and avoids a potential deadlock situation.

The Open Group Base Resolution bwg2002-003 is applied, removing the following XSI shaded paragraph
from the DESCRIPTION:

‘‘On XSI-conformant systems, in addition the abnormal termination processing shall include the effect of
fclose() on message catalog descriptors.’’

There were several reasons to remove this paragraph:

* No special processing of open message catalogs needs to be performed prior to abnormal process ter-
mination.

* The main reason to specifically mention that abort() includes the effect of fclose() on open streams is
to flush output queued on the stream. Message catalogs in this context are read-only and, therefore, do
not need to be flushed.

IEEE/The Open Group 2017 1

ABORT(3P) POSIX Programmer’s Manual ABORT(3P)

* The effect of fclose() on a message catalog descriptor is unspecified. Message catalog descriptors are
allowed, but not required to be implemented using a file descriptor, but there is no mention in
POSIX.1-2008 of a message catalog descriptor using a standard I/O stream FILE object as would be
expected by fclose().

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), kill(), raise(), signal(), wait(), waitid()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ABS(3P) POSIX Programmer’s Manual ABS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
abs — return an integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs(int i);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The abs() function shall compute the absolute value of its integer operand, i. If the result cannot be repre-
sented, the behavior is undefined.

RETURN VALUE
The abs() function shall return the absolute value of its integer operand.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
In two’s-complement representation, the absolute value of the negative integer with largest magnitude
{INT_MIN} might not be representable.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fabs(), labs()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ACCEPT(3P) POSIX Programmer’s Manual ACCEPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
accept — accept a new connection on a socket

SYNOPSIS
#include <sys/socket.h>

int accept(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The accept() function shall extract the first connection on the queue of pending connections, create a new
socket with the same socket type protocol and address family as the specified socket, and allocate a new file
descriptor for that socket. The file descriptor shall be allocated as described in Section 2.14, File Descriptor

Allocation.

The accept() function takes the following arguments:

socket Specifies a socket that was created with socket(), has been bound to an address with bind(),
and has issued a successful call to listen().

address Either a null pointer, or a pointer to a sockaddr structure where the address of the connect-
ing socket shall be returned.

address_len Either a null pointer, if address is a null pointer, or a pointer to a socklen_t object which on
input specifies the length of the supplied sockaddr structure, and on output specifies the
length of the stored address.

If address is not a null pointer, the address of the peer for the accepted connection shall be stored in the
sockaddr structure pointed to by address, and the length of this address shall be stored in the object
pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure, the stored
address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the value stored in
the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file descriptor for
the socket, accept() shall block until a connection is present. If the listen() queue is empty of connection re-
quests and O_NONBLOCK is set on the file descriptor for the socket, accept() shall fail and set errno to
[EAGAIN] or [EWOULDBLOCK].

The accepted socket cannot itself accept more connections. The original socket remains open and can ac-
cept more connections.

RETURN VALUE
Upon successful completion, accept() shall return the non-negative file descriptor of the accepted socket.
Otherwise, −1 shall be returned, errno shall be set to indicate the error, and any object pointed to by ad-

dress_len shall remain unchanged.

ERRORS
The accept() function shall fail if:

EAGAIN or EWOULDBLOCK
O_NONBLOCK is set for the socket file descriptor and no connections are present to be accepted.

EBADF
The socket argument is not a valid file descriptor.

IEEE/The Open Group 2017 1

ACCEPT(3P) POSIX Programmer’s Manual ACCEPT(3P)

ECONNABORTED
A connection has been aborted.

EINTR
The accept() function was interrupted by a signal that was caught before a valid connection ar-
rived.

EINVAL
The socket is not accepting connections.

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum number of file descriptors in the system are already open.

ENOBUFS
No buffer space is available.

ENOMEM
There was insufficient memory available to complete the operation.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The socket type of the specified socket does not support accepting connections.

The accept() function may fail if:

EPROT O
A protocol error has occurred; for example, the STREAMS protocol stack has not been initialized.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
When a connection is available, select() indicates that the file descriptor for the socket is ready for reading.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14, File Descriptor Allocation, bind(), connect(), listen(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ACCESS(3P) POSIX Programmer’s Manual ACCESS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
access, faccessat — determine accessibility of a file descriptor

SYNOPSIS
#include <unistd.h>

int access(const char *path, int amode);

#include <fcntl.h>

int faccessat(int fd, const char *path, int amode, int flag);

DESCRIPTION
The access() function shall check the file named by the pathname pointed to by the path argument for ac-
cessibility according to the bit pattern contained in amode. The checks for accessibility (including direc-
tory permissions checked during pathname resolution) shall be performed using the real user ID in place of
the effective user ID and the real group ID in place of the effective group ID.

The value of amode is either the bitwise-inclusive OR of the access permissions to be checked (R_OK,
W_OK, X_OK) or the existence test (F_OK).

If any access permissions are checked, each shall be checked individually, as described in the Base Defini-
tions volume of POSIX.1-2017, Section 4.5, File Access Permissions, except that where that description
refers to execute permission for a process with appropriate privileges, an implementation may indicate suc-
cess for X_OK even if execute permission is not granted to any user.

The faccessat() function, when called with a flag value of zero, shall be equivalent to the access() function,
except in the case where path specifies a relative path. In this case the file whose accessibility is to be deter-
mined shall be located relative to the directory associated with the file descriptor fd instead of the current
working directory. If the access mode of the open file description associated with the file descriptor is not
O_SEARCH, the function shall check whether directory searches are permitted using the current permis-
sions of the directory underlying the file descriptor. If the access mode is O_SEARCH, the function shall
not perform the check.

If faccessat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used and, if flag is zero, the behavior shall be identical to a call to access().

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fc-

ntl.h>:

AT_EACCESS
The checks for accessibility (including directory permissions checked during pathname reso-
lution) shall be performed using the effective user ID and group ID instead of the real user
ID and group ID as required in a call to access().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error.

ERRORS
These functions shall fail if:

EACCES
Permission bits of the file mode do not permit the requested access, or search permission is denied
on a component of the path prefix.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

IEEE/The Open Group 2017 1

ACCESS(3P) POSIX Programmer’s Manual ACCESS(3P)

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

EROFS
Write access is requested for a file on a read-only file system.

The faccessat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

EINVAL
The value of the amode argument is invalid.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ETXTBSY
Write access is requested for a pure procedure (shared text) file that is being executed.

The faccessat() function may fail if:

EINVAL
The value of the flag argument is not valid.

The following sections are informative.

EXAMPLES
Testing for the Existence of a File

The following example tests whether a file named myfile exists in the /tmp directory.

#include <unistd.h>
...
int result;
const char *pathname = "/tmp/myfile";

result = access (pathname, F_OK);

IEEE/The Open Group 2017 2

ACCESS(3P) POSIX Programmer’s Manual ACCESS(3P)

APPLICATION USAGE
Use of these functions is discouraged since by the time the returned information is acted upon, it is out-of-
date. (That is, acting upon the information always leads to a time-of-check-to-time-of-use race condition.)
An application should instead attempt the action itself and handle the [EACCES] error that occurs if the
file is not accessible (with a change of effective user and group IDs beforehand, and perhaps a change back
afterwards, in the case where access() or faccessat() without AT_EACCES would have been used.)

Historically, one of the uses of access() was in set-user-ID root programs to check whether the user running
the program had access to a file. This relied on ‘‘super-user’’ privileges which were granted based on the ef-
fective user ID being zero, so that when access() used the real user ID to check accessibility those privi-
leges were not taken into account. On newer systems where privileges can be assigned which have no asso-
ciation with user or group IDs, if a program with such privileges calls access(), the change of IDs has no ef-
fect on the privileges and therefore they are taken into account in the accessibility checks. Thus, access()
(and faccessat() with flag zero) cannot be used for this historical purpose in such programs. Likewise, if a
system provides any additional or alternate file access control mechanisms that are not user ID-based, they
will still be taken into account.

If a relative pathname is used, no account is taken of whether the current directory (or the directory associ-
ated with the file descriptor fd) is accessible via any absolute pathname. Applications using access(), or
faccessat() without AT_EACCES, may consequently act as if the file would be accessible to a user with the
real user ID and group ID of the process when such a user would not in practice be able to access the file
because access would be denied at some point above the current directory (or the directory associated with
the file descriptor fd) in the file hierarchy.

If access() or faccessat() is used with W_OK to check for write access to a directory which has the
S_ISVTX bit set, a return value indicating the directory is writable can be misleading since some opera-
tions on files in the directory would not be permitted based on the ownership of those files (see the Base
Definitions volume of POSIX.1-2017, Section 4.3, Directory Protection).

Additional values of amode other than the set defined in the description may be valid; for example, if a sys-
tem has extended access controls.

The use of the AT_EACCESS value for flag enables functionality not available in access().

RATIONALE
In early proposals, some inadequacies in the access() function led to the creation of an eaccess() function
because:

1. Historical implementations of access() do not test file access correctly when the process’ real user ID
is superuser. In particular, they always return zero when testing execute permissions without regard to
whether the file is executable.

2. The superuser has complete access to all files on a system. As a consequence, programs started by the
superuser and switched to the effective user ID with lesser privileges cannot use access() to test their
file access permissions.

However, the historical model of eaccess() does not resolve problem (1), so this volume of POSIX.1-2017
now allows access() to behave in the desired way because several implementations have corrected the prob-
lem. It was also argued that problem (2) is more easily solved by using open(), chdir(), or one of the exec

functions as appropriate and responding to the error, rather than creating a new function that would not be
as reliable. Therefore, eaccess() is not included in this volume of POSIX.1-2017.

The sentence concerning appropriate privileges and execute permission bits reflects the two possibilities
implemented by historical implementations when checking superuser access for X_OK.

New implementations are discouraged from returning X_OK unless at least one execution permission bit is
set.

The purpose of the faccessat() function is to enable the checking of the accessibility of files in directories
other than the current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to access(), resulting in unspecified behavior. By opening a file de-
scriptor for the target directory and using the faccessat() function it can be guaranteed that the file tested for

IEEE/The Open Group 2017 3

ACCESS(3P) POSIX Programmer’s Manual ACCESS(3P)

accessibility is located relative to the desired directory.

FUTURE DIRECTIONS
These functions may be formally deprecated (for example, by shading them OB) in a future version of this
standard.

SEE ALSO
chmod(), fstatat()

The Base Definitions volume of POSIX.1-2017, Section 4.5, File Access Permissions, <fcntl.h>,
<unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

ACOS(3P) POSIX Programmer’s Manual ACOS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
acos, acosf, acosl — arc cosine functions

SYNOPSIS
#include <math.h>

double acos(double x);
float acosf(float x);
long double acosl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the principal value of the arc cosine of their argument x. The value of x

should be in the range [−1,1].

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc cosine of x, in the range [0,π] radians.

For finite values of x not in the range [−1,1], a domain error shall occur, and either a NaN (if supported), or
an implementation-defined value shall be returned.

If x is NaN, a NaN shall be returned.

If x is +1, +0 shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The x argument is finite and is not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

ACOS(3P) POSIX Programmer’s Manual ACOS(3P)

SEE ALSO
cos(), feclearexcept(), fetestexcept(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ACOSH(3P) POSIX Programmer’s Manual ACOSH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
acosh, acoshf, acoshl — inverse hyperbolic cosine functions

SYNOPSIS
#include <math.h>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the inverse hyperbolic cosine of their argument x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic cosine of their argument.

For finite values of x < 1, a domain error shall occur, and either a NaN (if supported), or an implementa-
tion-defined value shall be returned.

If x is NaN, a NaN shall be returned.

If x is +1, +0 shall be returned.

If x is +Inf, +Inf shall be returned.

If x is −Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The x argument is finite and less than +1.0, or is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

ACOSH(3P) POSIX Programmer’s Manual ACOSH(3P)

SEE ALSO
cosh(), feclearexcept(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ACOSL(3P) POSIX Programmer’s Manual ACOSL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
acosl — arc cosine functions

SYNOPSIS
#include <math.h>

long double acosl(long double x);

DESCRIPTION
Refer to acos().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

AIO_CANCEL(3P) POSIX Programmer’s Manual AIO_CANCEL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
aio_cancel — cancel an asynchronous I/O request

SYNOPSIS
#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

DESCRIPTION
The aio_cancel() function shall attempt to cancel one or more asynchronous I/O requests currently out-
standing against file descriptor fildes. The aiocbp argument points to the asynchronous I/O control block
for a particular request to be canceled. If aiocbp is NULL, then all outstanding cancelable asynchronous
I/O requests against fildes shall be canceled.

Normal asynchronous notification shall occur for asynchronous I/O operations that are successfully can-
celed. If there are requests that cannot be canceled, then the normal asynchronous completion process shall
take place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status shall be set to [ECAN-
CELED] and the return status shall be −1. For requested operations that are not successfully canceled, the
aiocbp shall not be modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with which the
asynchronous operation was initiated, unspecified results occur.

Which operations are cancelable is implementation-defined.

RETURN VALUE
The aio_cancel() function shall return the value AIO_CANCELED if the requested operation(s) were can-
celed. The value AIO_NOTCANCELED shall be returned if at least one of the requested operation(s) can-
not be canceled because it is in progress. In this case, the state of the other operations, if any, referenced in
the call to aio_cancel() is not indicated by the return value of aio_cancel(). The application may determine
the state of affairs for these operations by using aio_error(). The value AIO_ALLDONE is returned if all
of the operations have already completed. Otherwise, the function shall return −1 and set errno to indicate
the error.

ERRORS
The aio_cancel() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write()

The Base Definitions volume of POSIX.1-2017, <aio.h>

IEEE/The Open Group 2017 1

AIO_CANCEL(3P) POSIX Programmer’s Manual AIO_CANCEL(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AIO_ERROR(3P) POSIX Programmer’s Manual AIO_ERROR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
aio_error — retrieve errors status for an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

DESCRIPTION
The aio_error() function shall return the error status associated with the aiocb structure referenced by the
aiocbp argument. The error status for an asynchronous I/O operation is the errno value that would be set by
the corresponding read(), write(), fdatasync(), or fsync() operation. If the operation has not yet completed,
then the error status shall be equal to [EINPROGRESS].

If the aiocb structure pointed to by aiocbp is not associated with an operation that has been scheduled, the
results are undefined.

RETURN VALUE
If the asynchronous I/O operation has completed successfully, then 0 shall be returned. If the asynchronous
operation has completed unsuccessfully, then the error status, as described for read(), write(), fdatasync(),
and fsync(), shall be returned. If the asynchronous I/O operation has not yet completed, then [EIN-
PROGRESS] shall be returned.

If the aio_error() function fails, it shall return −1 and set errno to indicate the error.

ERRORS
The aio_error() function may fail if:

EINVAL
The aiocbp argument does not refer to an asynchronous operation whose return status has not yet
been retrieved.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_fsync(), aio_read(), aio_return(), aio_write(), close(), exec , exit(), fork(), lio_lis-

tio(), lseek(), read()

The Base Definitions volume of POSIX.1-2017, <aio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

AIO_ERROR(3P) POSIX Programmer’s Manual AIO_ERROR(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AIO_FSYNC(3P) POSIX Programmer’s Manual AIO_FSYNC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
aio_fsync — asynchronous file synchronization

SYNOPSIS
#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

DESCRIPTION
The aio_fsync() function shall asynchronously perform a file synchronization operation, as specified by the
op argument, for I/O operations associated with the file indicated by the file descriptor aio_fildes member
of the aiocb structure referenced by the aiocbp argument and queued at the time of the call to aio_fsync().
The function call shall return when the synchronization request has been initiated or queued to the file or
device (even when the data cannot be synchronized immediately).

If op is O_DSYNC, all currently queued I/O operations shall be completed as if by a call to fdatasync();
that is, as defined for synchronized I/O data integrity completion.

If op is O_SYNC, all currently queued I/O operations shall be completed as if by a call to fsync(); that is, as
defined for synchronized I/O file integrity completion. If the aio_fsync() function fails, or if the operation
queued by aio_fsync() fails, then outstanding I/O operations are not guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the call to aio_fsync() that is
guaranteed to be forced to the relevant completion state. The completion of subsequent I/O on the file de-
scriptor is not guaranteed to be completed in a synchronized fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be used as an ar-
gument to aio_error() and aio_return() in order to determine the error status and return status, respectively,
of the asynchronous operation while it is proceeding. When the request is queued, the error status for the
operation is [EINPROGRESS]. When all data has been successfully transferred, the error status shall be
reset to reflect the success or failure of the operation. If the operation does not complete successfully, the
error status for the operation shall be set to indicate the error. The aio_sigevent member determines the
asynchronous notification to occur as specified in Section 2.4.1, Signal Generation and Delivery when all
operations have achieved synchronized I/O completion. All other members of the structure referenced by
aiocbp are ignored. If the control block referenced by aiocbp becomes an illegal address prior to asynchro-
nous I/O completion, then the behavior is undefined.

If the aio_fsync() function fails or aiocbp indicates an error condition, data is not guaranteed to have been
successfully transferred.

RETURN VALUE
The aio_fsync() function shall return the value 0 if the I/O operation is successfully queued; otherwise, the
function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_fsync() function shall fail if:

EAGAIN
The requested asynchronous operation was not queued due to temporary resource limitations.

EBADF
The aio_fildes member of the aiocb structure referenced by the aiocbp argument is not a valid file
descriptor.

EINVAL
This implementation does not support synchronized I/O for this file.

IEEE/The Open Group 2017 1

AIO_FSYNC(3P) POSIX Programmer’s Manual AIO_FSYNC(3P)

EINVAL
The aio_fildes member of the aiocb structure refers to a file on which an fsync() operation is not
possible.

EINVAL
A value of op other than O_DSYNC or O_SYNC was specified, or O_DSYNC was specified and
the implementation does not provide runtime support for the Synchronized Input and Output op-
tion, or O_SYNC was specified and the implementation does not provide runtime support for the
File Synchronization option.

In the event that any of the queued I/O operations fail, aio_fsync() shall return the error condition defined
for read() and write(). The error is returned in the error status for the asynchronous operation, which can
be retrieved using aio_error().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Note that even if the file descriptor is not open for writing, if there are any pending write requests on the
underlying file, then that I/O will be completed prior to the return of a call to aio_error() or aio_return() in-
dicating that the operation has completed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_error(), aio_return(), fcntl(), fdatasync(), fsync(), open(), read(), write()

The Base Definitions volume of POSIX.1-2017, <aio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AIO_READ(3P) POSIX Programmer’s Manual AIO_READ(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
aio_read — asynchronous read from a file

SYNOPSIS
#include <aio.h>

int aio_read(struct aiocb *aiocbp);

DESCRIPTION
The aio_read() function shall read aiocbp−>aio_nbytes from the file associated with aiocbp−>aio_fildes

into the buffer pointed to by aiocbp−>aio_buf. The function call shall return when the read request has been
initiated or queued to the file or device (even when the data cannot be delivered immediately).

If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted at a priority
equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution Scheduling is not sup-
ported, then the base scheduling priority is that of the calling process;
otherwise, the base scheduling priority is that of the calling thread.

The aiocbp value may be used as an argument to aio_error() and aio_return() in order to determine the er-
ror status and return status, respectively, of the asynchronous operation while it is proceeding. If an error
condition is encountered during queuing, the function call shall return without having initiated or queued
the request. The requested operation takes place at the absolute position in the file as given by aio_offset, as
if lseek() were called immediately prior to the operation with an offset equal to aio_offset and a whence

equal to SEEK_SET. After a successful call to enqueue an asynchronous I/O operation, the value of the file
offset for the file is unspecified.

The aio_sigevent member specifies the notification which occurs when the request is completed.

The aiocbp−>aio_lio_opcode field shall be ignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp−>aio_buf or the con-
trol block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, then the
behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/O is enabled on the file associated with aiocbp−>aio_fildes, the behavior of this function
shall be according to the definitions of synchronized I/O data integrity completion and synchronized I/O file
integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is outstanding to
the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open file descrip-
tion associated with aiocbp−>aio_fildes.

RETURN VALUE
The aio_read() function shall return the value zero if the I/O operation is successfully queued; otherwise,
the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_read() function shall fail if:

EAGAIN
The requested asynchronous I/O operation was not queued due to system resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to aio_read(), or
asynchronously. If any of the conditions below are detected synchronously, the aio_read() function shall re-
turn −1 and set errno to the corresponding value. If any of the conditions below are detected asyn-
chronously, the return status of the asynchronous operation is set to −1, and the error status of the

IEEE/The Open Group 2017 1

AIO_READ(3P) POSIX Programmer’s Manual AIO_READ(3P)

asynchronous operation is set to the corresponding value.

EBADF
The aiocbp−>aio_fildes argument is not a valid file descriptor open for reading.

EINVAL
The file offset value implied by aiocbp−>aio_offset would be invalid,
aiocbp−>aio_reqprio is not a valid value, or aiocbp−>aio_nbytes is an invalid value.

In the case that the aio_read() successfully queues the I/O operation but the operation is subsequently can-
celed or encounters an error, the return status of the asynchronous operation is one of the values normally
returned by the read() function call. In addition, the error status of the asynchronous operation is set to one
of the error statuses normally set by the read() function call, or one of the following values:

EBADF
The aiocbp−>aio_fildes argument is not a valid file descriptor open for reading.

ECANCELED
The requested I/O was canceled before the I/O completed due to an explicit aio_cancel() request.

EINVAL
The file offset value implied by aiocbp−>aio_offset would be invalid.

The following condition may be detected synchronously or asynchronously:

EOVERFLOW
The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and the starting offset in
aiobcp−>aio_offset is before the end-of-file and is at or beyond the offset maximum in the open
file description associated with aiocbp−>aio_fildes.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), lio_listio(), aio_return(), aio_write(), close(), exec , exit(), fork(), lseek(),
read()

The Base Definitions volume of POSIX.1-2017, <aio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AIO_RETURN(3P) POSIX Programmer’s Manual AIO_RETURN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
aio_return — retrieve return status of an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

DESCRIPTION
The aio_return() function shall return the return status associated with the aiocb structure referenced by the
aiocbp argument. The return status for an asynchronous I/O operation is the value that would be returned
by the corresponding read(), write(), or fsync() function call. If the error status for the operation is equal to
[EINPROGRESS], then the return status for the operation is undefined. The aio_return() function may be
called exactly once to retrieve the return status of a given asynchronous operation; thereafter, if the same
aiocb structure is used in a call to aio_return() or aio_error(), an error may be returned. When the aiocb
structure referred to by aiocbp is used to submit another asynchronous operation, then aio_return() may be
successfully used to retrieve the return status of that operation.

RETURN VALUE
If the asynchronous I/O operation has completed, then the return status, as described for read(), write(), and
fsync(), shall be returned. If the asynchronous I/O operation has not yet completed, the results of aio_re-

turn() are undefined.

If the aio_return() function fails, it shall return −1 and set errno to indicate the error.

ERRORS
The aio_return() function may fail if:

EINVAL
The aiocbp argument does not refer to an asynchronous operation whose return status has not yet
been retrieved.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_write(), close(), exec , exit(), fork(), lio_lis-

tio(), lseek(), read()

The Base Definitions volume of POSIX.1-2017, <aio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

AIO_RETURN(3P) POSIX Programmer’s Manual AIO_RETURN(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AIO_SUSPEND(3P) POSIX Programmer’s Manual AIO_SUSPEND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
aio_suspend — wait for an asynchronous I/O request

SYNOPSIS
#include <aio.h>

int aio_suspend(const struct aiocb *const list[], int nent,
const struct timespec *timeout);

DESCRIPTION
The aio_suspend() function shall suspend the calling thread until at least one of the asynchronous I/O oper-
ations referenced by the list argument has completed, until a signal interrupts the function, or, if timeout is
not NULL, until the time interval specified by timeout has passed. If any of the aiocb structures in the list
correspond to completed asynchronous I/O operations (that is, the error status for the operation is not equal
to [EINPROGRESS]) at the time of the call, the function shall return without suspending the calling
thread. The list argument is an array of pointers to asynchronous I/O control blocks. The nent argument in-
dicates the number of elements in the array. Each aiocb structure pointed to has been used in initiating an
asynchronous I/O request via aio_read(), aio_write(), or lio_listio(). This array may contain null pointers,
which are ignored. If this array contains pointers that refer to aiocb structures that have not been used in
submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of the I/O
operations referenced by list are completed, then aio_suspend() shall return with an error. If the Monotonic
Clock option is supported, the clock that shall be used to measure this time interval shall be the
CLOCK_MONOTONIC clock.

RETURN VALUE
If the aio_suspend() function returns after one or more asynchronous I/O operations have completed, the
function shall return zero. Otherwise, the function shall return a value of −1 and set errno to indicate the er-
ror.

The application may determine which asynchronous I/O completed by scanning the associated error and re-
turn status using aio_error() and aio_return(), respectively.

ERRORS
The aio_suspend() function shall fail if:

EAGAIN
No asynchronous I/O indicated in the list referenced by list completed in the time interval indi-
cated by timeout.

EINTR
A signal interrupted the aio_suspend() function. Note that, since each asynchronous I/O operation
may possibly provoke a signal when it completes, this error return may be caused by the comple-
tion of one (or more) of the very I/O operations being awaited.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 1

AIO_SUSPEND(3P) POSIX Programmer’s Manual AIO_SUSPEND(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write(), lio_listio()

The Base Definitions volume of POSIX.1-2017, <aio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AIO_WRITE(3P) POSIX Programmer’s Manual AIO_WRITE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
aio_write — asynchronous write to a file

SYNOPSIS
#include <aio.h>

int aio_write(struct aiocb *aiocbp);

DESCRIPTION
The aio_write() function shall write aiocbp−>aio_nbytes to the file associated with aiocbp−>aio_fildes

from the buffer pointed to by aiocbp−>aio_buf. The function shall return when the write request has been
initiated or, at a minimum, queued to the file or device.

If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted at a priority
equal to a base scheduling priority minus aiocbp−>aio_reqprio. If Thread Execution Scheduling is not sup-
ported, then the base scheduling priority is that of the calling process;
otherwise, the base scheduling priority is that of the calling thread.

The aiocbp argument may be used as an argument to aio_error() and aio_return() in order to determine the
error status and return status, respectively, of the asynchronous operation while it is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp−>aio_buf or the con-
trol block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, then the
behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation shall take place at
the absolute position in the file as given by aio_offset, as if lseek() were called immediately prior to the op-
eration with an offset equal to aio_offset and a whence equal to SEEK_SET. If O_APPEND is set for the
file descriptor, or if aio_fildes is associated with a device that is incapable of seeking, write operations ap-
pend to the file in the same order as the calls were made, except under circumstances described in Section

2.8.2, Asynchronous I/O. After a successful call to enqueue an asynchronous I/O operation, the value of
the file offset for the file is unspecified.

The aio_sigevent member specifies the notification which occurs when the request is completed.

The aiocbp−>aio_lio_opcode field shall be ignored by aio_write().

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/O is enabled on the file associated with aiocbp−>aio_fildes, the behavior of this function
shall be according to the definitions of synchronized I/O data integrity completion, and synchronized I/O
file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is outstanding to
the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open file descrip-
tion associated with aiocbp−>aio_fildes.

RETURN VALUE
The aio_write() function shall return the value zero if the I/O operation is successfully queued; otherwise,
the function shall return the value −1 and set errno to indicate the error.

ERRORS
The aio_write() function shall fail if:

EAGAIN
The requested asynchronous I/O operation was not queued due to system resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to aio_write(), or

IEEE/The Open Group 2017 1

AIO_WRITE(3P) POSIX Programmer’s Manual AIO_WRITE(3P)

asynchronously. If any of the conditions below are detected synchronously, the aio_write() function shall
return −1 and set errno to the corresponding value. If any of the conditions below are detected asyn-
chronously, the return status of the asynchronous operation shall be set to −1, and the error status of the
asynchronous operation is set to the corresponding value.

EBADF
The aiocbp−>aio_fildes argument is not a valid file descriptor open for writing.

EINVAL
The file offset value implied by aiocbp−>aio_offset would be invalid,
aiocbp−>aio_reqprio is not a valid value, or aiocbp−>aio_nbytes is an invalid value.

In the case that the aio_write() successfully queues the I/O operation, the return status of the asynchronous
operation shall be one of the values normally returned by the write() function call. If the operation is suc-
cessfully queued but is subsequently canceled or encounters an error, the error status for the asynchronous
operation contains one of the values normally set by the write() function call, or one of the following:

EBADF
The aiocbp−>aio_fildes argument is not a valid file descriptor open for writing.

EINVAL
The file offset value implied by aiocbp−>aio_offset would be invalid.

ECANCELED
The requested I/O was canceled before the I/O completed due to an explicit aio_cancel() request.

The following condition may be detected synchronously or asynchronously:

EFBIG
The file is a regular file, aiobcp−>aio_nbytes is greater than 0, and the starting offset in
aiobcp−>aio_offset is at or beyond the offset maximum in the open file description associated with
aiocbp−>aio_fildes.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.8.2, Asynchronous I/O, aio_cancel(), aio_error(), aio_read(), aio_return(), close(), exec ,
exit(), fork(), lio_listio(), lseek(), write()

The Base Definitions volume of POSIX.1-2017, <aio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ALARM(3P) POSIX Programmer’s Manual ALARM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
alarm — schedule an alarm signal

SYNOPSIS
#include <unistd.h>

unsigned alarm(unsigned seconds);

DESCRIPTION
The alarm() function shall cause the system to generate a SIGALRM signal for the process after the num-
ber of realtime seconds specified by seconds have elapsed. Processor scheduling delays may prevent the
process from handling the signal as soon as it is generated.

If seconds is 0, a pending alarm request, if any, is canceled.

Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner. If the
SIGALRM signal has not yet been generated, the call shall result in rescheduling the time at which the
SIGALRM signal is generated.

Interactions between alarm() and setitimer() are unspecified.

RETURN VALUE
If there is a previous alarm() request with time remaining, alarm() shall return a non-zero value that is the
number of seconds until the previous request would have generated a SIGALRM signal. Otherwise, alarm()
shall return 0.

ERRORS
The alarm() function is always successful, and no return value is reserved to indicate an error.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The fork() function clears pending alarms in the child process. A new process image created by one of the
exec functions inherits the time left to an alarm signal in the image of the old process.

Application developers should note that the type of the argument seconds and the return value of alarm() is
unsigned. That means that a Strictly Conforming POSIX System Interfaces Application cannot pass a
value greater than the minimum guaranteed value for {UINT_MAX}, which the ISO C standard sets as
65 535, and any application passing a larger value is restricting its portability. A different type was consid-
ered, but historical implementations, including those with a 16-bit int type, consistently use either un-
signed or int.

Application developers should be aware of possible interactions when the same process uses both the
alarm() and sleep() functions.

RATIONALE
Many historical implementations (including Version 7 and System V) allow an alarm to occur up to a sec-
ond early. Other implementations allow alarms up to half a second or one clock tick early or do not allow
them to occur early at all. The latter is considered most appropriate, since it gives the most predictable be-
havior, especially since the signal can always be delayed for an indefinite amount of time due to scheduling.
Applications can thus choose the seconds argument as the minimum amount of time they wish to have
elapse before the signal.

The term ‘‘realtime’’ here and elsewhere (sleep(), times()) is intended to mean ‘‘wall clock’’ time as com-
mon English usage, and has nothing to do with ‘‘realtime operating systems’’. It is in contrast to virtual

time, which could be misinterpreted if just time were used.

IEEE/The Open Group 2017 1

ALARM(3P) POSIX Programmer’s Manual ALARM(3P)

In some implementations, including 4.3 BSD, very large values of the seconds argument are silently
rounded down to an implementation-specific maximum value. This maximum is large enough (to the order
of several months) that the effect is not noticeable.

There were two possible choices for alarm generation in multi-threaded applications: generation for the
calling thread or generation for the process. The first option would not have been particularly useful since
the alarm state is maintained on a per-process basis and the alarm that is established by the last invocation
of alarm() is the only one that would be active.

Furthermore, allowing generation of an asynchronous signal for a thread would have introduced an excep-
tion to the overall signal model. This requires a compelling reason in order to be justified.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fork(), getitimer(), pause(), sigaction(), sleep()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ALPHASORT(3P) POSIX Programmer’s Manual ALPHASORT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
alphasort, scandir — scan a directory

SYNOPSIS
#include <dirent.h>

int alphasort(const struct dirent **d1, const struct dirent **d2);
int scandir(const char *dir, struct dirent ***namelist,

int (*sel)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
The alphasort() function can be used as the comparison function for the scandir() function to sort the direc-
tory entries, d1 and d2, into alphabetical order. Sorting happens as if by calling the strcoll() function on the
d_name element of the dirent structures passed as the two parameters. If the strcoll() function fails, the re-
turn value of alphasort() is unspecified.

The alphasort() function shall not change the setting of errno if successful. Since no return value is re-
served to indicate an error, an application wishing to check for error situations should set errno to 0, then
call alphasort(), then check errno.

The scandir() function shall scan the directory dir, calling the function referenced by sel on each directory
entry. Entries for which the function referenced by sel returns non-zero shall be stored in strings allocated
as if by a call to malloc(), and sorted as if by a call to qsort() with the comparison function compar, except
that compar need not provide total ordering. The strings are collected in array namelist which shall be allo-
cated as if by a call to malloc(). If sel is a null pointer, all entries shall be selected. If the comparison func-
tion compar does not provide total ordering, the order in which the directory entries are stored is unspeci-
fied.

RETURN VALUE
Upon successful completion, the alphasort() function shall return an integer greater than, equal to, or less
than 0, according to whether the name of the directory entry pointed to by d1 is lexically greater than, equal
to, or less than the directory pointed to by d2 when both are interpreted as appropriate to the current locale.
There is no return value reserved to indicate an error.

Upon successful completion, the scandir() function shall return the number of entries in the array and a
pointer to the array through the parameter namelist. Otherwise, the scandir() function shall return −1.

ERRORS
The scandir() function shall fail if:

EACCES
Search permission is denied for the component of the path prefix of dir or read permission is de-
nied for dir.

ELOOP
A loop exists in symbolic links encountered during resolution of the dir argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of dir does not name an existing directory or dir is an empty string.

ENOMEM
Insufficient storage space is available.

IEEE/The Open Group 2017 1

ALPHASORT(3P) POSIX Programmer’s Manual ALPHASORT(3P)

ENOTDIR
A component of dir names an existing file that is neither a directory nor a symbolic link to a direc-
tory.

EOVERFLOW
One of the values to be returned or passed to a callback function cannot be represented correctly.

The scandir() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the dir ar-
gument.

EMFILE
All file descriptors available to the process are currently open.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENFILE
Too many files are currently open in the system.

The following sections are informative.

EXAMPLES
An example to print the files in the current directory:

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
...
struct dirent **namelist;
int i,n;

n = scandir(".", &namelist, 0, alphasort);
if (n < 0)

perror("scandir");
else {

for (i = 0; i < n; i++) {
printf("%s\n", namelist[i]->d_name);
free(namelist[i]);
}

}
free(namelist);

...

APPLICATION USAGE
If dir contains filenames that do not form character strings, or which contain characters outside the domain
of the collating sequence of the current locale, the alphasort() function need not provide a total ordering.
This condition is not possible if all filenames within the directory consist only of characters from the porta-
ble filename character set.

The scandir() function may allocate dynamic storage during its operation. If scandir() is forcibly termi-
nated, such as by longjmp() or siglongjmp() being executed by the function pointed to by sel or compar, or
by an interrupt routine, scandir() does not have a chance to free that storage, so it remains permanently al-
located. A safe way to handle interrupts is to store the fact that an interrupt has occurred, then wait until
scandir() returns to act on the interrupt.

For functions that allocate memory as if by malloc(), the application should release such memory when it is
no longer required by a call to free(). For scandir(), this is namelist (including all of the individual strings

IEEE/The Open Group 2017 2

ALPHASORT(3P) POSIX Programmer’s Manual ALPHASORT(3P)

in namelist).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
qsort(), strcoll()

The Base Definitions volume of POSIX.1-2017, <dirent.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

ASCTIME(3P) POSIX Programmer’s Manual ASCTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
asctime, asctime_r — convert date and time to a string

SYNOPSIS
#include <time.h>

char *asctime(const struct tm *timeptr);
char *asctime_r(const struct tm *restrict tm, char *restrict buf);

DESCRIPTION
For asctime(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The asctime() function shall convert the broken-down time in the structure pointed to by timeptr into a
string in the form:

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm:

char *asctime(const struct tm *timeptr)
{

static char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

However, the behavior is undefined if timeptr−>tm_wday or timeptr−>tm_mon are not within the normal
ranges as defined in <time.h>, or if timeptr−>tm_year exceeds {INT_MAX}−1990, or if the above algo-
rithm would attempt to generate more than 26 bytes of output (including the terminating null).

The tm structure is defined in the <time.h> header.

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static objects: a
broken-down time structure and an array of type char. Execution of any of the functions may overwrite the
information returned in either of these objects by any of the other functions.

The asctime() function need not be thread-safe.

The asctime_r() function shall convert the broken-down time in the structure pointed to by tm into a string
(of the same form as that returned by asctime(), and with the same undefined behavior when input or output

IEEE/The Open Group 2017 1

ASCTIME(3P) POSIX Programmer’s Manual ASCTIME(3P)

is out of range) that is placed in the user-supplied buffer pointed to by buf (which shall contain at least 26
bytes) and then return buf .

RETURN VALUE
Upon successful completion, asctime() shall return a pointer to the string. If the function is unsuccessful, it
shall return NULL.

Upon successful completion, asctime_r() shall return a pointer to a character string containing the date and
time. This string is pointed to by the argument buf . If the function is unsuccessful, it shall return NULL.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are included only for compatibility with older implementations. They hav e undefined be-
havior if the resulting string would be too long, so the use of these functions should be discouraged. On im-
plementations that do not detect output string length overflow, it is possible to overflow the output buffers in
such a way as to cause applications to fail, or possible system security violations. Also, these functions do
not support localized date and time formats. To avoid these problems, applications should use strftime() to
generate strings from broken-down times.

Values for the broken-down time structure can be obtained by calling gmtime() or localtime().

The asctime_r() function is thread-safe and shall return values in a user-supplied buffer instead of possibly
using a static data area that may be overwritten by each call.

RATIONALE
The standard developers decided to mark the asctime() and asctime_r() functions obsolescent even though
asctime() is in the ISO C standard due to the possibility of buffer overflow. The ISO C standard also pro-
vides the strftime() function which can be used to avoid these problems.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
clock(), ctime(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ASIN(3P) POSIX Programmer’s Manual ASIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
asin, asinf, asinl — arc sine function

SYNOPSIS
#include <math.h>

double asin(double x);
float asinf(float x);
long double asinl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the principal value of the arc sine of their argument x. The value of x

should be in the range [−1,1].

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc sine of x, in the range [−π/2,π/2] radians.

For finite values of x not in the range [−1,1], a domain error shall occur, and either a NaN (if supported), or
an implementation-defined value shall be returned.

If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, asin(), asinf(), and asinl() shall return an implementation-defined value no greater in
magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

Domain Error
The x argument is finite and is not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

ASIN(3P) POSIX Programmer’s Manual ASIN(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), sin()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ASINH(3P) POSIX Programmer’s Manual ASINH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
asinh, asinhf, asinhl — inverse hyperbolic sine functions

SYNOPSIS
#include <math.h>

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the inverse hyperbolic sine of their argument x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic sine of their argument.

If x is NaN, a NaN shall be returned.

If x is ±0, or ±Inf, x shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, asinh(), asinhf(), and asinhl() shall return an implementation-defined value no greater in
magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions may fail if:

Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

ASINH(3P) POSIX Programmer’s Manual ASINH(3P)

SEE ALSO
feclearexcept(), fetestexcept(), sinh()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ASINL(3P) POSIX Programmer’s Manual ASINL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
asinl — arc sine function

SYNOPSIS
#include <math.h>

long double asinl(long double x);

DESCRIPTION
Refer to asin().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ASSERT(3P) POSIX Programmer’s Manual ASSERT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
assert — insert program diagnostics

SYNOPSIS
#include <assert.h>

void assert(scalar expression);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The assert() macro shall insert diagnostics into programs; it shall expand to a void expression. When it is
executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0), assert() shall
write information about the particular call that failed on stderr and shall call abort().

The information written about the call that failed shall include the text of the argument, the name of the
source file, the source file line number, and the name of the enclosing function; the latter are, respectively,
the values of the preprocessing macros _ _FILE_ _ and _ _LINE_ _ and of the identifier _ _func_ _.

Forcing a definition of the name NDEBUG, either from the compiler command line or with the preproces-
sor control statement #define NDEBUG ahead of the #include <assert.h> statement, shall stop assertions
from being compiled into the program.

RETURN VALUE
The assert() macro shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abort(), stdin

The Base Definitions volume of POSIX.1-2017, <assert.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

ASSERT(3P) POSIX Programmer’s Manual ASSERT(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AT AN(3P) POSIX Programmer’s Manual ATAN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atan, atanf, atanl — arc tangent function

SYNOPSIS
#include <math.h>

double atan(double x);
float atanf(float x);
long double atanl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the principal value of the arc tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc tangent of x in the range [−π/2,π/2] radi-
ans.

If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, ±π/2 shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, atan(), atanf(), and atanl() shall return an implementation-defined value no greater in
magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions may fail if:

Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

IEEE/The Open Group 2017 1

AT AN(3P) POSIX Programmer’s Manual ATAN(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
atan2(), feclearexcept(), fetestexcept(), isnan(), tan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AT AN2(3P) POSIX Programmer’s Manual ATAN2(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atan2, atan2f, atan2l — arc tangent functions

SYNOPSIS
#include <math.h>

double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the principal value of the arc tangent of y/x, using the signs of both argu-
ments to determine the quadrant of the return value.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the arc tangent of y/x in the range [−π,π] radians.

If y is ±0 and x is < 0, ±π shall be returned.

If y is ±0 and x is > 0, ±0 shall be returned.

If y is < 0 and x is ±0, −π/2 shall be returned.

If y is > 0 and x is ±0, π/2 shall be returned.

If x is 0, a pole error shall not occur.

If either x or y is NaN, a NaN shall be returned.

If the correct value would cause underflow, a range error may occur, and atan(), atan2f(), and atan2l() shall
return an implementation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and
LDBL_MIN, respectively.

If the IEC 60559 Floating-Point option is supported, y/x should be returned.

If y is ±0 and x is −0, ±π shall be returned.

If y is ±0 and x is +0, ±0 shall be returned.

For finite values of ±y > 0, if x is −Inf, ±π shall be returned.

For finite values of ±y > 0, if x is +Inf, ±0 shall be returned.

For finite values of x, if y is ±Inf, ±π/2 shall be returned.

If y is ±Inf and x is −Inf, ±3π/4 shall be returned.

If y is ±Inf and x is +Inf, ±π/4 shall be returned.

If both arguments are 0, a domain error shall not occur.

ERRORS
These functions may fail if:

IEEE/The Open Group 2017 1

AT AN2(3P) POSIX Programmer’s Manual ATAN2(3P)

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
Converting Cartesian to Polar Coordinates System

The function below uses atan2() to convert a 2d vector expressed in cartesian coordinates (x,y) to the polar
coordinates (rho,theta). There are other ways to compute the angle theta, using asin() acos(), or atan().
However, atan2() presents here two advantages:

* The angle’s quadrant is automatically determined.

* The singular cases (0,y) are taken into account.

Finally, this example uses hypot() rather than sqrt() since it is better for special cases; see hypot() for more
information.

#include <math.h>

void
cartesian_to_polar(const double x, const double y,

double *rho, double *theta
)

{
rho = hypot (x,y); / better than sqrt(x*x+y*y) */
*theta = atan2 (y,x);

}

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), asin(), atan(), feclearexcept(), fetestexcept(), hypot(), isnan(), sqrt(), tan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AT ANF(3P) POSIX Programmer’s Manual ATANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atanf — arc tangent function

SYNOPSIS
#include <math.h>

float atanf(float x);

DESCRIPTION
Refer to atan().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

AT ANH(3P) POSIX Programmer’s Manual ATANH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atanh, atanhf, atanhl — inverse hyperbolic tangent functions

SYNOPSIS
#include <math.h>

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the inverse hyperbolic tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the inverse hyperbolic tangent of their argument.

If x is ±1, a pole error shall occur, and atanh(), atanhf(), and atanhl() shall return the value of the macro
HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively, with the same sign as the correct value of the
function.

For finite |x|>1, a domain error shall occur, and either a NaN (if supported), or an implementation-defined
value shall be returned.

If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, atanh(), atanhf(), and atanhl() shall return an implementation-defined value no greater
in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

Domain Error
The x argument is finite and not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The x argument is ±1.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

These functions may fail if:

IEEE/The Open Group 2017 1

AT ANH(3P) POSIX Programmer’s Manual ATANH(3P)

Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), tanh()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AT ANL(3P) POSIX Programmer’s Manual ATANL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atanl — arc tangent function

SYNOPSIS
#include <math.h>

long double atanl(long double x);

DESCRIPTION
Refer to atan().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ATEXIT(3P) POSIX Programmer’s Manual ATEXIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atexit — register a function to run at process termination

SYNOPSIS
#include <stdlib.h>

int atexit(void (*func)(void));

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The atexit() function shall register the function pointed to by func, to be called without arguments at nor-
mal program termination. At normal program termination, all functions registered by the atexit() function
shall be called, in the reverse order of their registration, except that a function is called after any previously
registered functions that had already been called at the time it was registered. Normal termination occurs
either by a call to exit() or a return from main().

At least 32 functions can be registered with atexit().

After a successful call to any of the exec functions, any functions previously registered by atexit() shall no
longer be registered.

RETURN VALUE
Upon successful completion, atexit() shall return 0; otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The functions registered by a call to atexit() must return to ensure that all registered functions are called.

The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of functions that
can be registered. There is no way for an application to tell how many functions have already been regis-
tered with atexit().

Since the behavior is undefined if the exit() function is called more than once, portable applications calling
atexit() must ensure that the exit() function is not called at normal process termination when all functions
registered by the atexit() function are called.

All functions registered by the atexit() function are called at normal process termination, which occurs by a
call to the exit() function or a return from main() or on the last thread termination, when the behavior is as if
the implementation called exit() with a zero argument at thread termination time.

If, at normal process termination, a function registered by the atexit() function is called and a portable ap-
plication needs to stop further exit() processing, it must call the _exit() function or the _Exit() function or
one of the functions which cause abnormal process termination.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

ATEXIT(3P) POSIX Programmer’s Manual ATEXIT(3P)

SEE ALSO
exec , exit(), sysconf()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AT OF(3P) POSIX Programmer’s Manual ATOF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atof — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double atof(const char *str);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The call atof (str) shall be equivalent to:

strtod(str,(char **)NULL),

except that the handling of errors may differ. If the value cannot be represented, the behavior is undefined.

RETURN VALUE
The atof() function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The atof() function is subsumed by strtod() but is retained because it is used extensively in existing code. If
the number is not known to be in range, strtod() should be used because atof() is not required to perform
any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

AT OI(3P) POSIX Programmer’s Manual ATOI(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atoi — convert a string to an integer

SYNOPSIS
#include <stdlib.h>

int atoi(const char *str);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The call atoi(str) shall be equivalent to:

(int) strtol(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is undefined.

RETURN VALUE
The atoi() function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Converting an Argument

The following example checks for proper usage of the program. If there is an argument and the decimal
conversion of this argument (obtained using atoi()) is greater than 0, then the program has a valid number
of minutes to wait for an event.

#include <stdlib.h>
#include <stdio.h>
...
int minutes_to_event;
...
if (argc < 2 || ((minutes_to_event = atoi (argv[1]))) <= 0) {

fprintf(stderr, "Usage: %s minutes\n", argv[0]); exit(1);
}
...

APPLICATION USAGE
The atoi() function is subsumed by strtol() but is retained because it is used extensively in existing code. If
the number is not known to be in range, strtol() should be used because atoi() is not required to perform
any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

AT OI(3P) POSIX Programmer’s Manual ATOI(3P)

SEE ALSO
strtol()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

AT OL(3P) POSIX Programmer’s Manual ATOL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
atol, atoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long atol(const char *nptr);
long long atoll(const char *nptr);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

Except as noted below, the call atol(nptr) shall be equivalent to:

strtol(nptr, (char **)NULL, 10)

Except as noted below, the call to atoll(nptr) shall be equivalent to:

strtoll(nptr, (char **)NULL, 10)

The handling of errors may differ. If the value cannot be represented, the behavior is undefined.

RETURN VALUE
These functions shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the number is not known to be in range, strtol() or strtoll() should be used because atol() and atoll() are
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

AT OL(3P) POSIX Programmer’s Manual ATOL(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

BASENAME(3P) POSIX Programmer’s Manual BASENAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
basename — return the last component of a pathname

SYNOPSIS
#include <libgen.h>

char *basename(char *path);

DESCRIPTION
The basename() function shall take the pathname pointed to by path and return a pointer to the final com-
ponent of the pathname, deleting any trailing ’/’ characters.

If the string pointed to by path consists entirely of the ’/’ character, basename() shall return a pointer to the
string "/". If the string pointed to by path is exactly "//", it is implementation-defined whether ’/’ or "//"
is returned.

If path is a null pointer or points to an empty string, basename() shall return a pointer to the string ".".

The basename() function may modify the string pointed to by path, and may return a pointer to internal
storage. The returned pointer might be invalidated or the storage might be overwritten by a subsequent call
to basename(). The returned pointer might also be invalidated if the calling thread is terminated.

The basename() function need not be thread-safe.

RETURN VALUE
The basename() function shall return a pointer to the final component of path.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Using basename()

The following program fragment returns a pointer to the value lib, which is the base name of /usr/lib.

#include <libgen.h>
...
char name[] = "/usr/lib";
char *base;

base = basename(name);
...

Sample Input and Output Strings for the basename() and dirname() Functions and the basename and
dirname Utilities
.TS center box tab(!); cB | cB | cB | cB | cB | cB cB | cB | cB | cB | cB | cB cB | cB | cB | cB | cB | cB cB | cB
| cB | cB | cB | cB lf51 | lf51 | lf51 | lf51 | lf51 | lf5. basename()!!!basename!Output!Output and
dirname()!String!String!and dirname!Written by!Written by Functions path!Returned by!Returned by!Util-
ities!basename!dirname Argument!basename()!dirname()!string Operand!Utility!Utility _
"usr"!"usr"!"."!usr!usr!. _ "usr/"!"usr"!"."!usr/!usr!. _ ""!"."!"."!""!. or empty string!. _ "/"!"/"!"/"!/!/!/ _
"//"!"/" or "//"!"/" or "//"!//!/ or //!/ or // _ "///"!"/"!"/"!///!/!/ _ "/usr/"!"usr"!"/"!/usr/!usr!/ _
"/usr/lib"!"lib"!"/usr"!/usr/lib!lib!/usr _ "//usr//lib//"!"lib"!"//usr"!//usr//lib//!lib!//usr _
"/home//dwc//!"test"!"/home//dwc"!/home//dwc//!test!/home//dwc test"!!!test .SH "APPLICATION US-
AGE" None.

IEEE/The Open Group 2017 1

BASENAME(3P) POSIX Programmer’s Manual BASENAME(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dirname()

The Base Definitions volume of POSIX.1-2017, <libgen.h>

The Shell and Utilities volume of POSIX.1-2017, basename

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

BIND(3P) POSIX Programmer’s Manual BIND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address,
socklen_t address_len);

DESCRIPTION
The bind() function shall assign a local socket address address to a socket identified by descriptor socket

that has no local socket address assigned. Sockets created with the socket() function are initially unnamed;
they are identified only by their address family.

The bind() function takes the following arguments:

socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be bound to the socket. The length
and format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address argument.

The socket specified by socket may require the process to have appropriate privileges to use the bind() func-
tion.

If the address family of the socket is AF_UNIX and the pathname in address names a symbolic link, bind()
shall fail and set errno to [EADDRINUSE].

If the socket address cannot be assigned immediately and O_NONBLOCK is set for the file descriptor for
the socket, bind() shall fail and set errno to [EINPROGRESS], but the assignment request shall not be
aborted, and the assignment shall be completed asynchronously. Subsequent calls to bind() for the same
socket, before the assignment is completed, shall fail and set errno to [EALREADY].

When the assignment has been performed asynchronously, pselect(), select(), and poll() shall indicate that
the file descriptor for the socket is ready for reading and writing.

RETURN VALUE
Upon successful completion, bind() shall return 0; otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The bind() function shall fail if:

EADDRINUSE
The specified address is already in use.

EADDRNOTAVAIL
The specified address is not available from the local machine.

EAFNOSUPPORT
The specified address is not a valid address for the address family of the specified socket.

EALREADY
An assignment request is already in progress for the specified socket.

EBADF
The socket argument is not a valid file descriptor.

IEEE/The Open Group 2017 1

BIND(3P) POSIX Programmer’s Manual BIND(3P)

EINPROGRESS
O_NONBLOCK is set for the file descriptor for the socket and the assignment cannot be immedi-
ately performed; the assignment shall be performed asynchronously.

EINVAL
The socket is already bound to an address, and the protocol does not support binding to a new ad-
dress; or the socket has been shut down.

ENOBUFS
Insufficient resources were available to complete the call.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The socket type of the specified socket does not support binding to an address.

If the address family of the socket is AF_UNIX, then bind() shall fail if:

EACCES
A component of the path prefix denies search permission, or the requested name requires writing
in a directory with a mode that denies write permission.

EDESTADDRREQ or EISDIR
The address argument is a null pointer.

EIO An I/O error occurred.

ELOOP
A loop exists in symbolic links encountered during resolution of the pathname in address.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of the path prefix of the pathname in address does not name an existing file or the
pathname is an empty string.

ENOENT or ENOTDIR
The pathname in address contains at least one non-<slash> character and ends with one or more
trailing <slash> characters. If the pathname without the trailing <slash> characters would name an
existing file, an [ENOENT] error shall not occur.

ENOTDIR
A component of the path prefix of the pathname in address names an existing file that is neither a
directory nor a symbolic link to a directory, or the pathname in address contains at least one
non-<slash> character and ends with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic link to a directory.

EROFS
The name would reside on a read-only file system.

The bind() function may fail if:

EACCES
The specified address is protected and the current user does not have permission to bind to it.

EINVAL
The address_len argument is not a valid length for the address family.

EISCONN
The socket is already connected.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path-
name in address.

IEEE/The Open Group 2017 2

BIND(3P) POSIX Programmer’s Manual BIND(3P)

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
The following code segment shows how to create a socket and bind it to a name in the AF_UNIX domain.

#define MY_SOCK_PATH "/somepath"

int sfd;
struct sockaddr_un my_addr;

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == -1)

/* Handle error */;

memset(&my_addr, '\0', sizeof(struct sockaddr_un));
/* Clear structure */

my_addr.sun_family = AF_UNIX;
strncpy(my_addr.sun_path, MY_SOCK_PATH, sizeof(my_addr.sun_path) -1);

if (bind(sfd, (struct sockaddr *) &my_addr,
sizeof(struct sockaddr_un)) == -1)
/* Handle error */;

APPLICATION USAGE
An application program can retrieve the assigned socket name with the getsockname() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockname(), listen(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

BSEARCH(3P) POSIX Programmer’s Manual BSEARCH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t nel,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The bsearch() function shall search an array of nel objects, the initial element of which is pointed to by
base, for an element that matches the object pointed to by key. The size of each element in the array is
specified by width. If the nel argument has the value zero, the comparison function pointed to by compar

shall not be called and no match shall be found.

The comparison function pointed to by compar shall be called with two arguments that point to the key ob-
ject and to an array element, in that order.

The application shall ensure that the comparison function pointed to by compar does not alter the contents
of the array. The implementation may reorder elements of the array between calls to the comparison func-
tion, but shall not alter the contents of any individual element.

The implementation shall ensure that the first argument is always a pointer to the key.

When the same objects (consisting of width bytes, irrespective of their current positions in the array) are
passed more than once to the comparison function, the results shall be consistent with one another. That is,
the same object shall always compare the same way with the key.

The application shall ensure that the function returns an integer less than, equal to, or greater than 0 if the
key object is considered, respectively, to be less than, to match, or to be greater than the array element. The
application shall ensure that the array consists of all the elements that compare less than, all the elements
that compare equal to, and all the elements that compare greater than the key object, in that order.

RETURN VALUE
The bsearch() function shall return a pointer to a matching member of the array, or a null pointer if no
match is found. If two or more members compare equal, which member is returned is unspecified.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The example below searches a table containing pointers to nodes consisting of a string and its length. The
table is ordered alphabetically on the string in the node pointed to by each entry.

The code fragment below reads in strings and either finds the corresponding node and prints out the string
and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define TABSIZE 1000

IEEE/The Open Group 2017 1

BSEARCH(3P) POSIX Programmer’s Manual BSEARCH(3P)

struct node { /* These are stored in the table. */
char *string;
int length;

};
struct node table[TABSIZE]; /* Table to be searched. */

.

.

.
{

struct node *node_ptr, node;
/* Routine to compare 2 nodes. */
int node_compare(const void *, const void *);
.
.
.
while (scanf("%ms", &node.string) != EOF) {

node_ptr = (struct node *)bsearch((void *)(&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr->string, node_ptr->length);
} else {

(void)printf("not found: %s\n", node.string);
}
free(node.string);

}
}
/*

This routine compares two nodes based on an
alphabetical ordering of the string field.

*/
int
node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1)->string,
((const struct node *)node2)->string);

}

APPLICATION USAGE
The pointers to the key and the element at the base of the table should be of type pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be contained in the elements
in addition to the values being compared.

In practice, the array is usually sorted according to the comparison function.

RATIONALE
The requirement that the second argument (hereafter referred to as p) to the comparison function is a
pointer to an element of the array implies that for every call all of the following expressions are non-zero:

((char *)p - (char *)base) % width == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nel * width

IEEE/The Open Group 2017 2

BSEARCH(3P) POSIX Programmer’s Manual BSEARCH(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch(), qsort(), tdelete()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

BTOWC(3P) POSIX Programmer’s Manual BTOWC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
btowc — single byte to wide character conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The btowc() function shall determine whether c constitutes a valid (one-byte) character in the initial shift
state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The btowc() function shall return WEOF if c has the value EOF or if (unsigned char) c does not constitute
a valid (one-byte) character in the initial shift state. Otherwise, it shall return the wide-character representa-
tion of that character.

In the POSIX locale, btowc() shall not return WEOF if c has a value in the range 0 to 255 inclusive.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wctob()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CABS(3P) POSIX Programmer’s Manual CABS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cabs, cabsf, cabsl — return a complex absolute value

SYNOPSIS
#include <complex.h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex absolute value (also called norm, modulus, or magnitude) of z.

RETURN VALUE
These functions shall return the complex absolute value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CACOS(3P) POSIX Programmer’s Manual CACOS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cacos, cacosf, cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex arc cosine of z, with branch cuts outside the interval [−1, +1]
along the real axis.

RETURN VALUE
These functions shall return the complex arc cosine value, in the range of a strip mathematically unbounded
along the imaginary axis and in the interval [0, π] along the real axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccos()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CACOSH(3P) POSIX Programmer’s Manual CACOSH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cacosh, cacoshf, cacoshl — complex arc hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex arc hyperbolic cosine of z, with a branch cut at values less than
1 along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic cosine value, in the range of a half-strip of non-
negative values along the real axis and in the interval [−iπ, +iπ] along the imaginary axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccosh()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CACOSL(3P) POSIX Programmer’s Manual CACOSL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h>

long double complex cacosl(long double complex z);

DESCRIPTION
Refer to cacos().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CALLOC(3P) POSIX Programmer’s Manual CALLOC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
calloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nelem, size_t elsize);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The calloc() function shall allocate unused space for an array of nelem elements each of whose size in bytes
is elsize. The space shall be initialized to all bits 0.

The order and contiguity of storage allocated by successive calls to calloc() is unspecified. The pointer re-
turned if the allocation succeeds shall be suitably aligned so that it may be assigned to a pointer to any type
of object and then used to access such an object or an array of such objects in the space allocated (until the
space is explicitly freed or reallocated). Each such allocation shall yield a pointer to an object disjoint from
any other object. The pointer returned shall point to the start (lowest byte address) of the allocated space. If
the space cannot be allocated, a null pointer shall be returned. If the size of the space requested is 0, the be-
havior is implementation-defined: either a null pointer shall be returned, or the behavior shall be as if the
size were some non-zero value, except that the behavior is undefined if the returned pointer is used to ac-
cess an object.

RETURN VALUE
Upon successful completion with both nelem and elsize non-zero, calloc() shall return a pointer to the allo-
cated space. If either nelem or elsize is 0, then either:

* A null pointer shall be returned and errno may be set to an implementation-defined value, or

* A pointer to the allocated space shall be returned. The application shall ensure that the pointer is not
used to access an object.

Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The calloc() function shall fail if:

ENOMEM
Insufficient memory is available.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc(), realloc()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

IEEE/The Open Group 2017 1

CALLOC(3P) POSIX Programmer’s Manual CALLOC(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CARG(3P) POSIX Programmer’s Manual CARG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
carg, cargf, cargl — complex argument functions

SYNOPSIS
#include <complex.h>

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the argument (also called phase angle) of z, with a branch cut along the neg-
ative real axis.

RETURN VALUE
These functions shall return the value of the argument in the interval [−π, +π].

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cimag(), conj(), cproj()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CASIN(3P) POSIX Programmer’s Manual CASIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
casin, casinf, casinl — complex arc sine functions

SYNOPSIS
#include <complex.h>

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex arc sine of z, with branch cuts outside the interval [−1, +1]
along the real axis.

RETURN VALUE
These functions shall return the complex arc sine value, in the range of a strip mathematically unbounded
along the imaginary axis and in the interval [−π/2, +π/2] along the real axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csin()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CASINH(3P) POSIX Programmer’s Manual CASINH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
casinh, casinhf, casinhl — complex arc hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex arc hyperbolic sine of z, with branch cuts outside the interval
[−i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic sine value, in the range of a strip mathematically
unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the imaginary axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csinh()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CASINL(3P) POSIX Programmer’s Manual CASINL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
casinl — complex arc sine functions

SYNOPSIS
#include <complex.h>

long double complex casinl(long double complex z);

DESCRIPTION
Refer to casin().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CATAN(3P) POSIX Programmer’s Manual CATAN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
catan, catanf, catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h>

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex arc tangent of z, with branch cuts outside the interval [−i, +i]
along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc tangent value, in the range of a strip mathematically un-
bounded along the imaginary axis and in the interval [−π/2, +π/2] along the real axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctan()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CATANH(3P) POSIX Programmer’s Manual CATANH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
catanh, catanhf, catanhl — complex arc hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex arc hyperbolic tangent of z, with branch cuts outside the inter-
val [−1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic tangent value, in the range of a strip mathemati-
cally unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the imaginary axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctanh()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CATANL(3P) POSIX Programmer’s Manual CATANL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h>

long double complex catanl(long double complex z);

DESCRIPTION
Refer to catan().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CATCLOSE(3P) POSIX Programmer’s Manual CATCLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
catclose — close a message catalog descriptor

SYNOPSIS
#include <nl_types.h>

int catclose(nl_catd catd);

DESCRIPTION
The catclose() function shall close the message catalog identified by catd . If a file descriptor is used to im-
plement the type nl_catd, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, catclose() shall return 0; otherwise, −1 shall be returned, and errno set to indi-
cate the error.

ERRORS
The catclose() function may fail if:

EBADF
The catalog descriptor is not valid.

EINTR
The catclose() function was interrupted by a signal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catgets(), catopen()

The Base Definitions volume of POSIX.1-2017, <nl_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CATGETS(3P) POSIX Programmer’s Manual CATGETS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
catgets — read a program message

SYNOPSIS
#include <nl_types.h>

char *catgets(nl_catd catd, int set_id, int msg_id, const char *s);

DESCRIPTION
The catgets() function shall attempt to read message msg_id , in set set_id , from the message catalog identi-
fied by catd . The catd argument is a message catalog descriptor returned from an earlier call to catopen().
The results are undefined if catd is not a value returned by catopen() for a message catalog still open in the
process. The s argument points to a default message string which shall be returned by catgets() if it cannot
retrieve the identified message.

The catgets() function need not be thread-safe.

RETURN VALUE
If the identified message is retrieved successfully, catgets() shall return a pointer to an internal buffer area
containing the null-terminated message string. If the call is unsuccessful for any reason, s shall be returned
and errno shall be set to indicate the error.

ERRORS
The catgets() function shall fail if:

EINTR
The read operation was terminated due to the receipt of a signal, and no data was transferred.

ENOMSG
The message identified by set_id and msg_id is not in the message catalog.

The catgets() function may fail if:

EBADF
The catd argument is not a valid message catalog descriptor open for reading.

EBADMSG
The message identified by set_id and msg_id in the specified message catalog did not satisfy im-
plementation-defined security criteria.

EINVAL
The message catalog identified by catd is corrupted.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catopen()

The Base Definitions volume of POSIX.1-2017, <nl_types.h>

IEEE/The Open Group 2017 1

CATGETS(3P) POSIX Programmer’s Manual CATGETS(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CATOPEN(3P) POSIX Programmer’s Manual CATOPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
catopen — open a message catalog

SYNOPSIS
#include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

DESCRIPTION
The catopen() function shall open a message catalog and return a message catalog descriptor. The name ar-
gument specifies the name of the message catalog to be opened. If name contains a ’/’, then name specifies
a pathname for the message catalog. Otherwise, the environment variable NLSPATH is used with name sub-
stituted for the %N conversion specification (see the Base Definitions volume of POSIX.1-2017, Chapter

8, Environment Variables); if NLSPATH exists in the environment when the process starts, then if the
process has appropriate privileges, the behavior of catopen() is undefined. If NLSPATH does not exist in the
environment, or if a message catalog cannot be found in any of the components specified by NLSPATH ,
then an implementation-defined default path shall be used. This default may be affected by the setting of
LC_MESSAGES if the value of oflag is NL_CAT_LOCALE, or the LANG environment variable if oflag is
0.

A message catalog descriptor shall remain valid in a process until that process closes it, or a successful call
to one of the exec functions. A change in the setting of the LC_MESSAGES category may invalidate exist-
ing open catalogs.

If a file descriptor is used to implement message catalog descriptors, the FD_CLOEXEC flag shall be set;
see <fcntl.h>.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the catalog without
regard to the LC_MESSAGES category. If the oflag argument is NL_CAT_LOCALE, the LC_MESSAGES

category is used to locate the message catalog (see the Base Definitions volume of POSIX.1-2017, Section

8.2, Internationalization Variables).

RETURN VALUE
Upon successful completion, catopen() shall return a message catalog descriptor for use on subsequent calls
to catgets() and catclose(). Otherwise, catopen() shall return (nl_catd) −1 and set errno to indicate the er-
ror.

ERRORS
The catopen() function may fail if:

EACCES
Search permission is denied for the component of the path prefix of the message catalog or read
permission is denied for the message catalog.

EMFILE
All file descriptors available to the process are currently open.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENFILE
Too many files are currently open in the system.

IEEE/The Open Group 2017 1

CATOPEN(3P) POSIX Programmer’s Manual CATOPEN(3P)

ENOENT
The message catalog does not exist or the name argument points to an empty string.

ENOMEM
Insufficient storage space is available.

ENOTDIR
A component of the path prefix of the message catalog names an existing file that is neither a di-
rectory nor a symbolic link to a directory, or the pathname of the message catalog contains at least
one non-<slash> character and ends with one or more trailing <slash> characters and the last path-
name component names an existing file that is neither a directory nor a symbolic link to a direc-
tory.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of catopen() use malloc() to allocate space for internal buffer areas. The catopen()
function may fail if there is insufficient storage space available to accommodate these buffers.

Conforming applications must assume that message catalog descriptors are not valid after a call to one of
the exec functions.

Application developers should be aware that guidelines for the location of message catalogs have not yet
been developed. Therefore they should take care to avoid conflicting with catalogs used by other applica-
tions and the standard utilities.

To be sure that messages produced by an application running with appropriate privileges cannot be used by
an attacker setting an unexpected value for NLSPATH in the environment to confuse a system administrator,
such applications should use pathnames containing a ’/’ to get defined behavior when using catopen() to
open a message catalog.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catgets()

The Base Definitions volume of POSIX.1-2017, Chapter 8, Environment Variables, <fcntl.h>,
<nl_types.h>,

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CBRT(3P) POSIX Programmer’s Manual CBRT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cbrt, cbrtf, cbrtl — cube root functions

SYNOPSIS
#include <math.h>

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the real cube root of their argument x.

RETURN VALUE
Upon successful completion, these functions shall return the cube root of x.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
For some applications, a true cube root function, which returns negative results for negative arguments, is
more appropriate than pow(x, 1.0/3.0), which returns a NaN for x less than 0.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CCOS(3P) POSIX Programmer’s Manual CCOS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ccos, ccosf, ccosl — complex cosine functions

SYNOPSIS
#include <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex cosine of z.

RETURN VALUE
These functions shall return the complex cosine value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacos()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CCOSH(3P) POSIX Programmer’s Manual CCOSH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ccosh, ccoshf, ccoshl — complex hyperbolic cosine functions

SYNOPSIS
#include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex hyperbolic cosine of z.

RETURN VALUE
These functions shall return the complex hyperbolic cosine value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cacosh()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CCOSL(3P) POSIX Programmer’s Manual CCOSL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ccosl — complex cosine functions

SYNOPSIS
#include <complex.h>

long double complex ccosl(long double complex z);

DESCRIPTION
Refer to ccos().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CEIL(3P) POSIX Programmer’s Manual CEIL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ceil, ceilf, ceill — ceiling value function

SYNOPSIS
#include <math.h>

double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the smallest integral value not less than x.

RETURN VALUE
The result shall have the same sign as x.

Upon successful completion, ceil(), ceilf(), and ceill() shall return the smallest integral value not less than x,
expressed as a type double, float, or long double, respectively.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The return value
should be tested before assigning it to an integer type to avoid the undefined results of an integer overflow.

These functions may raise the inexact floating-point exception if the result differs in value from the argu-
ment.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), floor(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

CEIL(3P) POSIX Programmer’s Manual CEIL(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CEXP(3P) POSIX Programmer’s Manual CEXP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cexp, cexpf, cexpl — complex exponential functions

SYNOPSIS
#include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex exponent of z, defined as ez.

RETURN VALUE
These functions shall return the complex exponential value of z.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clog()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CFGETISPEED(3P) POSIX Programmer’s Manual CFGETISPEED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cfgetispeed — get input baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);

DESCRIPTION
The cfgetispeed() function shall extract the input baud rate from the termios structure to which the
termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetispeed() shall return a value of type speed_t representing the input baud
rate.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘baud’’ is used historically here, but is not technically correct. This is properly ‘‘bits per second’’,
which may not be the same as baud. However, the term is used because of the historical usage and under-
standing.

The cfgetospeed(), cfgetispeed(), cfsetospeed(), and cfsetispeed() functions do not take arguments as num-
bers, but rather as symbolic names. There are two reasons for this:

1. Historically, numbers were not used because of the way the rate was stored in the data structure. This
is retained even though a function is now used.

2. More importantly, only a limited set of possible rates is at all portable, and this constrains the applica-
tion to that set.

There is nothing to prevent an implementation accepting as an extension a number (such as 126), and since
the encoding of the Bxxx symbols is not specified, this can be done to avoid introducing ambiguity.

Setting the input baud rate to zero was a mechanism to allow for split baud rates. Clarifications in this vol-
ume of POSIX.1-2017 have made it possible to determine whether split rates are supported and to support
them without having to treat zero as a special case. Since this functionality is also confusing, it has been de-
clared obsolescent. The 0 argument referred to is the literal constant 0, not the symbolic constant B0. This
volume of POSIX.1-2017 does not preclude B0 from being defined as the value 0; in fact, implementations
would likely benefit from the two being equivalent. This volume of POSIX.1-2017 does not fully specify
whether the previous cfsetispeed() value is retained after a tcgetattr() as the actual value or as zero. There-
fore, conforming applications should always set both the input speed and output speed when setting either.

In historical implementations, the baud rate information is traditionally kept in c_cflag. Applications
should be written to presume that this might be the case (and thus not blindly copy c_cflag), but not to rely
on it in case it is in some other field of the structure. Setting the c_cflag field absolutely after setting a baud
rate is a non-portable action because of this. In general, the unused parts of the flag fields might be used by
the implementation and should not be blindly copied from the descriptions of one terminal device to

IEEE/The Open Group 2017 1

CFGETISPEED(3P) POSIX Programmer’s Manual CFGETISPEED(3P)

another.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetospeed(), cfsetispeed(), cfsetospeed(), tcgetattr()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CFGETOSPEED(3P) POSIX Programmer’s Manual CFGETOSPEED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cfgetospeed — get output baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetospeed(const struct termios *termios_p);

DESCRIPTION
The cfgetospeed() function shall extract the output baud rate from the termios structure to which the
termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetospeed() shall return a value of type speed_t representing the output
baud rate.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfsetispeed(), cfsetospeed(), tcgetattr()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CFSETISPEED(3P) POSIX Programmer’s Manual CFSETISPEED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cfsetispeed — set input baud rate

SYNOPSIS
#include <termios.h>

int cfsetispeed(struct termios *termios_p, speed_t speed);

DESCRIPTION
The cfsetispeed() function shall set the input baud rate stored in the structure pointed to by termios_p to
speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call to tcsetattr()
with the same termios structure. Similarly, errors resulting from attempts to set baud rates not supported by
the terminal device need not be detected until the tcsetattr() function is called.

RETURN VALUE
Upon successful completion, cfsetispeed() shall return 0; otherwise, −1 shall be returned, and errno may be
set to indicate the error.

ERRORS
The cfsetispeed() function may fail if:

EINVAL
The speed value is not a valid baud rate.

EINVAL
The value of speed is outside the range of possible speed values as specified in <termios.h>.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetospeed(), tcsetattr()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CFSETOSPEED(3P) POSIX Programmer’s Manual CFSETOSPEED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cfsetospeed — set output baud rate

SYNOPSIS
#include <termios.h>

int cfsetospeed(struct termios *termios_p, speed_t speed);

DESCRIPTION
The cfsetospeed() function shall set the output baud rate stored in the structure pointed to by termios_p to
speed .

There shall be no effect on the baud rates set in the hardware until a subsequent successful call to tcsetattr()
with the same termios structure. Similarly, errors resulting from attempts to set baud rates not supported by
the terminal device need not be detected until the tcsetattr() function is called.

RETURN VALUE
Upon successful completion, cfsetospeed() shall return 0; otherwise, it shall return −1 and errno may be set
to indicate the error.

ERRORS
The cfsetospeed() function may fail if:

EINVAL
The speed value is not a valid baud rate.

EINVAL
The value of speed is outside the range of possible speed values as specified in <termios.h>.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetispeed(), tcsetattr()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CHDIR(3P) POSIX Programmer’s Manual CHDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
chdir — change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);

DESCRIPTION
The chdir() function shall cause the directory named by the pathname pointed to by the path argument to
become the current working directory; that is, the starting point for path searches for pathnames not begin-
ning with ’/’.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned, the current working di-
rectory shall remain unchanged, and errno shall be set to indicate the error.

ERRORS
The chdir() function shall fail if:

EACCES
Search permission is denied for any component of the pathname.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing directory or path is an empty string.

ENOTDIR
A component of the pathname names an existing file that is neither a directory nor a symbolic link
to a directory.

The chdir() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Changing the Current Working Directory

The following example makes the value pointed to by directory, /tmp, the current working directory.

#include <unistd.h>
...
char *directory = "/tmp";
int ret;

ret = chdir (directory);

IEEE/The Open Group 2017 1

CHDIR(3P) POSIX Programmer’s Manual CHDIR(3P)

APPLICATION USAGE
None.

RATIONALE
The chdir() function only affects the working directory of the current process.

FUTURE DIRECTIONS
None.

SEE ALSO
getcwd()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CHMOD(3P) POSIX Programmer’s Manual CHMOD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
chmod, fchmodat — change mode of a file

SYNOPSIS
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

#include <fcntl.h>

int fchmodat(int fd, const char *path, mode_t mode, int flag);

DESCRIPTION
The chmod() function shall change S_ISUID, S_ISGID, S_ISVTX, and the file permission bits of the file
named by the pathname pointed to by the path argument to the corresponding bits in the mode argument.
The application shall ensure that the effective user ID of the process matches the owner of the file or the
process has appropriate privileges in order to do this.

S_ISUID, S_ISGID, S_ISVTX, and the file permission bits are described in <sys/stat.h>.

If the calling process does not have appropriate privileges, and if the group ID of the file does not match the
effective group ID or one of the supplementary group IDs and if the file is a regular file, bit S_ISGID (set-
group-ID on execution) in the file’s mode shall be cleared upon successful return from chmod().

Additional implementation-defined restrictions may cause the S_ISUID and S_ISGID bits in mode to be ig-
nored.

Upon successful completion, chmod() shall mark for update the last file status change timestamp of the file.

The fchmodat() function shall be equivalent to the chmod() function except in the case where path specifies
a relative path. In this case the file to be changed is determined relative to the directory associated with the
file descriptor fd instead of the current working directory. If the access mode of the open file description as-
sociated with the file descriptor is not O_SEARCH, the function shall check whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the access mode is
O_SEARCH, the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fc-

ntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, then the mode of the symbolic link is changed.

If fchmodat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used. If also flag is zero, the behavior shall be identical to a call to chmod().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error. If −1 is returned, no change to the file mode occurs.

ERRORS
These functions shall fail if:

EACCES
Search permission is denied on a component of the path prefix.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

IEEE/The Open Group 2017 1

CHMOD(3P) POSIX Programmer’s Manual CHMOD(3P)

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

EPERM
The effective user ID does not match the owner of the file and the process does not have appropri-
ate privileges.

EROFS
The named file resides on a read-only file system.

The fchmodat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

EINTR
A signal was caught during execution of the function.

EINVAL
The value of the mode argument is invalid.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The fchmodat() function may fail if:

EINVAL
The value of the flag argument is invalid.

EOPNOTSUPP
The AT_SYMLINK_NOFOLLOW bit is set in the flag argument, path names a symbolic link,
and the system does not support changing the mode of a symbolic link.

The following sections are informative.

EXAMPLES
Setting Read Permissions for User, Group, and Others

The following example sets read permissions for the owner, group, and others.

#include <sys/stat.h>

const char *path;

IEEE/The Open Group 2017 2

CHMOD(3P) POSIX Programmer’s Manual CHMOD(3P)

...
chmod(path, S_IRUSR|S_IRGRP|S_IROTH);

Setting Read, Write, and Execute Permissions for the Owner Only
The following example sets read, write, and execute permissions for the owner, and no permissions for
group and others.

#include <sys/stat.h>

const char *path;
...
chmod(path, S_IRWXU);

Setting Different Permissions for Owner, Group, and Other
The following example sets owner permissions for CHANGEFILE to read, write, and execute, group per-
missions to read and execute, and other permissions to read.

#include <sys/stat.h>

#define CHANGEFILE "/etc/myfile"
...
chmod(CHANGEFILE, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH);

Setting and Checking File Permissions
The following example sets the file permission bits for a file named /home/cnd/mod1, then calls the stat()
function to verify the permissions.

#include <sys/types.h>
#include <sys/stat.h>

int status;
struct stat buffer
...
chmod("/home/cnd/mod1", S_IRWXU|S_IRWXG|S_IROTH|S_IWOTH);
status = stat("/home/cnd/mod1", &buffer);

APPLICATION USAGE
In order to ensure that the S_ISUID and S_ISGID bits are set, an application requiring this should use stat()
after a successful chmod() to verify this.

Any file descriptors currently open by any process on the file could possibly become invalid if the mode of
the file is changed to a value which would deny access to that process. One situation where this could occur
is on a stateless file system. This behavior will not occur in a conforming environment.

RATIONALE
This volume of POSIX.1-2017 specifies that the S_ISGID bit is cleared by chmod() on a regular file under
certain conditions. This is specified on the assumption that regular files may be executed, and the system
should prevent users from making executable setgid() files perform with privileges that the caller does not
have. On implementations that support execution of other file types, the S_ISGID bit should be cleared for
those file types under the same circumstances.

Implementations that use the S_ISUID bit to indicate some other function (for example, mandatory record
locking) on non-executable files need not clear this bit on writing. They should clear the bit for executable
files and any other cases where the bit grants special powers to processes that change the file contents. Sim-
ilar comments apply to the S_ISGID bit.

The purpose of the fchmodat() function is to enable changing the mode of files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file could be

IEEE/The Open Group 2017 3

CHMOD(3P) POSIX Programmer’s Manual CHMOD(3P)

changed in parallel to a call to chmod(), resulting in unspecified behavior. By opening a file descriptor for
the target directory and using the fchmodat() function it can be guaranteed that the changed file is located
relative to the desired directory. Some implementations might allow changing the mode of symbolic links.
This is not supported by the interfaces in the POSIX specification. Systems with such support provide an
interface named lchmod(). To support such implementations fchmodat() has a flag parameter.

FUTURE DIRECTIONS
None.

SEE ALSO
access(), chown(), exec , fstatat(), fstatvfs(), mkdir(), mkfifo(), mknod(), open()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_stat.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

CHOWN(3P) POSIX Programmer’s Manual CHOWN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
chown, fchownat — change owner and group of a file

SYNOPSIS
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

#include <fcntl.h>

int fchownat(int fd, const char *path, uid_t owner, gid_t group,
int flag);

DESCRIPTION
The chown() function shall change the user and group ownership of a file.

The path argument points to a pathname naming a file. The user ID and group ID of the named file shall be
set to the numeric values contained in owner and group, respectively.

Only processes with an effective user ID equal to the user ID of the file or with appropriate privileges may
change the ownership of a file. If _POSIX_CHOWN_RESTRICTED is in effect for path:

* Changing the user ID is restricted to processes with appropriate privileges.

* Changing the group ID is permitted to a process with an effective user ID equal to the user ID of the
file, but without appropriate privileges, if and only if owner is equal to the file’s user ID or (uid_t)−1
and group is equal either to the calling process’ effective group ID or to one of its supplementary
group IDs.

If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file
mode are set, and the process does not have appropriate privileges, the set-user-ID (S_ISUID) and set-
group-ID (S_ISGID) bits of the file mode shall be cleared upon successful return from chown(). If the
specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode
are set, and the process has appropriate privileges, it is implementation-defined whether the set-user-ID and
set-group-ID bits are altered. If the chown() function is successfully invoked on a file that is not a regular
file and one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, the set-user-ID
and set-group-ID bits may be cleared.

If owner or group is specified as (uid_t)−1 or (gid_t)−1, respectively, the corresponding ID of the file shall
not be changed.

Upon successful completion, chown() shall mark for update the last file status change timestamp of the file,
except that if owner is (uid_t)−1 and group is (gid_t)−1, the file status change timestamp need not be
marked for update.

The fchownat() function shall be equivalent to the chown() and lchown() functions except in the case where
path specifies a relative path. In this case the file to be changed is determined relative to the directory asso-
ciated with the file descriptor fd instead of the current working directory. If the access mode of the open file
description associated with the file descriptor is not O_SEARCH, the function shall check whether direc-
tory searches are permitted using the current permissions of the directory underlying the file descriptor. If
the access mode is O_SEARCH, the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fc-

ntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, ownership of the symbolic link is changed.

If fchownat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used and the behavior shall be identical to a call to chown() or lchown() respectively, depending on

IEEE/The Open Group 2017 1

CHOWN(3P) POSIX Programmer’s Manual CHOWN(3P)

whether or not the AT_SYMLINK_NOFOLLOW bit is set in the flag argument.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error. If −1 is returned, no changes are made in the user ID and group ID of the file.

ERRORS
These functions shall fail if:

EACCES
Search permission is denied on a component of the path prefix.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

EPERM
The effective user ID does not match the owner of the file, or the calling process does not have ap-
propriate privileges and _POSIX_CHOWN_RESTRICTED indicates that such privilege is re-
quired.

EROFS
The named file resides on a read-only file system.

The fchownat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

EIO An I/O error occurred while reading or writing to the file system.

EINTR
The chown() function was interrupted by a signal which was caught.

EINVAL
The owner or group ID supplied is not a value supported by the implementation.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

IEEE/The Open Group 2017 2

CHOWN(3P) POSIX Programmer’s Manual CHOWN(3P)

The fchownat() function may fail if:

EINVAL
The value of the flag argument is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Although chown() can be used on some implementations by the file owner to change the owner and group
to any desired values, the only portable use of this function is to change the group of a file to the effective
GID of the calling process or to a member of its group set.

RATIONALE
System III and System V allow a user to give away files; that is, the owner of a file may change its user ID
to anything. This is a serious problem for implementations that are intended to meet government security
regulations. Version 7 and 4.3 BSD permit only the superuser to change the user ID of a file. Some govern-
ment agencies (usually not ones concerned directly with security) find this limitation too confining. This
volume of POSIX.1-2017 uses may to permit secure implementations while not disallowing System V.

System III and System V allow the owner of a file to change the group ID to anything. Version 7 permits
only the superuser to change the group ID of a file. 4.3 BSD permits the owner to change the group ID of a
file to its effective group ID or to any of the groups in the list of supplementary group IDs, but to no others.

The POSIX.1-1990 standard requires that the chown() function invoked by a non-appropriate privileged
process clear the S_ISGID and the S_ISUID bits for regular files, and permits them to be cleared for other
types of files. This is so that changes in accessibility do not accidentally cause files to become security
holes. Unfortunately, requiring these bits to be cleared on non-executable data files also clears the manda-
tory file locking bit (shared with S_ISGID), which is an extension on many implementations (it first ap-
peared in System V). These bits should only be required to be cleared on regular files that have one or more
of their execute bits set.

The purpose of the fchownat() function is to enable changing ownership of files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to a call to chown() or lchown(), resulting in unspecified behavior. By opening a file de-
scriptor for the target directory and using the fchownat() function it can be guaranteed that the changed file
is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), fpathconf(), lchown()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

CIMAG(3P) POSIX Programmer’s Manual CIMAG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cimag, cimagf, cimagl — complex imaginary functions

SYNOPSIS
#include <complex.h>

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the imaginary part of z.

RETURN VALUE
These functions shall return the imaginary part value (as a real).

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
For a variable z of complex type:

z == creal(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), conj(), cproj(), creal()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CLEARERR(3P) POSIX Programmer’s Manual CLEARERR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
clearerr — clear indicators on a stream

SYNOPSIS
#include <stdio.h>

void clearerr(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The clearerr() function shall clear the end-of-file and error indicators for the stream to which stream points.

The clearerr() function shall not change the setting of errno if stream is valid.

RETURN VALUE
The clearerr() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CLOCK(3P) POSIX Programmer’s Manual CLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
clock — report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The clock() function shall return the implementation’s best approximation to the processor time used by the
process since the beginning of an implementation-defined era related only to the process invocation.

RETURN VALUE
To determine the time in seconds, the value returned by clock() should be divided by the value of the macro
CLOCKS_PER_SEC. CLOCKS_PER_SEC is defined to be one million in <time.h>. If the processor time
used is not available or its value cannot be represented, the function shall return the value (clock_t)−1.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
In programming environments where clock_t is a 32-bit integer type and CLOCKS_PER_SEC is one mil-
lion, clock() will start failing in less than 36 minutes of processor time for signed clock_t, or 72 minutes for
unsigned clock_t. Applications intended to be portable to such environments should use times() instead (or
clock_gettime() with CLOCK_PROCESS_CPUTIME_ID, if supported).

In order to measure the time spent in a program, clock() should be called at the start of the program and its
return value subtracted from the value returned by subsequent calls. The value returned by clock() is defined
for compatibility across systems that have clocks with different resolutions. The resolution on any particu-
lar system need not be to microsecond accuracy.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock_getres(), ctime(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(),
time(), times(), utime()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

CLOCK(3P) POSIX Programmer’s Manual CLOCK(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CLOCK_GETCPUCLOCKID(3P) POSIX Programmer’s Manual CLOCK_GETCPUCLOCKID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
clock_getcpuclockid — access a process CPU-time clock (ADVANCED REALTIME)

SYNOPSIS
#include <time.h>

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

DESCRIPTION
The clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of the process specified
by pid . If the process described by pid exists and the calling process has permission, the clock ID of this
clock shall be returned in clock_id .

If pid is zero, the clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of the
process making the call, in clock_id .

The conditions under which one process has permission to obtain the CPU-time clock ID of other processes
are implementation-defined.

RETURN VALUE
Upon successful completion, clock_getcpuclockid() shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The clock_getcpuclockid() function shall fail if:

EPERM
The requesting process does not have permission to access the CPU-time clock for the process.

The clock_getcpuclockid() function may fail if:

ESRCH
No process can be found corresponding to the process specified by pid .

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The clock_getcpuclockid() function is part of the Process CPU-Time Clocks option and need not be pro-
vided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_create()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

CLOCK_GETCPUCLOCKID(3P) POSIX Programmer’s Manual CLOCK_GETCPUCLOCKID(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CLOCK_GETRES(3P) POSIX Programmer’s Manual CLOCK_GETRES(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
clock_getres, clock_gettime, clock_settime — clock and timer functions

SYNOPSIS
#include <time.h>

int clock_getres(clockid_t clock_id, struct timespec *res);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_settime(clockid_t clock_id, const struct timespec *tp);

DESCRIPTION
The clock_getres() function shall return the resolution of any clock. Clock resolutions are implementation-
defined and cannot be set by a process. If the argument res is not NULL, the resolution of the specified
clock shall be stored in the location pointed to by res. If res is NULL, the clock resolution is not returned.
If the time argument of clock_settime() is not a multiple of res, then the value is truncated to a multiple of
res.

The clock_gettime() function shall return the current value tp for the specified clock, clock_id .

The clock_settime() function shall set the specified clock, clock_id , to the value specified by tp. Time val-
ues that are between two consecutive non-negative integer multiples of the resolution of the specified clock
shall be truncated down to the smaller multiple of the resolution.

A clock may be system-wide (that is, visible to all processes) or per-process (measuring time that is mean-
ingful only within a process). All implementations shall support a clock_id of CLOCK_REALTIME as de-
fined in <time.h>. This clock represents the clock measuring real time for the system. For this clock, the
values returned by clock_gettime() and specified by clock_settime() represent the amount of time (in sec-
onds and nanoseconds) since the Epoch. An implementation may also support additional clocks. The inter-
pretation of time values for these clocks is unspecified.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock shall be
used to determine the time of expiration for absolute time services based upon the CLOCK_REALTIME
clock. This applies to the time at which armed absolute timers expire. If the absolute time requested at the
invocation of such a time service is before the new value of the clock, the time service shall expire immedi-
ately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on threads that
are blocked waiting for a relative time service based upon this clock, including the nanosleep() function;
nor on the expiration of relative timers based upon this clock. Consequently, these time services shall expire
when the requested relative interval elapses, independently of the new or old value of the clock.

If the Monotonic Clock option is supported, all implementations shall support a clock_id of
CLOCK_MONOTONIC defined in <time.h>. This clock represents the monotonic clock for the system.
For this clock, the value returned by clock_gettime() represents the amount of time (in seconds and
nanoseconds) since an unspecified point in the past (for example, system start-up time, or the Epoch). This
point does not change after system start-up time. The value of the CLOCK_MONOTONIC clock cannot be
set via clock_settime(). This function shall fail if it is invoked with a clock_id argument of
CLOCK_MONOTONIC.

The effect of setting a clock via clock_settime() on armed per-process timers associated with a clock other
than CLOCK_REALTIME is implementation-defined.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock shall be
used to determine the time at which the system shall awaken a thread blocked on an absolute
clock_nanosleep() call based upon the CLOCK_REALTIME clock. If the absolute time requested at the in-
vocation of such a time service is before the new value of the clock, the call shall return immediately as if
the clock had reached the requested time normally.

IEEE/The Open Group 2017 1

CLOCK_GETRES(3P) POSIX Programmer’s Manual CLOCK_GETRES(3P)

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on any thread
that is blocked on a relative clock_nanosleep() call. Consequently, the call shall return when the requested
relative interval elapses, independently of the new or old value of the clock.

Appropriate privileges to set a particular clock are implementation-defined.

If _POSIX_CPUTIME is defined, implementations shall support clock ID values obtained by invoking
clock_getcpuclockid(), which represent the CPU-time clock of a given process. Implementations shall also
support the special clockid_t value CLOCK_PROCESS_CPUTIME_ID, which represents the CPU-time
clock of the calling process when invoking one of the clock_*() or timer_*() functions. For these clock
IDs, the values returned by clock_gettime() and specified by clock_settime() represent the amount of execu-
tion time of the process associated with the clock. Changing the value of a CPU-time clock via clock_set-

time() shall have no effect on the behavior of the sporadic server scheduling policy (see Scheduling Poli-

cies).

If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock ID values obtained by
invoking pthread_getcpuclockid(), which represent the CPU-time clock of a given thread. Implementations
shall also support the special clockid_t value CLOCK_THREAD_CPUTIME_ID, which represents the
CPU-time clock of the calling thread when invoking one of the clock_*() or timer_*() functions. For these
clock IDs, the values returned by clock_gettime() and specified by clock_settime() shall represent the
amount of execution time of the thread associated with the clock. Changing the value of a CPU-time clock
via clock_settime() shall have no effect on the behavior of the sporadic server scheduling policy (see Sched-

uling Policies).

RETURN VALUE
A return value of 0 shall indicate that the call succeeded. A return value of −1 shall indicate that an error
occurred, and errno shall be set to indicate the error.

ERRORS
The clock_getres(), clock_gettime(), and clock_settime() functions shall fail if:

EINVAL
The clock_id argument does not specify a known clock.

The clock_gettime() function shall fail if:

EOVERFLOW
The number of seconds will not fit in an object of type time_t.

The clock_settime() function shall fail if:

EINVAL
The tp argument to clock_settime() is outside the range for the given clock ID.

EINVAL
The tp argument specified a nanosecond value less than zero or greater than or equal to 1 000 mil-
lion.

EINVAL
The value of the clock_id argument is CLOCK_MONOTONIC.

The clock_settime() function may fail if:

EPERM
The requesting process does not have appropriate privileges to set the specified clock.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Note that the absolute value of the monotonic clock is meaningless (because its origin is arbitrary), and thus
there is no need to set it. Furthermore, realtime applications can rely on the fact that the value of this clock
is never set and, therefore, that time intervals measured with this clock will not be affected by calls to

IEEE/The Open Group 2017 2

CLOCK_GETRES(3P) POSIX Programmer’s Manual CLOCK_GETRES(3P)

clock_settime().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies, clock_getcpuclockid(), clock_nanosleep(), ctime(), mq_receive(), mq_send(),
nanosleep(), pthread_mutex_timedlock(), sem_timedwait(), time(), timer_create(), timer_getoverrun()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

CLOCK_NANOSLEEP(3P) POSIX Programmer’s Manual CLOCK_NANOSLEEP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
clock_nanosleep — high resolution sleep with specifiable clock

SYNOPSIS
#include <time.h>

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

DESCRIPTION
If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep() function shall cause
the current thread to be suspended from execution until either the time interval specified by the rqtp argu-
ment has elapsed, or a signal is delivered to the calling thread and its action is to invoke a signal-catching
function, or the process is terminated. The clock used to measure the time shall be the clock specified by
clock_id .

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function shall cause the
current thread to be suspended from execution until either the time value of the clock specified by clock_id

reaches the absolute time specified by the rqtp argument, or a signal is delivered to the calling thread and its
action is to invoke a signal-catching function, or the process is terminated. If, at the time of the call, the
time value specified by rqtp is less than or equal to the time value of the specified clock, then
clock_nanosleep() shall return immediately and the calling process shall not be suspended.

The suspension time caused by this function may be longer than requested because the argument value is
rounded up to an integer multiple of the sleep resolution, or because of the scheduling of other activity by
the system. But, except for the case of being interrupted by a signal, the suspension time for the relative
clock_nanosleep() function (that is, with the TIMER_ABSTIME flag not set) shall not be less than the time
interval specified by rqtp, as measured by the corresponding clock. The suspension for the absolute
clock_nanosleep() function (that is, with the TIMER_ABSTIME flag set) shall be in effect at least until the
value of the corresponding clock reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function shall have no effect on the action or blockage of any signal.

The clock_nanosleep() function shall fail if the clock_id argument refers to the CPU-time clock of the call-
ing thread. It is unspecified whether clock_id values of other CPU-time clocks are allowed.

RETURN VALUE
If the clock_nanosleep() function returns because the requested time has elapsed, its return value shall be
zero.

If the clock_nanosleep() function returns because it has been interrupted by a signal, it shall return the cor-
responding error value. For the relative clock_nanosleep() function, if the rmtp argument is non-NULL, the
timespec structure referenced by it shall be updated to contain the amount of time remaining in the interval
(the requested time minus the time actually slept). The rqtp and rmtp arguments can point to the same ob-
ject. If the rmtp argument is NULL, the remaining time is not returned. The absolute clock_nanosleep()
function has no effect on the structure referenced by rmtp.

If clock_nanosleep() fails, it shall return the corresponding error value.

ERRORS
The clock_nanosleep() function shall fail if:

EINTR
The clock_nanosleep() function was interrupted by a signal.

IEEE/The Open Group 2017 1

CLOCK_NANOSLEEP(3P) POSIX Programmer’s Manual CLOCK_NANOSLEEP(3P)

EINVAL
The rqtp argument specified a nanosecond value less than zero or greater than or equal to 1 000
million; or the TIMER_ABSTIME flag was specified in flags and the rqtp argument is outside the
range for the clock specified by clock_id; or the clock_id argument does not specify a known
clock, or specifies the CPU-time clock of the calling thread.

ENOTSUP
The clock_id argument specifies a clock for which clock_nanosleep() is not supported, such as a
CPU-time clock.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Calling clock_nanosleep() with the value TIMER_ABSTIME not set in the flags argument and with a
clock_id of CLOCK_REALTIME is equivalent to calling nanosleep() with the same rqtp and rmtp argu-
ments.

RATIONALE
The nanosleep() function specifies that the system-wide clock CLOCK_REALTIME is used to measure the
elapsed time for this time service. However, with the introduction of the monotonic clock
CLOCK_MONOTONIC a new relative sleep function is needed to allow an application to take advantage
of the special characteristics of this clock.

There are many applications in which a process needs to be suspended and then activated multiple times in
a periodic way; for example, to poll the status of a non-interrupting device or to refresh a display device.
For these cases, it is known that precise periodic activation cannot be achieved with a relative sleep() or
nanosleep() function call. Suppose, for example, a periodic process that is activated at time T 0, executes for
a while, and then wants to suspend itself until time T 0+T , the period being T . If this process wants to use
the nanosleep() function, it must first call clock_gettime() to get the current time, then calculate the differ-
ence between the current time and T 0+T and, finally, call nanosleep() using the computed interval. How-
ev er, the process could be preempted by a different process between the two function calls, and in this case
the interval computed would be wrong; the process would wake up later than desired. This problem would
not occur with the absolute clock_nanosleep() function, since only one function call would be necessary to
suspend the process until the desired time. In other cases, however, a relative sleep is needed, and that is
why both functionalities are required.

Although it is possible to implement periodic processes using the timers interface, this implementation
would require the use of signals, and the reservation of some signal numbers. In this regard, the reasons for
including an absolute version of the clock_nanosleep() function in POSIX.1-2008 are the same as for the
inclusion of the relative nanosleep().

It is also possible to implement precise periodic processes using pthread_cond_timedwait(), in which an ab-
solute timeout is specified that takes effect if the condition variable involved is never signaled. However, the
use of this interface is unnatural, and involves performing other operations on mutexes and condition vari-
ables that imply an unnecessary overhead. Furthermore, pthread_cond_timedwait() is not available in im-
plementations that do not support threads.

Although the interface of the relative and absolute versions of the new high resolution sleep service is the
same clock_nanosleep() function, the rmtp argument is only used in the relative sleep. This argument is
needed in the relative clock_nanosleep() function to reissue the function call if it is interrupted by a signal,
but it is not needed in the absolute clock_nanosleep() function call; if the call is interrupted by a signal, the
absolute clock_nanosleep() function can be invoked again with the same rqtp argument used in the inter-
rupted call.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 2

CLOCK_NANOSLEEP(3P) POSIX Programmer’s Manual CLOCK_NANOSLEEP(3P)

SEE ALSO
clock_getres(), nanosleep(), pthread_cond_timedwait(), sleep()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

CLOCK_SETTIME(3P) POSIX Programmer’s Manual CLOCK_SETTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
clock_settime — clock and timer functions

SYNOPSIS
#include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

DESCRIPTION
Refer to clock_getres().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CLOG(3P) POSIX Programmer’s Manual CLOG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
clog, clogf, clogl — complex natural logarithm functions

SYNOPSIS
#include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex natural (base e) logarithm of z, with a branch cut along the neg-
ative real axis.

RETURN VALUE
These functions shall return the complex natural logarithm value, in the range of a strip mathematically un-
bounded along the real axis and in the interval [−iπ, +iπ] along the imaginary axis.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cexp()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CLOSE(3P) POSIX Programmer’s Manual CLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
close — close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fildes);

DESCRIPTION
The close() function shall deallocate the file descriptor indicated by fildes. To deallocate means to make
the file descriptor available for return by subsequent calls to open() or other functions that allocate file de-
scriptors. All outstanding record locks owned by the process on the file associated with the file descriptor
shall be removed (that is, unlocked).

If close() is interrupted by a signal that is to be caught, it shall return −1 with errno set to [EINTR] and the
state of fildes is unspecified. If an I/O error occurred while reading from or writing to the file system during
close(), it may return −1 with errno set to [EIO]; if this error is returned, the state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file are closed, any data remaining in the
pipe or FIFO shall be discarded.

When all file descriptors associated with an open file description have been closed, the open file description
shall be freed.

If the link count of the file is 0, when all file descriptors associated with the file are closed, the space occu-
pied by the file shall be freed and the file shall no longer be accessible.

If a STREAMS-based fildes is closed and the calling process was previously registered to receive a SIG-
POLL signal for events associated with that STREAM, the calling process shall be unregistered for events
associated with the STREAM. The last close() for a STREAM shall cause the STREAM associated with
fildes to be dismantled. If O_NONBLOCK is not set and there have been no signals posted for the
STREAM, and if there is data on the module’s write queue, close() shall wait for an unspecified time (for
each module and driver) for any output to drain before dismantling the STREAM. The time delay can be
changed via an I_SETCLTIME ioctl() request. If the O_NONBLOCK flag is set, or if there are any pending
signals, close() shall not wait for output to drain, and shall dismantle the STREAM immediately.

If the implementation supports STREAMS-based pipes, and fildes is associated with one end of a pipe, the
last close() shall cause a hangup to occur on the other end of the pipe. In addition, if the other end of the
pipe has been named by fattach(), then the last close() shall force the named end to be detached by fde-

tach(). If the named end has no open file descriptors associated with it and gets detached, the STREAM as-
sociated with that end shall also be dismantled.

If fildes refers to the master side of a pseudo-terminal, and this is the last close, a SIGHUP signal shall be
sent to the controlling process, if any, for which the slave side of the pseudo-terminal is the controlling ter-
minal. It is unspecified whether closing the master side of the pseudo-terminal flushes all queued input and
output.

If fildes refers to the slave side of a STREAMS-based pseudo-terminal, a zero-length message may be sent
to the master.

When there is an outstanding cancelable asynchronous I/O operation against fildes when close() is called,
that I/O operation may be canceled. An I/O operation that is not canceled completes as if the close() opera-
tion had not yet occurred. All operations that are not canceled shall complete as if the close() blocked until
the operations completed. The close() operation itself need not block awaiting such I/O completion.
Whether any I/O operation is canceled, and which I/O operation may be canceled upon close(), is imple-
mentation-defined.

If a memory mapped file or a shared memory object remains referenced at the last close (that is, a process

IEEE/The Open Group 2017 1

CLOSE(3P) POSIX Programmer’s Manual CLOSE(3P)

has it mapped), then the entire contents of the memory object shall persist until the memory object becomes
unreferenced. If this is the last close of a memory mapped file or a shared memory object and the close re-
sults in the memory object becoming unreferenced, and the memory object has been unlinked, then the
memory object shall be removed.

If fildes refers to a socket, close() shall cause the socket to be destroyed. If the socket is in connection-
mode, and the SO_LINGER option is set for the socket with non-zero linger time, and the socket has un-
transmitted data, then close() shall block for up to the current linger interval until all data is transmitted.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The close() function shall fail if:

EBADF
The fildes argument is not a open file descriptor.

EINTR
The close() function was interrupted by a signal.

The close() function may fail if:

EIO An I/O error occurred while reading from or writing to the file system.

The following sections are informative.

EXAMPLES
Reassigning a File Descriptor

The following example closes the file descriptor associated with standard output for the current process, re-
assigns standard output to a new file descriptor, and closes the original file descriptor to clean up. This ex-
ample assumes that the file descriptor 0 (which is the descriptor for standard input) is not closed.

#include <unistd.h>
...
int pfd;
...
close(1);
dup(pfd);
close(pfd);
...

Incidentally, this is exactly what could be achieved using:

dup2(pfd, 1);
close(pfd);

Closing a File Descriptor
In the following example, close() is used to close a file descriptor after an unsuccessful attempt is made to
associate that file descriptor with a stream.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd;

IEEE/The Open Group 2017 2

CLOSE(3P) POSIX Programmer’s Manual CLOSE(3P)

FILE *fpfd;
...
if ((fpfd = fdopen (pfd, "w")) == NULL) {

close(pfd);
unlink(LOCKFILE);
exit(1);

}
...

APPLICATION USAGE
An application that had used the stdio routine fopen() to open a file should use the corresponding fclose()
routine rather than close(). Once a file is closed, the file descriptor no longer exists, since the integer corre-
sponding to it no longer refers to a file.

Implementations may use file descriptors that must be inherited into child processes for the child process to
remain conforming, such as for message catalog or tracing purposes. Therefore, an application that calls
close() on an arbitrary integer risks non-conforming behavior, and close() can only portably be used on file
descriptor values that the application has obtained through explicit actions, as well as the three file descrip-
tors corresponding to the standard file streams. In multi-threaded parent applications, the practice of calling
close() in a loop after fork() and before an exec call in order to avoid a race condition of leaking an unin-
tended file descriptor into a child process, is therefore unsafe, and the race should instead be combatted by
opening all file descriptors with the FD_CLOEXEC bit set unless the file descriptor is intended to be inher-
ited across exec.

Usage of close() on file descriptors STDIN_FILENO, STDOUT_FILENO, or STDERR_FILENO should
immediately be followed by an operation to reopen these file descriptors. Unexpected behavior will result if
any of these file descriptors is left in a closed state (for example, an [EBADF] error from perror()) or if an
unrelated open() or similar call later in the application accidentally allocates a file to one of these well-
known file descriptors. Furthermore, a close() followed by a reopen operation (e.g., open(), dup(), etc.) is
not atomic; dup2() should be used to change standard file descriptors.

RATIONALE
The use of interruptible device close routines should be discouraged to avoid problems with the implicit
closes of file descriptors by exec and exit(). This volume of POSIX.1-2017 only intends to permit such be-
havior by specifying the [EINTR] error condition.

Note that the requirement for close() on a socket to block for up to the current linger interval is not condi-
tional on the O_NONBLOCK setting.

The standard developers rejected a proposal to add closefrom() to the standard. Because the standard per-
mits implementations to use inherited file descriptors as a means of providing a conforming environment
for the child process, it is not possible to standardize an interface that closes arbitrary file descriptors above
a certain value while still guaranteeing a conforming environment.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6, STREAMS, dup(), exec , exit(), fattach(), fclose(), fdetach(), fopen(), fork(), ioctl(),
open(), perror(), unlink()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 3

CLOSE(3P) POSIX Programmer’s Manual CLOSE(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

CLOSEDIR(3P) POSIX Programmer’s Manual CLOSEDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
closedir — close a directory stream

SYNOPSIS
#include <dirent.h>

int closedir(DIR *dirp);

DESCRIPTION
The closedir() function shall close the directory stream referred to by the argument dirp. Upon return, the
value of dirp may no longer point to an accessible object of the type DIR. If a file descriptor is used to im-
plement type DIR, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, closedir() shall return 0; otherwise, −1 shall be returned and errno set to indi-
cate the error.

ERRORS
The closedir() function may fail if:

EBADF
The dirp argument does not refer to an open directory stream.

EINTR
The closedir() function was interrupted by a signal.

The following sections are informative.

EXAMPLES
Closing a Directory Stream

The following program fragment demonstrates how the closedir() function is used.

...
DIR *dir;
struct dirent *dp;

...
if ((dir = opendir (".")) == NULL) {

...
}

while ((dp = readdir (dir)) != NULL) {
...

}

closedir(dir);
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

CLOSEDIR(3P) POSIX Programmer’s Manual CLOSEDIR(3P)

SEE ALSO
dirfd(), fdopendir()

The Base Definitions volume of POSIX.1-2017, <dirent.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CLOSELOG(3P) POSIX Programmer’s Manual CLOSELOG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
closelog, openlog, setlogmask, syslog — control system log

SYNOPSIS
#include <syslog.h>

void closelog(void);
void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);
void syslog(int priority, const char *message, ... /* arguments */);

DESCRIPTION
The syslog() function shall send a message to an implementation-defined logging facility, which may log it
in an implementation-defined system log, write it to the system console, forward it to a list of users, or for-
ward it to the logging facility on another host over the network. The logged message shall include a mes-
sage header and a message body. The message header contains at least a timestamp and a tag string.

The message body is generated from the message and following arguments in the same manner as if these
were arguments to printf(), except that the additional conversion specification %m shall be recognized; it
shall convert no arguments, shall cause the output of the error message string associated with the value of
errno on entry to syslog(), and may be mixed with argument specifications of the "%n$" form. If a com-
plete conversion specification with the m conversion specifier character is not just %m, the behavior is un-
defined. A trailing <newline> may be added if needed.

Values of the priority argument are formed by OR’ing together a severity-level value and an optional facil-
ity value. If no facility value is specified, the current default facility value is used.

Possible values of severity level include:

LOG_EMERG
A panic condition.

LOG_ALERT
A condition that should be corrected immediately, such as a corrupted system database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING
Warning messages.

LOG_NOTICE
Conditions that are not error conditions, but that may require special handling.

LOG_INFO Informational messages.

LOG_DEBUG
Messages that contain information normally of use only when debugging a program.

The facility indicates the application or system component generating the message. Possible facility values
include:

LOG_USER Messages generated by arbitrary processes. This is the default facility identifier if none is
specified.

LOG_LOCAL0
Reserved for local use.

IEEE/The Open Group 2017 1

CLOSELOG(3P) POSIX Programmer’s Manual CLOSELOG(3P)

LOG_LOCAL1
Reserved for local use.

LOG_LOCAL2
Reserved for local use.

LOG_LOCAL3
Reserved for local use.

LOG_LOCAL4
Reserved for local use.

LOG_LOCAL5
Reserved for local use.

LOG_LOCAL6
Reserved for local use.

LOG_LOCAL7
Reserved for local use.

The openlog() function shall set process attributes that affect subsequent calls to syslog(). The ident argu-
ment is a string that is prepended to every message. The logopt argument indicates logging options. Values
for logopt are constructed by a bitwise-inclusive OR of zero or more of the following:

LOG_PID Log the process ID with each message. This is useful for identifying specific processes.

LOG_CONS Write messages to the system console if they cannot be sent to the logging facility. The sys-

log() function ensures that the process does not acquire the console as a controlling terminal
in the process of writing the message.

LOG_NDELAY
Open the connection to the logging facility immediately. Normally the open is delayed until
the first message is logged. This is useful for programs that need to manage the order in
which file descriptors are allocated.

LOG_ODELAY
Delay open until syslog() is called.

LOG_NOWAIT
Do not wait for child processes that may have been created during the course of logging the
message. This option should be used by processes that enable notification of child termina-
tion using SIGCHLD, since syslog() may otherwise block waiting for a child whose exit sta-
tus has already been collected.

The facility argument encodes a default facility to be assigned to all messages that do not have an explicit
facility already encoded. The initial default facility is LOG_USER.

The openlog() and syslog() functions may allocate a file descriptor. It is not necessary to call openlog()
prior to calling syslog().

The closelog() function shall close any open file descriptors allocated by previous calls to openlog() or sys-

log().

The setlogmask() function shall set the log priority mask for the current process to maskpri and return the
previous mask. If the maskpri argument is 0, the current log mask is not modified. Calls by the current
process to syslog() with a priority not set in maskpri shall be rejected. The default log mask allows all prior-
ities to be logged. A call to openlog() is not required prior to calling setlogmask().

Symbolic constants for use as values of the logopt, facility, priority, and maskpri arguments are defined in
the <syslog.h> header.

RETURN VALUE
The setlogmask() function shall return the previous log priority mask. The closelog(), openlog(), and sys-

log() functions shall not return a value.

IEEE/The Open Group 2017 2

CLOSELOG(3P) POSIX Programmer’s Manual CLOSELOG(3P)

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Using openlog()

The following example causes subsequent calls to syslog() to log the process ID with each message, and to
write messages to the system console if they cannot be sent to the logging facility.

#include <syslog.h>

char *ident = "Process demo";
int logopt = LOG_PID | LOG_CONS;
int facility = LOG_USER;
...
openlog(ident, logopt, facility);

Using setlogmask()
The following example causes subsequent calls to syslog() to accept error messages, and to reject all other
messages.

#include <syslog.h>

int result;
int mask = LOG_MASK (LOG_ERR);
...
result = setlogmask(mask);

Using syslog
The following example sends the message "Thisisamessage" to the default logging facility, marking the
message as an error message generated by random processes.

#include <syslog.h>

char *message = "This is a message";
int priority = LOG_ERR | LOG_USER;
...
syslog(priority, message);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf()

The Base Definitions volume of POSIX.1-2017, <syslog.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 3

CLOSELOG(3P) POSIX Programmer’s Manual CLOSELOG(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

CONFSTR(3P) POSIX Programmer’s Manual CONFSTR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
confstr — get configurable variables

SYNOPSIS
#include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

DESCRIPTION
The confstr() function shall return configuration-defined string values. Its use and purpose are similar to
sysconf(), but it is used where string values rather than numeric values are returned.

The name argument represents the system variable to be queried. The implementation shall support the fol-
lowing name values, defined in <unistd.h>. It may support others:

_CS_PATH
_CS_POSIX_V7_ILP32_OFF32_CFLAGS
_CS_POSIX_V7_ILP32_OFF32_LDFLAGS
_CS_POSIX_V7_ILP32_OFF32_LIBS
_CS_POSIX_V7_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V7_ILP32_OFFBIG_LIBS
_CS_POSIX_V7_LP64_OFF64_CFLAGS
_CS_POSIX_V7_LP64_OFF64_LDFLAGS
_CS_POSIX_V7_LP64_OFF64_LIBS
_CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V7_LPBIG_OFFBIG_LIBS
_CS_POSIX_V7_THREADS_CFLAGS
_CS_POSIX_V7_THREADS_LDFLAGS
_CS_POSIX_V7_WIDTH_RESTRICTED_ENVS
_CS_V7_ENV
_CS_POSIX_V6_ILP32_OFF32_CFLAGS
_CS_POSIX_V6_ILP32_OFF32_LDFLAGS
_CS_POSIX_V6_ILP32_OFF32_LIBS
_CS_POSIX_V6_ILP32_OFFBIG_CFLAGS
_CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS
_CS_POSIX_V6_ILP32_OFFBIG_LIBS
_CS_POSIX_V6_LP64_OFF64_CFLAGS
_CS_POSIX_V6_LP64_OFF64_LDFLAGS
_CS_POSIX_V6_LP64_OFF64_LIBS
_CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS
_CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS
_CS_POSIX_V6_LPBIG_OFFBIG_LIBS
_CS_POSIX_V6_WIDTH_RESTRICTED_ENVS
_CS_V6_ENV

If len is not 0, and if name has a configuration-defined value, confstr() shall copy that value into the len-
byte buffer pointed to by buf . If the string to be returned is longer than len bytes, including the terminating
null, then confstr() shall truncate the string to len−1 bytes and null-terminate the result. The application can
detect that the string was truncated by comparing the value returned by confstr() with len.

If len is 0 and buf is a null pointer, then confstr() shall still return the integer value as defined below, but
shall not return a string. If len is 0 but buf is not a null pointer, the result is unspecified.

IEEE/The Open Group 2017 1

CONFSTR(3P) POSIX Programmer’s Manual CONFSTR(3P)

After a call to:

confstr(_CS_V7_ENV, buf, sizeof(buf))

the string stored in buf shall contain a <space>-separated list of the variable=value environment variable
pairs an implementation requires as part of specifying a conforming environment, as described in the imple-
mentations’ conformance documentation.

If the implementation supports the POSIX shell option, the string stored in buf after a call to:

confstr(_CS_PATH, buf, sizeof(buf))

can be used as a value of the PA TH environment variable that accesses all of the standard utilities of
POSIX.1-2008, that are provided in a manner accessible via the exec family of functions, if the return value
is less than or equal to sizeof (buf).

RETURN VALUE
If name has a configuration-defined value, confstr() shall return the size of buffer that would be needed to
hold the entire configuration-defined value including the terminating null. If this return value is greater than
len, the string returned in buf is truncated.

If name is invalid, confstr() shall return 0 and set errno to indicate the error.

If name does not have a configuration-defined value, confstr() shall return 0 and leave errno unchanged.

ERRORS
The confstr() function shall fail if:

EINVAL
The value of the name argument is invalid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
An application can distinguish between an invalid name parameter value and one that corresponds to a con-
figurable variable that has no configuration-defined value by checking if errno is modified. This mirrors the
behavior of sysconf().

The original need for this function was to provide a way of finding the configuration-defined default value
for the environment variable PA TH . Since PA TH can be modified by the user to include directories that
could contain utilities replacing the standard utilities in the Shell and Utilities volume of POSIX.1-2017,
applications need a way to determine the system-supplied PA TH environment variable value that contains
the correct search path for the standard utilities.

An application could use:

confstr(name, (char *)NULL, (size_t)0)

to find out how big a buffer is needed for the string value; use malloc() to allocate a buffer to hold the
string; and call confstr() again to get the string. Alternately, it could allocate a fixed, static buffer that is big
enough to hold most answers (perhaps 512 or 1 024 bytes), but then use malloc() to allocate a larger buffer
if it finds that this is too small.

RATIONALE
Application developers can normally determine any configuration variable by means of reading from the
stream opened by a call to:

IEEE/The Open Group 2017 2

CONFSTR(3P) POSIX Programmer’s Manual CONFSTR(3P)

popen("command -p getconf variable", "r");

The confstr() function with a name argument of _CS_PATH returns a string that can be used as a PA TH en-
vironment variable setting that will reference the standard shell and utilities as described in the Shell and
Utilities volume of POSIX.1-2017.

The confstr() function copies the returned string into a buffer supplied by the application instead of return-
ing a pointer to a string. This allows a cleaner function in some implementations (such as those with light-
weight threads) and resolves questions about when the application must copy the string returned.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fpathconf(), sysconf()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

The Shell and Utilities volume of POSIX.1-2017, c99

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

CONJ(3P) POSIX Programmer’s Manual CONJ(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
conj, conjf, conjl — complex conjugate functions

SYNOPSIS
#include <complex.h>

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex conjugate of z, by rev ersing the sign of its imaginary part.

RETURN VALUE
These functions return the complex conjugate value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), cproj(), creal()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CONNECT(3P) POSIX Programmer’s Manual CONNECT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
connect — connect a socket

SYNOPSIS
#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address,
socklen_t address_len);

DESCRIPTION
The connect() function shall attempt to make a connection on a connection-mode socket or to set or reset
the peer address of a connectionless-mode socket. The function takes the following arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length and format of the ad-
dress depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address argument.

If the socket has not already been bound to a local address, connect() shall bind it to an address which, un-
less the socket’s address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() shall set the socket’s peer address, and no
connection is made. For SOCK_DGRAM sockets, the peer address identifies where all datagrams are sent
on subsequent send() functions, and limits the remote sender for subsequent recv() functions. If the sa_fam-

ily member of address is AF_UNSPEC, the socket’s peer address shall be reset. Note that despite no con-
nection being made, the term ‘‘connected’’ is used to describe a connectionless-mode socket for which a
peer address has been set.

If the initiating socket is connection-mode, then connect() shall attempt to establish a connection to the ad-
dress specified by the address argument. If the connection cannot be established immediately and O_NON-
BLOCK is not set for the file descriptor for the socket, connect() shall block for up to an unspecified time-
out interval until the connection is established. If the timeout interval expires before the connection is estab-
lished, connect() shall fail and the connection attempt shall be aborted. If connect() is interrupted by a sig-
nal that is caught while blocked waiting to establish a connection, connect() shall fail and set errno to
[EINTR], but the connection request shall not be aborted, and the connection shall be established asyn-
chronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file descriptor for
the socket, connect() shall fail and set errno to [EINPROGRESS], but the connection request shall not be
aborted, and the connection shall be established asynchronously. Subsequent calls to connect() for the same
socket, before the connection is established, shall fail and set errno to [EALREADY].

When the connection has been established asynchronously, pselect(), select(), and poll() shall indicate that
the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use the connect() function.

RETURN VALUE
Upon successful completion, connect() shall return 0; otherwise, −1 shall be returned and errno set to indi-
cate the error.

ERRORS
The connect() function shall fail if:

EADDRNOTAVAIL
The specified address is not available from the local machine.

IEEE/The Open Group 2017 1

CONNECT(3P) POSIX Programmer’s Manual CONNECT(3P)

EAFNOSUPPORT
The specified address is not a valid address for the address family of the specified socket.

EALREADY
A connection request is already in progress for the specified socket.

EBADF
The socket argument is not a valid file descriptor.

ECONNREFUSED
The target address was not listening for connections or refused the connection request.

EINPROGRESS
O_NONBLOCK is set for the file descriptor for the socket and the connection cannot be immedi-
ately established; the connection shall be established asynchronously.

EINTR
The attempt to establish a connection was interrupted by delivery of a signal that was caught; the
connection shall be established asynchronously.

EISCONN
The specified socket is connection-mode and is already connected.

ENETUNREACH
No route to the network is present.

ENOTSOCK
The socket argument does not refer to a socket.

EPROT OTYPE
The specified address has a different type than the socket bound to the specified peer address.

ETIMEDOUT
The attempt to connect timed out before a connection was made.

If the address family of the socket is AF_UNIX, then connect() shall fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the pathname in address.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of the pathname does not name an existing file or the pathname is an empty string.

ENOTDIR
A component of the path prefix of the pathname in address names an existing file that is neither a
directory nor a symbolic link to a directory, or the pathname in address contains at least one
non-<slash> character and ends with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic link to a directory.

The connect() function may fail if:

EACCES
Search permission is denied for a component of the path prefix; or write access to the named
socket is denied.

EADDRINUSE
Attempt to establish a connection that uses addresses that are already in use.

ECONNRESET
Remote host reset the connection request.

IEEE/The Open Group 2017 2

CONNECT(3P) POSIX Programmer’s Manual CONNECT(3P)

EHOSTUNREACH
The destination host cannot be reached (probably because the host is down or a remote router can-
not reach it).

EINVAL
The address_len argument is not a valid length for the address family; or invalid address family in
the sockaddr structure.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path-
name in address.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENETDOWN
The local network interface used to reach the destination is down.

ENOBUFS
No buffer space is available.

EOPNOTSUPP
The socket is listening and cannot be connected.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If connect() fails, the state of the socket is unspecified. Conforming applications should close the file de-
scriptor and create a new socket before attempting to reconnect.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), close(), getsockname(), poll(), pselect(), send(), shutdown(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

COPYSIGN(3P) POSIX Programmer’s Manual COPYSIGN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
copysign, copysignf, copysignl — number manipulation function

SYNOPSIS
#include <math.h>

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall produce a value with the magnitude of x and the sign of y. On implementations that
represent a signed zero but do not treat negative zero consistently in arithmetic operations, these functions
regard the sign of zero as positive.

RETURN VALUE
Upon successful completion, these functions shall return a value with the magnitude of x and the sign of y.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
signbit()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

COS(3P) POSIX Programmer’s Manual COS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cos, cosf, cosl — cosine function

SYNOPSIS
#include <math.h>

double cos(double x);
float cosf(float x);
long double cosl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the cosine of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the cosine of x.

If x is NaN, a NaN shall be returned.

If x is ±0, the value 1.0 shall be returned.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The x argument is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
Taking the Cosine of a 45-Degree Angle

#include <math.h>
...
double radians = 45 * M_PI / 180;
double result;
...
result = cos(radians);

APPLICATION USAGE
These functions may lose accuracy when their argument is near an odd multiple of π/2 or is far from 0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

IEEE/The Open Group 2017 1

COS(3P) POSIX Programmer’s Manual COS(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), feclearexcept(), fetestexcept(), isnan(), sin(), tan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

COSH(3P) POSIX Programmer’s Manual COSH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cosh, coshf, coshl — hyperbolic cosine functions

SYNOPSIS
#include <math.h>

double cosh(double x);
float coshf(float x);
long double coshl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the hyperbolic cosine of their argument x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error shall occur and cosh(), coshf(), and coshl() shall re-
turn the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If x is NaN, a NaN shall be returned.

If x is ±0, the value 1.0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acosh(), feclearexcept(), fetestexcept(), isnan(), sinh(), tanh()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for

IEEE/The Open Group 2017 1

COSH(3P) POSIX Programmer’s Manual COSH(3P)

Mathematical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

COSL(3P) POSIX Programmer’s Manual COSL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cosl — cosine function

SYNOPSIS
#include <math.h>

long double cosl(long double x);

DESCRIPTION
Refer to cos().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CPOW(3P) POSIX Programmer’s Manual CPOW(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cpow, cpowf, cpowl — complex power functions

SYNOPSIS
#include <complex.h>

double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,

long double complex y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex power function xy, with a branch cut for the first parameter
along the negative real axis.

RETURN VALUE
These functions shall return the complex power function value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), csqrt()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CPROJ(3P) POSIX Programmer’s Manual CPROJ(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
cproj, cprojf, cprojl — complex projection functions

SYNOPSIS
#include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute a projection of z onto the Riemann sphere: z projects to z, except that all
complex infinities (even those with one infinite part and one NaN part) project to positive infinity on the
real axis. If z has an infinite part, then cproj(z) shall be equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

RETURN VALUE
These functions shall return the value of the projection onto the Riemann sphere.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Tw o topologies are commonly used in complex mathematics: the complex plane with its continuum of in-
finities, and the Riemann sphere with its single infinity. The complex plane is better suited for transcenden-
tal functions, the Riemann sphere for algebraic functions. The complex types with their multiplicity of in-
finities provide a useful (though imperfect) model for the complex plane. The cproj() function helps model
the Riemann sphere by mapping all infinities to one, and should be used just before any operation, espe-
cially comparisons, that might give spurious results for any of the other infinities. Note that a complex
value with one infinite part and one NaN part is regarded as an infinity, not a NaN, because if one part is in-
finite, the complex value is infinite independent of the value of the other part. For the same reason, cabs()
returns an infinity if its argument has an infinite part and a NaN part.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), creal()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

CPROJ(3P) POSIX Programmer’s Manual CPROJ(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CREAL(3P) POSIX Programmer’s Manual CREAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
creal, crealf, creall — complex real functions

SYNOPSIS
#include <complex.h>

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the real part of z.

RETURN VALUE
These functions shall return the real part value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
For a variable z of type complex:

z == creal(z) + cimag(z)*I

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
carg(), cimag(), conj(), cproj()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CREAT(3P) POSIX Programmer’s Manual CREAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
#include <sys/stat.h>
#include <fcntl.h>

int creat(const char *path, mode_t mode);

DESCRIPTION
The creat() function shall behave as if it is implemented as follows:

int creat(const char *path, mode_t mode)
{

return open(path, O_WRONLY|O_CREAT|O_TRUNC, mode);
}

RETURN VALUE
Refer to open().

ERRORS
Refer to open().

The following sections are informative.

EXAMPLES
Creating a File

The following example creates the file /tmp/file with read and write permissions for the file owner and read
permission for group and others. The resulting file descriptor is assigned to the fd variable.

#include <fcntl.h>
...
int fd;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *pathname = "/tmp/file";
...
fd = creat(pathname, mode);
...

APPLICATION USAGE
None.

RATIONALE
The creat() function is redundant. Its services are also provided by the open() function. It has been included
primarily for historical purposes since many existing applications depend on it. It is best considered a part
of the C binding rather than a function that should be provided in other languages.

FUTURE DIRECTIONS
None.

SEE ALSO
mknod(), open()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_stat.h>, <sys_types.h>

IEEE/The Open Group 2017 1

CREAT(3P) POSIX Programmer’s Manual CREAT(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CRYPT(3P) POSIX Programmer’s Manual CRYPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
crypt — string encoding function (CRYPT)

SYNOPSIS
#include <unistd.h>

char *crypt(const char *key, const char *salt);

DESCRIPTION
The crypt() function is a string encoding function. The algorithm is implementation-defined.

The key argument points to a string to be encoded. The salt argument shall be a string of at least two bytes
in length not including the null character chosen from the set:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 . /

The first two bytes of this string may be used to perturb the encoding algorithm.

The return value of crypt() points to static data that is overwritten by each call.

The crypt() function need not be thread-safe.

RETURN VALUE
Upon successful completion, crypt() shall return a pointer to the encoded string. The first two bytes of the
returned value shall be those of the salt argument. Otherwise, it shall return a null pointer and set errno to
indicate the error.

ERRORS
The crypt() function shall fail if:

ENOSYS
The functionality is not supported on this implementation.

The following sections are informative.

EXAMPLES
Encoding Passwords

The following example finds a user database entry matching a particular user name and changes the current
password to a new password. The crypt() function generates an encoded version of each password. The first
call to crypt() produces an encoded version of the old password; that encoded password is then compared to
the password stored in the user database. The second call to crypt() encodes the new password before it is
stored.

The putpwent() function, used in the following example, is not part of POSIX.1-2008.

#include <unistd.h>
#include <pwd.h>
#include <string.h>
#include <stdio.h>
...
int valid_change;
int pfd; /* Integer for file descriptor returned by open(). */
FILE *fpfd; /* File pointer for use in putpwent(). */
struct passwd *p;

IEEE/The Open Group 2017 1

CRYPT(3P) POSIX Programmer’s Manual CRYPT(3P)

char user[100];
char oldpasswd[100];
char newpasswd[100];
char savepasswd[100];
...
valid_change = 0;
while ((p = getpwent()) != NULL) {

/* Change entry if found. */
if (strcmp(p->pw_name, user) == 0) {

if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd;
valid_change = 1;

}
else {

fprintf(stderr, "Old password is not valid\n");
}

}
/* Put passwd entry into ptmp. */
putpwent(p, fpfd);

}

APPLICATION USAGE
The values returned by this function need not be portable among XSI-conformant systems.

Several implementations offer extensions via characters outside of the set specified for the salt argument for
specifying alternative algorithms; while not portable, these extensions may offer better security. The use of
crypt() for anything other than password hashing is not recommended.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
encrypt(), setkey()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CSIN(3P) POSIX Programmer’s Manual CSIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
csin, csinf, csinl — complex sine functions

SYNOPSIS
#include <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex sine of z.

RETURN VALUE
These functions shall return the complex sine value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
casin()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CSINH(3P) POSIX Programmer’s Manual CSINH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
csinh, csinhf, csinhl — complex hyperbolic sine functions

SYNOPSIS
#include <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex hyperbolic sine of z.

RETURN VALUE
These functions shall return the complex hyperbolic sine value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
casinh()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CSINL(3P) POSIX Programmer’s Manual CSINL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
csinl — complex sine functions

SYNOPSIS
#include <complex.h>

long double complex csinl(long double complex z);

DESCRIPTION
Refer to csin().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CSQRT(3P) POSIX Programmer’s Manual CSQRT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
csqrt, csqrtf, csqrtl — complex square root functions

SYNOPSIS
#include <complex.h>

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex square root of z, with a branch cut along the negative real axis.

RETURN VALUE
These functions shall return the complex square root value, in the range of the right half-plane (including
the imaginary axis).

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), cpow()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CTAN(3P) POSIX Programmer’s Manual CTAN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ctan, ctanf, ctanl — complex tangent functions

SYNOPSIS
#include <complex.h>

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex tangent of z.

RETURN VALUE
These functions shall return the complex tangent value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catan()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CTANH(3P) POSIX Programmer’s Manual CTANH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ctanh, ctanhf, ctanhl — complex hyperbolic tangent functions

SYNOPSIS
#include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complex hyperbolic tangent of z.

RETURN VALUE
These functions shall return the complex hyperbolic tangent value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catanh()

The Base Definitions volume of POSIX.1-2017, <complex.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CTANL(3P) POSIX Programmer’s Manual CTANL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ctanl — complex tangent functions

SYNOPSIS
#include <complex.h>

long double complex ctanl(long double complex z);

DESCRIPTION
Refer to ctan().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

CTERMID(3P) POSIX Programmer’s Manual CTERMID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ctermid — generate a pathname for the controlling terminal

SYNOPSIS
#include <stdio.h>

char *ctermid(char *s);

DESCRIPTION
The ctermid() function shall generate a string that, when used as a pathname, refers to the current control-
ling terminal for the current process. If ctermid() returns a pathname, access to the file is not guaranteed.

The ctermid() function need not be thread-safe if called with a NULL parameter.

RETURN VALUE
If s is a null pointer, the string shall be generated in an area that may be static, the address of which shall be
returned. The application shall not modify the string returned. The returned pointer might be invalidated or
the string content might be overwritten by a subsequent call to ctermid(). The returned pointer might also
be invalidated if the calling thread is terminated. If s is not a null pointer, s is assumed to point to a charac-
ter array of at least L_ctermid bytes; the string is placed in this array and the value of s shall be returned.
The symbolic constant L_ctermid is defined in <stdio.h>, and shall have a value greater than 0.

The ctermid() function shall return an empty string if the pathname that would refer to the controlling ter-
minal cannot be determined, or if the function is unsuccessful.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Determining the Controlling Terminal for the Current Process

The following example returns a pointer to a string that identifies the controlling terminal for the current
process. The pathname for the terminal is stored in the array pointed to by the ptr argument, which has a
size of L_ctermid bytes, as indicated by the term argument.

#include <stdio.h>
...
char term[L_ctermid];
char *ptr;

ptr = ctermid(term);

APPLICATION USAGE
The difference between ctermid() and ttyname() is that ttyname() must be handed a file descriptor and re-
turn a path of the terminal associated with that file descriptor, while ctermid() returns a string (such as
"/dev/tty") that refers to the current controlling terminal if used as a pathname.

RATIONALE
L_ctermid must be defined appropriately for a given implementation and must be greater than zero so that
array declarations using it are accepted by the compiler. The value includes the terminating null byte.

Conforming applications that use multiple threads cannot call ctermid() with NULL as the parameter. If s is
not NULL, the ctermid() function generates a string that, when used as a pathname, refers to the current
controlling terminal for the current process. If s is NULL, the return value of ctermid() is undefined.

There is no additional burden on the programmer—changing to use a hypothetical thread-safe version of

IEEE/The Open Group 2017 1

CTERMID(3P) POSIX Programmer’s Manual CTERMID(3P)

ctermid() along with allocating a buffer is more of a burden than merely allocating a buffer. Application
code should not assume that the returned string is short, as some implementations have more than two path-
name components before reaching a logical device name.

FUTURE DIRECTIONS
None.

SEE ALSO
ttyname()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

CTIME(3P) POSIX Programmer’s Manual CTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ctime, ctime_r — convert a time value to a date and time string

SYNOPSIS
#include <time.h>

char *ctime(const time_t *clock);
char *ctime_r(const time_t *clock, char *buf);

DESCRIPTION
For ctime(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The ctime() function shall convert the time pointed to by clock, representing time in seconds since the
Epoch, to local time in the form of a string. It shall be equivalent to:

asctime(localtime(clock))

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static objects: a
broken-down time structure and an array of char. Execution of any of the functions may overwrite the in-
formation returned in either of these objects by any of the other functions.

The ctime() function need not be thread-safe.

The ctime_r() function shall convert the calendar time pointed to by clock to local time in exactly the same
form as ctime() and put the string into the array pointed to by buf (which shall be at least 26 bytes in size)
and return buf .

Unlike ctime(), the ctime_r() function is not required to set tzname. If ctime_r() sets tzname, it shall also
set daylight and timezone. If ctime_r() does not set tzname, it shall not set daylight and shall not set time-

zone.

RETURN VALUE
The ctime() function shall return the pointer returned by asctime() with that broken-down time as an argu-
ment.

Upon successful completion, ctime_r() shall return a pointer to the string pointed to by buf . When an error
is encountered, a null pointer shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are included only for compatibility with older implementations. They hav e undefined be-
havior if the resulting string would be too long, so the use of these functions should be discouraged. On
implementations that do not detect output string length overflow, it is possible to overflow the output buffers
in such a way as to cause applications to fail, or possible system security violations. Also, these functions
do not support localized date and time formats. To avoid these problems, applications should use strftime()
to generate strings from broken-down times.

Values for the broken-down time structure can be obtained by calling gmtime() or localtime().

The ctime_r() function is thread-safe and shall return values in a user-supplied buffer instead of possibly

IEEE/The Open Group 2017 1

CTIME(3P) POSIX Programmer’s Manual CTIME(3P)

using a static data area that may be overwritten by each call.

Attempts to use ctime() or ctime_r() for times before the Epoch or for times beyond the year 9999 produce
undefined results. Refer to asctime().

RATIONALE
The standard developers decided to mark the ctime() and ctime_r() functions obsolescent even though they
are in the ISO C standard due to the possibility of buffer overflow. The ISO C standard also provides the
strftime() function which can be used to avoid these problems.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
asctime(), clock(), difftime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

DAYLIGHT(3P) POSIX Programmer’s Manual DAYLIGHT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
daylight — daylight savings time flag

SYNOPSIS
#include <time.h>

extern int daylight;

DESCRIPTION
Refer to tzset().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

DBM_CLEARERR(3P) POSIX Programmer’s Manual DBM_CLEARERR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey, dbm_open,
dbm_store — database functions

SYNOPSIS
#include <ndbm.h>

int dbm_clearerr(DBM *db);
void dbm_close(DBM *db);
int dbm_delete(DBM *db, datum key);
int dbm_error(DBM *db);
datum dbm_fetch(DBM *db, datum key);
datum dbm_firstkey(DBM *db);
datum dbm_nextkey(DBM *db);
DBM *dbm_open(const char *file, int open_flags, mode_t file_mode);
int dbm_store(DBM *db, datum key, datum content, int store_mode);

DESCRIPTION
These functions create, access, and modify a database.

A datum consists of at least two members, dptr and dsize. The dptr member points to an object that is
dsize bytes in length. Arbitrary binary data, as well as character strings, may be stored in the object pointed
to by dptr.

A database shall be stored in one or two files. When one file is used, the name of the database file shall be
formed by appending the suffix .db to the file argument given to dbm_open(). When two files are used, the
names of the database files shall be formed by appending the suffixes .dir and .pag respectively to the file

argument.

The dbm_open() function shall open a database. The file argument to the function is the pathname of the
database. The open_flags argument has the same meaning as the flags argument of open() except that a
database opened for write-only access opens the files for read and write access and the behavior of the
O_APPEND flag is unspecified. The file_mode argument has the same meaning as the third argument of
open().

The dbm_open() function need not accept pathnames longer than {PATH_MAX}−4 bytes (including the
terminating null), or pathnames with a last component longer than {NAME_MAX}−4 bytes (excluding the
terminating null).

The dbm_close() function shall close a database. The application shall ensure that argument db is a pointer
to a dbm structure that has been returned from a call to dbm_open().

These database functions shall support an internal block size large enough to support key/content pairs of at
least 1 023 bytes.

The dbm_fetch() function shall read a record from a database. The argument db is a pointer to a database
structure that has been returned from a call to dbm_open(). The argument key is a datum that has been ini-
tialized by the application to the value of the key that matches the key of the record the program is fetching.

The dbm_store() function shall write a record to a database. The argument db is a pointer to a database
structure that has been returned from a call to dbm_open(). The argument key is a datum that has been ini-
tialized by the application to the value of the key that identifies (for subsequent reading, writing, or delet-
ing) the record the application is writing. The argument content is a datum that has been initialized by the
application to the value of the record the program is writing. The argument store_mode controls whether
dbm_store() replaces any pre-existing record that has the same key that is specified by the key argument.
The application shall set store_mode to either DBM_INSERT or DBM_REPLACE. If the database contains
a record that matches the key argument and store_mode is DBM_REPLACE, the existing record shall be

IEEE/The Open Group 2017 1

DBM_CLEARERR(3P) POSIX Programmer’s Manual DBM_CLEARERR(3P)

replaced with the new record. If the database contains a record that matches the key argument and
store_mode is DBM_INSERT, the existing record shall be left unchanged and the new record ignored. If
the database does not contain a record that matches the key argument and store_mode is either DBM_IN-
SERT or DBM_REPLACE, the new record shall be inserted in the database.

If the sum of a key/content pair exceeds the internal block size, the result is unspecified. Moreover, the ap-
plication shall ensure that all key/content pairs that hash together fit on a single block. The dbm_store()
function shall return an error in the event that a disk block fills with inseparable data.

The dbm_delete() function shall delete a record and its key from the database. The argument db is a pointer
to a database structure that has been returned from a call to dbm_open(). The argument key is a datum that
has been initialized by the application to the value of the key that identifies the record the program is delet-
ing.

The dbm_firstkey() function shall return the first key in the database. The argument db is a pointer to a data-
base structure that has been returned from a call to dbm_open().

The dbm_nextkey() function shall return the next key in the database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The application shall ensure that the
dbm_firstkey() function is called before calling dbm_nextkey(). Subsequent calls to dbm_nextkey() return
the next key until all of the keys in the database have been returned.

The dbm_error() function shall return the error condition of the database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open().

The dbm_clearerr() function shall clear the error condition of the database. The argument db is a pointer to
a database structure that has been returned from a call to dbm_open().

The dptr pointers returned by these functions may point into static storage that may be changed by subse-
quent calls.

These functions need not be thread-safe.

RETURN VALUE
The dbm_store() and dbm_delete() functions shall return 0 when they succeed and a negative value when
they fail.

The dbm_store() function shall return 1 if it is called with a flags value of DBM_INSERT and the function
finds an existing record with the same key.

The dbm_error() function shall return 0 if the error condition is not set and return a non-zero value if the er-
ror condition is set.

The return value of dbm_clearerr() is unspecified.

The dbm_firstkey() and dbm_nextkey() functions shall return a key datum. When the end of the database is
reached, the dptr member of the key is a null pointer. If an error is detected, the dptr member of the key
shall be a null pointer and the error condition of the database shall be set.

The dbm_fetch() function shall return a content datum. If no record in the database matches the key or if
an error condition has been detected in the database, the dptr member of the content shall be a null pointer.

The dbm_open() function shall return a pointer to a database structure. If an error is detected during the op-
eration, dbm_open() shall return a (DBM *)0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The following code can be used to traverse the database:

IEEE/The Open Group 2017 2

DBM_CLEARERR(3P) POSIX Programmer’s Manual DBM_CLEARERR(3P)

for(key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

The dbm_* functions provided in this library should not be confused in any way with those of a general-
purpose database management system. These functions do not provide for multiple search keys per entry,
they do not protect against multi-user access (in other words they do not lock records or files), and they do
not provide the many other useful database functions that are found in more robust database management
systems. Creating and updating databases by use of these functions is relatively slow because of data copies
that occur upon hash collisions. These functions are useful for applications requiring fast lookup of rela-
tively static information that is to be indexed by a single key.

Note that a strictly conforming application is extremely limited by these functions: since there is no way to
determine that the keys in use do not all hash to the same value (although that would be rare), a strictly con-
forming application cannot be guaranteed that it can store more than one block’s worth of data in the data-
base. As long as a key collision does not occur, additional data may be stored, but because there is no way
to determine whether an error is due to a key collision or some other error condition (dbm_error() being ef-
fectively a Boolean), once an error is detected, the application is effectively limited to guessing what the er-
ror might be if it wishes to continue using these functions.

The dbm_delete() function need not physically reclaim file space, although it does make it available for re-
use by the database.

After calling dbm_store() or dbm_delete() during a pass through the keys by dbm_firstkey() and dbm_nex-

tkey(), the application should reset the database by calling dbm_firstkey() before again calling dbm_nex-

tkey(). The contents of these files are unspecified and may not be portable.

Applications should take care that database pathname arguments specified to dbm_open() are not prefixes
of unrelated files. This might be done, for example, by placing databases in a separate directory.

Since some implementations use three characters for a suffix and others use four characters for a suffix, ap-
plications should ensure that the maximum portable pathname length passed to dbm_open() is no greater
than {PATH_MAX}−4 bytes, with the last component of the pathname no greater than {NAME_MAX}−4
bytes.

RATIONALE
Previously the standard required the database to be stored in two files, one file being a directory containing
a bitmap of keys and having .dir as its suffix. The second file containing all data and having .pag as its suf-
fix. This has been changed not to specify the use of the files and to allow newer implementations of the
Berkeley DB interface using a single file that have evolved while remaining compatible with the application
programming interface. The standard developers considered removing the specific suffixes altogether but
decided to retain them so as not to pollute the application file name space more than necessary and to allow
for portable backups of the database.

FUTURE DIRECTIONS
None.

SEE ALSO
open()

The Base Definitions volume of POSIX.1-2017, <ndbm.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

DIFFTIME(3P) POSIX Programmer’s Manual DIFFTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
difftime — compute the difference between two calendar time values

SYNOPSIS
#include <time.h>

double difftime(time_t time1, time_t time0);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The difftime() function shall compute the difference between two calendar times (as returned by time()):
time1− time0.

RETURN VALUE
The difftime() function shall return the difference expressed in seconds as a type double.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

DIRFD(3P) POSIX Programmer’s Manual DIRFD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dirfd — extract the file descriptor used by a DIR stream

SYNOPSIS
#include <dirent.h>

int dirfd(DIR *dirp);

DESCRIPTION
The dirfd() function shall return a file descriptor referring to the same directory as the dirp argument. This
file descriptor shall be closed by a call to closedir(). If any attempt is made to close the file descriptor, or to
modify the state of the associated description, other than by means of closedir(), readdir(), readdir_r(),
re winddir(), or seekdir(), the behavior is undefined.

RETURN VALUE
Upon successful completion, the dirfd() function shall return an integer which contains a file descriptor for
the stream pointed to by dirp. Otherwise, it shall return −1 and shall set errno to indicate the error.

ERRORS
The dirfd() function may fail if:

EINVAL
The dirp argument does not refer to a valid directory stream.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The dirfd() function is intended to be a mechanism by which an application may obtain a file descriptor to
use for the fchdir() function.

RATIONALE
This interface was introduced because the Base Definitions volume of POSIX.1-2017 does not make public
the DIR data structure. Applications tend to use the fchdir() function on the file descriptor returned by this
interface, and this has proven useful for security reasons; in particular, it is a better technique than others
where directory names might change.

The description uses the term ‘‘a file descriptor’’ rather than ‘‘the file descriptor’’. The implication intended
is that an implementation that does not use an fd for opendir() could still open() the directory to implement
the dirfd() function. Such a descriptor must be closed later during a call to closedir().

If it is necessary to allocate an fd to be returned by dirfd(), it should be done at the time of a call to
opendir().

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), fchdir(), fdopendir(), fileno(), open(), readdir()

The Base Definitions volume of POSIX.1-2017, <dirent.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 1

DIRFD(3P) POSIX Programmer’s Manual DIRFD(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

DIRNAME(3P) POSIX Programmer’s Manual DIRNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dirname — report the parent directory name of a file pathname

SYNOPSIS
#include <libgen.h>

char *dirname(char *path);

DESCRIPTION
The dirname() function shall take a pointer to a character string that contains a pathname, and return a
pointer to a string that is a pathname of the parent directory of that file. The dirname() function shall not
perform pathname resolution; the result shall not be affected by whether or not path exists or by its file
type. Trailing ’/’ characters in the path that are not also leading ’/’ characters shall not be counted as part of
the path.

If path does not contain a ’/’, then dirname() shall return a pointer to the string ".". If path is a null
pointer or points to an empty string, dirname() shall return a pointer to the string ".".

The dirname() function may modify the string pointed to by path, and may return a pointer to static storage
that may then be overwritten by a subsequent call to dirname().

The dirname() function need not be thread-safe.

RETURN VALUE
The dirname() function shall return a pointer to a string as described above.

The dirname() function may modify the string pointed to by path, and may return a pointer to internal stor-
age. The returned pointer might be invalidated or the storage might be overwritten by a subsequent call to
dirname(). The returned pointer might also be invalidated if the calling thread is terminated.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The following code fragment reads a pathname, changes the current working directory to the parent direc-
tory, and opens the file.

char *path = NULL, *pathcopy;
size_t buflen = 0;
ssize_t linelen = 0;
int fd;

linelen = getline(&path, &buflen, stdin);

path[linelen-1] = 0;
pathcopy = strdup(path);
if (chdir(dirname(pathcopy)) < 0) {

...
}
if ((fd = open(basename(path), O_RDONLY)) >= 0) {

...
close (fd);

}
...
free (pathcopy);

IEEE/The Open Group 2017 1

DIRNAME(3P) POSIX Programmer’s Manual DIRNAME(3P)

free (path);

The EXAMPLES section of the basename() function (see basename()) includes a table showing examples
of the results of processing several sample pathnames by the basename() and dirname() functions and by
the basename and dirname utilities.

APPLICATION USAGE
The dirname() and basename() functions together yield a complete pathname. The expression
dirname(path) obtains the pathname of the directory where basename(path) is found.

Since the meaning of the leading "//" is implementation-defined, dirname("//foo) may return either "//" or
’/’ (but nothing else).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
basename()

The Base Definitions volume of POSIX.1-2017, <libgen.h>

The Shell and Utilities volume of POSIX.1-2017, basename , dirname

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

DIV(3P) POSIX Programmer’s Manual DIV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
div — compute the quotient and remainder of an integer division

SYNOPSIS
#include <stdlib.h>

div_t div(int numer, int denom);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The div() function shall compute the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the resulting quotient is the integer of lesser magnitude that
is the nearest to the algebraic quotient. If the result cannot be represented, the behavior is undefined; other-
wise, quot*denom+rem shall equal numer.

RETURN VALUE
The div() function shall return a structure of type div_t, comprising both the quotient and the remainder.
The structure includes the following members, in any order:

int quot; /* quotient */
int rem; /* remainder */

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ldiv()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

DLCLOSE(3P) POSIX Programmer’s Manual DLCLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dlclose — close a symbol table handle

SYNOPSIS
#include <dlfcn.h>

int dlclose(void *handle);

DESCRIPTION
The dlclose() function shall inform the system that the symbol table handle specified by handle is no longer
needed by the application.

An application writer may use dlclose() to make a statement of intent on the part of the process, but this
statement does not create any requirement upon the implementation. When the symbol table handle is
closed, the implementation may unload the executable object files that were loaded by dlopen() when the
symbol table handle was opened and those that were loaded by dlsym() when using the symbol table handle
identified by handle.

Once a symbol table handle has been closed, an application should assume that any symbols (function iden-
tifiers and data object identifiers) made visible using handle, are no longer available to the process.

Although a dlclose() operation is not required to remove any functions or data objects from the address
space, neither is an implementation prohibited from doing so. The only restriction on such a removal is that
no function nor data object shall be removed to which references have been relocated, until or unless all
such references are removed. For instance, an executable object file that had been loaded with a dlopen()
operation specifying the RTLD_GLOBAL flag might provide a target for dynamic relocations performed in
the processing of other relocatable objects—in such environments, an application may assume that no relo-
cation, once made, shall be undone or remade unless the executable object file containing the relocated ob-
ject has itself been removed.

RETURN VALUE
If the referenced symbol table handle was successfully closed, dlclose() shall return 0. If handle does not
refer to an open symbol table handle or if the symbol table handle could not be closed, dlclose() shall return
a non-zero value. More detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The following example illustrates use of dlopen() and dlclose():

#include <dlfcn.h>
int eret;
void *mylib;
...
/* Open a dynamic library and then close it ... */
mylib = dlopen("mylib.so", RTLD_LOCAL | RTLD_LAZY);
...
eret = dlclose(mylib);
...

APPLICATION USAGE
A conforming application should employ a symbol table handle returned from a dlopen() invocation only
within a given scope bracketed by a dlopen() operation and the corresponding dlclose() operation.

IEEE/The Open Group 2017 1

DLCLOSE(3P) POSIX Programmer’s Manual DLCLOSE(3P)

Implementations are free to use reference counting or other techniques such that multiple calls to dlopen()
referencing the same executable object file may return a pointer to the same data object as the symbol table
handle.

Implementations are also free to re-use a handle. For these reasons, the value of a handle must be treated as
an opaque data type by the application, used only in calls to dlsym() and dlclose().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlerror(), dlopen(), dlsym()

The Base Definitions volume of POSIX.1-2017, <dlfcn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

DLERROR(3P) POSIX Programmer’s Manual DLERROR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dlerror — get diagnostic information

SYNOPSIS
#include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
The dlerror() function shall return a null-terminated character string (with no trailing <newline>) that de-
scribes the last error that occurred during dynamic linking processing. If no dynamic linking errors have oc-
curred since the last invocation of dlerror(), dlerror() shall return NULL. Thus, invoking dlerror() a second
time, immediately following a prior invocation, shall result in NULL being returned.

It is implementation-defined whether or not the dlerror() function is thread-safe. A thread-safe implementa-
tion shall return only errors that occur on the current thread.

RETURN VALUE
If successful, dlerror() shall return a null-terminated character string; otherwise, NULL shall be returned.

The application shall not modify the string returned. The returned pointer might be invalidated or the string
content might be overwritten by a subsequent call to dlerror() in the same thread (if dlerror() is thread-safe)
or in any thread (if dlerror() is not thread-safe). The returned pointer might also be invalidated if the calling
thread is terminated.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The following example prints out the last dynamic linking error:

...
#include <dlfcn.h>

char *errstr;

errstr = dlerror();
if (errstr != NULL)

printf ("A dynamic linking error occurred: (%s)\n", errstr);
...

APPLICATION USAGE
Depending on the application environment with respect to asynchronous execution events, such as signals
or other asynchronous computation sharing the address space, conforming applications should use a critical
section to retrieve the error pointer and buffer.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlopen(), dlsym()

The Base Definitions volume of POSIX.1-2017, <dlfcn.h>

IEEE/The Open Group 2017 1

DLERROR(3P) POSIX Programmer’s Manual DLERROR(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

DLOPEN(3P) POSIX Programmer’s Manual DLOPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dlopen — open a symbol table handle

SYNOPSIS
#include <dlfcn.h>

void *dlopen(const char *file, int mode);

DESCRIPTION
The dlopen() function shall make the symbols (function identifiers and data object identifiers) in the exe-
cutable object file specified by file available to the calling program.

The class of executable object files eligible for this operation and the manner of their construction are im-
plementation-defined, though typically such files are shared libraries or programs.

Implementations may permit the construction of embedded dependencies in executable object files. In such
cases, a dlopen() operation shall load those dependencies in addition to the executable object file specified
by file. Implementations may also impose specific constraints on the construction of programs that can
employ dlopen() and its related services.

A successful dlopen() shall return a symbol table handle which the caller may use on subsequent calls to dl-

sym() and dlclose().

The value of this symbol table handle should not be interpreted in any way by the caller.

The file argument is used to construct a pathname to the executable object file. If file contains a <slash>
character, the file argument is used as the pathname for the file. Otherwise, file is used in an implementa-
tion-defined manner to yield a pathname.

If file is a null pointer, dlopen() shall return a global symbol table handle for the currently running process
image. This symbol table handle shall provide access to the symbols from an ordered set of executable ob-
ject files consisting of the original program image file, any executable object files loaded at program start-
up as specified by that process file (for example, shared libraries), and the set of executable object files
loaded using dlopen() operations with the RTLD_GLOBAL flag. As the latter set of executable object files
can change during execution, the set of symbols made available by this symbol table handle can also
change dynamically.

Only a single copy of an executable object file shall be brought into the address space, even if dlopen() is
invoked multiple times in reference to the executable object file, and even if different pathnames are used to
reference the executable object file.

The mode parameter describes how dlopen() shall operate upon file with respect to the processing of relo-
cations and the scope of visibility of the symbols provided within file. When an executable object file is
brought into the address space of a process, it may contain references to symbols whose addresses are not
known until the executable object file is loaded.

These references shall be relocated before the symbols can be accessed. The mode parameter governs when
these relocations take place and may have the following values:

RTLD_LAZY
Relocations shall be performed at an implementation-defined time, ranging from the time of
the dlopen() call until the first reference to a given symbol occurs. Specifying RTLD_LAZY
should improve performance on implementations supporting dynamic symbol binding since
a process might not reference all of the symbols in an executable object file. And, for sys-
tems supporting dynamic symbol resolution for normal process execution, this behavior
mimics the normal handling of process execution.

IEEE/The Open Group 2017 1

DLOPEN(3P) POSIX Programmer’s Manual DLOPEN(3P)

RTLD_NOW All necessary relocations shall be performed when the executable object file is first loaded.
This may waste some processing if relocations are performed for symbols that are never ref-
erenced. This behavior may be useful for applications that need to know that all symbols ref-
erenced during execution will be available before dlopen() returns.

Any executable object file loaded by dlopen() that requires relocations against global symbols can reference
the symbols in the original process image file, any executable object files loaded at program start-up, from
the initial process image itself, from any other executable object file included in the same dlopen() invoca-
tion, and any executable object files that were loaded in any dlopen() invocation and which specified the
RTLD_GLOBAL flag. To determine the scope of visibility for the symbols loaded with a dlopen() invoca-
tion, the mode parameter should be a bitwise-inclusive OR with one of the following values:

RTLD_GLOBAL
The executable object file’s symbols shall be made available for relocation processing of any
other executable object file. In addition, symbol lookup using dlopen(NULL,mode) and an
associated dlsym() allows executable object files loaded with this mode to be searched.

RTLD_LOCAL
The executable object file’s symbols shall not be made available for relocation processing of
any other executable object file.

If neither RTLD_GLOBAL nor RTLD_LOCAL is specified, the default behavior is unspecified.

If an executable object file is specified in multiple dlopen() invocations, mode is interpreted at each invoca-
tion.

If RTLD_NOW has been specified, all relocations shall have been completed rendering further
RTLD_NOW operations redundant and any further RTLD_LAZY operations irrelevant.

If RTLD_GLOBAL has been specified, the executable object file shall maintain the RTLD_GLOBAL status
regardless of any previous or future specification of RTLD_LOCAL, as long as the executable object file
remains in the address space (see dlclose()).

Symbols introduced into the process image through calls to dlopen() may be used in relocation activities.
Symbols so introduced may duplicate symbols already defined by the program or previous dlopen() opera-
tions. To resolve the ambiguities such a situation might present, the resolution of a symbol reference to
symbol definition is based on a symbol resolution order. Two such resolution orders are defined: load order
and dependency order. Load order establishes an ordering among symbol definitions, such that the first defi-
nition loaded (including definitions from the process image file and any dependent executable object files
loaded with it) has priority over executable object files added later (by dlopen()). Load ordering is used in
relocation processing. Dependency ordering uses a breadth-first order starting with a given executable ob-
ject file, then all of its dependencies, then any dependents of those, iterating until all dependencies are satis-
fied. With the exception of the global symbol table handle obtained via a dlopen() operation with a null
pointer as the file argument, dependency ordering is used by the dlsym() function. Load ordering is used in
dlsym() operations upon the global symbol table handle.

When an executable object file is first made accessible via dlopen(), it and its dependent executable object
files are added in dependency order. Once all the executable object files are added, relocations are per-
formed using load order. Note that if an executable object file or its dependencies had been previously
loaded, the load and dependency orders may yield different resolutions.

The symbols introduced by dlopen() operations and available through dlsym() are at a minimum those
which are exported as identifiers of global scope by the executable object file. Typically, such identifiers
shall be those that were specified in (for example) C source code as having extern linkage. The precise
manner in which an implementation constructs the set of exported symbols for an executable object file is
implementation-defined.

RETURN VALUE
Upon successful completion, dlopen() shall return a symbol table handle. If file cannot be found, cannot be
opened for reading, is not of an appropriate executable object file format for processing by dlopen(), or if an
error occurs during the process of loading file or relocating its symbolic references, dlopen() shall return a

IEEE/The Open Group 2017 2

DLOPEN(3P) POSIX Programmer’s Manual DLOPEN(3P)

null pointer. More detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Refer to dlsym().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlsym()

The Base Definitions volume of POSIX.1-2017, <dlfcn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

DLSYM(3P) POSIX Programmer’s Manual DLSYM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dlsym — get the address of a symbol from a symbol table handle

SYNOPSIS
#include <dlfcn.h>

void *dlsym(void *restrict handle, const char *restrict name);

DESCRIPTION
The dlsym() function shall obtain the address of a symbol (a function identifier or a data object identifier)
defined in the symbol table identified by the handle argument. The handle argument is a symbol table han-
dle returned from a call to dlopen() (and which has not since been released by a call to dlclose()), and name

is the symbol’s name as a character string. The return value from dlsym(), cast to a pointer to the type of the
named symbol, can be used to call (in the case of a function) or access the contents of (in the case of a data
object) the named symbol.

The dlsym() function shall search for the named symbol in the symbol table referenced by handle. If the
symbol table was created with lazy loading (see RTLD_LAZY in dlopen()), load ordering shall be used in
dlsym() operations to relocate executable object files needed to resolve the symbol. The symbol resolution
algorithm used shall be dependency order as described in dlopen().

The RTLD_DEFAULT and RTLD_NEXT symbolic constants (which may be defined in <dlfcn.h>) are re-
served for future use as special values that applications may be allowed to use for handle.

RETURN VALUE
Upon successful completion, if name names a function identifier, dlsym() shall return the address of the
function converted from type pointer to function to type pointer to void; otherwise, dlsym() shall return the
address of the data object associated with the data object identifier named by name converted from a
pointer to the type of the data object to a pointer to void. If handle does not refer to a valid symbol table
handle or if the symbol named by name cannot be found in the symbol table associated with handle, dl-

sym() shall return a null pointer.

More detailed diagnostic information shall be available through dlerror().

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The following example shows how dlopen() and dlsym() can be used to access either a function or a data
object. For simplicity, error checking has been omitted.

void *handle;
int (*fptr)(int), *iptr, result;
/* open the needed symbol table */
handle = dlopen("/usr/home/me/libfoo.so", RTLD_LOCAL | RTLD_LAZY);
/* find the address of the function my_function */
fptr = (int (*)(int))dlsym(handle, "my_function");
/* find the address of the data object my_object */
iptr = (int *)dlsym(handle, "my_OBJ");
/* invoke my_function, passing the value of my_OBJ as the parameter */
result = (*fptr)(*iptr);

IEEE/The Open Group 2017 1

DLSYM(3P) POSIX Programmer’s Manual DLSYM(3P)

APPLICATION USAGE
The following special purpose values for handle are reserved for future use and have the indicated mean-
ings:

RTLD_DEFAULT
The identifier lookup happens in the normal global scope; that is, a search for an identifier
using handle would find the same definition as a direct use of this identifier in the program
code.

RTLD_NEXT
Specifies the next executable object file after this one that defines name. This one refers to
the executable object file containing the invocation of dlsym(). The next executable object
file is the one found upon the application of a load order symbol resolution algorithm (see
dlopen()). The next symbol is either one of global scope (because it was introduced as part
of the original process image or because it was added with a dlopen() operation including
the RTLD_GLOBAL flag), or is in an executable object file that was included in the same
dlopen() operation that loaded this one.

The RTLD_NEXT flag is useful to navigate an intentionally created hierarchy of multiply-defined symbols
created through interposition. For example, if a program wished to create an implementation of malloc()
that embedded some statistics gathering about memory allocations, such an implementation could use the
real malloc() definition to perform the memory allocation — and itself only embed the necessary logic to
implement the statistics gathering function.

Note that conversion from a void * pointer to a function pointer as in:

fptr = (int (*)(int))dlsym(handle, "my_function");

is not defined by the ISO C standard. This standard requires this conversion to work correctly on conform-
ing implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlopen()

The Base Definitions volume of POSIX.1-2017, <dlfcn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

DPRINTF(3P) POSIX Programmer’s Manual DPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int dprintf(int fildes, const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

DRAND48(3P) POSIX Programmer’s Manual DRAND48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux. delim $$

NAME
drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, srand48 — generate uniformly
distributed pseudo-random numbers

SYNOPSIS
#include <stdlib.h>

double drand48(void);
double erand48(unsigned short xsubi[3]);
long jrand48(unsigned short xsubi[3]);
void lcong48(unsigned short param[7]);
long lrand48(void);
long mrand48(void);
long nrand48(unsigned short xsubi[3]);
unsigned short *seed48(unsigned short seed16v[3]);
void srand48(long seedval);

DESCRIPTION
This family of functions shall generate pseudo-random numbers using a linear congruential algorithm and
48-bit integer arithmetic.

The drand48() and erand48() functions shall return non-negative, double-precision, floating-point values,
uniformly distributed over the interval [0.0,1.0).

The lrand48() and nrand48() functions shall return non-negative, long integers, uniformly distributed over
the interval [0,2

31
).

The mrand48() and jrand48() functions shall return signed long integers uniformly distributed over the in-
terval [−2

31
,2

31
).

The srand48(), seed48(), and lcong48() functions are initialization entry points, one of which should be in-
voked before either drand48(), lrand48(), or mrand48() is called. (Although it is not recommended practice,
constant default initializer values shall be supplied automatically if drand48(), lrand48(), or mrand48() is
called without a prior call to an initialization entry point.) The erand48(), nrand48(), and jrand48() func-
tions do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, $X_ i" " ,$ according to the linear
congruential formula:

$X sub{n+1} " " = " " (aX_ n" "ˆ+ˆc) sub{roman mod " " m} " " " " " " " " " " " " " " " " n>= "
" 0$

The parameter $mˆ=ˆ2"ˆ" 48$; hence 48-bit integer arithmetic is performed. Unless lcong48() is invoked,
the multiplier value a and the addend value c are given by:

$a " " mark = " " roman "5DEECE66D"ˆsub 16 " " = " " roman 273673163155ˆsub 8$

$c " " lineup = " " roman Bˆsub 16 " " = " " roman 13ˆsub 8$

The value returned by any of the drand48(), erand48(), jrand48(), lrand48(), mrand48(), or nrand48() func-
tions is computed by first generating the next 48-bit $X_ i$ in the sequence. Then the appropriate number
of bits, according to the type of data item to be returned, are copied from the high-order (leftmost) bits of
$X_ i$ and transformed into the returned value.

The drand48(), lrand48(), and mrand48() functions store the last 48-bit $X_ i$ generated in an internal buf-
fer; that is why the application shall ensure that these are initialized prior to being invoked. The erand48(),
nrand48(), and jrand48() functions require the calling program to provide storage for the successive $X_ i$

IEEE/The Open Group 2017 1

DRAND48(3P) POSIX Programmer’s Manual DRAND48(3P)

values in the array specified as an argument when the functions are invoked. That is why these routines do
not have to be initialized; the calling program merely has to place the desired initial value of $X_ i$ into the
array and pass it as an argument. By using different arguments, erand48(), nrand48(), and jrand48() allow
separate modules of a large program to generate several independent streams of pseudo-random numbers;
that is, the sequence of numbers in each stream shall not depend upon how many times the routines are
called to generate numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of $X_ i$ to the low-order 32 bits contained in
its argument. The low-order 16 bits of $X_ i$ are set to the arbitrary value $roman 330E_ 16" " .$

The initializer function seed48() sets the value of $X_ i$ to the 48-bit value specified in the argument array.
The low-order 16 bits of $X_ i$ are set to the low-order 16 bits of seed16v[0]. The mid-order 16 bits of
$X_ i$ are set to the low-order 16 bits of seed16v[1]. The high-order 16 bits of $X_ i$ are set to the low-
order 16 bits of seed16v[2]. In addition, the previous value of $X_ i$ is copied into a 48-bit internal buffer,
used only by seed48(), and a pointer to this buffer is the value returned by seed48(). This returned pointer,
which can just be ignored if not needed, is useful if a program is to be restarted from a given point at some
future time—use the pointer to get at and store the last $X_ i$ value, and then use this value to reinitialize
via seed48() when the program is restarted.

The initializer function lcong48() allows the user to specify the initial $X_ i" " ,$ the multiplier value $a,$
and the addend value $c.$ Argument array elements param[0-2] specify $X_ i" " ,$ param[3-5] specify the
multiplier $a,$ and param[6] specifies the 16-bit addend $c.$ After lcong48() is called, a subsequent call to
either srand48() or seed48() shall restore the standard multiplier and addend values, a and c, specified
above.

The drand48(), lrand48(), and mrand48() functions need not be thread-safe.

RETURN VALUE
As described in the DESCRIPTION above.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions should be avoided whenever non-trivial requirements (including safety) have to be fulfilled.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
initstate(), rand()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

DUP(3P) POSIX Programmer’s Manual DUP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dup, dup2 — duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

DESCRIPTION
The dup() function provides an alternative interface to the service provided by fcntl() using the F_DUPFD
command. The call dup(fildes) shall be equivalent to:

fcntl(fildes, F_DUPFD, 0);

The dup2() function shall cause the file descriptor fildes2 to refer to the same open file description as the
file descriptor fildes and to share any locks, and shall return fildes2. If fildes2 is already a valid open file
descriptor, it shall be closed first, unless fildes is equal to fildes2 in which case dup2() shall return fildes2

without closing it. If the close operation fails to close fildes2, dup2() shall return −1 without changing the
open file description to which fildes2 refers. If fildes is not a valid file descriptor, dup2() shall return −1
and shall not close fildes2. If fildes2 is less than 0 or greater than or equal to {OPEN_MAX}, dup2() shall
return −1 with errno set to [EBADF].

Upon successful completion, if fildes is not equal to fildes2, the FD_CLOEXEC flag associated with
fildes2 shall be cleared. If fildes is equal to fildes2, the FD_CLOEXEC flag associated with fildes2 shall
not be changed.

If fildes refers to a typed memory object, the result of the dup2() function is unspecified.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, shall be returned; otherwise,
−1 shall be returned and errno set to indicate the error.

ERRORS
The dup() function shall fail if:

EBADF
The fildes argument is not a valid open file descriptor.

EMFILE
All file descriptors available to the process are currently open.

The dup2() function shall fail if:

EBADF
The fildes argument is not a valid open file descriptor or the argument fildes2 is negative or
greater than or equal to {OPEN_MAX}.

EINTR
The dup2() function was interrupted by a signal.

The dup2() function may fail if:

EIO An I/O error occurred while attempting to close fildes2.

The following sections are informative.

IEEE/The Open Group 2017 1

DUP(3P) POSIX Programmer’s Manual DUP(3P)

EXAMPLES
Redirecting Standard Output to a File S

The following example closes standard output for the current processes, re-assigns standard output to go to
the file referenced by pfd , and closes the original file descriptor to clean up.

#include <unistd.h>
...
int pfd;
...
close(1);
dup(pfd);
close(pfd);
...

Redirecting Error Messages
The following example redirects messages from stderr to stdout.

#include <unistd.h>
...
dup2(1, 2);
...

APPLICATION USAGE
Implementations may use file descriptors that must be inherited into child processes for the child process to
remain conforming, such as for message catalog or tracing purposes. Therefore, an application that calls
dup2() with an arbitrary integer for fildes2 risks non-conforming behavior, and dup2() can only portably be
used to overwrite file descriptor values that the application has obtained through explicit actions, or for the
three file descriptors corresponding to the standard file streams. In order to avoid a race condition of leaking
an unintended file descriptor into a child process, an application should consider opening all file descriptors
with the FD_CLOEXEC bit set unless the file descriptor is intended to be inherited across exec.

RATIONALE
The dup() function is redundant. Its services are also provided by the fcntl() function. It has been included
in this volume of POSIX.1-2017 primarily for historical reasons, since many existing applications use it.
On the other hand, the dup2() function provides unique services, as no other interface is able to atomically
replace an existing file descriptor.

The dup2() function is not marked obsolescent because it presents a type-safe version of functionality pro-
vided in a type-unsafe version by fcntl(). It is used in the POSIX Ada binding.

The dup2() function is not intended for use in critical regions as a synchronization mechanism.

In the description of [EBADF], the case of fildes being out of range is covered by the given case of fildes

not being valid. The descriptions for fildes and fildes2 are different because the only kind of invalidity that
is relevant for fildes2 is whether it is out of range; that is, it does not matter whether fildes2 refers to an
open file when the dup2() call is made.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fcntl(), open()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 2

DUP(3P) POSIX Programmer’s Manual DUP(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

DUPLOCALE(3P) POSIX Programmer’s Manual DUPLOCALE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
duplocale — duplicate a locale object

SYNOPSIS
#include <locale.h>

locale_t duplocale(locale_t locobj);

DESCRIPTION
The duplocale() function shall create a duplicate copy of the locale object referenced by the locobj argu-
ment.

If the locobj argument is LC_GLOBAL_LOCALE, duplocale() shall create a new locale object containing
a copy of the global locale determined by the setlocale() function.

The behavior is undefined if the locobj argument is not a valid locale object handle.

RETURN VALUE
Upon successful completion, the duplocale() function shall return a handle for a new locale object. Other-
wise, duplocale() shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The duplocale() function shall fail if:

ENOMEM
There is not enough memory available to create the locale object or load the locale data.

The following sections are informative.

EXAMPLES
Constructing an Altered Version of an Existing Locale Object

The following example shows a code fragment to create a slightly altered version of an existing locale ob-
ject. The function takes a locale object and a locale name and it replaces the LC_TIME category data in the
locale object with that from the named locale.

#include <locale.h>
...

locale_t
with_changed_lc_time (locale_t obj, const char *name)
{

locale_t retval = duplocale (obj);
if (retval != (locale_t) 0)
{

locale_t changed = newlocale (LC_TIME_MASK, name, retval);
if (changed == (locale_t) 0)

/* An error occurred. Free all allocated resources. */
freelocale (retval);

retval = changed;
}
return retval;

}

APPLICATION USAGE
The use of the duplocale() function is recommended for situations where a locale object is being used in
multiple places, and it is possible that the lifetime of the locale object might end before all uses are finished.

IEEE/The Open Group 2017 1

DUPLOCALE(3P) POSIX Programmer’s Manual DUPLOCALE(3P)

Another reason to duplicate a locale object is if a slightly modified form is needed. This can be achieved
by a call to newlocale() following the duplocale() call.

As with the newlocale() function, handles for locale objects created by the duplocale() function should be
released by a corresponding call to freelocale().

The duplocale() function can also be used in conjunction with uselocale((locale_t)0). This returns the lo-
cale in effect for the calling thread, but can have the value LC_GLOBAL_LOCALE. Passing
LC_GLOBAL_LOCALE to functions such as isalnum_l() results in undefined behavior, but applications
can convert it into a usable locale object by using duplocale().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
freelocale(), newlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENCRYPT(3P) POSIX Programmer’s Manual ENCRYPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
encrypt — encoding function (CRYPT)

SYNOPSIS
#include <unistd.h>

void encrypt(char block[64], int edflag);

DESCRIPTION
The encrypt() function shall provide access to an implementation-defined encoding algorithm. The key gen-
erated by setkey() is used to encrypt the string block with encrypt().

The block argument to encrypt() shall be an array of length 64 bytes containing only the bytes with values
of 0 and 1. The array is modified in place to a similar array using the key set by setkey(). If edflag is 0, the
argument is encoded. If edflag is 1, the argument may be decoded (see the APPLICATION USAGE sec-
tion); if the argument is not decoded, errno shall be set to [ENOSYS].

The encrypt() function shall not change the setting of errno if successful. An application wishing to check
for error situations should set errno to 0 before calling encrypt(). If errno is non-zero on return, an error
has occurred.

The encrypt() function need not be thread-safe.

RETURN VALUE
The encrypt() function shall not return a value.

ERRORS
The encrypt() function shall fail if:

ENOSYS
The functionality is not supported on this implementation.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Historical implementations of the encrypt() function used a rather primitive encoding algorithm.

In some environments, decoding might not be implemented. This is related to some Government restric-
tions on encryption and decryption routines. Historical practice has been to ship a different version of the
encryption library without the decryption feature in the routines supplied. Thus the exported version of en-

crypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
A future version of the standard may mark this interface as obsolete or remove it altogether.

SEE ALSO
crypt(), setkey()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 1

ENCRYPT(3P) POSIX Programmer’s Manual ENCRYPT(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENDGRENT(3P) POSIX Programmer’s Manual ENDGRENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
endgrent, getgrent, setgrent — group database entry functions

SYNOPSIS
#include <grp.h>

void endgrent(void);
struct group *getgrent(void);
void setgrent(void);

DESCRIPTION
The getgrent() function shall return a pointer to a structure containing the broken-out fields of an entry in
the group database. If the group database is not already open, getgrent() shall open it and return a pointer to
a group structure containing the first entry in the database. Thereafter, it shall return a pointer to a group
structure containing the next group structure in the group database, so successive calls may be used to
search the entire database.

An implementation that provides extended security controls may impose further implementation-defined re-
strictions on accessing the group database. In particular, the system may deny the existence of some or all
of the group database entries associated with groups other than those groups associated with the caller and
may omit users other than the caller from the list of members of groups in database entries that are re-
turned.

The setgrent() function shall rewind the group database so that the next getgrent() call returns the first entry,
allowing repeated searches.

The endgrent() function shall close the group database.

The setgrent() and endgrent() functions shall not change the setting of errno if successful.

On error, the setgrent() and endgrent() functions shall set errno to indicate the error.

Since no value is returned by the setgrent() and endgrent() functions, an application wishing to check for
error situations should set errno to 0, then call the function, then check errno.

These functions need not be thread-safe.

RETURN VALUE
On successful completion, getgrent() shall return a pointer to a group structure. On end-of-file, getgrent()
shall return a null pointer and shall not change the setting of errno. On error, getgrent() shall return a null
pointer and errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getgrgid(), get-

grnam(), or getgrent(). The returned pointer, and pointers within the structure, might also be invalidated if
the calling thread is terminated.

ERRORS
These functions may fail if:

EINTR
A signal was caught during the operation.

EIO An I/O error has occurred.

In addition, the getgrent() and setgrent() functions may fail if:

IEEE/The Open Group 2017 1

ENDGRENT(3P) POSIX Programmer’s Manual ENDGRENT(3P)

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum allowable number of files is currently open in the system.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid dependencies on
fields in the group database, whether the database is a single file, or where in the file system name space the
database resides. Applications should use getgrnam() and getgrgid() whenever possible because it avoids
these dependencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endpwent(), getgrgid(), getgrnam(), getlogin()

The Base Definitions volume of POSIX.1-2017, <grp.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENDHOSTENT(3P) POSIX Programmer’s Manual ENDHOSTENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
endhostent, gethostent, sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

void endhostent(void);
struct hostent *gethostent(void);
void sethostent(int stayopen);

DESCRIPTION
These functions shall retrieve information about hosts. This information is considered to be stored in a data-
base that can be accessed sequentially or randomly. The implementation of this database is unspecified.

Note: In many cases this database is implemented by the Domain Name System, as documented in
RFC 1034, RFC 1035, and RFC 1886.

The sethostent() function shall open a connection to the database and set the next entry for retrieval to the
first entry in the database. If the stayopen argument is non-zero, the connection shall not be closed by a call
to gethostent(), and the implementation may maintain an open file descriptor.

The gethostent() function shall read the next entry in the database, opening and closing a connection to the
database as necessary.

Entries shall be returned in hostent structures.

The endhostent() function shall close the connection to the database, releasing any open file descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, the gethostent() function shall return a pointer to a hostent structure if the re-
quested entry was found, and a null pointer if the end of the database was reached or the requested entry
was not found.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to gethostent().
The returned pointer, and pointers within the structure, might also be invalidated if the calling thread is ter-
minated.

ERRORS
No errors are defined for endhostent(), gethostent(), and sethostent().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endservent()

IEEE/The Open Group 2017 1

ENDHOSTENT(3P) POSIX Programmer’s Manual ENDHOSTENT(3P)

The Base Definitions volume of POSIX.1-2017, <netdb.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENDNETENT(3P) POSIX Programmer’s Manual ENDNETENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions

SYNOPSIS
#include <netdb.h>

void endnetent(void);
struct netent *getnetbyaddr(uint32_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void);
void setnetent(int stayopen);

DESCRIPTION
These functions shall retrieve information about networks. This information is considered to be stored in a
database that can be accessed sequentially or randomly. The implementation of this database is unspecified.

The setnetent() function shall open and rewind the database. If the stayopen argument is non-zero, the con-
nection to the net database shall not be closed after each call to getnetent() (either directly, or indirectly
through one of the other getnet*() functions), and the implementation may maintain an open file descriptor
to the database.

The getnetent() function shall read the next entry of the database, opening and closing a connection to the
database as necessary.

The getnetbyaddr() function shall search the database from the beginning, and find the first entry for which
the address family specified by type matches the n_addrtype member and the network number net matches
the n_net member, opening and closing a connection to the database as necessary. The net argument shall
be the network number in host byte order.

The getnetbyname() function shall search the database from the beginning and find the first entry for which
the network name specified by name matches the n_name member, opening and closing a connection to the
database as necessary.

The getnetbyaddr(), getnetbyname(), and getnetent() functions shall each return a pointer to a netent struc-
ture, the members of which shall contain the fields of an entry in the network database.

The endnetent() function shall close the database, releasing any open file descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getnetbyaddr(), getnetbyname(), and getnetent() shall return a pointer to a ne-
tent structure if the requested entry was found, and a null pointer if the end of the database was reached or
the requested entry was not found. Otherwise, a null pointer shall be returned.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getnetbyaddr(),
getnetbyname(), or getnetent(). The returned pointer, and pointers within the structure, might also be invali-
dated if the calling thread is terminated.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

ENDNETENT(3P) POSIX Programmer’s Manual ENDNETENT(3P)

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <netdb.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENDPROT OENT(3P) POSIX Programmer’s Manual ENDPROT OENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
endprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent — network protocol database
functions

SYNOPSIS
#include <netdb.h>

void endprotoent(void);
struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);
void setprotoent(int stayopen);

DESCRIPTION
These functions shall retrieve information about protocols. This information is considered to be stored in a
database that can be accessed sequentially or randomly. The implementation of this database is unspecified.

The setprotoent() function shall open a connection to the database, and set the next entry to the first entry. If
the stayopen argument is non-zero, the connection to the network protocol database shall not be closed after
each call to getprotoent() (either directly, or indirectly through one of the other getproto*() functions), and
the implementation may maintain an open file descriptor for the database.

The getprotobyname() function shall search the database from the beginning and find the first entry for
which the protocol name specified by name matches the p_name member, opening and closing a connec-
tion to the database as necessary.

The getprotobynumber() function shall search the database from the beginning and find the first entry for
which the protocol number specified by proto matches the p_proto member, opening and closing a connec-
tion to the database as necessary.

The getprotoent() function shall read the next entry of the database, opening and closing a connection to the
database as necessary.

The getprotobyname(), getprotobynumber(), and getprotoent() functions shall each return a pointer to a
protoent structure, the members of which shall contain the fields of an entry in the network protocol data-
base.

The endprotoent() function shall close the connection to the database, releasing any open file descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getprotobyname(), getprotobynumber(), and getprotoent() return a pointer to a
protoent structure if the requested entry was found, and a null pointer if the end of the database was
reached or the requested entry was not found. Otherwise, a null pointer is returned.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getprotoby-

name(), getprotobynumber(), or getprotoent(). The returned pointer, and pointers within the structure,
might also be invalidated if the calling thread is terminated.

ERRORS
No errors are defined.

The following sections are informative.

IEEE/The Open Group 2017 1

ENDPROT OENT(3P) POSIX Programmer’s Manual ENDPROT OENT(3P)

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <netdb.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENDPWENT(3P) POSIX Programmer’s Manual ENDPWENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
endpwent, getpwent, setpwent — user database functions

SYNOPSIS
#include <pwd.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

DESCRIPTION
These functions shall retrieve information about users.

The getpwent() function shall return a pointer to a structure containing the broken-out fields of an entry in
the user database. Each entry in the user database contains a passwd structure. If the user database is not al-
ready open, getpwent() shall open it and return a pointer to a passwd structure containing the first entry in
the database. Thereafter, it shall return a pointer to a passwd structure containing the next entry in the user
database. Successive calls can be used to search the entire user database.

If an end-of-file or an error is encountered on reading, getpwent() shall return a null pointer.

An implementation that provides extended security controls may impose further implementation-defined re-
strictions on accessing the user database. In particular, the system may deny the existence of some or all of
the user database entries associated with users other than the caller.

The setpwent() function shall rewind the user database so that the next getpwent() call returns the first entry,
allowing repeated searches.

The endpwent() function shall close the user database.

The setpwent() and endpwent() functions shall not change the setting of errno if successful.

On error, the setpwent() and endpwent() functions shall set errno to indicate the error.

Since no value is returned by the setpwent() and endpwent() functions, an application wishing to check for
error situations should set errno to 0, then call the function, then check errno.

These functions need not be thread-safe.

RETURN VALUE
On successful completion, getpwent() shall return a pointer to a passwd structure. On end-of-file, getp-

went() shall return a null pointer and shall not change the setting of errno. On error, getpwent() shall return
a null pointer and errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getpwuid(),
getpwnam(), or getpwent(). The returned pointer, and pointers within the structure, might also be invali-
dated if the calling thread is terminated.

ERRORS
These functions may fail if:

EINTR
A signal was caught during the operation.

EIO An I/O error has occurred.

In addition, getpwent() and setpwent() may fail if:

IEEE/The Open Group 2017 1

ENDPWENT(3P) POSIX Programmer’s Manual ENDPWENT(3P)

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum allowable number of files is currently open in the system.

The following sections are informative.

EXAMPLES
Searching the User Database

The following example uses the getpwent() function to get successive entries in the user database, returning
a pointer to a passwd structure that contains information about each user. The call to endpwent() closes the
user database and cleans up.

#include <pwd.h>
#include <stdio.h>

void printname(uid_t uid)
{

struct passwd *pwd;

setpwent();
while((pwd = getpwent()) != NULL) {

if (pwd->pw_uid == uid) {
printf("name=%s\n",pwd->pw_name);
break;

}
}
endpwent();

}

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid dependencies on
fields in the password database, whether the database is a single file, or where in the file system name space
the database resides. Applications should use getpwuid() whenever possible because it avoids these depen-
dencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getlogin(), getpwnam(), getpwuid()

The Base Definitions volume of POSIX.1-2017, <pwd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENDSERVENT(3P) POSIX Programmer’s Manual ENDSERVENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
endservent, getservbyname, getservbyport, getservent, setservent — network services database functions

SYNOPSIS
#include <netdb.h>

void endservent(void);
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);
void setservent(int stayopen);

DESCRIPTION
These functions shall retrieve information about network services. This information is considered to be
stored in a database that can be accessed sequentially or randomly. The implementation of this database is
unspecified.

The setservent() function shall open a connection to the database, and set the next entry to the first entry. If
the stayopen argument is non-zero, the net database shall not be closed after each call to the getservent()
function (either directly, or indirectly through one of the other getserv*() functions), and the implementa-
tion may maintain an open file descriptor for the database.

The getservent() function shall read the next entry of the database, opening and closing a connection to the
database as necessary.

The getservbyname() function shall search the database from the beginning and find the first entry for
which the service name specified by name matches the s_name member and the protocol name specified by
proto matches the s_proto member, opening and closing a connection to the database as necessary. If proto

is a null pointer, any value of the s_proto member shall be matched.

The getservbyport() function shall search the database from the beginning and find the first entry for which
the port specified by port matches the s_port member and the protocol name specified by proto matches
the s_proto member, opening and closing a connection to the database as necessary. If proto is a null
pointer, any value of the s_proto member shall be matched. The port argument shall be a value obtained by
converting a uint16_t in network byte order to int.

The getservbyname(), getservbyport(), and getservent() functions shall each return a pointer to a servent
structure, the members of which shall contain the fields of an entry in the network services database.

The endservent() function shall close the database, releasing any open file descriptor.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getservbyname(), getservbyport(), and getservent() return a pointer to a ser-
vent structure if the requested entry was found, and a null pointer if the end of the database was reached or
the requested entry was not found. Otherwise, a null pointer is returned.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getservby-

name(), getservbyport(), or getservent(). The returned pointer, and pointers within the structure, might also
be invalidated if the calling thread is terminated.

ERRORS
No errors are defined.

The following sections are informative.

IEEE/The Open Group 2017 1

ENDSERVENT(3P) POSIX Programmer’s Manual ENDSERVENT(3P)

EXAMPLES
None.

APPLICATION USAGE
The port argument of getservbyport() need not be compatible with the port values of all address families.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endprotoent(), htonl(), inet_addr()

The Base Definitions volume of POSIX.1-2017, <netdb.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENDUTXENT(3P) POSIX Programmer’s Manual ENDUTXENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
endutxent, getutxent, getutxid, getutxline, pututxline, setutxent — user accounting database functions

SYNOPSIS
#include <utmpx.h>

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *id);
struct utmpx *getutxline(const struct utmpx *line);
struct utmpx *pututxline(const struct utmpx *utmpx);
void setutxent(void);

DESCRIPTION
These functions shall provide access to the user accounting database.

The getutxent() function shall read the next entry from the user accounting database. If the database is not
already open, it shall open it. If it reaches the end of the database, it shall fail.

The getutxid() function shall search forward from the current point in the database. If the ut_type value of
the utmpx structure pointed to by id is BOOT_TIME, OLD_TIME, or NEW_TIME, then it shall stop when
it finds an entry with a matching ut_type value. If the ut_type value is INIT_PROCESS, LO-
GIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then it shall stop when it finds an entry whose
type is one of these four and whose ut_id member matches the ut_id member of the utmpx structure
pointed to by id . If the end of the database is reached without a match, getutxid() shall fail.

The getutxline() function shall search forward from the current point in the database until it finds an entry
of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line value matching that in the
utmpx structure pointed to by line. If the end of the database is reached without a match, getutxline() shall
fail.

The getutxid() or getutxline() function may cache data. For this reason, to use getutxline() to search for mul-
tiple occurrences, the application shall zero out the static data after each success, or getutxline() may return
a pointer to the same utmpx structure.

There is one exception to the rule about clearing the structure before further reads are done. The implicit
read done by pututxline() (if it finds that it is not already at the correct place in the user accounting data-
base) shall not modify the static structure returned by getutxent(), getutxid(), or getutxline(), if the applica-
tion has modified this structure and passed the pointer back to pututxline().

For all entries that match a request, the ut_type member indicates the type of the entry. Other members of
the entry shall contain meaningful data based on the value of the ut_type member as follows:

box center tab(!); cB | cB l | l. ut_type Member!Other Members with Meaningful Data _ EMPTY!No oth-
ers BOOT_TIME!ut_tv OLD_TIME!ut_tv NEW_TIME!ut_tv USER_PROCESS!ut_id, ut_user (login
name of the user), ut_line, ut_pid, ut_tv INIT_PROCESS!ut_id, ut_pid, ut_tv LOGIN_PROCESS!T{ ut_id ,
ut_user (implementation-defined name of the login process), ut_line, ut_pid , ut_tv T}
DEAD_PROCESS!ut_id, ut_pid, ut_tv

An implementation that provides extended security controls may impose implementation-defined restric-
tions on accessing the user accounting database. In particular, the system may deny the existence of some
or all of the user accounting database entries associated with users other than the caller.

If the process has appropriate privileges, the pututxline() function shall write out the structure into the user
accounting database. It shall search for a record as if by getutxid() that satisfies the request. If this search
succeeds, then the entry shall be replaced. Otherwise, a new entry shall be made at the end of the user ac-
counting database.

IEEE/The Open Group 2017 1

ENDUTXENT(3P) POSIX Programmer’s Manual ENDUTXENT(3P)

The endutxent() function shall close the user accounting database.

The setutxent() function shall reset the input to the beginning of the database. This should be done before
each search for a new entry if it is desired that the entire database be examined.

These functions need not be thread-safe.

RETURN VALUE
Upon successful completion, getutxent(), getutxid(), and getutxline() shall return a pointer to a utmpx struc-
ture containing a copy of the requested entry in the user accounting database. Otherwise, a null pointer shall
be returned.

The return value may point to a static area which is overwritten by a subsequent call to getutxid() or getutx-

line().

Upon successful completion, pututxline() shall return a pointer to a utmpx structure containing a copy of
the entry added to the user accounting database. Otherwise, a null pointer shall be returned.

The endutxent() and setutxent() functions shall not return a value.

ERRORS
No errors are defined for the endutxent(), getutxent(), getutxid(), getutxline(), and setutxent() functions.

The pututxline() function may fail if:

EPERM
The process does not have appropriate privileges.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The sizes of the arrays in the structure can be found using the sizeof operator.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <utmpx.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ENVIRON(3P) POSIX Programmer’s Manual ENVIRON(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
environ — array of character pointers to the environment strings

SYNOPSIS
extern char **environ;

DESCRIPTION
Refer to exec and the Base Definitions volume of POSIX.1-2017, Chapter 8, Environment Variables.

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ERAND48(3P) POSIX Programmer’s Manual ERAND48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
erand48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS
#include <stdlib.h>

double erand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ERF(3P) POSIX Programmer’s Manual ERF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux. delim $$

NAME
erf, erff, erfl — error functions

SYNOPSIS
#include <math.h>

double erf(double x);
float erff(float x);
long double erfl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the error function of their argument x, defined as:

${2 over sqrt pi} int from 0 to x e"ˆ" " "{- t"ˆ" 2" "} dt$

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the error function.

If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is ±Inf, ±1 shall be returned.

If the correct value would cause underflow, a range error may occur, and erf(), erff(), and erfl() shall return
an implementation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, re-
spectively.

If the IEC 60559 Floating-Point option is supported, 2 * x/sqrt(π) should be returned.

ERRORS
These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
Computing the Probability for a Normal Variate

This example shows how to use erf() to compute the probability that a normal variate assumes a value in the
range [x1,x2] with x1≤x2.

This example uses the constant M_SQRT1_2 which is part of the XSI option.

#include <math.h>

double

IEEE/The Open Group 2017 1

ERF(3P) POSIX Programmer’s Manual ERF(3P)

Phi(const double x1, const double x2)
{

return (erf(x2*M_SQRT1_2) - erf(x1*M_SQRT1_2)) / 2;
}

APPLICATION USAGE
Underflow occurs when |x| < DBL_MIN * (sqrt(π)/2).

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
erfc(), feclearexcept(), fetestexcept(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ERFC(3P) POSIX Programmer’s Manual ERFC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
erfc, erfcf, erfcl — complementary error functions

SYNOPSIS
#include <math.h>

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the complementary error function 1.0 − erf (x).

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the complementary error function.

If the correct value would cause underflow, and is not representable, a range error may occur, and erfc(), er-

fcf(), and erfcl() shall return 0.0, or (if the IEC 60559 Floating-Point option is not supported) an implemen-
tation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

If x is NaN, a NaN shall be returned.

If x is ±0, +1 shall be returned.

If x is −Inf, +2 shall be returned.

If x is +Inf, +0 shall be returned.

If the correct value would cause underflow and is representable, a range error may occur and the correct
value shall be returned.

ERRORS
These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The erfc() function is provided because of the extreme loss of relative accuracy if erf (x) is called for large
x and the result subtracted from 1.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

IEEE/The Open Group 2017 1

ERFC(3P) POSIX Programmer’s Manual ERFC(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
erf(), feclearexcept(), fetestexcept(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ERFF(3P) POSIX Programmer’s Manual ERFF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
erff, erfl — error functions

SYNOPSIS
#include <math.h>

float erff(float x);
long double erfl(long double x);

DESCRIPTION
Refer to erf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ERRNO(3P) POSIX Programmer’s Manual ERRNO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
errno — error return value

SYNOPSIS
#include <errno.h>

DESCRIPTION
The lvalue errno is used by many functions to return error values.

Many functions provide an error number in errno, which has type int and is defined in <errno.h>. The
value of errno shall be defined only after a call to a function for which it is explicitly stated to be set and
until it is changed by the next function call or if the application assigns it a value. The value of errno should
only be examined when it is indicated to be valid by a function’s return value. Applications shall obtain the
definition of errno by the inclusion of <errno.h>. No function in this volume of POSIX.1-2017 shall set
errno to 0. The setting of errno after a successful call to a function is unspecified unless the description of
that function specifies that errno shall not be modified.

It is unspecified whether errno is a macro or an identifier declared with external linkage. If a macro defini-
tion is suppressed in order to access an actual object, or a program defines an identifier with the name er-

rno, the behavior is undefined.

The symbolic values stored in errno are documented in the ERRORS sections on all relevant pages.

RETURN VALUE
None.

ERRORS
None.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Previously both POSIX and X/Open documents were more restrictive than the ISO C standard in that they
required errno to be defined as an external variable, whereas the ISO C standard required only that errno be
defined as a modifiable lvalue with type int.

An application that needs to examine the value of errno to determine the error should set it to 0 before a
function call, then inspect it before a subsequent function call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.3, Error Numbers

The Base Definitions volume of POSIX.1-2017, <errno.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ERRNO(3P) POSIX Programmer’s Manual ERRNO(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
environ, execl, execle, execlp, execv, execve, execvp, fexecve — execute a file

SYNOPSIS
#include <unistd.h>

extern char **environ;
int execl(const char *path, const char *arg0, ... /*, (char *)0 */);
int execle(const char *path, const char *arg0, ... /*,

(char *)0, char *const envp[]*/);
int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);
int execv(const char *path, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);
int execvp(const char *file, char *const argv[]);
int fexecve(int fd, char *const argv[], char *const envp[]);

DESCRIPTION
The exec family of functions shall replace the current process image with a new process image. The new
image shall be constructed from a regular, executable file called the new process image file. There shall be
no return from a successful exec, because the calling process image is overlaid by the new process image.

The fexecve() function shall be equivalent to the execve() function except that the file to be executed is de-
termined by the file descriptor fd instead of a pathname. The file offset of fd is ignored.

When a C-language program is executed as a result of a call to one of the exec family of functions, it shall
be entered as a C-language function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments themselves.
In addition, the following variable, which must be declared by the user if it is to be used directly:

extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The argv and environ

arrays are each terminated by a null pointer. The null pointer terminating the argv array is not counted in
argc.

Applications can change the entire environment in a single operation by assigning the environ variable to
point to an array of character pointers to the new environment strings. After assigning a new value to envi-

ron, applications should not rely on the new environment strings remaining part of the environment, as a
call to getenv(), putenv(), setenv(), unsetenv(), or any function that is dependent on an environment variable
may, on noticing that environ has changed, copy the environment strings to a new array and assign environ

to point to it.

Any application that directly modifies the pointers to which the environ variable points has undefined be-
havior.

Conforming multi-threaded applications shall not use the environ variable to access or modify any environ-
ment variable while any other thread is concurrently modifying any environment variable. A call to any
function dependent on any environment variable shall be considered a use of the environ variable to access
that environment variable.

The arguments specified by a program with one of the exec functions shall be passed on to the new process
image in the corresponding main() arguments.

IEEE/The Open Group 2017 1

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

The argument path points to a pathname that identifies the new process image file.

The argument file is used to construct a pathname that identifies the new process image file. If the file argu-
ment contains a <slash> character, the file argument shall be used as the pathname for this file. Otherwise,
the path prefix for this file is obtained by a search of the directories passed as the environment variable
PA TH (see the Base Definitions volume of POSIX.1-2017, Chapter 8, Environment Variables). If this envi-
ronment variable is not present, the results of the search are implementation-defined.

There are two distinct ways in which the contents of the process image file may cause the execution to fail,
distinguished by the setting of errno to either [ENOEXEC] or [EINVAL] (see the ERRORS section). In
the cases where the other members of the exec family of functions would fail and set errno to
[ENOEXEC], the execlp() and execvp() functions shall execute a command interpreter and the environ-
ment of the executed command shall be as if the process invoked the sh utility using execl() as follows:

execl(<shell path>, arg0, file, arg1, ..., (char *)0);

where <shell path> is an unspecified pathname for the sh utility, file is the process image file, and for ex-

ecvp(), where arg0, arg1, and so on correspond to the values passed to execvp() in argv[0], argv[1], and so
on.

The arguments represented by arg0, . . . are pointers to null-terminated character strings. These strings shall
constitute the argument list available to the new process image. The list is terminated by a null pointer. The
argument arg0 should point to a filename string that is associated with the process being started by one of
the exec functions.

The argument argv is an array of character pointers to null-terminated strings. The application shall ensure
that the last member of this array is a null pointer. These strings shall constitute the argument list available
to the new process image. The value in argv[0] should point to a filename string that is associated with the
process being started by one of the exec functions.

The argument envp is an array of character pointers to null-terminated strings. These strings shall constitute
the environment for the new process image. The envp array is terminated by a null pointer.

For those forms not containing an envp pointer (execl(), execv(), execlp(), and execvp()), the environment
for the new process image shall be taken from the external variable environ in the calling process.

The number of bytes available for the new process’ combined argument and environment lists is
{ARG_MAX}. It is implementation-defined whether null terminators, pointers, and/or any alignment bytes
are included in this total.

File descriptors open in the calling process image shall remain open in the new process image, except for
those whose close-on-exec flag FD_CLOEXEC is set. For those file descriptors that remain open, all at-
tributes of the open file description remain unchanged. For any file descriptor that is closed for this reason,
file locks are removed as a result of the close as described in close(). Locks that are not removed by closing
of file descriptors remain unchanged.

If file descriptor 0, 1, or 2 would otherwise be closed after a successful call to one of the exec family of
functions, implementations may open an unspecified file for the file descriptor in the new process image. If
a standard utility or a conforming application is executed with file descriptor 0 not open for reading or with
file descriptor 1 or 2 not open for writing, the environment in which the utility or application is executed
shall be deemed non-conforming, and consequently the utility or application might not behave as described
in this standard.

Directory streams open in the calling process image shall be closed in the new process image.

The state of the floating-point environment in the initial thread of the new process image shall be set to the
default.

The state of conversion descriptors and message catalog descriptors in the new process image is undefined.

For the new process image, the equivalent of:

IEEE/The Open Group 2017 2

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

setlocale(LC_ALL, "C")

shall be executed at start-up.

Signals set to the default action (SIG_DFL) in the calling process image shall be set to the default action in
the new process image. Except for SIGCHLD, signals set to be ignored (SIG_IGN) by the calling process
image shall be set to be ignored by the new process image. Signals set to be caught by the calling process
image shall be set to the default action in the new process image (see <signal.h>).

If the SIGCHLD signal is set to be ignored by the calling process image, it is unspecified whether the
SIGCHLD signal is set to be ignored or to the default action in the new process image.

After a successful call to any of the exec functions, alternate signal stacks are not preserved and the
SA_ONSTACK flag shall be cleared for all signals.

After a successful call to any of the exec functions, any functions previously registered by the atexit() or
pthread_atfork() functions are no longer registered.

If the ST_NOSUID bit is set for the file system containing the new process image file, then the effective
user ID, effective group ID, saved set-user-ID, and saved set-group-ID are unchanged in the new process
image. Otherwise, if the set-user-ID mode bit of the new process image file is set, the effective user ID of
the new process image shall be set to the user ID of the new process image file. Similarly, if the set-group-
ID mode bit of the new process image file is set, the effective group ID of the new process image shall be
set to the group ID of the new process image file. The real user ID, real group ID, and supplementary group
IDs of the new process image shall remain the same as those of the calling process image. The effective
user ID and effective group ID of the new process image shall be saved (as the saved set-user-ID and the
saved set-group-ID) for use by setuid().

Any shared memory segments attached to the calling process image shall not be attached to the new process
image.

Any named semaphores open in the calling process shall be closed as if by appropriate calls to sem_close().

Any blocks of typed memory that were mapped in the calling process are unmapped, as if munmap() was
implicitly called to unmap them.

Memory locks established by the calling process via calls to mlockall() or mlock() shall be removed. If
locked pages in the address space of the calling process are also mapped into the address spaces of other
processes and are locked by those processes, the locks established by the other processes shall be unaf-
fected by the call by this process to the exec function. If the exec function fails, the effect on memory locks
is unspecified.

Memory mappings created in the process are unmapped before the address space is rebuilt for the new
process image.

When the calling process image does not use the SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC
scheduling policies, the scheduling policy and parameters of the new process image and the initial thread in
that new process image are implementation-defined.

When the calling process image uses the SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC scheduling
policies, the process policy and scheduling parameter settings shall not be changed by a call to an exec

function. The initial thread in the new process image shall inherit the process scheduling policy and param-
eters. It shall have the default system contention scope, but shall inherit its allocation domain from the call-
ing process image.

Per-process timers created by the calling process shall be deleted before replacing the current process im-
age with the new process image.

All open message queue descriptors in the calling process shall be closed, as described in mq_close().

Any outstanding asynchronous I/O operations may be canceled. Those asynchronous I/O operations that are
not canceled shall complete as if the exec function had not yet occurred, but any associated signal notifica-
tions shall be suppressed. It is unspecified whether the exec function itself blocks awaiting such I/O com-
pletion. In no event, however, shall the new process image created by the exec function be affected by the

IEEE/The Open Group 2017 3

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

presence of outstanding asynchronous I/O operations at the time the exec function is called. Whether any
I/O is canceled, and which I/O may be canceled upon exec, is implementation-defined.

The new process image shall inherit the CPU-time clock of the calling process image. This inheritance
means that the process CPU-time clock of the process being exec-ed shall not be reinitialized or altered as a
result of the exec function other than to reflect the time spent by the process executing the exec function it-
self.

The initial value of the CPU-time clock of the initial thread of the new process image shall be set to zero.

If the calling process is being traced, the new process image shall continue to be traced into the same trace
stream as the original process image, but the new process image shall not inherit the mapping of trace event
names to trace event type identifiers that was defined by calls to the posix_trace_eventid_open() or the
posix_trace_trid_eventid_open() functions in the calling process image.

If the calling process is a trace controller process, any trace streams that were created by the calling process
shall be shut down as described in the posix_trace_shutdown() function.

The thread ID of the initial thread in the new process image is unspecified.

The size and location of the stack on which the initial thread in the new process image runs is unspecified.

The initial thread in the new process image shall have its cancellation type set to PTHREAD_CAN-
CEL_DEFERRED and its cancellation state set to PTHREAD_CANCEL_ENABLED.

The initial thread in the new process image shall have all thread-specific data values set to NULL and all
thread-specific data keys shall be removed by the call to exec without running destructors.

The initial thread in the new process image shall be joinable, as if created with the detachstate attribute set
to PTHREAD_CREATE_JOINABLE.

The new process shall inherit at least the following attributes from the calling process image:

* Nice value (see nice())

* semadj values (see semop())

* Process ID

* Parent process ID

* Process group ID

* Session membership

* Real user ID

* Real group ID

* Supplementary group IDs

* Time left until an alarm clock signal (see alarm())

* Current working directory

* Root directory

* File mode creation mask (see umask())

* File size limit (see getrlimit() and setrlimit())

* Process signal mask (see pthread_sigmask())

* Pending signal (see sigpending())

* tms_utime, tms_stime, tms_cutime, and tms_cstime (see times())

* Resource limits

* Controlling terminal

IEEE/The Open Group 2017 4

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

* Interval timers

The initial thread of the new process shall inherit at least the following attributes from the calling thread:

* Signal mask (see sigprocmask() and pthread_sigmask())

* Pending signals (see sigpending())

All other process attributes defined in this volume of POSIX.1-2017 shall be inherited in the new process
image from the old process image. All other thread attributes defined in this volume of POSIX.1-2017 shall
be inherited in the initial thread in the new process image from the calling thread in the old process image.
The inheritance of process or thread attributes not defined by this volume of POSIX.1-2017 is implementa-
tion-defined.

A call to any exec function from a process with more than one thread shall result in all threads being termi-
nated and the new executable image being loaded and executed. No destructor functions or cleanup han-
dlers shall be called.

Upon successful completion, the exec functions shall mark for update the last data access timestamp of the
file. If an exec function failed but was able to locate the process image file, whether the last data access
timestamp is marked for update is unspecified. Should the exec function succeed, the process image file
shall be considered to have been opened with open(). The corresponding close() shall be considered to oc-
cur at a time after this open, but before process termination or successful completion of a subsequent call to
one of the exec functions, posix_spawn(), or posix_spawnp(). The argv[] and envp[] arrays of pointers and
the strings to which those arrays point shall not be modified by a call to one of the exec functions, except as
a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the process’ corresponding hard
and soft limits.

RETURN VALUE
If one of the exec functions returns to the calling process image, an error has occurred; the return value
shall be −1, and errno shall be set to indicate the error.

ERRORS
The exec functions shall fail if:

E2BIG The number of bytes used by the new process image’s argument list and environment list is greater
than the system-imposed limit of {ARG_MAX} bytes.

EACCES
The new process image file is not a regular file and the implementation does not support execution
of files of its type.

EINVAL
The new process image file has appropriate privileges and has a recognized executable binary for-
mat, but the system does not support execution of a file with this format.

The exec functions, except for fexecve(), shall fail if:

EACCES
Search permission is denied for a directory listed in the new process image file’s path prefix, or the
new process image file denies execution permission.

ELOOP
A loop exists in symbolic links encountered during resolution of the path or file argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path or file does not name an existing file or path or file is an empty string.

IEEE/The Open Group 2017 5

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

ENOTDIR
A component of the new process image file’s path prefix names an existing file that is neither a di-
rectory nor a symbolic link to a directory, or the new process image file’s pathname contains at
least one non-<slash> character and ends with one or more trailing <slash> characters and the last
pathname component names an existing file that is neither a directory nor a symbolic link to a di-
rectory.

The exec functions, except for execlp() and execvp(), shall fail if:

ENOEXEC
The new process image file has the appropriate access permission but has an unrecognized format.

The fexecve() function shall fail if:

EBADF
The fd argument is not a valid file descriptor open for executing.

The exec functions may fail if:

ENOMEM
The new process image requires more memory than is allowed by the hardware or system-imposed
memory management constraints.

The exec functions, except for fexecve(), may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path or
file argument.

ENAMETOOLONG
The length of the path argument or the length of the pathname constructed from the file argument
exceeds {PATH_MAX}, or pathname resolution of a symbolic link produced an intermediate re-
sult with a length that exceeds {PATH_MAX}.

ETXTBSY
The new process image file is a pure procedure (shared text) file that is currently open for writing
by some process.

The following sections are informative.

EXAMPLES
Using execl()

The following example executes the ls command, specifying the pathname of the executable (/bin/ls) and
using arguments supplied directly to the command to produce single-column output.

#include <unistd.h>

int ret;
...
ret = execl ("/bin/ls", "ls", "-1", (char *)0);

Using execle()
The following example is similar to Using execl(). In addition, it specifies the environment for the new
process image using the env argument.

#include <unistd.h>

int ret;
char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };
...
ret = execle ("/bin/ls", "ls", "-l", (char *)0, env);

IEEE/The Open Group 2017 6

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

Using execlp()
The following example searches for the location of the ls command among the directories specified by the
PA TH environment variable.

#include <unistd.h>

int ret;
...
ret = execlp ("ls", "ls", "-l", (char *)0);

Using execv()
The following example passes arguments to the ls command in the cmd array.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
...
ret = execv ("/bin/ls", cmd);

Using execve()
The following example passes arguments to the ls command in the cmd array, and specifies the environment
for the new process image using the env argument.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };
...
ret = execve ("/bin/ls", cmd, env);

Using execvp()
The following example searches for the location of the ls command among the directories specified by the
PA TH environment variable, and passes arguments to the ls command in the cmd array.

#include <unistd.h>

int ret;
char *cmd[] = { "ls", "-l", (char *)0 };
...
ret = execvp ("ls", cmd);

APPLICATION USAGE
As the state of conversion descriptors and message catalog descriptors in the new process image is unde-
fined, conforming applications should not rely on their use and should close them prior to calling one of the
exec functions.

Applications that require other than the default POSIX locale as the global locale in the new process image
should call setlocale() with the appropriate parameters.

When assigning a new value to the environ variable, applications should ensure that the environment to
which it will point contains at least the following:

1. Any implementation-defined variables required by the implementation to provide a conforming envi-
ronment. See the _CS_V7_ENV entry in <unistd.h> and confstr() for details.

IEEE/The Open Group 2017 7

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

2. A value for PA TH which finds conforming versions of all standard utilities before any other versions.

The same constraint applies to the envp array passed to execle() or execve(), in order to ensure that the new
process image is invoked in a conforming environment.

Applications should not execute programs with file descriptor 0 not open for reading or with file descriptor
1 or 2 not open for writing, as this might cause the executed program to misbehave. In order not to pass on
these file descriptors to an executed program, applications should not just close them but should reopen
them on, for example, /dev/null. Some implementations may reopen them automatically, but applications
should not rely on this being done.

If an application wants to perform a checksum test of the file being executed before executing it, the file
will need to be opened with read permission to perform the checksum test.

Since execute permission is checked by fexecve(), the file description fd need not have been opened with
the O_EXEC flag. However, if the file to be executed denies read and write permission for the process pre-
paring to do the exec, the only way to provide the fd to fexecve() will be to use the O_EXEC flag when
opening fd . In this case, the application will not be able to perform a checksum test since it will not be
able to read the contents of the file.

Note that when a file descriptor is opened with O_RDONLY, O_RDWR, or O_WRONLY mode, the file de-
scriptor can be used to read, read and write, or write the file, respectively, even if the mode of the file
changes after the file was opened. Using the O_EXEC open mode is different; fexecve() will ignore the
mode that was used when the file descriptor was opened and the exec will fail if the mode of the file associ-
ated with fd does not grant execute permission to the calling process at the time fexecve() is called.

RATIONALE
Early proposals required that the value of argc passed to main() be ‘‘one or greater’’. This was driven by
the same requirement in drafts of the ISO C standard. In fact, historical implementations have passed a
value of zero when no arguments are supplied to the caller of the exec functions. This requirement was re-
moved from the ISO C standard and subsequently removed from this volume of POSIX.1-2017 as well. The
wording, in particular the use of the word should, requires a Strictly Conforming POSIX Application to
pass at least one argument to the exec function, thus guaranteeing that argc be one or greater when invoked
by such an application. In fact, this is good practice, since many existing applications reference argv[0]
without first checking the value of argc.

The requirement on a Strictly Conforming POSIX Application also states that the value passed as the first
argument be a filename string associated with the process being started. Although some existing applica-
tions pass a pathname rather than a filename string in some circumstances, a filename string is more gener-
ally useful, since the common usage of argv[0] is in printing diagnostics. In some cases the filename passed
is not the actual filename of the file; for example, many implementations of the login utility use a conven-
tion of prefixing a <hyphen-minus> (’-’) to the actual filename, which indicates to the command interpreter
being invoked that it is a ‘‘login shell’’.

Also, note that the test and [utilities require specific strings for the argv[0] argument to have deterministic
behavior across all implementations.

Historically, there have been two ways that implementations can exec shell scripts.

One common historical implementation is that the execl(), execv(), execle(), and execve() functions return
an [ENOEXEC] error for any file not recognizable as executable, including a shell script. When the exe-

clp() and execvp() functions encounter such a file, they assume the file to be a shell script and invoke a
known command interpreter to interpret such files. This is now required by POSIX.1-2008. These imple-
mentations of execvp() and execlp() only give the [ENOEXEC] error in the rare case of a problem with the
command interpreter’s executable file. Because of these implementations, the [ENOEXEC] error is not
mentioned for execlp() or execvp(), although implementations can still give it.

Another way that some historical implementations handle shell scripts is by recognizing the first two bytes
of the file as the character string "#!" and using the remainder of the first line of the file as the name of the
command interpreter to execute.

One potential source of confusion noted by the standard developers is over how the contents of a process

IEEE/The Open Group 2017 8

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

image file affect the behavior of the exec family of functions. The following is a description of the actions
taken:

1. If the process image file is a valid executable (in a format that is executable and valid and having ap-
propriate privileges) for this system, then the system executes the file.

2. If the process image file has appropriate privileges and is in a format that is executable but not valid
for this system (such as a recognized binary for another architecture), then this is an error and errno is
set to [EINVAL] (see later RATIONALE on [EINVAL]).

3. If the process image file has appropriate privileges but is not otherwise recognized:

a. If this is a call to execlp() or execvp(), then they inv oke a command interpreter assuming that the
process image file is a shell script.

b. If this is not a call to execlp() or execvp(), then an error occurs and errno is set to [ENOEXEC].

Applications that do not require to access their arguments may use the form:

main(void)

as specified in the ISO C standard. However, the implementation will always provide the two arguments
argc and argv, even if they are not used.

Some implementations provide a third argument to main() called envp. This is defined as a pointer to the
environment. The ISO C standard specifies invoking main() with two arguments, so implementations must
support applications written this way. Since this volume of POSIX.1-2017 defines the global variable envi-

ron, which is also provided by historical implementations and can be used anywhere that envp could be
used, there is no functional need for the envp argument. Applications should use the getenv() function rather
than accessing the environment directly via either envp or environ. Implementations are required to support
the two-argument calling sequence, but this does not prohibit an implementation from supporting envp as
an optional third argument.

This volume of POSIX.1-2017 specifies that signals set to SIG_IGN remain set to SIG_IGN, and that the
new process image inherits the signal mask of the thread that called exec in the old process image. This is
consistent with historical implementations, and it permits some useful functionality, such as the nohup

command. However, it should be noted that many existing applications wrongly assume that they start with
certain signals set to the default action and/or unblocked. In particular, applications written with a simpler
signal model that does not include blocking of signals, such as the one in the ISO C standard, may not be-
have properly if invoked with some signals blocked. Therefore, it is best not to block or ignore signals
across execs without explicit reason to do so, and especially not to block signals across execs of arbitrary
(not closely cooperating) programs.

The exec functions always save the value of the effective user ID and effective group ID of the process at
the completion of the exec, whether or not the set-user-ID or the set-group-ID bit of the process image file
is set.

The statement about argv[] and envp[] being constants is included to make explicit to future writers of lan-
guage bindings that these objects are completely constant. Due to a limitation of the ISO C standard, it is
not possible to state that idea in standard C. Specifying two lev els of const−qualification for the argv[] and
envp[] parameters for the exec functions may seem to be the natural choice, given that these functions do
not modify either the array of pointers or the characters to which the function points, but this would disal-
low existing correct code. Instead, only the array of pointers is noted as constant. The table of assignment
compatibility for dst=src derived from the ISO C standard summarizes the compatibility:

box tab(!) center; r | lB | lB | lB | lB lB | c | c | c | c. dst:!char *[]!const char *[]!char *const[]!const char
*const[] _ src: char *[]!VALID!—!VALID!— const char *[]!—!VALID!—!VALID char * const
[]!—!—!VALID!— const char *const[]!—!—!—!VALID

Since all existing code has a source type matching the first row, the column that gives the most valid combi-
nations is the third column. The only other possibility is the fourth column, but using it would require a cast

IEEE/The Open Group 2017 9

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

on the argv or envp arguments. It is unfortunate that the fourth column cannot be used, because the declara-
tion a non-expert would naturally use would be that in the second row.

The ISO C standard and this volume of POSIX.1-2017 do not conflict on the use of environ, but some his-
torical implementations of environ may cause a conflict. As long as environ is treated in the same way as an
entry point (for example, fork()), it conforms to both standards. A library can contain fork(), but if there is a
user-provided fork(), that fork() is given precedence and no problem ensues. The situation is similar for env-

iron: the definition in this volume of POSIX.1-2017 is to be used if there is no user-provided environ to take
precedence. At least three implementations are known to exist that solve this problem.

E2BIG The limit {ARG_MAX} applies not just to the size of the argument list, but to the sum of that and
the size of the environment list.

EFAULT
Some historical systems return [EFAULT] rather than [ENOEXEC] when the new process image
file is corrupted. They are non-conforming.

EINVAL
This error condition was added to POSIX.1-2008 to allow an implementation to detect executable
files generated for different architectures, and indicate this situation to the application. Historical
implementations of shells, execvp(), and execlp() that encounter an [ENOEXEC] error will exe-
cute a shell on the assumption that the file is a shell script. This will not produce the desired effect
when the file is a valid executable for a different architecture. An implementation may now choose
to avoid this problem by returning [EINVAL] when a valid executable for a different architecture
is encountered. Some historical implementations return [EINVAL] to indicate that the path argu-
ment contains a character with the high order bit set. The standard developers chose to deviate
from historical practice for the following reasons:

1. The new utilization of [EINVAL] will provide some measure of utility to the user com-
munity.

2. Historical use of [EINVAL] is not acceptable in an internationalized operating environ-
ment.

ENAMETOOLONG
Since the file pathname may be constructed by taking elements in the PA TH variable and putting
them together with the filename, the [ENAMETOOLONG] error condition could also be reached
this way.

ETXTBSY
System V returns this error when the executable file is currently open for writing by some process.
This volume of POSIX.1-2017 neither requires nor prohibits this behavior.

Other systems (such as System V) may return [EINTR] from exec. This is not addressed by this volume of
POSIX.1-2017, but implementations may have a window between the call to exec and the time that a signal
could cause one of the exec calls to return with [EINTR].

An explicit statement regarding the floating-point environment (as defined in the <fenv.h> header) was
added to make it clear that the floating-point environment is set to its default when a call to one of the exec

functions succeeds. The requirements for inheritance or setting to the default for other process and thread
start-up functions is covered by more generic statements in their descriptions and can be summarized as fol-
lows:

posix_spawn() Set to default.

fork() Inherit.

pthread_create()
Inherit.

The purpose of the fexecve() function is to enable executing a file which has been verified to be the intended
file. It is possible to actively check the file by reading from the file descriptor and be sure that the file is not
exchanged for another between the reading and the execution. Alternatively, a function like openat() can be

IEEE/The Open Group 2017 10

EXEC(3P) POSIX Programmer’s Manual EXEC(3P)

used to open a file which has been found by reading the content of a directory using readdir().

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), atexit(), chmod(), close(), confstr(), exit(), fcntl(), fork(), fstatvfs(), getenv(), getitimer(),
getrlimit(), mknod(), mmap(), nice(), open(), posix_spawn(), posix_trace_create(),
posix_trace_event(), posix_trace_eventid_equal(), pthread_atfork(), pthread_sigmask(), putenv(),
readdir(), semop(), setlocale(), shmat(), sigaction(), sigaltstack(), sigpending(), system(), times(),
ulimit(), umask()

The Base Definitions volume of POSIX.1-2017, Chapter 8, Environment Variables, <unistd.h>

The Shell and Utilities volume of POSIX.1-2017, test

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 11

EXIT(3P) POSIX Programmer’s Manual EXIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
exit — terminate a process

SYNOPSIS
#include <stdlib.h>

void exit(int status);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other value, though only the least
significant 8 bits (that is, status & 0377) shall be available from wait() and waitpid(); the full value shall be
available from waitid() and in the siginfo_t passed to a signal handler for SIGCHLD.

The exit() function shall first call all functions registered by atexit(), in the reverse order of their registra-
tion, except that a function is called after any previously registered functions that had already been called at
the time it was registered. Each function is called as many times as it was registered. If, during the call to
any such function, a call to the longjmp() function is made that would terminate the call to the registered
function, the behavior is undefined.

If a function registered by a call to atexit() fails to return, the remaining registered functions shall not be
called and the rest of the exit() processing shall not be completed. If exit() is called more than once, the be-
havior is undefined.

The exit() function shall then flush all open streams with unwritten buffered data and close all open streams.
Finally, the process shall be terminated with the same consequences as described in Consequences of

Process Termination.

RETURN VALUE
The exit() function does not return.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See _Exit().

FUTURE DIRECTIONS
None.

SEE ALSO
_Exit(), atexit(), exec , longjmp(), tmpfile(), wait(), waitid()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 1

EXIT(3P) POSIX Programmer’s Manual EXIT(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

EXP(3P) POSIX Programmer’s Manual EXP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
exp, expf, expl — exponential function

SYNOPSIS
#include <math.h>

double exp(double x);
float expf(float x);
long double expl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the base-e exponential of x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponential value of x.

If the correct value would cause overflow, a range error shall occur and exp(), expf(), and expl() shall return
the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and exp(),
expf(), and expl() shall return 0.0, or (if the IEC 60559 Floating-Point option is not supported) an imple-
mentation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respec-
tively.

If x is NaN, a NaN shall be returned.

If x is ±0, 1 shall be returned.

If x is −Inf, +0 shall be returned.

If x is +Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

EXP(3P) POSIX Programmer’s Manual EXP(3P)

EXAMPLES
Computing the Density of the Standard Normal Distribution

This function shows an implementation for the density of the standard normal distribution using exp(). This
example uses the constant M_PI which is part of the XSI option.

#include <math.h>

double
normal_density (double x)
{

return exp(-x*x/2) / sqrt (2*M_PI);
}

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), log()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

EXP2(3P) POSIX Programmer’s Manual EXP2(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
exp2, exp2f, exp2l — exponential base 2 functions

SYNOPSIS
#include <math.h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the base-2 exponential of x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return 2x.

If the correct value would cause overflow, a range error shall occur and exp2(), exp2f(), and exp2l() shall re-
turn the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and exp2(),
exp2f(), and exp2l() shall return 0.0, or (if the IEC 60559 Floating-Point option is not supported) an imple-
mentation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respec-
tively.

If x is NaN, a NaN shall be returned.

If x is ±0, 1 shall be returned.

If x is −Inf, +0 shall be returned.

If x is +Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

EXP2(3P) POSIX Programmer’s Manual EXP2(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), log()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

EXPM1(3P) POSIX Programmer’s Manual EXPM1(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
expm1, expm1f, expm1l — compute exponential functions

SYNOPSIS
#include <math.h>

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute e
x
−1.0.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions return ex−1.0.

If the correct value would cause overflow, a range error shall occur and expm1(), expm1f(), and expm1l()
shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is −Inf, −1 shall be returned.

If x is +Inf, x shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, expm1(), expm1f(), and expm1l() shall return an implementation-defined value no
greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

EXPM1(3P) POSIX Programmer’s Manual EXPM1(3P)

EXAMPLES
None.

APPLICATION USAGE
The value of expm1(x) may be more accurate than exp(x)−1.0 for small values of x.

The expm1() and log1p() functions are useful for financial calculations of ((1+x)
n
−1)/x, namely:

expm1(n * log1p(x))/x

when x is very small (for example, when calculating small daily interest rates). These functions also sim-
plify writing accurate inverse hyperbolic functions.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), ilogb(), log1p()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FABS(3P) POSIX Programmer’s Manual FABS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fabs, fabsf, fabsl — absolute value function

SYNOPSIS
#include <math.h>

double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the absolute value of their argument x,|x|.

RETURN VALUE
Upon successful completion, these functions shall return the absolute value of x.

If x is NaN, a NaN shall be returned.

If x is ±0, +0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Computing the 1-Norm of a Floating-Point Vector

This example shows the use of fabs() to compute the 1-norm of a vector defined as follows:

norm1(v) = |v[0]| + |v[1]| + ... + |v[n-1]|

where |x| denotes the absolute value of x, n denotes the vector’s dimension v[i] denotes the i-th component
of v (0≤i<n).

#include <math.h>

double
norm1(const double v[], const int n)
{

int i;
double n1_v; /* 1-norm of v */

n1_v = 0;
for (i=0; i<n; i++) {

n1_v += fabs (v[i]);
}

return n1_v;
}

IEEE/The Open Group 2017 1

FABS(3P) POSIX Programmer’s Manual FABS(3P)

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FA CCESSAT(3P) POSIX Programmer’s Manual FACCESSAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
faccessat — determine accessibility of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int faccessat(int fd, const char *path, int amode, int flag);

DESCRIPTION
Refer to access().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FATTACH(3P) POSIX Programmer’s Manual FATTA CH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fattach — attach a STREAMS-based file descriptor to a file in the file system name space (STREAMS)

SYNOPSIS
#include <stropts.h>

int fattach(int fildes, const char *path);

DESCRIPTION
The fattach() function shall attach a STREAMS-based file descriptor to a file, effectively associating a path-
name with fildes. The application shall ensure that the fildes argument is a valid open file descriptor asso-
ciated with a STREAMS file. The path argument points to a pathname of an existing file. The application
shall have appropriate privileges or be the owner of the file named by path and have write permission. A
successful call to fattach() shall cause all pathnames that name the file named by path to name the
STREAMS file associated with fildes, until the STREAMS file is detached from the file. A STREAMS file
can be attached to more than one file and can have sev eral pathnames associated with it.

The attributes of the named STREAMS file shall be initialized as follows: the permissions, user ID, group
ID, and times are set to those of the file named by path, the number of links is set to 1, and the size and de-
vice identifier are set to those of the STREAMS file associated with fildes. If any attributes of the named
STREAMS file are subsequently changed (for example, by chmod()), neither the attributes of the underly-
ing file nor the attributes of the STREAMS file to which fildes refers shall be affected.

File descriptors referring to the underlying file, opened prior to an fattach() call, shall continue to refer to
the underlying file.

RETURN VALUE
Upon successful completion, fattach() shall return 0. Otherwise, −1 shall be returned and errno set to indi-
cate the error.

ERRORS
The fattach() function shall fail if:

EACCES
Search permission is denied for a component of the path prefix, or the process is the owner of path

but does not have write permissions on the file named by path.

EBADF
The fildes argument is not a valid open file descriptor.

EBUSY
The file named by path is currently a mount point or has a STREAMS file attached to it.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters.

IEEE/The Open Group 2017 1

FATTACH(3P) POSIX Programmer’s Manual FATTA CH(3P)

EPERM
The effective user ID of the process is not the owner of the file named by path and the process
does not have appropriate privileges.

The fattach() function may fail if:

EINVAL
The fildes argument does not refer to a STREAMS file.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

EXDEV
A link to a file on another file system was attempted.

The following sections are informative.

EXAMPLES
Attaching a File Descriptor to a File

In the following example, fd refers to an open STREAMS file. The call to fattach() associates this
STREAM with the file /tmp/named-STREAM, such that any future calls to open /tmp/named-STREAM,
prior to breaking the attachment via a call to fdetach(), will instead create a new file handle referring to the
STREAMS file associated with fd .

#include <stropts.h>
...

int fd;
char *pathname = "/tmp/named-STREAM";
int ret;

ret = fattach(fd, pathname);

APPLICATION USAGE
The fattach() function behaves similarly to the traditional mount() function in the way a file is temporarily
replaced by the root directory of the mounted file system. In the case of fattach(), the replaced file need not
be a directory and the replacing file is a STREAMS file.

RATIONALE
The file attributes of a file which has been the subject of an fattach() call are specifically set because of an
artifact of the original implementation. The internal mechanism was the same as for the mount() function.
Since mount() is typically only applied to directories, the effects when applied to a regular file are a little
surprising, especially as regards the link count which rigidly remains one, even if there were several links
originally and despite the fact that all original links refer to the STREAM as long as the fattach() remains in
effect.

FUTURE DIRECTIONS
The fattach() function may be removed in a future version.

SEE ALSO
fdetach(), isastream()

The Base Definitions volume of POSIX.1-2017, <stropts.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 2

FATTACH(3P) POSIX Programmer’s Manual FATTA CH(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

FCHDIR(3P) POSIX Programmer’s Manual FCHDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fchdir — change working directory

SYNOPSIS
#include <unistd.h>

int fchdir(int fildes);

DESCRIPTION
The fchdir() function shall be equivalent to chdir() except that the directory that is to be the new current
working directory is specified by the file descriptor fildes.

A conforming application can obtain a file descriptor for a file of type directory using open(), provided that
the file status flags and access modes do not contain O_WRONLY or O_RDWR.

RETURN VALUE
Upon successful completion, fchdir() shall return 0. Otherwise, it shall return −1 and set errno to indicate
the error. On failure the current working directory shall remain unchanged.

ERRORS
The fchdir() function shall fail if:

EACCES
Search permission is denied for the directory referenced by fildes.

EBADF
The fildes argument is not an open file descriptor.

ENOTDIR
The open file descriptor fildes does not refer to a directory.

The fchdir() may fail if:

EINTR
A signal was caught during the execution of fchdir().

EIO An I/O error occurred while reading from or writing to the file system.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chdir(), dirfd()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 1

FCHDIR(3P) POSIX Programmer’s Manual FCHDIR(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FCHMOD(3P) POSIX Programmer’s Manual FCHMOD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fchmod — change mode of a file

SYNOPSIS
#include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

DESCRIPTION
The fchmod() function shall be equivalent to chmod() except that the file whose permissions are changed is
specified by the file descriptor fildes.

If fildes references a shared memory object, the fchmod() function need only affect the S_IRUSR,
S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

If fildes references a typed memory object, the behavior of fchmod() is unspecified.

If fildes refers to a socket, the behavior of fchmod() is unspecified.

If fildes refers to a STREAM (which is fattach()-ed into the file system name space) the call returns suc-
cessfully, doing nothing.

RETURN VALUE
Upon successful completion, fchmod() shall return 0. Otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The fchmod() function shall fail if:

EBADF
The fildes argument is not an open file descriptor.

EPERM
The effective user ID does not match the owner of the file and the process does not have appropri-
ate privileges.

EROFS
The file referred to by fildes resides on a read-only file system.

The fchmod() function may fail if:

EINTR
The fchmod() function was interrupted by a signal.

EINVAL
The value of the mode argument is invalid.

EINVAL
The fildes argument refers to a pipe and the implementation disallows execution of fchmod() on a
pipe.

The following sections are informative.

EXAMPLES
Changing the Current Permissions for a File

The following example shows how to change the permissions for a file named /home/cnd/mod1 so that the
owner and group have read/write/execute permissions, but the world only has read/write permissions.

#include <sys/stat.h>
#include <fcntl.h>

IEEE/The Open Group 2017 1

FCHMOD(3P) POSIX Programmer’s Manual FCHMOD(3P)

mode_t mode;
int fildes;
...
fildes = open("/home/cnd/mod1", O_RDWR);
fchmod(fildes, S_IRWXU | S_IRWXG | S_IROTH | S_IWOTH);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), fcntl(), fstatat(), fstatvfs(), mknod(), open(), read(), write()

The Base Definitions volume of POSIX.1-2017, <sys_stat.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FCHMODAT(3P) POSIX Programmer’s Manual FCHMODAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fchmodat — change mode of a file relative to directory file descriptor

SYNOPSIS
#include <sys/stat.h>

int fchmodat(int fd, const char *path, mode_t mode, int flag);

DESCRIPTION
Refer to chmod().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FCHOWN(3P) POSIX Programmer’s Manual FCHOWN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fchown — change owner and group of a file

SYNOPSIS
#include <unistd.h>

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION
The fchown() function shall be equivalent to chown() except that the file whose owner and group are
changed is specified by the file descriptor fildes.

RETURN VALUE
Upon successful completion, fchown() shall return 0. Otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The fchown() function shall fail if:

EBADF
The fildes argument is not an open file descriptor.

EPERM
The effective user ID does not match the owner of the file or the process does not have appropriate
privileges and _POSIX_CHOWN_RESTRICTED indicates that such privilege is required.

EROFS
The file referred to by fildes resides on a read-only file system.

The fchown() function may fail if:

EINVAL
The owner or group ID is not a value supported by the implementation. The fildes argument
refers to a pipe or socket or an fattach()-ed STREAM and the implementation disallows execution
of fchown() on a pipe.

EIO A physical I/O error has occurred.

EINTR
The fchown() function was interrupted by a signal which was caught.

The following sections are informative.

EXAMPLES
Changing the Current Owner of a File

The following example shows how to change the owner of a file named /home/cnd/mod1 to ‘‘jones’’ and
the group to ‘‘cnd’’.

The numeric value for the user ID is obtained by extracting the user ID from the user database entry associ-
ated with ‘‘jones’’. Similarly, the numeric value for the group ID is obtained by extracting the group ID
from the group database entry associated with ‘‘cnd’’. This example assumes the calling program has ap-
propriate privileges.

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <pwd.h>
#include <grp.h>

IEEE/The Open Group 2017 1

FCHOWN(3P) POSIX Programmer’s Manual FCHOWN(3P)

struct passwd *pwd;
struct group *grp;
int fildes;
...
fildes = open("/home/cnd/mod1", O_RDWR);
pwd = getpwnam("jones");
grp = getgrnam("cnd");
fchown(fildes, pwd->pw_uid, grp->gr_gid);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FCHOWNAT(3P) POSIX Programmer’s Manual FCHOWNAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fchownat — change owner and group of a file relative to directory file descriptor

SYNOPSIS
#include <unistd.h>

int fchownat(int fd, const char *path, uid_t owner, gid_t group,
int flag);

DESCRIPTION
Refer to chown().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FCLOSE(3P) POSIX Programmer’s Manual FCLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fclose — close a stream

SYNOPSIS
#include <stdio.h>

int fclose(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fclose() function shall cause the stream pointed to by stream to be flushed and the associated file to be
closed. Any unwritten buffered data for the stream shall be written to the file; any unread buffered data shall
be discarded. Whether or not the call succeeds, the stream shall be disassociated from the file and any buf-
fer set by the setbuf() or setvbuf() function shall be disassociated from the stream. If the associated buffer
was automatically allocated, it shall be deallocated.

If the file is not already at EOF, and the file is one capable of seeking, the file offset of the underlying open
file description shall be set to the file position of the stream if the stream is the active handle to the underly-
ing file description.

The fclose() function shall mark for update the last data modification and last file status change timestamps
of the underlying file, if the stream was writable, and if buffered data remains that has not yet been written
to the file. The fclose() function shall perform the equivalent of a close() on the file descriptor that is associ-
ated with the stream pointed to by stream.

After the call to fclose(), any use of stream results in undefined behavior.

RETURN VALUE
Upon successful completion, fclose() shall return 0; otherwise, it shall return EOF and set errno to indicate
the error.

ERRORS
The fclose() function shall fail if:

EAGAIN
The O_NONBLOCK flag is set for the file descriptor underlying stream and the thread would be
delayed in the write operation.

EBADF
The file descriptor underlying stream is not valid.

EFBIG
An attempt was made to write a file that exceeds the maximum file size.

EFBIG
An attempt was made to write a file that exceeds the file size limit of the process.

EFBIG
The file is a regular file and an attempt was made to write at or beyond the offset maximum associ-
ated with the corresponding stream.

EINTR
The fclose() function was interrupted by a signal.

EIO The process is a member of a background process group attempting to write to its controlling ter-
minal, TOSTOP is set, the calling thread is not blocking SIGTTOU, the process is not ignoring
SIGTTOU, and the process group of the process is orphaned. This error may also be returned

IEEE/The Open Group 2017 1

FCLOSE(3P) POSIX Programmer’s Manual FCLOSE(3P)

under implementation-defined conditions.

ENOMEM
The underlying stream was created by open_memstream() or open_wmemstream() and insufficient
memory is available.

ENOSPC
There was no free space remaining on the device containing the file or in the buffer used by the
fmemopen() function.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any process. A SIG-
PIPE signal shall also be sent to the thread.

The fclose() function may fail if:

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since after the call to fclose() any use of stream results in undefined behavior, fclose() should not be used
on stdin, stdout, or stderr except immediately before process termination (see the Base Definitions volume
of POSIX.1-2017, Section 3.303, Process Termination), so as to avoid triggering undefined behavior in
other standard interfaces that rely on these streams. If there are any atexit() handlers registered by the appli-
cation, such a call to fclose() should not occur until the last handler is finishing. Once fclose() has been used
to close stdin, stdout, or stderr, there is no standard way to reopen any of these streams.

Use of freopen() to change stdin, stdout, or stderr instead of closing them avoids the danger of a file unex-
pectedly being opened as one of the special file descriptors STDIN_FILENO, STDOUT_FILENO, or
STDERR_FILENO at a later time in the application.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, atexit(), close(), fmemopen(), fopen(), freopen(), getrlimit(),
open_memstream(), ulimit()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FCNTL(3P) POSIX Programmer’s Manual FCNTL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fcntl — file control

SYNOPSIS
#include <fcntl.h>

int fcntl(int fildes, int cmd, ...);

DESCRIPTION
The fcntl() function shall perform the operations described below on open files. The fildes argument is a file
descriptor.

The available values for cmd are defined in <fcntl.h> and are as follows:

F_DUPFD Return a new file descriptor which shall be allocated as described in Section 2.14, File

Descriptor Allocation, except that it shall be the lowest numbered available file descriptor
greater than or equal to the third argument, arg, taken as an integer of type int. The new
file descriptor shall refer to the same open file description as the original file descriptor,
and shall share any locks. The FD_CLOEXEC flag associated with the new file descriptor
shall be cleared to keep the file open across calls to one of the exec functions.

F_DUPFD_CLOEXEC
Like F_DUPFD, but the FD_CLOEXEC flag associated with the new file descriptor shall
be set.

F_GETFD Get the file descriptor flags defined in <fcntl.h> that are associated with the file descriptor
fildes. File descriptor flags are associated with a single file descriptor and do not affect
other file descriptors that refer to the same file.

F_SETFD Set the file descriptor flags defined in <fcntl.h>, that are associated with fildes, to the
third argument, arg, taken as type int. If the FD_CLOEXEC flag in the third argument is
0, the file descriptor shall remain open across the exec functions; otherwise, the file de-
scriptor shall be closed upon successful execution of one of the exec functions.

F_GETFL Get the file status flags and file access modes, defined in <fcntl.h>, for the file description
associated with fildes. The file access modes can be extracted from the return value using
the mask O_ACCMODE, which is defined in <fcntl.h>. File status flags and file access
modes are associated with the file description and do not affect other file descriptors that
refer to the same file with different open file descriptions. The flags returned may include
non-standard file status flags which the application did not set, provided that these addi-
tional flags do not alter the behavior of a conforming application.

F_SETFL Set the file status flags, defined in <fcntl.h>, for the file description associated with fildes

from the corresponding bits in the third argument, arg, taken as type int. Bits correspond-
ing to the file access mode and the file creation flags, as defined in <fcntl.h>, that are set
in arg shall be ignored. If any bits in arg other than those mentioned here are changed by
the application, the result is unspecified. If fildes does not support non-blocking opera-
tions, it is unspecified whether the O_NONBLOCK flag will be ignored.

F_GETOWN If fildes refers to a socket, get the process ID or process group ID specified to receive
SIGURG signals when out-of-band data is available. Positive values shall indicate a
process ID; negative values, other than −1, shall indicate a process group ID; the value
zero shall indicate that no SIGURG signals are to be sent. If fildes does not refer to a
socket, the results are unspecified.

F_SETOWN If fildes refers to a socket, set the process ID or process group ID specified to receive
SIGURG signals when out-of-band data is available, using the value of the third

IEEE/The Open Group 2017 1

FCNTL(3P) POSIX Programmer’s Manual FCNTL(3P)

argument, arg, taken as type int. Positive values shall indicate a process ID; negative val-
ues, other than −1, shall indicate a process group ID; the value zero shall indicate that no
SIGURG signals are to be sent. Each time a SIGURG signal is sent to the specified
process or process group, permission checks equivalent to those performed by kill() shall
be performed, as if kill() were called by a process with the same real user ID, effective
user ID, and privileges that the process calling fcntl() has at the time of the call; if the
kill() call would fail, no signal shall be sent. These permission checks may also be per-
formed by the fcntl() call. If the process specified by arg later terminates, or the process
group specified by arg later becomes empty, while still being specified to receive SIG-
URG signals when out-of-band data is available from fildes, then no signals shall be sent
to any subsequently created process that has the same process ID or process group ID, re-
gardless of permission; it is unspecified whether this is achieved by the equivalent of a fc-

ntl(fildes, F_SETOWN, 0) call at the time the process terminates or is waited for or the
process group becomes empty, or by other means. If fildes does not refer to a socket, the
results are unspecified.

The following values for cmd are available for advisory record locking. Record locking shall be supported
for regular files, and may be supported for other files.

F_GETLK Get any lock which blocks the lock description pointed to by the third argument, arg,
taken as a pointer to type struct flock, defined in <fcntl.h>. The information retrieved
shall overwrite the information passed to fcntl() in the structure flock. If no lock is found
that would prevent this lock from being created, then the structure shall be left unchanged
except for the lock type which shall be set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the lock description pointed to by the third ar-
gument, arg, taken as a pointer to type struct flock, defined in <fcntl.h>. F_SETLK can
establish shared (or read) locks (F_RDLCK) or exclusive (or write) locks (F_WRLCK), as
well as to remove either type of lock (F_UNLCK). F_RDLCK, F_WRLCK, and
F_UNLCK are defined in <fcntl.h>. If a shared or exclusive lock cannot be set, fcntl()
shall return immediately with a return value of −1.

F_SETLKW This command shall be equivalent to F_SETLK except that if a shared or exclusive lock is
blocked by other locks, the thread shall wait until the request can be satisfied. If a signal
that is to be caught is received while fcntl() is waiting for a region, fcntl() shall be inter-
rupted. Upon return from the signal handler, fcntl() shall return −1 with errno set to
[EINTR], and the lock operation shall not be done.

Additional implementation-defined values for cmd may be defined in <fcntl.h>. Their names shall start
with F_.

When a shared lock is set on a segment of a file, other processes shall be able to set shared locks on that
segment or a portion of it. A shared lock prevents any other process from setting an exclusive lock on any
portion of the protected area. A request for a shared lock shall fail if the file descriptor was not opened with
read access.

An exclusive lock shall prevent any other process from setting a shared lock or an exclusive lock on any
portion of the protected area. A request for an exclusive lock shall fail if the file descriptor was not opened
with write access.

The structure flock describes the type (l_type), starting offset (l_whence), relative offset (l_start), size
(l_len), and process ID (l_pid) of the segment of the file to be affected.

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END, to indicate that the relative offset
l_start bytes shall be measured from the start of the file, current position, or end of the file, respectively.
The value of l_len is the number of consecutive bytes to be locked. The value of l_len may be negative
(where the definition of off_t permits negative values of l_len). The l_pid field is only used with
F_GETLK to return the process ID of the process holding a blocking lock. After a successful F_GETLK re-
quest, when a blocking lock is found, the values returned in the flock structure shall be as follows:

IEEE/The Open Group 2017 2

FCNTL(3P) POSIX Programmer’s Manual FCNTL(3P)

l_type Type of blocking lock found.

l_whence SEEK_SET.

l_start Start of the blocking lock.

l_len Length of the blocking lock.

l_pid Process ID of the process that holds the blocking lock.

If the command is F_SETLKW and the process must wait for another process to release a lock, then the
range of bytes to be locked shall be determined before the fcntl() function blocks. If the file size or file de-
scriptor seek offset change while fcntl() is blocked, this shall not affect the range of bytes locked.

If l_len is positive, the area affected shall start at l_start and end at l_start+l_len−1. If l_len is negative, the
area affected shall start at l_start+l_len and end at l_start−1. Locks may start and extend beyond the cur-
rent end of a file, but shall not extend before the beginning of the file. A lock shall be set to extend to the
largest possible value of the file offset for that file by setting l_len to 0. If such a lock also has l_start set to
0 and l_whence is set to SEEK_SET, the whole file shall be locked.

There shall be at most one type of lock set for each byte in the file. Before a successful return from an
F_SETLK or an F_SETLKW request when the calling process has previously existing locks on bytes in the
region specified by the request, the previous lock type for each byte in the specified region shall be replaced
by the new lock type. As specified above under the descriptions of shared locks and exclusive locks, an
F_SETLK or an F_SETLKW request (respectively) shall fail or block when another process has existing
locks on bytes in the specified region and the type of any of those locks conflicts with the type specified in
the request.

All locks associated with a file for a given process shall be removed when a file descriptor for that file is
closed by that process or the process holding that file descriptor terminates. Locks are not inherited by a
child process.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting to lock
the locked region of another process. If the system detects that sleeping until a locked region is unlocked
would cause a deadlock, fcntl() shall fail with an [EDEADLK] error.

An unlock (F_UNLCK) request in which l_len is non-zero and the offset of the last byte of the requested
segment is the maximum value for an object of type off_t, when the process has an existing lock in which
l_len is 0 and which includes the last byte of the requested segment, shall be treated as a request to unlock
from the start of the requested segment with an l_len equal to 0. Otherwise, an unlock (F_UNLCK) request
shall attempt to unlock only the requested segment.

When the file descriptor fildes refers to a shared memory object, the behavior of fcntl() shall be the same as
for a regular file except the effect of the following values for the argument cmd shall be unspecified:
F_SETFL, F_GETLK, F_SETLK, and F_SETLKW.

If fildes refers to a typed memory object, the result of the fcntl() function is unspecified.

RETURN VALUE
Upon successful completion, the value returned shall depend on cmd as follows:

F_DUPFD A new file descriptor.

F_DUPFD_CLOEXEC
A new file descriptor.

F_GETFD Value of flags defined in <fcntl.h>. The return value shall not be negative.

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes. The return value is not negative.

F_SETFL Value other than −1.

F_GETLK Value other than −1.

IEEE/The Open Group 2017 3

FCNTL(3P) POSIX Programmer’s Manual FCNTL(3P)

F_SETLK Value other than −1.

F_SETLKW Value other than −1.

F_GETOWN Value of the socket owner process or process group; this will not be −1.

F_SETOWN Value other than −1.

Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The fcntl() function shall fail if:

EACCES or EAGAIN
The cmd argument is F_SETLK; the type of lock (l_type) is a shared (F_RDLCK) or exclusive
(F_WRLCK) lock and the segment of a file to be locked is already exclusive-locked by another
process, or the type is an exclusive lock and some portion of the segment of a file to be locked is
already shared-locked or exclusive-locked by another process.

EBADF
The fildes argument is not a valid open file descriptor, or the argument cmd is F_SETLK or
F_SETLKW, the type of lock, l_type, is a shared lock (F_RDLCK), and fildes is not a valid file
descriptor open for reading, or the type of lock, l_type, is an exclusive lock (F_WRLCK), and
fildes is not a valid file descriptor open for writing.

EINTR
The cmd argument is F_SETLKW and the function was interrupted by a signal.

EINVAL
The cmd argument is invalid, or the cmd argument is F_DUPFD or F_DUPFD_CLOEXEC and
arg is negative or greater than or equal to {OPEN_MAX}, or the cmd argument is F_GETLK,
F_SETLK, or F_SETLKW and the data pointed to by arg is not valid, or fildes refers to a file that
does not support locking.

EMFILE
The argument cmd is F_DUPFD or F_DUPFD_CLOEXEC and all file descriptors available to the
process are currently open, or no file descriptors greater than or equal to arg are available.

ENOLCK
The argument cmd is F_SETLK or F_SETLKW and satisfying the lock or unlock request would
result in the number of locked regions in the system exceeding a system-imposed limit.

EOVERFLOW
One of the values to be returned cannot be represented correctly.

EOVERFLOW
The cmd argument is F_GETLK, F_SETLK, or F_SETLKW and the smallest or, if l_len is non-
zero, the largest offset of any byte in the requested segment cannot be represented correctly in an
object of type off_t.

ESRCH
The cmd argument is F_SETOWN and no process or process group can be found corresponding to
that specified by arg.

The fcntl() function may fail if:

EDEADLK
The cmd argument is F_SETLKW, the lock is blocked by a lock from another process, and putting
the calling process to sleep to wait for that lock to become free would cause a deadlock.

EINVAL
The cmd argument is F_SETOWN and the value of the argument is not valid as a process or
process group identifier.

IEEE/The Open Group 2017 4

FCNTL(3P) POSIX Programmer’s Manual FCNTL(3P)

EPERM
The cmd argument is F_SETOWN and the calling process does not have permission to send a SIG-
URG signal to any process specified by arg.

The following sections are informative.

EXAMPLES
Locking and Unlocking a File

The following example demonstrates how to place a lock on bytes 100 to 109 of a file and then later remove
it. F_SETLK is used to perform a non-blocking lock request so that the process does not have to wait if an
incompatible lock is held by another process; instead the process can take some other action.

#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

int fd;
struct flock fl;

fd = open("testfile", O_RDWR);
if (fd == -1)

/* Handle error */;

/* Make a non-blocking request to place a write lock
on bytes 100-109 of testfile */

fl.l_type = F_WRLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 100;
fl.l_len = 10;

if (fcntl(fd, F_SETLK, &fl) == -1) {
if (errno == EACCES || errno == EAGAIN) {

printf("Already locked by another process\n");

/* We cannot get the lock at the moment */

} else {
/* Handle unexpected error */;

}
} else { /* Lock was granted... */

/* Perform I/O on bytes 100 to 109 of file */

/* Unlock the locked bytes */

fl.l_type = F_UNLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 100;
fl.l_len = 10;
if (fcntl(fd, F_SETLK, &fl) == -1)

/* Handle error */;
}
exit(EXIT_SUCCESS);

} /* main */

IEEE/The Open Group 2017 5

FCNTL(3P) POSIX Programmer’s Manual FCNTL(3P)

Setting the Close-on-Exec Flag
The following example demonstrates how to set the close-on-exec flag for the file descriptor fd .

#include <unistd.h>
#include <fcntl.h>
...

int flags;

flags = fcntl(fd, F_GETFD);
if (flags == -1)

/* Handle error */;
flags |= FD_CLOEXEC;
if (fcntl(fd, F_SETFD, flags) == -1)

/* Handle error */;"

APPLICATION USAGE
The arg values to F_GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag values to allow for fu-
ture growth. Applications using these functions should do a read-modify-write operation on them, rather
than assuming that only the values defined by this volume of POSIX.1-2017 are valid. It is a common error
to forget this, particularly in the case of F_SETFD. Some implementations set additional file status flags to
advise the application of default behavior, even though the application did not request these flags.

On systems which do not perform permission checks at the time of an fcntl() call with F_SETOWN, if the
permission checks performed at the time the signal is sent disallow sending the signal to any process, the
process that called fcntl() has no way of discovering that this has happened. A call to kill() with signal 0 can
be used as a prior check of permissions, although this is no guarantee that permission will be granted at the
time a signal is sent, since the target process(es) could change user IDs or privileges in the meantime.

RATIONALE
The ellipsis in the SYNOPSIS is the syntax specified by the ISO C standard for a variable number of argu-
ments. It is used because System V uses pointers for the implementation of file locking functions.

This volume of POSIX.1-2017 permits concurrent read and write access to file data using the fcntl() func-
tion; this is a change from the 1984 /usr/group standard and early proposals. Without concurrency controls,
this feature may not be fully utilized without occasional loss of data.

Data losses occur in several ways. One case occurs when several processes try to update the same record,
without sequencing controls; several updates may occur in parallel and the last writer ‘‘wins’’. Another
case is a bit-tree or other internal list-based database that is undergoing reorganization. Without exclusive
use to the tree segment by the updating process, other reading processes chance getting lost in the database
when the index blocks are split, condensed, inserted, or deleted. While fcntl() is useful for many applica-
tions, it is not intended to be overly general and does not handle the bit-tree example well.

This facility is only required for regular files because it is not appropriate for many devices such as termi-
nals and network connections.

Since fcntl() works with ‘‘any file descriptor associated with that file, however it is obtained’’, the file de-
scriptor may have been inherited through a fork() or exec operation and thus may affect a file that another
process also has open.

The use of the open file description to identify what to lock requires extra calls and presents problems if
several processes are sharing an open file description, but there are too many implementations of the exist-
ing mechanism for this volume of POSIX.1-2017 to use different specifications.

Another consequence of this model is that closing any file descriptor for a given file (whether or not it is the
same open file description that created the lock) causes the locks on that file to be relinquished for that
process. Equivalently, any close for any file/process pair relinquishes the locks owned on that file for that
process. But note that while an open file description may be shared through fork(), locks are not inherited
through fork(). Yet locks may be inherited through one of the exec functions.

IEEE/The Open Group 2017 6

FCNTL(3P) POSIX Programmer’s Manual FCNTL(3P)

The identification of a machine in a network environment is outside the scope of this volume of
POSIX.1-2017. Thus, an l_sysid member, such as found in System V, is not included in the locking struc-
ture.

Changing of lock types can result in a previously locked region being split into smaller regions.

Mandatory locking was a major feature of the 1984 /usr/group standard.

For advisory file record locking to be effective, all processes that have access to a file must cooperate and
use the advisory mechanism before doing I/O on the file. Enforcement-mode record locking is important
when it cannot be assumed that all processes are cooperating. For example, if one user uses an editor to up-
date a file at the same time that a second user executes another process that updates the same file and if only
one of the two processes is using advisory locking, the processes are not cooperating. Enforcement-mode
record locking would protect against accidental collisions.

Secondly, advisory record locking requires a process using locking to bracket each I/O operation with lock
(or test) and unlock operations. With enforcement-mode file and record locking, a process can lock the file
once and unlock when all I/O operations have been completed. Enforcement-mode record locking provides
a base that can be enhanced; for example, with sharable locks. That is, the mechanism could be enhanced to
allow a process to lock a file so other processes could read it, but none of them could write it.

Mandatory locks were omitted for several reasons:

1. Mandatory lock setting was done by multiplexing the set-group-ID bit in most implementations; this
was confusing, at best.

2. The relationship to file truncation as supported in 4.2 BSD was not well specified.

3. Any publicly readable file could be locked by anyone. Many historical implementations keep the pass-
word database in a publicly readable file. A malicious user could thus prohibit logins. Another possi-
bility would be to hold open a long-distance telephone line.

4. Some demand-paged historical implementations offer memory mapped files, and enforcement cannot
be done on that type of file.

Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a timeout facility
in applications requiring it. This is useful in deadlock detection. Since implementation of full deadlock de-
tection is not always feasible, the [EDEADLK] error was made optional.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), close(), exec , kill(), open(), sigaction()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 7

FDAT ASYNC(3P) POSIX Programmer’s Manual FDAT ASYNC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fdatasync — synchronize the data of a file (REALTIME)

SYNOPSIS
#include <unistd.h>

int fdatasync(int fildes);

DESCRIPTION
The fdatasync() function shall force all currently queued I/O operations associated with the file indicated by
file descriptor fildes to the synchronized I/O completion state.

The functionality shall be equivalent to fsync() with the symbol _POSIX_SYNCHRONIZED_IO defined,
with the exception that all I/O operations shall be completed as defined for synchronized I/O data integrity
completion.

RETURN VALUE
If successful, the fdatasync() function shall return the value 0; otherwise, the function shall return the value
−1 and set errno to indicate the error. If the fdatasync() function fails, outstanding I/O operations are not
guaranteed to have been completed.

ERRORS
The fdatasync() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

EINVAL
This implementation does not support synchronized I/O for this file.

In the event that any of the queued I/O operations fail, fdatasync() shall return the error conditions defined
for read() and write().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Note that even if the file descriptor is not open for writing, if there are any pending write requests on the
underlying file, then that I/O will be completed prior to the return of fdatasync().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_fsync(), fcntl(), fsync(), open(), read(), write()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

FDAT ASYNC(3P) POSIX Programmer’s Manual FDAT ASYNC(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FDETACH(3P) POSIX Programmer’s Manual FDETACH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fdetach — detach a name from a STREAMS-based file descriptor (STREAMS)

SYNOPSIS
#include <stropts.h>

int fdetach(const char *path);

DESCRIPTION
The fdetach() function shall detach a STREAMS-based file from the file to which it was attached by a pre-
vious call to fattach(). The path argument points to the pathname of the attached STREAMS file. The
process shall have appropriate privileges or be the owner of the file. A successful call to fdetach() shall
cause all pathnames that named the attached STREAMS file to again name the file to which the STREAMS
file was attached. All subsequent operations on path shall operate on the underlying file and not on the
STREAMS file.

All open file descriptions established while the STREAMS file was attached to the file referenced by path

shall still refer to the STREAMS file after the fdetach() has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful call to fde-

tach() shall be equivalent to performing the last close() on the attached file.

RETURN VALUE
Upon successful completion, fdetach() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The fdetach() function shall fail if:

EACCES
Search permission is denied on a component of the path prefix.

EINVAL
The path argument names a file that is not currently attached.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

EPERM
The effective user ID is not the owner of path and the process does not have appropriate privi-
leges.

The fdetach() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

IEEE/The Open Group 2017 1

FDETACH(3P) POSIX Programmer’s Manual FDETACH(3P)

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Detaching a File

The following example detaches the STREAMS-based file /tmp/named-STREAM from the file to which
it was attached by a previous, successful call to fattach(). Subsequent calls to open this file refer to the un-
derlying file, not to the STREAMS file.

#include <stropts.h>
...

char *pathname = "/tmp/named-STREAM";
int ret;

ret = fdetach(pathname);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The fdetach() function may be removed in a future version.

SEE ALSO
fattach()

The Base Definitions volume of POSIX.1-2017, <stropts.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FDIM(3P) POSIX Programmer’s Manual FDIM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fdim, fdimf, fdiml — compute positive difference between two floating-point numbers

SYNOPSIS
#include <math.h>

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall determine the positive difference between their arguments. If x is greater than y, x−y

is returned. If x is less than or equal to y, +0 is returned.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the positive difference value.

If x−y is positive and overflows, a range error shall occur and fdim(), fdimf(), and fdiml() shall return the
value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If the correct value would cause underflow, a range error may occur, and fdim(), fdimf(), and fdiml() shall
return the correct value, or (if the IEC 60559 Floating-Point option is not supported) an implementation-de-
fined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

If x or y is NaN, a NaN shall be returned.

ERRORS
The fdim() function shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

The fdim() function may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

IEEE/The Open Group 2017 1

FDIM(3P) POSIX Programmer’s Manual FDIM(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), fmax(), fmin()

Section 4.20, Tr eatment of Error Conditions for Mathematical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FDOPEN(3P) POSIX Programmer’s Manual FDOPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fdopen — associate a stream with a file descriptor

SYNOPSIS
#include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

DESCRIPTION
The fdopen() function shall associate a stream with a file descriptor.

The mode argument is a character string having one of the following values:

r or rb Open a file for reading.

w or wb Open a file for writing.

a or ab Open a file for writing at end-of-file.

r+ or rb+ or r+b

Open a file for update (reading and writing).

w+ or wb+ or w+b

Open a file for update (reading and writing).

a+ or ab+ or a+b

Open a file for update (reading and writing) at end-of-file.

The meaning of these flags is exactly as specified in fopen(), except that modes beginning with w shall not
cause truncation of the file.

Additional values for the mode argument may be supported by an implementation.

The application shall ensure that the mode of the stream as expressed by the mode argument is allowed by
the file access mode of the open file description to which fildes refers. The file position indicator associated
with the new stream is set to the position indicated by the file offset associated with the file descriptor.

The error and end-of-file indicators for the stream shall be cleared. The fdopen() function may cause the
last data access timestamp of the underlying file to be marked for update.

If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

If fildes refers to a typed memory object, the result of the fdopen() function is unspecified.

The fdopen() function shall preserve the offset maximum previously set for the open file description corre-
sponding to fildes.

RETURN VALUE
Upon successful completion, fdopen() shall return a pointer to a stream; otherwise, a null pointer shall be
returned and errno set to indicate the error.

ERRORS
The fdopen() function shall fail if:

EMFILE
{STREAM_MAX} streams are currently open in the calling process.

The fdopen() function may fail if:

EBADF
The fildes argument is not a valid file descriptor.

IEEE/The Open Group 2017 1

FDOPEN(3P) POSIX Programmer’s Manual FDOPEN(3P)

EINVAL
The mode argument is not a valid mode.

EMFILE
{FOPEN_MAX} streams are currently open in the calling process.

ENOMEM
Insufficient space to allocate a buffer.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
File descriptors are obtained from calls like open(), dup(), creat(), or pipe(), which open files but do not re-
turn streams.

RATIONALE
The file descriptor may have been obtained from open(), creat(), pipe(), dup(), fcntl(), or socket(); inherited
through fork(), posix_spawn(), or exec; or perhaps obtained by other means.

The meanings of the mode arguments of fdopen() and fopen() differ. With fdopen(), open for write (w or
w+) does not truncate, and append (a or a+) cannot create for writing. The mode argument formats that in-
clude a b are allowed for consistency with the ISO C standard function fopen(). The b has no effect on the
resulting stream. Although not explicitly required by this volume of POSIX.1-2017, a good implementation
of append (a) mode would cause the O_APPEND flag to be set.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.1, Interaction of File Descriptors and Standard I/O Streams, fclose(), fmemopen(), fopen(),
open(), open_memstream(), posix_spawn(), socket()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FDOPENDIR(3P) POSIX Programmer’s Manual FDOPENDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fdopendir, opendir — open directory associated with file descriptor

SYNOPSIS
#include <dirent.h>

DIR *fdopendir(int fd);
DIR *opendir(const char *dirname);

DESCRIPTION
The fdopendir() function shall be equivalent to the opendir() function except that the directory is specified
by a file descriptor rather than by a name. The file offset associated with the file descriptor at the time of the
call determines which entries are returned.

Upon successful return from fdopendir(), the file descriptor is under the control of the system, and if any at-
tempt is made to close the file descriptor, or to modify the state of the associated description, other than by
means of closedir(), readdir(), readdir_r(), re winddir(), or seekdir(), the behavior is undefined. Upon call-
ing closedir() the file descriptor shall be closed.

It is unspecified whether the FD_CLOEXEC flag will be set on the file descriptor by a successful call to
fdopendir().

The opendir() function shall open a directory stream corresponding to the directory named by the dirname

argument. The directory stream is positioned at the first entry. If the type DIR is implemented using a file
descriptor, applications shall only be able to open up to a total of {OPEN_MAX} files and directories.

If the type DIR is implemented using a file descriptor, the descriptor shall be obtained as if the O_DIREC-
TORY flag was passed to open().

RETURN VALUE
Upon successful completion, these functions shall return a pointer to an object of type DIR. Otherwise,
these functions shall return a null pointer and set errno to indicate the error.

ERRORS
The fdopendir() function shall fail if:

EBADF
The fd argument is not a valid file descriptor open for reading.

ENOTDIR
The descriptor fd is not associated with a directory.

The opendir() function shall fail if:

EACCES
Search permission is denied for the component of the path prefix of dirname or read permission is
denied for dirname.

ELOOP
A loop exists in symbolic links encountered during resolution of the dirname argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of dirname does not name an existing directory or dirname is an empty string.

ENOTDIR
A component of dirname names an existing file that is neither a directory nor a symbolic link to a
directory.

IEEE/The Open Group 2017 1

FDOPENDIR(3P) POSIX Programmer’s Manual FDOPENDIR(3P)

The opendir() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the
dirname argument.

EMFILE
All file descriptors available to the process are currently open.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENFILE
Too many files are currently open in the system.

The following sections are informative.

EXAMPLES
Open a Directory Stream

The following program fragment demonstrates how the opendir() function is used.

#include <dirent.h>
...

DIR *dir;
struct dirent *dp;

...
if ((dir = opendir (".")) == NULL) {

perror ("Cannot open .");
exit (1);

}

while ((dp = readdir (dir)) != NULL) {
...

Find And Open a File
The following program searches through a given directory looking for files whose name does not begin
with a dot and whose size is larger than 1 MiB.

#include <stdio.h>
#include <dirent.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

struct stat statbuf;
DIR *d;
struct dirent *dp;
int dfd, ffd;

if ((d = fdopendir((dfd = open("./tmp", O_RDONLY)))) == NULL) {
fprintf(stderr, "Cannot open ./tmp directory\n");
exit(1);

IEEE/The Open Group 2017 2

FDOPENDIR(3P) POSIX Programmer’s Manual FDOPENDIR(3P)

}
while ((dp = readdir(d)) != NULL) {

if (dp->d_name[0] == '.')
continue;

/* there is a possible race condition here as the file
* could be renamed between the readdir and the open */
if ((ffd = openat(dfd, dp->d_name, O_RDONLY)) == -1) {

perror(dp->d_name);
continue;

}
if (fstat(ffd, &statbuf) == 0 && statbuf.st_size > (1024*1024)) {

/* found it ... */
printf("%s: %jdK\n", dp->d_name,

(intmax_t)(statbuf.st_size / 1024));
}
close(ffd);

}
closedir(d); // note this implicitly closes dfd
return 0;

}

APPLICATION USAGE
The opendir() function should be used in conjunction with readdir(), closedir(), and re winddir() to examine
the contents of the directory (see the EXAMPLES section in readdir()). This method is recommended for
portability.

RATIONALE
The purpose of the fdopendir() function is to enable opening files in directories other than the current work-
ing directory without exposure to race conditions. Any part of the path of a file could be changed in parallel
to a call to opendir(), resulting in unspecified behavior.

Based on historical implementations, the rules about file descriptors apply to directory streams as well.
However, this volume of POSIX.1-2017 does not mandate that the directory stream be implemented using
file descriptors. The description of closedir() clarifies that if a file descriptor is used for the directory
stream, it is mandatory that closedir() deallocate the file descriptor. When a file descriptor is used to imple-
ment the directory stream, it behaves as if the FD_CLOEXEC had been set for the file descriptor.

The directory entries for dot and dot-dot are optional. This volume of POSIX.1-2017 does not provide a
way to test a priori for their existence because an application that is portable must be written to look for
(and usually ignore) those entries. Writing code that presumes that they are the first two entries does not al-
ways work, as many implementations permit them to be other than the first two entries, with a ‘‘normal’’
entry preceding them. There is negligible value in providing a way to determine what the implementation
does because the code to deal with dot and dot-dot must be written in any case and because such a flag
would add to the list of those flags (which has proven in itself to be objectionable) and might be abused.

Since the structure and buffer allocation, if any, for directory operations are defined by the implementation,
this volume of POSIX.1-2017 imposes no portability requirements for erroneous program constructs, erro-
neous data, or the use of unspecified values such as the use or referencing of a dirp value or a dirent struc-
ture value after a directory stream has been closed or after a fork() or one of the exec function calls.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), dirfd(), fstatat(), open(), readdir(), re winddir(), symlink()

The Base Definitions volume of POSIX.1-2017, <dirent.h>, <sys_types.h>

IEEE/The Open Group 2017 3

FDOPENDIR(3P) POSIX Programmer’s Manual FDOPENDIR(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

FECLEAREXCEPT(3P) POSIX Programmer’s Manual FECLEAREXCEPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
feclearexcept — clear floating-point exception

SYNOPSIS
#include <fenv.h>

int feclearexcept(int excepts);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The feclearexcept() function shall attempt to clear the supported floating-point exceptions represented by
excepts.

RETURN VALUE
If the argument is zero or if all the specified exceptions were successfully cleared, feclearexcept() shall re-
turn zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetexceptflag(), feraiseexcept(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, <fenv.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FEGETENV(3P) POSIX Programmer’s Manual FEGETENV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fegetenv, fesetenv — get and set current floating-point environment

SYNOPSIS
#include <fenv.h>

int fegetenv(fenv_t *envp);
int fesetenv(const fenv_t *envp);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fegetenv() function shall attempt to store the current floating-point environment in the object pointed to
by envp.

The fesetenv() function shall attempt to establish the floating-point environment represented by the object
pointed to by envp. The argument envp shall point to an object set by a call to fegetenv() or feholdexcept(),
or equal a floating-point environment macro. The fesetenv() function does not raise floating-point excep-
tions, but only installs the state of the floating-point status flags represented through its argument.

RETURN VALUE
If the representation was successfully stored, fegetenv() shall return zero. Otherwise, it shall return a non-
zero value. If the environment was successfully established, fesetenv() shall return zero. Otherwise, it shall
return a non-zero value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feholdexcept(), feupdateenv()

The Base Definitions volume of POSIX.1-2017, <fenv.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FEGETEXCEPTFLAG(3P) POSIX Programmer’s Manual FEGETEXCEPTFLAG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fegetexceptflag, fesetexceptflag — get and set floating-point status flags

SYNOPSIS
#include <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);
int fesetexceptflag(const fexcept_t *flagp, int excepts);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fegetexceptflag() function shall attempt to store an implementation-defined representation of the states
of the floating-point status flags indicated by the argument excepts in the object pointed to by the argument
flagp.

The fesetexceptflag() function shall attempt to set the floating-point status flags indicated by the argument
excepts to the states stored in the object pointed to by flagp. The value pointed to by flagp shall have been
set by a previous call to fegetexceptflag() whose second argument represented at least those floating-point
exceptions represented by the argument excepts. This function does not raise floating-point exceptions, but
only sets the state of the flags.

RETURN VALUE
If the representation was successfully stored, fegetexceptflag() shall return zero. Otherwise, it shall return a
non-zero value. If the excepts argument is zero or if all the specified exceptions were successfully set, fese-

texceptflag() shall return zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), feraiseexcept(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, <fenv.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 1

FEGETEXCEPTFLAG(3P) POSIX Programmer’s Manual FEGETEXCEPTFLAG(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FEGETROUND(3P) POSIX Programmer’s Manual FEGETROUND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fegetround, fesetround — get and set current rounding direction

SYNOPSIS
#include <fenv.h>

int fegetround(void);
int fesetround(int round);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fegetround() function shall get the current rounding direction.

The fesetround() function shall establish the rounding direction represented by its argument round . If the
argument is not equal to the value of a rounding direction macro, the rounding direction is not changed.

RETURN VALUE
The fegetround() function shall return the value of the rounding direction macro representing the current
rounding direction or a negative value if there is no such rounding direction macro or the current rounding
direction is not determinable.

The fesetround() function shall return a zero value if and only if the requested rounding direction was estab-
lished.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The following example saves, sets, and restores the rounding direction, reporting an error and aborting if
setting the rounding direction fails:

#include <fenv.h>
#include <assert.h>
void f(int round_dir)
{

#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
/* ... */
fesetround(save_round);
/* ... */

}

APPLICATION USAGE
None.

IEEE/The Open Group 2017 1

FEGETROUND(3P) POSIX Programmer’s Manual FEGETROUND(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <fenv.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FEHOLDEXCEPT(3P) POSIX Programmer’s Manual FEHOLDEXCEPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
feholdexcept — save current floating-point environment

SYNOPSIS
#include <fenv.h>

int feholdexcept(fenv_t *envp);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The feholdexcept() function shall save the current floating-point environment in the object pointed to by
envp, clear the floating-point status flags, and then install a non-stop (continue on floating-point exceptions)
mode, if available, for all floating-point exceptions.

RETURN VALUE
The feholdexcept() function shall return zero if and only if non-stop floating-point exception handling was
successfully installed.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The feholdexcept() function should be effective on typical IEC 60559: 1989 standard implementations
which have the default non-stop mode and at least one other mode for trap handling or aborting. If the im-
plementation provides only the non-stop mode, then installing the non-stop mode is trivial.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetenv(), feupdateenv()

The Base Definitions volume of POSIX.1-2017, <fenv.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FEOF(3P) POSIX Programmer’s Manual FEOF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
feof — test end-of-file indicator on a stream

SYNOPSIS
#include <stdio.h>

int feof(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The feof() function shall test the end-of-file indicator for the stream pointed to by stream.

The feof() function shall not change the setting of errno if stream is valid.

RETURN VALUE
The feof() function shall return non-zero if and only if the end-of-file indicator is set for stream.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), ferror(), fopen()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FERAISEEXCEPT(3P) POSIX Programmer’s Manual FERAISEEXCEPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
feraiseexcept — raise floating-point exception

SYNOPSIS
#include <fenv.h>

int feraiseexcept(int excepts);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The feraiseexcept() function shall attempt to raise the supported floating-point exceptions represented by
the excepts argument. The order in which these floating-point exceptions are raised is unspecified, except
that if the excepts argument represents IEC 60559 valid coincident floating-point exceptions for atomic op-
erations (namely overflow and inexact, or underflow and inexact), then overflow or underflow shall be
raised before inexact. Whether the feraiseexcept() function additionally raises the inexact floating-point ex-
ception whenever it raises the overflow or underflow floating-point exception is implementation-defined.

RETURN VALUE
If the argument is zero or if all the specified exceptions were successfully raised, feraiseexcept() shall return
zero. Otherwise, it shall return a non-zero value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations.
Hence, enabled traps for floating-point exceptions raised by this function are taken.

RATIONALE
Raising overflow or underflow is allowed to also raise inexact because on some architectures the only prac-
tical way to raise an exception is to execute an instruction that has the exception as a side-effect. The func-
tion is not restricted to accept only valid coincident expressions for atomic operations, so the function can
be used to raise exceptions accrued over sev eral operations.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fegetexceptflag(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, <fenv.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 1

FERAISEEXCEPT(3P) POSIX Programmer’s Manual FERAISEEXCEPT(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FERROR(3P) POSIX Programmer’s Manual FERROR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ferror — test error indicator on a stream

SYNOPSIS
#include <stdio.h>

int ferror(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The ferror() function shall test the error indicator for the stream pointed to by stream.

The ferror() function shall not change the setting of errno if stream is valid.

RETURN VALUE
The ferror() function shall return non-zero if and only if the error indicator is set for stream.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), feof(), fopen()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FESETENV(3P) POSIX Programmer’s Manual FESETENV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fesetenv — set current floating-point environment

SYNOPSIS
#include <fenv.h>

int fesetenv(const fenv_t *envp);

DESCRIPTION
Refer to fegetenv().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FESETEXCEPTFLAG(3P) POSIX Programmer’s Manual FESETEXCEPTFLAG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fesetexceptflag — set floating-point status flags

SYNOPSIS
#include <fenv.h>

int fesetexceptflag(const fexcept_t *flagp, int excepts);

DESCRIPTION
Refer to fegetexceptflag().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FESETROUND(3P) POSIX Programmer’s Manual FESETROUND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fesetround — set current rounding direction

SYNOPSIS
#include <fenv.h>

int fesetround(int round);

DESCRIPTION
Refer to fegetround().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FETESTEXCEPT(3P) POSIX Programmer’s Manual FETESTEXCEPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fetestexcept — test floating-point exception flags

SYNOPSIS
#include <fenv.h>

int fetestexcept(int excepts);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fetestexcept() function shall determine which of a specified subset of the floating-point exception flags
are currently set. The excepts argument specifies the floating-point status flags to be queried.

RETURN VALUE
The fetestexcept() function shall return the value of the bitwise-inclusive OR of the floating-point exception
macros corresponding to the currently set floating-point exceptions included in excepts.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The following example calls function f() if an invalid exception is set, and then function g() if an overflow
exception is set:

#include <fenv.h>
/* ... */
{

#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... */

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fegetexceptflag(), feraiseexcept()

The Base Definitions volume of POSIX.1-2017, <fenv.h>

IEEE/The Open Group 2017 1

FETESTEXCEPT(3P) POSIX Programmer’s Manual FETESTEXCEPT(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FEUPDATEENV(3P) POSIX Programmer’s Manual FEUPDATEENV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
feupdateenv — update floating-point environment

SYNOPSIS
#include <fenv.h>

int feupdateenv(const fenv_t *envp);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The feupdateenv() function shall attempt to save the currently raised floating-point exceptions in its auto-
matic storage, attempt to install the floating-point environment represented by the object pointed to by
envp, and then attempt to raise the saved floating-point exceptions. The argument envp shall point to an ob-
ject set by a call to feholdexcept() or fegetenv(), or equal a floating-point environment macro.

RETURN VALUE
The feupdateenv() function shall return a zero value if and only if all the required actions were successfully
carried out.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The following example shows sample code to hide spurious underflow floating-point exceptions:

#include <fenv.h>
double f(double x)
{

#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
feholdexcept(&save_env);
// compute result
if (/* test spurious underflow */)
feclearexcept(FE_UNDERFLOW);
feupdateenv(&save_env);
return result;

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fegetenv(), feholdexcept()

The Base Definitions volume of POSIX.1-2017, <fenv.h>

IEEE/The Open Group 2017 1

FEUPDATEENV(3P) POSIX Programmer’s Manual FEUPDATEENV(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FEXECVE(3P) POSIX Programmer’s Manual FEXECVE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fexecve — execute a file

SYNOPSIS
#include <unistd.h>

int fexecve(int fd, char *const argv[], char *const envp[]);

DESCRIPTION
Refer to exec .

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FFLUSH(3P) POSIX Programmer’s Manual FFLUSH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fflush — flush a stream

SYNOPSIS
#include <stdio.h>

int fflush(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If stream points to an output stream or an update stream in which the most recent operation was not input,
fflush() shall cause any unwritten data for that stream to be written to the file, and the last data modification
and last file status change timestamps of the underlying file shall be marked for update.

For a stream open for reading with an underlying file description, if the file is not already at EOF, and the
file is one capable of seeking, the file offset of the underlying open file description shall be set to the file po-
sition of the stream, and any characters pushed back onto the stream by ungetc() or ungetwc() that have not
subsequently been read from the stream shall be discarded (without further changing the file offset).

If stream is a null pointer, fflush() shall perform this flushing action on all streams for which the behavior is
defined above.

RETURN VALUE
Upon successful completion, fflush() shall return 0; otherwise, it shall set the error indicator for the stream,
return EOF, and set errno to indicate the error.

ERRORS
The fflush() function shall fail if:

EAGAIN
The O_NONBLOCK flag is set for the file descriptor underlying stream and the thread would be
delayed in the write operation.

EBADF
The file descriptor underlying stream is not valid.

EFBIG
An attempt was made to write a file that exceeds the maximum file size.

EFBIG
An attempt was made to write a file that exceeds the file size limit of the process.

EFBIG
The file is a regular file and an attempt was made to write at or beyond the offset maximum associ-
ated with the corresponding stream.

EINTR
The fflush() function was interrupted by a signal.

EIO The process is a member of a background process group attempting to write to its controlling ter-
minal, TOSTOP is set, the calling thread is not blocking SIGTTOU, the process is not ignoring
SIGTTOU, and the process group of the process is orphaned. This error may also be returned un-
der implementation-defined conditions.

ENOMEM
The underlying stream was created by open_memstream() or open_wmemstream() and insufficient
memory is available.

IEEE/The Open Group 2017 1

FFLUSH(3P) POSIX Programmer’s Manual FFLUSH(3P)

ENOSPC
There was no free space remaining on the device containing the file or in the buffer used by the
fmemopen() function.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any process. A SIG-
PIPE signal shall also be sent to the thread.

The fflush() function may fail if:

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
Sending Prompts to Standard Output

The following example uses printf() calls to print a series of prompts for information the user must enter
from standard input. The fflush() calls force the output to standard output. The fflush() function is used be-
cause standard output is usually buffered and the prompt may not immediately be printed on the output or
terminal. The getline() function calls read strings from standard input and place the results in variables, for
use later in the program.

char *user;
char *oldpasswd;
char *newpasswd;
ssize_t llen;
size_t blen;
struct termios term;
tcflag_t saveflag;

printf("User name: ");
fflush(stdout);
blen = 0;
llen = getline(&user, &blen, stdin);
user[llen-1] = 0;
tcgetattr(fileno(stdin), &term);
saveflag = term.c_lflag;
term.c_lflag &= ~ECHO;
tcsetattr(fileno(stdin), TCSANOW, &term);
printf("Old password: ");
fflush(stdout);
blen = 0;
llen = getline(&oldpasswd, &blen, stdin);
oldpasswd[llen-1] = 0;

printf("\nNew password: ");
fflush(stdout);
blen = 0;
llen = getline(&newpasswd, &blen, stdin);
newpasswd[llen-1] = 0;
term.c_lflag = saveflag;
tcsetattr(fileno(stdin), TCSANOW, &term);
free(user);
free(oldpasswd);
free(newpasswd);

IEEE/The Open Group 2017 2

FFLUSH(3P) POSIX Programmer’s Manual FFLUSH(3P)

APPLICATION USAGE
None.

RATIONALE
Data buffered by the system may make determining the validity of the position of the current file descriptor
impractical. Thus, enforcing the repositioning of the file descriptor after fflush() on streams open for read()
is not mandated by POSIX.1-2008.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fmemopen(), getrlimit(), open_memstream(), ulimit()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

FFS(3P) POSIX Programmer’s Manual FFS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ffs — find first set bit

SYNOPSIS
#include <strings.h>

int ffs(int i);

DESCRIPTION
The ffs() function shall find the first bit set (beginning with the least significant bit) in i, and return the index
of that bit. Bits are numbered starting at one (the least significant bit).

RETURN VALUE
The ffs() function shall return the index of the first bit set. If i is 0, then ffs() shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <strings.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FGETC(3P) POSIX Programmer’s Manual FGETC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fgetc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int fgetc(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If the end-of-file indicator for the input stream pointed to by stream is not set and a next byte is present, the
fgetc() function shall obtain the next byte as an unsigned char converted to an int, from the input stream
pointed to by stream, and advance the associated file position indicator for the stream (if defined). Since
fgetc() operates on bytes, reading a character consisting of multiple bytes (or ‘‘a multi-byte character’’) may
require multiple calls to fgetc().

The fgetc() function may mark the last data access timestamp of the file associated with stream for update.
The last data access timestamp shall be marked for update by the first successful execution of fgetc(),
fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, fgetc() shall return the next byte from the input stream pointed to by stream.
If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file indicator for
the stream shall be set and fgetc() shall return EOF. If a read error occurs, the error indicator for the stream
shall be set, fgetc() shall return EOF, and shall set errno to indicate the error.

ERRORS
The fgetc() function shall fail if data needs to be read and:

EAGAIN
The O_NONBLOCK flag is set for the file descriptor underlying stream and the thread would be
delayed in the fgetc() operation.

EBADF
The file descriptor underlying stream is not a valid file descriptor open for reading.

EINTR
The read operation was terminated due to the receipt of a signal, and no data was transferred.

EIO A physical I/O error has occurred, or the process is in a background process group attempting to
read from its controlling terminal, and either the calling thread is blocking SIGTTIN or the
process is ignoring SIGTTIN or the process group of the process is orphaned. This error may also
be generated for implementation-defined reasons.

EOVERFLOW
The file is a regular file and an attempt was made to read at or beyond the offset maximum associ-
ated with the corresponding stream.

The fgetc() function may fail if:

ENOMEM
Insufficient storage space is available.

IEEE/The Open Group 2017 1

FGETC(3P) POSIX Programmer’s Manual FGETC(3P)

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by fgetc() is stored into a variable of type char and then compared against the
integer constant EOF, the comparison may never succeed, because sign-extension of a variable of type char
on widening to integer is implementation-defined.

The ferror() or feof() functions must be used to distinguish between an error condition and an end-of-file
condition.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, feof(), ferror(), fgets(), fread(), fscanf(), getchar(), getc(), gets(),
ungetc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FGETPOS(3P) POSIX Programmer’s Manual FGETPOS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fgetpos — get current file position information

SYNOPSIS
#include <stdio.h>

int fgetpos(FILE *restrict stream, fpos_t *restrict pos);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fgetpos() function shall store the current values of the parse state (if any) and file position indicator for
the stream pointed to by stream in the object pointed to by pos. The value stored contains unspecified in-
formation usable by fsetpos() for repositioning the stream to its position at the time of the call to fgetpos().

The fgetpos() function shall not change the setting of errno if successful.

RETURN VALUE
Upon successful completion, fgetpos() shall return 0; otherwise, it shall return a non-zero value and set er-

rno to indicate the error.

ERRORS
The fgetpos() function shall fail if:

EBADF
The file descriptor underlying stream is not valid.

EOVERFLOW
The current value of the file position cannot be represented correctly in an object of type fpos_t.

ESPIPE
The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), ftell(), re wind(), ungetc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

FGETPOS(3P) POSIX Programmer’s Manual FGETPOS(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FGETS(3P) POSIX Programmer’s Manual FGETS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char *fgets(char *restrict s, int n, FILE *restrict stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fgets() function shall read bytes from stream into the array pointed to by s until n−1 bytes are read, or a
<newline> is read and transferred to s, or an end-of-file condition is encountered. A null byte shall be writ-
ten immediately after the last byte read into the array. If the end-of-file condition is encountered before any
bytes are read, the contents of the array pointed to by s shall not be changed.

The fgets() function may mark the last data access timestamp of the file associated with stream for update.
The last data access timestamp shall be marked for update by the first successful execution of fgetc(),
fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, fgets() shall return s. If the stream is at end-of-file, the end-of-file indicator
for the stream shall be set and fgets() shall return a null pointer. If a read error occurs, the error indicator
for the stream shall be set, fgets() shall return a null pointer, and shall set errno to indicate the error.

ERRORS
Refer to fgetc().

The following sections are informative.

EXAMPLES
Reading Input

The following example uses fgets() to read lines of input. It assumes that the file it is reading is a text file
and that lines in this text file are no longer than 16384 (or {LINE_MAX} if it is less than 16384 on the im-
plementation where it is running) bytes long. (Note that the standard utilities have no line length limit if
sysconf (_SC_LINE_MAX) returns −1 without setting errno. This example assumes that
sysconf (_SC_LINE_MAX) will not fail.)

#include <limits.h>
#include <stdio.h>
#include <unistd.h>
#define MYLIMIT 16384

char *line;
int line_max;
if (LINE_MAX >= MYLIMIT) {

// Use maximum line size of MYLIMIT. If LINE_MAX is
// bigger than our limit, sysconf() cannot report a
// smaller limit.
line_max = MYLIMIT;

} else {
long limit = sysconf(_SC_LINE_MAX);

IEEE/The Open Group 2017 1

FGETS(3P) POSIX Programmer’s Manual FGETS(3P)

line_max = (limit < 0 || limit > MYLIMIT) ? MYLIMIT : (int)limit;
}

// line_max + 1 leaves room for the null byte added by fgets().
line = malloc(line_max + 1);
if (line == NULL) {

// out of space
...
return error;

}

while (fgets(line, line_max + 1, fp) != NULL) {
// Verify that a full line has been read ...
// If not, report an error or prepare to treat the
// next time through the loop as a read of a
// continuation of the current line.
...
// Process line ...
...

}
free(line);
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fgetc(), fopen(), fread(), fscanf(), getc(), getchar(), getdelim(),
gets(), ungetc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FGETWC(3P) POSIX Programmer’s Manual FGETWC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fgetwc — get a wide-character code from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fgetwc(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fgetwc() function shall obtain the next character (if present) from the input stream pointed to by
stream, convert that to the corresponding wide-character code, and advance the associated file position indi-
cator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is unspecified.

The fgetwc() function may mark the last data access timestamp of the file associated with stream for up-
date. The last data access timestamp shall be marked for update by the first successful execution of
fgetwc(), fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(), vwscanf(), or wscanf() using stream that re-
turns data not supplied by a prior call to ungetwc().

The fgetwc() function shall not change the setting of errno if successful.

RETURN VALUE
Upon successful completion, the fgetwc() function shall return the wide-character code of the character read
from the input stream pointed to by stream converted to a type wint_t. If the end-of-file indicator for the
stream is set, or if the stream is at end-of-file, the end-of-file indicator for the stream shall be set and
fgetwc() shall return WEOF. If a read error occurs, the error indicator for the stream shall be set, fgetwc()
shall return WEOF, and shall set errno to indicate the error. If an encoding error occurs, the error indicator
for the stream shall be set, fgetwc() shall return WEOF, and shall set errno to indicate the error.

ERRORS
The fgetwc() function shall fail if data needs to be read and:

EAGAIN
The O_NONBLOCK flag is set for the file descriptor underlying stream and the thread would be
delayed in the fgetwc() operation.

EBADF
The file descriptor underlying stream is not a valid file descriptor open for reading.

EILSEQ
The data obtained from the input stream does not form a valid character.

EINTR
The read operation was terminated due to the receipt of a signal, and no data was transferred.

EIO A physical I/O error has occurred, or the process is in a background process group attempting to
read from its controlling terminal, and either the calling thread is blocking SIGTTIN or the
process is ignoring SIGTTIN or the process group of the process is orphaned. This error may also
be generated for implementation-defined reasons.

EOVERFLOW
The file is a regular file and an attempt was made to read at or beyond the offset maximum associ-
ated with the corresponding stream.

IEEE/The Open Group 2017 1

FGETWC(3P) POSIX Programmer’s Manual FGETWC(3P)

The fgetwc() function may fail if:

ENOMEM
Insufficient storage space is available.

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an end-of-file
condition.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, feof(), ferror(), fopen()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FGETWS(3P) POSIX Programmer’s Manual FGETWS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fgetws — get a wide-character string from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wchar_t *fgetws(wchar_t *restrict ws, int n,
FILE *restrict stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fgetws() function shall read characters from the stream, convert these to the corresponding wide-char-
acter codes, place them in the wchar_t array pointed to by ws, until n−1 characters are read, or a <new-
line> is read, converted, and transferred to ws, or an end-of-file condition is encountered. The wide-charac-
ter string, ws, shall then be terminated with a null wide-character code.

If an error occurs, the resulting value of the file position indicator for the stream is unspecified.

The fgetws() function may mark the last data access timestamp of the file associated with stream for update.
The last data access timestamp shall be marked for update by the first successful execution of fgetwc(),
fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(), vwscanf(), or wscanf() using stream that returns data
not supplied by a prior call to ungetwc().

RETURN VALUE
Upon successful completion, fgetws() shall return ws. If the end-of-file indicator for the stream is set, or if
the stream is at end-of-file, the end-of-file indicator for the stream shall be set and fgetws() shall return a
null pointer. If a read error occurs, the error indicator for the stream shall be set, fgetws() shall return a null
pointer, and shall set errno to indicate the error.

ERRORS
Refer to fgetwc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), fread()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 1

FGETWS(3P) POSIX Programmer’s Manual FGETWS(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FILENO(3P) POSIX Programmer’s Manual FILENO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fileno — map a stream pointer to a file descriptor

SYNOPSIS
#include <stdio.h>

int fileno(FILE *stream);

DESCRIPTION
The fileno() function shall return the integer file descriptor associated with the stream pointed to by stream.

RETURN VALUE
Upon successful completion, fileno() shall return the integer value of the file descriptor associated with
stream. Otherwise, the value −1 shall be returned and errno set to indicate the error.

ERRORS
The fileno() function shall fail if:

EBADF
The stream is not associated with a file.

The fileno() function may fail if:

EBADF
The file descriptor underlying stream is not a valid file descriptor.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Without some specification of which file descriptors are associated with these streams, it is impossible for
an application to set up the streams for another application it starts with fork() and exec. In particular, it
would not be possible to write a portable version of the sh command interpreter (although there may be
other constraints that would prevent that portability).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5.1, Interaction of File Descriptors and Standard I/O Streams, dirfd(), fdopen(), fopen(), stdin

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FLOCKFILE(3P) POSIX Programmer’s Manual FLOCKFILE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
flockfile, ftrylockfile, funlockfile — stdio locking functions

SYNOPSIS
#include <stdio.h>

void flockfile(FILE *file);
int ftrylockfile(FILE *file);
void funlockfile(FILE *file);

DESCRIPTION
These functions shall provide for explicit application-level locking of stdio (FILE *) objects. These func-
tions can be used by a thread to delineate a sequence of I/O statements that are executed as a unit.

The flockfile() function shall acquire for a thread ownership of a (FILE *) object.

The ftrylockfile() function shall acquire for a thread ownership of a (FILE *) object if the object is avail-
able; ftrylockfile() is a non-blocking version of flockfile().

The funlockfile() function shall relinquish the ownership granted to the thread. The behavior is undefined if
a thread other than the current owner calls the funlockfile() function.

The functions shall behave as if there is a lock count associated with each (FILE *) object. This count is
implicitly initialized to zero when the (FILE *) object is created. The (FILE *) object is unlocked when
the count is zero. When the count is positive, a single thread owns the (FILE *) object. When the flockfile()
function is called, if the count is zero or if the count is positive and the caller owns the (FILE *) object, the
count shall be incremented. Otherwise, the calling thread shall be suspended, waiting for the count to return
to zero. Each call to funlockfile() shall decrement the count. This allows matching calls to flockfile() (or suc-
cessful calls to ftrylockfile()) and funlockfile() to be nested.

All functions that reference (FILE *) objects, except those with names ending in _unlocked , shall behave
as if they use flockfile() and funlockfile() internally to obtain ownership of these (FILE *) objects.

RETURN VALUE
None for flockfile() and funlockfile().

The ftrylockfile() function shall return zero for success and non-zero to indicate that the lock cannot be ac-
quired.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

A call to exit() can block until locked streams are unlocked because a thread having ownership of a
(FILE*) object blocks all function calls that reference that (FILE*) object (except those with names end-
ing in _unlocked) from other threads, including calls to exit().

RATIONALE
The flockfile() and funlockfile() functions provide an orthogonal mutual-exclusion lock for each FILE. The
ftrylockfile() function provides a non-blocking attempt to acquire a file lock, analogous to pthread_mu-

tex_trylock().

IEEE/The Open Group 2017 1

FLOCKFILE(3P) POSIX Programmer’s Manual FLOCKFILE(3P)

These locks behave as if they are the same as those used internally by stdio for thread-safety. This both
provides thread-safety of these functions without requiring a second level of internal locking and allows
functions in stdio to be implemented in terms of other stdio functions.

Application developers and implementors should be aware that there are potential deadlock problems on
FILE objects. For example, the line-buffered flushing semantics of stdio (requested via {_IOLBF}) require
that certain input operations sometimes cause the buffered contents of implementation-defined line-buffered
output streams to be flushed. If two threads each hold the lock on the other’s FILE, deadlock ensues. This
type of deadlock can be avoided by acquiring FILE locks in a consistent order. In particular, the line-
buffered output stream deadlock can typically be avoided by acquiring locks on input streams before locks
on output streams if a thread would be acquiring both.

In summary, threads sharing stdio streams with other threads can use flockfile() and funlockfile() to cause
sequences of I/O performed by a single thread to be kept bundled. The only case where the use of flockfile()
and funlockfile() is required is to provide a scope protecting uses of the *_unlocked functions/macros. This
moves the cost/performance tradeoff to the optimal point.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), getc_unlocked()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FLOOR(3P) POSIX Programmer’s Manual FLOOR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
floor, floorf, floorl — floor function

SYNOPSIS
#include <math.h>

double floor(double x);
float floorf(float x);
long double floorl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the largest integral value not greater than x.

RETURN VALUE
The result shall have the same sign as x.

Upon successful completion, these functions shall return the largest integral value not greater than x, ex-
pressed as a double, float, or long double, as appropriate for the return type of the function.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions might not be expressible as an intmax_t. The return value
should be tested before assigning it to an integer type to avoid the undefined results of an integer overflow.

These functions may raise the inexact floating-point exception if the result differs in value from the argu-
ment.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ceil(), feclearexcept(), fetestexcept(), isnan()

Section 4.20, Tr eatment of Error Conditions for Mathematical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

FLOOR(3P) POSIX Programmer’s Manual FLOOR(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FMA(3P) POSIX Programmer’s Manual FMA(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fma, fmaf, fmal — floating-point multiply-add

SYNOPSIS
#include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute (x * y) + z, rounded as one ternary operation: they shall compute the value
(as if) to infinite precision and round once to the result format, according to the rounding mode character-
ized by the value of FLT_ROUNDS.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return (x * y) + z, rounded as one ternary operation.

If the result overflows or underflows, a range error may occur. On systems that support the IEC 60559
Floating-Point option, if the result overflows a range error shall occur.

If x or y are NaN, a NaN shall be returned.

If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a domain error
shall occur, and either a NaN (if supported), or an implementation-defined value shall be returned.

If one of x and y is infinite, the other is zero, and z is not a NaN, a domain error shall occur, and either a
NaN (if supported), or an implementation-defined value shall be returned.

If one of x and y is infinite, the other is zero, and z is a NaN, a NaN shall be returned and a domain error
may occur.

If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The value of x*y+z is invalid, or the value x*y is invalid and z is not a NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

IEEE/The Open Group 2017 1

FMA(3P) POSIX Programmer’s Manual FMA(3P)

Domain Error
The value x*y is invalid and z is a NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
In many cases, clever use of floating (fused) multiply-add leads to much improved code; but its unexpected
use by the compiler can undermine carefully written code. The FP_CONTRACT macro can be used to dis-
allow use of floating multiply-add; and the fma() function guarantees its use where desired. Many current
machines provide hardware floating multiply-add instructions; software implementation can be used for
others.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FMAX(3P) POSIX Programmer’s Manual FMAX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fmax, fmaxf, fmaxl — determine maximum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall determine the maximum numeric value of their arguments. NaN arguments shall be
treated as missing data: if one argument is a NaN and the other numeric, then these functions shall choose
the numeric value.

RETURN VALUE
Upon successful completion, these functions shall return the maximum numeric value of their arguments.

If just one argument is a NaN, the other argument shall be returned.

If x and y are NaN, a NaN shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdim(), fmin()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FMEMOPEN(3P) POSIX Programmer’s Manual FMEMOPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fmemopen — open a memory buffer stream

SYNOPSIS
#include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t size,
const char *restrict mode);

DESCRIPTION
The fmemopen() function shall associate the buffer given by the buf and size arguments with a stream. The
buf argument shall be either a null pointer or point to a buffer that is at least size bytes long.

The mode argument points to a string. If the string is one of the following, the stream shall be opened in the
indicated mode. Otherwise, the behavior is undefined.

r Open the stream for reading.

w Open the stream for writing.

a Append; open the stream for writing at the first null byte.

r+ Open the stream for update (reading and writing).

w+ Open the stream for update (reading and writing). Truncate the buffer contents.

a+ Append; open the stream for update (reading and writing); the initial position is at the first null
byte.

Implementations shall accept all mode strings allowed by fopen(), but the use of the character ’b’ shall pro-
duce implementation-defined results, where the resulting FILE * need not behave the same as if ’b’ were
omitted.

If a null pointer is specified as the buf argument, fmemopen() shall allocate size bytes of memory as if by a
call to malloc(). This buffer shall be automatically freed when the stream is closed. Because this feature is
only useful when the stream is opened for updating (because there is no way to get a pointer to the buffer)
the fmemopen() call may fail if the mode argument does not include a ’+’.

The stream shall maintain a current position in the buffer. This position shall be initially set to either the be-
ginning of the buffer (for r and w modes) or to the first null byte in the buffer (for a modes). If no null byte
is found in append mode, the initial position shall be set to one byte after the end of the buffer.

If buf is a null pointer, the initial position shall always be set to the beginning of the buffer.

The stream shall also maintain the size of the current buffer contents; use of fseek() or fseeko() on the
stream with SEEK_END shall seek relative to this size. For modes r and r+ the size shall be set to the value
given by the size argument. For modes w and w+ the initial size shall be zero and for modes a and a+ the
initial size shall be:

* Zero, if buf is a null pointer

* The position of the first null byte in the buffer, if one is found

* The value of the size argument, if buf is not a null pointer and no null byte is found

A read operation on the stream shall not advance the current buffer position beyond the current buffer size.
Reaching the buffer size in a read operation shall count as ‘‘end-of-file’’. Null bytes in the buffer shall have
no special meaning for reads. The read operation shall start at the current buffer position of the stream.

A write operation shall start either at the current position of the stream (if mode has not specified ’a’ as the
first character) or at the current size of the stream (if mode had ’a’ as the first character). If the current posi-
tion at the end of the write is larger than the current buffer size, the current buffer size shall be set to the

IEEE/The Open Group 2017 1

FMEMOPEN(3P) POSIX Programmer’s Manual FMEMOPEN(3P)

current position. A write operation on the stream shall not advance the current buffer size beyond the size
given in the size argument.

When a stream open for writing is flushed or closed, a null byte shall be written at the current position or at
the end of the buffer, depending on the size of the contents. If a stream open for update is flushed or closed
and the last write has advanced the current buffer size, a null byte shall be written at the end of the buffer if
it fits.

An attempt to seek a memory buffer stream to a negative position or to a position larger than the buffer size
given in the size argument shall fail.

RETURN VALUE
Upon successful completion, fmemopen() shall return a pointer to the object controlling the stream. Other-
wise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
The fmemopen() function shall fail if:

EMFILE
{STREAM_MAX} streams are currently open in the calling process.

The fmemopen() function may fail if:

EINVAL
The value of the mode argument is not valid.

EINVAL
The buf argument is a null pointer and the mode argument does not include a ’+’ character.

EINVAL
The size argument specifies a buffer size of zero and the implementation does not support this.

ENOMEM
The buf argument is a null pointer and the allocation of a buffer of length size has failed.

EMFILE
{FOPEN_MAX} streams are currently open in the calling process.

The following sections are informative.

EXAMPLES
#include <stdio.h>
#include <string.h>

static char buffer[] = "foobar";

int
main (void)
{

int ch;
FILE *stream;

stream = fmemopen(buffer, strlen (buffer), "r");
if (stream == NULL)

/* handle error */;

while ((ch = fgetc(stream)) != EOF)
printf("Got %c\n", ch);

fclose(stream);
return (0);

}

This program produces the following output:

IEEE/The Open Group 2017 2

FMEMOPEN(3P) POSIX Programmer’s Manual FMEMOPEN(3P)

Got f
Got o
Got o
Got b
Got a
Got r

APPLICATION USAGE
None.

RATIONALE
This interface has been introduced to eliminate many of the errors encountered in the construction of
strings, notably overflowing of strings. This interface prevents overflow.

FUTURE DIRECTIONS
A future version of this standard may mandate specific behavior when the mode argument includes ’b’.

A future version of this standard may require support of zero-length buffer streams explicitly.

SEE ALSO
fdopen(), fopen(), freopen(), fseek(), malloc(), open_memstream()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

FMIN(3P) POSIX Programmer’s Manual FMIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fmin, fminf, fminl — determine minimum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall determine the minimum numeric value of their arguments. NaN arguments shall be
treated as missing data: if one argument is a NaN and the other numeric, then these functions shall choose
the numeric value.

RETURN VALUE
Upon successful completion, these functions shall return the minimum numeric value of their arguments.

If just one argument is a NaN, the other argument shall be returned.

If x and y are NaN, a NaN shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdim(), fmax()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FMOD(3P) POSIX Programmer’s Manual FMOD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fmod, fmodf, fmodl — floating-point remainder value function

SYNOPSIS
#include <math.h>

double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall return the floating-point remainder of the division of x by y.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
These functions shall return the value x−i*y, for some integer i such that, if y is non-zero, the result has the
same sign as x and magnitude less than the magnitude of y.

If the correct value would cause underflow, and is not representable, a range error may occur, and fmod(),
modf(), and fmodl() shall return 0.0, or (if the IEC 60559 Floating-Point option is not supported) an imple-
mentation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respec-
tively.

If x or y is NaN, a NaN shall be returned, and none of the conditions below shall be considered.

If y is zero, a domain error shall occur, and a NaN shall be returned.

If x is infinite, a domain error shall occur, and a NaN shall be returned.

If x is ±0 and y is not zero, ±0 shall be returned.

If x is not infinite and y is ±Inf, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The x argument is infinite or y is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

IEEE/The Open Group 2017 1

FMOD(3P) POSIX Programmer’s Manual FMOD(3P)

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan()

Section 4.20, Tr eatment of Error Conditions for Mathematical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FMTMSG(3P) POSIX Programmer’s Manual FMTMSG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fmtmsg — display a message in the specified format on standard error and/or a system console

SYNOPSIS
#include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

DESCRIPTION
The fmtmsg() function shall display messages in a specified format instead of the traditional printf() func-
tion.

Based on a message’s classification component, fmtmsg() shall write a formatted message either to standard
error, to the console, or to both.

A formatted message consists of up to five components as defined below. The component classification is
not part of a message displayed to the user, but defines the source of the message and directs the display of
the formatted message.

classification Contains the sum of identifying values constructed from the constants defined below. Any
one identifier from a subclass may be used in combination with a single identifier from a dif-
ferent subclass. Two or more identifiers from the same subclass should not be used together,
with the exception of identifiers from the display subclass. (Both display subclass identifiers
may be used so that messages can be displayed to both standard error and the system con-
sole.)

Major Classifications
Identifies the source of the condition. Identifiers are: MM_HARD (hardware),
MM_SOFT (software), and MM_FIRM (firmware).

Message Source Subclassifications
Identifies the type of software in which the problem is detected. Identifiers are:
MM_APPL (application), MM_UTIL (utility), and MM_OPSYS (operating system).

Display Subclassifications
Indicates where the message is to be displayed. Identifiers are: MM_PRINT to dis-
play the message on the standard error stream, MM_CONSOLE to display the mes-
sage on the system console. One or both identifiers may be used.

Status Subclassifications
Indicates whether the application can recover from the condition. Identifiers are:
MM_RECOVER (recoverable) and MM_NRECOV (non-recoverable).

An additional identifier, MM_NULLMC, indicates that no classification component is sup-
plied for the message.

label Identifies the source of the message. The format is two fields separated by a <colon>. The
first field is up to 10 bytes, the second is up to 14 bytes.

severity Indicates the seriousness of the condition. Identifiers for the levels of severity are:

MM_HALT Indicates that the application has encountered a severe fault and is halting.
Produces the string "HALT".

MM_ERROR
Indicates that the application has detected a fault. Produces the string "ER-
ROR".

IEEE/The Open Group 2017 1

FMTMSG(3P) POSIX Programmer’s Manual FMTMSG(3P)

MM_WARNING
Indicates a condition that is out of the ordinary, that might be a problem, and
should be watched. Produces the string "WARNING".

MM_INFO Provides information about a condition that is not in error. Produces the string
"INFO".

MM_NOSEV
Indicates that no severity level is supplied for the message.

text Describes the error condition that produced the message. The character string is not limited
to a specific size. If the character string is empty, then the text produced is unspecified.

action Describes the first step to be taken in the error-recovery process. The fmtmsg() function pre-
cedes the action string with the prefix: "TOFIX:". The action string is not limited to a spe-
cific size.

tag An identifier that references on-line documentation for the message. Suggested usage is that
tag includes the label and a unique identifying number. A sample tag is "XSI:cat:146".

The MSGVERB environment variable (for message verbosity) shall determine for fmtmsg() which message
components it is to select when writing messages to standard error. The value of MSGVERB shall be a
<colon>-separated list of optional keywords. Valid keywords are: label, severity, text, action, and tag. If
MSGVERB contains a keyword for a component and the component’s value is not the component’s null
value, fmtmsg() shall include that component in the message when writing the message to standard error. If
MSGVERB does not include a keyword for a message component, that component shall not be included in
the display of the message. The keywords may appear in any order. If MSGVERB is not defined, if its value
is the null string, if its value is not of the correct format, or if it contains keywords other than the valid ones
listed above, fmtmsg() shall select all components.

MSGVERB shall determine which components are selected for display to standard error. All message com-
ponents shall be included in console messages.

RETURN VALUE
The fmtmsg() function shall return one of the following values:

MM_OK The function succeeded.

MM_NOTOK
The function failed completely.

MM_NOMSG
The function was unable to generate a message on standard error, but otherwise succeeded.

MM_NOCON
The function was unable to generate a console message, but otherwise succeeded.

ERRORS
None.

The following sections are informative.

EXAMPLES
1. The following example of fmtmsg():

fmtmsg(MM_PRINT, "XSI:cat", MM_ERROR, "illegal option",
"refer to cat in user's reference manual", "XSI:cat:001")

produces a complete message in the specified message format:

XSI:cat: ERROR: illegal option
TO FIX: refer to cat in user's reference manual XSI:cat:001

IEEE/The Open Group 2017 2

FMTMSG(3P) POSIX Programmer’s Manual FMTMSG(3P)

2. When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and Example 1 is used, fmtmsg() produces:

ERROR: illegal option
TO FIX: refer to cat in user's reference manual

APPLICATION USAGE
One or more message components may be systematically omitted from messages generated by an applica-
tion by using the null value of the argument for that component.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf()

The Base Definitions volume of POSIX.1-2017, <fmtmsg.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

FNMATCH(3P) POSIX Programmer’s Manual FNMATCH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fnmatch — match a filename string or a pathname

SYNOPSIS
#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

DESCRIPTION
The fnmatch() function shall match patterns as described in the Shell and Utilities volume of
POSIX.1-2017, Section 2.13.1, Patterns Matching a Single Character and Section 2.13.2, Patterns Match-

ing Multiple Characters. It checks the string specified by the string argument to see if it matches the pat-
tern specified by the pattern argument.

The flags argument shall modify the interpretation of pattern and string. It is the bitwise-inclusive OR of
zero or more of the flags defined in <fnmatch.h>. If the FNM_PATHNAME flag is set in flags, then a
<slash> character (’/’) in string shall be explicitly matched by a <slash> in pattern; it shall not be matched
by either the <asterisk> or <question-mark> special characters, nor by a bracket expression. If the
FNM_PATHNAME flag is not set, the <slash> character shall be treated as an ordinary character.

If FNM_NOESCAPE is not set in flags, a <backslash> character in pattern followed by any other charac-
ter shall match that second character in string. In particular, "\\" shall match a <backslash> in string. If
pattern ends with an unescaped <backslash>, fnmatch() shall return a non-zero value (indicating either no
match or an error). If FNM_NOESCAPE is set, a <backslash> character shall be treated as an ordinary
character.

If FNM_PERIOD is set in flags, then a leading <period> (’.’) in string shall match a <period> in pattern;
as described by rule 2 in the Shell and Utilities volume of POSIX.1-2017, Section 2.13.3, Patterns Used for

Filename Expansion where the location of ‘‘leading’’ is indicated by the value of FNM_PATHNAME:

* If FNM_PATHNAME is set, a <period> is ‘‘leading’’ if it is the first character in string or if it immedi-
ately follows a <slash>.

* If FNM_PATHNAME is not set, a <period> is ‘‘leading’’ only if it is the first character of string.

If FNM_PERIOD is not set, then no special restrictions are placed on matching a period.

RETURN VALUE
If string matches the pattern specified by pattern, then fnmatch() shall return 0. If there is no match, fn-

match() shall return FNM_NOMATCH, which is defined in <fnmatch.h>. If an error occurs, fnmatch()
shall return another non-zero value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The fnmatch() function has two major uses. It could be used by an application or utility that needs to read a
directory and apply a pattern against each entry. The find utility is an example of this. It can also be used by
the pax utility to process its pattern operands, or by applications that need to match strings in a similar
manner.

The name fnmatch() is intended to imply filename match, rather than pathname match. The default action
of this function is to match filename strings, rather than pathnames, since it gives no special significance to
the <slash> character. With the FNM_PATHNAME flag, fnmatch() does match pathnames, but without tilde

IEEE/The Open Group 2017 1

FNMATCH(3P) POSIX Programmer’s Manual FNMATCH(3P)

expansion, parameter expansion, or special treatment for a <period> at the beginning of a filename.

RATIONALE
This function replaced the REG_FILENAME flag of regcomp() in early proposals of this volume of
POSIX.1-2017. It provides virtually the same functionality as the regcomp() and regexec() functions using
the REG_FILENAME and REG_FSLASH flags (the REG_FSLASH flag was proposed for regcomp(), and
would have had the opposite effect from FNM_PATHNAME), but with a simpler function and less system
overhead.

FUTURE DIRECTIONS
None.

SEE ALSO
glob(), Section 2.6, Word Expansions

The Base Definitions volume of POSIX.1-2017, <fnmatch.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FOPEN(3P) POSIX Programmer’s Manual FOPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *restrict pathname, const char *restrict mode);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fopen() function shall open the file whose pathname is the string pointed to by pathname, and asso-
ciates a stream with it.

The mode argument points to a string. If the string is one of the following, the file shall be opened in the in-
dicated mode. Otherwise, the behavior is undefined.

r or rb Open file for reading.

w or wb Truncate to zero length or create file for writing.

a or ab Append; open or create file for writing at end-of-file.

r+ or rb+ or r+b

Open file for update (reading and writing).

w+ or wb+ or w+b

Truncate to zero length or create file for update.

a+ or ab+ or a+b

Append; open or create file for update, writing at end-of-file.

The character ’b’ shall have no effect, but is allowed for ISO C standard conformance. Opening a file with
read mode (r as the first character in the mode argument) shall fail if the file does not exist or cannot be
read.

Opening a file with append mode (a as the first character in the mode argument) shall cause all subsequent
writes to the file to be forced to the then current end-of-file, regardless of intervening calls to fseek().

When a file is opened with update mode (’+’ as the second or third character in the mode argument), both
input and output may be performed on the associated stream. However, the application shall ensure that
output is not directly followed by input without an intervening call to fflush() or to a file positioning func-
tion (fseek(), fsetpos(), or re wind()), and input is not directly followed by output without an intervening call
to a file positioning function, unless the input operation encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an interactive de-
vice. The error and end-of-file indicators for the stream shall be cleared.

If mode is w, wb, a, ab, w+, wb+, w+b, a+, ab+, or a+b, and the file did not previously exist, upon success-
ful completion, fopen() shall mark for update the last data access, last data modification, and last file status
change timestamps of the file and the last file status change and last data modification timestamps of the
parent directory.

If mode is w, wb, a, ab, w+, wb+, w+b, a+, ab+, or a+b, and the file did not previously exist, the fopen()
function shall create a file as if it called the creat() function with a value appropriate for the path argument
interpreted from pathname and a value of S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH |
S_IWOTH for the mode argument.

If mode is w, wb, w+, wb+, or w+b, and the file did previously exist, upon successful completion, fopen()

IEEE/The Open Group 2017 1

FOPEN(3P) POSIX Programmer’s Manual FOPEN(3P)

shall mark for update the last data modification and last file status change timestamps of the file.

After a successful call to the fopen() function, the orientation of the stream shall be cleared, the encoding
rule shall be cleared, and the associated mbstate_t object shall be set to describe an initial conversion state.

The file descriptor associated with the opened stream shall be allocated and opened as if by a call to open()
with the following flags:

center box tab(!); cB | cB l | l. fopen() Mode!open() Flags _ r or rb!O_RDONLY w or
wb!O_WRONLY|O_CREAT|O_TRUNC a or ab!O_WRONLY|O_CREAT|O_APPEND r+ or rb+ or
r+b!O_RDWR w+ or wb+ or w+b!O_RDWR|O_CREAT|O_TRUNC a+ or ab+ or
a+b!O_RDWR|O_CREAT|O_APPEND

RETURN VALUE
Upon successful completion, fopen() shall return a pointer to the object controlling the stream. Otherwise, a
null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
The fopen() function shall fail if:

EACCES
Search permission is denied on a component of the path prefix, or the file exists and the permis-
sions specified by mode are denied, or the file does not exist and write permission is denied for the
parent directory of the file to be created.

EINTR
A signal was caught during fopen().

EISDIR
The named file is a directory and mode requires write access.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

EMFILE
All file descriptors available to the process are currently open.

EMFILE
{STREAM_MAX} streams are currently open in the calling process.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENFILE
The maximum allowable number of files is currently open in the system.

ENOENT
The mode string begins with ’r’ and a component of pathname does not name an existing file, or
mode begins with ’w’ or ’a’ and a component of the path prefix of pathname does not name an ex-
isting file, or pathname is an empty string.

ENOENT or ENOTDIR
The pathname argument contains at least one non-<slash> character and ends with one or more
trailing <slash> characters. If pathname without the trailing <slash> characters would name an ex-
isting file, an [ENOENT] error shall not occur.

ENOSPC
The directory or file system that would contain the new file cannot be expanded, the file does not
exist, and the file was to be created.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the pathname argument contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname component names an existing

IEEE/The Open Group 2017 2

FOPEN(3P) POSIX Programmer’s Manual FOPEN(3P)

file that is neither a directory nor a symbolic link to a directory.

ENXIO
The named file is a character special or block special file, and the device associated with this spe-
cial file does not exist.

EOVERFLOW
The named file is a regular file and the size of the file cannot be represented correctly in an object
of type off_t.

EROFS
The named file resides on a read-only file system and mode requires write access.

The fopen() function may fail if:

EINVAL
The value of the mode argument is not valid.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

EMFILE
{FOPEN_MAX} streams are currently open in the calling process.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOMEM
Insufficient storage space is available.

ETXTBSY
The file is a pure procedure (shared text) file that is being executed and mode requires write ac-
cess.

The following sections are informative.

EXAMPLES
Opening a File

The following example tries to open the file named file for reading. The fopen() function returns a file
pointer that is used in subsequent fgets() and fclose() calls. If the program cannot open the file, it just ig-
nores it.

#include <stdio.h>
...
FILE *fp;
...
void rgrep(const char *file)
{
...

if ((fp = fopen(file, "r")) == NULL)
return;

...
}

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 3

FOPEN(3P) POSIX Programmer’s Manual FOPEN(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, creat(), fclose(), fdopen(), fmemopen(), freopen(), open_mem-

stream()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

FORK(3P) POSIX Programmer’s Manual FORK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fork — create a new process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
The fork() function shall create a new process. The new process (child process) shall be an exact copy of
the calling process (parent process) except as detailed below:

* The child process shall have a unique process ID.

* The child process ID also shall not match any active process group ID.

* The child process shall have a different parent process ID, which shall be the process ID of the calling
process.

* The child process shall have its own copy of the parent’s file descriptors. Each of the child’s file de-
scriptors shall refer to the same open file description with the corresponding file descriptor of the par-
ent.

* The child process shall have its own copy of the parent’s open directory streams. Each open directory
stream in the child process may share directory stream positioning with the corresponding directory
stream of the parent.

* The child process shall have its own copy of the parent’s message catalog descriptors.

* The child process values of tms_utime, tms_stime, tms_cutime, and tms_cstime shall be set to 0.

* The time left until an alarm clock signal shall be reset to zero, and the alarm, if any, shall be canceled;
see alarm().

* All semadj values shall be cleared.

* File locks set by the parent process shall not be inherited by the child process.

* The set of signals pending for the child process shall be initialized to the empty set.

* Interval timers shall be reset in the child process.

* Any semaphores that are open in the parent process shall also be open in the child process.

* The child process shall not inherit any address space memory locks established by the parent process
via calls to mlockall() or mlock().

* Memory mappings created in the parent shall be retained in the child process. MAP_PRIVATE map-
pings inherited from the parent shall also be MAP_PRIVATE mappings in the child, and any modifica-
tions to the data in these mappings made by the parent prior to calling fork() shall be visible to the
child. Any modifications to the data in MAP_PRIVATE mappings made by the parent after fork() re-
turns shall be visible only to the parent. Modifications to the data in MAP_PRIVATE mappings made
by the child shall be visible only to the child.

* For the SCHED_FIFO and SCHED_RR scheduling policies, the child process shall inherit the policy
and priority settings of the parent process during a fork() function. For other scheduling policies, the
policy and priority settings on fork() are implementation-defined.

* Per-process timers created by the parent shall not be inherited by the child process.

* The child process shall have its own copy of the message queue descriptors of the parent. Each of the
message descriptors of the child shall refer to the same open message queue description as the corre-
sponding message descriptor of the parent.

IEEE/The Open Group 2017 1

FORK(3P) POSIX Programmer’s Manual FORK(3P)

* No asynchronous input or asynchronous output operations shall be inherited by the child process. Any
use of asynchronous control blocks created by the parent produces undefined behavior.

* A process shall be created with a single thread. If a multi-threaded process calls fork(), the new
process shall contain a replica of the calling thread and its entire address space, possibly including the
states of mutexes and other resources. Consequently, to avoid errors, the child process may only exe-
cute async-signal-safe operations until such time as one of the exec functions is called.

When the application calls fork() from a signal handler and any of the fork handlers registered by
pthread_atfork() calls a function that is not async-signal-safe, the behavior is undefined.

* If the Trace option and the Trace Inherit option are both supported:

If the calling process was being traced in a trace stream that had its inheritance policy set to
POSIX_TRACE_INHERITED, the child process shall be traced into that trace stream, and the child
process shall inherit the parent’s mapping of trace event names to trace event type identifiers. If the
trace stream in which the calling process was being traced had its inheritance policy set to
POSIX_TRACE_CLOSE_FOR_CHILD, the child process shall not be traced into that trace stream.
The inheritance policy is set by a call to the posix_trace_attr_setinherited() function.

* If the Trace option is supported, but the Trace Inherit option is not supported:

The child process shall not be traced into any of the trace streams of its parent process.

* If the Trace option is supported, the child process of a trace controller process shall not control the
trace streams controlled by its parent process.

* The initial value of the CPU-time clock of the child process shall be set to zero.

* The initial value of the CPU-time clock of the single thread of the child process shall be set to zero.

All other process characteristics defined by POSIX.1-2008 shall be the same in the parent and child pro-
cesses. The inheritance of process characteristics not defined by POSIX.1-2008 is unspecified by
POSIX.1-2008.

After fork(), both the parent and the child processes shall be capable of executing independently before ei-
ther one terminates.

RETURN VALUE
Upon successful completion, fork() shall return 0 to the child process and shall return the process ID of the
child process to the parent process. Both processes shall continue to execute from the fork() function. Oth-
erwise, −1 shall be returned to the parent process, no child process shall be created, and errno shall be set
to indicate the error.

ERRORS
The fork() function shall fail if:

EAGAIN
The system lacked the necessary resources to create another process, or the system-imposed limit
on the total number of processes under execution system-wide or by a single user {CHILD_MAX}
would be exceeded.

The fork() function may fail if:

ENOMEM
Insufficient storage space is available.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

IEEE/The Open Group 2017 2

FORK(3P) POSIX Programmer’s Manual FORK(3P)

RATIONALE
Many historical implementations have timing windows where a signal sent to a process group (for example,
an interactive SIGINT) just prior to or during execution of fork() is delivered to the parent following the
fork() but not to the child because the fork() code clears the child’s set of pending signals. This volume of
POSIX.1-2017 does not require, or even permit, this behavior. Howev er, it is pragmatic to expect that prob-
lems of this nature may continue to exist in implementations that appear to conform to this volume of
POSIX.1-2017 and pass available verification suites. This behavior is only a consequence of the implemen-
tation failing to make the interval between signal generation and delivery totally invisible. From the appli-
cation’s perspective, a fork() call should appear atomic. A signal that is generated prior to the fork() should
be delivered prior to the fork(). A signal sent to the process group after the fork() should be delivered to
both parent and child. The implementation may actually initialize internal data structures corresponding to
the child’s set of pending signals to include signals sent to the process group during the fork(). Since the
fork() call can be considered as atomic from the application’s perspective, the set would be initialized as
empty and such signals would have arrived after the fork(); see also <signal.h>.

One approach that has been suggested to address the problem of signal inheritance across fork() is to add an
[EINTR] error, which would be returned when a signal is detected during the call. While this is preferable
to losing signals, it was not considered an optimal solution. Although it is not recommended for this pur-
pose, such an error would be an allowable extension for an implementation.

The [ENOMEM] error value is reserved for those implementations that detect and distinguish such a con-
dition. This condition occurs when an implementation detects that there is not enough memory to create the
process. This is intended to be returned when [EAGAIN] is inappropriate because there can never be
enough memory (either primary or secondary storage) to perform the operation. Since fork() duplicates an
existing process, this must be a condition where there is sufficient memory for one such process, but not for
two. Many historical implementations actually return [ENOMEM] due to temporary lack of memory, a
case that is not generally distinct from [EAGAIN] from the perspective of a conforming application.

Part of the reason for including the optional error [ENOMEM] is because the SVID specifies it and it
should be reserved for the error condition specified there. The condition is not applicable on many imple-
mentations.

IEEE Std 1003.1-1988 neglected to require concurrent execution of the parent and child of fork(). A sys-
tem that single-threads processes was clearly not intended and is considered an unacceptable ‘‘toy imple-
mentation’’ of this volume of POSIX.1-2017. The only objection anticipated to the phrase ‘‘executing in-
dependently’’ is testability, but this assertion should be testable. Such tests require that both the parent and
child can block on a detectable action of the other, such as a write to a pipe or a signal. An interactive ex-
change of such actions should be possible for the system to conform to the intent of this volume of
POSIX.1-2017.

The [EAGAIN] error exists to warn applications that such a condition might occur. Whether it occurs or
not is not in any practical sense under the control of the application because the condition is usually a con-
sequence of the user’s use of the system, not of the application’s code. Thus, no application can or should
rely upon its occurrence under any circumstances, nor should the exact semantics of what concept of
‘‘user’’ is used be of concern to the application developer. Validation writers should be cognizant of this
limitation.

There are two reasons why POSIX programmers call fork(). One reason is to create a new thread of control
within the same program (which was originally only possible in POSIX by creating a new process); the
other is to create a new process running a different program. In the latter case, the call to fork() is soon fol-
lowed by a call to one of the exec functions.

The general problem with making fork() work in a multi-threaded world is what to do with all of the
threads. There are two alternatives. One is to copy all of the threads into the new process. This causes the
programmer or implementation to deal with threads that are suspended on system calls or that might be
about to execute system calls that should not be executed in the new process. The other alternative is to
copy only the thread that calls fork(). This creates the difficulty that the state of process-local resources is
usually held in process memory. If a thread that is not calling fork() holds a resource, that resource is never
released in the child process because the thread whose job it is to release the resource does not exist in the

IEEE/The Open Group 2017 3

FORK(3P) POSIX Programmer’s Manual FORK(3P)

child process.

When a programmer is writing a multi-threaded program, the first described use of fork(), creating new
threads in the same program, is provided by the pthread_create() function. The fork() function is thus used
only to run new programs, and the effects of calling functions that require certain resources between the
call to fork() and the call to an exec function are undefined.

The addition of the forkall() function to the standard was considered and rejected. The forkall() function
lets all the threads in the parent be duplicated in the child. This essentially duplicates the state of the parent
in the child. This allows threads in the child to continue processing and allows locks and the state to be pre-
served without explicit pthread_atfork() code. The calling process has to ensure that the threads processing
state that is shared between the parent and child (that is, file descriptors or MAP_SHARED memory) be-
haves properly after forkall(). For example, if a thread is reading a file descriptor in the parent when
forkall() is called, then two threads (one in the parent and one in the child) are reading the file descriptor af-
ter the forkall(). If this is not desired behavior, the parent process has to synchronize with such threads be-
fore calling forkall().

While the fork() function is async-signal-safe, there is no way for an implementation to determine whether
the fork handlers established by pthread_atfork() are async-signal-safe. The fork handlers may attempt to
execute portions of the implementation that are not async-signal-safe, such as those that are protected by
mutexes, leading to a deadlock condition. It is therefore undefined for the fork handlers to execute func-
tions that are not async-signal-safe when fork() is called from a signal handler.

When forkall() is called, threads, other than the calling thread, that are in functions that can return with an
[EINTR] error may have those functions return [EINTR] if the implementation cannot ensure that the
function behaves correctly in the parent and child. In particular, pthread_cond_wait() and
pthread_cond_timedwait() need to return in order to ensure that the condition has not changed. These func-
tions can be awakened by a spurious condition wakeup rather than returning [EINTR].

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fcntl(), posix_trace_attr_getinherited(), posix_trace_eventid_equal(), pthread_atfork(),
semop(), signal(), times()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <sys_types.h>,
<unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

FPATHCONF(3P) POSIX Programmer’s Manual FPATHCONF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fpathconf, pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long fpathconf(int fildes, int name);
long pathconf(const char *path, int name);

DESCRIPTION
The fpathconf() and pathconf() functions shall determine the current value of a configurable limit or option
(variable) that is associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory.

For fpathconf(), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or directory. Implementations
shall support all of the variables listed in the following table and may support others. The variables in the
following table come from <limits.h> or <unistd.h> and the symbolic constants, defined in <unistd.h>, are
the corresponding values used for name.

center box tab(!); cB | cB | cB l | l | l. Variable!Value of name!Requirements _ {FILE-
SIZEBITS}!_PC_FILESIZEBITS!4, 7 {LINK_MAX}!_PC_LINK_MAX!1
{MAX_CANON}!_PC_MAX_CANON!2 {MAX_INPUT}!_PC_MAX_INPUT!2
{NAME_MAX}!_PC_NAME_MAX!3, 4 {PATH_MAX}!_PC_PATH_MAX!4, 5
{PIPE_BUF}!_PC_PIPE_BUF!6 {POSIX2_SYMLINKS}!_PC_2_SYMLINKS!4 {POSIX_AL-
LOC_SIZE_MIN}!_PC_ALLOC_SIZE_MIN!10
{POSIX_REC_INCR_XFER_SIZE}!_PC_REC_INCR_XFER_SIZE!10
{POSIX_REC_MAX_XFER_SIZE}!_PC_REC_MAX_XFER_SIZE!10
{POSIX_REC_MIN_XFER_SIZE}!_PC_REC_MIN_XFER_SIZE!10
{POSIX_REC_XFER_ALIGN}!_PC_REC_XFER_ALIGN!10 {SYMLINK_MAX}!_PC_SYM-
LINK_MAX!4, 9 _POSIX_CHOWN_RESTRICTED!_PC_CHOWN_RESTRICTED!7
_POSIX_NO_TRUNC!_PC_NO_TRUNC!3, 4 _POSIX_VDISABLE!_PC_VDISABLE!2
_POSIX_ASYNC_IO!_PC_ASYNC_IO!8 _POSIX_PRIO_IO!_PC_PRIO_IO!8
_POSIX_SYNC_IO!_PC_SYNC_IO!8 _POSIX_TIMESTAMP_RESOLUTION!_PC_TIME-
STAMP_RESOLUTION!1

Requirements
1. If path or fildes refers to a directory, the value returned shall apply to the directory itself.

2. If path or fildes does not refer to a terminal file, it is unspecified whether an implementation supports
an association of the variable name with the specified file.

3. If path or fildes refers to a directory, the value returned shall apply to filenames within the directory.

4. If path or fildes does not refer to a directory, it is unspecified whether an implementation supports an
association of the variable name with the specified file.

5. If path or fildes refers to a directory, the value returned shall be the maximum length of a relative
pathname that would not cross any mount points when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned shall apply to the refer-
enced object. If path or fildes refers to a directory, the value returned shall apply to any FIFO that ex-
ists or can be created within the directory. If path or fildes refers to any other type of file, it is unspeci-
fied whether an implementation supports an association of the variable name with the specified file.

IEEE/The Open Group 2017 1

FPATHCONF(3P) POSIX Programmer’s Manual FPATHCONF(3P)

7. If path or fildes refers to a directory, the value returned shall apply to any files, other than directories,
that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an implementation supports an associa-
tion of the variable name with the specified file.

9. If path or fildes refers to a directory, the value returned shall be the maximum length of the string that
a symbolic link in that directory can contain.

10. If path or fildes des does not refer to a regular file, it is unspecified whether an implementation sup-
ports an association of the variable name with the specified file. If an implementation supports such an
association for other than a regular file, the value returned is unspecified.

RETURN VALUE
If name is an invalid value, both pathconf() and fpathconf() shall return −1 and set errno to indicate the er-
ror.

If the variable corresponding to name is described in <limits.h> as a maximum or minimum value and the
variable has no limit for the path or file descriptor, both pathconf() and fpathconf() shall return −1 without
changing errno. Note that indefinite limits do not imply infinite limits; see <limits.h>.

If the implementation needs to use path to determine the value of name and the implementation does not
support the association of name with the file specified by path, or if the process did not have appropriate
privileges to query the file specified by path, or path does not exist, pathconf() shall return −1 and set er-

rno to indicate the error.

If the implementation needs to use fildes to determine the value of name and the implementation does not
support the association of name with the file specified by fildes, or if fildes is an invalid file descriptor,
fpathconf() shall return −1 and set errno to indicate the error.

Otherwise, pathconf() or fpathconf() shall return the current variable value for the file or directory without
changing errno. The value returned shall not be more restrictive than the corresponding value available to
the application when it was compiled with the implementation’s <limits.h> or <unistd.h>.

If the variable corresponding to name is dependent on an unsupported option, the results are unspecified.

ERRORS
The pathconf() function shall fail if:

EINVAL
The value of name is not valid.

EOVERFLOW
The value of name is _PC_TIMESTAMP_RESOLUTION and the resolution is larger than
{LONG_MAX}.

The pathconf() function may fail if:

EACCES
Search permission is denied for a component of the path prefix.

EINVAL
The implementation does not support an association of the variable name with the specified file.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

IEEE/The Open Group 2017 2

FPATHCONF(3P) POSIX Programmer’s Manual FPATHCONF(3P)

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The fpathconf() function shall fail if:

EINVAL
The value of name is not valid.

EOVERFLOW
The value of name is _PC_TIMESTAMP_RESOLUTION and the resolution is larger than
{LONG_MAX}.

The fpathconf() function may fail if:

EBADF
The fildes argument is not a valid file descriptor.

EINVAL
The implementation does not support an association of the variable name with the specified file.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Application developers should check whether an option, such as _POSIX_ADVISORY_INFO, is supported
prior to obtaining and using values for related variables such as {POSIX_ALLOC_SIZE_MIN}.

RATIONALE
The pathconf() function was proposed immediately after the sysconf() function when it was realized that
some configurable values may differ across file system, directory, or device boundaries.

For example, {NAME_MAX} frequently changes between System V and BSD-based file systems; System
V uses a maximum of 14, BSD 255. On an implementation that provides both types of file systems, an ap-
plication would be forced to limit all pathname components to 14 bytes, as this would be the value specified
in <limits.h> on such a system.

Therefore, various useful values can be queried on any pathname or file descriptor, assuming that appropri-
ate privileges are in place.

The value returned for the variable {PATH_MAX} indicates the longest relative pathname that could be
given if the specified directory is the current working directory of the process. A process may not always be
able to generate a name that long and use it if a subdirectory in the pathname crosses into a more restrictive
file system. Note that implementations are allowed to accept pathnames longer than {PATH_MAX} bytes
long, but are not allowed to return pathnames longer than this unless the user specifies a larger buffer using
a function that provides a buffer size argument.

The value returned for the variable _POSIX_CHOWN_RESTRICTED also applies to directories that do
not have file systems mounted on them. The value may change when crossing a mount point, so applica-
tions that need to know should check for each directory. (An even easier check is to try the chown() func-
tion and look for an error in case it happens.)

Unlike the values returned by sysconf(), the pathname-oriented variables are potentially more volatile and
are not guaranteed to remain constant throughout the lifetime of the process. For example, in between two

IEEE/The Open Group 2017 3

FPATHCONF(3P) POSIX Programmer’s Manual FPATHCONF(3P)

calls to pathconf(), the file system in question may have been unmounted and remounted with different
characteristics.

Also note that most of the errors are optional. If one of the variables always has the same value on an im-
plementation, the implementation need not look at path or fildes to return that value and is, therefore, not
required to detect any of the errors except the meaning of [EINVAL] that indicates that the value of name is
not valid for that variable, and the [EOVERFLOW] error that indicates the value to be returned is larger
than {LONG_MAX}.

If the value of any of the limits is unspecified (logically infinite), they will not be defined in <limits.h> and
the pathconf() and fpathconf() functions return −1 without changing errno. This can be distinguished from
the case of giving an unrecognized name argument because errno is set to [EINVAL] in this case.

Since −1 is a valid return value for the pathconf() and fpathconf() functions, applications should set errno to
zero before calling them and check errno only if the return value is −1.

For the case of {SYMLINK_MAX}, since both pathconf() and open() follow symbolic links, there is no
way that path or fildes could refer to a symbolic link.

It was the intention of IEEE Std 1003.1d-1999 that the following variables:

{POSIX_ALLOC_SIZE_MIN} {POSIX_REC_INCR_XFER_SIZE}
{POSIX_REC_MAX_XFER_SIZE} {POSIX_REC_MIN_XFER_SIZE}
{POSIX_REC_XFER_ALIGN}

only applied to regular files, but Note 10 also permits implementation of the advisory semantics on other
file types unique to an implementation (for example, a character special device).

The [EOVERFLOW] error for _PC_TIMESTAMP_RESOLUTION cannot occur on POSIX-compliant file
systems because POSIX requires a timestamp resolution no larger than one second. Even on 32-bit systems,
this can be represented without overflow.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), confstr(), sysconf()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <unistd.h>

The Shell and Utilities volume of POSIX.1-2017, getconf

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

FPCLASSIFY(3P) POSIX Programmer’s Manual FPCLASSIFY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fpclassify — classify real floating type

SYNOPSIS
#include <math.h>

int fpclassify(real-floating x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fpclassify() macro shall classify its argument value as NaN, infinite, normal, subnormal, zero, or into
another implementation-defined category. First, an argument represented in a format wider than its seman-
tic type is converted to its semantic type. Then classification is based on the type of the argument.

RETURN VALUE
The fpclassify() macro shall return the value of the number classification macro appropriate to the value of
its argument.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isfinite(), isinf(), isnan(), isnormal(), signbit()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
dprintf, fprintf, printf, snprintf, sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int dprintf(int fildes, const char *restrict format, ...);
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int printf(const char *restrict format, ...);
int snprintf(char *restrict s, size_t n,

const char *restrict format, ...);
int sprintf(char *restrict s, const char *restrict format, ...);

DESCRIPTION
Excluding dprintf(): The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is unintentional. This volume
of POSIX.1-2017 defers to the ISO C standard.

The fprintf() function shall place output on the named output stream. The printf() function shall place out-
put on the standard output stream stdout. The sprintf() function shall place output followed by the null
byte, ’\0’, in consecutive bytes starting at *s; it is the user’s responsibility to ensure that enough space is
available.

The dprintf() function shall be equivalent to the fprintf() function, except that dprintf() shall write output to
the file associated with the file descriptor specified by the fildes argument rather than place output on a
stream.

The snprintf() function shall be equivalent to sprintf(), with the addition of the n argument which states the
size of the buffer referred to by s. If n is zero, nothing shall be written and s may be a null pointer. Other-
wise, output bytes beyond the n-1st shall be discarded instead of being written to the array, and a null byte
is written at the end of the bytes actually written into the array.

If copying takes place between objects that overlap as a result of a call to sprintf() or snprintf(), the results
are undefined.

Each of these functions converts, formats, and prints its arguments under control of the format. The for-

mat is a character string, beginning and ending in its initial shift state, if any. The format is composed of
zero or more directives: ordinary characters, which are simply copied to the output stream, and conversion

specifications, each of which shall result in the fetching of zero or more arguments. The results are unde-
fined if there are insufficient arguments for the format. If the format is exhausted while arguments remain,
the excess arguments shall be evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather than to the next
unused argument. In this case, the conversion specifier character % (see below) is replaced by the sequence
"%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}], giving the position of the argument
in the argument list. This feature provides for the definition of format strings that select arguments in an or-
der appropriate to specific languages (see the EXAMPLES section).

The format can contain either numbered argument conversion specifications (that is, "%n$" and "*m$"), or
unnumbered argument conversion specifications (that is, % and *), but not both. The only exception to this
is that %% can be mixed with the "%n$" form. The results of mixing numbered and unnumbered argument
specifications in a format string are undefined. When numbered argument specifications are used, specify-
ing the N th argument requires that all the leading arguments, from the first to the (N−1)th, are specified in
the format string.

In format strings containing the "%n$" form of conversion specification, numbered arguments in the argu-
ment list can be referenced from the format string as many times as required.

IEEE/The Open Group 2017 1

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

In format strings containing the % form of conversion specification, each conversion specification uses the
first unused argument in the argument list.

All forms of the fprintf() functions allow for the insertion of a language-dependent radix character in the
output string. The radix character is defined in the current locale (category LC_NUMERIC). In the POSIX
locale, or in a locale where the radix character is not defined, the radix character shall default to a <period>
(’.’).

Each conversion specification is introduced by the ’%’ character or by the character sequence "%n$", after
which the following appear in sequence:

* Zero or more flags (in any order), which modify the meaning of the conversion specification.

* An optional minimum field width. If the converted value has fewer bytes than the field width, it shall
be padded with <space> characters by default on the left; it shall be padded on the right if the left-ad-
justment flag (’−’), described below, is giv en to the field width. The field width takes the form of an
<asterisk> (’*’), described below, or a decimal integer.

* An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X
conversion specifiers; the number of digits to appear after the radix character for the a, A, e, E, f, and
F conversion specifiers; the maximum number of significant digits for the g and G conversion speci-
fiers; or the maximum number of bytes to be printed from a string in the s and S conversion specifiers.
The precision takes the form of a <period> (’.’) followed either by an <asterisk> (’*’), described be-
low, or an optional decimal digit string, where a null digit string is treated as zero. If a precision ap-
pears with any other conversion specifier, the behavior is undefined.

* An optional length modifier that specifies the size of the argument.

* A conversion specifier character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an <asterisk> (’*’). In this case an argument of
type int supplies the field width or precision. Applications shall ensure that arguments specifying field
width, or precision, or both appear in that order before the argument, if any, to be converted. A negative
field width is taken as a ’−’ flag followed by a positive field width. A negative precision is taken as if the
precision were omitted. In format strings containing the "%n$" form of a conversion specification, a field
width or precision may be indicated by the sequence "*m$", where m is a decimal integer in the range
[1,{NL_ARGMAX}] giving the position in the argument list (after the format argument) of an integer ar-
gument containing the field width or precision, for example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The flag characters and their meanings are:

' (The <apostrophe>.) The integer portion of the result of a decimal conversion (%i, %d, %u,
%f, %F, %g, or %G) shall be formatted with thousands’ grouping characters. For other conver-
sions the behavior is undefined. The non-monetary grouping character is used.

− The result of the conversion shall be left-justified within the field. The conversion is right-justi-
fied if this flag is not specified.

+ The result of a signed conversion shall always begin with a sign (’+’ or ’−’). The conversion
shall begin with a sign only when a negative value is converted if this flag is not specified.

<space> If the first character of a signed conversion is not a sign or if a signed conversion results in no
characters, a <space> shall be prefixed to the result. This means that if the <space> and ’+’ flags
both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it shall in-
crease the precision, if and only if necessary, to force the first digit of the result to be a zero (if the
value and precision are both 0, a single 0 is printed). For x or X conversion specifiers, a non-zero
result shall have 0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G conversion specifiers, the
result shall always contain a radix character, even if no digits follow the radix character. Without

IEEE/The Open Group 2017 2

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

this flag, a radix character appears in the result of these conversions only if a digit follows it. For
g and G conversion specifiers, trailing zeros shall not be removed from the result as they nor-
mally are. For other conversion specifiers, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversion specifiers, leading zeros (following any
indication of sign or base) are used to pad to the field width rather than performing space pad-
ding, except when converting an infinity or NaN. If the ’0’ and ’−’ flags both appear, the ’0’ flag
is ignored. For d, i, o, u, x, and X conversion specifiers, if a precision is specified, the ’0’ flag
shall be ignored. If the ’0’ and <apostrophe> flags both appear, the grouping characters are in-
serted before zero padding. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char or un-
signed char argument (the argument will have been promoted according to the integer promo-
tions, but its value shall be converted to signed char or unsigned char before printing); or that a
following n conversion specifier applies to a pointer to a signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short or unsigned
short argument (the argument will have been promoted according to the integer promotions, but
its value shall be converted to short or unsigned short before printing); or that a following n
conversion specifier applies to a pointer to a short argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long or unsigned
long argument; that a following n conversion specifier applies to a pointer to a long argument;
that a following c conversion specifier applies to a wint_t argument; that a following s conversion
specifier applies to a pointer to a wchar_t argument; or has no effect on a following a, A, e, E, f,
F, g, or G conversion specifier.

ll (ell-ell)
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long or un-
signed long long argument; or that a following n conversion specifier applies to a pointer to a
long long argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t or uint-
max_t argument; or that a following n conversion specifier applies to a pointer to an intmax_t ar-
gument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the corre-
sponding signed integer type argument; or that a following n conversion specifier applies to a
pointer to a signed integer type corresponding to a size_t argument.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or the cor-
responding unsigned type argument; or that a following n conversion specifier applies to a
pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long double ar-
gument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is un-
defined.

The conversion specifiers and their meanings are:

d, i The int argument shall be converted to a signed decimal in the style "[−]dddd". The precision
specifies the minimum number of digits to appear; if the value being converted can be represented
in fewer digits, it shall be expanded with leading zeros. The default precision is 1. The result of
converting zero with an explicit precision of zero shall be no characters.

o The unsigned argument shall be converted to unsigned octal format in the style "dddd". The pre-
cision specifies the minimum number of digits to appear; if the value being converted can be rep-
resented in fewer digits, it shall be expanded with leading zeros. The default precision is 1. The
result of converting zero with an explicit precision of zero shall be no characters.

IEEE/The Open Group 2017 3

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

u The unsigned argument shall be converted to unsigned decimal format in the style "dddd". The
precision specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it shall be expanded with leading zeros. The default precision is 1.
The result of converting zero with an explicit precision of zero shall be no characters.

x The unsigned argument shall be converted to unsigned hexadecimal format in the style "dddd";
the letters "abcdef" are used. The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it shall be expanded with leading ze-
ros. The default precision is 1. The result of converting zero with an explicit precision of zero
shall be no characters.

X Equivalent to the x conversion specifier, except that letters "ABCDEF" are used instead of
"abcdef".

f, F The double argument shall be converted to decimal notation in the style "[−]ddd.ddd", where the
number of digits after the radix character is equal to the precision specification. If the precision is
missing, it shall be taken as 6; if the precision is explicitly zero and no ’#’ flag is present, no radix
character shall appear. If a radix character appears, at least one digit appears before it. The low-
order digit shall be rounded in an implementation-defined manner.

A double argument representing an infinity shall be converted in one of the styles "[-]inf" or
"[-]infinity"; which style is implementation-defined. A double argument representing a NaN
shall be converted in one of the styles "[−]nan(n-char-sequence)" or "[-]nan"; which style, and
the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier pro-
duces "INF", "INFINITY", or "NAN" instead of "inf", "infinity", or "nan", respectively.

e, E The double argument shall be converted in the style "[−]d.ddde±dd", where there is one digit be-
fore the radix character (which is non-zero if the argument is non-zero) and the number of digits
after it is equal to the precision; if the precision is missing, it shall be taken as 6; if the precision
is zero and no ’#’ flag is present, no radix character shall appear. The low-order digit shall be
rounded in an implementation-defined manner. The E conversion specifier shall produce a num-
ber with ’E’ instead of ’e’ introducing the exponent. The exponent shall always contain at least
two digits. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of an f or F
conversion specifier.

g, G The double argument representing a floating-point number shall be converted in the style f or e
(or in the style F or E in the case of a G conversion specifier), depending on the value converted
and the precision. Let P equal the precision if non-zero, 6 if the precision is omitted, or 1 if the
precision is zero. Then, if a conversion with style E would have an exponent of X :

-- If P>X≥−4, the conversion shall be with style f (or F) and precision P−(X+1).

-- Otherwise, the conversion shall be with style e (or E) and precision P−1.

Finally, unless the ’#’ flag is used, any trailing zeros shall be removed from the fractional portion
of the result and the decimal-point character shall be removed if there is no fractional portion re-
maining.

A double argument representing an infinity or NaN shall be converted in the style of an f or F
conversion specifier.

a, A A double argument representing a floating-point number shall be converted in the style
"[−]0xh.hhhhp±d", where there is one hexadecimal digit (which shall be non-zero if the argument
is a normalized floating-point number and is otherwise unspecified) before the decimal-point
character and the number of hexadecimal digits after it is equal to the precision; if the precision is
missing and FLT_RADIX is a power of 2, then the precision shall be sufficient for an exact repre-
sentation of the value; if the precision is missing and FLT_RADIX is not a power of 2, then the
precision shall be sufficient to distinguish values of type double, except that trailing zeros may be
omitted; if the precision is zero and the ’#’ flag is not specified, no decimal-point character shall
appear. The letters "abcdef" shall be used for a conversion and the letters "ABCDEF" for A

IEEE/The Open Group 2017 4

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

conversion. The A conversion specifier produces a number with ’X’ and ’P’ instead of ’x’ and
’p’. The exponent shall always contain at least one digit, and only as many more digits as neces-
sary to represent the decimal exponent of 2. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of an f or F
conversion specifier.

c The int argument shall be converted to an unsigned char, and the resulting byte shall be written.

If an l (ell) qualifier is present, the wint_t argument shall be converted as if by an ls conversion
specification with no precision and an argument that points to a two-element array of type
wchar_t, the first element of which contains the wint_t argument to the ls conversion specifica-
tion and the second element contains a null wide character.

s The argument shall be a pointer to an array of char. Bytes from the array shall be written up to
(but not including) any terminating null byte. If the precision is specified, no more than that many
bytes shall be written. If the precision is not specified or is greater than the size of the array, the
application shall ensure that the array contains a null byte.

If an l (ell) qualifier is present, the argument shall be a pointer to an array of type wchar_t. Wide
characters from the array shall be converted to characters (each as if by a call to the wcrtomb()
function, with the conversion state described by an mbstate_t object initialized to zero before the
first wide character is converted) up to and including a terminating null wide character. The re-
sulting characters shall be written up to (but not including) the terminating null character (byte).
If no precision is specified, the application shall ensure that the array contains a null wide charac-
ter. If a precision is specified, no more than that many characters (bytes) shall be written (includ-
ing shift sequences, if any), and the array shall contain a null wide character if, to equal the char-
acter sequence length given by the precision, the function would need to access a wide character
one past the end of the array. In no case shall a partial character be written.

p The argument shall be a pointer to void. The value of the pointer is converted to a sequence of
printable characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is written the number of bytes written to
the output so far by this call to one of the fprintf() functions. No argument is converted.

C Equivalent to lc.

S Equivalent to ls.

% Print a ’%’ character; no argument is converted. The complete conversion specification shall be
%%.

If a conversion specification does not match one of the above forms, the behavior is undefined. If any argu-
ment is not the correct type for the corresponding conversion specification, the behavior is undefined.

In no case shall a nonexistent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field shall be expanded to contain the conversion result. Characters gener-
ated by fprintf() and printf() are printed as if fputc() had been called.

For the a and A conversion specifiers, if FLT_RADIX is a power of 2, the value shall be correctly rounded
to a hexadecimal floating number with the given precision.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable in
the given precision, the result should be one of the two adjacent numbers in hexadecimal floating style with
the given precision, with the extra stipulation that the error should have a correct sign for the current round-
ing direction.

For the e, E, f, F, g, and G conversion specifiers, if the number of significant decimal digits is at most DEC-
IMAL_DIG, then the result should be correctly rounded. If the number of significant decimal digits is more
than DECIMAL_DIG but the source value is exactly representable with DECIMAL_DIG digits, then the
result should be an exact representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strings L < U , both having DECIMAL_DIG significant digits; the value of the resultant

IEEE/The Open Group 2017 5

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

decimal string D should satisfy L <= D <= U , with the extra stipulation that the error should have a correct
sign for the current rounding direction.

The last data modification and last file status change timestamps of the file shall be marked for update:

1. Between the call to a successful execution of fprintf() or printf() and the next successful completion of
a call to fflush() or fclose() on the same stream or a call to exit() or abort()

2. Upon successful completion of a call to dprintf()

RETURN VALUE
Upon successful completion, the dprintf(), fprintf(), and printf() functions shall return the number of bytes
transmitted.

Upon successful completion, the sprintf() function shall return the number of bytes written to s, excluding
the terminating null byte.

Upon successful completion, the snprintf() function shall return the number of bytes that would be written
to s had n been sufficiently large excluding the terminating null byte.

If an output error was encountered, these functions shall return a negative value and set errno to indicate
the error.

If the value of n is zero on a call to snprintf(), nothing shall be written, the number of bytes that would have
been written had n been sufficiently large excluding the terminating null shall be returned, and s may be a
null pointer.

ERRORS
For the conditions under which dprintf(), fprintf(), and printf() fail and may fail, refer to fputc() or
fputwc().

In addition, all forms of fprintf() shall fail if:

EILSEQ
A wide-character code that does not correspond to a valid character has been detected.

EOVERFLOW
The value to be returned is greater than {INT_MAX}.

The dprintf() function may fail if:

EBADF
The fildes argument is not a valid file descriptor.

The dprintf(), fprintf(), and printf() functions may fail if:

ENOMEM
Insufficient storage space is available.

The snprintf() function shall fail if:

EOVERFLOW
The value of n is greater than {INT_MAX}.

The following sections are informative.

EXAMPLES
Printing Language-Independent Date and Time

The following statement can be used to print date and time using a language-independent format:

printf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the following string:

"%s, %s %d, %d:%.2d\n"

IEEE/The Open Group 2017 6

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

This example would produce the following message:

Sunday, July 3, 10:02

For German usage, format could be a pointer to the following string:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

This definition of format would produce the following message:

Sonntag, 3. Juli, 10:02

Printing File Information
The following example prints information about the type, permissions, and number of links of a specific file
in a directory.

The first two calls to printf() use data decoded from a previous stat() call. The user-defined strperm() func-
tion shall return a string similar to the one at the beginning of the output for the following command:

ls -l

The next call to printf() outputs the owner’s name if it is found using getpwuid(); the getpwuid() function
shall return a passwd structure from which the name of the user is extracted. If the user name is not found,
the program instead prints out the numeric value of the user ID.

The next call prints out the group name if it is found using getgrgid(); getgrgid() is very similar to getp-

wuid() except that it shall return group information based on the group number. Once again, if the group is
not found, the program prints the numeric value of the group for the entry.

The final call to printf() prints the size of the file.

#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>
#include <grp.h>

char *strperm (mode_t);
...
struct stat statbuf;
struct passwd *pwd;
struct group *grp;
...
printf("%10.10s", strperm (statbuf.st_mode));
printf("%4d", statbuf.st_nlink);

if ((pwd = getpwuid(statbuf.st_uid)) != NULL)
printf(" %-8.8s", pwd->pw_name);

else
printf(" %-8ld", (long) statbuf.st_uid);

if ((grp = getgrgid(statbuf.st_gid)) != NULL)
printf(" %-8.8s", grp->gr_name);

else
printf(" %-8ld", (long) statbuf.st_gid);

printf("%9jd", (intmax_t) statbuf.st_size);

IEEE/The Open Group 2017 7

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

...

Printing a Localized Date String
The following example gets a localized date string. The nl_langinfo() function shall return the localized
date string, which specifies the order and layout of the date. The strftime() function takes this information
and, using the tm structure for values, places the date and time information into datestring. The printf()
function then outputs datestring and the name of the entry.

#include <stdio.h>
#include <time.h>
#include <langinfo.h>
...
struct dirent *dp;
struct tm *tm;
char datestring[256];
...
strftime(datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);
...

Printing Error Information
The following example uses fprintf() to write error information to standard error.

In the first group of calls, the program tries to open the password lock file named LOCKFILE. If the file
already exists, this is an error, as indicated by the O_EXCL flag on the open() function. If the call fails, the
program assumes that someone else is updating the password file, and the program exits.

The next group of calls saves a new password file as the current password file by creating a link between
LOCKFILE and the new password file PASSWDFILE.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
...
int pfd;
...
if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}
...
if (link(LOCKFILE,PASSWDFILE) == -1) {

fprintf(stderr, "Link error: %s\n", strerror(errno));
exit(1);

}

IEEE/The Open Group 2017 8

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

...

Printing Usage Information
The following example checks to make sure the program has the necessary arguments, and uses fprintf() to
print usage information if the expected number of arguments is not present.

#include <stdio.h>
#include <stdlib.h>
...
char *Options = "hdbtl";
...
if (argc < 2) {

fprintf(stderr, "Usage: %s -%s <file\n", argv[0], Options); exit(1);
}
...

Formatting a Decimal String
The following example prints a key and data pair on stdout. Note use of the <asterisk> (’*’) in the format
string; this ensures the correct number of decimal places for the element based on the number of elements
requested.

#include <stdio.h>
...
long i;
char *keystr;
int elementlen, len;
...
while (len < elementlen) {
...

printf("%s Element%0*ld\n", keystr, elementlen, i);
...
}

Creating a Pathname
The following example creates a pathname using information from a previous getpwnam() function that re-
turned the password database entry of the user.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
...
char *pathname;
struct passwd *pw;
size_t len;
...
// digits required for pid_t is number of bits times
// log2(10) = approx 10/33
len = strlen(pw->pw_dir) + 1 + 1+(sizeof(pid_t)*80+32)/33 +

sizeof ".out";
pathname = malloc(len);

IEEE/The Open Group 2017 9

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

if (pathname != NULL)
{

snprintf(pathname, len, "%s/%jd.out", pw->pw_dir,
(intmax_t)getpid());

...
}

Reporting an Event
The following example loops until an event has timed out. The pause() function waits forever unless it re-
ceives a signal. The fprintf() statement should never occur due to the possible return values of pause().

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
...
while (!event_complete) {
...

if (pause() != -1 || errno != EINTR)
fprintf(stderr, "pause: unknown error: %s\n", strerror(errno));

}
...

Printing Monetary Information
The following example uses strfmon() to convert a number and store it as a formatted monetary string
named convbuf . If the first number is printed, the program prints the format and the description; otherwise,
it just prints the number.

#include <monetary.h>
#include <stdio.h>
...
struct tblfmt {

char *format;
char *description;

};

struct tblfmt table[] = {
{ "%n", "default formatting" },
{ "%11n", "right align within an 11 character field" },
{ "%#5n", "aligned columns for values up to 99 999" },
{ "%=*#5n", "specify a fill character" },
{ "%=0#5n", "fill characters do not use grouping" },
{ "%^#5n", "disable the grouping separator" },
{ "%^#5.0n", "round off to whole units" },
{ "%^#5.4n", "increase the precision" },
{ "%(#5n", "use an alternative pos/neg style" },
{ "%!(#5n", "disable the currency symbol" },

};
...
float input[3];
int i, j;
char convbuf[100];
...
strfmon(convbuf, sizeof(convbuf), table[i].format, input[j]);

IEEE/The Open Group 2017 10

FPRINTF(3P) POSIX Programmer’s Manual FPRINTF(3P)

if (j == 0) {
printf("%s%s%s\n", table[i].format,

convbuf, table[i].description);
}
else {

printf("%s\n", convbuf);
}
...

Printing Wide Characters
The following example prints a series of wide characters. Suppose that "L‘@‘" expands to three bytes:

wchar_t wz [3] = L"@@"; // Zero-terminated
wchar_t wn [3] = L"@@@"; // Unterminated

fprintf (stdout,"%ls", wz); // Outputs 6 bytes
fprintf (stdout,"%ls", wn); // Undefined because wn has no terminator
fprintf (stdout,"%4ls", wz); // Outputs 3 bytes
fprintf (stdout,"%4ls", wn); // Outputs 3 bytes; no terminator needed
fprintf (stdout,"%9ls", wz); // Outputs 6 bytes
fprintf (stdout,"%9ls", wn); // Outputs 9 bytes; no terminator needed
fprintf (stdout,"%10ls", wz); // Outputs 6 bytes
fprintf (stdout,"%10ls", wn); // Undefined because wn has no terminator

In the last line of the example, after processing three characters, nine bytes have been output. The fourth
character must then be examined to determine whether it converts to one byte or more. If it converts to
more than one byte, the output is only nine bytes. Since there is no fourth character in the array, the behav-
ior is undefined.

APPLICATION USAGE
If the application calling fprintf() has any objects of type wint_t or wchar_t, it must also include the
<wchar.h> header to have these objects defined.

RATIONALE
If an implementation detects that there are insufficient arguments for the format, it is recommended that the
function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fputc(), fscanf(), setlocale(), strfmon(), wcrtomb()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <inttypes.h>, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 11

FPUTC(3P) POSIX Programmer’s Manual FPUTC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fputc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int fputc(int c, FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fputc() function shall write the byte specified by c (converted to an unsigned char) to the output
stream pointed to by stream, at the position indicated by the associated file-position indicator for the stream
(if defined), and shall advance the indicator appropriately. If the file cannot support positioning requests, or
if the stream was opened with append mode, the byte shall be appended to the output stream.

The last data modification and last file status change timestamps of the file shall be marked for update be-
tween the successful execution of fputc() and the next successful completion of a call to fflush() or fclose()
on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputc() shall return the value it has written. Otherwise, it shall return EOF, the
error indicator for the stream shall be set, and errno shall be set to indicate the error.

ERRORS
The fputc() function shall fail if either the stream is unbuffered or the stream’s buffer needs to be flushed,
and:

EAGAIN
The O_NONBLOCK flag is set for the file descriptor underlying stream and the thread would be
delayed in the write operation.

EBADF
The file descriptor underlying stream is not a valid file descriptor open for writing.

EFBIG
An attempt was made to write to a file that exceeds the maximum file size.

EFBIG
An attempt was made to write to a file that exceeds the file size limit of the process.

EFBIG
The file is a regular file and an attempt was made to write at or beyond the offset maximum.

EINTR
The write operation was terminated due to the receipt of a signal, and no data was transferred.

EIO A physical I/O error has occurred, or the process is a member of a background process group at-
tempting to write to its controlling terminal, TOSTOP is set, the calling thread is not blocking
SIGTTOU, the process is not ignoring SIGTTOU, and the process group of the process is or-
phaned. This error may also be returned under implementation-defined conditions.

ENOSPC
There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any process. A SIG-
PIPE signal shall also be sent to the thread.

IEEE/The Open Group 2017 1

FPUTC(3P) POSIX Programmer’s Manual FPUTC(3P)

The fputc() function may fail if:

ENOMEM
Insufficient storage space is available.

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, ferror(), fopen(), getrlimit(), putc(), puts(), setbuf(), ulimit()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FPUTS(3P) POSIX Programmer’s Manual FPUTS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fputs — put a string on a stream

SYNOPSIS
#include <stdio.h>

int fputs(const char *restrict s, FILE *restrict stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fputs() function shall write the null-terminated string pointed to by s to the stream pointed to by
stream. The terminating null byte shall not be written.

The last data modification and last file status change timestamps of the file shall be marked for update be-
tween the successful execution of fputs() and the next successful completion of a call to fflush() or fclose()
on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputs() shall return a non-negative number. Otherwise, it shall return EOF, set
an error indicator for the stream, and set errno to indicate the error.

ERRORS
Refer to fputc().

The following sections are informative.

EXAMPLES
Printing to Standard Output

The following example gets the current time, converts it to a string using localtime() and asctime(), and
prints it to standard output using fputs(). It then prints the number of minutes to an event for which it is
waiting.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
fputs(asctime(localtime(&now)), stdout);
printf("There are still %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The puts() function appends a <newline> while fputs() does not.

This volume of POSIX.1-2017 requires that successful completion simply return a non-negative integer.
There are at least three known different implementation conventions for this requirement:

* Return a constant value.

IEEE/The Open Group 2017 1

FPUTS(3P) POSIX Programmer’s Manual FPUTS(3P)

* Return the last character written.

* Return the number of bytes written. Note that this implementation convention cannot be adhered to for
strings longer than {INT_MAX} bytes as the value would not be representable in the return type of the
function. For backwards-compatibility, implementations can return the number of bytes for strings of
up to {INT_MAX} bytes, and return {INT_MAX} for all longer strings.

RATIONALE
The fputs() function is one whose source code was specified in the referenced The C Programming Lan-

guage. In the original edition, the function had no defined return value, yet many practical implementations
would, as a side-effect, return the value of the last character written as that was the value remaining in the
accumulator used as a return value. In the second edition of the book, either the fixed value 0 or EOF would
be returned depending upon the return value of ferror(); however, for compatibility with extant implementa-
tions, several implementations would, upon success, return a positive value representing the last byte writ-
ten.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), putc(), puts()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FPUTWC(3P) POSIX Programmer’s Manual FPUTWC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fputwc — put a wide-character code on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fputwc() function shall write the character corresponding to the wide-character code wc to the output
stream pointed to by stream, at the position indicated by the associated file-position indicator for the stream
(if defined), and advances the indicator appropriately. If the file cannot support positioning requests, or if
the stream was opened with append mode, the character is appended to the output stream. If an error occurs
while writing the character, the shift state of the output file is left in an undefined state.

The last data modification and last file status change timestamps of the file shall be marked for update be-
tween the successful execution of fputwc() and the next successful completion of a call to fflush() or fclose()
on the same stream or a call to exit() or abort().

The fputwc() function shall not change the setting of errno if successful.

RETURN VALUE
Upon successful completion, fputwc() shall return wc. Otherwise, it shall return WEOF, the error indicator
for the stream shall be set, and errno shall be set to indicate the error.

ERRORS
The fputwc() function shall fail if either the stream is unbuffered or data in the stream’s buffer needs to be
written, and:

EAGAIN
The O_NONBLOCK flag is set for the file descriptor underlying stream and the thread would be
delayed in the write operation.

EBADF
The file descriptor underlying stream is not a valid file descriptor open for writing.

EFBIG
An attempt was made to write to a file that exceeds the maximum file size or the file size limit of
the process.

EFBIG
The file is a regular file and an attempt was made to write at or beyond the offset maximum associ-
ated with the corresponding stream.

EILSEQ
The wide-character code wc does not correspond to a valid character.

EINTR
The write operation was terminated due to the receipt of a signal, and no data was transferred.

EIO A physical I/O error has occurred, or the process is a member of a background process group at-
tempting to write to its controlling terminal, TOSTOP is set, the calling thread is not blocking
SIGTTOU, the process is not ignoring SIGTTOU, and the process group of the process is or-
phaned. This error may also be returned under implementation-defined conditions.

IEEE/The Open Group 2017 1

FPUTWC(3P) POSIX Programmer’s Manual FPUTWC(3P)

ENOSPC
There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any process. A SIG-
PIPE signal shall also be sent to the thread.

The fputwc() function may fail if:

ENOMEM
Insufficient storage space is available.

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, ferror(), fopen(), setbuf(), ulimit()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FPUTWS(3P) POSIX Programmer’s Manual FPUTWS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fputws — put a wide-character string on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fputws(const wchar_t *restrict ws, FILE *restrict stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fputws() function shall write a character string corresponding to the (null-terminated) wide-character
string pointed to by ws to the stream pointed to by stream. No character corresponding to the terminating
null wide-character code shall be written.

The last data modification and last file status change timestamps of the file shall be marked for update be-
tween the successful execution of fputws() and the next successful completion of a call to fflush() or fclose()
on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputws() shall return a non-negative number. Otherwise, it shall return −1, set
an error indicator for the stream, and set errno to indicate the error.

ERRORS
Refer to fputwc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The fputws() function does not append a <newline>.

This volume of POSIX.1-2017 requires that successful completion simply return a non-negative integer.
There are at least three known different implementation conventions for this requirement:

* Return a constant value.

* Return the last character written.

* Return the number of bytes written. Note that this implementation convention cannot be adhered to for
strings longer than {INT_MAX} bytes as the value would not be representable in the return type of the
function. For backwards-compatibility, implementations can return the number of bytes for strings of
up to {INT_MAX} bytes, and return {INT_MAX} for all longer strings.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fopen()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

IEEE/The Open Group 2017 1

FPUTWS(3P) POSIX Programmer’s Manual FPUTWS(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FREAD(3P) POSIX Programmer’s Manual FREAD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fread — binary input

SYNOPSIS
#include <stdio.h>

size_t fread(void *restrict ptr, size_t size, size_t nitems,
FILE *restrict stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fread() function shall read into the array pointed to by ptr up to nitems elements whose size is speci-
fied by size in bytes, from the stream pointed to by stream. For each object, size calls shall be made to the
fgetc() function and the results stored, in the order read, in an array of unsigned char exactly overlaying
the object. The file position indicator for the stream (if defined) shall be advanced by the number of bytes
successfully read. If an error occurs, the resulting value of the file position indicator for the stream is un-
specified. If a partial element is read, its value is unspecified.

The fread() function may mark the last data access timestamp of the file associated with stream for update.
The last data access timestamp shall be marked for update by the first successful execution of fgetc(),
fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, fread() shall return the number of elements successfully read which is less
than nitems only if a read error or end-of-file is encountered. If size or nitems is 0, fread() shall return 0 and
the contents of the array and the state of the stream remain unchanged. Otherwise, if a read error occurs, the
error indicator for the stream shall be set, and errno shall be set to indicate the error.

ERRORS
Refer to fgetc().

The following sections are informative.

EXAMPLES
Reading from a Stream

The following example transfers a single 100-byte fixed length record from the fp stream into the array
pointed to by buf .

#include <stdio.h>
...
size_t elements_read;
char buf[100];
FILE *fp;
...
elements_read = fread(buf, sizeof(buf), 1, fp);
...

If a read error occurs, elements_read will be zero but the number of bytes read from the stream could be
anything from zero to sizeof (buf)−1.

The following example reads multiple single-byte elements from the fp stream into the array pointed to by
buf .

IEEE/The Open Group 2017 1

FREAD(3P) POSIX Programmer’s Manual FREAD(3P)

#include <stdio.h>
...
size_t bytes_read;
char buf[100];
FILE *fp;
...
bytes_read = fread(buf, 1, sizeof(buf), fp);
...

If a read error occurs, bytes_read will contain the number of bytes read from the stream.

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an end-of-file
condition.

Because of possible differences in element length and byte ordering, files written using fwrite() are applica-
tion-dependent, and possibly cannot be read using fread() by a different application or by the same applica-
tion on a different processor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, feof(), ferror(), fgetc(), fopen(), fscanf(), getc(), gets()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FREE(3P) POSIX Programmer’s Manual FREE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
free — free allocated memory

SYNOPSIS
#include <stdlib.h>

void free(void *ptr);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The free() function shall cause the space pointed to by ptr to be deallocated; that is, made available for fur-
ther allocation. If ptr is a null pointer, no action shall occur. Otherwise, if the argument does not match a
pointer earlier returned by a function in POSIX.1-2008 that allocates memory as if by malloc(), or if the
space has been deallocated by a call to free() or realloc(), the behavior is undefined.

Any use of a pointer that refers to freed space results in undefined behavior.

RETURN VALUE
The free() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc(), malloc(), posix_memalign(), realloc()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FREEADDRINFO(3P) POSIX Programmer’s Manual FREEADDRINFO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
freeaddrinfo, getaddrinfo — get address information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo *ai);
int getaddrinfo(const char *restrict nodename,

const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

DESCRIPTION
The freeaddrinfo() function shall free one or more addrinfo structures returned by getaddrinfo(), along
with any additional storage associated with those structures. If the ai_next field of the structure is not null,
the entire list of structures shall be freed. The freeaddrinfo() function shall support the freeing of arbitrary
sublists of an addrinfo list originally returned by getaddrinfo().

The getaddrinfo() function shall translate the name of a service location (for example, a host name) and/or a
service name and shall return a set of socket addresses and associated information to be used in creating a
socket with which to address the specified service.

Note: In many cases it is implemented by the Domain Name System, as documented in RFC 1034,
RFC 1035, and RFC 1886.

The freeaddrinfo() and getaddrinfo() functions shall be thread-safe.

The nodename and servname arguments are either null pointers or pointers to null-terminated strings. One
or both of these two arguments shall be supplied by the application as a non-null pointer.

The format of a valid name depends on the address family or families. If a specific family is not given and
the name could be interpreted as valid within multiple supported families, the implementation shall attempt
to resolve the name in all supported families and, in absence of errors, one or more results shall be returned.

If the nodename argument is not null, it can be a descriptive name or can be an address string. If the speci-
fied address family is AF_INET, AF_INET6, or AF_UNSPEC, valid descriptive names include host names.
If the specified address family is AF_INET or AF_UNSPEC, address strings using Internet standard dot no-
tation as specified in inet_addr() are valid.

If the specified address family is AF_INET6 or AF_UNSPEC, standard IPv6 text forms described in
inet_ntop() are valid.

If nodename is not null, the requested service location is named by nodename; otherwise, the requested ser-
vice location is local to the caller.

If servname is null, the call shall return network-level addresses for the specified nodename. If servname is
not null, it is a null-terminated character string identifying the requested service. This can be either a de-
scriptive name or a numeric representation suitable for use with the address family or families. If the speci-
fied address family is AF_INET, AF_INET6, or AF_UNSPEC, the service can be specified as a string spec-
ifying a decimal port number.

If the hints argument is not null, it refers to a structure containing input values that directs the operation by
providing options and by limiting the returned information to a specific socket type, address family, and/or
protocol, as described below. The application shall ensure that each of the ai_addrlen, ai_addr, ai_canon-

name, and ai_next members, as well as each of the non-standard additional members, if any, of this hints

structure is initialized. If any of these members has a value other than the value that would result from de-
fault initialization, the behavior is implementation-defined. A value of AF_UNSPEC for ai_family means

IEEE/The Open Group 2017 1

FREEADDRINFO(3P) POSIX Programmer’s Manual FREEADDRINFO(3P)

that the caller shall accept any address family. A value of zero for ai_socktype means that the caller shall
accept any socket type. A value of zero for ai_protocol means that the caller shall accept any protocol. If
hints is a null pointer, the behavior shall be as if it referred to a structure containing the value zero for the
ai_flags, ai_socktype, and ai_protocol fields, and AF_UNSPEC for the ai_family field.

The ai_flags field to which the hints parameter points shall be set to zero or be the bitwise-inclusive OR of
one or more of the values AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST, AI_NUMERICSERV,
AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG.

If the AI_PASSIVE flag is specified, the returned address information shall be suitable for use in binding a
socket for accepting incoming connections for the specified service. In this case, if the nodename argument
is null, then the IP address portion of the socket address structure shall be set to INADDR_ANY for an
IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address. If the AI_PASSIVE flag is not specified, the
returned address information shall be suitable for a call to connect() (for a connection-mode protocol) or for
a call to connect(), sendto(), or sendmsg() (for a connectionless protocol). In this case, if the nodename ar-
gument is null, then the IP address portion of the socket address structure shall be set to the loopback ad-
dress. The AI_PASSIVE flag shall be ignored if the nodename argument is not null.

If the AI_CANONNAME flag is specified and the nodename argument is not null, the function shall at-
tempt to determine the canonical name corresponding to nodename (for example, if nodename is an alias or
shorthand notation for a complete name).

Note: Since different implementations use different conceptual models, the terms ‘‘canonical name’’
and ‘‘alias’’ cannot be precisely defined for the general case. However, Domain Name System
implementations are expected to interpret them as they are used in RFC 1034.

A numeric host address string is not a ‘‘name’’, and thus does not have a ‘‘canonical name’’
form; no address to host name translation is performed. See below for handling of the case
where a canonical name cannot be obtained.

If the AI_NUMERICHOST flag is specified, then a non-null nodename string supplied shall be a numeric
host address string. Otherwise, an [EAI_NONAME] error is returned. This flag shall prevent any type of
name resolution service (for example, the DNS) from being invoked.

If the AI_NUMERICSERV flag is specified, then a non-null servname string supplied shall be a numeric
port string. Otherwise, an [EAI_NONAME] error shall be returned. This flag shall prevent any type of
name resolution service (for example, NIS+) from being invoked.

By default, with an ai_family of AF_INET6, getaddrinfo() shall return only IPv6 addresses. If the
AI_V4MAPPED flag is specified along with an ai_family of AF_INET6, then getaddrinfo() shall return
IPv4-mapped IPv6 addresses on finding no matching IPv6 addresses. The AI_V4MAPPED flag shall be ig-
nored unless ai_family equals AF_INET6. If the AI_ALL flag is used with the AI_V4MAPPED flag, then
getaddrinfo() shall return all matching IPv6 and IPv4 addresses. The AI_ALL flag without the
AI_V4MAPPED flag shall be ignored.

If the AI_ADDRCONFIG flag is specified, IPv4 addresses shall be returned only if an IPv4 address is con-
figured on the local system, and IPv6 addresses shall be returned only if an IPv6 address is configured on
the local system.

The ai_socktype field to which argument hints points specifies the socket type for the service, as defined in
socket(). If a specific socket type is not given (for example, a value of zero) and the service name could be
interpreted as valid with multiple supported socket types, the implementation shall attempt to resolve the
service name for all supported socket types and, in the absence of errors, all possible results shall be re-
turned. A non-zero socket type value shall limit the returned information to values with the specified socket
type.

If the ai_family field to which hints points has the value AF_UNSPEC, addresses shall be returned for use
with any address family that can be used with the specified nodename and/or servname. Otherwise, ad-
dresses shall be returned for use only with the specified address family. If ai_family is not AF_UNSPEC
and ai_protocol is not zero, then addresses shall be returned for use only with the specified address family
and protocol; the value of ai_protocol shall be interpreted as in a call to the socket() function with the

IEEE/The Open Group 2017 2

FREEADDRINFO(3P) POSIX Programmer’s Manual FREEADDRINFO(3P)

corresponding values of ai_family and ai_protocol.

RETURN VALUE
A zero return value for getaddrinfo() indicates successful completion; a non-zero return value indicates fail-
ure. The possible values for the failures are listed in the ERRORS section.

Upon successful return of getaddrinfo(), the location to which res points shall refer to a linked list of ad-
drinfo structures, each of which shall specify a socket address and information for use in creating a socket
with which to use that socket address. The list shall include at least one addrinfo structure. The ai_next

field of each structure contains a pointer to the next structure on the list, or a null pointer if it is the last
structure on the list. Each structure on the list shall include values for use with a call to the socket() func-
tion, and a socket address for use with the connect() function or, if the AI_PASSIVE flag was specified, for
use with the bind() function. The fields ai_family, ai_socktype, and ai_protocol shall be usable as the argu-
ments to the socket() function to create a socket suitable for use with the returned address. The fields
ai_addr and ai_addrlen are usable as the arguments to the connect() or bind() functions with such a socket,
according to the AI_PASSIVE flag.

If nodename is not null, and if requested by the AI_CANONNAME flag, the ai_canonname field of the
first returned addrinfo structure shall point to a null-terminated string containing the canonical name corre-
sponding to the input nodename; if the canonical name is not available, then ai_canonname shall refer to
the nodename argument or a string with the same contents. The contents of the ai_flags field of the returned
structures are undefined.

All fields in socket address structures returned by getaddrinfo() that are not filled in through an explicit ar-
gument (for example, sin6_flowinfo) shall be set to zero.

Note: This makes it easier to compare socket address structures.

ERRORS
The getaddrinfo() function shall fail and return the corresponding error value if:

[EAI_AGAIN]
The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags parameter had an invalid value.

[EAI_FAIL] A non-recoverable error occurred when attempting to resolve the name.

[EAI_FAMILY]
The address family was not recognized.

[EAI_MEMORY]
There was a memory allocation failure when trying to allocate storage for the return value.

[EAI_NONAME]
The name does not resolve for the supplied parameters.

Neither nodename nor servname were supplied. At least one of these shall be supplied.

[EAI_SERVICE]
The service passed was not recognized for the specified socket type.

[EAI_SOCKTYPE]
The intended socket type was not recognized.

[EAI_SYSTEM]
A system error occurred; the error code can be found in errno.

The following sections are informative.

EXAMPLES
The following (incomplete) program demonstrates the use of getaddrinfo() to obtain the socket address
structure(s) for the service named in the program’s command-line argument. The program then loops
through each of the address structures attempting to create and bind a socket to the address, until it

IEEE/The Open Group 2017 3

FREEADDRINFO(3P) POSIX Programmer’s Manual FREEADDRINFO(3P)

performs a successful bind().

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netdb.h>

int
main(int argc, char *argv[])
{

struct addrinfo *result, *rp;
int sfd, s;

if (argc != 2) {
fprintf(stderr, "Usage: %s port\n", argv[0]);
exit(EXIT_FAILURE);

}

struct addrinfo hints = {0};
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_PASSIVE;
hints.ai_protocol = 0;

s = getaddrinfo(NULL, argv[1], &hints, &result);
if (s != 0) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

/* getaddrinfo() returns a list of address structures.
Try each address until a successful bind().
If socket(2) (or bind(2)) fails, close the socket
and try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol);
if (sfd == -1)

continue;

if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
break; /* Success */

close(sfd);
}

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not bind\n");
exit(EXIT_FAILURE);

}

freeaddrinfo(result); /* No longer needed */

/* ... use socket bound to sfd ... */
}

IEEE/The Open Group 2017 4

FREEADDRINFO(3P) POSIX Programmer’s Manual FREEADDRINFO(3P)

APPLICATION USAGE
If the caller handles only TCP and not UDP, for example, then the ai_protocol member of the hints struc-
ture should be set to IPPROT O_TCP when getaddrinfo() is called.

If the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure should be set
to AF_INET when getaddrinfo() is called.

Although it is common practice to initialize the hints structure using:

struct addrinfo hints;
memset(&hints, 0, sizeof hints);

this method is not portable according to this standard, because the structure can contain pointer or floating-
point members that are not required to have an all-bits-zero representation after default initialization. Porta-
ble methods make use of default initialization; for example:

struct addrinfo hints = { 0 };

or:

static struct addrinfo hints_init;
struct addrinfo hints = hints_init;

A future version of this standard may require that a pointer object with an all-bits-zero representation is a
null pointer, and that addrinfo does not have any floating-point members if a floating-point object with an
all-bits-zero representation does not have the value 0.0.

The term ‘‘canonical name’’ is misleading; it is taken from the Domain Name System (RFC 2181). It
should be noted that the canonical name is a result of alias processing, and not necessarily a unique attri-
bute of a host, address, or set of addresses. See RFC 2181 for more discussion of this in the Domain Name
System context.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), endservent(), gai_strerror(), getnameinfo(), socket()

The Base Definitions volume of POSIX.1-2017, <netdb.h>, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

FREELOCALE(3P) POSIX Programmer’s Manual FREELOCALE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
freelocale — free resources allocated for a locale object

SYNOPSIS
#include <locale.h>

void freelocale(locale_t locobj);

DESCRIPTION
The freelocale() function shall cause the resources allocated for a locale object returned by a call to the
newlocale() or duplocale() functions to be released.

The behavior is undefined if the locobj argument is the special locale object LC_GLOBAL_LOCALE or is
not a valid locale object handle.

Any use of a locale object that has been freed results in undefined behavior.

RETURN VALUE
None.

ERRORS
None.

The following sections are informative.

EXAMPLES
Freeing Up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), newlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, <locale.h>

IEEE/The Open Group 2017 1

FREELOCALE(3P) POSIX Programmer’s Manual FREELOCALE(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FREOPEN(3P) POSIX Programmer’s Manual FREOPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
freopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *freopen(const char *restrict pathname, const char *restrict mode,
FILE *restrict stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The freopen() function shall first attempt to flush the stream associated with stream as if by a call to
fflush(stream). Failure to flush the stream successfully shall be ignored. If pathname is not a null pointer,
freopen() shall close any file descriptor associated with stream. Failure to close the file descriptor success-
fully shall be ignored. The error and end-of-file indicators for the stream shall be cleared.

The freopen() function shall open the file whose pathname is the string pointed to by pathname and asso-
ciate the stream pointed to by stream with it. The mode argument shall be used just as in fopen().

The original stream shall be closed regardless of whether the subsequent open succeeds.

If pathname is a null pointer, the freopen() function shall attempt to change the mode of the stream to that
specified by mode, as if the name of the file currently associated with the stream had been used. In this
case, the file descriptor associated with the stream need not be closed if the call to freopen() succeeds. It is
implementation-defined which changes of mode are permitted (if any), and under what circumstances.

After a successful call to the freopen() function, the orientation of the stream shall be cleared, the encoding
rule shall be cleared, and the associated mbstate_t object shall be set to describe an initial conversion state.

If pathname is not a null pointer, or if pathname is a null pointer and the specified mode change necessi-
tates the file descriptor associated with the stream to be closed and reopened, the file descriptor associated
with the reopened stream shall be allocated and opened as if by a call to open() with the following flags:

center box tab(!); cB | cB l | l. freopen() Mode!open() Flags _ r or rb!O_RDONLY w or
wb!O_WRONLY|O_CREAT|O_TRUNC a or ab!O_WRONLY|O_CREAT|O_APPEND r+ or rb+ or
r+b!O_RDWR w+ or wb+ or w+b!O_RDWR|O_CREAT|O_TRUNC a+ or ab+ or
a+b!O_RDWR|O_CREAT|O_APPEND

RETURN VALUE
Upon successful completion, freopen() shall return the value of stream. Otherwise, a null pointer shall be
returned, and errno shall be set to indicate the error.

ERRORS
The freopen() function shall fail if:

EACCES
Search permission is denied on a component of the path prefix, or the file exists and the permis-
sions specified by mode are denied, or the file does not exist and write permission is denied for the
parent directory of the file to be created.

EBADF
The file descriptor underlying the stream is not a valid file descriptor when pathname is a null
pointer.

IEEE/The Open Group 2017 1

FREOPEN(3P) POSIX Programmer’s Manual FREOPEN(3P)

EINTR
A signal was caught during freopen().

EISDIR
The named file is a directory and mode requires write access.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

EMFILE
All file descriptors available to the process are currently open.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENFILE
The maximum allowable number of files is currently open in the system.

ENOENT
The mode string begins with ’r’ and a component of pathname does not name an existing file, or
mode begins with ’w’ or ’a’ and a component of the path prefix of pathname does not name an ex-
isting file, or pathname is an empty string.

ENOENT or ENOTDIR
The pathname argument contains at least one non-<slash> character and ends with one or more
trailing <slash> characters. If pathname without the trailing <slash> characters would name an ex-
isting file, an [ENOENT] error shall not occur.

ENOSPC
The directory or file system that would contain the new file cannot be expanded, the file does not
exist, and it was to be created.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the pathname argument contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname component names an existing
file that is neither a directory nor a symbolic link to a directory.

ENXIO
The named file is a character special or block special file, and the device associated with this spe-
cial file does not exist.

EOVERFLOW
The named file is a regular file and the size of the file cannot be represented correctly in an object
of type off_t.

EROFS
The named file resides on a read-only file system and mode requires write access.

The freopen() function may fail if:

EBADF
The mode with which the file descriptor underlying the stream was opened does not support the re-
quested mode when pathname is a null pointer.

EINVAL
The value of the mode argument is not valid.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

IEEE/The Open Group 2017 2

FREOPEN(3P) POSIX Programmer’s Manual FREOPEN(3P)

ENOMEM
Insufficient storage space is available.

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

ETXTBSY
The file is a pure procedure (shared text) file that is being executed and mode requires write ac-
cess.

The following sections are informative.

EXAMPLES
Directing Standard Output to a File

The following example logs all standard output to the /tmp/logfile file.

#include <stdio.h>
...
FILE *fp;
...
fp = freopen ("/tmp/logfile", "a+", stdout);
...

APPLICATION USAGE
The freopen() function is typically used to attach the pre-opened streams associated with stdin, stdout, and
stderr to other files.

Since implementations are not required to support any stream mode changes when the pathname argument
is NULL, portable applications cannot rely on the use of freopen() to change the stream mode, and use of
this feature is discouraged. The feature was originally added to the ISO C standard in order to facilitate
changing stdin and stdout to binary mode. Since a ’b’ character in the mode has no effect on POSIX sys-
tems, this use of the feature is unnecessary in POSIX applications. However, even though the ’b’ is ignored,
a successful call to freopen(NULL, "wb", stdout) does have an effect. In particular, for regular files it trun-
cates the file and sets the file-position indicator for the stream to the start of the file. It is possible that these
side-effects are an unintended consequence of the way the feature is specified in the ISO/IEC 9899: 1999
standard, but unless or until the ISO C standard is changed, applications which successfully call fre-

open(NULL, "wb", stdout) will behave in unexpected ways on conforming systems in situations such as:

{ appl file1; appl file2; } > file3

which will result in file3 containing only the output from the second invocation of appl.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fclose(), fdopen(), fflush(), fmemopen(), fopen(), mbsinit(), open(),
open_memstream()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 3

FREOPEN(3P) POSIX Programmer’s Manual FREOPEN(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

FREXP(3P) POSIX Programmer’s Manual FREXP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
frexp, frexpf, frexpl — extract mantissa and exponent from a double precision number

SYNOPSIS
#include <math.h>

double frexp(double num, int *exp);
float frexpf(float num, int *exp);
long double frexpl(long double num, int *exp);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall break a floating-point number num into a normalized fraction and an integral power
of 2. The integer exponent shall be stored in the int object pointed to by exp.

RETURN VALUE
For finite arguments, these functions shall return the value x, such that x has a magnitude in the interval
[½,1) or 0, and num equals x times 2 raised to the power *exp.

If num is NaN, a NaN shall be returned, and the value of *exp is unspecified.

If num is ±0, ±0 shall be returned, and the value of *exp shall be 0.

If num is ±Inf, num shall be returned, and the value of *exp is unspecified.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), ldexp(), modf()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FSCANF(3P) POSIX Programmer’s Manual FSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fscanf, scanf, sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int fscanf(FILE *restrict stream, const char *restrict format, ...);
int scanf(const char *restrict format, ...);
int sscanf(const char *restrict s, const char *restrict format, ...);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fscanf() function shall read from the named input stream. The scanf() function shall read from the
standard input stream stdin. The sscanf() function shall read from the string s. Each function reads bytes,
interprets them according to a format, and stores the results in its arguments. Each expects, as arguments, a
control string format described below, and a set of pointer arguments indicating where the converted input
should be stored. The result is undefined if there are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments shall be evaluated but otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather than to the next
unused argument. In this case, the conversion specifier character % (see below) is replaced by the sequence
"%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}]. This feature provides for the defi-
nition of format strings that select arguments in an order appropriate to specific languages. In format strings
containing the "%n$" form of conversion specifications, it is unspecified whether numbered arguments in
the argument list can be referenced from the format string more than once.

The format can contain either form of a conversion specification—that is, % or "%n$"—but the two forms
cannot be mixed within a single format string. The only exception to this is that %% or %* can be mixed
with the "%n$" form. When numbered argument specifications are used, specifying the N th argument re-
quires that all the leading arguments, from the first to the (N−1)th, are pointers.

The fscanf() function in all its forms shall allow detection of a language-dependent radix character in the in-
put string. The radix character is defined in the current locale (category LC_NUMERIC). In the POSIX lo-
cale, or in a locale where the radix character is not defined, the radix character shall default to a <period>
(’.’).

The format is a character string, beginning and ending in its initial shift state, if any, composed of zero or
more directives. Each directive is composed of one of the following: one or more white-space characters
(<space>, <tab>, <newline>, <vertical-tab>, or <form-feed>); an ordinary character (neither ’%’ nor a
white-space character); or a conversion specification. Each conversion specification is introduced by the
character ’%’ or the character sequence "%n$", after which the following appear in sequence:

* An optional assignment-suppressing character ’*’.

* An optional non-zero decimal integer that specifies the maximum field width.

* An optional assignment-allocation character ’m’.

* An option length modifier that specifies the size of the receiving object.

* A conversion specifier character that specifies the type of conversion to be applied. The valid conver-
sion specifiers are described below.

The fscanf() functions shall execute each directive of the format in turn. If a directive fails, as detailed be-
low, the function shall return. Failures are described as input failures (due to the unavailability of input

IEEE/The Open Group 2017 1

FSCANF(3P) POSIX Programmer’s Manual FSCANF(3P)

bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters shall be executed by reading input until no
more valid input can be read, or up to the first byte which is not a white-space character, which remains un-
read.

A directive that is an ordinary character shall be executed as follows: the next byte shall be read from the
input and compared with the byte that comprises the directive; if the comparison shows that they are not
equivalent, the directive shall fail, and the differing and subsequent bytes shall remain unread. Similarly, if
end-of-file, an encoding error, or a read error prevents a character from being read, the directive shall fail.

A directive that is a conversion specification defines a set of matching input sequences, as described below
for each conversion character. A conversion specification shall be executed in the following steps.

Input white-space characters (as specified by isspace()) shall be skipped, unless the conversion specifica-
tion includes a [, c, C, or n conversion specifier.

An item shall be read from the input, unless the conversion specification includes an n conversion specifier.
An input item shall be defined as the longest sequence of input bytes (up to any specified maximum field
width, which may be measured in characters or bytes dependent on the conversion specifier) which is an
initial subsequence of a matching sequence. The first byte, if any, after the input item shall remain unread.
If the length of the input item is 0, the execution of the conversion specification shall fail; this condition is a
matching failure, unless end-of-file, an encoding error, or a read error prevented input from the stream, in
which case it is an input failure.

Except in the case of a % conversion specifier, the input item (or, in the case of a %n conversion specifica-
tion, the count of input bytes) shall be converted to a type appropriate to the conversion character. If the in-
put item is not a matching sequence, the execution of the conversion specification fails; this condition is a
matching failure. Unless assignment suppression was indicated by a ’*’, the result of the conversion shall
be placed in the object pointed to by the first argument following the format argument that has not already
received a conversion result if the conversion specification is introduced by %, or in the nth argument if in-
troduced by the character sequence "%n$". If this object does not have an appropriate type, or if the result
of the conversion cannot be represented in the space provided, the behavior is undefined.

The %c, %s, and %[conversion specifiers shall accept an optional assignment-allocation character ’m’,
which shall cause a memory buffer to be allocated to hold the string converted including a terminating null
character. In such a case, the argument corresponding to the conversion specifier should be a reference to a
pointer variable that will receive a pointer to the allocated buffer. The system shall allocate a buffer as if
malloc() had been called. The application shall be responsible for freeing the memory after usage. If there
is insufficient memory to allocate a buffer, the function shall set errno to [ENOMEM] and a conversion er-
ror shall result. If the function returns EOF, any memory successfully allocated for parameters using assign-
ment-allocation character ’m’ by this call shall be freed before the function returns.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to short or unsigned short.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to long or unsigned long; that a following a, A, e, E, f, F, g, or G conversion speci-
fier applies to an argument with type pointer to double; or that a following c, s, or [conversion
specifier applies to an argument with type pointer to wchar_t. If the ’m’ assignment-allocation
character is specified, the conversion applies to an argument with the type pointer to a pointer to
wchar_t.

ll (ell-ell)
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to long long or unsigned long long.

IEEE/The Open Group 2017 2

FSCANF(3P) POSIX Programmer’s Manual FSCANF(3P)

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to ptrdiff_t or the corresponding unsigned type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument with
type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is un-
defined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for the sub-
ject sequence of strtol() with the value 10 for the base argument. In the absence of a size modi-
fier, the application shall ensure that the corresponding argument is a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the subject se-
quence of strtol() with 0 for the base argument. In the absence of a size modifier, the application
shall ensure that the corresponding argument is a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for the subject
sequence of strtoul() with the value 8 for the base argument. In the absence of a size modifier, the
application shall ensure that the corresponding argument is a pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as expected for the sub-
ject sequence of strtoul() with the value 10 for the base argument. In the absence of a size modi-
fier, the application shall ensure that the corresponding argument is a pointer to unsigned.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected for the
subject sequence of strtoul() with the value 16 for the base argument. In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to unsigned.

a, e, f, g
Matches an optionally signed floating-point number, infinity, or NaN, whose format is the same
as expected for the subject sequence of strtod(). In the absence of a size modifier, the application
shall ensure that the corresponding argument is a pointer to float.

If the fprintf() family of functions generates character string representations for infinity and NaN
(a symbolic entity encoded in floating-point format) to support IEEE Std 754-1985, the fscanf()
family of functions shall recognize them as input.

s Matches a sequence of bytes that are not white-space characters. If the ’m’ assignment-allocation
character is not specified, the application shall ensure that the corresponding argument is a
pointer to the initial byte of an array of char, signed char, or unsigned char large enough to ac-
cept the sequence and a terminating null character code, which shall be added automatically.
Otherwise, the application shall ensure that the corresponding argument is a pointer to a pointer
to a char.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the initial shift
state. Each character shall be converted to a wide character as if by a call to the mbrtowc() func-
tion, with the conversion state described by an mbstate_t object initialized to zero before the first
character is converted. If the ’m’ assignment-allocation character is not specified, the application
shall ensure that the corresponding argument is a pointer to an array of wchar_t large enough to
accept the sequence and the terminating null wide character, which shall be added automatically.
Otherwise, the application shall ensure that the corresponding argument is a pointer to a pointer
to a wchar_t.

IEEE/The Open Group 2017 3

FSCANF(3P) POSIX Programmer’s Manual FSCANF(3P)

[Matches a non-empty sequence of bytes from a set of expected bytes (the scanset). The normal
skip over white-space characters shall be suppressed in this case. If the ’m’ assignment-allocation
character is not specified, the application shall ensure that the corresponding argument is a
pointer to the initial byte of an array of char, signed char, or unsigned char large enough to ac-
cept the sequence and a terminating null byte, which shall be added automatically. Otherwise,
the application shall ensure that the corresponding argument is a pointer to a pointer to a char.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the initial shift
state. Each character in the sequence shall be converted to a wide character as if by a call to the
mbrtowc() function, with the conversion state described by an mbstate_t object initialized to zero
before the first character is converted. If the ’m’ assignment-allocation character is not specified,
the application shall ensure that the corresponding argument is a pointer to an array of wchar_t
large enough to accept the sequence and the terminating null wide character, which shall be
added automatically.
Otherwise, the application shall ensure that the corresponding argument is a pointer to a pointer
to a wchar_t.

The conversion specification includes all subsequent bytes in the format string up to and includ-
ing the matching <right-square-bracket> (’]’). The bytes between the square brackets (the scan-

list) comprise the scanset, unless the byte after the <left-square-bracket> is a <circumflex> (’^’),
in which case the scanset contains all bytes that do not appear in the scanlist between the <cir-
cumflex> and the <right-square-bracket>. If the conversion specification begins with "[]" or
"[^]", the <right-square-bracket> is included in the scanlist and the next <right-square-bracket>
is the matching <right-square-bracket> that ends the conversion specification; otherwise, the first
<right-square-bracket> is the one that ends the conversion specification. If a ’−’ is in the scanlist
and is not the first character, nor the second where the first character is a ’^’, nor the last charac-
ter, the behavior is implementation-defined.

c Matches a sequence of bytes of the number specified by the field width (1 if no field width is
present in the conversion specification). No null byte is added. The normal skip over white-space
characters shall be suppressed in this case. If the ’m’ assignment-allocation character is not speci-
fied, the application shall ensure that the corresponding argument is a pointer to the initial byte of
an array of char, signed char, or unsigned char large enough to accept the sequence. Other-
wise, the application shall ensure that the corresponding argument is a pointer to a pointer to a
char.

If an l (ell) qualifier is present, the input shall be a sequence of characters that begins in the initial
shift state. Each character in the sequence is converted to a wide character as if by a call to the
mbrtowc() function, with the conversion state described by an mbstate_t object initialized to zero
before the first character is converted. No null wide character is added. If the ’m’ assignment-al-
location character is not specified, the application shall ensure that the corresponding argument is
a pointer to an array of wchar_t large enough to accept the resulting sequence of wide characters.
Otherwise, the application shall ensure that the corresponding argument is a pointer to a pointer
to a wchar_t.

p Matches an implementation-defined set of sequences, which shall be the same as the set of se-
quences that is produced by the %p conversion specification of the corresponding fprintf() func-
tions. The application shall ensure that the corresponding argument is a pointer to a pointer to
void. The interpretation of the input item is implementation-defined. If the input item is a value
converted earlier during the same program execution, the pointer that results shall compare equal
to that value; otherwise, the behavior of the %p conversion specification is undefined.

n No input is consumed. The application shall ensure that the corresponding argument is a pointer
to the integer into which shall be written the number of bytes read from the input so far by this
call to the fscanf() functions. Execution of a %n conversion specification shall not increment the
assignment count returned at the completion of execution of the function. No argument shall be
converted, but one shall be consumed. If the conversion specification includes an assignment-sup-
pressing character or a field width, the behavior is undefined.

IEEE/The Open Group 2017 4

FSCANF(3P) POSIX Programmer’s Manual FSCANF(3P)

C Equivalent to lc.

S Equivalent to ls.

% Matches a single ’%’ character; no conversion or assignment occurs. The complete conversion
specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers A, E, F, G, and X are also valid and shall be equivalent to a, e, f, g, and x, respec-
tively.

If end-of-file is encountered during input, conversion shall be terminated. If end-of-file occurs before any
bytes matching the current conversion specification (except for %n) hav e been read (other than leading
white-space characters, where permitted), execution of the current conversion specification shall terminate
with an input failure. Otherwise, unless execution of the current conversion specification is terminated with
a matching failure, execution of the following conversion specification (if any) shall be terminated with an
input failure.

Reaching the end of the string in sscanf() shall be equivalent to encountering end-of-file for fscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the input. Any trailing
white space (including <newline> characters) shall be left unread unless matched by a conversion specifica-
tion. The success of literal matches and suppressed assignments is only directly determinable via the %n
conversion specification.

The fscanf() and scanf() functions may mark the last data access timestamp of the file associated with
stream for update. The last data access timestamp shall be marked for update by the first successful execu-
tion of fgetc(), fgets(), fread(), getc(), getchar(), getdelim(), getline(), gets(), fscanf(), or scanf() using
stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, these functions shall return the number of successfully matched and assigned
input items; this number can be zero in the event of an early matching failure. If the input ends before the
first conversion (if any) has completed, and without a matching failure having occurred, EOF shall be re-
turned. If an error occurs before the first conversion (if any) has completed, and without a matching failure
having occurred, EOF shall be returned and errno shall be set to indicate the error. If a read error occurs,
the error indicator for the stream shall be set.

ERRORS
For the conditions under which the fscanf() functions fail and may fail, refer to fgetc() or fgetwc().

In addition, the fscanf() function shall fail if:

EILSEQ
Input byte sequence does not form a valid character.

ENOMEM
Insufficient storage space is available.

In addition, the fscanf() function may fail if:

EINVAL
There are insufficient arguments.

The following sections are informative.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

IEEE/The Open Group 2017 5

FSCANF(3P) POSIX Programmer’s Manual FSCANF(3P)

25 54.32E-1 Hamster

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string "Hamster".

The call:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skips 0123, and places the string "56\0" in name. The next call to getchar()
shall return the character ’a’.

Reading Data into an Array
The following call uses fscanf() to read three floating-point numbers from standard input into the input ar-
ray.

float input[3]; fscanf (stdin, "%f %f %f", input, input+1, input+2);

APPLICATION USAGE
If the application calling fscanf() has any objects of type wint_t or wchar_t, it must also include the
<wchar.h> header to have these objects defined.

For functions that allocate memory as if by malloc(), the application should release such memory when it is
no longer required by a call to free(). For fscanf(), this is memory allocated via use of the ’m’ assignment-
allocation character.

RATIONALE
This function is aligned with the ISO/IEC 9899: 1999 standard, and in doing so a few ‘‘obvious’’ things
were not included. Specifically, the set of characters allowed in a scanset is limited to single-byte charac-
ters. In other similar places, multi-byte characters have been permitted, but for alignment with the
ISO/IEC 9899: 1999 standard, it has not been done here. Applications needing this could use the corre-
sponding wide-character functions to achieve the desired results.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fprintf(), getc(), setlocale(), strtod(), strtol(), strtoul(), wcrtomb()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <inttypes.h>, <langinfo.h>,
<stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 6

FSEEK(3P) POSIX Programmer’s Manual FSEEK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fseek, fseeko — reposition a file-position indicator in a stream

SYNOPSIS
#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);
int fseeko(FILE *stream, off_t offset, int whence);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fseek() function shall set the file-position indicator for the stream pointed to by stream. If a read or
write error occurs, the error indicator for the stream shall be set and fseek() fails.

The new position, measured in bytes from the beginning of the file, shall be obtained by adding offset to the
position specified by whence. The specified point is the beginning of the file for SEEK_SET, the current
value of the file-position indicator for SEEK_CUR, or end-of-file for SEEK_END.

If the stream is to be used with wide-character input/output functions, the application shall ensure that offset

is either 0 or a value returned by an earlier call to ftell() on the same stream and whence is SEEK_SET.

A successful call to fseek() shall clear the end-of-file indicator for the stream and undo any effects of
ungetc() and ungetwc() on the same stream. After an fseek() call, the next operation on an update stream
may be either input or output.

If the most recent operation, other than ftell(), on a given stream is fflush(), the file offset in the underlying
open file description shall be adjusted to reflect the location specified by fseek().

The fseek() function shall allow the file-position indicator to be set beyond the end of existing data in the
file. If data is later written at this point, subsequent reads of data in the gap shall return bytes with the value
0 until data is actually written into the gap.

The behavior of fseek() on devices which are incapable of seeking is implementation-defined. The value of
the file offset associated with such a device is undefined.

If the stream is writable and buffered data had not been written to the underlying file, fseek() shall cause the
unwritten data to be written to the file and shall mark the last data modification and last file status change
timestamps of the file for update.

In a locale with state-dependent encoding, whether fseek() restores the stream’s shift state is implementa-
tion-defined.

The fseeko() function shall be equivalent to the fseek() function except that the offset argument is of type
off_t.

RETURN VALUE
The fseek() and fseeko() functions shall return 0 if they succeed.

Otherwise, they shall return −1 and set errno to indicate the error.

ERRORS
The fseek() and fseeko() functions shall fail if, either the stream is unbuffered or the stream’s buffer needed
to be flushed, and the call to fseek() or fseeko() causes an underlying lseek() or write() to be invoked, and:

EAGAIN
The O_NONBLOCK flag is set for the file descriptor and the thread would be delayed in the write
operation.

IEEE/The Open Group 2017 1

FSEEK(3P) POSIX Programmer’s Manual FSEEK(3P)

EBADF
The file descriptor underlying the stream file is not open for writing or the stream’s buffer needed
to be flushed and the file is not open.

EFBIG
An attempt was made to write a file that exceeds the maximum file size.

EFBIG
An attempt was made to write a file that exceeds the file size limit of the process.

EFBIG
The file is a regular file and an attempt was made to write at or beyond the offset maximum associ-
ated with the corresponding stream.

EINTR
The write operation was terminated due to the receipt of a signal, and no data was transferred.

EINVAL
The whence argument is invalid. The resulting file-position indicator would be set to a negative
value.

EIO A physical I/O error has occurred, or the process is a member of a background process group at-
tempting to perform a write() to its controlling terminal, TOSTOP is set, the calling thread is not
blocking SIGTTOU, the process is not ignoring SIGTTOU, and the process group of the process is
orphaned. This error may also be returned under implementation-defined conditions.

ENOSPC
There was no free space remaining on the device containing the file.

EOVERFLOW
For fseek(), the resulting file offset would be a value which cannot be represented correctly in an
object of type long.

EOVERFLOW
For fseeko(), the resulting file offset would be a value which cannot be represented correctly in an
object of type off_t.

EPIPE An attempt was made to write to a pipe or FIFO that is not open for reading by any process; a
SIGPIPE signal shall also be sent to the thread.

ESPIPE
The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

The fseek() and fseeko() functions may fail if:

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), fsetpos(), ftell(), getrlimit(), lseek(), re wind(), ulimit(),
ungetc(), write()

IEEE/The Open Group 2017 2

FSEEK(3P) POSIX Programmer’s Manual FSEEK(3P)

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

FSETPOS(3P) POSIX Programmer’s Manual FSETPOS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fsetpos — set current file position

SYNOPSIS
#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fsetpos() function shall set the file position and state indicators for the stream pointed to by stream ac-
cording to the value of the object pointed to by pos, which the application shall ensure is a value obtained
from an earlier call to fgetpos() on the same stream. If a read or write error occurs, the error indicator for
the stream shall be set and fsetpos() fails.

A successful call to the fsetpos() function shall clear the end-of-file indicator for the stream and undo any
effects of ungetc() on the same stream. After an fsetpos() call, the next operation on an update stream may
be either input or output.

The behavior of fsetpos() on devices which are incapable of seeking is implementation-defined. The value
of the file offset associated with such a device is undefined.

The fsetpos() function shall not change the setting of errno if successful.

RETURN VALUE
The fsetpos() function shall return 0 if it succeeds; otherwise, it shall return a non-zero value and set errno

to indicate the error.

ERRORS
The fsetpos() function shall fail if, either the stream is unbuffered or the stream’s buffer needed to be
flushed, and the call to fsetpos() causes an underlying lseek() or write() to be invoked, and:

EAGAIN
The O_NONBLOCK flag is set for the file descriptor and the thread would be delayed in the write
operation.

EBADF
The file descriptor underlying the stream file is not open for writing or the stream’s buffer needed
to be flushed and the file is not open.

EFBIG
An attempt was made to write a file that exceeds the maximum file size.

EFBIG
An attempt was made to write a file that exceeds the file size limit of the process.

EFBIG
The file is a regular file and an attempt was made to write at or beyond the offset maximum associ-
ated with the corresponding stream.

EINTR
The write operation was terminated due to the receipt of a signal, and no data was transferred.

EIO A physical I/O error has occurred, or the process is a member of a background process group at-
tempting to perform a write() to its controlling terminal, TOSTOP is set, the calling thread is not
blocking SIGTTOU, the process is not ignoring SIGTTOU, and the process group of the process is
orphaned. This error may also be returned under implementation-defined conditions.

IEEE/The Open Group 2017 1

FSETPOS(3P) POSIX Programmer’s Manual FSETPOS(3P)

ENOSPC
There was no free space remaining on the device containing the file.

EPIPE An attempt was made to write to a pipe or FIFO that is not open for reading by any process; a
SIGPIPE signal shall also be sent to the thread.

ESPIPE
The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

The fsetpos() function may fail if:

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), ftell(), lseek(), re wind(), ungetc(), write()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FSTAT(3P) POSIX Programmer’s Manual FSTAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fstat — get file status

SYNOPSIS
#include <sys/stat.h>

int fstat(int fildes, struct stat *buf);

DESCRIPTION
The fstat() function shall obtain information about an open file associated with the file descriptor fildes, and
shall write it to the area pointed to by buf .

If fildes references a shared memory object, the implementation shall update in the stat structure pointed to
by the buf argument the st_uid , st_gid , st_size, and st_mode fields, and only the S_IRUSR, S_IWUSR,
S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be valid. The implementation
may update other fields and flags.

If fildes references a typed memory object, the implementation shall update in the stat structure pointed to
by the buf argument the st_uid , st_gid , st_size, and st_mode fields, and only the S_IRUSR, S_IWUSR,
S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be valid. The implementation
may update other fields and flags.

The buf argument is a pointer to a stat structure, as defined in <sys/stat.h>, into which information is
placed concerning the file.

For all other file types defined in this volume of POSIX.1-2017, the structure members st_mode, st_ino,
st_dev, st_uid , st_gid , st_atim, st_ctim, and st_mtim shall have meaningful values and the value of the
st_nlink member shall be set to the number of links to the file.

An implementation that provides additional or alternative file access control mechanisms may, under imple-
mentation-defined conditions, cause fstat() to fail.

The fstat() function shall update any time-related fields (as described in the Base Definitions volume of
POSIX.1-2017, Section 4.9, File Times Update), before writing into the stat structure.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The fstat() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

EIO An I/O error occurred while reading from the file system.

EOVERFLOW
The file size in bytes or the number of blocks allocated to the file or the file serial number cannot
be represented correctly in the structure pointed to by buf .

The fstat() function may fail if:

EOVERFLOW
One of the values is too large to store into the structure pointed to by the buf argument.

The following sections are informative.

EXAMPLES

IEEE/The Open Group 2017 1

FSTAT(3P) POSIX Programmer’s Manual FSTAT(3P)

Obtaining File Status Information
The following example shows how to obtain file status information for a file named /home/cnd/mod1. The
structure variable buffer is defined for the stat structure. The /home/cnd/mod1 file is opened with
read/write privileges and is passed to the open file descriptor fildes.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

struct stat buffer;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = fstat(fildes, &buffer);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fstatat()

The Base Definitions volume of POSIX.1-2017, Section 4.9, File Times Update, <sys_stat.h>,
<sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FSTAT AT(3P) POSIX Programmer’s Manual FSTAT AT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fstatat, lstat, stat — get file status

SYNOPSIS
#include <fcntl.h>
#include <sys/stat.h>

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);

int lstat(const char *restrict path, struct stat *restrict buf);
int stat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
The stat() function shall obtain information about the named file and write it to the area pointed to by the
buf argument. The path argument points to a pathname naming a file. Read, write, or execute permission of
the named file is not required. An implementation that provides additional or alternate file access control
mechanisms may, under implementation-defined conditions, cause stat() to fail. In particular, the system
may deny the existence of the file specified by path.

If the named file is a symbolic link, the stat() function shall continue pathname resolution using the con-
tents of the symbolic link, and shall return information pertaining to the resulting file if the file exists.

The buf argument is a pointer to a stat structure, as defined in the <sys/stat.h> header, into which informa-
tion is placed concerning the file.

The stat() function shall update any time-related fields (as described in the Base Definitions volume of
POSIX.1-2017, Section 4.9, File Times Update), before writing into the stat structure.

If the named file is a shared memory object, the implementation shall update in the stat structure pointed to
by the buf argument the st_uid , st_gid , st_size, and st_mode fields, and only the S_IRUSR, S_IWUSR,
S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be valid. The implementation
may update other fields and flags.

If the named file is a typed memory object, the implementation shall update in the stat structure pointed to
by the buf argument the st_uid , st_gid , st_size, and st_mode fields, and only the S_IRUSR, S_IWUSR,
S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be valid. The implementation
may update other fields and flags.

For all other file types defined in this volume of POSIX.1-2017, the structure members st_mode, st_ino,
st_dev, st_uid , st_gid , st_atim, st_ctim, and st_mtim shall have meaningful values and the value of the
member st_nlink shall be set to the number of links to the file.

The lstat() function shall be equivalent to stat(), except when path refers to a symbolic link. In that case
lstat() shall return information about the link, while stat() shall return information about the file the link ref-
erences.

For symbolic links, the st_mode member shall contain meaningful information when used with the file type
macros. The file mode bits in st_mode are unspecified. The structure members st_ino, st_dev, st_uid ,
st_gid , st_atim, st_ctim, and st_mtim shall have meaningful values and the value of the st_nlink member
shall be set to the number of (hard) links to the symbolic link. The value of the st_size member shall be set
to the length of the pathname contained in the symbolic link not including any terminating null byte.

The fstatat() function shall be equivalent to the stat() or lstat() function, depending on the value of flag (see
below), except in the case where path specifies a relative path. In this case the status shall be retrieved from
a file relative to the directory associated with the file descriptor fd instead of the current working directory.
If the access mode of the open file description associated with the file descriptor is not O_SEARCH, the
function shall check whether directory searches are permitted using the current permissions of the directory

IEEE/The Open Group 2017 1

FSTAT AT(3P) POSIX Programmer’s Manual FSTAT AT(3P)

underlying the file descriptor. If the access mode is O_SEARCH, the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fc-

ntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, the status of the symbolic link is returned.

If fstatat() is passed the special value AT_FDCWD in the fd parameter, the current working directory shall
be used and the behavior shall be identical to a call to stat() or lstat() respectively, depending on whether or
not the AT_SYMLINK_NOFOLLOW bit is set in flag.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error.

ERRORS
These functions shall fail if:

EACCES
Search permission is denied for a component of the path prefix.

EIO An error occurred while reading from the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

EOVERFLOW
The file size in bytes or the number of blocks allocated to the file or the file serial number cannot
be represented correctly in the structure pointed to by buf .

The fstatat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

IEEE/The Open Group 2017 2

FSTAT AT(3P) POSIX Programmer’s Manual FSTAT AT(3P)

EOVERFLOW
A value to be stored would overflow one of the members of the stat structure.

The fstatat() function may fail if:

EINVAL
The value of the flag argument is not valid.

The following sections are informative.

EXAMPLES
Obtaining File Status Information

The following example shows how to obtain file status information for a file named /home/cnd/mod1. The
structure variable buffer is defined for the stat structure.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

struct stat buffer;
int status;
...
status = stat("/home/cnd/mod1", &buffer);

Getting Directory Information
The following example fragment gets status information for each entry in a directory. The call to the stat()
function stores file information in the stat structure pointed to by statbuf . The lines that follow the stat()
call format the fields in the stat structure for presentation to the user of the program.

#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <pwd.h>
#include <grp.h>
#include <time.h>
#include <locale.h>
#include <langinfo.h>
#include <stdio.h>
#include <stdint.h>

struct dirent *dp;
struct stat statbuf;
struct passwd *pwd;
struct group *grp;
struct tm *tm;
char datestring[256];
...
/* Loop through directory entries. */
while ((dp = readdir(dir)) != NULL) {

/* Get entry's information. */
if (stat(dp->d_name, &statbuf) == -1)

continue;

/* Print out type, permissions, and number of links. */
printf("%10.10s", sperm (statbuf.st_mode));
printf("%4d", statbuf.st_nlink);

IEEE/The Open Group 2017 3

FSTAT AT(3P) POSIX Programmer’s Manual FSTAT AT(3P)

/* Print out owner's name if it is found using getpwuid(). */
if ((pwd = getpwuid(statbuf.st_uid)) != NULL)

printf(" %-8.8s", pwd->pw_name);
else

printf(" %-8d", statbuf.st_uid);

/* Print out group name if it is found using getgrgid(). */
if ((grp = getgrgid(statbuf.st_gid)) != NULL)

printf(" %-8.8s", grp->gr_name);
else

printf(" %-8d", statbuf.st_gid);

/* Print size of file. */
printf(" %9jd", (intmax_t)statbuf.st_size);

tm = localtime(&statbuf.st_mtime);

/* Get localized date string. */
strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);

printf(" %s %s\n", datestring, dp->d_name);
}

Obtaining Symbolic Link Status Information
The following example shows how to obtain status information for a symbolic link named /modules/pass1.
The structure variable buffer is defined for the stat structure. If the path argument specified the pathname
for the file pointed to by the symbolic link (/home/cnd/mod1), the results of calling the function would be
the same as those returned by a call to the stat() function.

#include <sys/stat.h>

struct stat buffer;
int status;
...
status = lstat("/modules/pass1", &buffer);

APPLICATION USAGE
None.

RATIONALE
The intent of the paragraph describing ‘‘additional or alternate file access control mechanisms’’ is to allow
a secure implementation where a process with a label that does not dominate the file’s label cannot perform
a stat() function. This is not related to read permission; a process with a label that dominates the file’s label
does not need read permission. An implementation that supports write-up operations could fail fstat() func-
tion calls even though it has a valid file descriptor open for writing.

The purpose of the fstatat() function is to obtain the status of files in directories other than the current work-
ing directory without exposure to race conditions. Any part of the path of a file could be changed in parallel
to a call to stat(), resulting in unspecified behavior. By opening a file descriptor for the target directory and
using the fstatat() function it can be guaranteed that the file for which status is returned is located relative to
the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
access(), chmod(), fdopendir(), fstat(), mknod(), readlink(), symlink()

The Base Definitions volume of POSIX.1-2017, Section 4.9, File Times Update, <fcntl.h>, <sys_stat.h>,
<sys_types.h>

IEEE/The Open Group 2017 4

FSTAT AT(3P) POSIX Programmer’s Manual FSTAT AT(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

FSTATVFS(3P) POSIX Programmer’s Manual FSTATVFS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fstatvfs, statvfs — get file system information

SYNOPSIS
#include <sys/statvfs.h>

int fstatvfs(int fildes, struct statvfs *buf);
int statvfs(const char *restrict path, struct statvfs *restrict buf);

DESCRIPTION
The fstatvfs() function shall obtain information about the file system containing the file referenced by
fildes.

The statvfs() function shall obtain information about the file system containing the file named by path.

For both functions, the buf argument is a pointer to a statvfs structure that shall be filled. Read, write, or ex-
ecute permission of the named file is not required.

The following flags can be returned in the f_flag member:

ST_RDONLY
Read-only file system.

ST_NOSUID Setuid/setgid bits ignored by exec.

It is unspecified whether all members of the statvfs structure have meaningful values on all file systems.

RETURN VALUE
Upon successful completion, statvfs() shall return 0. Otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The fstatvfs() and statvfs() functions shall fail if:

EIO An I/O error occurred while reading the file system.

EINTR
A signal was caught during execution of the function.

EOVERFLOW
One of the values to be returned cannot be represented correctly in the structure pointed to by buf .

The fstatvfs() function shall fail if:

EBADF
The fildes argument is not an open file descriptor.

The statvfs() function shall fail if:

EACCES
Search permission is denied on a component of the path prefix.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

IEEE/The Open Group 2017 1

FSTATVFS(3P) POSIX Programmer’s Manual FSTATVFS(3P)

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The statvfs() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Obtaining File System Information Using fstatvfs()

The following example shows how to obtain file system information for the file system upon which the file
named /home/cnd/mod1 resides, using the fstatvfs() function. The /home/cnd/mod1 file is opened with
read/write privileges and the open file descriptor is passed to the fstatvfs() function.

#include <sys/statvfs.h>
#include <fcntl.h>

struct statvfs buffer;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = fstatvfs(fildes, &buffer);

Obtaining File System Information Using statvfs()
The following example shows how to obtain file system information for the file system upon which the file
named /home/cnd/mod1 resides, using the statvfs() function.

#include <sys/statvfs.h>

struct statvfs buffer;
int status;
...
status = statvfs("/home/cnd/mod1", &buffer);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), dup(), exec , fcntl(), link(), mknod(), open(), pipe(), read(), time(), un-

link(), utime(), write()

The Base Definitions volume of POSIX.1-2017, <sys_statvfs.h>

IEEE/The Open Group 2017 2

FSTATVFS(3P) POSIX Programmer’s Manual FSTATVFS(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

FSYNC(3P) POSIX Programmer’s Manual FSYNC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fsync — synchronize changes to a file

SYNOPSIS
#include <unistd.h>

int fsync(int fildes);

DESCRIPTION
The fsync() function shall request that all data for the open file descriptor named by fildes is to be trans-
ferred to the storage device associated with the file described by fildes. The nature of the transfer is imple-
mentation-defined. The fsync() function shall not return until the system has completed that action or until
an error is detected.

If _POSIX_SYNCHRONIZED_IO is defined, the fsync() function shall force all currently queued I/O oper-
ations associated with the file indicated by file descriptor fildes to the synchronized I/O completion state.
All I/O operations shall be completed as defined for synchronized I/O file integrity completion.

RETURN VALUE
Upon successful completion, fsync() shall return 0. Otherwise, −1 shall be returned and errno set to indicate
the error. If the fsync() function fails, outstanding I/O operations are not guaranteed to have been com-
pleted.

ERRORS
The fsync() function shall fail if:

EBADF
The fildes argument is not a valid descriptor.

EINTR
The fsync() function was interrupted by a signal.

EINVAL
The fildes argument does not refer to a file on which this operation is possible.

EIO An I/O error occurred while reading from or writing to the file system.

In the event that any of the queued I/O operations fail, fsync() shall return the error conditions defined for
read() and write().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The fsync() function should be used by programs which require modifications to a file to be completed be-
fore continuing; for example, a program which contains a simple transaction facility might use it to ensure
that all modifications to a file or files caused by a transaction are recorded.

RATIONALE
The fsync() function is intended to force a physical write of data from the buffer cache, and to assure that
after a system crash or other failure that all data up to the time of the fsync() call is recorded on the disk.
Since the concepts of ‘‘buffer cache’’, ‘‘system crash’’, ‘‘physical write’’, and ‘‘non-volatile storage’’ are
not defined here, the wording has to be more abstract.

If _POSIX_SYNCHRONIZED_IO is not defined, the wording relies heavily on the conformance document
to tell the user what can be expected from the system. It is explicitly intended that a null implementation is
permitted. This could be valid in the case where the system cannot assure non-volatile storage under any
circumstances or when the system is highly fault-tolerant and the functionality is not required. In the

IEEE/The Open Group 2017 1

FSYNC(3P) POSIX Programmer’s Manual FSYNC(3P)

middle ground between these extremes, fsync() might or might not actually cause data to be written where it
is safe from a power failure. The conformance document should identify at least that one configuration ex-
ists (and how to obtain that configuration) where this can be assured for at least some files that the user can
select to use for critical data. It is not intended that an exhaustive list is required, but rather sufficient infor-
mation is provided so that if critical data needs to be saved, the user can determine how the system is to be
configured to allow the data to be written to non-volatile storage.

It is reasonable to assert that the key aspects of fsync() are unreasonable to test in a test suite. That does not
make the function any less valuable, just more difficult to test. A formal conformance test should probably
force a system crash (power shutdown) during the test for this condition, but it needs to be done in such a
way that automated testing does not require this to be done except when a formal record of the results is be-
ing made. It would also not be unreasonable to omit testing for fsync(), allowing it to be treated as a quality-
of-implementation issue.

FUTURE DIRECTIONS
None.

SEE ALSO
sync()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FTELL(3P) POSIX Programmer’s Manual FTELL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ftell, ftello — return a file offset in a stream

SYNOPSIS
#include <stdio.h>

long ftell(FILE *stream);
off_t ftello(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The ftell() function shall obtain the current value of the file-position indicator for the stream pointed to by
stream.

The ftell() function shall not change the setting of errno if successful.

The ftello() function shall be equivalent to ftell(), except that the return value is of type off_t and the ftello()
function may change the setting of errno if successful.

RETURN VALUE
Upon successful completion, ftell() and ftello() shall return the current value of the file-position indicator
for the stream measured in bytes from the beginning of the file.

Otherwise, ftell() and ftello() shall return −1, and set errno to indicate the error.

ERRORS
The ftell() and ftello() functions shall fail if:

EBADF
The file descriptor underlying stream is not an open file descriptor.

EOVERFLOW
For ftell(), the current file offset cannot be represented correctly in an object of type long.

EOVERFLOW
For ftello(), the current file offset cannot be represented correctly in an object of type off_t.

ESPIPE
The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fgetpos(), fopen(), fseek(), lseek()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

IEEE/The Open Group 2017 1

FTELL(3P) POSIX Programmer’s Manual FTELL(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FTOK(3P) POSIX Programmer’s Manual FTOK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ftok — generate an IPC key

SYNOPSIS
#include <sys/ipc.h>

key_t ftok(const char *path, int id);

DESCRIPTION
The ftok() function shall return a key based on path and id that is usable in subsequent calls to msgget(),
semget(), and shmget(). The application shall ensure that the path argument is the pathname of an existing
file that the process is able to stat(), with the exception that if stat() would fail with [EOVERFLOW] due
to file size, ftok() shall still succeed.

The ftok() function shall return the same key value for all paths that name the same file, when called with
the same id value, and should return different key values when called with different id values or with paths
that name different files existing on the same file system at the same time. It is unspecified whether ftok()
shall return the same key value when called again after the file named by path is removed and recreated
with the same name.

Only the low-order 8-bits of id are significant. The behavior of ftok() is unspecified if these bits are 0.

RETURN VALUE
Upon successful completion, ftok() shall return a key. Otherwise, ftok() shall return (key_t)−1 and set errno

to indicate the error.

ERRORS
The ftok() function shall fail if:

EACCES
Search permission is denied for a component of the path prefix.

EIO An error occurred while reading from the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The ftok() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

IEEE/The Open Group 2017 1

FTOK(3P) POSIX Programmer’s Manual FTOK(3P)

EXAMPLES
Getting an IPC Key

The following example gets a key based on the pathname /tmp and the ID value a. It also assigns the value
of the resulting key to the semkey variable so that it will be available to a later call to semget(), msgget(), or
shmget().

#include <sys/ipc.h>
...
key_t semkey;

if ((semkey = ftok("/tmp", 'a')) == (key_t) -1) {
perror("IPC error: ftok"); exit(1);

}

APPLICATION USAGE
For maximum portability, id should be a single-byte character.

Applications should not assume that the resulting key value is unique.

RATIONALE
None.

FUTURE DIRECTIONS
Future versions of this standard may add new interfaces to provide unique keys.

SEE ALSO
msgget(), semget(), shmget()

The Base Definitions volume of POSIX.1-2017, <sys_ipc.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FTRUNCATE(3P) POSIX Programmer’s Manual FTRUNCATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ftruncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int ftruncate(int fildes, off_t length);

DESCRIPTION
If fildes is not a valid file descriptor open for writing, the ftruncate() function shall fail.

If fildes refers to a regular file, the ftruncate() function shall cause the size of the file to be truncated to
length. If the size of the file previously exceeded length, the extra data shall no longer be available to reads
on the file. If the file previously was smaller than this size, ftruncate() shall increase the size of the file. If
the file size is increased, the extended area shall appear as if it were zero-filled. The value of the seek
pointer shall not be modified by a call to ftruncate().

Upon successful completion, if fildes refers to a regular file, ftruncate() shall mark for update the last data
modification and last file status change timestamps of the file and the S_ISUID and S_ISGID bits of the file
mode may be cleared. If the ftruncate() function is unsuccessful, the file is unaffected.

If the request would cause the file size to exceed the soft file size limit for the process, the request shall fail
and the implementation shall generate the SIGXFSZ signal for the thread.

If fildes refers to a directory, ftruncate() shall fail.

If fildes refers to any other file type, except a shared memory object, the result is unspecified.

If fildes refers to a shared memory object, ftruncate() shall set the size of the shared memory object to
length.

If the effect of ftruncate() is to decrease the size of a memory mapped file or a shared memory object and
whole pages beyond the new end were previously mapped, then the whole pages beyond the new end shall
be discarded.

References to discarded pages shall result in the generation of a SIGBUS signal.

If the effect of ftruncate() is to increase the size of a memory object, it is unspecified whether the contents
of any mapped pages between the old end-of-file and the new are flushed to the underlying object.

RETURN VALUE
Upon successful completion, ftruncate() shall return 0; otherwise, −1 shall be returned and errno set to in-
dicate the error.

ERRORS
The ftruncate() function shall fail if:

EINTR
A signal was caught during execution.

EINVAL
The length argument was less than 0.

EFBIG or EINVAL
The length argument was greater than the maximum file size.

EFBIG
The file is a regular file and length is greater than the offset maximum established in the open file
description associated with fildes.

IEEE/The Open Group 2017 1

FTRUNCATE(3P) POSIX Programmer’s Manual FTRUNCATE(3P)

EIO An I/O error occurred while reading from or writing to a file system.

EBADF or EINVAL
The fildes argument is not a file descriptor open for writing.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), truncate()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FTRYLOCKFILE(3P) POSIX Programmer’s Manual FTRYLOCKFILE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ftrylockfile — stdio locking functions

SYNOPSIS
#include <stdio.h>

int ftrylockfile(FILE *file);

DESCRIPTION
Refer to flockfile().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FTW(3P) POSIX Programmer’s Manual FTW(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ftw — traverse (walk) a file tree

SYNOPSIS
#include <ftw.h>

int ftw(const char *path, int (*fn)(const char *,
const struct stat *ptr, int flag), int ndirs);

DESCRIPTION
The ftw() function shall recursively descend the directory hierarchy rooted in path. For each object in the
hierarchy, ftw() shall call the function pointed to by fn, passing it a pointer to a null-terminated character
string containing the name of the object, a pointer to a stat structure containing information about the ob-
ject, filled in as if stat() or lstat() had been called to retrieve the information. Possible values of the integer,
defined in the <ftw.h> header, are:

FTW_D For a directory.

FTW_DNR
For a directory that cannot be read.

FTW_F For a non-directory file.

FTW_SL For a symbolic link (but see also FTW_NS below).

FTW_NS For an object other than a symbolic link on which stat() could not successfully be executed. If
the object is a symbolic link and stat() failed, it is unspecified whether ftw() passes FTW_SL or
FTW_NS to the user-supplied function.

If the integer is FTW_DNR, descendants of that directory shall not be processed. If the integer is FTW_NS,
the stat structure contains undefined values. An example of an object that would cause FTW_NS to be
passed to the function pointed to by fn would be a file in a directory with read but without execute (search)
permission.

The ftw() function shall visit a directory before visiting any of its descendants.

The ftw() function shall use at most one file descriptor for each level in the tree.

The argument ndirs should be in the range [1,{OPEN_MAX}].

The tree traversal shall continue until either the tree is exhausted, an invocation of fn returns a non-zero
value, or some error, other than [EACCES], is detected within ftw().

The ndirs argument shall specify the maximum number of directory streams or file descriptors or both
available for use by ftw() while traversing the tree. When ftw() returns it shall close any directory streams
and file descriptors it uses not counting any opened by the application-supplied fn function.

The results are unspecified if the application-supplied fn function does not preserve the current working di-
rectory.

The ftw() function need not be thread-safe.

RETURN VALUE
If the tree is exhausted, ftw() shall return 0. If the function pointed to by fn returns a non-zero value, ftw()
shall stop its tree traversal and return whatever value was returned by the function pointed to by fn. If ftw()
detects an error, it shall return −1 and set errno to indicate the error.

If ftw() encounters an error other than [EACCES] (see FTW_DNR and FTW_NS above), it shall return −1
and set errno to indicate the error. The external variable errno may contain any error value that is possible
when a directory is opened or when one of the stat functions is executed on a directory or file.

IEEE/The Open Group 2017 1

FTW(3P) POSIX Programmer’s Manual FTW(3P)

ERRORS
The ftw() function shall fail if:

EACCES
Search permission is denied for any component of path or read permission is denied for path.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of path names an existing file that is neither a directory nor a symbolic link to a di-
rectory.

EOVERFLOW
A field in the stat structure cannot be represented correctly in the current programming environ-
ment for one or more files found in the file hierarchy.

The ftw() function may fail if:

EINVAL
The value of the ndirs argument is invalid.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

In addition, if the function pointed to by fn encounters system errors, errno may be set accordingly.

The following sections are informative.

EXAMPLES
Walking a Directory Structure

The following example walks the current directory structure, calling the fn function for every directory en-
try, using at most 10 file descriptors:

#include <ftw.h>
...
if (ftw(".", fn, 10) != 0) {

perror("ftw"); exit(2);
}

APPLICATION USAGE
The ftw() function may allocate dynamic storage during its operation. If ftw() is forcibly terminated, such as
by longjmp() or siglongjmp() being executed by the function pointed to by fn or an interrupt routine, ftw()
does not have a chance to free that storage, so it remains permanently allocated. A safe way to handle inter-
rupts is to store the fact that an interrupt has occurred, and arrange to have the function pointed to by fn re-
turn a non-zero value at its next invocation.

Applications should use the nftw() function instead of the obsolescent ftw() function.

RATIONALE
None.

IEEE/The Open Group 2017 2

FTW(3P) POSIX Programmer’s Manual FTW(3P)

FUTURE DIRECTIONS
The ftw() function may be removed in a future version.

SEE ALSO
fdopendir(), fstatat(), longjmp(), nftw(), siglongjmp()

The Base Definitions volume of POSIX.1-2017, <ftw.h>, <sys_stat.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

FUNLOCKFILE(3P) POSIX Programmer’s Manual FUNLOCKFILE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
funlockfile — stdio locking functions

SYNOPSIS
#include <stdio.h>

void funlockfile(FILE *file);

DESCRIPTION
Refer to flockfile().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

FUTIMENS(3P) POSIX Programmer’s Manual FUTIMENS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
futimens, utimensat, utimes — set file access and modification times

SYNOPSIS
#include <sys/stat.h>

int futimens(int fd, const struct timespec times[2]);

#include <fcntl.h>

int utimensat(int fd, const char *path, const struct timespec times[2],
int flag);

#include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

DESCRIPTION
The futimens() and utimensat() functions shall set the access and modification times of a file to the values of
the times argument. The futimens() function changes the times of the file associated with the file descriptor
fd . The utimensat() function changes the times of the file pointed to by the path argument, relative to the
directory associated with the file descriptor fd . Both functions allow time specifications accurate to the
nanosecond.

For futimens() and utimensat(), the times argument is an array of two timespec structures. The first array
member represents the date and time of last access, and the second member represents the date and time of
last modification. The times in the timespec structure are measured in seconds and nanoseconds since the
Epoch. The file’s relevant timestamp shall be set to the greatest value supported by the file system that is
not greater than the specified time.

If the tv_nsec field of a timespec structure has the special value UTIME_NOW, the file’s relevant time-
stamp shall be set to the greatest value supported by the file system that is not greater than the current time.
If the tv_nsec field has the special value UTIME_OMIT, the file’s relevant timestamp shall not be changed.
In either case, the tv_sec field shall be ignored.

If the times argument is a null pointer, both the access and modification timestamps shall be set to the great-
est value supported by the file system that is not greater than the current time. If utimensat() is passed a rel-
ative path in the path argument, the file to be used shall be relative to the directory associated with the file
descriptor fd instead of the current working directory. If the access mode of the open file description asso-
ciated with the file descriptor is not O_SEARCH, the function shall check whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the access mode is
O_SEARCH, the function shall not perform the check.

If utimensat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used.

Only a process with the effective user ID equal to the user ID of the file, or with write access to the file, or
with appropriate privileges may use futimens() or utimensat() with a null pointer as the times argument or
with both tv_nsec fields set to the special value UTIME_NOW. Only a process with the effective user ID
equal to the user ID of the file or with appropriate privileges may use futimens() or utimensat() with a non-
null times argument that does not have both tv_nsec fields set to UTIME_NOW and does not have both
tv_nsec fields set to UTIME_OMIT. If both tv_nsec fields are set to UTIME_OMIT, no ownership or per-
missions check shall be performed for the file, but other error conditions may still be detected (including
[EACCES] errors related to the path prefix).

Values for the flag argument of utimensat() are constructed by a bitwise-inclusive OR of flags from the fol-
lowing list, defined in <fcntl.h>:

IEEE/The Open Group 2017 1

FUTIMENS(3P) POSIX Programmer’s Manual FUTIMENS(3P)

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, then the access and modification times of the symbolic link are
changed.

Upon successful completion, futimens() and utimensat() shall mark the last file status change timestamp for
update, with the exception that if both tv_nsec fields are set to UTIME_OMIT, the file status change time-
stamp need not be marked for update.

The utimes() function shall be equivalent to the utimensat() function with the special value AT_FDCWD as
the fd argument and the flag argument set to zero, except that the times argument is a timeval structure
rather than a timespec structure, and accuracy is only to the microsecond, not nanosecond, and rounding to-
wards the nearest second may occur.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error. If −1 is returned, the file times shall not be affected.

ERRORS
These functions shall fail if:

EACCES
The times argument is a null pointer, or both tv_nsec values are UTIME_NOW, and the effective
user ID of the process does not match the owner of the file and write access is denied.

EINVAL
Either of the times argument structures specified a tv_nsec value that was neither UTIME_NOW
nor UTIME_OMIT, and was a value less than zero or greater than or equal to 1 000 million.

EINVAL
A new file timestamp would be a value whose tv_sec component is not a value supported by the
file system.

EPERM
The times argument is not a null pointer, does not have both tv_nsec fields set to UTIME_NOW,
does not have both tv_nsec fields set to UTIME_OMIT, the calling process’ effective user ID does
not match the owner of the file, and the calling process does not have appropriate privileges.

EROFS
The file system containing the file is read-only.

The futimens() function shall fail if:

EBADF
The fd argument is not a valid file descriptor.

The utimensat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

The utimensat() and utimes() functions shall fail if:

EACCES
Search permission is denied by a component of the path prefix.

IEEE/The Open Group 2017 2

FUTIMENS(3P) POSIX Programmer’s Manual FUTIMENS(3P)

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The utimensat() and utimes() functions may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The utimensat() function may fail if:

EINVAL
The value of the flag argument is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The purpose of the utimensat() function is to set the access and modification time of files in directories
other than the current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to utimes(), resulting in unspecified behavior. By opening a file de-
scriptor for the target directory and using the utimensat() function it can be guaranteed that the changed file
is located relative to the desired directory.

The standard developers considered including a special case for the permissions required by utimensat()
when one tv_nsec field is UTIME_NOW and the other is UTIME_OMIT. One possibility would be to in-
clude this case in with the cases where times is a null pointer or both fields are UTIME_NOW, where the
call is allowed if the process has write permission for the file. However, associating write permission with
an update to just the last data access timestamp (which is normally updated by read()) did not seem appro-
priate. The other possibility would be to specify that this one case is allowed if the process has read permis-
sion, but this was felt to be too great a departure from the utime() and utimes() functions on which utimen-

sat() is based. If an application needs to set the last data access timestamp to the current time for a file on
which it has read permission but is not the owner, it can do so by opening the file, reading one or more
bytes (or reading a directory entry, if the file is a directory), and then closing it.

FUTURE DIRECTIONS
None.

SEE ALSO
read(), utime()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_stat.h>, <sys_time.h>

IEEE/The Open Group 2017 3

FUTIMENS(3P) POSIX Programmer’s Manual FUTIMENS(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

FWIDE(3P) POSIX Programmer’s Manual FWIDE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fwide — set stream orientation

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwide(FILE *stream, int mode);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fwide() function shall determine the orientation of the stream pointed to by stream. If mode is greater
than zero, the function first attempts to make the stream wide-oriented. If mode is less than zero, the func-
tion first attempts to make the stream byte-oriented. Otherwise, mode is zero and the function does not alter
the orientation of the stream.

If the orientation of the stream has already been determined, fwide() shall not change it.

The fwide() function shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error situations
should set errno to 0, then call fwide(), then check errno, and if it is non-zero, assume an error has oc-
curred.

RETURN VALUE
The fwide() function shall return a value greater than zero if, after the call, the stream has wide-orientation,
a value less than zero if the stream has byte-orientation, or zero if the stream has no orientation.

ERRORS
The fwide() function may fail if:

EBADF
The stream argument is not a valid stream.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
A call to fwide() with mode set to zero can be used to determine the current orientation of a stream.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 1

FWIDE(3P) POSIX Programmer’s Manual FWIDE(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FWPRINTF(3P) POSIX Programmer’s Manual FWPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fwprintf, swprintf, wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwprintf(FILE *restrict stream, const wchar_t *restrict format, ...);
int swprintf(wchar_t *restrict ws, size_t n,

const wchar_t *restrict format, ...);
int wprintf(const wchar_t *restrict format, ...);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fwprintf() function shall place output on the named output stream. The wprintf() function shall place
output on the standard output stream stdout. The swprintf() function shall place output followed by the null
wide character in consecutive wide characters starting at *ws; no more than n wide characters shall be writ-
ten, including a terminating null wide character, which is always added (unless n is zero).

Each of these functions shall convert, format, and print its arguments under control of the format wide-
character string. The format is composed of zero or more directives: ordinary wide-characters, which are
simply copied to the output stream, and conversion specifications, each of which results in the fetching of
zero or more arguments. The results are undefined if there are insufficient arguments for the format. If the
format is exhausted while arguments remain, the excess arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather than to the next
unused argument. In this case, the conversion specifier wide character % (see below) is replaced by the se-
quence "%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}], giving the position of the
argument in the argument list. This feature provides for the definition of format wide-character strings that
select arguments in an order appropriate to specific languages (see the EXAMPLES section).

The format can contain either numbered argument specifications (that is, "%n$" and "*m$"), or unnum-
bered argument conversion specifications (that is, % and *), but not both. The only exception to this is that
%% can be mixed with the "%n$" form. The results of mixing numbered and unnumbered argument speci-
fications in a format wide-character string are undefined. When numbered argument specifications are
used, specifying the N th argument requires that all the leading arguments, from the first to the (N−1)th, are
specified in the format wide-character string.

In format wide-character strings containing the "%n$" form of conversion specification, numbered argu-
ments in the argument list can be referenced from the format wide-character string as many times as re-
quired.

In format wide-character strings containing the % form of conversion specification, each argument in the
argument list shall be used exactly once. It is unspecified whether an encoding error occurs if the format
string contains wchar_t values that do not correspond to members of the character set of the current locale
and the specified semantics do not require that value to be processed by wcrtomb().

All forms of the fwprintf() function allow for the insertion of a locale-dependent radix character in the out-
put string, output as a wide-character value. The radix character is defined in the current locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the radix
character shall default to a <period> (’.’).

Each conversion specification is introduced by the ’%’ wide character or by the wide-character sequence
"%n$", after which the following appear in sequence:

IEEE/The Open Group 2017 1

FWPRINTF(3P) POSIX Programmer’s Manual FWPRINTF(3P)

* Zero or more flags (in any order), which modify the meaning of the conversion specification.

* An optional minimum field width. If the converted value has fewer wide characters than the field
width, it shall be padded with <space> characters by default on the left; it shall be padded on the right,
if the left-adjustment flag (’−’), described below, is giv en to the field width. The field width takes the
form of an <asterisk> (’*’), described below, or a decimal integer.

* An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X
conversion specifiers; the number of digits to appear after the radix character for the a, A, e, E, f, and
F conversion specifiers; the maximum number of significant digits for the g and G conversion speci-
fiers; or the maximum number of wide characters to be printed from a string in the s conversion speci-
fiers. The precision takes the form of a <period> (’.’) followed either by an <asterisk> (’*’), described
below, or an optional decimal digit string, where a null digit string is treated as 0. If a precision ap-
pears with any other conversion wide character, the behavior is undefined.

* An optional length modifier that specifies the size of the argument.

* A conversion specifier wide character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an <asterisk> (’*’). In this case an argument of
type int supplies the field width or precision. Applications shall ensure that arguments specifying field
width, or precision, or both appear in that order before the argument, if any, to be converted. A negative
field width is taken as a ’−’ flag followed by a positive field width. A negative precision is taken as if the
precision were omitted. In format wide-character strings containing the "%n$" form of a conversion speci-
fication, a field width or precision may be indicated by the sequence "*m$", where m is a decimal integer in
the range [1,{NL_ARGMAX}] giving the position in the argument list (after the format argument) of an
integer argument containing the field width or precision, for example:

wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The flag wide characters and their meanings are:

' (The <apostrophe>.) The integer portion of the result of a decimal conversion (%i, %d, %u,
%f, %F, %g, or %G) shall be formatted with thousands’ grouping wide characters. For other
conversions, the behavior is undefined. The numeric grouping wide character is used.

− The result of the conversion shall be left-justified within the field. The conversion shall be right-
justified if this flag is not specified.

+ The result of a signed conversion shall always begin with a sign (’+’ or ’−’). The conversion
shall begin with a sign only when a negative value is converted if this flag is not specified.

<space> If the first wide character of a signed conversion is not a sign, or if a signed conversion results in
no wide characters, a <space> shall be prefixed to the result. This means that if the <space> and
’+’ flags both appear, the <space> flag shall be ignored.

Specifies that the value is to be converted to an alternative form. For o conversion, it shall in-
crease the precision, if and only if necessary, to force the first digit of the result to be zero (if the
value and precision are both 0, a single 0 is printed). For x or X conversion specifiers, a non-zero
result shall have 0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G conversion specifiers, the
result shall always contain a radix character, even if no digits follow it. Without this flag, a radix
character appears in the result of these conversions only if a digit follows it. For g and G conver-
sion specifiers, trailing zeros shall not be removed from the result as they normally are. For other
conversion specifiers, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversion specifiers, leading zeros (following any
indication of sign or base) are used to pad to the field width rather than performing space pad-
ding, except when converting an infinity or NaN. If the ’0’ and ’−’ flags both appear, the ’0’ flag
shall be ignored. For d, i, o, u, x, and X conversion specifiers, if a precision is specified, the ’0’
flag shall be ignored. If the ’0’ and <apostrophe> flags both appear, the grouping wide characters
are inserted before zero padding. For other conversions, the behavior is undefined.

IEEE/The Open Group 2017 2

FWPRINTF(3P) POSIX Programmer’s Manual FWPRINTF(3P)

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char or un-
signed char argument (the argument will have been promoted according to the integer promo-
tions, but its value shall be converted to signed char or unsigned char before printing); or that a
following n conversion specifier applies to a pointer to a signed char argument.

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short or unsigned
short argument (the argument will have been promoted according to the integer promotions, but
its value shall be converted to short or unsigned short before printing); or that a following n
conversion specifier applies to a pointer to a short argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long or unsigned
long argument; that a following n conversion specifier applies to a pointer to a long argument;
that a following c conversion specifier applies to a wint_t argument; that a following s conversion
specifier applies to a pointer to a wchar_t argument; or has no effect on a following a, A, e, E, f,
F, g, or G conversion specifier.

ll (ell-ell)
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long or un-
signed long long argument; or that a following n conversion specifier applies to a pointer to a
long long argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t or uint-
max_t argument; or that a following n conversion specifier applies to a pointer to an intmax_t ar-
gument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the corre-
sponding signed integer type argument; or that a following n conversion specifier applies to a
pointer to a signed integer type corresponding to a size_t argument.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or the cor-
responding unsigned type argument; or that a following n conversion specifier applies to a
pointer to a ptrdiff_t argument.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long double ar-
gument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is un-
defined.

The conversion specifiers and their meanings are:

d, i The int argument shall be converted to a signed decimal in the style "[−]dddd". The precision
specifies the minimum number of digits to appear; if the value being converted can be represented
in fewer digits, it shall be expanded with leading zeros. The default precision shall be 1. The re-
sult of converting zero with an explicit precision of zero shall be no wide characters.

o The unsigned argument shall be converted to unsigned octal format in the style "dddd". The
precision specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it shall be expanded with leading zeros. The default precision shall be
1. The result of converting zero with an explicit precision of zero shall be no wide characters.

u The unsigned argument shall be converted to unsigned decimal format in the style "dddd". The
precision specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it shall be expanded with leading zeros. The default precision shall be
1. The result of converting zero with an explicit precision of zero shall be no wide characters.

x The unsigned argument shall be converted to unsigned hexadecimal format in the style "dddd";
the letters "abcdef" are used. The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it shall be expanded with leading ze-
ros. The default precision shall be 1. The result of converting zero with an explicit precision of
zero shall be no wide characters.

IEEE/The Open Group 2017 3

FWPRINTF(3P) POSIX Programmer’s Manual FWPRINTF(3P)

X Equivalent to the x conversion specifier, except that letters "ABCDEF" are used instead of
"abcdef".

f, F The double argument shall be converted to decimal notation in the style "[−]ddd.ddd", where the
number of digits after the radix character shall be equal to the precision specification. If the preci-
sion is missing, it shall be taken as 6; if the precision is explicitly zero and no ’#’ flag is present,
no radix character shall appear. If a radix character appears, at least one digit shall appear before
it. The value shall be rounded in an implementation-defined manner to the appropriate number of
digits.

A double argument representing an infinity shall be converted in one of the styles "[-]inf" or
"[-]infinity"; which style is implementation-defined. A double argument representing a NaN
shall be converted in one of the styles "[-]nan" or "[−]nan(n-char-sequence)"; which style, and
the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier pro-
duces "INF", "INFINITY", or "NAN" instead of "inf", "infinity", or "nan", respectively.

e, E The double argument shall be converted in the style "[−]d.ddde±dd", where there shall be one
digit before the radix character (which is non-zero if the argument is non-zero) and the number of
digits after it shall be equal to the precision; if the precision is missing, it shall be taken as 6; if
the precision is zero and no ’#’ flag is present, no radix character shall appear. The value shall be
rounded in an implementation-defined manner to the appropriate number of digits. The E conver-
sion wide character shall produce a number with ’E’ instead of ’e’ introducing the exponent. The
exponent shall always contain at least two digits. If the value is zero, the exponent shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of an f or F
conversion specifier.

g, G The double argument representing a floating-point number shall be converted in the style f or e
(or in the style F or E in the case of a G conversion specifier), depending on the value converted
and the precision. Let P equal the precision if non-zero, 6 if the precision is omitted, or 1 if the
precision is zero. Then, if a conversion with style E would have an exponent of X :

-- If P>X≥−4, the conversion shall be with style f (or F) and precision P−(X+1).

-- Otherwise, the conversion shall be with style e (or E) and precision P−1.

Finally, unless the ’#’ flag is used, any trailing zeros shall be removed from the fractional portion
of the result and the decimal-point character shall be removed if there is no fractional portion re-
maining.

A double argument representing an infinity or NaN shall be converted in the style of an f or F
conversion specifier.

a, A A double argument representing a floating-point number shall be converted in the style
"[−]0xh.hhhhp±d", where there shall be one hexadecimal digit (which is non-zero if the argument
is a normalized floating-point number and is otherwise unspecified) before the decimal-point
wide character and the number of hexadecimal digits after it shall be equal to the precision; if the
precision is missing and FLT_RADIX is a power of 2, then the precision shall be sufficient for an
exact representation of the value; if the precision is missing and FLT_RADIX is not a power of 2,
then the precision shall be sufficient to distinguish values of type double, except that trailing ze-
ros may be omitted; if the precision is zero and the ’#’ flag is not specified, no decimal-point wide
character shall appear. The letters "abcdef" are used for a conversion and the letters
"ABCDEF" for A conversion. The A conversion specifier produces a number with ’X’ and ’P’
instead of ’x’ and ’p’. The exponent shall always contain at least one digit, and only as many
more digits as necessary to represent the decimal exponent of 2. If the value is zero, the exponent
shall be zero.

A double argument representing an infinity or NaN shall be converted in the style of an f or F
conversion specifier.

c If no l (ell) qualifier is present, the int argument shall be converted to a wide character as if by
calling the btowc() function and the resulting wide character shall be written. Otherwise, the

IEEE/The Open Group 2017 4

FWPRINTF(3P) POSIX Programmer’s Manual FWPRINTF(3P)

wint_t argument shall be converted to wchar_t, and written.

s If no l (ell) qualifier is present, the application shall ensure that the argument is a pointer to a
character array containing a character sequence beginning in the initial shift state. Characters
from the array shall be converted as if by repeated calls to the mbrtowc() function, with the con-
version state described by an mbstate_t object initialized to zero before the first character is con-
verted, and written up to (but not including) the terminating null wide character. If the precision
is specified, no more than that many wide characters shall be written. If the precision is not speci-
fied, or is greater than the size of the array, the application shall ensure that the array contains a
null wide character.

If an l (ell) qualifier is present, the application shall ensure that the argument is a pointer to an ar-
ray of type wchar_t. Wide characters from the array shall be written up to (but not including) a
terminating null wide character. If no precision is specified, or is greater than the size of the array,
the application shall ensure that the array contains a null wide character. If a precision is speci-
fied, no more than that many wide characters shall be written.

p The application shall ensure that the argument is a pointer to void. The value of the pointer shall
be converted to a sequence of printable wide characters in an implementation-defined manner.

n The application shall ensure that the argument is a pointer to an integer into which is written the
number of wide characters written to the output so far by this call to one of the fwprintf() func-
tions. No argument shall be converted, but one shall be consumed. If the conversion specification
includes any flags, a field width, or a precision, the behavior is undefined.

C Equivalent to lc.

S Equivalent to ls.

% Output a ’%’ wide character; no argument shall be converted. The entire conversion specification
shall be %%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field shall be expanded to contain the conversion result. Characters gener-
ated by fwprintf() and wprintf() shall be printed as if fputwc() had been called.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable in
the given precision, the result should be one of the two adjacent numbers in hexadecimal floating style with
the given precision, with the extra stipulation that the error should have a correct sign for the current round-
ing direction.

For e, E, f, F, g, and G conversion specifiers, if the number of significant decimal digits is at most DECI-
MAL_DIG, then the result should be correctly rounded. If the number of significant decimal digits is more
than DECIMAL_DIG but the source value is exactly representable with DECIMAL_DIG digits, then the
result should be an exact representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strings L < U , both having DECIMAL_DIG significant digits; the value of the resultant
decimal string D should satisfy L <= D <= U , with the extra stipulation that the error should have a correct
sign for the current rounding direction.

The last data modification and last file status change timestamps of the file shall be marked for update be-
tween the call to a successful execution of fwprintf() or wprintf() and the next successful completion of a
call to fflush() or fclose() on the same stream, or a call to exit() or abort().

RETURN VALUE
Upon successful completion, these functions shall return the number of wide characters transmitted, ex-
cluding the terminating null wide character in the case of swprintf(), or a negative value if an output error
was encountered, and set errno to indicate the error.

If n or more wide characters were requested to be written, swprintf() shall return a negative value, and set
errno to indicate the error.

IEEE/The Open Group 2017 5

FWPRINTF(3P) POSIX Programmer’s Manual FWPRINTF(3P)

ERRORS
For the conditions under which fwprintf() and wprintf() fail and may fail, refer to fputwc().

In addition, all forms of fwprintf() shall fail if:

EILSEQ
A wide-character code that does not correspond to a valid character has been detected.

In addition, fwprintf() and wprintf() may fail if:

ENOMEM
Insufficient storage space is available.

The swprintf() shall fail if:

EOVERFLOW
The value of n is greater than {INT_MAX} or the number of bytes needed to hold the output ex-
cluding the terminating null is greater than {INT_MAX}.

The following sections are informative.

EXAMPLES
To print the language-independent date and time format, the following statement could be used:

wprintf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

L"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that there are insufficient arguments for the format, it is recommended that the
function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, btowc(), fputwc(), fwscanf(), mbrtowc(), setlocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <inttypes.h>, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 6

FWPRINTF(3P) POSIX Programmer’s Manual FWPRINTF(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 7

FWRITE(3P) POSIX Programmer’s Manual FWRITE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fwrite — binary output

SYNOPSIS
#include <stdio.h>

size_t fwrite(const void *restrict ptr, size_t size, size_t nitems,
FILE *restrict stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fwrite() function shall write, from the array pointed to by ptr, up to nitems elements whose size is
specified by size, to the stream pointed to by stream. For each object, size calls shall be made to the fputc()
function, taking the values (in order) from an array of unsigned char exactly overlaying the object. The
file-position indicator for the stream (if defined) shall be advanced by the number of bytes successfully
written. If an error occurs, the resulting value of the file-position indicator for the stream is unspecified.

The last data modification and last file status change timestamps of the file shall be marked for update be-
tween the successful execution of fwrite() and the next successful completion of a call to fflush() or fclose()
on the same stream, or a call to exit() or abort().

RETURN VALUE
The fwrite() function shall return the number of elements successfully written, which may be less than
nitems if a write error is encountered. If size or nitems is 0, fwrite() shall return 0 and the state of the stream
remains unchanged. Otherwise, if a write error occurs, the error indicator for the stream shall be set, and er-

rno shall be set to indicate the error.

ERRORS
Refer to fputc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Because of possible differences in element length and byte ordering, files written using fwrite() are applica-
tion-dependent, and possibly cannot be read using fread() by a different application or by the same applica-
tion on a different processor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, ferror(), fopen(), fprintf(), putc(), puts(), write()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 1

FWRITE(3P) POSIX Programmer’s Manual FWRITE(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

FWSCANF(3P) POSIX Programmer’s Manual FWSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
fwscanf, swscanf, wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwscanf(FILE *restrict stream, const wchar_t *restrict format, ...);
int swscanf(const wchar_t *restrict ws,

const wchar_t *restrict format, ...);
int wscanf(const wchar_t *restrict format, ...);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The fwscanf() function shall read from the named input stream. The wscanf() function shall read from the
standard input stream stdin. The swscanf() function shall read from the wide-character string ws. Each
function reads wide characters, interprets them according to a format, and stores the results in its argu-
ments. Each expects, as arguments, a control wide-character string format described below, and a set of
pointer arguments indicating where the converted input should be stored. The result is undefined if there
are insufficient arguments for the format. If the format is exhausted while arguments remain, the excess ar-
guments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather than to the next
unused argument. In this case, the conversion specifier wide character % (see below) is replaced by the se-
quence "%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}]. This feature provides for
the definition of format wide-character strings that select arguments in an order appropriate to specific lan-
guages. In format wide-character strings containing the "%n$" form of conversion specifications, it is un-
specified whether numbered arguments in the argument list can be referenced from the format wide-char-
acter string more than once.

The format can contain either form of a conversion specification—that is, % or "%n$"— but the two forms
cannot normally be mixed within a single format wide-character string. The only exception to this is that
%% or %* can be mixed with the "%n$" form. When numbered argument specifications are used, specify-
ing the N th argument requires that all the leading arguments, from the first to the (N−1)th, are pointers.

The fwscanf() function in all its forms allows for detection of a language-dependent radix character in the
input string, encoded as a wide-character value. The radix character is defined in the current locale (cate-
gory LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character shall default to a <period> (’.’).

The format is a wide-character string composed of zero or more directives. Each directive is composed of
one of the following: one or more white-space wide characters (<space>, <tab>, <newline>, <vertical-tab>,
or <form-feed>); an ordinary wide character (neither ’%’ nor a white-space character); or a conversion
specification. It is unspecified whether an encoding error occurs if the format string contains wchar_t val-
ues that do not correspond to members of the character set of the current locale and the specified semantics
do not require that value to be processed by wcrtomb().

Each conversion specification is introduced by the ’%’ or by the character sequence "%n$", after which the
following appear in sequence:

* An optional assignment-suppressing character ’*’.

* An optional non-zero decimal integer that specifies the maximum field width.

IEEE/The Open Group 2017 1

FWSCANF(3P) POSIX Programmer’s Manual FWSCANF(3P)

* An optional assignment-allocation character ’m’.

* An optional length modifier that specifies the size of the receiving object.

* A conversion specifier wide character that specifies the type of conversion to be applied. The valid
conversion specifiers are described below.

The fwscanf() functions shall execute each directive of the format in turn. If a directive fails, as detailed be-
low, the function shall return. Failures are described as input failures (due to the unavailability of input
bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space wide characters is executed by reading input until no
more valid input can be read, or up to the first wide character which is not a white-space wide character,
which remains unread.

A directive that is an ordinary wide character shall be executed as follows. The next wide character is read
from the input and compared with the wide character that comprises the directive; if the comparison shows
that they are not equivalent, the directive shall fail, and the differing and subsequent wide characters remain
unread. Similarly, if end-of-file, an encoding error, or a read error prevents a wide character from being
read, the directive shall fail.

A directive that is a conversion specification defines a set of matching input sequences, as described below
for each conversion wide character. A conversion specification is executed in the following steps.

Input white-space wide characters (as specified by iswspace()) shall be skipped, unless the conversion
specification includes a [, c, or n conversion specifier.

An item shall be read from the input, unless the conversion specification includes an n conversion specifier
wide character. An input item is defined as the longest sequence of input wide characters, not exceeding
any specified field width, which is an initial subsequence of a matching sequence. The first wide character,
if any, after the input item shall remain unread. If the length of the input item is zero, the execution of the
conversion specification shall fail; this condition is a matching failure, unless end-of-file, an encoding error,
or a read error prevented input from the stream, in which case it is an input failure.

Except in the case of a % conversion specifier, the input item (or, in the case of a %n conversion specifica-
tion, the count of input wide characters) shall be converted to a type appropriate to the conversion wide
character. If the input item is not a matching sequence, the execution of the conversion specification shall
fail; this condition is a matching failure. Unless assignment suppression was indicated by a ’*’, the result of
the conversion shall be placed in the object pointed to by the first argument following the format argument
that has not already received a conversion result if the conversion specification is introduced by %, or in the
nth argument if introduced by the wide-character sequence "%n$". If this object does not have an appropri-
ate type, or if the result of the conversion cannot be represented in the space provided, the behavior is unde-
fined.

The %c, %s, and %[conversion specifiers shall accept an optional assignment-allocation character ’m’,
which shall cause a memory buffer to be allocated to hold the wide-character string converted including a
terminating null wide character. In such a case, the argument corresponding to the conversion specifier
should be a reference to a pointer value that will receive a pointer to the allocated buffer. The system shall
allocate a buffer as if malloc() had been called. The application shall be responsible for freeing the memory
after usage. If there is insufficient memory to allocate a buffer, the function shall set errno to [ENOMEM]
and a conversion error shall result. If the function returns EOF, any memory successfully allocated for pa-
rameters using assignment-allocation character ’m’ by this call shall be freed before the function returns.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to short or unsigned short.

l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to long or unsigned long; that a following a, A, e, E, f, F, g, or G conversion

IEEE/The Open Group 2017 2

FWSCANF(3P) POSIX Programmer’s Manual FWSCANF(3P)

specifier applies to an argument with type pointer to double; or that a following c, s, or [conver-
sion specifier applies to an argument with type pointer to wchar_t. If the ’m’ assignment-alloca-
tion character is specified, the conversion applies to an argument with the type pointer to a pointer
to wchar_t.

ll (ell-ell)
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to long long or unsigned long long.

j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with
type pointer to ptrdiff_t or the corresponding unsigned type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument with
type pointer to long double.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is un-
defined.

The following conversion specifier wide characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for the sub-
ject sequence of wcstol() with the value 10 for the base argument. In the absence of a size modi-
fier, the application shall ensure that the corresponding argument is a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the subject se-
quence of wcstol() with 0 for the base argument. In the absence of a size modifier, the application
shall ensure that the corresponding argument is a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for the subject
sequence of wcstoul() with the value 8 for the base argument. In the absence of a size modifier,
the application shall ensure that the corresponding argument is a pointer to unsigned.

u Matches an optionally signed decimal integer, whose format is the same as expected for the sub-
ject sequence of wcstoul() with the value 10 for the base argument. In the absence of a size modi-
fier, the application shall ensure that the corresponding argument is a pointer to unsigned.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected for the
subject sequence of wcstoul() with the value 16 for the base argument. In the absence of a size
modifier, the application shall ensure that the corresponding argument is a pointer to unsigned.

a, e, f, g
Matches an optionally signed floating-point number, infinity, or NaN whose format is the same as
expected for the subject sequence of wcstod(). In the absence of a size modifier, the application
shall ensure that the corresponding argument is a pointer to float.

If the fwprintf() family of functions generates character string representations for infinity and
NaN (a symbolic entity encoded in floating-point format) to support IEEE Std 754-1985, the fws-

canf() family of functions shall recognize them as input.

s Matches a sequence of non-white-space wide characters. If no l (ell) qualifier is present, charac-
ters from the input field shall be converted as if by repeated calls to the wcrtomb() function, with
the conversion state described by an mbstate_t object initialized to zero before the first wide
character is converted. If the ’m’ assignment-allocation character is not specified, the application
shall ensure that the corresponding argument is a pointer to a character array large enough to ac-
cept the sequence and the terminating null character, which shall be added automatically. Other-
wise, the application shall ensure that the corresponding argument is a pointer to a pointer to a
wchar_t.

IEEE/The Open Group 2017 3

FWSCANF(3P) POSIX Programmer’s Manual FWSCANF(3P)

If the l (ell) qualifier is present and the ’m’ assignment-allocation character is not specified, the
application shall ensure that the corresponding argument is a pointer to an array of wchar_t large
enough to accept the sequence and the terminating null wide character, which shall be added au-
tomatically. If the l (ell) qualifier is present and the ’m’ assignment-allocation character is
present, the application shall ensure that the corresponding argument is a pointer to a pointer to a
wchar_t.

[Matches a non-empty sequence of wide characters from a set of expected wide characters (the
scanset). If no l (ell) qualifier is present, wide characters from the input field shall be converted
as if by repeated calls to the wcrtomb() function, with the conversion state described by an mb-
state_t object initialized to zero before the first wide character is converted. If the ’m’ assign-
ment-allocation character is not specified, the application shall ensure that the corresponding ar-
gument is a pointer to a character array large enough to accept the sequence and the terminating
null character, which shall be added automatically. Otherwise, the application shall ensure that
the corresponding argument is a pointer to a pointer to a wchar_t.

If an l (ell) qualifier is present and the ’m’ assignment-allocation character is not specified, the
application shall ensure that the corresponding argument is a pointer to an array of wchar_t large
enough to accept the sequence and the terminating null wide character. If an l (ell) qualifier is
present and the ’m’ assignment-allocation character is specified, the application shall ensure that
the corresponding argument is a pointer to a pointer to a wchar_t.

The conversion specification includes all subsequent wide characters in the format string up to
and including the matching <right-square-bracket> (’]’). The wide characters between the square
brackets (the scanlist) comprise the scanset, unless the wide character after the <left-square-
bracket> is a <circumflex> (’^’), in which case the scanset contains all wide characters that do
not appear in the scanlist between the <circumflex> and the <right-square-bracket>. If the con-
version specification begins with "[]" or "[^]", the <right-square-bracket> is included in the
scanlist and the next <right-square-bracket> is the matching <right-square-bracket> that ends the
conversion specification; otherwise, the first <right-square-bracket> is the one that ends the con-
version specification. If a ’−’ is in the scanlist and is not the first wide character, nor the second
where the first wide character is a ’^’, nor the last wide character, the behavior is implementation-
defined.

c Matches a sequence of wide characters of exactly the number specified by the field width (1 if no
field width is present in the conversion specification).

If no l (ell) length modifier is present, characters from the input field shall be converted as if by
repeated calls to the wcrtomb() function, with the conversion state described by an mbstate_t ob-
ject initialized to zero before the first wide character is converted. No null character is added. If
the ’m’ assignment-allocation character is not specified, the application shall ensure that the cor-
responding argument is a pointer to the initial element of a character array large enough to accept
the sequence. Otherwise, the application shall ensure that the corresponding argument is a
pointer to a pointer to a char.

No null wide character is added. If an l (ell) length modifier is present and the ’m’ assignment-al-
location character is not specified, the application shall ensure that the corresponding argument
shall be a pointer to the initial element of an array of wchar_t large enough to accept the se-
quence. If an l (ell) qualifier is present and the ’m’ assignment-allocation character is specified,
the application shall ensure that the corresponding argument is a pointer to a pointer to a
wchar_t.

p Matches an implementation-defined set of sequences, which shall be the same as the set of se-
quences that is produced by the %p conversion specification of the corresponding fwprintf()
functions. The application shall ensure that the corresponding argument is a pointer to a pointer to
void. The interpretation of the input item is implementation-defined. If the input item is a value
converted earlier during the same program execution, the pointer that results shall compare equal
to that value; otherwise, the behavior of the %p conversion is undefined.

IEEE/The Open Group 2017 4

FWSCANF(3P) POSIX Programmer’s Manual FWSCANF(3P)

n No input is consumed. The application shall ensure that the corresponding argument is a pointer
to the integer into which is to be written the number of wide characters read from the input so far
by this call to the fwscanf() functions. Execution of a %n conversion specification shall not incre-
ment the assignment count returned at the completion of execution of the function. No argument
shall be converted, but one shall be consumed. If the conversion specification includes an assign-
ment-suppressing wide character or a field width, the behavior is undefined.

C Equivalent to lc.

S Equivalent to ls.

% Matches a single ’%’ wide character; no conversion or assignment shall occur. The complete
conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers A, E, F, G, and X are also valid and shall be equivalent to, respectively, a, e, f, g,
and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any wide
characters matching the current conversion specification (except for %n) hav e been read (other than lead-
ing white-space, where permitted), execution of the current conversion specification shall terminate with an
input failure. Otherwise, unless execution of the current conversion specification is terminated with a
matching failure, execution of the following conversion specification (if any) shall be terminated with an in-
put failure.

Reaching the end of the string in swscanf() shall be equivalent to encountering end-of-file for fwscanf().

If conversion terminates on a conflicting input, the offending input shall be left unread in the input. Any
trailing white space (including <newline>) shall be left unread unless matched by a conversion specifica-
tion. The success of literal matches and suppressed assignments is only directly determinable via the %n
conversion specification.

The fwscanf() and wscanf() functions may mark the last data access timestamp of the file associated with
stream for update. The last data access timestamp shall be marked for update by the first successful execu-
tion of fgetwc(), fgetws(), fwscanf(), getwc(), getwchar(), vfwscanf(), vwscanf(), or wscanf() using stream

that returns data not supplied by a prior call to ungetwc().

RETURN VALUE
Upon successful completion, these functions shall return the number of successfully matched and assigned
input items; this number can be zero in the event of an early matching failure. If the input ends before the
first conversion (if any) has completed, and without a matching failure having occurred, EOF shall be re-
turned. If an error occurs before the first conversion (if any) has completed, and without a matching failure
having occurred, EOF shall be returned and errno shall be set to indicate the error. If a read error occurs,
the error indicator for the stream shall be set.

ERRORS
For the conditions under which the fwscanf() functions shall fail and may fail, refer to fgetwc().

In addition, the fwscanf() function shall fail if:

EILSEQ
Input byte sequence does not form a valid character.

ENOMEM
Insufficient storage space is available.

In addition, the fwscanf() function may fail if:

EINVAL
There are insufficient arguments.

The following sections are informative.

IEEE/The Open Group 2017 5

FWSCANF(3P) POSIX Programmer’s Manual FWSCANF(3P)

EXAMPLES
The call:

int i, n; float x; char name[50];
n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 Hamster

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string "Hamster".

The call:

int i; float x; char name[50];
(void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skips 0123, and places the string "56\0" in name. The next call to getchar()
shall return the character ’a’.

APPLICATION USAGE
In format strings containing the ’%’ form of conversion specifications, each argument in the argument list
is used exactly once.

For functions that allocate memory as if by malloc(), the application should release such memory when it is
no longer required by a call to free(). For fwscanf(), this is memory allocated via use of the ’m’ assign-
ment-allocation character.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, getwc(), fwprintf(), setlocale(), wcstod(), wcstol(), wcstoul(), wcr-

tomb()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <inttypes.h>, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 6

GAI_STRERROR(3P) POSIX Programmer’s Manual GAI_STRERROR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
gai_strerror — address and name information error description

SYNOPSIS
#include <netdb.h>

const char *gai_strerror(int ecode);

DESCRIPTION
The gai_strerror() function shall return a text string describing an error value for the getaddrinfo() and get-

nameinfo() functions listed in the <netdb.h> header.

When the ecode argument is one of the following values listed in the <netdb.h> header:

tab(!); le le. T{
[EAI_AGAIN]
[EAI_BADFLAGS]
[EAI_FAIL]
[EAI_FAMILY]
[EAI_MEMORY]
T}!T{
[EAI_NONAME]
[EAI_OVERFLOW]
[EAI_SERVICE]
[EAI_SOCKTYPE]
[EAI_SYSTEM]
T}

the function return value shall point to a string describing the error. If the argument is not one of those val-
ues, the function shall return a pointer to a string whose contents indicate an unknown error.

RETURN VALUE
Upon successful completion, gai_strerror() shall return a pointer to an implementation-defined string.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
freeaddrinfo()

The Base Definitions volume of POSIX.1-2017, <netdb.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 1

GAI_STRERROR(3P) POSIX Programmer’s Manual GAI_STRERROR(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETADDRINFO(3P) POSIX Programmer’s Manual GETADDRINFO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getaddrinfo — get address information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict nodename,
const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

DESCRIPTION
Refer to freeaddrinfo().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETC(3P) POSIX Programmer’s Manual GETC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int getc(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The getc() function shall be equivalent to fgetc(), except that if it is implemented as a macro it may evalu-
ate stream more than once, so the argument should never be an expression with side-effects.

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getc() is stored into a variable of type char and then compared against the
integer constant EOF, the comparison may never succeed, because sign-extension of a variable of type char
on widening to integer is implementation-defined.

Since it may be implemented as a macro, getc() may treat incorrectly a stream argument with side-effects.
In particular, getc(* f ++) does not necessarily work as expected. Therefore, use of this function should be
preceded by "#undefgetc" in such situations; fgetc() could also be used.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fgetc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETC_UNLOCKED(3P) POSIX Programmer’s Manual GETC_UNLOCKED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked — stdio with explicit client locking

SYNOPSIS
#include <stdio.h>

int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);

DESCRIPTION
Versions of the functions getc(), getchar(), putc(), and putchar() respectively named getc_unlocked(),
getchar_unlocked(), putc_unlocked(), and putchar_unlocked() shall be provided which are functionally
equivalent to the original versions, with the exception that they are not required to be implemented in a
fully thread-safe manner. They shall be thread-safe when used within a scope protected by flockfile() (or
ftrylockfile()) and funlockfile(). These functions can safely be used in a multi-threaded program if and only
if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions.

If getc_unlocked() or putc_unlocked() are implemented as macros they may evaluate stream more than
once, so the stream argument should never be an expression with side-effects.

RETURN VALUE
See getc(), getchar(), putc(), and putchar().

ERRORS
See getc(), getchar(), putc(), and putchar().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since they may be implemented as macros, getc_unlocked() and putc_unlocked() may treat incorrectly a
stream argument with side-effects. In particular, getc_unlocked(*f++) and putc_unlocked(c,*f++) do not
necessarily work as expected. Therefore, use of these functions in such situations should be preceded by
the following statement as appropriate:

#undef getc_unlocked
#undef putc_unlocked

RATIONALE
Some I/O functions are typically implemented as macros for performance reasons (for example, putc() and
getc()). For safety, they need to be synchronized, but it is often too expensive to synchronize on every char-
acter. Nev ertheless, it was felt that the safety concerns were more important; consequently, the getc(),
getchar(), putc(), and putchar() functions are required to be thread-safe. However, unlocked versions are
also provided with names that clearly indicate the unsafe nature of their operation but can be used to exploit
their higher performance. These unlocked versions can be safely used only within explicitly locked pro-
gram regions, using exported locking primitives. In particular, a sequence such as:

flockfile(fileptr);
putc_unlocked('1', fileptr);

IEEE/The Open Group 2017 1

GETC_UNLOCKED(3P) POSIX Programmer’s Manual GETC_UNLOCKED(3P)

putc_unlocked('\n', fileptr);
fprintf(fileptr, "Line 2\n");
funlockfile(fileptr);

is permissible, and results in the text sequence:

1
Line 2

being printed without being interspersed with output from other threads.

It would be wrong to have the standard names such as getc(), putc(), and so on, map to the ‘‘faster, but un-
safe’’ rather than the ‘‘slower, but safe’’ versions. In either case, you would still want to inspect all uses of
getc(), putc(), and so on, by hand when converting existing code. Choosing the safe bindings as the default,
at least, results in correct code and maintains the ‘‘atomicity at the function’’ inv ariant. To do otherwise
would introduce gratuitous synchronization errors into converted code. Other routines that modify the stdio

(FILE *) structures or buffers are also safely synchronized.

Note that there is no need for functions of the form getc_locked(), putc_locked(), and so on, since this is the
functionality of getc(), putc(), et al. It would be inappropriate to use a feature test macro to switch a macro
definition of getc() between getc_locked() and getc_unlocked(), since the ISO C standard requires an actual
function to exist, a function whose behavior could not be changed by the feature test macro. Also, provid-
ing both the xxx_locked() and xxx_unlocked() forms leads to the confusion of whether the suffix describes
the behavior of the function or the circumstances under which it should be used.

Three additional routines, flockfile(), ftrylockfile(), and funlockfile() (which may be macros), are provided to
allow the user to delineate a sequence of I/O statements that are executed synchronously.

The ungetc() function is infrequently called relative to the other functions/macros so no unlocked variation
is needed.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, flockfile(), getc(), getchar(), putc(), putchar()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETCHAR(3P) POSIX Programmer’s Manual GETCHAR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getchar — get a byte from a stdin stream

SYNOPSIS
#include <stdio.h>

int getchar(void);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The getchar() function shall be equivalent to getc(stdin).

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getchar() is stored into a variable of type char and then compared against
the integer constant EOF, the comparison may never succeed, because sign-extension of a variable of type
char on widening to integer is implementation-defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, getc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETCHAR_UNLOCKED(3P) POSIX Programmer’s Manual GETCHAR_UNLOCKED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getchar_unlocked — stdio with explicit client locking

SYNOPSIS
#include <stdio.h>

int getchar_unlocked(void);

DESCRIPTION
Refer to getc_unlocked().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETCWD(3P) POSIX Programmer’s Manual GETCWD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getcwd — get the pathname of the current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char *buf, size_t size);

DESCRIPTION
The getcwd() function shall place an absolute pathname of the current working directory in the array
pointed to by buf , and return buf . The pathname shall contain no components that are dot or dot-dot, or are
symbolic links.

If there are multiple pathnames that getcwd() could place in the array pointed to by buf , one beginning with
a single <slash> character and one or more beginning with two <slash> characters, then getcwd() shall
place the pathname beginning with a single <slash> character in the array. The pathname shall not contain
any unnecessary <slash> characters after the leading one or two <slash> characters.

The size argument is the size in bytes of the character array pointed to by the buf argument. If buf is a null
pointer, the behavior of getcwd() is unspecified.

RETURN VALUE
Upon successful completion, getcwd() shall return the buf argument. Otherwise, getcwd() shall return a null
pointer and set errno to indicate the error. The contents of the array pointed to by buf are then undefined.

ERRORS
The getcwd() function shall fail if:

EINVAL
The size argument is 0.

ERANGE
The size argument is greater than 0, but is smaller than the length of the string +1.

The getcwd() function may fail if:

EACCES
Search permission was denied for the current directory, or read or search permission was denied
for a directory above the current directory in the file hierarchy.

ENOMEM
Insufficient storage space is available.

The following sections are informative.

EXAMPLES
The following example uses {PATH_MAX} as the initial buffer size (unless it is indeterminate or very
large), and calls getcwd() with progressively larger buffers until it does not give an [ERANGE] error.

#include <stdlib.h>
#include <errno.h>
#include <unistd.h>

...

long path_max;
size_t size;
char *buf;
char *ptr;

IEEE/The Open Group 2017 1

GETCWD(3P) POSIX Programmer’s Manual GETCWD(3P)

path_max = pathconf(".", _PC_PATH_MAX);
if (path_max == -1)

size = 1024;
else if (path_max > 10240)

size = 10240;
else

size = path_max;

for (buf = ptr = NULL; ptr == NULL; size *= 2)
{

if ((buf = realloc(buf, size)) == NULL)
{

... handle error ...
}

ptr = getcwd(buf, size);
if (ptr == NULL && errno != ERANGE)
{

... handle error ...
}

}
...
free (buf);

APPLICATION USAGE
If the pathname obtained from getcwd() is longer than {PATH_MAX} bytes, it could produce an [ENAM-
ETOOLONG] error if passed to chdir(). Therefore, in order to return to that directory it may be necessary
to break the pathname into sections shorter than {PATH_MAX} bytes and call chdir() on each section in
turn (the first section being an absolute pathname and subsequent sections being relative pathnames). A
simpler way to handle saving and restoring the working directory when it may be deeper than
{PATH_MAX} bytes in the file hierarchy is to use a file descriptor and fchdir(), rather than getcwd() and
chdir(). However, the two methods do have some differences. The fchdir() approach causes the program to
restore a working directory even if it has been renamed in the meantime, whereas the chdir() approach re-
stores to a directory with the same name as the original, even if the directories were renamed in the mean-
time. Since the fchdir() approach does not access parent directories, it can succeed when getcwd() would
fail due to permissions problems. In applications conforming to earlier versions of this standard, it was not
possible to use the fchdir() approach when the working directory is searchable but not readable, as the only
way to open a directory was with O_RDONLY, whereas the getcwd() approach can succeed in this case.

RATIONALE
Having getcwd() take no arguments and instead use the malloc() function to produce space for the returned
argument was considered. The advantage is that getcwd() knows how big the working directory pathname
is and can allocate an appropriate amount of space. But the programmer would have to use the free() func-
tion to free the resulting object, or each use of getcwd() would further reduce the available memory. Finally,
getcwd() is taken from the SVID where it has the two arguments used in this volume of POSIX.1-2017.

The older function getwd() was rejected for use in this context because it had only a buffer argument and
no size argument, and thus had no way to prevent overwriting the buffer, except to depend on the program-
mer to provide a large enough buffer.

On some implementations, if buf is a null pointer, getcwd() may obtain size bytes of memory using mal-

loc(). In this case, the pointer returned by getcwd() may be used as the argument in a subsequent call to
free(). Invoking getcwd() with buf as a null pointer is not recommended in conforming applications.

Earlier implementations of getcwd() sometimes generated pathnames like "../../../subdirname" internally,
using them to explore the path of ancestor directories back to the root. If one of these internal pathnames
exceeded {PATH_MAX} in length, the implementation could fail with errno set to [ENAMETOOLONG].
This is no longer allowed.

IEEE/The Open Group 2017 2

GETCWD(3P) POSIX Programmer’s Manual GETCWD(3P)

If a program is operating in a directory where some (grand)parent directory does not permit reading,
getcwd() may fail, as in most implementations it must read the directory to determine the name of the file.
This can occur if search, but not read, permission is granted in an intermediate directory, or if the program
is placed in that directory by some more privileged process (for example, login). Including the [EACCES]
error condition makes the reporting of the error consistent and warns the application developer that
getcwd() can fail for reasons beyond the control of the application developer or user. Some implementations
can avoid this occurrence (for example, by implementing getcwd() using pwd , where pwd is a set-user-root
process), thus the error was made optional. Since this volume of POSIX.1-2017 permits the addition of
other errors, this would be a common addition and yet one that applications could not be expected to deal
with without this addition.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETDATE(3P) POSIX Programmer’s Manual GETDATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getdate — convert user format date and time

SYNOPSIS
#include <time.h>

struct tm *getdate(const char *string);

DESCRIPTION
The getdate() function shall convert a string representation of a date or time into a broken-down time.

The external variable or macro getdate_err, which has type int, is used by getdate() to return error values.
It is unspecified whether getdate_err is a macro or an identifier declared with external linkage, and whether
or not it is a modifiable lvalue. If a macro definition is suppressed in order to access an actual object, or a
program defines an identifier with the name getdate_err, the behavior is undefined.

Templates are used to parse and interpret the input string. The templates are contained in a text file identi-
fied by the environment variable DATEMSK . The DATEMSK variable should be set to indicate the full
pathname of the file that contains the templates. The first line in the template that matches the input specifi-
cation is used for interpretation and conversion into the internal time format.

The following conversion specifications shall be supported:

%% Equivalent to %.

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Locale’s appropriate date and time representation.

%C Century number [00,99]; leading zeros are permitted but not required.

%d Day of month [01,31]; the leading 0 is optional.

%D Date as %m/%d/%y.

%e Equivalent to %d.

%h Abbreviated month name.

%H Hour [00,23].

%I Hour [01,12].

%m Month number [01,12].

%M Minute [00,59].

%n Equivalent to <newline>.

%p Locale’s equivalent of either AM or PM.

%r The locale’s appropriate representation of time in AM and PM notation. In the POSIX locale,
this shall be equivalent to %I:%M:%S %p.

%R Time as %H:%M.

%S Seconds [00,60]. The range goes to 60 (rather than stopping at 59) to allow positive leap seconds
to be expressed. Since leap seconds cannot be predicted by any algorithm, leap second data must
come from some external source.

IEEE/The Open Group 2017 1

GETDATE(3P) POSIX Programmer’s Manual GETDATE(3P)

%t Equivalent to <tab>.

%T Time as %H:%M:%S.

%w Weekday number (Sunday = [0,6]).

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century. When a century is not otherwise specified, values in the range [69,99] shall
refer to years 1969 to 1999 inclusive, and values in the range [00,68] shall refer to years 2000 to
2068 inclusive.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

%Y Year as "ccyy" (for example, 2001).

%Z Timezone name or no characters if no timezone exists. If the timezone supplied by %Z is not the
timezone that getdate() expects, an invalid input specification error shall result. The getdate()
function calculates an expected timezone based on information supplied to the function (such as
the hour, day, and month).

The match between the template and input specification performed by getdate() shall be case-insensitive.

The month and weekday names can consist of any combination of upper and lowercase letters. The process
can request that the input date or time specification be in a specific language by setting the LC_TIME cate-
gory (see setlocale()).

Leading zeros are not necessary for the descriptors that allow leading zeros. However, at most two digits
are allowed for those descriptors, including leading zeros. Extra white space in either the template file or in
string shall be ignored.

The results are undefined if the conversion specifications %c, %x, and %X include unsupported conver-
sion specifications.

The following rules apply for converting the input specification into the internal format:

* If %Z is being scanned, then getdate() shall initialize the broken-down time to be the current time in
the scanned timezone. Otherwise, it shall initialize the broken-down time based on the current local
time as if localtime() had been called.

* If only the weekday is given, the day chosen shall be the day, starting with today and moving into the
future, which first matches the named day.

* If only the month (and no year) is given, the month chosen shall be the month, starting with the current
month and moving into the future, which first matches the named month. The first day of the month
shall be assumed if no day is given.

* If no hour, minute, and second are given, the current hour, minute, and second shall be assumed.

* If no date is given, the hour chosen shall be the hour, starting with the current hour and moving into
the future, which first matches the named hour.

If a conversion specification in the DATEMSK file does not correspond to one of the conversion specifica-
tions above, the behavior is unspecified.

The getdate() function need not be thread-safe.

RETURN VALUE
Upon successful completion, getdate() shall return a pointer to a struct tm. Otherwise, it shall return a null
pointer and set getdate_err to indicate the error.

ERRORS
The getdate() function shall fail in the following cases, setting getdate_err to the value shown in the list be-
low. Any changes to errno are unspecified.

IEEE/The Open Group 2017 2

GETDATE(3P) POSIX Programmer’s Manual GETDATE(3P)

1. The DATEMSK environment variable is null or undefined.

2. The template file cannot be opened for reading.

3. Failed to get file status information.

4. The template file is not a regular file.

5. An I/O error is encountered while reading the template file.

6. Memory allocation failed (not enough memory available).

7. There is no line in the template that matches the input.

8. Invalid input specification. For example, February 31; or a time is specified that cannot be represented
in a time_t (representing the time in seconds since the Epoch).

The following sections are informative.

EXAMPLES
1. The following example shows the possible contents of a template:

%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

2. The following are examples of valid input specifications for the template in Example 1:

getdate("10/1/87 4 PM");
getdate("Friday");
getdate("Friday September 18, 1987, 10:30:30");
getdate("24,9,1986 10:30");
getdate("at monday the 1st of december in 1986");
getdate("run job at 3 PM, december 2nd");

If the LC_TIME category is set to a German locale that includes freitag as a weekday name and okto-

ber as a month name, the following would be valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr");

3. The following example shows how local date and time specification can be defined in the template:

box tab(!) center; cB | cB lf5 | lf5. Invocation!Line in Template _ getdate("11/27/86")!%m/%d/%y
getdate("27.11.86")!%d.%m.%y getdate("86-11-27")!%y-%m-%d getdate("Friday 12:00:00")!%A
%H:%M:%S

4. The following examples help to illustrate the above rules assuming that the current date is Mon Sep 22
12:19:47 EDT 1986 and the LC_TIME category is set to the default C or POSIX locale:

box tab(!) center; cB | cB | cB lf5 | lf5 | l. Input!Line in Template!Date _ Mon!%a!Mon Sep 22
12:19:47 EDT 1986 Sun!%a!Sun Sep 28 12:19:47 EDT 1986 Fri!%a!Fri Sep 26 12:19:47 EDT 1986
September!%B!Mon Sep 1 12:19:47 EDT 1986 January!%B!Thu Jan 1 12:19:47 EST 1987 Decem-
ber!%B!Mon Dec 1 12:19:47 EST 1986 Sep Mon!%b %a!Mon Sep 1 12:19:47 EDT 1986 Jan Fri!%b
%a!Fri Jan 2 12:19:47 EST 1987 Dec Mon!%b %a!Mon Dec 1 12:19:47 EST 1986 Jan Wed 1989!%b

IEEE/The Open Group 2017 3

GETDATE(3P) POSIX Programmer’s Manual GETDATE(3P)

%a %Y!Wed Jan 4 12:19:47 EST 1989 Fri 9!%a %H!Fri Sep 26 09:00:00 EDT 1986 Feb 10:30!%b
%H:%S!Sun Feb 1 10:00:30 EST 1987 10:30!%H:%M!Tue Sep 23 10:30:00 EDT 1986
13:30!%H:%M!Mon Sep 22 13:30:00 EDT 1986

APPLICATION USAGE
Although historical versions of getdate() did not require that <time.h> declare the external variable get-

date_err, this volume of POSIX.1-2017 does require it. The standard developers encourage applications to
remove declarations of getdate_err and instead incorporate the declaration by including <time.h>.

Applications should use %Y (4-digit years) in preference to %y (2-digit years).

RATIONALE
In standard locales, the conversion specifications %c, %x, and %X do not include unsupported conversion
specifiers and so the text regarding results being undefined is not a problem in that case.

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), localtime(), setlocale(), strftime(), times()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

GETDELIM(3P) POSIX Programmer’s Manual GETDELIM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getdelim, getline — read a delimited record from stream

SYNOPSIS
#include <stdio.h>

ssize_t getdelim(char **restrict lineptr, size_t *restrict n,
int delimiter, FILE *restrict stream);

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

DESCRIPTION
The getdelim() function shall read from stream until it encounters a character matching the delimiter char-
acter. The delimiter argument is an int, the value of which the application shall ensure is a character repre-
sentable as an unsigned char of equal value that terminates the read process. If the delimiter argument has
any other value, the behavior is undefined.

The application shall ensure that *lineptr is a valid argument that could be passed to the free() function. If
*n is non-zero, the application shall ensure that *lineptr either points to an object of size at least *n bytes, or
is a null pointer.

If *lineptr is a null pointer or if the object pointed to by *lineptr is of insufficient size, an object shall be al-
located as if by malloc() or the object shall be reallocated as if by realloc(), respectively, such that the ob-
ject is large enough to hold the characters to be written to it, including the terminating NUL, and *n shall be
set to the new size. If the object was allocated, or if the reallocation operation moved the object, *lineptr

shall be updated to point to the new object or new location. The characters read, including any delimiter,
shall be stored in the object, and a terminating NUL added when the delimiter or end-of-file is encountered.

The getline() function shall be equivalent to the getdelim() function with the delimiter character equal to the
<newline> character.

The getdelim() and getline() functions may mark the last data access timestamp of the file associated with
stream for update. The last data access timestamp shall be marked for update by the first successful execu-
tion of fgetc(), fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or scanf() using
stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, the getline() and getdelim() functions shall return the number of bytes written
into the buffer, including the delimiter character if one was encountered before EOF, but excluding the ter-
minating NUL character. If the end-of-file indicator for the stream is set, or if no characters were read and
the stream is at end-of-file, the end-of-file indicator for the stream shall be set and the function shall return
−1. If an error occurs, the error indicator for the stream shall be set, and the function shall return −1 and set
errno to indicate the error.

ERRORS
For the conditions under which the getdelim() and getline() functions shall fail and may fail, refer to
fgetc().

In addition, these functions shall fail if:

EINVAL
lineptr or n is a null pointer.

ENOMEM
Insufficient memory is available.

These functions may fail if:

IEEE/The Open Group 2017 1

GETDELIM(3P) POSIX Programmer’s Manual GETDELIM(3P)

EOVERFLOW
The number of bytes to be written into the buffer, including the delimiter character (if encoun-
tered), would exceed {SSIZE_MAX}.

The following sections are informative.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
char *line = NULL;
size_t len = 0;
ssize_t read;
fp = fopen("/etc/motd", "r");
if (fp == NULL)

exit(1);
while ((read = getline(&line, &len, fp)) != -1) {

printf("Retrieved line of length %zu :\n", read);
printf("%s", line);

}
if (ferror(fp)) {

/* handle error */
}
free(line);
fclose(fp);
return 0;

}

APPLICATION USAGE
Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start parsing a file.

The ferror() or feof() functions should be used to distinguish between an error condition and an end-of-file
condition.

Although a NUL terminator is always supplied after the line, note that strlen(*lineptr) will be smaller than
the return value if the line contains embedded NUL characters.

RATIONALE
These functions are widely used to solve the problem that the fgets() function has with long lines. The func-
tions automatically enlarge the target buffers if needed. These are especially useful since they reduce code
needed for applications.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fgetc(), fgets(), free(), malloc(), realloc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 2

GETDELIM(3P) POSIX Programmer’s Manual GETDELIM(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETEGID(3P) POSIX Programmer’s Manual GETEGID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getegid — get the effective group ID

SYNOPSIS
#include <unistd.h>

gid_t getegid(void);

DESCRIPTION
The getegid() function shall return the effective group ID of the calling process. The getegid() function
shall not modify errno.

RETURN VALUE
The getegid() function shall always be successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In a conforming environment, getegid() will always succeed. It is possible for implementations to provide
an extension where a process in a non-conforming environment will not be associated with a user or group
ID. It is recommended that such implementations return (gid_t)−1 and set errno to indicate such an envi-
ronment; doing so does not violate this standard, since such an environment is already an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETENV(3P) POSIX Programmer’s Manual GETENV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getenv — get value of an environment variable

SYNOPSIS
#include <stdlib.h>

char *getenv(const char *name);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The getenv() function shall search the environment of the calling process (see the Base Definitions volume
of POSIX.1-2017, Chapter 8, Environment Variables) for the environment variable name if it exists and re-
turn a pointer to the value of the environment variable. If the specified environment variable cannot be
found, a null pointer shall be returned. The application shall ensure that it does not modify the string
pointed to by the getenv() function.

The returned string pointer might be invalidated or the string content might be overwritten by a subsequent
call to getenv(), setenv(), unsetenv(),
or (if supported) putenv() but they shall not be affected by a call to any other function in this volume of
POSIX.1-2017.

The returned string pointer might also be invalidated if the calling thread is terminated.

The getenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, getenv() shall return a pointer to a string containing the value for the specified
name. If the specified name cannot be found in the environment of the calling process, a null pointer shall
be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Getting the Value of an Environment Variable

The following example gets the value of the HOME environment variable.

#include <stdlib.h>
...
const char *name = "HOME";
char *value;

value = getenv(name);

APPLICATION USAGE
None.

RATIONALE
The clearenv() function was considered but rejected. The putenv() function has now been included for
alignment with the Single UNIX Specification.

The getenv() function is inherently not thread-safe because it returns a value pointing to static data.

Conforming applications are required not to directly modify the pointers to which environ points, but to use

IEEE/The Open Group 2017 1

GETENV(3P) POSIX Programmer’s Manual GETENV(3P)

only the setenv(), unsetenv(), and putenv() functions, or assignment to environ itself, to manipulate the
process environment. This constraint allows the implementation to properly manage the memory it allo-
cates. This enables the implementation to free any space it has allocated to strings (and perhaps the pointers
to them) stored in environ when unsetenv() is called. A C runtime start-up procedure (that which invokes
main() and perhaps initializes environ) can also initialize a flag indicating that none of the environment has
yet been copied to allocated storage, or that the separate table has not yet been initialized. If the application
switches to a complete new environment by assigning a new value to environ, this can be detected by
getenv(), setenv(), unsetenv(), or putenv() and the implementation can at that point reinitialize based on the
new environment. (This may include copying the environment strings into a new array and assigning envi-

ron to point to it.)

In fact, for higher performance of getenv(), implementations that do not provide putenv() could also main-
tain a separate copy of the environment in a data structure that could be searched much more quickly (such
as an indexed hash table, or a binary tree), and update both it and the linear list at environ when setenv() or
unsetenv() is invoked. On implementations that do provide putenv(), such a copy might still be worthwhile
but would need to allow for the fact that applications can directly modify the content of environment strings
added with putenv(). For example, if an environment string found by searching the copy is one that was
added using putenv(), the implementation would need to check that the string in environ still has the same
name (and value, if the copy includes values), and whenever searching the copy produces no match the im-
plementation would then need to search each environment string in environ that was added using putenv()
in case any of them have changed their names and now match. Thus, each use of putenv() to add to the envi-
ronment would reduce the speed advantage of having the copy.

Performance of getenv() can be important for applications which have large numbers of environment vari-
ables. Typically, applications like this use the environment as a resource database of user-configurable pa-
rameters. The fact that these variables are in the user’s shell environment usually means that any other pro-
gram that uses environment variables (such as ls, which attempts to use COLUMNS), or really almost any
utility (LANG, LC_ALL, and so on) is similarly slowed down by the linear search through the variables.

An implementation that maintains separate data structures, or even one that manages the memory it con-
sumes, is not currently required as it was thought it would reduce consensus among implementors who do
not want to change their historical implementations.

FUTURE DIRECTIONS
A future version may add one or more functions to access and modify the environment in a thread-safe
manner.

SEE ALSO
exec , putenv(), setenv(), unsetenv()

The Base Definitions volume of POSIX.1-2017, Chapter 8, Environment Variables, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETEUID(3P) POSIX Programmer’s Manual GETEUID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
geteuid — get the effective user ID

SYNOPSIS
#include <unistd.h>

uid_t geteuid(void);

DESCRIPTION
The geteuid() function shall return the effective user ID of the calling process. The geteuid() function shall
not modify errno.

RETURN VALUE
The geteuid() function shall always be successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In a conforming environment, geteuid() will always succeed. It is possible for implementations to provide
an extension where a process in a non-conforming environment will not be associated with a user or group
ID. It is recommended that such implementations return (uid_t)−1 and set errno to indicate such an envi-
ronment; doing so does not violate this standard, since such an environment is already an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETGID(3P) POSIX Programmer’s Manual GETGID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getgid — get the real group ID

SYNOPSIS
#include <unistd.h>

gid_t getgid(void);

DESCRIPTION
The getgid() function shall return the real group ID of the calling process. The getgid() function shall not
modify errno.

RETURN VALUE
The getgid() function shall always be successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In a conforming environment, getgid() will always succeed. It is possible for implementations to provide an
extension where a process in a non-conforming environment will not be associated with a user or group ID.
It is recommended that such implementations return (gid_t)−1 and set errno to indicate such an environ-
ment; doing so does not violate this standard, since such an environment is already an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETGRENT(3P) POSIX Programmer’s Manual GETGRENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getgrent — get the group database entry

SYNOPSIS
#include <grp.h>

struct group *getgrent(void);

DESCRIPTION
Refer to endgrent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETGRGID(3P) POSIX Programmer’s Manual GETGRGID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getgrgid, getgrgid_r — get group database entry for a group ID

SYNOPSIS
#include <grp.h>

struct group *getgrgid(gid_t gid);
int getgrgid_r(gid_t gid, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

DESCRIPTION
The getgrgid() function shall search the group database for an entry with a matching gid .

The getgrgid() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling getgrgid(). If get-

grgid() returns a null pointer and errno is set to non-zero, an error occurred.

The getgrgid_r() function shall update the group structure pointed to by grp and store a pointer to that
structure at the location pointed to by result. The structure shall contain an entry from the group database
with a matching gid . Storage referenced by the group structure is allocated from the memory provided
with the buffer parameter, which is bufsize bytes in size. A call to sysconf (_SC_GETGR_R_SIZE_MAX)
returns either −1 without changing errno or an initial value suggested for the size of this buffer. A null
pointer shall be returned at the location pointed to by result on error or if the requested entry is not found.

RETURN VALUE
Upon successful completion, getgrgid() shall return a pointer to a struct group with the structure defined in
<grp.h> with a matching entry if one is found. The getgrgid() function shall return a null pointer if either
the requested entry was not found, or an error occurred. If the requested entry was not found, errno shall
not be changed. On error, errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getgrent(), get-

grgid(), or getgrnam(). The returned pointer, and pointers within the structure, might also be invalidated if
the calling thread is terminated.

If successful, the getgrgid_r() function shall return zero; otherwise, an error number shall be returned to in-
dicate the error.

ERRORS
The getgrgid() and getgrgid_r() functions may fail if:

EIO An I/O error has occurred.

EINTR
A signal was caught during getgrgid().

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum allowable number of files is currently open in the system.

The getgrgid_r() function may fail if:

ERANGE
Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced by the
resulting group structure.

IEEE/The Open Group 2017 1

GETGRGID(3P) POSIX Programmer’s Manual GETGRGID(3P)

The following sections are informative.

EXAMPLES
Note that sysconf (_SC_GETGR_R_SIZE_MAX) may return −1 if there is no hard limit on the size of the
buffer needed to store all the groups returned. This example shows how an application can allocate a buffer
of sufficient size to work with getgrid_r().

long int initlen = sysconf(_SC_GETGR_R_SIZE_MAX);
size_t len;
if (initlen = = -1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct group result;
struct group *resultp;
char *buffer = malloc(len);
if (buffer = = NULL)

...handle error...
int e;
while ((e = getgrgid_r(42, &result, buffer, len, &resultp)) = = ERANGE)

{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer = = NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Finding an Entry in the Group Database
The following example uses getgrgid() to search the group database for a group ID that was previously
stored in a stat structure, then prints out the group name if it is found. If the group is not found, the pro-
gram prints the numeric value of the group for the entry.

#include <sys/types.h>
#include <grp.h>
#include <stdio.h>
...
struct stat statbuf;
struct group *grp;
...
if ((grp = getgrgid(statbuf.st_gid)) != NULL)

printf(" %-8.8s", grp->gr_name);
else

printf(" %-8d", statbuf.st_gid);
...

IEEE/The Open Group 2017 2

GETGRGID(3P) POSIX Programmer’s Manual GETGRGID(3P)

APPLICATION USAGE
The getgrgid_r() function is thread-safe and shall return values in a user-supplied buffer instead of possibly
using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1 from
sysconf() indicating that there is no maximum for _SC_GETGR_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrnam(), sysconf()

The Base Definitions volume of POSIX.1-2017, <grp.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETGRNAM(3P) POSIX Programmer’s Manual GETGRNAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getgrnam, getgrnam_r — search group database for a name

SYNOPSIS
#include <grp.h>

struct group *getgrnam(const char *name);
int getgrnam_r(const char *name, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

DESCRIPTION
The getgrnam() function shall search the group database for an entry with a matching name.

The getgrnam() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling getgrnam(). If getgr-

nam() returns a null pointer and errno is set to non-zero, an error occurred.

The getgrnam_r() function shall update the group structure pointed to by grp and store a pointer to that
structure at the location pointed to by result. The structure shall contain an entry from the group database
with a matching name. Storage referenced by the group structure is allocated from the memory provided
with the buffer parameter, which is bufsize bytes in size. A call to sysconf (_SC_GETGR_R_SIZE_MAX)
returns either −1 without changing errno or an initial value suggested for the size of this buffer. A null
pointer is returned at the location pointed to by result on error or if the requested entry is not found.

RETURN VALUE
The getgrnam() function shall return a pointer to a struct group with the structure defined in <grp.h> with
a matching entry if one is found. The getgrnam() function shall return a null pointer if either the requested
entry was not found, or an error occurred. If the requested entry was not found, errno shall not be changed.
On error, errno shall be set to indicate the error.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getgrent(), get-

grgid(), or getgrnam(). The returned pointer, and pointers within the structure, might also be invalidated if
the calling thread is terminated.

The getgrnam_r() function shall return zero on success or if the requested entry was not found and no error
has occurred. If any error has occurred, an error number shall be returned to indicate the error.

ERRORS
The getgrnam() and getgrnam_r() functions may fail if:

EIO An I/O error has occurred.

EINTR
A signal was caught during getgrnam().

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum allowable number of files is currently open in the system.

The getgrnam_r() function may fail if:

ERANGE
Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced by the
resulting group structure.

IEEE/The Open Group 2017 1

GETGRNAM(3P) POSIX Programmer’s Manual GETGRNAM(3P)

The following sections are informative.

EXAMPLES
Note that sysconf (_SC_GETGR_R_SIZE_MAX) may return −1 if there is no hard limit on the size of the
buffer needed to store all the groups returned. This example shows how an application can allocate a buffer
of sufficient size to work with getgrnam_r().

long int initlen = sysconf(_SC_GETGR_R_SIZE_MAX);
size_t len;
if (initlen = = -1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct group result;
struct group *resultp;
char *buffer = malloc(len);
if (buffer = = NULL)

...handle error...
int e;
while ((e = getgrnam_r("somegroup", &result, buffer, len, &resultp))

= = ERANGE)
{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer = = NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

APPLICATION USAGE
The getgrnam_r() function is thread-safe and shall return values in a user-supplied buffer instead of possi-
bly using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1 from
sysconf() indicating that there is no maximum for _SC_GETGR_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrgid(), sysconf()

The Base Definitions volume of POSIX.1-2017, <grp.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 2

GETGRNAM(3P) POSIX Programmer’s Manual GETGRNAM(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETGROUPS(3P) POSIX Programmer’s Manual GETGROUPS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getgroups — get supplementary group IDs

SYNOPSIS
#include <unistd.h>

int getgroups(int gidsetsize, gid_t grouplist[]);

DESCRIPTION
The getgroups() function shall fill in the array grouplist with the current supplementary group IDs of the
calling process. It is implementation-defined whether getgroups() also returns the effective group ID in the
grouplist array.

The gidsetsize argument specifies the number of elements in the array grouplist. The actual number of
group IDs stored in the array shall be returned. The values of array entries with indices greater than or
equal to the value returned are undefined.

If gidsetsize is 0, getgroups() shall return the number of group IDs that it would otherwise return without
modifying the array pointed to by grouplist.

If the effective group ID of the process is returned with the supplementary group IDs, the value returned
shall always be greater than or equal to one and less than or equal to the value of {NGROUPS_MAX}+1.

RETURN VALUE
Upon successful completion, the number of supplementary group IDs shall be returned. A return value of
−1 indicates failure and errno shall be set to indicate the error.

ERRORS
The getgroups() function shall fail if:

EINVAL
The gidsetsize argument is non-zero and less than the number of group IDs that would have been
returned.

The following sections are informative.

EXAMPLES
Getting the Supplementary Group IDs of the Calling Process

The following example places the current supplementary group IDs of the calling process into the group ar-
ray.

#include <sys/types.h>
#include <unistd.h>
...
gid_t *group;
int nogroups;
long ngroups_max;

ngroups_max = sysconf(_SC_NGROUPS_MAX) + 1;
group = (gid_t *)malloc(ngroups_max *sizeof(gid_t));

ngroups = getgroups(ngroups_max, group);

APPLICATION USAGE
None.

IEEE/The Open Group 2017 1

GETGROUPS(3P) POSIX Programmer’s Manual GETGROUPS(3P)

RATIONALE
The related function setgroups() is a privileged operation and therefore is not covered by this volume of
POSIX.1-2017.

As implied by the definition of supplementary groups, the effective group ID may appear in the array re-
turned by getgroups() or it may be returned only by getegid(). Duplication may exist, but the application
needs to call getegid() to be sure of getting all of the information. Various implementation variations and
administrative sequences cause the set of groups appearing in the result of getgroups() to vary in order and
as to whether the effective group ID is included, even when the set of groups is the same (in the mathemati-
cal sense of ‘‘set’’). (The history of a process and its parents could affect the details of the result.)

Application developers should note that {NGROUPS_MAX} is not necessarily a constant on all implemen-
tations.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), setgid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETHOSTENT(3P) POSIX Programmer’s Manual GETHOSTENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
gethostent — network host database functions

SYNOPSIS
#include <netdb.h>

struct hostent *gethostent(void);

DESCRIPTION
Refer to endhostent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETHOSTID(3P) POSIX Programmer’s Manual GETHOSTID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
gethostid — get an identifier for the current host

SYNOPSIS
#include <unistd.h>

long gethostid(void);

DESCRIPTION
The gethostid() function shall retrieve a 32-bit identifier for the current host.

RETURN VALUE
Upon successful completion, gethostid() shall return an identifier for the current host.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
This volume of POSIX.1-2017 does not define the domain in which the return value is unique.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
initstate()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETHOSTNAME(3P) POSIX Programmer’s Manual GETHOSTNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
gethostname — get name of current host

SYNOPSIS
#include <unistd.h>

int gethostname(char *name, size_t namelen);

DESCRIPTION
The gethostname() function shall return the standard host name for the current machine. The namelen ar-
gument shall specify the size of the array pointed to by the name argument. The returned name shall be
null-terminated, except that if namelen is an insufficient length to hold the host name, then the returned
name shall be truncated and it is unspecified whether the returned name is null-terminated.

Host names are limited to {HOST_NAME_MAX} bytes.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
gethostid(), uname()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETITIMER(3P) POSIX Programmer’s Manual GETITIMER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getitimer, setitimer — get and set value of interval timer

SYNOPSIS
#include <sys/time.h>

int getitimer(int which, struct itimerval *value);
int setitimer(int which, const struct itimerval *restrict value,

struct itimerval *restrict ovalue);

DESCRIPTION
The getitimer() function shall store the current value of the timer specified by which into the structure
pointed to by value. The setitimer() function shall set the timer specified by which to the value specified in
the structure pointed to by value, and if ovalue is not a null pointer, store the previous value of the timer in
the structure pointed to by ovalue.

A timer value is defined by the itimerval structure, specified in <sys/time.h>. If it_value is non-zero, it
shall indicate the time to the next timer expiration. If it_interval is non-zero, it shall specify a value to be
used in reloading it_value when the timer expires. Setting it_value to 0 shall disable a timer, reg ardless of
the value of it_interval. Setting it_interval to 0 shall disable a timer after its next expiration (assuming
it_value is non-zero).

Implementations may place limitations on the granularity of timer values. For each interval timer, if the re-
quested timer value requires a finer granularity than the implementation supports, the actual timer value
shall be rounded up to the next supported value.

An XSI-conforming implementation provides each process with at least three interval timers, which are in-
dicated by the which argument:

ITIMER_PROF Decrements both in process virtual time and when the system is running on behalf of the
process. It is designed to be used by interpreters in statistically profiling the execution of
interpreted programs. Each time the ITIMER_PROF timer expires, the SIGPROF signal is
delivered.

ITIMER_REAL
Decrements in real time. A SIGALRM signal is delivered when this timer expires.

ITIMER_VIRTUAL
Decrements in process virtual time. It runs only when the process is executing. A SIGV-
TALRM signal is delivered when it expires.

The interaction between setitimer() and alarm() or sleep() is unspecified.

RETURN VALUE
Upon successful completion, getitimer() or setitimer() shall return 0; otherwise, −1 shall be returned and er-

rno set to indicate the error.

ERRORS
The setitimer() function shall fail if:

EINVAL
The value argument is not in canonical form. (In canonical form, the number of microseconds is a
non-negative integer less than 1 000 000 and the number of seconds is a non-negative integer.)

The getitimer() and setitimer() functions may fail if:

EINVAL
The which argument is not recognized.

The following sections are informative.

IEEE/The Open Group 2017 1

GETITIMER(3P) POSIX Programmer’s Manual GETITIMER(3P)

EXAMPLES
None.

APPLICATION USAGE
Applications should use the timer_gettime() and timer_settime() functions instead of the obsolescent
getitimer() and setitimer() functions, respectively.

RATIONALE
None.

FUTURE DIRECTIONS
The getitimer() and setitimer() functions may be removed in a future version.

SEE ALSO
alarm(), exec , sleep(), timer_getoverrun()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <sys_time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETLINE(3P) POSIX Programmer’s Manual GETLINE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getline — read a delimited record from stream

SYNOPSIS
#include <stdio.h>

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

DESCRIPTION
Refer to getdelim().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETLOGIN(3P) POSIX Programmer’s Manual GETLOGIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getlogin, getlogin_r — get login name

SYNOPSIS
#include <unistd.h>

char *getlogin(void);
int getlogin_r(char *name, size_t namesize);

DESCRIPTION
The getlogin() function shall return a pointer to a string containing the user name associated by the login
activity with the controlling terminal of the current process. If getlogin() returns a non-null pointer, then
that pointer points to the name that the user logged in under, even if there are several login names with the
same user ID.

The getlogin() function need not be thread-safe.

The getlogin_r() function shall put the name associated by the login activity with the controlling terminal of
the current process in the character array pointed to by name. The array is namesize characters long and
should have space for the name and the terminating null character. The maximum size of the login name is
{LOGIN_NAME_MAX}.

If getlogin_r() is successful, name points to the name the user used at login, even if there are several login
names with the same user ID.

The getlogin() and getlogin_r() functions may make use of file descriptors 0, 1, and 2 to find the controlling
terminal of the current process, examining each in turn until the terminal is found. If in this case none of
these three file descriptors is open to the controlling terminal, these functions may fail. The method used to
find the terminal associated with a file descriptor may depend on the file descriptor being open to the actual
terminal device, not /dev/tty.

RETURN VALUE
Upon successful completion, getlogin() shall return a pointer to the login name or a null pointer if the user’s
login name cannot be found. Otherwise, it shall return a null pointer and set errno to indicate the error.

The application shall not modify the string returned. The returned pointer might be invalidated or the string
content might be overwritten by a subsequent call to getlogin(). The returned pointer and the string content
might also be invalidated if the calling thread is terminated.

If successful, the getlogin_r() function shall return zero; otherwise, an error number shall be returned to in-
dicate the error.

ERRORS
These functions may fail if:

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum allowable number of files is currently open in the system.

ENOTTY
None of the file descriptors 0, 1, or 2 is open to the controlling terminal of the current process.

ENXIO
The calling process has no controlling terminal.

The getlogin_r() function may fail if:

IEEE/The Open Group 2017 1

GETLOGIN(3P) POSIX Programmer’s Manual GETLOGIN(3P)

ERANGE
The value of namesize is smaller than the length of the string to be returned including the terminat-
ing null character.

The following sections are informative.

EXAMPLES
Getting the User Login Name S

The following example calls the getlogin() function to obtain the name of the user associated with the call-
ing process, and passes this information to the getpwnam() function to get the associated user database in-
formation.

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
...
char *lgn;
struct passwd *pw;
...
if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {

fprintf(stderr, "Get of user information failed.\n"); exit(1);
}

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) shall return the
name associated with the effective user ID of the process; getlogin() shall return the name associated with
the current login activity; and getpwuid(getuid()) shall return the name associated with the real user ID of
the process.

The getlogin_r() function is thread-safe and returns values in a user-supplied buffer instead of possibly us-
ing a static data area that may be overwritten by each call.

RATIONALE
The getlogin() function returns a pointer to the user’s login name. The same user ID may be shared by sev-
eral login names. If it is desired to get the user database entry that is used during login, the result of getlo-

gin() should be used to provide the argument to the getpwnam() function. (This might be used to determine
the user’s login shell, particularly where a single user has multiple login shells with distinct login names,
but the same user ID.)

The information provided by the cuserid() function, which was originally defined in the POSIX.1-1988
standard and subsequently removed, can be obtained by the following:

getpwuid(geteuid())

while the information provided by historical implementations of cuserid() can be obtained by:

getpwuid(getuid())

The thread-safe version of this function places the user name in a user-supplied buffer and returns a non-
zero value if it fails. The non-thread-safe version may return the name in a static data area that may be over-
written by each call.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 2

GETLOGIN(3P) POSIX Programmer’s Manual GETLOGIN(3P)

SEE ALSO
getpwnam(), getpwuid(), geteuid(), getuid()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETMSG(3P) POSIX Programmer’s Manual GETMSG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getmsg, getpmsg — receive next message from a STREAMS file (STREAMS)

SYNOPSIS
#include <stropts.h>

int getmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict flagsp);

int getpmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict bandp,
int *restrict flagsp);

DESCRIPTION
The getmsg() function shall retrieve the contents of a message located at the head of the STREAM head
read queue associated with a STREAMS file and place the contents into one or more buffers. The message
contains either a data part, a control part, or both. The data and control parts of the message shall be placed
into separate buffers, as described below. The semantics of each part are defined by the originator of the
message.

The getpmsg() function shall be equivalent to getmsg(), except that it provides finer control over the priority
of the messages received. Except where noted, all requirements on getmsg() also pertain to getpmsg().

The fildes argument specifies a file descriptor referencing a STREAMS-based file.

The ctlptr and dataptr arguments each point to a strbuf structure, in which the buf member points to a buf-
fer in which the data or control information is to be placed, and the maxlen member indicates the maximum
number of bytes this buffer can hold. On return, the len member shall contain the number of bytes of data
or control information actually received. The len member shall be set to 0 if there is a zero-length control or
data part and len shall be set to −1 if no data or control information is present in the message.

When getmsg() is called, flagsp should point to an integer that indicates the type of message the process is
able to receive. This is described further below.

The ctlptr argument is used to hold the control part of the message, and dataptr is used to hold the data part
of the message. If ctlptr (or dataptr) is a null pointer or the maxlen member is −1, the control (or data) part
of the message shall not be processed and shall be left on the STREAM head read queue, and if the ctlptr

(or dataptr) is not a null pointer, len shall be set to −1. If the maxlen member is set to 0 and there is a zero-
length control (or data) part, that zero-length part shall be removed from the read queue and len shall be set
to 0. If the maxlen member is set to 0 and there are more than 0 bytes of control (or data) information, that
information shall be left on the read queue and len shall be set to 0. If the maxlen member in ctlptr (or dat-

aptr) is less than the control (or data) part of the message, maxlen bytes shall be retrieved. In this case, the
remainder of the message shall be left on the STREAM head read queue and a non-zero return value shall
be provided.

By default, getmsg() shall process the first available message on the STREAM head read queue. However, a
process may choose to retrieve only high-priority messages by setting the integer pointed to by flagsp to
RS_HIPRI. In this case, getmsg() shall only process the next message if it is a high-priority message.
When the integer pointed to by flagsp is 0, any available message shall be retrieved. In this case, on return,
the integer pointed to by flagsp shall be set to RS_HIPRI if a high-priority message was retrieved, or 0 oth-
erwise.

For getpmsg(), the flags are different. The flagsp argument points to a bitmask with the following mutually-
exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like getmsg(), getpmsg() shall
process the first available message on the STREAM head read queue. A process may choose to retrieve
only high-priority messages by setting the integer pointed to by flagsp to MSG_HIPRI and the integer
pointed to by bandp to 0. In this case, getpmsg() shall only process the next message if it is a high-priority

IEEE/The Open Group 2017 1

GETMSG(3P) POSIX Programmer’s Manual GETMSG(3P)

message. In a similar manner, a process may choose to retrieve a message from a particular priority band
by setting the integer pointed to by flagsp to MSG_BAND and the integer pointed to by bandp to the prior-
ity band of interest. In this case, getpmsg() shall only process the next message if it is in a priority band
equal to, or greater than, the integer pointed to by bandp, or if it is a high-priority message. If a process
wants to get the first message off the queue, the integer pointed to by flagsp should be set to MSG_ANY
and the integer pointed to by bandp should be set to 0. On return, if the message retrieved was a high-prior-
ity message, the integer pointed to by flagsp shall be set to MSG_HIPRI and the integer pointed to by
bandp shall be set to 0. Otherwise, the integer pointed to by flagsp shall be set to MSG_BAND and the in-
teger pointed to by bandp shall be set to the priority band of the message.

If O_NONBLOCK is not set, getmsg() and getpmsg() shall block until a message of the type specified by
flagsp is available at the front of the STREAM head read queue. If O_NONBLOCK is set and a message of
the specified type is not present at the front of the read queue, getmsg() and getpmsg() shall fail and set er-

rno to [EAGAIN].

If a hangup occurs on the STREAM from which messages are retrieved, getmsg() and getpmsg() shall con-
tinue to operate normally, as described above, until the STREAM head read queue is empty. Thereafter,
they shall return 0 in the len members of ctlptr and dataptr.

RETURN VALUE
Upon successful completion, getmsg() and getpmsg() shall return a non-negative value. A value of 0 indi-
cates that a full message was read successfully. A return value of MORECTL indicates that more control
information is waiting for retrieval. A return value of MOREDAT A indicates that more data is waiting for
retrieval. A return value of the bitwise-logical OR of MORECTL and MOREDAT A indicates that both
types of information remain. Subsequent getmsg() and getpmsg() calls shall retrieve the remainder of the
message. However, if a message of higher priority has come in on the STREAM head read queue, the next
call to getmsg() or getpmsg() shall retrieve that higher-priority message before retrieving the remainder of
the previous message.

If the high priority control part of the message is consumed, the message shall be placed back on the queue
as a normal message of band 0. Subsequent getmsg() and getpmsg() calls shall retrieve the remainder of the
message. If, however, a priority message arrives or already exists on the STREAM head, the subsequent
call to getmsg() or getpmsg() shall retrieve the higher-priority message before retrieving the remainder of
the message that was put back.

Upon failure, getmsg() and getpmsg() shall return −1 and set errno to indicate the error.

ERRORS
The getmsg() and getpmsg() functions shall fail if:

EAGAIN
The O_NONBLOCK flag is set and no messages are available.

EBADF
The fildes argument is not a valid file descriptor open for reading.

EBADMSG
The queued message to be read is not valid for getmsg() or getpmsg() or a pending file descriptor
is at the STREAM head.

EINTR
A signal was caught during getmsg() or getpmsg().

EINVAL
An illegal value was specified by flagsp, or the STREAM or multiplexer referenced by fildes is
linked (directly or indirectly) downstream from a multiplexer.

ENOSTR
A STREAM is not associated with fildes.

In addition, getmsg() and getpmsg() shall fail if the STREAM head had processed an asynchronous error
before the call. In this case, the value of errno does not reflect the result of getmsg() or getpmsg() but

IEEE/The Open Group 2017 2

GETMSG(3P) POSIX Programmer’s Manual GETMSG(3P)

reflects the prior error.

The following sections are informative.

EXAMPLES
Getting Any Message

In the following example, the value of fd is assumed to refer to an open STREAMS file. The call to
getmsg() retrieves any available message on the associated STREAM-head read queue, returning control
and data information to the buffers pointed to by ctrlbuf and databuf , respectively.

#include <stropts.h>
...
int fd;
char ctrlbuf[128];
char databuf[512];
struct strbuf ctrl;
struct strbuf data;
int flags = 0;
int ret;

ctrl.buf = ctrlbuf;
ctrl.maxlen = sizeof(ctrlbuf);

data.buf = databuf;
data.maxlen = sizeof(databuf);

ret = getmsg (fd, &ctrl, &data, &flags);

Getting the First Message off the Queue
In the following example, the call to getpmsg() retrieves the first available message on the associated
STREAM-head read queue.

#include <stropts.h>
...

int fd;
char ctrlbuf[128];
char databuf[512];
struct strbuf ctrl;
struct strbuf data;
int band = 0;
int flags = MSG_ANY;
int ret;

ctrl.buf = ctrlbuf;
ctrl.maxlen = sizeof(ctrlbuf);

data.buf = databuf;
data.maxlen = sizeof(databuf);

ret = getpmsg (fd, &ctrl, &data, &band, &flags);

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 3

GETMSG(3P) POSIX Programmer’s Manual GETMSG(3P)

FUTURE DIRECTIONS
The getmsg() and getpmsg() functions may be removed in a future version.

SEE ALSO
Section 2.6, STREAMS, poll(), putmsg(), read(), write()

The Base Definitions volume of POSIX.1-2017, <stropts.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

GETNAMEINFO(3P) POSIX Programmer’s Manual GETNAMEINFO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getnameinfo — get name information

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict sa, socklen_t salen,
char *restrict node, socklen_t nodelen, char *restrict service,
socklen_t servicelen, int flags);

DESCRIPTION
The getnameinfo() function shall translate a socket address to a node name and service location, all of
which are defined as in freeaddrinfo().

The sa argument points to a socket address structure to be translated. The salen argument contains the
length of the address pointed to by sa.

If the socket address structure contains an IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address,
the implementation shall extract the embedded IPv4 address and lookup the node name for that IPv4 ad-
dress.

If the address is the IPv6 unspecified address ("::"), a lookup shall not be performed and the behavior shall
be the same as when the node’s name cannot be located.

If the node argument is non-NULL and the nodelen argument is non-zero, then the node argument points to
a buffer able to contain up to nodelen bytes that receives the node name as a null-terminated string. If the
node argument is NULL or the nodelen argument is zero, the node name shall not be returned. If the node’s
name cannot be located, the numeric form of the address contained in the socket address structure pointed
to by the sa argument is returned instead of its name.

If the service argument is non-NULL and the servicelen argument is non-zero, then the service argument
points to a buffer able to contain up to servicelen bytes that receives the service name as a null-terminated
string. If the service argument is NULL or the servicelen argument is zero, the service name shall not be
returned. If the service’s name cannot be located, the numeric form of the service address (for example, its
port number) shall be returned instead of its name.

The flags argument is a flag that changes the default actions of the function. By default the fully-qualified
domain name (FQDN) for the host shall be returned, but:

* If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN shall be returned for local
hosts.

* If the flag bit NI_NUMERICHOST is set, the numeric form of the address contained in the socket ad-
dress structure pointed to by the sa argument shall be returned instead of its name.

* If the flag bit NI_NAMEREQD is set, an error shall be returned if the host’s name cannot be located.

* If the flag bit NI_NUMERICSERV is set, the numeric form of the service address shall be returned
(for example, its port number) instead of its name.

* If the flag bit NI_NUMERICSCOPE is set, the numeric form of the scope identifier shall be returned
(for example, interface index) instead of its name. This flag shall be ignored if the sa argument is not
an IPv6 address.

* If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service
(SOCK_DGRAM). The default behavior shall assume that the service is a stream service
(SOCK_STREAM).

IEEE/The Open Group 2017 1

GETNAMEINFO(3P) POSIX Programmer’s Manual GETNAMEINFO(3P)

Notes:

1. The two NI_NUMERICxxx flags are required to support the −n flag that many commands
provide.

2. The NI_DGRAM flag is required for the few AF_INET and AF_INET6 port numbers (for
example, [512,514]) that represent different services for UDP and TCP.

The getnameinfo() function shall be thread-safe.

RETURN VALUE
A zero return value for getnameinfo() indicates successful completion; a non-zero return value indicates
failure. The possible values for the failures are listed in the ERRORS section.

Upon successful completion, getnameinfo() shall return the node and service names, if requested, in the
buffers provided. The returned names are always null-terminated strings.

ERRORS
The getnameinfo() function shall fail and return the corresponding value if:

[EAI_AGAIN]
The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]
The flags had an invalid value.

[EAI_FAIL] A non-recoverable error occurred.

[EAI_FAMILY]
The address family was not recognized or the address length was invalid for the specified
family.

[EAI_MEMORY]
There was a memory allocation failure.

[EAI_NONAME]
The name does not resolve for the supplied parameters.

NI_NAMEREQD is set and the host’s name cannot be located, or both nodename and serv-

name were null.

[EAI_OVERFLOW]
An argument buffer overflowed. The buffer pointed to by the node argument or the service

argument was too small.

[EAI_SYSTEM]
A system error occurred. The error code can be found in errno.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the returned values are to be used as part of any further name resolution (for example, passed to getad-

drinfo()), applications should provide buffers large enough to store any result possible on the system.

Given the IPv4-mapped IPv6 address "::ffff:1.2.3.4", the implementation performs a lookup as if the
socket address structure contains the IPv4 address "1.2.3.4".

The IPv6 unspecified address ("::") and the IPv6 loopback address ("::1") are not IPv4-compatible ad-
dresses.

RATIONALE
None.

IEEE/The Open Group 2017 2

GETNAMEINFO(3P) POSIX Programmer’s Manual GETNAMEINFO(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
endservent(), freeaddrinfo(), gai_strerror(), inet_ntop(), socket()

The Base Definitions volume of POSIX.1-2017, <netdb.h>, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETNETBYADDR(3P) POSIX Programmer’s Manual GETNETBYADDR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getnetbyaddr, getnetbyname, getnetent — network database functions

SYNOPSIS
#include <netdb.h>

struct netent *getnetbyaddr(uint32_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void);

DESCRIPTION
Refer to endnetent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETOPT(3P) POSIX Programmer’s Manual GETOPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getopt, optarg, opterr, optind, optopt — command option parsing

SYNOPSIS
#include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int opterr, optind, optopt;

DESCRIPTION
The getopt() function is a command-line parser that shall follow Utility Syntax Guidelines 3, 4, 5, 6, 7, 9,
and 10 in the Base Definitions volume of POSIX.1-2017, Section 12.2, Utility Syntax Guidelines.

The parameters argc and argv are the argument count and argument array as passed to main() (see exec()).
The argument optstring is a string of recognized option characters; if a character is followed by a <colon>,
the option takes an argument. All option characters allowed by Utility Syntax Guideline 3 are allowed in
optstring. The implementation may accept other characters as an extension.

The variable optind is the index of the next element of the argv[] vector to be processed. It shall be initial-
ized to 1 by the system, and getopt() shall update it when it finishes with each element of argv[]. If the ap-
plication sets optind to zero before calling getopt(), the behavior is unspecified. When an element of argv[]
contains multiple option characters, it is unspecified how getopt() determines which options have already
been processed.

The getopt() function shall return the next option character (if one is found) from argv that matches a char-
acter in optstring, if there is one that matches. If the option takes an argument, getopt() shall set the variable
optarg to point to the option-argument as follows:

1. If the option was the last character in the string pointed to by an element of argv, then optarg shall
contain the next element of argv, and optind shall be incremented by 2. If the resulting value of optind

is greater than argc, this indicates a missing option-argument, and getopt() shall return an error indica-
tion.

2. Otherwise, optarg shall point to the string following the option character in that element of argv, and
optind shall be incremented by 1.

If, when getopt() is called:

argv[optind] is a null pointer
*argv[optind] is not the character −
argv[optind] points to the string "−"

getopt() shall return −1 without changing optind . If:

argv[optind] points to the string "− −"

getopt() shall return −1 after incrementing optind .

If getopt() encounters an option character that is not contained in optstring, it shall return the <question-
mark> (’?’) character. If it detects a missing option-argument, it shall return the <colon> character (’:’) if
the first character of optstring was a <colon>, or a <question-mark> character (’?’) otherwise. In either
case, getopt() shall set the variable optopt to the option character that caused the error. If the application has
not set the variable opterr to 0 and the first character of optstring is not a <colon>, getopt() shall also print a
diagnostic message to stderr in the format specified for the getopts utility, unless the stderr stream has wide

IEEE/The Open Group 2017 1

GETOPT(3P) POSIX Programmer’s Manual GETOPT(3P)

orientation, in which case the behavior is undefined.

The getopt() function need not be thread-safe.

RETURN VALUE
The getopt() function shall return the next option character specified on the command line.

A <colon> (’:’) shall be returned if getopt() detects a missing argument and the first character of optstring

was a <colon> (’:’).

A <question-mark> (’?’) shall be returned if getopt() encounters an option character not in optstring or de-
tects a missing argument and the first character of optstring was not a <colon> (’:’).

Otherwise, getopt() shall return −1 when all command line options are parsed.

ERRORS
If the application has not set the variable opterr to 0, the first character of optstring is not a <colon>, and a
write error occurs while getopt() is printing a diagnostic message to stderr, then the error indicator for
stderr shall be set; but getopt() shall still succeed and the value of errno after getopt() is unspecified.

The following sections are informative.

EXAMPLES
Parsing Command Line Options

The following code fragment shows how you might process the arguments for a utility that can take the mu-
tually-exclusive options a and b and the options f and o, both of which require arguments:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int c;
int bflg = 0, aflg = 0, errflg = 0;
char *ifile;
char *ofile;
. . .
while ((c = getopt(argc, argv, ":abf:o:")) != -1) {

switch(c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bflg++;

break;
case 'f':

ifile = optarg;
break;

case 'o':
ofile = optarg;
break;

IEEE/The Open Group 2017 2

GETOPT(3P) POSIX Programmer’s Manual GETOPT(3P)

case ':': /* -f or -o without operand */
fprintf(stderr,

"Option -%c requires an operand\n", optopt);
errflg++;
break;

case '?':
fprintf(stderr,

"Unrecognized option: '-%c'\n", optopt);
errflg++;

}
}
if (errflg) {

fprintf(stderr, "usage: . . . ");
exit(2);

}
for (; optind < argc; optind++) {

if (access(argv[optind], R_OK)) {
. . .

}

This code accepts any of the following as equivalent:

cmd -ao arg path path
cmd -a -o arg path path
cmd -o arg -a path path
cmd -a -o arg -- path path
cmd -a -oarg path path
cmd -aoarg path path

Selecting Options from the Command Line
The following example selects the type of database routines the user wants to use based on the Options ar-
gument.

#include <unistd.h>
#include <string.h>
...
const char *Options = "hdbtl";
...
int dbtype, c;
char *st;
...
dbtype = 0;
while ((c = getopt(argc, argv, Options)) != -1) {

if ((st = strchr(Options, c)) != NULL) {
dbtype = st - Options;
break;

}
}

APPLICATION USAGE
The getopt() function is only required to support option characters included in Utility Syntax Guideline 3.
Many historical implementations of getopt() support other characters as options. This is an allowed exten-
sion, but applications that use extensions are not maximally portable. Note that support for multi-byte op-
tion characters is only possible when such characters can be represented as type int.

IEEE/The Open Group 2017 3

GETOPT(3P) POSIX Programmer’s Manual GETOPT(3P)

Applications which use wide-character output functions with stderr should ensure that any calls to getopt()
do not write to stderr, either by setting opterr to 0 or by ensuring the first character of optstring is always a
<colon>.

While ferror(stderr) may be used to detect failures to write a diagnostic to stderr when getopt() returns
’?’, the value of errno is unspecified in such a condition. Applications desiring more control over handling
write failures should set opterr to 0 and independently perform output to stderr, rather than relying on
getopt() to do the output.

RATIONALE
The optopt variable represents historical practice and allows the application to obtain the identity of the in-
valid option.

The description has been written to make it clear that getopt(), like the getopts utility, deals with option-ar-
guments whether separated from the option by <blank> characters or not. Note that the requirements on
getopt() and getopts are more stringent than the Utility Syntax Guidelines.

The getopt() function shall return −1, rather than EOF, so that <stdio.h> is not required.

The special significance of a <colon> as the first character of optstring makes getopt() consistent with the
getopts utility. It allows an application to make a distinction between a missing argument and an incorrect
option letter without having to examine the option letter. It is true that a missing argument can only be de-
tected in one case, but that is a case that has to be considered.

FUTURE DIRECTIONS
None.

SEE ALSO
exec

The Base Definitions volume of POSIX.1-2017, Section 12.2, Utility Syntax Guidelines, <unistd.h>

The Shell and Utilities volume of POSIX.1-2017, getopts

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

GETPEERNAME(3P) POSIX Programmer’s Manual GETPEERNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpeername — get the name of the peer socket

SYNOPSIS
#include <sys/socket.h>

int getpeername(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The getpeername() function shall retrieve the peer address of the specified socket, store this address in the
sockaddr structure pointed to by the address argument, and store the length of this address in the object
pointed to by the address_len argument.

The address_len argument points to a socklen_t object which on input specifies the length of the supplied
sockaddr structure, and on output specifies the length of the stored address. If the actual length of the ad-
dress is greater than the length of the supplied sockaddr structure, the stored address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the value stored in
the object pointed to by address is unspecified.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The getpeername() function shall fail if:

EBADF
The socket argument is not a valid file descriptor.

EINVAL
The socket has been shut down.

ENOTCONN
The socket is not connected or otherwise has not had the peer pre-specified.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The operation is not supported for the socket protocol.

The getpeername() function may fail if:

ENOBUFS
Insufficient resources were available in the system to complete the call.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 1

GETPEERNAME(3P) POSIX Programmer’s Manual GETPEERNAME(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), getsockname(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETPGID(3P) POSIX Programmer’s Manual GETPGID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpgid — get the process group ID for a process

SYNOPSIS
#include <unistd.h>

pid_t getpgid(pid_t pid);

DESCRIPTION
The getpgid() function shall return the process group ID of the process whose process ID is equal to pid . If
pid is equal to 0, getpgid() shall return the process group ID of the calling process.

RETURN VALUE
Upon successful completion, getpgid() shall return a process group ID. Otherwise, it shall return (pid_t)−1
and set errno to indicate the error.

ERRORS
The getpgid() function shall fail if:

EPERM
The process whose process ID is equal to pid is not in the same session as the calling process, and
the implementation does not allow access to the process group ID of that process from the calling
process.

ESRCH
There is no process with a process ID equal to pid .

The getpgid() function may fail if:

EINVAL
The value of the pid argument is invalid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgrp(), getpid(), getsid(), setpgid(), setsid()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

GETPGID(3P) POSIX Programmer’s Manual GETPGID(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETPGRP(3P) POSIX Programmer’s Manual GETPGRP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpgrp — get the process group ID of the calling process

SYNOPSIS
#include <unistd.h>

pid_t getpgrp(void);

DESCRIPTION
The getpgrp() function shall return the process group ID of the calling process.

RETURN VALUE
The getpgrp() function shall always be successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
4.3 BSD provides a getpgrp() function that returns the process group ID for a specified process. Although
this function supports job control, all known job control shells always specify the calling process with this
function. Thus, the simpler System V getpgrp() suffices, and the added complexity of the 4.3 BSD getp-

grp() is provided by the XSI extension getpgid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgid(), getpid(), getppid(), kill(), setpgid(), setsid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETPID(3P) POSIX Programmer’s Manual GETPID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpid — get the process ID

SYNOPSIS
#include <unistd.h>

pid_t getpid(void);

DESCRIPTION
The getpid() function shall return the process ID of the calling process.

RETURN VALUE
The getpid() function shall always be successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgrp(), getppid(), kill(), mkdtemp(), setpgid(), setsid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETPMSG(3P) POSIX Programmer’s Manual GETPMSG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpmsg — receive next message from a STREAMS file

SYNOPSIS
#include <stropts.h>

int getpmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict bandp,
int *restrict flagsp);

DESCRIPTION
Refer to getmsg().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETPPID(3P) POSIX Programmer’s Manual GETPPID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getppid — get the parent process ID

SYNOPSIS
#include <unistd.h>

pid_t getppid(void);

DESCRIPTION
The getppid() function shall return the parent process ID of the calling process.

RETURN VALUE
The getppid() function shall always be successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpgid(), getpgrp(), getpid(), kill(), setpgid(), setsid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETPRIORITY(3P) POSIX Programmer’s Manual GETPRIORITY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpriority, setpriority — get and set the nice value

SYNOPSIS
#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);

DESCRIPTION
The getpriority() function shall obtain the nice value of a process, process group, or user. The setpriority()
function shall set the nice value of a process, process group, or user to value+{NZERO}.

Target processes are specified by the values of the which and who arguments. The which argument may be
one of the following values: PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, indicating that the who argu-
ment is to be interpreted as a process ID, a process group ID, or an effective user ID, respectively. A 0 value
for the who argument specifies the current process, process group, or user.

The nice value set with setpriority() shall be applied to the process. If the process is multi-threaded, the nice
value shall affect all system scope threads in the process.

If more than one process is specified, getpriority() shall return value {NZERO} less than the lowest nice
value pertaining to any of the specified processes, and setpriority() shall set the nice values of all of the
specified processes to value+{NZERO}.

The default nice value is {NZERO}; lower nice values shall cause more favorable scheduling. While the
range of valid nice values is [0,{NZERO}*2−1], implementations may enforce more restrictive limits. If
value+{NZERO} is less than the system’s lowest supported nice value, setpriority() shall set the nice value
to the lowest supported value; if value+{NZERO} is greater than the system’s highest supported nice value,
setpriority() shall set the nice value to the highest supported value.

Only a process with appropriate privileges can lower its nice value.

Any processes or threads using SCHED_FIFO or SCHED_RR shall be unaffected by a call to setpriority().
This is not considered an error. A process which subsequently reverts to SCHED_OTHER need not have its
priority affected by such a setpriority() call.

The effect of changing the nice value may vary depending on the process-scheduling algorithm in effect.

Since getpriority() can return the value −1 upon successful completion, it is necessary to set errno to 0 prior
to a call to getpriority(). If getpriority() returns the value −1, then errno can be checked to see if an error
occurred or if the value is a legitimate nice value.

RETURN VALUE
Upon successful completion, getpriority() shall return an integer in the range −{NZERO} to {NZERO}−1.
Otherwise, −1 shall be returned and errno set to indicate the error.

Upon successful completion, setpriority() shall return 0; otherwise, −1 shall be returned and errno set to in-
dicate the error.

ERRORS
The getpriority() and setpriority() functions shall fail if:

ESRCH
No process could be located using the which and who argument values specified.

EINVAL
The value of the which argument was not recognized, or the value of the who argument is not a
valid process ID, process group ID, or user ID.

IEEE/The Open Group 2017 1

GETPRIORITY(3P) POSIX Programmer’s Manual GETPRIORITY(3P)

In addition, setpriority() may fail if:

EPERM
A process was located, but neither the real nor effective user ID of the executing process match the
effective user ID of the process whose nice value is being changed.

EACCES
A request was made to change the nice value to a lower numeric value and the current process
does not have appropriate privileges.

The following sections are informative.

EXAMPLES
Using getpriority()

The following example returns the current scheduling priority for the process ID returned by the call to get-

pid().

#include <sys/resource.h>
...
int which = PRIO_PROCESS;
id_t pid;
int ret;

pid = getpid();
ret = getpriority(which, pid);

Using setpriority()
The following example sets the priority for the current process ID to −20.

#include <sys/resource.h>
...
int which = PRIO_PROCESS;
id_t pid;
int priority = -20;
int ret;

pid = getpid();
ret = setpriority(which, pid, priority);

APPLICATION USAGE
The getpriority() and setpriority() functions work with an offset nice value (nice value −{NZERO}). The
nice value is in the range [0,2*{NZERO} −1], while the return value for getpriority() and the third parame-
ter for setpriority() are in the range [−{NZERO},{NZERO} −1].

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
nice(), sched_get_priority_max(), sched_setscheduler()

The Base Definitions volume of POSIX.1-2017, <sys_resource.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 2

GETPRIORITY(3P) POSIX Programmer’s Manual GETPRIORITY(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETPROT OBYNAME(3P) POSIX Programmer’s Manual GETPROT OBYNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getprotobyname, getprotobynumber, getprotent — network protocol database functions

SYNOPSIS
#include <netdb.h>

struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);

DESCRIPTION
Refer to endprotoent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETPWENT(3P) POSIX Programmer’s Manual GETPWENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpwent — get user database entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent(void);

DESCRIPTION
Refer to endpwent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETPWNAM(3P) POSIX Programmer’s Manual GETPWNAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpwnam, getpwnam_r — search user database for a name

SYNOPSIS
#include <pwd.h>

struct passwd *getpwnam(const char *name);
int getpwnam_r(const char *name, struct passwd *pwd, char *buffer,

size_t bufsize, struct passwd **result);

DESCRIPTION
The getpwnam() function shall search the user database for an entry with a matching name.

The getpwnam() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling getpwnam(). If getp-

wnam() returns a null pointer and errno is non-zero, an error occurred.

The getpwnam_r() function shall update the passwd structure pointed to by pwd and store a pointer to that
structure at the location pointed to by result. The structure shall contain an entry from the user database
with a matching name. Storage referenced by the structure is allocated from the memory provided with the
buffer parameter, which is bufsize bytes in size. A call to sysconf (_SC_GETPW_R_SIZE_MAX) returns
either −1 without changing errno or an initial value suggested for the size of this buffer. A null pointer
shall be returned at the location pointed to by result on error or if the requested entry is not found.

RETURN VALUE
The getpwnam() function shall return a pointer to a struct passwd with the structure as defined in <pwd.h>

with a matching entry if found. A null pointer shall be returned if the requested entry is not found, or an er-
ror occurs. If the requested entry was not found, errno shall not be changed. On error, errno shall be set to
indicate the error.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getpwent(),
getpwnam(), or getpwuid(). The returned pointer, and pointers within the structure, might also be invali-
dated if the calling thread is terminated.

The getpwnam_r() function shall return zero on success or if the requested entry was not found and no error
has occurred. If an error has occurred, an error number shall be returned to indicate the error.

ERRORS
These functions may fail if:

EIO An I/O error has occurred.

EINTR
A signal was caught during getpwnam().

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum allowable number of files is currently open in the system.

The getpwnam_r() function may fail if:

ERANGE
Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced by the
resulting passwd structure.

IEEE/The Open Group 2017 1

GETPWNAM(3P) POSIX Programmer’s Manual GETPWNAM(3P)

The following sections are informative.

EXAMPLES
Note that sysconf (_SC_GETPW_R_SIZE_MAX) may return −1 if there is no hard limit on the size of the
buffer needed to store all the groups returned. This example shows how an application can allocate a buffer
of sufficient size to work with getpwnam_r().

long int initlen = sysconf(_SC_GETPW_R_SIZE_MAX);
size_t len;
if (initlen = = -1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct passwd result;
struct passwd *resultp;
char *buffer = malloc(len);
if (buffer = = NULL)

...handle error...
int e;
while ((e = getpwnam_r("someuser", &result, buffer, len, &resultp))

= = ERANGE)
{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer = = NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Getting an Entry for the Login Name
The following example uses the getlogin() function to return the name of the user who logged in; this infor-
mation is passed to the getpwnam() function to get the user database entry for that user.

#include <sys/types.h>
#include <pwd.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
...
char *lgn;
struct passwd *pw;
...
if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {

fprintf(stderr, "Get of user information failed.\n"); exit(1);
}
...

IEEE/The Open Group 2017 2

GETPWNAM(3P) POSIX Programmer’s Manual GETPWNAM(3P)

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns the name
associated with the effective user ID of the process; getlogin() returns the name associated with the current
login activity; and getpwuid(getuid()) returns the name associated with the real user ID of the process.

The getpwnam_r() function is thread-safe and returns values in a user-supplied buffer instead of possibly
using a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1 from
sysconf() indicating that there is no maximum for _SC_GETPW_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwuid(), sysconf()

The Base Definitions volume of POSIX.1-2017, <pwd.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETPWUID(3P) POSIX Programmer’s Manual GETPWUID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getpwuid, getpwuid_r — search user database for a user ID

SYNOPSIS
#include <pwd.h>

struct passwd *getpwuid(uid_t uid);
int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,

size_t bufsize, struct passwd **result);

DESCRIPTION
The getpwuid() function shall search the user database for an entry with a matching uid .

The getpwuid() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling getpwuid(). If getp-

wuid() returns a null pointer and errno is set to non-zero, an error occurred.

The getpwuid_r() function shall update the passwd structure pointed to by pwd and store a pointer to that
structure at the location pointed to by result. The structure shall contain an entry from the user database
with a matching uid . Storage referenced by the structure is allocated from the memory provided with the
buffer parameter, which is bufsize bytes in size. A call to sysconf (_SC_GETPW_R_SIZE_MAX) returns
either −1 without changing errno or an initial value suggested for the size of this buffer. A null pointer
shall be returned at the location pointed to by result on error or if the requested entry is not found.

RETURN VALUE
The getpwuid() function shall return a pointer to a struct passwd with the structure as defined in <pwd.h>

with a matching entry if found. A null pointer shall be returned if the requested entry is not found, or an er-
ror occurs. If the requested entry was not found, errno shall not be changed. On error, errno shall be set to
indicate the error.

The application shall not modify the structure to which the return value points, nor any storage areas
pointed to by pointers within the structure. The returned pointer, and pointers within the structure, might be
invalidated or the structure or the storage areas might be overwritten by a subsequent call to getpwent(),
getpwnam(), or getpwuid(). The returned pointer, and pointers within the structure, might also be invali-
dated if the calling thread is terminated.

If successful, the getpwuid_r() function shall return zero; otherwise, an error number shall be returned to
indicate the error.

ERRORS
These functions may fail if:

EIO An I/O error has occurred.

EINTR
A signal was caught during getpwuid().

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum allowable number of files is currently open in the system.

The getpwuid_r() function may fail if:

ERANGE
Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced by the
resulting passwd structure.

IEEE/The Open Group 2017 1

GETPWUID(3P) POSIX Programmer’s Manual GETPWUID(3P)

The following sections are informative.

EXAMPLES
Note that sysconf (_SC_GETPW_R_SIZE_MAX) may return −1 if there is no hard limit on the size of the
buffer needed to store all the groups returned. This example shows how an application can allocate a buffer
of sufficient size to work with getpwuid_r().

long int initlen = sysconf(_SC_GETPW_R_SIZE_MAX);
size_t len;
if (initlen = = -1)

/* Default initial length. */
len = 1024;

else
len = (size_t) initlen;

struct passwd result;
struct passwd *resultp;
char *buffer = malloc(len);
if (buffer = = NULL)

...handle error...
int e;
while ((e = getpwuid_r(42, &result, buffer, len, &resultp)) = = ERANGE)

{
size_t newlen = 2 * len;
if (newlen < len)

...handle error...
len = newlen;
char *newbuffer = realloc(buffer, len);
if (newbuffer = = NULL)

...handle error...
buffer = newbuffer;
}

if (e != 0)
...handle error...

free (buffer);

Getting an Entry for the Root User
The following example gets the user database entry for the user with user ID 0 (root).

#include <sys/types.h>
#include <pwd.h>
...
uid_t id = 0;
struct passwd *pwd;

pwd = getpwuid(id);

Finding the Name for the Effective User ID
The following example defines pws as a pointer to a structure of type passwd, which is used to store the
structure pointer returned by the call to the getpwuid() function. The geteuid() function shall return the ef-
fective user ID of the calling process; this is used as the search criteria for the getpwuid() function. The call
to getpwuid() shall return a pointer to the structure containing that user ID value.

#include <unistd.h>
#include <sys/types.h>

IEEE/The Open Group 2017 2

GETPWUID(3P) POSIX Programmer’s Manual GETPWUID(3P)

#include <pwd.h>
...
struct passwd *pws;
pws = getpwuid(geteuid());

Finding an Entry in the User Database
The following example uses getpwuid() to search the user database for a user ID that was previously stored
in a stat structure, then prints out the user name if it is found. If the user is not found, the program prints
the numeric value of the user ID for the entry.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
...
struct stat statbuf;
struct passwd *pwd;
...
if ((pwd = getpwuid(statbuf.st_uid)) != NULL)

printf(" %-8.8s", pwd->pw_name);
else

printf(" %-8d", statbuf.st_uid);

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns the name
associated with the effective user ID of the process; getlogin() returns the name associated with the current
login activity; and getpwuid(getuid()) returns the name associated with the real user ID of the process.

The getpwuid_r() function is thread-safe and returns values in a user-supplied buffer instead of possibly us-
ing a static data area that may be overwritten by each call.

Portable applications should take into account that it is usual for an implementation to return −1 from
sysconf() indicating that there is no maximum for _SC_GETPW_R_SIZE_MAX.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwnam(), geteuid(), getuid(), getlogin(), sysconf()

The Base Definitions volume of POSIX.1-2017, <pwd.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETRLIMIT(3P) POSIX Programmer’s Manual GETRLIMIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getrlimit, setrlimit — control maximum resource consumption

SYNOPSIS
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);
int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
The getrlimit() function shall get, and the setrlimit() function shall set, limits on the consumption of a vari-
ety of resources.

Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated upon as well as a re-
source limit. A resource limit is represented by an rlimit structure. The rlim_cur member specifies the cur-
rent or soft limit and the rlim_max member specifies the maximum or hard limit. Soft limits may be
changed by a process to any value that is less than or equal to the hard limit. A process may (irreversibly)
lower its hard limit to any value that is greater than or equal to the soft limit. Only a process with appropri-
ate privileges can raise a hard limit. Both hard and soft limits can be changed in a single call to setrlimit()
subject to the constraints described above.

The value RLIM_INFINITY, defined in <sys/resource.h>, shall be considered to be larger than any other
limit value. If a call to getrlimit() returns RLIM_INFINITY for a resource, it means the implementation
shall not enforce limits on that resource. Specifying RLIM_INFINITY as any resource limit value on a suc-
cessful call to setrlimit() shall inhibit enforcement of that resource limit.

The following resources are defined:

RLIMIT_CORE
This is the maximum size of a core file, in bytes, that may be created by a process. A limit
of 0 shall prevent the creation of a core file. If this limit is exceeded, the writing of a core
file shall terminate at this size.

RLIMIT_CPU This is the maximum amount of CPU time, in seconds, used by a process. If this limit is
exceeded, SIGXCPU shall be generated for the process. If the process is catching or ig-
noring SIGXCPU, or all threads belonging to that process are blocking SIGXCPU, the be-
havior is unspecified.

RLIMIT_DAT A This is the maximum size of a data segment of the process, in bytes. If this limit is ex-
ceeded, the malloc() function shall fail with errno set to [ENOMEM].

RLIMIT_FSIZE
This is the maximum size of a file, in bytes, that may be created by a process. If a write or
truncate operation would cause this limit to be exceeded, SIGXFSZ shall be generated for
the thread. If the thread is blocking, or the process is catching or ignoring SIGXFSZ, con-
tinued attempts to increase the size of a file from end-of-file to beyond the limit shall fail
with errno set to [EFBIG].

RLIMIT_NOFILE
This is a number one greater than the maximum value that the system may assign to a
newly-created descriptor. If this limit is exceeded, functions that allocate a file descriptor
shall fail with errno set to [EMFILE]. This limit constrains the number of file descrip-
tors that a process may allocate.

RLIMIT_STACK
This is the maximum size of the initial thread’s stack, in bytes. The implementation does
not automatically grow the stack beyond this limit. If this limit is exceeded, SIGSEGV

IEEE/The Open Group 2017 1

GETRLIMIT(3P) POSIX Programmer’s Manual GETRLIMIT(3P)

shall be generated for the thread. If the thread is blocking SIGSEGV, or the process is ig-
noring or catching SIGSEGV and has not made arrangements to use an alternate stack, the
disposition of SIGSEGV shall be set to SIG_DFL before it is generated.

RLIMIT_AS This is the maximum size of total available memory of the process, in bytes. If this limit is
exceeded, the malloc() and mmap() functions shall fail with errno set to [ENOMEM]. In
addition, the automatic stack growth fails with the effects outlined above.

When using the getrlimit() function, if a resource limit can be represented correctly in an object of type
rlim_t, then its representation is returned; otherwise, if the value of the resource limit is equal to that of the
corresponding saved hard limit, the value returned shall be RLIM_SAVED_MAX; otherwise, the value re-
turned shall be RLIM_SAVED_CUR.

When using the setrlimit() function, if the requested new limit is RLIM_INFINITY, the new limit shall be
‘‘no limit’’; otherwise, if the requested new limit is RLIM_SAVED_MAX, the new limit shall be the corre-
sponding saved hard limit; otherwise, if the requested new limit is RLIM_SAVED_CUR, the new limit
shall be the corresponding saved soft limit; otherwise, the new limit shall be the requested value. In addi-
tion, if the corresponding saved limit can be represented correctly in an object of type rlim_t then it shall
be overwritten with the new limit.

The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified unless a previ-
ous call to getrlimit() returned that value as the soft or hard limit for the corresponding resource limit.

The determination of whether a limit can be correctly represented in an object of type rlim_t is implemen-
tation-defined. For example, some implementations permit a limit whose value is greater than RLIM_IN-
FINITY and others do not.

The exec family of functions shall cause resource limits to be saved.

RETURN VALUE
Upon successful completion, getrlimit() and setrlimit() shall return 0. Otherwise, these functions shall re-
turn −1 and set errno to indicate the error.

ERRORS
The getrlimit() and setrlimit() functions shall fail if:

EINVAL
An invalid resource was specified; or in a setrlimit() call, the new rlim_cur exceeds the new
rlim_max.

EPERM
The limit specified to setrlimit() would have raised the maximum limit value, and the calling
process does not have appropriate privileges.

The setrlimit() function may fail if:

EINVAL
The limit specified cannot be lowered because current usage is already higher than the limit.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the value of
{_POSIX_OPEN_MAX} from <limits.h>, unexpected behavior may occur.

If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the highest cur-
rently open file descriptor +1, unexpected behavior may occur.

RATIONALE
It should be noted that RLIMIT_STACK applies ‘‘at least’’ to the stack of the initial thread in the process,
and not to the sum of all the stacks in the process, as that would be very limiting unless the value is so big
as to provide no value at all with a single thread.

IEEE/The Open Group 2017 2

GETRLIMIT(3P) POSIX Programmer’s Manual GETRLIMIT(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), malloc(), open(), sigaltstack(), sysconf(), ulimit()

The Base Definitions volume of POSIX.1-2017, <stropts.h>, <sys_resource.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

GETRUSAGE(3P) POSIX Programmer’s Manual GETRUSAGE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getrusage — get information about resource utilization

SYNOPSIS
#include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

DESCRIPTION
The getrusage() function shall provide measures of the resources used by the current process or its termi-
nated and waited-for child processes. If the value of the who argument is RUSAGE_SELF, information
shall be returned about resources used by the current process. If the value of the who argument is
RUSAGE_CHILDREN, information shall be returned about resources used by the terminated and waited-
for children of the current process. If the child is never waited for (for example, if the parent has SA_NO-
CLDWAIT set or sets SIGCHLD to SIG_IGN), the resource information for the child process is discarded
and not included in the resource information provided by getrusage().

The r_usage argument is a pointer to an object of type struct rusage in which the returned information is
stored.

RETURN VALUE
Upon successful completion, getrusage() shall return 0; otherwise, −1 shall be returned and errno set to in-
dicate the error.

ERRORS
The getrusage() function shall fail if:

EINVAL
The value of the who argument is not valid.

The following sections are informative.

EXAMPLES
Using getrusage()

The following example returns information about the resources used by the current process.

#include <sys/resource.h>
...
int who = RUSAGE_SELF;
struct rusage usage;
int ret;

ret = getrusage(who, &usage);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), sigaction(), time(), times(), wait()

The Base Definitions volume of POSIX.1-2017, <sys_resource.h>

IEEE/The Open Group 2017 1

GETRUSAGE(3P) POSIX Programmer’s Manual GETRUSAGE(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETS(3P) POSIX Programmer’s Manual GETS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
gets — get a string from a stdin stream

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The gets() function shall read bytes from the standard input stream, stdin, into the array pointed to by s, un-
til a <newline> is read or an end-of-file condition is encountered. Any <newline> shall be discarded and a
null byte shall be placed immediately after the last byte read into the array.

The gets() function may mark the last data access timestamp of the file associated with stream for update.
The last data access timestamp shall be marked for update by the first successful execution of fgetc(),
fgets(), fread(), fscanf(), getc(), getchar(), getdelim(), getline(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, gets() shall return s. If the end-of-file indicator for the stream is set, or if the
stream is at end-of-file, the end-of-file indicator for the stream shall be set and gets() shall return a null
pointer. If a read error occurs, the error indicator for the stream shall be set, gets() shall return a null
pointer, and set errno to indicate the error.

ERRORS
Refer to fgetc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Reading a line that overflows the array pointed to by s results in undefined behavior. The use of fgets() is
recommended.

Since the user cannot specify the length of the buffer passed to gets(), use of this function is discouraged.
The length of the string read is unlimited. It is possible to overflow this buffer in such a way as to cause ap-
plications to fail, or possible system security violations.

Applications should use the fgets() function instead of the obsolescent gets() function.

RATIONALE
The standard developers decided to mark the gets() function as obsolescent even though it is in the ISO C
standard due to the possibility of buffer overflow.

FUTURE DIRECTIONS
The gets() function may be removed in a future version.

SEE ALSO
Section 2.5, Standard I/O Streams, feof(), ferror(), fgets()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

IEEE/The Open Group 2017 1

GETS(3P) POSIX Programmer’s Manual GETS(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETSERVBYNAME(3P) POSIX Programmer’s Manual GETSERVBYNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getservbyname, getservbyport, getservent — network services database functions

SYNOPSIS
#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);

DESCRIPTION
Refer to endservent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETSID(3P) POSIX Programmer’s Manual GETSID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getsid — get the process group ID of a session leader

SYNOPSIS
#include <unistd.h>

pid_t getsid(pid_t pid);

DESCRIPTION
The getsid() function shall obtain the process group ID of the process that is the session leader of the
process specified by pid . If pid is (pid_t)0, it specifies the calling process.

RETURN VALUE
Upon successful completion, getsid() shall return the process group ID of the session leader of the specified
process. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The getsid() function shall fail if:

EPERM
The process specified by pid is not in the same session as the calling process, and the implementa-
tion does not allow access to the process group ID of the session leader of that process from the
calling process.

ESRCH
There is no process with a process ID equal to pid .

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fork(), getpid(), getpgid(), setpgid(), setsid()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETSOCKNAME(3P) POSIX Programmer’s Manual GETSOCKNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getsockname — get the socket name

SYNOPSIS
#include <sys/socket.h>

int getsockname(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The getsockname() function shall retrieve the locally-bound name of the specified socket, store this address
in the sockaddr structure pointed to by the address argument, and store the length of this address in the ob-
ject pointed to by the address_len argument.

The address_len argument points to a socklen_t object which on input specifies the length of the supplied
sockaddr structure, and on output specifies the length of the stored address. If the actual length of the ad-
dress is greater than the length of the supplied sockaddr structure, the stored address shall be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed to by address is un-
specified.

RETURN VALUE
Upon successful completion, 0 shall be returned, the address argument shall point to the address of the
socket, and the address_len argument shall point to the length of the address. Otherwise, −1 shall be re-
turned and errno set to indicate the error.

ERRORS
The getsockname() function shall fail if:

EBADF
The socket argument is not a valid file descriptor.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The operation is not supported for this socket’s protocol.

The getsockname() function may fail if:

EINVAL
The socket has been shut down.

ENOBUFS
Insufficient resources were available in the system to complete the function.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

GETSOCKNAME(3P) POSIX Programmer’s Manual GETSOCKNAME(3P)

SEE ALSO
accept(), bind(), getpeername(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETSOCKOPT(3P) POSIX Programmer’s Manual GETSOCKOPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getsockopt — get the socket options

SYNOPSIS
#include <sys/socket.h>

int getsockopt(int socket, int level, int option_name,

void *restrict option_value, socklen_t *restrict option_len);

DESCRIPTION
The getsockopt() function manipulates options associated with a socket.

The getsockopt() function shall retrieve the value for the option specified by the option_name argument for
the socket specified by the socket argument. If the size of the option value is greater than option_len, the
value stored in the object pointed to by the option_value argument shall be silently truncated. Otherwise,
the object pointed to by the option_len argument shall be modified to indicate the actual length of the value.

The level argument specifies the protocol level at which the option resides. To retrieve options at the socket
level, specify the level argument as SOL_SOCKET. To retrieve options at other levels, supply the appropri-
ate level identifier for the protocol controlling the option. For example, to indicate that an option is inter-
preted by the TCP (Transmission Control Protocol), set level to IPPROT O_TCP as defined in the
<netinet/in.h> header.

The socket in use may require the process to have appropriate privileges to use the getsockopt() function.

The option_name argument specifies a single option to be retrieved. It can be one of the socket-level op-
tions defined in <sys_socket.h> and described in Section 2.10.16, Use of Options.

RETURN VALUE
Upon successful completion, getsockopt() shall return 0; otherwise, −1 shall be returned and errno set to in-
dicate the error.

ERRORS
The getsockopt() function shall fail if:

EBADF
The socket argument is not a valid file descriptor.

EINVAL
The specified option is invalid at the specified socket level.

ENOPROT OOPT
The option is not supported by the protocol.

ENOTSOCK
The socket argument does not refer to a socket.

The getsockopt() function may fail if:

EACCES
The calling process does not have appropriate privileges.

EINVAL
The socket has been shut down.

ENOBUFS
Insufficient resources are available in the system to complete the function.

The following sections are informative.

IEEE/The Open Group 2017 1

GETSOCKOPT(3P) POSIX Programmer’s Manual GETSOCKOPT(3P)

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10.16, Use of Options, bind(), close(), endprotoent(), setsockopt(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>, <netinet_in.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GETSUBOPT(3P) POSIX Programmer’s Manual GETSUBOPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getsubopt — parse suboption arguments from a string

SYNOPSIS
#include <stdlib.h>

int getsubopt(char **optionp, char * const *keylistp, char **valuep);

DESCRIPTION
The getsubopt() function shall parse suboption arguments in a flag argument. Such options often result from
the use of getopt().

The getsubopt() argument optionp is a pointer to a pointer to the option argument string. The suboption ar-
guments shall be separated by <comma> characters and each may consist of either a single token, or a to-
ken-value pair separated by an <equals-sign>.

The keylistp argument shall be a pointer to a vector of strings. The end of the vector is identified by a null
pointer. Each entry in the vector is one of the possible tokens that might be found in *optionp. Since
<comma> characters delimit suboption arguments in optionp, they should not appear in any of the strings
pointed to by keylistp. Similarly, because an <equals-sign> separates a token from its value, the application
should not include an <equals-sign> in any of the strings pointed to by keylistp. The getsubopt() function
shall not modify the keylistp vector.

The valuep argument is the address of a value string pointer.

If a <comma> appears in optionp, it shall be interpreted as a suboption separator. After <comma> charac-
ters have been processed, if there are one or more <equals-sign> characters in a suboption string, the first
<equals-sign> in any suboption string shall be interpreted as a separator between a token and a value. Sub-
sequent <equals-sign> characters in a suboption string shall be interpreted as part of the value.

If the string at *optionp contains only one suboption argument (equivalently, no <comma> characters), get-

subopt() shall update *optionp to point to the null character at the end of the string. Otherwise, it shall iso-
late the suboption argument by replacing the <comma> separator with a null character, and shall update
*optionp to point to the start of the next suboption argument. If the suboption argument has an associated
value (equivalently, contains an <equals-sign>), getsubopt() shall update *valuep to point to the value’s first
character. Otherwise, it shall set *valuep to a null pointer. The calling application may use this information
to determine whether the presence or absence of a value for the suboption is an error.

Additionally, when getsubopt() fails to match the suboption argument with a token in the keylistp array, the
calling application should decide if this is an error, or if the unrecognized option should be processed in an-
other way.

RETURN VALUE
The getsubopt() function shall return the index of the matched token string, or −1 if no token strings were
matched.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Parsing Suboptions

The following example uses the getsubopt() function to parse a value argument in the optarg external vari-
able returned by a call to getopt().

#include <stdio.h>

IEEE/The Open Group 2017 1

GETSUBOPT(3P) POSIX Programmer’s Manual GETSUBOPT(3P)

#include <stdlib.h>
#include <unistd.h>

int do_all;
const char *type;
int read_size;
int write_size;
int read_only;

enum
{

RO_OPTION = 0,
RW_OPTION,
READ_SIZE_OPTION,
WRITE_SIZE_OPTION

};

const char *mount_opts[] =
{

[RO_OPTION] = "ro",
[RW_OPTION] = "rw",
[READ_SIZE_OPTION] = "rsize",
[WRITE_SIZE_OPTION] = "wsize",
NULL

};

int
main(int argc, char *argv[])
{

char *subopts, *value;
int opt;

while ((opt = getopt(argc, argv, "at:o:")) != -1)
switch(opt)

{
case 'a':

do_all = 1;
break;

case 't':
type = optarg;
break;

case 'o':
subopts = optarg;
while (*subopts != ' ')
{

char *saved = subopts;
switch(getsubopt(&subopts, (char **)mount_opts,

&value))
{
case RO_OPTION:

read_only = 1;
break;

case RW_OPTION:
read_only = 0;
break;

case READ_SIZE_OPTION:
if (value == NULL)

IEEE/The Open Group 2017 2

GETSUBOPT(3P) POSIX Programmer’s Manual GETSUBOPT(3P)

abort();
read_size = atoi(value);
break;

case WRITE_SIZE_OPTION:
if (value == NULL)

abort();
write_size = atoi(value);
break;

default:
/* Unknown suboption. */
printf("Unknown suboption ‘%s'\n", saved);
abort();

}
}
break;

default:
abort();

}

/* Do the real work. */

return 0;
}

If the above example is invoked with:

program -o ro,rsize=512

then after option parsing, the variable do_all will be 0, type will be a null pointer, read_size will be 512,
write_size will be 0, and read_only will be 1. If it is invoked with:

program -o oops

it will print:

"Unknown suboption ‘oops'"

before aborting.

APPLICATION USAGE
The value of *valuep when getsubopt() returns −1 is unspecified. Historical implementations provide vari-
ous incompatible extensions to allow an application to access the suboption text that was not found in the
keylistp array.

RATIONALE
The keylistp argument of getsubopt() is typed as char * const * to match historical practice. However, the
standard is clear that implementations will not modify either the array or the strings contained in the array,
as if the argument had been typed const char * const *.

FUTURE DIRECTIONS
None.

SEE ALSO
getopt()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

IEEE/The Open Group 2017 3

GETSUBOPT(3P) POSIX Programmer’s Manual GETSUBOPT(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

GETTIMEOFDAY(3P) POSIX Programmer’s Manual GETTIMEOFDAY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
gettimeofday — get the date and time

SYNOPSIS
#include <sys/time.h>

int gettimeofday(struct timeval *restrict tp, void *restrict tzp);

DESCRIPTION
The gettimeofday() function shall obtain the current time, expressed as seconds and microseconds since the
Epoch, and store it in the timeval structure pointed to by tp. The resolution of the system clock is unspeci-
fied.

If tzp is not a null pointer, the behavior is unspecified.

RETURN VALUE
The gettimeofday() function shall return 0 and no value shall be reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the clock_gettime() function instead of the obsolescent gettimeofday() function.

RATIONALE
None.

FUTURE DIRECTIONS
The gettimeofday() function may be removed in a future version.

SEE ALSO
clock_getres(), ctime()

The Base Definitions volume of POSIX.1-2017, <sys_time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETUID(3P) POSIX Programmer’s Manual GETUID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getuid — get a real user ID

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);

DESCRIPTION
The getuid() function shall return the real user ID of the calling process. The getuid() function shall not
modify errno.

RETURN VALUE
The getuid() function shall always be successful and no return value is reserved to indicate the error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Setting the Effective User ID to the Real User ID

The following example sets the effective user ID of the calling process to the real user ID.

#include <unistd.h>
...
seteuid(getuid());

APPLICATION USAGE
None.

RATIONALE
In a conforming environment, getuid() will always succeed. It is possible for implementations to provide an
extension where a process in a non-conforming environment will not be associated with a user or group ID.
It is recommended that such implementations return (uid_t)−1 and set errno to indicate such an environ-
ment; doing so does not violate this standard, since such an environment is already an extension.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getgid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETUTXENT(3P) POSIX Programmer’s Manual GETUTXENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getutxent, getutxid, getutxline — get user accounting database entries

SYNOPSIS
#include <utmpx.h>

struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *id);
struct utmpx *getutxline(const struct utmpx *line);

DESCRIPTION
Refer to endutxent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETWC(3P) POSIX Programmer’s Manual GETWC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getwc — get a wide character from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t getwc(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The getwc() function shall be equivalent to fgetwc(), except that if it is implemented as a macro it may eval-
uate stream more than once, so the argument should never be an expression with side-effects.

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, getwc() may treat incorrectly a stream argument with side-effects.
In particular, getwc(*f++) does not necessarily work as expected. Therefore, use of this function is not rec-
ommended; fgetwc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fgetwc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GETWCHAR(3P) POSIX Programmer’s Manual GETWCHAR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
getwchar — get a wide character from a stdin stream

SYNOPSIS
#include <wchar.h>

wint_t getwchar(void);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The getwchar() function shall be equivalent to getwc(stdin).

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the wint_t value returned by getwchar() is stored into a variable of type wchar_t and then compared
against the wint_t macro WEOF, the result may be incorrect. Only the wint_t type is guaranteed to be able
to represent any wide character and WEOF.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fgetwc(), getwc()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

GLOB(3P) POSIX Programmer’s Manual GLOB(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
glob, globfree — generate pathnames matching a pattern

SYNOPSIS
#include <glob.h>

int glob(const char *restrict pattern, int flags,
int(*errfunc)(const char *epath, int eerrno),
glob_t *restrict pglob);

void globfree(glob_t *pglob);

DESCRIPTION
The glob() function is a pathname generator that shall implement the rules defined in the Shell and Utilities
volume of POSIX.1-2017, Section 2.13, Pattern Matching Notation, with optional support for rule 3 in the
Shell and Utilities volume of POSIX.1-2017, Section 2.13.3, Patterns Used for Filename Expansion.

The structure type glob_t is defined in <glob.h> and includes at least the following members:

center box tab(!); cB | cB | cB lw(1.25i)B | lw(1.25i)I | lw(2.5i). Member Type!Member Name!Description
_ size_t!gl_pathc!Count of paths matched by pattern. char **!gl_pathv!Pointer to a list of matched path-
names. size_t!gl_offs!T{ Slots to reserve at the beginning of gl_pathv. T}

The argument pattern is a pointer to a pathname pattern to be expanded. The glob() function shall match all
accessible pathnames against this pattern and develop a list of all pathnames that match. In order to have
access to a pathname, glob() requires search permission on every component of a path except the last, and
read permission on each directory of any filename component of pattern that contains any of the following
special characters: ’*’, ’?’, and ’[’.

The glob() function shall store the number of matched pathnames into pglob−>gl_pathc and a pointer to a
list of pointers to pathnames into pglob−>gl_pathv. The pathnames shall be in sort order as defined by the
current setting of the LC_COLLATE category; see the Base Definitions volume of POSIX.1-2017, Section

7.3.2, LC_COLLATE. The first pointer after the last pathname shall be a null pointer. If the pattern does
not match any pathnames, the returned number of matched paths is set to 0, and the contents of
pglob−>gl_pathv are implementation-defined.

It is the caller’s responsibility to create the structure pointed to by pglob. The glob() function shall allocate
other space as needed, including the memory pointed to by gl_pathv. The globfree() function shall free any
space associated with pglob from a previous call to glob().

The flags argument is used to control the behavior of glob(). The value of flags is a bitwise-inclusive OR
of zero or more of the following constants, which are defined in <glob.h>:

GLOB_APPEND
Append pathnames generated to the ones from a previous call to glob().

GLOB_DOOFFS
Make use of pglob−>gl_offs. If this flag is set, pglob−>gl_offs is used to specify how
many null pointers to add to the beginning of pglob−>gl_pathv. In other words,
pglob−>gl_pathv shall point to pglob−>gl_offs null pointers, followed by
pglob−>gl_pathc pathname pointers, followed by a null pointer.

GLOB_ERR Cause glob() to return when it encounters a directory that it cannot open or read. Ordinar-
ily, glob() continues to find matches.

GLOB_MARK Each pathname that is a directory that matches pattern shall have a <slash> appended.

IEEE/The Open Group 2017 1

GLOB(3P) POSIX Programmer’s Manual GLOB(3P)

GLOB_NOCHECK
Supports rule 3 in the Shell and Utilities volume of POSIX.1-2017, Section 2.13.3, Pat-

terns Used for Filename Expansion. If pattern does not match any pathname, then glob()
shall return a list consisting of only pattern, and the number of matched pathnames is 1.

GLOB_NOESCAPE
Disable backslash escaping.

GLOB_NOSORT
Ordinarily, glob() sorts the matching pathnames according to the current setting of the
LC_COLLATE category; see the Base Definitions volume of POSIX.1-2017, Section

7.3.2, LC_COLLATE. When this flag is used, the order of pathnames returned is unspeci-
fied.

The GLOB_APPEND flag can be used to append a new set of pathnames to those found in a previous call
to glob(). The following rules apply to applications when two or more calls to glob() are made with the
same value of pglob and without intervening calls to globfree():

1. The first such call shall not set GLOB_APPEND. All subsequent calls shall set it.

2. All the calls shall set GLOB_DOOFFS, or all shall not set it.

3. After the second call, pglob−>gl_pathv points to a list containing the following:

a. Zero or more null pointers, as specified by GLOB_DOOFFS and pglob−>gl_offs.

b. Pointers to the pathnames that were in the pglob−>gl_pathv list before the call, in the same order
as before.

c. Pointers to the new pathnames generated by the second call, in the specified order.

4. The count returned in pglob−>gl_pathc shall be the total number of pathnames from the two calls.

5. The application can change any of the fields after a call to glob(). If it does, the application shall reset
them to the original value before a subsequent call, using the same pglob value, to globfree() or glob()
with the GLOB_APPEND flag.

If, during the search, a directory is encountered that cannot be opened or read and errfunc is not a null
pointer, glob() calls (()*errfunc) with two arguments:

1. The epath argument is a pointer to the path that failed.

2. The eerrno argument is the value of errno from the failure, as set by opendir(), readdir(), or stat().
(Other values may be used to report other errors not explicitly documented for those functions.)

If (()*errfunc) is called and returns non-zero, or if the GLOB_ERR flag is set in flags, glob() shall stop the
scan and return GLOB_ABORTED after setting gl_pathc and gl_pathv in pglob to reflect the paths already
scanned. If GLOB_ERR is not set and either errfunc is a null pointer or (()*errfunc) returns 0, the error
shall be ignored.

The glob() function shall not fail because of large files.

RETURN VALUE
Upon successful completion, glob() shall return 0. The argument pglob−>gl_pathc shall return the number
of matched pathnames and the argument pglob−>gl_pathv shall contain a pointer to a null-terminated list of
matched and sorted pathnames. However, if pglob−>gl_pathc is 0, the content of pglob−>gl_pathv is unde-
fined.

The globfree() function shall not return a value.

If glob() terminates due to an error, it shall return one of the non-zero constants defined in <glob.h>. The
arguments pglob−>gl_pathc and pglob−>gl_pathv are still set as defined above.

ERRORS
The glob() function shall fail and return the corresponding value if:

IEEE/The Open Group 2017 2

GLOB(3P) POSIX Programmer’s Manual GLOB(3P)

GLOB_ABORTED
The scan was stopped because GLOB_ERR was set or (()*errfunc) returned non-zero.

GLOB_NOMATCH
The pattern does not match any existing pathname, and GLOB_NOCHECK was not set in
flags.

GLOB_NOSPACE
An attempt to allocate memory failed.

The following sections are informative.

EXAMPLES
One use of the GLOB_DOOFFS flag is by applications that build an argument list for use with execv(), ex-

ecve(), or execvp(). Suppose, for example, that an application wants to do the equivalent of:

ls -l *.c

but for some reason:

system("ls -l *.c")

is not acceptable. The application could obtain approximately the same result using the sequence:

globbuf.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] = "-l";
execvp("ls", &globbuf.gl_pathv[0]);

Using the same example:

ls -l *.c *.h

could be approximately simulated using GLOB_APPEND as follows:

globbuf.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);
...

APPLICATION USAGE
This function is not provided for the purpose of enabling utilities to perform pathname expansion on their
arguments, as this operation is performed by the shell, and utilities are explicitly not expected to redo this.
Instead, it is provided for applications that need to do pathname expansion on strings obtained from other
sources, such as a pattern typed by a user or read from a file.

If a utility needs to see if a pathname matches a given pattern, it can use fnmatch().

Note that gl_pathc and gl_pathv have meaning even if glob() fails. This allows glob() to report partial re-
sults in the event of an error. Howev er, if gl_pathc is 0, gl_pathv is unspecified even if glob() did not return
an error.

The GLOB_NOCHECK option could be used when an application wants to expand a pathname if wild-
cards are specified, but wants to treat the pattern as just a string otherwise. The sh utility might use this for
option-arguments, for example.

IEEE/The Open Group 2017 3

GLOB(3P) POSIX Programmer’s Manual GLOB(3P)

The new pathnames generated by a subsequent call with GLOB_APPEND are not sorted together with the
previous pathnames. This mirrors the way that the shell handles pathname expansion when multiple expan-
sions are done on a command line.

Applications that need tilde and parameter expansion should use wordexp().

RATIONALE
It was claimed that the GLOB_DOOFFS flag is unnecessary because it could be simulated using:

new = (char **)malloc((n + pglob->gl_pathc + 1)
* sizeof(char *));

(void) memcpy(new+n, pglob->gl_pathv,
pglob->gl_pathc * sizeof(char *));

(void) memset(new, 0, n * sizeof(char *));
free(pglob->gl_pathv);
pglob->gl_pathv = new;

However, this assumes that the memory pointed to by gl_pathv is a block that was separately created using
malloc(). This is not necessarily the case. An application should make no assumptions about how the mem-
ory referenced by fields in pglob was allocated. It might have been obtained from malloc() in a large chunk
and then carved up within glob(), or it might have been created using a different memory allocator. It is not
the intent of the standard developers to specify or imply how the memory used by glob() is managed.

The GLOB_APPEND flag would be used when an application wants to expand several different patterns
into a single list.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fdopendir(), fnmatch(), fstatat(), readdir(), Section 2.6, Word Expansions

The Base Definitions volume of POSIX.1-2017, Section 7.3.2, LC_COLLATE, <glob.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

GMTIME(3P) POSIX Programmer’s Manual GMTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
gmtime, gmtime_r — convert a time value to a broken-down UTC time

SYNOPSIS
#include <time.h>

struct tm *gmtime(const time_t *timer);
struct tm *gmtime_r(const time_t *restrict timer,

struct tm *restrict result);

DESCRIPTION
For gmtime(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The gmtime() function shall convert the time in seconds since the Epoch pointed to by timer into a broken-
down time, expressed as Coordinated Universal Time (UTC).

The relationship between a time in seconds since the Epoch used as an argument to gmtime() and the tm
structure (defined in the <time.h> header) is that the result shall be as specified in the expression given in
the definition of seconds since the Epoch (see the Base Definitions volume of POSIX.1-2017, Section 4.16,
Seconds Since the Epoch), where the names in the structure and in the expression correspond.

The same relationship shall apply for gmtime_r().

The gmtime() function need not be thread-safe.

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static objects: a
broken-down time structure and an array of type char. Execution of any of the functions may overwrite the
information returned in either of these objects by any of the other functions.

The gmtime_r() function shall convert the time in seconds since the Epoch pointed to by timer into a bro-
ken-down time expressed as Coordinated Universal Time (UTC). The broken-down time is stored in the
structure referred to by result. The gmtime_r() function shall also return the address of the same structure.

RETURN VALUE
Upon successful completion, the gmtime() function shall return a pointer to a struct tm. If an error is de-
tected, gmtime() shall return a null pointer and set errno to indicate the error.

Upon successful completion, gmtime_r() shall return the address of the structure pointed to by the argument
result. If an error is detected, gmtime_r() shall return a null pointer and set errno to indicate the error.

ERRORS
The gmtime() and gmtime_r() functions shall fail if:

EOVERFLOW
The result cannot be represented.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The gmtime_r() function is thread-safe and returns values in a user-supplied buffer instead of possibly using
a static data area that may be overwritten by each call.

RATIONALE
None.

IEEE/The Open Group 2017 1

GMTIME(3P) POSIX Programmer’s Manual GMTIME(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), localtime(), mktime(), strftime(), strptime(), time(), utime()

The Base Definitions volume of POSIX.1-2017, Section 4.16, Seconds Since the Epoch, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

GRANTPT(3P) POSIX Programmer’s Manual GRANTPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
grantpt — grant access to the slave pseudo-terminal device

SYNOPSIS
#include <stdlib.h>

int grantpt(int fildes);

DESCRIPTION
The grantpt() function shall change the mode and ownership of the slave pseudo-terminal device associated
with its master pseudo-terminal counterpart. The fildes argument is a file descriptor that refers to a master
pseudo-terminal device. The user ID of the slave shall be set to the real UID of the calling process and the
group ID shall be set to an unspecified group ID. The permission mode of the slave pseudo-terminal shall
be set to readable and writable by the owner, and writable by the group.

The behavior of the grantpt() function is unspecified if the application has installed a signal handler to
catch SIGCHLD signals.

RETURN VALUE
Upon successful completion, grantpt() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The grantpt() function may fail if:

EACCES
The corresponding slave pseudo-terminal device could not be accessed.

EBADF
The fildes argument is not a valid open file descriptor.

EINVAL
The fildes argument is not associated with a master pseudo-terminal device.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See the RATIONALE section for posix_openpt().

FUTURE DIRECTIONS
None.

SEE ALSO
open(), posix_openpt(), ptsname(), unlockpt()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

GRANTPT(3P) POSIX Programmer’s Manual GRANTPT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

HCREATE(3P) POSIX Programmer’s Manual HCREATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
hcreate, hdestroy, hsearch — manage hash search table

SYNOPSIS
#include <search.h>

int hcreate(size_t nel);
void hdestroy(void);
ENTRY *hsearch(ENTRY item, ACTION action);

DESCRIPTION
The hcreate(), hdestroy(), and hsearch() functions shall manage hash search tables.

The hcreate() function shall allocate sufficient space for the table, and the application shall ensure it is
called before hsearch() is used. The nel argument is an estimate of the maximum number of entries that the
table shall contain. This number may be adjusted upward by the algorithm in order to obtain certain mathe-
matically favorable circumstances.

The hdestroy() function shall dispose of the search table, and may be followed by another call to hcreate().
After the call to hdestroy(), the data can no longer be considered accessible.

The hsearch() function is a hash-table search routine. It shall return a pointer into a hash table indicating the
location at which an entry can be found. The item argument is a structure of type ENTRY (defined in the
<search.h> header) containing two pointers: item.key points to the comparison key (a char *), and
item.data (a void *) points to any other data to be associated with that key. The comparison function used
by hsearch() is strcmp(). The action argument is a member of an enumeration type ACTION indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that the item should be inserted
in the table at an appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution
is indicated by the return of a null pointer.

These functions need not be thread-safe.

RETURN VALUE
The hcreate() function shall return 0 if it cannot allocate sufficient space for the table; otherwise, it shall re-
turn non-zero.

The hdestroy() function shall not return a value.

The hsearch() function shall return a null pointer if either the action is FIND and the item could not be
found or the action is ENTER and the table is full.

ERRORS
The hcreate() and hsearch() functions may fail if:

ENOMEM
Insufficient storage space is available.

The following sections are informative.

EXAMPLES
The following example reads in strings followed by two numbers and stores them in a hash table, discard-
ing duplicates. It then reads in strings and finds the matching entry in the hash table and prints it out.

#include <stdio.h>
#include <search.h>
#include <string.h>

struct info { /* This is the info stored in the table */

IEEE/The Open Group 2017 1

HCREATE(3P) POSIX Programmer’s Manual HCREATE(3P)

int age, room; /* other than the key. */
};

#define NUM_EMPL 5000 /* # of elements in search table. */

int main(void)
{

char string_space[NUM_EMPL*20]; /* Space to store strings. */
struct info info_space[NUM_EMPL]; /* Space to store employee info. */
char *str_ptr = string_space; /* Next space in string_space. */
struct info *info_ptr = info_space;

/* Next space in info_space. */
ENTRY item;
ENTRY *found_item; /* Name to look for in table. */
char name_to_find[30];

int i = 0;

/* Create table; no error checking is performed. */
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr->age,

&info_ptr->room) != EOF && i++ < NUM_EMPL) {

/* Put information in structure, and structure in item. */
item.key = str_ptr;
item.data = info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;

/* Put item into table. */
(void) hsearch(item, ENTER);

}

/* Access table. */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {

/* If item is in the table. */
(void)printf("found %s, age = %d, room = %d\n",

found_item->key,
((struct info *)found_item->data)->age,
((struct info *)found_item->data)->room);

} else
(void)printf("no such employee %s\n", name_to_find);

}
return 0;

}

APPLICATION USAGE
The hcreate() and hsearch() functions may use malloc() to allocate space.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
bsearch(), lsearch(), malloc(), strcmp(), tdelete()

The Base Definitions volume of POSIX.1-2017, <search.h>

IEEE/The Open Group 2017 2

HCREATE(3P) POSIX Programmer’s Manual HCREATE(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

HTONL(3P) POSIX Programmer’s Manual HTONL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
htonl, htons, ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
These functions shall convert 16-bit and 32-bit quantities between network byte order and host byte order.

On some implementations, these functions are defined as macros.

The uint32_t and uint16_t types are defined in <inttypes.h>.

RETURN VALUE
The htonl() and htons() functions shall return the argument value converted from host to network byte or-
der.

The ntohl() and ntohs() functions shall return the argument value converted from network to host byte or-
der.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are most often used in conjunction with IPv4 addresses and ports as returned by gethos-

tent() and getservent().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endservent()

The Base Definitions volume of POSIX.1-2017, <arpa_inet.h>, <inttypes.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

HYPOT(3P) POSIX Programmer’s Manual HYPOT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
hypot, hypotf, hypotl — Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the value of the square root of x2+y2 without undue overflow or underflow.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the length of the hypotenuse of a right-angled tri-
angle with sides of length x and y.

If the correct value would cause overflow, a range error shall occur and hypot(), hypotf(), and hypotl() shall
return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If x or y is ±Inf, +Inf shall be returned (even if one of x or y is NaN).

If x or y is NaN, and the other is not ±Inf, a NaN shall be returned.

If both arguments are subnormal and the correct result is subnormal, a range error may occur and the cor-
rect result shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
See the EXAMPLES section in atan2().

APPLICATION USAGE
hypot(x,y), hypot(y,x), and hypot(x, −y) are equivalent.

hypot(x, ±0) is equivalent to fabs(x).

IEEE/The Open Group 2017 1

HYPOT(3P) POSIX Programmer’s Manual HYPOT(3P)

Underflow only happens when both x and y are subnormal and the (inexact) result is also subnormal.

These functions take precautions against overflow during intermediate steps of the computation.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan2(), feclearexcept(), fetestexcept(), isnan(), sqrt()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

IF_FREENAMEINDEX(3P) POSIX Programmer’s Manual IF_FREENAMEINDEX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
if_freenameindex — free memory allocated by if_nameindex

SYNOPSIS
#include <net/if.h>

void if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION
The if_freenameindex() function shall free the memory allocated by if_nameindex(). The ptr argument
shall be a pointer that was returned by if_nameindex(). After if_freenameindex() has been called, the appli-
cation shall not use the array of which ptr is the address.

RETURN VALUE
None.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_indextoname(), if_nameindex(), if_nametoindex(), setsockopt()

The Base Definitions volume of POSIX.1-2017, <net_if.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

IF_INDEXTONAME(3P) POSIX Programmer’s Manual IF_INDEXTONAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
if_indextoname — map a network interface index to its corresponding name

SYNOPSIS
#include <net/if.h>

char *if_indextoname(unsigned ifindex, char *ifname);

DESCRIPTION
The if_indextoname() function shall map an interface index to its corresponding name.

When this function is called, ifname shall point to a buffer of at least {IF_NAMESIZE} bytes. The function
shall place in this buffer the name of the interface with index ifindex.

RETURN VALUE
If ifindex is an interface index, then the function shall return the value supplied in ifname, which points to a
buffer now containing the interface name. Otherwise, the function shall return a null pointer and set errno

to indicate the error.

ERRORS
The if_indextoname() function shall fail if:

ENXIO
The interface does not exist.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_nameindex(), if_nametoindex(), setsockopt()

The Base Definitions volume of POSIX.1-2017, <net_if.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

IF_NAMEINDEX(3P) POSIX Programmer’s Manual IF_NAMEINDEX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
if_nameindex — return all network interface names and indexes

SYNOPSIS
#include <net/if.h>

struct if_nameindex *if_nameindex(void);

DESCRIPTION
The if_nameindex() function shall return an array of if_nameindex structures, one structure per interface.
The end of the array is indicated by a structure with an if_index field of zero and an if_name field of NULL.

Applications should call if_freenameindex() to release the memory that may be dynamically allocated by
this function, after they hav e finished using it.

RETURN VALUE
An array of structures identifying local interfaces. A null pointer is returned upon an error, with errno set to
indicate the error.

ERRORS
The if_nameindex() function may fail if:

ENOBUFS
Insufficient resources are available to complete the function.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_indextoname(), if_nametoindex(), setsockopt()

The Base Definitions volume of POSIX.1-2017, <net_if.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

IF_NAMETOINDEX(3P) POSIX Programmer’s Manual IF_NAMETOINDEX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
if_nametoindex — map a network interface name to its corresponding index

SYNOPSIS
#include <net/if.h>

unsigned if_nametoindex(const char *ifname);

DESCRIPTION
The if_nametoindex() function shall return the interface index corresponding to name ifname.

RETURN VALUE
The corresponding index if ifname is the name of an interface; otherwise, zero.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), if_freenameindex(), if_indextoname(), if_nameindex(), setsockopt()

The Base Definitions volume of POSIX.1-2017, <net_if.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ILOGB(3P) POSIX Programmer’s Manual ILOGB(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux. delim $$

NAME
ilogb, ilogbf, ilogbl — return an unbiased exponent

SYNOPSIS
#include <math.h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall return the exponent part of their argument x. Formally, the return value is the integral
part of $log sub{r}|x|$ as a signed integral value, for non-zero x, where r is the radix of the machine’s float-
ing-point arithmetic, which is the value of FLT_RADIX defined in <float.h>.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponent part of x as a signed integer value.
They are equivalent to calling the corresponding logb() function and casting the returned value to type int.

If x is 0, the value FP_ILOGB0 shall be returned. On XSI-conformant systems, a domain error shall occur;
otherwise, a domain error may occur.

If x is ±Inf, the value {INT_MAX} shall be returned. On XSI-conformant systems, a domain error shall
occur;
otherwise, a domain error may occur.

If x is a NaN, the value FP_ILOGBNAN shall be returned. On XSI-conformant systems, a domain error
shall occur;
otherwise, a domain error may occur.

If the correct value is greater than {INT_MAX}, a domain error shall occur and an unspecified value shall
be returned. On XSI-conformant systems, a domain error shall occur and {INT_MAX} shall be returned.

If the correct value is less than {INT_MIN}, a domain error shall occur and an unspecified value shall be
returned. On XSI-conformant systems, a domain error shall occur and {INT_MIN} shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The correct value is not representable as an integer.

The x argument is zero, NaN, or ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

IEEE/The Open Group 2017 1

ILOGB(3P) POSIX Programmer’s Manual ILOGB(3P)

Domain Error
The x argument is zero, NaN, or ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
The errors come from taking the expected floating-point value and converting it to int, which is an invalid
operation in IEEE Std 754-1985 (since overflow, infinity, and NaN are not representable in a type int), so
should be a domain error.

There are no known implementations that overflow. For overflow to happen, {INT_MAX} must be less
than LDBL_MAX_EXP*log2(FLT_RADIX) or {INT_MIN} must be greater than
LDBL_MIN_EXP*log2(FLT_RADIX) if subnormals are not supported, or {INT_MIN} must be greater
than (LDBL_MIN_EXP-LDBL_MANT_DIG)*log2(FLT_RADIX) if subnormals are supported.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), logb(), scalbln()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <float.h>, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

IMAXABS(3P) POSIX Programmer’s Manual IMAXABS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
imaxabs — return absolute value

SYNOPSIS
#include <inttypes.h>

intmax_t imaxabs(intmax_t j);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The imaxabs() function shall compute the absolute value of an integer j. If the result cannot be repre-
sented, the behavior is undefined.

RETURN VALUE
The imaxabs() function shall return the absolute value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The absolute value of the most negative number cannot be represented in two’s complement.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
imaxdiv()

The Base Definitions volume of POSIX.1-2017, <inttypes.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

IMAXDIV(3P) POSIX Programmer’s Manual IMAXDIV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
imaxdiv — return quotient and remainder

SYNOPSIS
#include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The imaxdiv() function shall compute numer / denom and numer % denom in a single operation.

RETURN VALUE
The imaxdiv() function shall return a structure of type imaxdiv_t, comprising both the quotient and the re-
mainder. The structure shall contain (in either order) the members quot (the quotient) and rem (the remain-
der), each of which has type intmax_t.

If either part of the result cannot be represented, the behavior is undefined.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
imaxabs()

The Base Definitions volume of POSIX.1-2017, <inttypes.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

INET_ADDR(3P) POSIX Programmer’s Manual INET_ADDR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
inet_addr, inet_ntoa — IPv4 address manipulation

SYNOPSIS
#include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);
char *inet_ntoa(struct in_addr in);

DESCRIPTION
The inet_addr() function shall convert the string pointed to by cp, in the standard IPv4 dotted decimal nota-
tion, to an integer value suitable for use as an Internet address.

The inet_ntoa() function shall convert the Internet host address specified by in to a string in the Internet
standard dot notation.

The inet_ntoa() function need not be thread-safe.

All Internet addresses shall be returned in network order (bytes ordered from left to right).

Values specified using IPv4 dotted decimal notation take one of the following forms:

a.b.c.d When four parts are specified, each shall be interpreted as a byte of data and assigned, from left
to right, to the four bytes of an Internet address.

a.b.c When a three-part address is specified, the last part shall be interpreted as a 16-bit quantity and
placed in the rightmost two bytes of the network address. This makes the three-part address
format convenient for specifying Class B network addresses as "128.net.host".

a.b When a two-part address is supplied, the last part shall be interpreted as a 24-bit quantity and
placed in the rightmost three bytes of the network address. This makes the two-part address
format convenient for specifying Class A network addresses as "net.host".

a When only one part is given, the value shall be stored directly in the network address without
any byte rearrangement.

All numbers supplied as parts in IPv4 dotted decimal notation may be decimal, octal, or hexadecimal, as
specified in the ISO C standard (that is, a leading 0x or 0X implies hexadecimal; otherwise, a leading ’0’
implies octal; otherwise, the number is interpreted as decimal).

RETURN VALUE
Upon successful completion, inet_addr() shall return the Internet address. Otherwise, it shall return
(in_addr_t)(−1).

The inet_ntoa() function shall return a pointer to the network address in Internet standard dot notation.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The return value of inet_ntoa() may point to static data that may be overwritten by subsequent calls to
inet_ntoa().

RATIONALE
None.

IEEE/The Open Group 2017 1

INET_ADDR(3P) POSIX Programmer’s Manual INET_ADDR(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endnetent()

The Base Definitions volume of POSIX.1-2017, <arpa_inet.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

INET_NTOP(3P) POSIX Programmer’s Manual INET_NTOP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
inet_ntop, inet_pton — convert IPv4 and IPv6 addresses between binary and text form

SYNOPSIS
#include <arpa/inet.h>

const char *inet_ntop(int af, const void *restrict src,
char *restrict dst, socklen_t size);

int inet_pton(int af, const char *restrict src, void *restrict dst);

DESCRIPTION
The inet_ntop() function shall convert a numeric address into a text string suitable for presentation. The af

argument shall specify the family of the address. This can be AF_INET or AF_INET6. The src argument
points to a buffer holding an IPv4 address if the af argument is AF_INET, or an IPv6 address if the af argu-
ment is AF_INET6; the address must be in network byte order. The dst argument points to a buffer where
the function stores the resulting text string; it shall not be NULL. The size argument specifies the size of
this buffer, which shall be large enough to hold the text string (INET_ADDRSTRLEN characters for IPv4,
INET6_ADDRSTRLEN characters for IPv6).

The inet_pton() function shall convert an address in its standard text presentation form into its numeric bi-
nary form. The af argument shall specify the family of the address. The AF_INET and AF_INET6 address
families shall be supported. The src argument points to the string being passed in. The dst argument points
to a buffer into which the function stores the numeric address; this shall be large enough to hold the nu-
meric address (32 bits for AF_INET, 128 bits for AF_INET6).

If the af argument of inet_pton() is AF_INET, the src string shall be in the standard IPv4 dotted-decimal
form:

ddd.ddd.ddd.ddd

where "ddd" is a one to three digit decimal number between 0 and 255 (see inet_addr()). The inet_pton()
function does not accept other formats (such as the octal numbers, hexadecimal numbers, and fewer than
four numbers that inet_addr() accepts).

If the af argument of inet_pton() is AF_INET6, the src string shall be in one of the following standard IPv6
text forms:

1. The preferred form is "x:x:x:x:x:x:x:x", where the ’x’s are the hexadecimal values of the eight 16-bit
pieces of the address. Leading zeros in individual fields can be omitted, but there shall be one to four
hexadecimal digits in every field.

2. A string of contiguous zero fields in the preferred form can be shown as "::". The "::" can only ap-
pear once in an address. Unspecified addresses ("0:0:0:0:0:0:0:0") may be represented simply as
"::".

3. A third form that is sometimes more convenient when dealing with a mixed environment of IPv4 and
IPv6 nodes is "x:x:x:x:x:x:d.d.d.d", where the ’x’s are the hexadecimal values of the six high-order
16-bit pieces of the address, and the ’d’s are the decimal values of the four low-order 8-bit pieces of
the address (standard IPv4 representation).

Note: A more extensive description of the standard representations of IPv6 addresses can be found in
RFC 2373.

RETURN VALUE
The inet_ntop() function shall return a pointer to the buffer containing the text string if the conversion suc-
ceeds, and NULL otherwise, and set errno to indicate the error.

IEEE/The Open Group 2017 1

INET_NTOP(3P) POSIX Programmer’s Manual INET_NTOP(3P)

The inet_pton() function shall return 1 if the conversion succeeds, with the address pointed to by dst in net-
work byte order. It shall return 0 if the input is not a valid IPv4 dotted-decimal string or a valid IPv6 ad-
dress string, or −1 with errno set to [EAFNOSUPPORT] if the af argument is unknown.

ERRORS
The inet_ntop() and inet_pton() functions shall fail if:

EAFNOSUPPORT
The af argument is invalid.

ENOSPC
The size of the inet_ntop() result buffer is inadequate.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <arpa_inet.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

INITSTATE(3P) POSIX Programmer’s Manual INITSTATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
initstate, random, setstate, srandom — pseudo-random number functions

SYNOPSIS
#include <stdlib.h>

char *initstate(unsigned seed, char *state, size_t size);
long random(void);
char *setstate(char *state);
void srandom(unsigned seed);

DESCRIPTION
The random() function shall use a non-linear additive feedback random-number generator employing a de-
fault state array size of 31 long integers to return successive pseudo-random numbers in the range from 0 to
2

31
−1. The period of this random-number generator is approximately 16 x (231−1). The size of the state ar-

ray determines the period of the random-number generator. Increasing the state array size shall increase the
period.

With 256 bytes of state information, the period of the random-number generator shall be greater than 269.

Like rand(), random() shall produce by default a sequence of numbers that can be duplicated by calling
srandom() with 1 as the seed.

The srandom() function shall initialize the current state array using the value of seed .

The initstate() and setstate() functions handle restarting and changing random-number generators. The init-

state() function allows a state array, pointed to by the state argument, to be initialized for future use. The
size argument, which specifies the size in bytes of the state array, shall be used by initstate() to decide what
type of random-number generator to use; the larger the state array, the more random the numbers. Values
for the amount of state information are 8, 32, 64, 128, and 256 bytes. Other values greater than 8 bytes are
rounded down to the nearest one of these values. If initstate() is called with 8≤size<32, then random() shall
use a simple linear congruential random number generator. The seed argument specifies a starting point for
the random-number sequence and provides for restarting at the same point. The initstate() function shall re-
turn a pointer to the previous state information array.

If initstate() has not been called, then random() shall behave as though initstate() had been called with
seed=1 and size=128.

Once a state has been initialized, setstate() allows switching between state arrays. The array defined by the
state argument shall be used for further random-number generation until initstate() is called or setstate() is
called again. The setstate() function shall return a pointer to the previous state array.

RETURN VALUE
If initstate() is called with size less than 8, it shall return NULL.

The random() function shall return the generated pseudo-random number.

The srandom() function shall not return a value.

Upon successful completion, initstate() and setstate() shall return a pointer to the previous state array; oth-
erwise, a null pointer shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

INITSTATE(3P) POSIX Programmer’s Manual INITSTATE(3P)

APPLICATION USAGE
After initialization, a state array can be restarted at a different point in one of two ways:

1. The initstate() function can be used, with the desired seed, state array, and size of the array.

2. The setstate() function, with the desired state, can be used, followed by srandom() with the desired
seed. The advantage of using both of these functions is that the size of the state array does not have to
be saved once it is initialized.

Although some implementations of random() have written messages to standard error, such implementa-
tions do not conform to POSIX.1-2008.

Issue 5 restored the historical behavior of this function.

Threaded applications should use erand48(), nrand48(), or jrand48() instead of random() when an indepen-
dent random number sequence in multiple threads is required.

These functions should be avoided whenever non-trivial requirements (including safety) have to be fulfilled.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), rand()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

INSQUE(3P) POSIX Programmer’s Manual INSQUE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
insque, remque — insert or remove an element in a queue

SYNOPSIS
#include <search.h>

void insque(void *element, void *pred);
void remque(void *element);

DESCRIPTION
The insque() and remque() functions shall manipulate queues built from doubly-linked lists. The queue can
be either circular or linear. An application using insque() or remque() shall ensure it defines a structure in
which the first two members of the structure are pointers to the same type of structure, and any further
members are application-specific. The first member of the structure is a forward pointer to the next entry in
the queue. The second member is a backward pointer to the previous entry in the queue. If the queue is lin-
ear, the queue is terminated with null pointers. The names of the structure and of the pointer members are
not subject to any special restriction.

The insque() function shall insert the element pointed to by element into a queue immediately after the ele-
ment pointed to by pred .

The remque() function shall remove the element pointed to by element from a queue.

If the queue is to be used as a linear list, invoking insque(&element, NULL), where element is the initial el-
ement of the queue, shall initialize the forward and backward pointers of element to null pointers.

If the queue is to be used as a circular list, the application shall ensure it initializes the forward pointer and
the backward pointer of the initial element of the queue to the element’s own address.

RETURN VALUE
The insque() and remque() functions do not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Creating a Linear Linked List

The following example creates a linear linked list.

#include <search.h>
...
struct myque element1;
struct myque element2;

char *data1 = "DAT A1";
char *data2 = "DAT A2";
...
element1.data = data1;
element2.data = data2;

insque (&element1, NULL);
insque (&element2, &element1);

IEEE/The Open Group 2017 1

INSQUE(3P) POSIX Programmer’s Manual INSQUE(3P)

Creating a Circular Linked List
The following example creates a circular linked list.

#include <search.h>
...
struct myque element1;
struct myque element2;

char *data1 = "DAT A1";
char *data2 = "DAT A2";
...
element1.data = data1;
element2.data = data2;

element1.fwd = &element1;
element1.bck = &element1;

insque (&element2, &element1);

Removing an Element
The following example removes the element pointed to by element1.

#include <search.h>
...
struct myque element1;
...
remque (&element1);

APPLICATION USAGE
The historical implementations of these functions described the arguments as being of type struct qelem *
rather than as being of type void * as defined here. In those implementations, struct qelem was commonly
defined in <search.h> as:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;

};

Applications using these functions, however, were never able to use this structure directly since it provided
no room for the actual data contained in the elements. Most applications defined structures that contained
the two pointers as the initial elements and also provided space for, or pointers to, the object’s data. Appli-
cations that used these functions to update more than one type of table also had the problem of specifying
two or more different structures with the same name, if they literally used struct qelem as specified.

As described here, the implementations were actually expecting a structure type where the first two mem-
bers were forward and backward pointers to structures. With C compilers that didn’t provide function pro-
totypes, applications used structures as specified in the DESCRIPTION above and the compiler did what
the application expected.

If this method had been carried forward with an ISO C standard compiler and the historical function proto-
type, most applications would have to be modified to cast pointers to the structures actually used to be
pointers to struct qelem to avoid compilation warnings. By specifying void * as the argument type, appli-
cations do not need to change (unless they specifically referenced struct qelem and depended on it being
defined in <search.h>).

IEEE/The Open Group 2017 2

INSQUE(3P) POSIX Programmer’s Manual INSQUE(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <search.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ioctl — control a STREAMS device (STREAMS)

SYNOPSIS
#include <stropts.h>

int ioctl(int fildes, int request, ... /* arg */);

DESCRIPTION
The ioctl() function shall perform a variety of control functions on STREAMS devices. For non-STREAMS
devices, the functions performed by this call are unspecified. The request argument and an optional third ar-
gument (with varying type) shall be passed to and interpreted by the appropriate part of the STREAM asso-
ciated with fildes.

The fildes argument is an open file descriptor that refers to a device.

The request argument selects the control function to be performed and shall depend on the STREAMS de-
vice being addressed.

The arg argument represents additional information that is needed by this specific STREAMS device to
perform the requested function. The type of arg depends upon the particular control request, but it shall be
either an integer or a pointer to a device-specific data structure.

The ioctl() commands applicable to STREAMS, their arguments, and error conditions that apply to each in-
dividual command are described below.

The following ioctl() commands, with error values indicated, are applicable to all STREAMS files:

I_PUSH Pushes the module whose name is pointed to by arg onto the top of the current STREAM,
just below the STREAM head. It then calls the open() function of the newly-pushed module.

The ioctl() function with the I_PUSH command shall fail if:

EINVAL
Invalid module name.

ENXIO
Open function of new module failed.

ENXIO
Hangup received on fildes.

I_POP Removes the module just below the STREAM head of the STREAM pointed to by fildes.
The arg argument should be 0 in an I_POP request.

The ioctl() function with the I_POP command shall fail if:

EINVAL
No module present in the STREAM.

ENXIO
Hangup received on fildes.

I_LOOK Retrieves the name of the module just below the STREAM head of the STREAM pointed to
by fildes, and places it in a character string pointed to by arg. The buffer pointed to by arg

should be at least FMNAMESZ+1 bytes long, where FMNAMESZ is defined in
<stropts.h>.

The ioctl() function with the I_LOOK command shall fail if:

IEEE/The Open Group 2017 1

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

EINVAL
No module present in the STREAM.

I_FLUSH Flushes read and/or write queues, depending on the value of arg. Valid arg values are:

FLUSHR Flush all read queues.

FLUSHW Flush all write queues.

FLUSHRW Flush all read and all write queues.

The ioctl() function with the I_FLUSH command shall fail if:

EINVAL
Invalid arg value.

EAGAIN or ENOSR
Unable to allocate buffers for flush message.

ENXIO
Hangup received on fildes.

I_FLUSHBAND
Flushes a particular band of messages. The arg argument points to a bandinfo structure. The
bi_flag member may be one of FLUSHR, FLUSHW, or FLUSHRW as described above. The
bi_pri member determines the priority band to be flushed.

I_SETSIG Requests that the STREAMS implementation send the SIGPOLL signal to the calling
process when a particular event has occurred on the STREAM associated with fildes.
I_SETSIG supports an asynchronous processing capability in STREAMS. The value of arg

is a bitmask that specifies the events for which the process should be signaled. It is the bit-
wise-inclusive OR of any combination of the following constants:

S_RDNORM A normal (priority band set to 0) message has arrived at the head of a
STREAM head read queue. A signal shall be generated even if the message is
of zero length.

S_RDBAND A message with a non-zero priority band has arrived at the head of a
STREAM head read queue. A signal shall be generated even if the message is
of zero length.

S_INPUT A message, other than a high-priority message, has arrived at the head of a
STREAM head read queue. A signal shall be generated even if the message is
of zero length.

S_HIPRI A high-priority message is present on a STREAM head read queue. A signal
shall be generated even if the message is of zero length.

S_OUTPUT The write queue for normal data (priority band 0) just below the STREAM
head is no longer full. This notifies the process that there is room on the
queue for sending (or writing) normal data downstream.

S_WRNORM
Equivalent to S_OUTPUT.

S_WRBAND The write queue for a non-zero priority band just below the STREAM head is
no longer full. This notifies the process that there is room on the queue for
sending (or writing) priority data downstream.

S_MSG A STREAMS signal message that contains the SIGPOLL signal has reached
the front of the STREAM head read queue.

S_ERROR Notification of an error condition has reached the STREAM head.

S_HANGUP Notification of a hangup has reached the STREAM head.

IEEE/The Open Group 2017 2

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

S_BANDURG
When used in conjunction with S_RDBAND, SIGURG is generated instead
of SIGPOLL when a priority message reaches the front of the STREAM head
read queue.

If arg is 0, the calling process shall be unregistered and shall not receive further SIGPOLL
signals for the stream associated with fildes.

Processes that wish to receive SIGPOLL signals shall ensure that they explicitly register to
receive them using I_SETSIG. If several processes register to receive this signal for the same
ev ent on the same STREAM, each process shall be signaled when the event occurs.

The ioctl() function with the I_SETSIG command shall fail if:

EINVAL
The value of arg is invalid.

EINVAL
The value of arg is 0 and the calling process is not registered to receive the SIG-
POLL signal.

EAGAIN
There were insufficient resources to store the signal request.

I_GETSIG Returns the events for which the calling process is currently registered to be sent a SIG-
POLL signal. The events are returned as a bitmask in an int pointed to by arg, where the
ev ents are those specified in the description of I_SETSIG above.

The ioctl() function with the I_GETSIG command shall fail if:

EINVAL
Process is not registered to receive the SIGPOLL signal.

I_FIND Compares the names of all modules currently present in the STREAM to the name pointed
to by arg, and returns 1 if the named module is present in the STREAM, or returns 0 if the
named module is not present.

The ioctl() function with the I_FIND command shall fail if:

EINVAL
arg does not contain a valid module name.

I_PEEK Retrieves the information in the first message on the STREAM head read queue without tak-
ing the message off the queue. It is analogous to getmsg() except that this command does not
remove the message from the queue. The arg argument points to a strpeek structure.

The application shall ensure that the maxlen member in the ctlbuf and databuf strbuf struc-
tures is set to the number of bytes of control information and/or data information, respec-
tively, to retrieve. The flags member may be marked RS_HIPRI or 0, as described by
getmsg(). If the process sets flags to RS_HIPRI, for example, I_PEEK shall only look for a
high-priority message on the STREAM head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no message was found on the
STREAM head read queue, or if the RS_HIPRI flag was set in flags and a high-priority
message was not present on the STREAM head read queue. It does not wait for a message to
arrive. On return, ctlbuf specifies information in the control buffer, databuf specifies infor-
mation in the data buffer, and flags contains the value RS_HIPRI or 0.

I_SRDOPT Sets the read mode using the value of the argument arg. Read modes are described in
read(). Valid arg flags are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

IEEE/The Open Group 2017 3

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

RMSGN Message-nondiscard mode.

The bitwise-inclusive OR of RMSGD and RMSGN shall return [EINVAL]. The bitwise-in-
clusive OR of RNORM and either RMSGD or RMSGN shall result in the other flag overrid-
ing RNORM which is the default.

In addition, treatment of control messages by the STREAM head may be changed by setting
any of the following flags in arg:

RPROTNORM
Fail read() with [EBADMSG] if a message containing a control part is at the
front of the STREAM head read queue.

RPROTDAT Deliver the control part of a message as data when a process issues a read().

RPROTDIS Discard the control part of a message, delivering any data portion, when a
process issues a read().

The ioctl() function with the I_SRDOPT command shall fail if:

EINVAL
The arg argument is not valid.

I_GRDOPT Returns the current read mode setting, as described above, in an int pointed to by the argu-
ment arg. Read modes are described in read().

I_NREAD Counts the number of data bytes in the data part of the first message on the STREAM head
read queue and places this value in the int pointed to by arg. The return value for the com-
mand shall be the number of messages on the STREAM head read queue. For example, if 0
is returned in arg, but the ioctl() return value is greater than 0, this indicates that a zero-
length message is next on the queue.

I_FDINSERT
Creates a message from specified buffer(s), adds information about another STREAM, and
sends the message downstream. The message contains a control part and an optional data
part. The data and control parts to be sent are distinguished by placement in separate buffers,
as described below. The arg argument points to a strfdinsert structure.

The application shall ensure that the len member in the ctlbuf strbuf structure is set to the
size of a t_uscalar_t plus the number of bytes of control information to be sent with the
message. The fildes member specifies the file descriptor of the other STREAM, and the off-

set member, which must be suitably aligned for use as a t_uscalar_t, specifies the offset
from the start of the control buffer where I_FDINSERT shall store a t_uscalar_t whose in-
terpretation is specific to the STREAM end. The application shall ensure that the len mem-
ber in the databuf strbuf structure is set to the number of bytes of data information to be
sent with the message, or to 0 if no data part is to be sent.

The flags member specifies the type of message to be created. A normal message is created
if flags is set to 0, and a high-priority message is created if flags is set to RS_HIPRI. For
non-priority messages, I_FDINSERT shall block if the STREAM write queue is full due to
internal flow control conditions. For priority messages, I_FDINSERT does not block on this
condition. For non-priority messages, I_FDINSERT does not block when the write queue is
full and O_NONBLOCK is set. Instead, it fails and sets errno to [EAGAIN].

I_FDINSERT also blocks, unless prevented by lack of internal resources, waiting for the
availability of message blocks in the STREAM, regardless of priority or whether O_NON-
BLOCK has been specified. No partial message is sent.

The ioctl() function with the I_FDINSERT command shall fail if:

EAGAIN
A non-priority message is specified, the O_NONBLOCK flag is set, and the
STREAM write queue is full due to internal flow control conditions.

IEEE/The Open Group 2017 4

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

EAGAIN or ENOSR
Buffers cannot be allocated for the message that is to be created.

EINVAL
One of the following:

-- The fildes member of the strfdinsert structure is not a valid, open
STREAM file descriptor.

-- The size of a t_uscalar_t plus offset is greater than the len member for
the buffer specified through ctlbuf.

-- The offset member does not specify a properly-aligned location in the
data buffer.

-- An undefined value is stored in flags.

ENXIO
Hangup received on the STREAM identified by either the fildes argument or the
fildes member of the strfdinsert structure.

ERANGE
The len member for the buffer specified through databuf does not fall within the
range specified by the maximum and minimum packet sizes of the topmost
STREAM module; or the len member for the buffer specified through databuf is
larger than the maximum configured size of the data part of a message; or the len

member for the buffer specified through ctlbuf is larger than the maximum config-
ured size of the control part of a message.

I_STR Constructs an internal STREAMS ioctl() message from the data pointed to by arg, and sends
that message downstream.

This mechanism is provided to send ioctl() requests to downstream modules and drivers. It
allows information to be sent with ioctl(), and returns to the process any information sent up-
stream by the downstream recipient. I_STR shall block until the system responds with either
a positive or neg ative acknowledgement message, or until the request times out after some
period of time. If the request times out, it shall fail with errno set to [ETIME].

At most, one I_STR can be active on a STREAM. Further I_STR calls shall block until the
active I_STR completes at the STREAM head. The default timeout interval for these re-
quests is 15 seconds. The O_NONBLOCK flag has no effect on this call.

To send requests downstream, the application shall ensure that arg points to a strioctl struc-
ture.

The ic_cmd member is the internal ioctl() command intended for a downstream module or
driver and ic_timout is the number of seconds (−1=infinite, 0=use implementation-defined
timeout interval, >0=as specified) an I_STR request shall wait for acknowledgement before
timing out. ic_len is the number of bytes in the data argument, and ic_dp is a pointer to the
data argument. The ic_len member has two uses: on input, it contains the length of the data
argument passed in, and on return from the command, it contains the number of bytes being
returned to the process (the buffer pointed to by ic_dp should be large enough to contain the
maximum amount of data that any module or the driver in the STREAM can return).

The STREAM head shall convert the information pointed to by the strioctl structure to an
internal ioctl() command message and send it downstream.

The ioctl() function with the I_STR command shall fail if:

EAGAIN or ENOSR
Unable to allocate buffers for the ioctl() message.

IEEE/The Open Group 2017 5

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

EINVAL
The ic_len member is less than 0 or larger than the maximum configured size of the
data part of a message, or ic_timout is less than −1.

ENXIO
Hangup received on fildes.

ETIME
A downstream ioctl() timed out before acknowledgement was received.

An I_STR can also fail while waiting for an acknowledgement if a message indicating an er-
ror or a hangup is received at the STREAM head. In addition, an error code can be returned
in the positive or neg ative acknowledgement message, in the event the ioctl() command sent
downstream fails. For these cases, I_STR shall fail with errno set to the value in the mes-
sage.

I_SWROPT Sets the write mode using the value of the argument arg. Valid bit settings for arg are:

SNDZERO Send a zero-length message downstream when a write() of 0 bytes occurs. To
not send a zero-length message when a write() of 0 bytes occurs, the applica-
tion shall ensure that this bit is not set in arg (for example, arg would be set
to 0).

The ioctl() function with the I_SWROPT command shall fail if:

EINVAL
arg is not the above value.

I_GWROPT Returns the current write mode setting, as described above, in the int that is pointed to by
the argument arg.

I_SENDFD Creates a new reference to the open file description associated with the file descriptor arg,
and writes a message on the STREAMS-based pipe fildes containing this reference, together
with the user ID and group ID of the calling process.

The ioctl() function with the I_SENDFD command shall fail if:

EAGAIN
The sending STREAM is unable to allocate a message block to contain the file
pointer; or the read queue of the receiving STREAM head is full and cannot accept
the message sent by I_SENDFD.

EBADF
The arg argument is not a valid, open file descriptor.

EINVAL
The fildes argument is not connected to a STREAM pipe.

ENXIO
Hangup received on fildes.

The ioctl() function with the I_SENDFD command may fail if:

EINVAL
The arg argument is equal to the fildes argument.

I_RECVFD Retrieves the reference to an open file description from a message written to a STREAMS-
based pipe using the I_SENDFD command, and allocates a new file descriptor in the calling
process that refers to this open file description. The arg argument is a pointer to a strrecvfd
data structure as defined in <stropts.h>.

The fd member is a file descriptor. The uid and gid members are the effective user ID and
effective group ID, respectively, of the sending process.

If O_NONBLOCK is not set, I_RECVFD shall block until a message is present at the
STREAM head. If O_NONBLOCK is set, I_RECVFD shall fail with errno set to

IEEE/The Open Group 2017 6

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

[EAGAIN] if no message is present at the STREAM head.

If the message at the STREAM head is a message sent by an I_SENDFD, a new file descrip-
tor shall be allocated for the open file descriptor referenced in the message. The new file de-
scriptor is placed in the fd member of the strrecvfd structure pointed to by arg.

The ioctl() function with the I_RECVFD command shall fail if:

EAGAIN
A message is not present at the STREAM head read queue and the O_NON-
BLOCK flag is set.

EBADMSG
The message at the STREAM head read queue is not a message containing a passed
file descriptor.

EMFILE
All file descriptors available to the process are currently open.

ENXIO
Hangup received on fildes.

I_LIST Allows the process to list all the module names on the STREAM, up to and including the
topmost driver name. If arg is a null pointer, the return value shall be the number of mod-
ules, including the driver, that are on the STREAM pointed to by fildes. This lets the
process allocate enough space for the module names. Otherwise, it should point to a str_list
structure.

The sl_nmods member indicates the number of entries the process has allocated in the array.
Upon return, the sl_modlist member of the str_list structure shall contain the list of module
names, and the number of entries that have been filled into the sl_modlist array is found in
the sl_nmods member (the number includes the number of modules including the driver).
The return value from ioctl() shall be 0. The entries are filled in starting at the top of the
STREAM and continuing downstream until either the end of the STREAM is reached, or the
number of requested modules (sl_nmods) is satisfied.

The ioctl() function with the I_LIST command shall fail if:

EINVAL
The sl_nmods member is less than 1.

EAGAIN or ENOSR
Unable to allocate buffers.

I_ATMARK Allows the process to see if the message at the head of the STREAM head read queue is
marked by some module downstream. The arg argument determines how the checking is
done when there may be multiple marked messages on the STREAM head read queue. It
may take on the following values:

ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on the queue.

The bitwise-inclusive OR of the flags ANYMARK and LASTMARK is permitted.

The return value shall be 1 if the mark condition is satisfied; otherwise, the value shall be 0.

The ioctl() function with the I_ATMARK command shall fail if:

EINVAL
Invalid arg value.

I_CKBAND Checks if the message of a given priority band exists on the STREAM head read queue. This
shall return 1 if a message of the given priority exists, 0 if no such message exists, or −1 on
error. arg should be of type int.

IEEE/The Open Group 2017 7

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

The ioctl() function with the I_CKBAND command shall fail if:

EINVAL
Invalid arg value.

I_GETBAND
Returns the priority band of the first message on the STREAM head read queue in the inte-
ger referenced by arg.

The ioctl() function with the I_GETBAND command shall fail if:

ENODAT A
No message on the STREAM head read queue.

I_CANPUT Checks if a certain band is writable. arg is set to the priority band in question. The return
value shall be 0 if the band is flow-controlled, 1 if the band is writable, or −1 on error.

The ioctl() function with the I_CANPUT command shall fail if:

EINVAL
Invalid arg value.

I_SETCLTIME
This request allows the process to set the time the STREAM head shall delay when a
STREAM is closing and there is data on the write queues. Before closing each module or
driver, if there is data on its write queue, the STREAM head shall delay for the specified
amount of time to allow the data to drain. If, after the delay, data is still present, it shall be
flushed. The arg argument is a pointer to an integer specifying the number of milliseconds to
delay, rounded up to the nearest valid value. If I_SETCLTIME is not performed on a
STREAM, an implementation-defined default timeout interval is used.

The ioctl() function with the I_SETCLTIME command shall fail if:

EINVAL
Invalid arg value.

I_GETCLTIME
Returns the close time delay in the integer pointed to by arg.

Multiplexed STREAMS Configurations
The following commands are used for connecting and disconnecting multiplexed STREAMS configura-
tions. These commands use an implementation-defined default timeout interval.

I_LINK Connects two STREAMs, where fildes is the file descriptor of the STREAM connected to
the multiplexing driver, and arg is the file descriptor of the STREAM connected to another
driver. The STREAM designated by arg is connected below the multiplexing driver. I_LINK
requires the multiplexing driver to send an acknowledgement message to the STREAM head
regarding the connection. This call shall return a multiplexer ID number (an identifier used
to disconnect the multiplexer; see I_UNLINK) on success, and −1 on failure.

The ioctl() function with the I_LINK command shall fail if:

ENXIO
Hangup received on fildes.

ETIME
Timeout before acknowledgement message was received at STREAM head.

EAGAIN or ENOSR
Unable to allocate STREAMS storage to perform the I_LINK.

EBADF
The arg argument is not a valid, open file descriptor.

IEEE/The Open Group 2017 8

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

EINVAL
The fildes argument does not support multiplexing; or arg is not a STREAM or is
already connected downstream from a multiplexer; or the specified I_LINK opera-
tion would connect the STREAM head in more than one place in the multiplexed
STREAM.

An I_LINK can also fail while waiting for the multiplexing driver to acknowledge the re-
quest, if a message indicating an error or a hangup is received at the STREAM head of
fildes. In addition, an error code can be returned in the positive or neg ative acknowledge-
ment message. For these cases, I_LINK fails with errno set to the value in the message.

I_UNLINK Disconnects the two STREAMs specified by fildes and arg. fildes is the file descriptor of
the STREAM connected to the multiplexing driver. The arg argument is the multiplexer ID
number that was returned by the I_LINK ioctl() command when a STREAM was connected
downstream from the multiplexing driver. If arg is MUXID_ALL, then all STREAMs that
were connected to fildes shall be disconnected. As in I_LINK, this command requires ac-
knowledgement.

The ioctl() function with the I_UNLINK command shall fail if:

ENXIO
Hangup received on fildes.

ETIME
Timeout before acknowledgement message was received at STREAM head.

EAGAIN or ENOSR
Unable to allocate buffers for the acknowledgement message.

EINVAL
Invalid multiplexer ID number.

An I_UNLINK can also fail while waiting for the multiplexing driver to acknowledge the re-
quest if a message indicating an error or a hangup is received at the STREAM head of
fildes. In addition, an error code can be returned in the positive or neg ative acknowledge-
ment message. For these cases, I_UNLINK shall fail with errno set to the value in the mes-
sage.

I_PLINK Creates a persistent connection between two STREAMs, where fildes is the file descriptor
of the STREAM connected to the multiplexing driver, and arg is the file descriptor of the
STREAM connected to another driver. This call shall create a persistent connection which
can exist even if the file descriptor fildes associated with the upper STREAM to the multi-
plexing driver is closed. The STREAM designated by arg gets connected via a persistent
connection below the multiplexing driver. I_PLINK requires the multiplexing driver to send
an acknowledgement message to the STREAM head. This call shall return a multiplexer ID
number (an identifier that may be used to disconnect the multiplexer; see I_PUNLINK) on
success, and −1 on failure.

The ioctl() function with the I_PLINK command shall fail if:

ENXIO
Hangup received on fildes.

ETIME
Timeout before acknowledgement message was received at STREAM head.

EAGAIN or ENOSR
Unable to allocate STREAMS storage to perform the I_PLINK.

EBADF
The arg argument is not a valid, open file descriptor.

IEEE/The Open Group 2017 9

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

EINVAL
The fildes argument does not support multiplexing; or arg is not a STREAM or is
already connected downstream from a multiplexer; or the specified I_PLINK opera-
tion would connect the STREAM head in more than one place in the multiplexed
STREAM.

An I_PLINK can also fail while waiting for the multiplexing driver to acknowledge the re-
quest, if a message indicating an error or a hangup is received at the STREAM head of
fildes. In addition, an error code can be returned in the positive or neg ative acknowledge-
ment message. For these cases, I_PLINK shall fail with errno set to the value in the mes-
sage.

I_PUNLINK Disconnects the two STREAMs specified by fildes and arg from a persistent connection.
The fildes argument is the file descriptor of the STREAM connected to the multiplexing
driver. The arg argument is the multiplexer ID number that was returned by the I_PLINK
ioctl() command when a STREAM was connected downstream from the multiplexing driver.
If arg is MUXID_ALL, then all STREAMs which are persistent connections to fildes shall
be disconnected. As in I_PLINK, this command requires the multiplexing driver to acknowl-
edge the request.

The ioctl() function with the I_PUNLINK command shall fail if:

ENXIO
Hangup received on fildes.

ETIME
Timeout before acknowledgement message was received at STREAM head.

EAGAIN or ENOSR
Unable to allocate buffers for the acknowledgement message.

EINVAL
Invalid multiplexer ID number.

An I_PUNLINK can also fail while waiting for the multiplexing driver to acknowledge the
request if a message indicating an error or a hangup is received at the STREAM head of
fildes. In addition, an error code can be returned in the positive or neg ative acknowledge-
ment message. For these cases, I_PUNLINK shall fail with errno set to the value in the mes-
sage.

RETURN VALUE
Upon successful completion, ioctl() shall return a value other than −1 that depends upon the STREAMS de-
vice control function. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
Under the following general conditions, ioctl() shall fail if:

EBADF
The fildes argument is not a valid open file descriptor.

EINTR
A signal was caught during the ioctl() operation.

EINVAL
The STREAM or multiplexer referenced by fildes is linked (directly or indirectly) downstream
from a multiplexer.

If an underlying device driver detects an error, then ioctl() shall fail if:

EINVAL
The request or arg argument is not valid for this device.

EIO Some physical I/O error has occurred.

IEEE/The Open Group 2017 10

IOCTL(3P) POSIX Programmer’s Manual IOCTL(3P)

ENOTTY
The file associated with the fildes argument is not a STREAMS device that accepts control func-
tions.

ENXIO
The request and arg arguments are valid for this device driver, but the service requested cannot be
performed on this particular sub-device.

ENODEV
The fildes argument refers to a valid STREAMS device, but the corresponding device driver does
not support the ioctl() function.

If a STREAM is connected downstream from a multiplexer, any ioctl() command except I_UNLINK and
I_PUNLINK shall set errno to [EINVAL].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The implementation-defined timeout interval for STREAMS has historically been 15 seconds.

RATIONALE
None.

FUTURE DIRECTIONS
The ioctl() function may be removed in a future version.

SEE ALSO
Section 2.6, STREAMS, close(), fcntl(), getmsg(), open(), pipe(), poll(), putmsg(), read(), sigac-

tion(), write()

The Base Definitions volume of POSIX.1-2017, <stropts.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 11

ISALNUM(3P) POSIX Programmer’s Manual ISALNUM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isalnum, isalnum_l — test for an alphanumeric character

SYNOPSIS
#include <ctype.h>

int isalnum(int c);
int isalnum_l(int c, locale_t locale);

DESCRIPTION
For isalnum(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isalnum() and isalnum_l() functions shall test whether c is a character of class alpha or digit in the cur-
rent locale, or in the locale represented by locale, respectively; see the Base Definitions volume of
POSIX.1-2017, Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is representable as an unsigned
char or equal to the value of the macro EOF. If the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to isalnum_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isalnum() and isalnum_l() functions shall return non-zero if c is an alphanumeric character; otherwise,
they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISALNUM(3P) POSIX Programmer’s Manual ISALNUM(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISALPHA(3P) POSIX Programmer’s Manual ISALPHA(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isalpha, isalpha_l — test for an alphabetic character

SYNOPSIS
#include <ctype.h>

int isalpha(int c);
int isalpha_l(int c, locale_t locale);

DESCRIPTION
For isalpha(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isalpha() and isalpha_l() functions shall test whether c is a character of class alpha in the current lo-
cale, or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is representable as an unsigned
char or equal to the value of the macro EOF. If the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to isalpha_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isalpha() and isalpha_l() functions shall return non-zero if c is an alphabetic character; otherwise, they
shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISALPHA(3P) POSIX Programmer’s Manual ISALPHA(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISASCII(3P) POSIX Programmer’s Manual ISASCII(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isascii — test for a 7-bit US-ASCII character

SYNOPSIS
#include <ctype.h>

int isascii(int c);

DESCRIPTION
The isascii() function shall test whether c is a 7-bit US-ASCII character code.

The isascii() function is defined on all integer values.

RETURN VALUE
The isascii() function shall return non-zero if c is a 7-bit US-ASCII character code between 0 and octal
0177 inclusive; otherwise, it shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The isascii() function cannot be used portably in a localized application.

RATIONALE
None.

FUTURE DIRECTIONS
The isascii() function may be removed in a future version.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <ctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ISASTREAM(3P) POSIX Programmer’s Manual ISASTREAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isastream — test a file descriptor (STREAMS)

SYNOPSIS
#include <stropts.h>

int isastream(int fildes);

DESCRIPTION
The isastream() function shall test whether fildes, an open file descriptor, is associated with a STREAMS-
based file.

RETURN VALUE
Upon successful completion, isastream() shall return 1 if fildes refers to a STREAMS-based file and 0 if
not. Otherwise, isastream() shall return −1 and set errno to indicate the error.

ERRORS
The isastream() function shall fail if:

EBADF
The fildes argument is not a valid open file descriptor.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The isastream() function may be removed in a future version.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <stropts.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ISATTY(3P) POSIX Programmer’s Manual ISATTY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isatty — test for a terminal device

SYNOPSIS
#include <unistd.h>

int isatty(int fildes);

DESCRIPTION
The isatty() function shall test whether fildes, an open file descriptor, is associated with a terminal device.

RETURN VALUE
The isatty() function shall return 1 if fildes is associated with a terminal; otherwise, it shall return 0 and
may set errno to indicate the error.

ERRORS
The isatty() function may fail if:

EBADF
The fildes argument is not a valid open file descriptor.

ENOTTY
The file associated with the fildes argument is not a terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The isatty() function does not necessarily indicate that a human being is available for interaction via fildes.
It is quite possible that non-terminal devices are connected to the communications line.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ISBLANK(3P) POSIX Programmer’s Manual ISBLANK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isblank, isblank_l — test for a blank character

SYNOPSIS
#include <ctype.h>

int isblank(int c);
int isblank_l(int c, locale_t locale);

DESCRIPTION
For isblank(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isblank() and isblank_l() functions shall test whether c is a character of class blank in the current lo-
cale, or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is a type int, the value of which the application shall ensure is a character representable as
an unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior
is undefined.

The behavior is undefined if the locale argument to isblank_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isblank() and isblank_l() functions shall return non-zero if c is a <blank>; otherwise, they shall return
0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISBLANK(3P) POSIX Programmer’s Manual ISBLANK(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISCNTRL(3P) POSIX Programmer’s Manual ISCNTRL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iscntrl, iscntrl_l — test for a control character

SYNOPSIS
#include <ctype.h>

int iscntrl(int c);
int iscntrl_l(int c, locale_t locale);

DESCRIPTION
For iscntrl(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iscntrl() and iscntrl_l() functions shall test whether c is a character of class cntrl in the current locale,
or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is a type int, the value of which the application shall ensure is a character representable as
an unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior
is undefined.

The behavior is undefined if the locale argument to iscntrl_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iscntrl() and iscntrl_l() functions shall return non-zero if c is a control character; otherwise, they shall
return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISCNTRL(3P) POSIX Programmer’s Manual ISCNTRL(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISDIGIT(3P) POSIX Programmer’s Manual ISDIGIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isdigit, isdigit_l — test for a decimal digit

SYNOPSIS
#include <ctype.h>

int isdigit(int c);
int isdigit_l(int c, locale_t locale);

DESCRIPTION
For isdigit(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isdigit() and isdigit_l() functions shall test whether c is a character of class digit in the current locale,
or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is a character representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior is undefined if the locale argument to isdigit_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isdigit() and isdigit_l() functions shall return non-zero if c is a decimal digit; otherwise, they shall re-
turn 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISDIGIT(3P) POSIX Programmer’s Manual ISDIGIT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISFINITE(3P) POSIX Programmer’s Manual ISFINITE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isfinite — test for finite value

SYNOPSIS
#include <math.h>

int isfinite(real-floating x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The isfinite() macro shall determine whether its argument has a finite value (zero, subnormal, or normal,
and not infinite or NaN). First, an argument represented in a format wider than its semantic type is con-
verted to its semantic type. Then determination is based on the type of the argument.

RETURN VALUE
The isfinite() macro shall return a non-zero value if and only if its argument has a finite value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isinf(), isnan(), isnormal(), signbit()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ISGRAPH(3P) POSIX Programmer’s Manual ISGRAPH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isgraph, isgraph_l — test for a visible character

SYNOPSIS
#include <ctype.h>

int isgraph(int c);
int isgraph_l(int c, locale_t locale);

DESCRIPTION
For isgraph(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isgraph() and isgraph_l() functions shall test whether c is a character of class graph in the current lo-
cale, or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is a character representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior is undefined if the locale argument to isgraph_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isgraph() and isgraph_l() functions shall return non-zero if c is a character with a visible representa-
tion; otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISGRAPH(3P) POSIX Programmer’s Manual ISGRAPH(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISGREATER(3P) POSIX Programmer’s Manual ISGREATER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isgreater — test if x greater than y

SYNOPSIS
#include <math.h>

int isgreater(real-floating x, real-floating y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The isgreater() macro shall determine whether its first argument is greater than its second argument. The
value of isgreater(x, y) shall be equal to (x) > (y); however, unlike (x) > (y), isgreater(x, y) shall not raise
the invalid floating-point exception when x and y are unordered.

RETURN VALUE
Upon successful completion, the isgreater() macro shall return the value of (x) > (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between numeric values.
For any ordered pair of numeric values, exactly one of the relationships (less, greater, and equal) is true.
Relational operators may raise the invalid floating-point exception when argument values are NaNs. For a
NaN and a numeric value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates writing efficient code
that accounts for NaNs without suffering the invalid floating-point exception. In the SYNOPSIS section,
real-floating indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreaterequal(), isless(), islessequal(), islessgreater(), isunordered()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

ISGREATER(3P) POSIX Programmer’s Manual ISGREATER(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISGREATEREQUAL(3P) POSIX Programmer’s Manual ISGREATEREQUAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isgreaterequal — test if x is greater than or equal to y

SYNOPSIS
#include <math.h>

int isgreaterequal(real-floating x, real-floating y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The isgreaterequal() macro shall determine whether its first argument is greater than or equal to its second
argument. The value of isgreaterequal(x, y) shall be equal to (x) ≥ (y); however, unlike (x) ≥ (y), is-

greaterequal(x, y) shall not raise the invalid floating-point exception when x and y are unordered.

RETURN VALUE
Upon successful completion, the isgreaterequal() macro shall return the value of (x) ≥ (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between numeric values.
For any ordered pair of numeric values, exactly one of the relationships (less, greater, and equal) is true.
Relational operators may raise the invalid floating-point exception when argument values are NaNs. For a
NaN and a numeric value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates writing efficient code
that accounts for NaNs without suffering the invalid floating-point exception. In the SYNOPSIS section,
real-floating indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isless(), islessequal(), islessgreater(), isunordered()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

ISGREATEREQUAL(3P) POSIX Programmer’s Manual ISGREATEREQUAL(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISINF(3P) POSIX Programmer’s Manual ISINF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isinf — test for infinity

SYNOPSIS
#include <math.h>

int isinf(real-floating x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The isinf() macro shall determine whether its argument value is an infinity (positive or neg ative). First, an
argument represented in a format wider than its semantic type is converted to its semantic type. Then deter-
mination is based on the type of the argument.

RETURN VALUE
The isinf() macro shall return a non-zero value if and only if its argument has an infinite value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isnan(), isnormal(), signbit()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ISLESS(3P) POSIX Programmer’s Manual ISLESS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isless — test if x is less than y

SYNOPSIS
#include <math.h>

int isless(real-floating x, real-floating y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The isless() macro shall determine whether its first argument is less than its second argument. The value of
isless(x, y) shall be equal to (x) < (y); however, unlike (x) < (y), isless(x, y) shall not raise the invalid float-
ing-point exception when x and y are unordered.

RETURN VALUE
Upon successful completion, the isless() macro shall return the value of (x) < (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between numeric values.
For any ordered pair of numeric values, exactly one of the relationships (less, greater, and equal) is true.
Relational operators may raise the invalid floating-point exception when argument values are NaNs. For a
NaN and a numeric value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates writing efficient code
that accounts for NaNs without suffering the invalid floating-point exception. In the SYNOPSIS section,
real-floating indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), islessequal(), islessgreater(), isunordered()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

ISLESS(3P) POSIX Programmer’s Manual ISLESS(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISLESSEQUAL(3P) POSIX Programmer’s Manual ISLESSEQUAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
islessequal — test if x is less than or equal to y

SYNOPSIS
#include <math.h>

int islessequal(real-floating x, real-floating y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The islessequal() macro shall determine whether its first argument is less than or equal to its second argu-
ment. The value of islessequal(x, y) shall be equal to (x) <= (y); however, unlike (x) <= (y), islessequal(x,
y) shall not raise the invalid floating-point exception when x and y are unordered.

RETURN VALUE
Upon successful completion, the islessequal() macro shall return the value of (x) <= (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between numeric values.
For any ordered pair of numeric values, exactly one of the relationships (less, greater, and equal) is true.
Relational operators may raise the invalid floating-point exception when argument values are NaNs. For a
NaN and a numeric value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates writing efficient code
that accounts for NaNs without suffering the invalid floating-point exception. In the SYNOPSIS section,
real-floating indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), isless(), islessgreater(), isunordered()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

ISLESSEQUAL(3P) POSIX Programmer’s Manual ISLESSEQUAL(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISLESSGREATER(3P) POSIX Programmer’s Manual ISLESSGREATER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
islessgreater — test if x is less than or greater than y

SYNOPSIS
#include <math.h>

int islessgreater(real-floating x, real-floating y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The islessgreater() macro shall determine whether its first argument is less than or greater than its second
argument. The islessgreater(x, y) macro is similar to (x) < (y) || (x) > (y); however, islessgreater(x, y) shall
not raise the invalid floating-point exception when x and y are unordered (nor shall it evaluate x and y

twice).

RETURN VALUE
Upon successful completion, the islessgreater() macro shall return the value of (x) < (y) || (x) > (y).

If x or y is NaN, 0 shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between numeric values.
For any ordered pair of numeric values, exactly one of the relationships (less, greater, and equal) is true.
Relational operators may raise the invalid floating-point exception when argument values are NaNs. For a
NaN and a numeric value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates writing efficient code
that accounts for NaNs without suffering the invalid floating-point exception. In the SYNOPSIS section,
real-floating indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), isless(), islessequal(), isunordered()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 1

ISLESSGREATER(3P) POSIX Programmer’s Manual ISLESSGREATER(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISLOWER(3P) POSIX Programmer’s Manual ISLOWER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
islower, islower_l — test for a lowercase letter

SYNOPSIS
#include <ctype.h>

int islower(int c);
int islower_l(int c, locale_t locale);

DESCRIPTION
For islower(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The islower() and islower_l() functions shall test whether c is a character of class lower in the current lo-
cale, or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is a character representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior is undefined if the locale argument to islower_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The islower() and islower_l() functions shall return non-zero if c is a lowercase letter; otherwise, they shall
return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Testing for a Lowercase Letter

Tw o examples follow, the first using islower(), the second using multiple concurrent locales and is-

lower_l().

The examples test whether the value is a lowercase letter, based on the current locale, then use it as part of a
key value.

/* Example 1 -- using islower() */
#include <ctype.h>
#include <stdlib.h>
#include <locale.h>
...
char *keystr;
int elementlen, len;
unsigned char c;
...
setlocale(LC_ALL, "");
...
len = 0;
while (len < elementlen) {

c = (unsigned char) (rand() % 256);

IEEE/The Open Group 2017 1

ISLOWER(3P) POSIX Programmer’s Manual ISLOWER(3P)

...
if (islower(c))

keystr[len++] = c;
}

...

/* Example 2 -- using islower_l() */
#include <ctype.h>
#include <stdlib.h>
#include <locale.h>
...
char *keystr;
int elementlen, len;
unsigned char c;
...
locale_t loc = newlocale (LC_ALL_MASK, "", (locale_t) 0);
...
len = 0;
while (len < elementlen) {

c = (unsigned char) (rand() % 256);
...

if (islower_l(c, loc))
keystr[len++] = c;

}
...

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISNAN(3P) POSIX Programmer’s Manual ISNAN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isnan — test for a NaN

SYNOPSIS
#include <math.h>

int isnan(real-floating x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The isnan() macro shall determine whether its argument value is a NaN. First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then determination is based on the
type of the argument.

RETURN VALUE
The isnan() macro shall return a non-zero value if and only if its argument has a NaN value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnormal(), signbit()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ISNORMAL(3P) POSIX Programmer’s Manual ISNORMAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isnormal — test for a normal value

SYNOPSIS
#include <math.h>

int isnormal(real-floating x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The isnormal() macro shall determine whether its argument value is normal (neither zero, subnormal, infi-
nite, nor NaN). First, an argument represented in a format wider than its semantic type is converted to its
semantic type. Then determination is based on the type of the argument.

RETURN VALUE
The isnormal() macro shall return a non-zero value if and only if its argument has a normal value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnan(), signbit()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ISPRINT(3P) POSIX Programmer’s Manual ISPRINT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isprint, isprint_l — test for a printable character

SYNOPSIS
#include <ctype.h>

int isprint(int c);
int isprint_l(int c, locale_t locale);

DESCRIPTION
For isprint(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isprint() and isprint_l() functions shall test whether c is a character of class print in the current locale,
or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is a character representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior is undefined if the locale argument to isprint_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isprint() and isprint_l() functions shall return non-zero if c is a printable character; otherwise, they
shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), ispunct(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISPRINT(3P) POSIX Programmer’s Manual ISPRINT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISPUNCT(3P) POSIX Programmer’s Manual ISPUNCT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ispunct, ispunct_l — test for a punctuation character

SYNOPSIS
#include <ctype.h>

int ispunct(int c);
int ispunct_l(int c, locale_t locale);

DESCRIPTION
For ispunct(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The ispunct() and ispunct_l() functions shall test whether c is a character of class punct in the current lo-
cale, or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is a character representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior is undefined if the locale argument to ispunct_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The ispunct() and ispunct_l() functions shall return non-zero if c is a punctuation character; otherwise, they
shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), isspace(), isupper(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISPUNCT(3P) POSIX Programmer’s Manual ISPUNCT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISSPACE(3P) POSIX Programmer’s Manual ISSPACE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isspace, isspace_l — test for a white-space character

SYNOPSIS
#include <ctype.h>

int isspace(int c);
int isspace_l(int c, locale_t locale);

DESCRIPTION
For isspace(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isspace() and isspace_l() functions shall test whether c is a character of class space in the current lo-
cale, or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is a character representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior is undefined if the locale argument to isspace_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isspace() and isspace_l() functions shall return non-zero if c is a white-space character; otherwise, they
shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isupper(), isxdigit(),
setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISSPACE(3P) POSIX Programmer’s Manual ISSPACE(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISUNORDERED(3P) POSIX Programmer’s Manual ISUNORDERED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isunordered — test if arguments are unordered

SYNOPSIS
#include <math.h>

int isunordered(real-floating x, real-floating y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The isunordered() macro shall determine whether its arguments are unordered.

RETURN VALUE
Upon successful completion, the isunordered() macro shall return 1 if its arguments are unordered, and 0
otherwise.

If x or y is NaN, 1 shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The relational and equality operators support the usual mathematical relationships between numeric values.
For any ordered pair of numeric values, exactly one of the relationships (less, greater, and equal) is true.
Relational operators may raise the invalid floating-point exception when argument values are NaNs. For a
NaN and a numeric value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates writing efficient code
that accounts for NaNs without suffering the invalid floating-point exception. In the SYNOPSIS section,
real-floating indicates that the argument shall be an expression of real-floating type.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

ISUPPER(3P) POSIX Programmer’s Manual ISUPPER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isupper, isupper_l — test for an uppercase letter

SYNOPSIS
#include <ctype.h>

int isupper(int c);
int isupper_l(int c, locale_t locale);

DESCRIPTION
For isupper(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isupper() and isupper_l() functions shall test whether c is a character of class upper in the current lo-
cale, or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is a character representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior is undefined if the locale argument to isupper_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isupper() and isupper_l() functions shall return non-zero if c is an uppercase letter; otherwise, they
shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISUPPER(3P) POSIX Programmer’s Manual ISUPPER(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWALNUM(3P) POSIX Programmer’s Manual ISWALNUM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswalnum, iswalnum_l — test for an alphanumeric wide-character code

SYNOPSIS
#include <wctype.h>

int iswalnum(wint_t wc);
int iswalnum_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswalnum(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswalnum() and iswalnum_l() functions shall test whether wc is a wide-character code representing a
character of class alpha or digit in the current locale, or in the locale represented by locale, respectively;
see the Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswalnum_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswalnum() and iswalnum_l() functions shall return non-zero if wc is an alphanumeric wide-character
code; otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <stdio.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWALNUM(3P) POSIX Programmer’s Manual ISWALNUM(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWALPHA(3P) POSIX Programmer’s Manual ISWALPHA(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswalpha, iswalpha_l — test for an alphabetic wide-character code

SYNOPSIS
#include <wctype.h>

int iswalpha(wint_t wc);
int iswalpha_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswalpha(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswalpha() and iswalpha_l() functions shall test whether wc is a wide-character code representing a
character of class alpha in the current locale, or in the locale represented by locale, respectively; see the
Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswalpha_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswalpha() and iswalpha_l() functions shall return non-zero if wc is an alphabetic wide-character code;
otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWALPHA(3P) POSIX Programmer’s Manual ISWALPHA(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWBLANK(3P) POSIX Programmer’s Manual ISWBLANK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswblank, iswblank_l — test for a blank wide-character code

SYNOPSIS
#include <wctype.h>

int iswblank(wint_t wc);
int iswblank_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswblank(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswblank() and iswblank() functions shall test whether wc is a wide-character code representing a char-
acter of class blank in the current locale, or in the locale represented by locale, respectively; see the Base
Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswblank_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswblank() and iswblank_l() functions shall return non-zero if wc is a blank wide-character code; other-
wise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), isw-

punct(), iswspace(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWBLANK(3P) POSIX Programmer’s Manual ISWBLANK(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWCNTRL(3P) POSIX Programmer’s Manual ISWCNTRL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswcntrl, iswcntrl_l — test for a control wide-character code

SYNOPSIS
#include <wctype.h>

int iswcntrl(wint_t wc);
int iswcntrl_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswcntrl(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswcntrl() and iswcntrl_l() functions shall test whether wc is a wide-character code representing a char-
acter of class cntrl in the current locale, or in the locale represented by locale, respectively; see the Base
Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswcntrl_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswcntrl() and iswcntrl_l() functions shall return non-zero if wc is a control wide-character code; other-
wise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWCNTRL(3P) POSIX Programmer’s Manual ISWCNTRL(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWCTYPE(3P) POSIX Programmer’s Manual ISWCTYPE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswctype, iswctype_l — test character for a specified class

SYNOPSIS
#include <wctype.h>

int iswctype(wint_t wc, wctype_t charclass);
int iswctype_l(wint_t wc, wctype_t charclass,

locale_t locale);

DESCRIPTION
For iswctype(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswctype() and iswctype_l() functions shall determine whether the wide-character code wc has the char-
acter class charclass, returning true or false. The iswctype() and iswctype_l() functions are defined on
WEOF and wide-character codes corresponding to the valid character encodings in the current locale, or in
the locale represented by locale, respectively. If the wc argument is not in the domain of the function, the
result is undefined. If the value of charclass is invalid (that is, not obtained by a call to wctype() or char-

class is invalidated by a subsequent call to setlocale() that has affected category LC_CTYPE) the result is
unspecified.

The behavior is undefined if the locale argument to iswctype_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswctype() and iswctype_l() functions shall return non-zero (true) if and only if wc has the property de-
scribed by charclass. If charclass is (wctype_t)0, these functions shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Testing for a Valid Character

#include <wctype.h>
...
int yes_or_no;
wint_t wc;
wctype_t valid_class;
...
if ((valid_class=wctype("vowel")) == (wctype_t)0)

/* Invalid character class. */
yes_or_no=iswctype(wc,valid_class);

APPLICATION USAGE
The twelve strings "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print", "punct",
"space", "upper", and "xdigit" are reserved for the standard character classes. In the table below, the
functions in the left column are equivalent to the functions in the right column.

iswalnum(wc) iswctype(wc, wctype("alnum"))
iswalnum_l(wc, locale) iswctype_l(wc, wctype("alnum"), locale)
iswalpha(wc) iswctype(wc, wctype("alpha"))

IEEE/The Open Group 2017 1

ISWCTYPE(3P) POSIX Programmer’s Manual ISWCTYPE(3P)

iswalpha_l(wc, locale) iswctype_l(wc, wctype("alpha"), locale)
iswblank(wc) iswctype(wc, wctype("blank"))
iswblank_l(wc, locale) iswctype_l(wc, wctype("blank"), locale)
iswcntrl(wc) iswctype(wc, wctype("cntrl"))
iswcntrl_l(wc, locale) iswctype_l(wc, wctype("cntrl"), locale)
iswdigit(wc) iswctype(wc, wctype("digit"))
iswdigit_l(wc, locale) iswctype_l(wc, wctype("digit"), locale)
iswgraph(wc) iswctype(wc, wctype("graph"))
iswgraph_l(wc, locale) iswctype_l(wc, wctype("graph"), locale)
iswlower(wc) iswctype(wc, wctype("lower"))
iswlower_l(wc, locale) iswctype_l(wc, wctype("lower"), locale)
iswprint(wc) iswctype(wc, wctype("print"))
iswprint_l(wc, locale) iswctype_l(wc, wctype("print"), locale)
iswpunct(wc) iswctype(wc, wctype("punct"))
iswpunct_l(wc, locale) iswctype_l(wc, wctype("punct"), locale)
iswspace(wc) iswctype(wc, wctype("space"))
iswspace_l(wc, locale) iswctype_l(wc, wctype("space"), locale)
iswupper(wc) iswctype(wc, wctype("upper"))
iswupper_l(wc, locale) iswctype_l(wc, wctype("upper"), locale)
iswxdigit(wc) iswctype(wc, wctype("xdigit"))
iswxdigit_l(wc, locale) iswctype_l(wc, wctype("xdigit"), locale)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale(), wctype()

The Base Definitions volume of POSIX.1-2017, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWDIGIT(3P) POSIX Programmer’s Manual ISWDIGIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswdigit, iswdigit_l — test for a decimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswdigit(wint_t wc);
int iswdigit_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswdigit(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswdigit() and iswdigit_l() functions shall test whether wc is a wide-character code representing a char-
acter of class digit in the current locale, or in the locale represented by locale, respectively; see the Base
Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswdigit_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswdigit() and iswdigit_l() functions shall return non-zero if wc is a decimal digit wide-character code;
otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswgraph(), iswlower(), iswprint(), iswpunct(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWDIGIT(3P) POSIX Programmer’s Manual ISWDIGIT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWGRAPH(3P) POSIX Programmer’s Manual ISWGRAPH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswgraph, iswgraph_l — test for a visible wide-character code

SYNOPSIS
#include <wctype.h>

int iswgraph(wint_t wc);
int iswgraph_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswgraph(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswgraph() and iswgraph_l() functions shall test whether wc is a wide-character code representing a
character of class graph in the current locale, or in the locale represented by locale, respectively; see the
Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswgraph_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswgraph() and iswgraph_l() functions shall return non-zero if wc is a wide-character code with a visi-
ble representation; otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswlower(), iswprint(), iswpunct(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWGRAPH(3P) POSIX Programmer’s Manual ISWGRAPH(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWLOWER(3P) POSIX Programmer’s Manual ISWLOWER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswlower, iswlower_l — test for a lowercase letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswlower(wint_t wc);
int iswlower_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswlower(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswlower() and iswlower_l() functions shall test whether wc is a wide-character code representing a
character of class lower in the current locale, or in the locale represented by locale, respectively; see the
Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswlower_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswlower() and iswlower_l() functions shall return non-zero if wc is a lowercase letter wide-character
code; otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswprint(), iswpunct(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale()1

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWLOWER(3P) POSIX Programmer’s Manual ISWLOWER(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWPRINT(3P) POSIX Programmer’s Manual ISWPRINT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswprint, iswprint_l — test for a printable wide-character code

SYNOPSIS
#include <wctype.h>

int iswprint(wint_t wc);
int iswprint_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswprint(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswprint() and iswprint_l() functions shall test whether wc is a wide-character code representing a char-
acter of class print in the current locale, or in the locale represented by locale, respectively; see the Base
Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswprint_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswprint() and iswprint_l() functions shall return non-zero if wc is a printable wide-character code; oth-
erwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswpunct(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWPRINT(3P) POSIX Programmer’s Manual ISWPRINT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWPUNCT(3P) POSIX Programmer’s Manual ISWPUNCT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswpunct, iswpunct_l — test for a punctuation wide-character code

SYNOPSIS
#include <wctype.h>

int iswpunct(wint_t wc);
int iswpunct_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswpunct(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswpunct() and iswpunct_l() functions shall test whether wc is a wide-character code representing a
character of class punct in the current locale, or in the locale represented by locale, respectively; see the
Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswpunct_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswpunct() and iswpunct_l() functions shall return non-zero if wc is a punctuation wide-character code;
otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), isws-

pace(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWPUNCT(3P) POSIX Programmer’s Manual ISWPUNCT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWSPACE(3P) POSIX Programmer’s Manual ISWSPACE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswspace, iswspace_l — test for a white-space wide-character code

SYNOPSIS
#include <wctype.h>

int iswspace(wint_t wc);
int iswspace_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswspace(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswspace() and iswspace_l() functions shall test whether wc is a wide-character code representing a
character of class space in the current locale, or in the locale represented by locale, respectively; see the
Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswspace_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswspace() and iswspace_l() functions shall return non-zero if wc is a white-space wide-character code;
otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), isw-

punct(), iswupper(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWSPACE(3P) POSIX Programmer’s Manual ISWSPACE(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWUPPER(3P) POSIX Programmer’s Manual ISWUPPER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswupper, iswupper_l — test for an uppercase letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswupper(wint_t wc);
int iswupper_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswupper(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswupper() and iswupper_l() functions shall test whether wc is a wide-character code representing a
character of class upper in the current locale, or in the locale represented by locale, respectively; see the
Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswupper_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswupper() and iswupper_l() functions shall return non-zero if wc is an uppercase letter wide-character
code; otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), isw-

punct(), iswspace(), iswxdigit(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWUPPER(3P) POSIX Programmer’s Manual ISWUPPER(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISWXDIGIT(3P) POSIX Programmer’s Manual ISWXDIGIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
iswxdigit, iswxdigit_l — test for a hexadecimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswxdigit(wint_t wc);
int iswxdigit_l(wint_t wc, locale_t locale);

DESCRIPTION
For iswxdigit(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The iswxdigit() and iswxdigit_l() functions shall test whether wc is a wide-character code representing a
character of class xdigit in the current locale, or in the locale represented by locale, respectively; see the
Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character code corre-
sponding to a valid character in the locale used by the function, or equal to the value of the macro WEOF. If
the argument has any other value, the behavior is undefined.

The behavior is undefined if the locale argument to iswxdigit_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The iswxdigit() and iswxdigit_l() functions shall return non-zero if wc is a hexadecimal digit wide-character
code; otherwise, they shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(), iswlower(), iswprint(), isw-

punct(), iswspace(), iswupper(), setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISWXDIGIT(3P) POSIX Programmer’s Manual ISWXDIGIT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ISXDIGIT(3P) POSIX Programmer’s Manual ISXDIGIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
isxdigit, isxdigit_l — test for a hexadecimal digit

SYNOPSIS
#include <ctype.h>

int isxdigit(int c);
int isxdigit_l(int c, locale_t locale);

DESCRIPTION
For isxdigit(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The isxdigit() and isxdigit_l() functions shall test whether c is a character of class xdigit in the current lo-
cale, or in the locale represented by locale, respectively; see the Base Definitions volume of POSIX.1-2017,
Chapter 7 , Locale.

The c argument is an int, the value of which the application shall ensure is a character representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior is undefined if the locale argument to isxdigit_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The isxdigit() and isxdigit_l() functions shall return non-zero if c is a hexadecimal digit; otherwise, they
shall return 0.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only these functions and the func-
tions in the reference pages listed in the SEE ALSO section should be used for character classification.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ISXDIGIT(3P) POSIX Programmer’s Manual ISXDIGIT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

J0(3P) POSIX Programmer’s Manual J0(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
j0, j1, jn — Bessel functions of the first kind

SYNOPSIS
#include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, double x);

DESCRIPTION
The j0(), j1(), and jn() functions shall compute Bessel functions of x of the first kind of orders 0, 1, and n,
respectively.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the relevant Bessel value of x of the first kind.

If the x argument is too large in magnitude, or the correct result would cause underflow, 0 shall be returned
and a range error may occur.

If x is NaN, a NaN shall be returned.

ERRORS
These functions may fail if:

Range Error The value of x was too large in magnitude, or an underflow occurred.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

No other errors shall occur.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), y0()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

IEEE/The Open Group 2017 1

J0(3P) POSIX Programmer’s Manual J0(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

JRAND48(3P) POSIX Programmer’s Manual JRAND48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
jrand48 — generate a uniformly distributed pseudo-random long signed integer

SYNOPSIS
#include <stdlib.h>

long jrand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

KILL(3P) POSIX Programmer’s Manual KILL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
kill — send a signal to a process or a group of processes

SYNOPSIS
#include <signal.h>

int kill(pid_t pid, int sig);

DESCRIPTION
The kill() function shall send a signal to a process or a group of processes specified by pid . The signal to
be sent is specified by sig and is either one from the list given in <signal.h> or 0. If sig is 0 (the null sig-
nal), error checking is performed but no signal is actually sent. The null signal can be used to check the va-
lidity of pid .

For a process to have permission to send a signal to a process designated by pid , unless the sending process
has appropriate privileges, the real or effective user ID of the sending process shall match the real or saved
set-user-ID of the receiving process.

If pid is greater than 0, sig shall be sent to the process whose process ID is equal to pid .

If pid is 0, sig shall be sent to all processes (excluding an unspecified set of system processes) whose
process group ID is equal to the process group ID of the sender, and for which the process has permission
to send a signal.

If pid is −1, sig shall be sent to all processes (excluding an unspecified set of system processes) for which
the process has permission to send that signal.

If pid is negative, but not −1, sig shall be sent to all processes (excluding an unspecified set of system pro-
cesses) whose process group ID is equal to the absolute value of pid , and for which the process has permis-
sion to send a signal.

If the value of pid causes sig to be generated for the sending process, and if sig is not blocked for the call-
ing thread and if no other thread has sig unblocked or is waiting in a sigwait() function for sig, either sig or
at least one pending unblocked signal shall be delivered to the sending thread before kill() returns.

The user ID tests described above shall not be applied when sending SIGCONT to a process that is a mem-
ber of the same session as the sending process.

An implementation that provides extended security controls may impose further implementation-defined re-
strictions on the sending of signals, including the null signal. In particular, the system may deny the exis-
tence of some or all of the processes specified by pid .

The kill() function is successful if the process has permission to send sig to any of the processes specified
by pid . If kill() fails, no signal shall be sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The kill() function shall fail if:

EINVAL
The value of the sig argument is an invalid or unsupported signal number.

EPERM
The process does not have permission to send the signal to any receiving process.

IEEE/The Open Group 2017 1

KILL(3P) POSIX Programmer’s Manual KILL(3P)

ESRCH
No process or process group can be found corresponding to that specified by pid .

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The semantics for permission checking for kill() differed between System V and most other implementa-
tions, such as Version 7 or 4.3 BSD. The semantics chosen for this volume of POSIX.1-2017 agree with
System V. Specifically, a set-user-ID process cannot protect itself against signals (or at least not against
SIGKILL) unless it changes its real user ID. This choice allows the user who starts an application to send it
signals even if it changes its effective user ID. The other semantics give more power to an application that
wants to protect itself from the user who ran it.

Some implementations provide semantic extensions to the kill() function when the absolute value of pid is
greater than some maximum, or otherwise special, value. Negative values are a flag to kill(). Since most
implementations return [ESRCH] in this case, this behavior is not included in this volume of
POSIX.1-2017, although a conforming implementation could provide such an extension.

The unspecified processes to which a signal cannot be sent may include the scheduler or init.

There was initially strong sentiment to specify that, if pid specifies that a signal be sent to the calling
process and that signal is not blocked, that signal would be delivered before kill() returns. This would per-
mit a process to call kill() and be guaranteed that the call never return. However, historical implementations
that provide only the signal() function make only the weaker guarantee in this volume of POSIX.1-2017,
because they only deliver one signal each time a process enters the kernel. Modifications to such imple-
mentations to support the sigaction() function generally require entry to the kernel following return from a
signal-catching function, in order to restore the signal mask. Such modifications have the effect of satisfy-
ing the stronger requirement, at least when sigaction() is used, but not necessarily when signal() is used.
The standard developers considered making the stronger requirement except when signal() is used, but felt
this would be unnecessarily complex. Implementors are encouraged to meet the stronger requirement when-
ev er possible. In practice, the weaker requirement is the same, except in the rare case when two signals ar-
rive during a very short window. This reasoning also applies to a similar requirement for sigprocmask().

In 4.2 BSD, the SIGCONT signal can be sent to any descendant process regardless of user-ID security
checks. This allows a job control shell to continue a job even if processes in the job have altered their user
IDs (as in the su command). In keeping with the addition of the concept of sessions, similar functionality is
provided by allowing the SIGCONT signal to be sent to any process in the same session regardless of user
ID security checks. This is less restrictive than BSD in the sense that ancestor processes (in the same ses-
sion) can now be the recipient. It is more restrictive than BSD in the sense that descendant processes that
form new sessions are now subject to the user ID checks. A similar relaxation of security is not necessary
for the other job control signals since those signals are typically sent by the terminal driver in recognition of
special characters being typed; the terminal driver bypasses all security checks.

In secure implementations, a process may be restricted from sending a signal to a process having a different
security label. In order to prevent the existence or nonexistence of a process from being used as a covert
channel, such processes should appear nonexistent to the sender; that is, [ESRCH] should be returned,
rather than [EPERM], if pid refers only to such processes.

Historical implementations varied on the result of a kill() with pid indicating a zombie process. Some indi-
cated success on such a call (subject to permission checking), while others gav e an error of [ESRCH].
Since the definition of process lifetime in this volume of POSIX.1-2017 covers zombie processes, the [ES-
RCH] error as described is inappropriate in this case and implementations that give this error do not con-
form. This means that an application cannot have a parent process check for termination of a particular
child by sending it the null signal with kill(), but must instead use waitpid() or waitid().

IEEE/The Open Group 2017 2

KILL(3P) POSIX Programmer’s Manual KILL(3P)

There is some belief that the name kill() is misleading, since the function is not always intended to cause
process termination. However, the name is common to all historical implementations, and any change
would be in conflict with the goal of minimal changes to existing application code.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), raise(), setsid(), sigaction(), sigqueue(), wait()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

KILLPG(3P) POSIX Programmer’s Manual KILLPG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
killpg — send a signal to a process group

SYNOPSIS
#include <signal.h>

int killpg(pid_t pgrp, int sig);

DESCRIPTION
The killpg() function shall send the signal specified by sig to the process group specified by pgrp.

If pgrp is greater than 1, killpg(pgrp, sig) shall be equivalent to kill(−pgrp, sig). If pgrp is less than or
equal to 1, the behavior of killpg() is undefined.

RETURN VALUE
Refer to kill().

ERRORS
Refer to kill().

The following sections are informative.

EXAMPLES
Sending a Signal to All Other Members of a Process Group

The following example shows how the calling process could send a signal to all other members of its
process group. To prevent itself from receiving the signal it first makes itself immune to the signal by ignor-
ing it.

#include <signal.h>
#include <unistd.h>
...

if (signal(SIGUSR1, SIG_IGN) == SIG_ERR)
/* Handle error */;

if (killpg(getpgrp(), SIGUSR1) == -1)
/* Handle error */;"

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpgid(), getpid(), kill(), raise()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

KILLPG(3P) POSIX Programmer’s Manual KILLPG(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

L64A(3P) POSIX Programmer’s Manual L64A(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
l64a — convert a 32-bit integer to a radix-64 ASCII string

SYNOPSIS
#include <stdlib.h>

char *l64a(long value);

DESCRIPTION
Refer to a64l().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

LABS(3P) POSIX Programmer’s Manual LABS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
labs, llabs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long labs(long i);
long long llabs(long long i);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The labs() function shall compute the absolute value of the long integer operand i. The llabs() function
shall compute the absolute value of the long long integer operand i. If the result cannot be represented, the
behavior is undefined.

RETURN VALUE
The labs() function shall return the absolute value of the long integer operand.

The llabs() function shall return the absolute value of the long long integer operand.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

LCHOWN(3P) POSIX Programmer’s Manual LCHOWN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lchown — change the owner and group of a symbolic link

SYNOPSIS
#include <unistd.h>

int lchown(const char *path, uid_t owner, gid_t group);

DESCRIPTION
The lchown() function shall be equivalent to chown(), except in the case where the named file is a symbolic
link. In this case, lchown() shall change the ownership of the symbolic link file itself, while chown()
changes the ownership of the file or directory to which the symbolic link refers.

RETURN VALUE
Upon successful completion, lchown() shall return 0. Otherwise, it shall return −1 and set errno to indicate
an error.

ERRORS
The lchown() function shall fail if:

EACCES
Search permission is denied on a component of the path prefix of path.

EINVAL
The owner or group ID is not a value supported by the implementation.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

EPERM
The effective user ID does not match the owner of the file and the process does not have appropri-
ate privileges.

EROFS
The file resides on a read-only file system.

The lchown() function may fail if:

EIO An I/O error occurred while reading or writing to the file system.

EINTR
A signal was caught during execution of the function.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

IEEE/The Open Group 2017 1

LCHOWN(3P) POSIX Programmer’s Manual LCHOWN(3P)

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Changing the Current Owner of a File

The following example shows how to change the ownership of the symbolic link named /modules/pass1 to
the user ID associated with ‘‘jones’’ and the group ID associated with ‘‘cnd’’.

The numeric value for the user ID is obtained by using the getpwnam() function. The numeric value for the
group ID is obtained by using the getgrnam() function.

#include <sys/types.h>
#include <unistd.h>
#include <pwd.h>
#include <grp.h>

struct passwd *pwd;
struct group *grp;
char *path = "/modules/pass1";
...
pwd = getpwnam("jones");
grp = getgrnam("cnd");
lchown(path, pwd->pw_uid, grp->gr_gid);

APPLICATION USAGE
On implementations which support symbolic links as directory entries rather than files, lchown() may fail.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), symlink()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LCONG48(3P) POSIX Programmer’s Manual LCONG48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lcong48 — seed a uniformly distributed pseudo-random signed long integer generator

SYNOPSIS
#include <stdlib.h>

void lcong48(unsigned short param[7]);

DESCRIPTION
Refer to drand48().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

LDEXP(3P) POSIX Programmer’s Manual LDEXP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ldexp, ldexpf, ldexpl — load exponent of a floating-point number

SYNOPSIS
#include <math.h>

double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the quantity x * 2
exp

.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return x multiplied by 2, raised to the power exp.

If these functions would cause overflow, a range error shall occur and ldexp(), ldexpf(), and ldexpl() shall re-
turn ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the sign of x), respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and ldexp(),
ldexpf(), and ldexpl() shall return 0.0, or (if IEC 60559 Floating-Point is not supported) an implementation-
defined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If exp is 0, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

LDEXP(3P) POSIX Programmer’s Manual LDEXP(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), frexp(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LDIV(3P) POSIX Programmer’s Manual LDIV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ldiv, lldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

ldiv_t ldiv(long numer, long denom);
lldiv_t lldiv(long long numer, long long denom);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the quotient and remainder of the division of the numerator numer by the de-
nominator denom. If the division is inexact, the resulting quotient is the long integer (for the ldiv() func-
tion) or long long integer (for the lldiv() function) of lesser magnitude that is the nearest to the algebraic
quotient. If the result cannot be represented, the behavior is undefined; otherwise, quot * denom+rem shall
equal numer.

RETURN VALUE
The ldiv() function shall return a structure of type ldiv_t, comprising both the quotient and the remainder.
The structure shall include the following members, in any order:

long quot; /* Quotient */
long rem; /* Remainder */

The lldiv() function shall return a structure of type lldiv_t, comprising both the quotient and the remainder.
The structure shall include the following members, in any order:

long long quot; /* Quotient */
long long rem; /* Remainder */

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
div()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

IEEE/The Open Group 2017 1

LDIV(3P) POSIX Programmer’s Manual LDIV(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LFIND(3P) POSIX Programmer’s Manual LFIND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lfind — find entry in a linear search table

SYNOPSIS
#include <search.h>

void *lfind(const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
Refer to lsearch().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

LGAMMA(3P) POSIX Programmer’s Manual LGAMMA(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux. delim $$

NAME
lgamma, lgammaf, lgammal, signgam — log gamma function

SYNOPSIS
#include <math.h>

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);
extern int signgam;

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute $log_ e" " Γ (ˆ x) $ where $Γ (ˆ x)$ is defined as $int from 0 to inf e"ˆ" "
"{ - t } t"ˆ" " "{ x - 1 } dt$. The argument x need not be a non-positive integer ($Γ(ˆ x)$ is defined over
the reals, except the non-positive integers).

If x is NaN, −Inf, or a negative integer, the value of signgam is unspecified.

These functions need not be thread-safe.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the logarithmic gamma of x.

If x is a non-positive integer, a pole error shall occur and lgamma(), lgammaf(), and lgammal() shall return
+HUGE_VAL, +HUGE_VALF, and +HUGE_VALL, respectively.

If the correct value would cause overflow, a range error shall occur and lgamma(), lgammaf(), and lgam-

mal() shall return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (having the same sign as the correct
value), respectively.

If x is NaN, a NaN shall be returned.

If x is 1 or 2, +0 shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Pole Error The x argument is a negative integer or zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

LGAMMA(3P) POSIX Programmer’s Manual LGAMMA(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LINK(3P) POSIX Programmer’s Manual LINK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
link, linkat — link one file to another file

SYNOPSIS
#include <unistd.h>

int link(const char *path1, const char *path2);

#include <fcntl.h>

int linkat(int fd1, const char *path1, int fd2,
const char *path2, int flag);

DESCRIPTION
The link() function shall create a new link (directory entry) for the existing file, path1.

The path1 argument points to a pathname naming an existing file. The path2 argument points to a path-
name naming the new directory entry to be created. The link() function shall atomically create a new link
for the existing file and the link count of the file shall be incremented by one.

If path1 names a directory, link() shall fail unless the process has appropriate privileges and the implemen-
tation supports using link() on directories.

If path1 names a symbolic link, it is implementation-defined whether link() follows the symbolic link, or
creates a new link to the symbolic link itself.

Upon successful completion, link() shall mark for update the last file status change timestamp of the file.
Also, the last data modification and last file status change timestamps of the directory that contains the new
entry shall be marked for update.

If link() fails, no link shall be created and the link count of the file shall remain unchanged.

The implementation may require that the calling process has permission to access the existing file.

The linkat() function shall be equivalent to the link() function except that symbolic links shall be handled as
specified by the value of flag (see below) and except in the case where either path1 or path2 or both are
relative paths. In this case a relative path path1 is interpreted relative to the directory associated with the
file descriptor fd1 instead of the current working directory and similarly for path2 and the file descriptor
fd2. If the access mode of the open file description associated with the file descriptor is not O_SEARCH,
the function shall check whether directory searches are permitted using the current permissions of the direc-
tory underlying the file descriptor. If the access mode is O_SEARCH, the function shall not perform the
check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fc-

ntl.h>:

AT_SYMLINK_FOLLOW
If path1 names a symbolic link, a new link for the target of the symbolic link is created.

If linkat() is passed the special value AT_FDCWD in the fd1 or fd2 parameter, the current working direc-
tory shall be used for the respective path argument. If both fd1 and fd2 have value AT_FDCWD, the be-
havior shall be identical to a call to link(), except that symbolic links shall be handled as specified by the
value of flag.

If the AT_SYMLINK_FOLLOW flag is clear in the flag argument and the path1 argument names a sym-
bolic link, a new link is created for the symbolic link path1 and not its target.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error.

IEEE/The Open Group 2017 1

LINK(3P) POSIX Programmer’s Manual LINK(3P)

ERRORS
These functions shall fail if:

EACCES
A component of either path prefix denies search permission, or the requested link requires writing
in a directory that denies write permission, or the calling process does not have permission to ac-
cess the existing file and this is required by the implementation.

EEXIST
The path2 argument resolves to an existing directory entry or refers to a symbolic link.

ELOOP
A loop exists in symbolic links encountered during resolution of the path1 or path2 argument.

EMLINK
The number of links to the file named by path1 would exceed {LINK_MAX}.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of either path prefix does not exist; the file named by path1 does not exist; or path1

or path2 points to an empty string.

ENOENT or ENOTDIR
The path1 argument names an existing non-directory file, and the path2 argument contains at least
one non-<slash> character and ends with one or more trailing <slash> characters. If path2 without
the trailing <slash> characters would name an existing file, an [ENOENT] error shall not occur.

ENOSPC
The directory to contain the link cannot be extended.

ENOTDIR
A component of either path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path1 argument contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname component names an existing
file that is neither a directory nor a symbolic link to a directory, or the path1 argument names an
existing non-directory file and the path2 argument names a nonexistent file, contains at least one
non-<slash> character, and ends with one or more trailing <slash> characters.

EPERM
The file named by path1 is a directory and either the calling process does not have appropriate
privileges or the implementation prohibits using link() on directories.

EROFS
The requested link requires writing in a directory on a read-only file system.

EXDEV
The link named by path2 and the file named by path1 are on different file systems and the imple-
mentation does not support links between file systems.

EXDEV
path1 refers to a named STREAM.

The linkat() function shall fail if:

EACCES
The access mode of the open file description associated with fd1 or fd2 is not O_SEARCH and
the permissions of the directory underlying fd1 or fd2, respectively, do not permit directory
searches.

EBADF
The path1 or path2 argument does not specify an absolute path and the fd1 or fd2 argument, re-
spectively, is neither AT_FDCWD nor a valid file descriptor open for reading or searching.

IEEE/The Open Group 2017 2

LINK(3P) POSIX Programmer’s Manual LINK(3P)

ENOTDIR
The path1 or path2 argument is not an absolute path and fd1 or fd2, respectively, is a file descrip-
tor associated with a non-directory file.

These functions may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path1

or path2 argument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The linkat() function may fail if:

EINVAL
The value of the flag argument is not valid.

The following sections are informative.

EXAMPLES
Creating a Link to a File

The following example shows how to create a link to a file named /home/cnd/mod1 by creating a new di-
rectory entry named /modules/pass1.

#include <unistd.h>

char *path1 = "/home/cnd/mod1";
char *path2 = "/modules/pass1";
int status;
...
status = link (path1, path2);

Creating a Link to a File Within a Program
In the following program example, the link() function links the /etc/passwd file (defined as PASSWD-
FILE) to a file named /etc/opasswd (defined as SAVEFILE), which is used to save the current password
file. Then, after removing the current password file (defined as PASSWDFILE), the new password file is
saved as the current password file using the link() function again.

#include <unistd.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
#define SAVEFILE "/etc/opasswd"
...
/* Save current password file */
link (PASSWDFILE, SAVEFILE);

/* Remove current password file. */
unlink (PASSWDFILE);

/* Save new password file as current password file. */
link (LOCKFILE,PASSWDFILE);

APPLICATION USAGE
Some implementations do allow links between file systems.

If path1 refers to a symbolic link, application developers should use linkat() with appropriate flags to select
whether or not the symbolic link should be resolved.

IEEE/The Open Group 2017 3

LINK(3P) POSIX Programmer’s Manual LINK(3P)

RATIONALE
Linking to a directory is restricted to the superuser in most historical implementations because this capabil-
ity may produce loops in the file hierarchy or otherwise corrupt the file system. This volume of
POSIX.1-2017 continues that philosophy by prohibiting link() and unlink() from doing this. Other functions
could do it if the implementor designed such an extension.

Some historical implementations allow linking of files on different file systems. Wording was added to ex-
plicitly allow this optional behavior.

The exception for cross-file system links is intended to apply only to links that are programmatically indis-
tinguishable from ‘‘hard’’ links.

The purpose of the linkat() function is to link files in directories other than the current working directory
without exposure to race conditions. Any part of the path of a file could be changed in parallel to a call to
link(), resulting in unspecified behavior. By opening a file descriptor for the directory of both the existing
file and the target location and using the linkat() function it can be guaranteed that the both filenames are in
the desired directories.

The AT_SYMLINK_FOLLOW flag allows for implementing both common behaviors of the link() func-
tion. The POSIX specification requires that if path1 is a symbolic link, a new link for the target of the sym-
bolic link is created. Many systems by default or as an alternative provide a mechanism to avoid the im-
plicit symbolic link lookup and create a new link for the symbolic link itself.

Earlier versions of this standard specified only the link() function, and required it to behave like linkat()
with the AT_SYMLINK_FOLLOW flag. However, historical practice from SVR4 and Linux kernels had
link() behaving like linkat() with no flags, and many systems that attempted to provide a conforming link()
function did so in a way that was rarely used, and when it was used did not conform to the standard (e.g.,
by not being atomic, or by dereferencing the symbolic link incorrectly). Since applications could not rely
on link() following links in practice, the linkat() function was added taking a flag to specify the desired be-
havior for the application.

FUTURE DIRECTIONS
None.

SEE ALSO
rename(), symlink(), unlink()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

LIO_LISTIO(3P) POSIX Programmer’s Manual LIO_LISTIO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lio_listio — list directed I/O

SYNOPSIS
#include <aio.h>

int lio_listio(int mode, struct aiocb *restrict const list[restrict],
int nent, struct sigevent *restrict sig);

DESCRIPTION
The lio_listio() function shall initiate a list of I/O requests with a single function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in <aio.h> and deter-
mines whether the function returns when the I/O operations have been completed, or as soon as the opera-
tions have been queued. If the mode argument is LIO_WAIT, the function shall wait until all I/O is com-
plete and the sig argument shall be ignored.

If the mode argument is LIO_NOWAIT, the function shall return immediately, and asynchronous notifica-
tion shall occur, according to the sig argument, when all the I/O operations complete. If sig is NULL, then
no asynchronous notification shall occur. If sig is not NULL, asynchronous notification occurs as specified
in Section 2.4.1, Signal Generation and Delivery when all the requests in list have completed.

The I/O requests enumerated by list are submitted in an unspecified order.

The list argument is an array of pointers to aiocb structures. The array contains nent elements. The array
may contain NULL elements, which shall be ignored.

If the buffer pointed to by list or the aiocb structures pointed to by the elements of the array list become il-
legal addresses before all asynchronous I/O completed and, if necessary, the notification is sent, then the
behavior is undefined. If the buffers pointed to by the aio_buf member of the aiocb structure pointed to by
the elements of the array list become illegal addresses prior to the asynchronous I/O associated with that
aiocb structure being completed, the behavior is undefined.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The supported op-
erations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in <aio.h>. The
LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode element is equal to
LIO_READ, then an I/O operation is submitted as if by a call to aio_read() with the aiocbp equal to the ad-
dress of the aiocb structure. If the aio_lio_opcode element is equal to LIO_WRITE, then an I/O operation
is submitted as if by a call to aio_write() with the aiocbp equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a manner identi-
cal to that of the corresponding aiocb structure when used by the aio_read() and aio_write() functions.

The nent argument specifies how many elements are members of the list; that is, the length of the array.

The behavior of this function is altered according to the definitions of synchronized I/O data integrity com-
pletion and synchronized I/O file integrity completion if synchronized I/O is enabled on the file associated
with aio_fildes.

For regular files, no data transfer shall occur past the offset maximum established in the open file descrip-
tion associated with aiocbp−>aio_fildes.

If sig−>sigev_notify is SIGEV_THREAD and sig−>sigev_notify_attributes is a non-null pointer and the
block pointed to by this pointer becomes an illegal address prior to all asynchronous I/O being completed,

IEEE/The Open Group 2017 1

LIO_LISTIO(3P) POSIX Programmer’s Manual LIO_LISTIO(3P)

then the behavior is undefined.

RETURN VALUE
If the mode argument has the value LIO_NOWAIT, the lio_listio() function shall return the value zero if the
I/O operations are successfully queued; otherwise, the function shall return the value −1 and set errno to in-
dicate the error.

If the mode argument has the value LIO_WAIT, the lio_listio() function shall return the value zero when all
the indicated I/O has completed successfully. Otherwise, lio_listio() shall return a value of −1 and set errno

to indicate the error.

In either case, the return value only indicates the success or failure of the lio_listio() call itself, not the sta-
tus of the individual I/O requests. In some cases one or more of the I/O requests contained in the list may
fail. Failure of an individual request does not prevent completion of any other individual request. To deter-
mine the outcome of each I/O request, the application shall examine the error status associated with each
aiocb control block. The error statuses so returned are identical to those returned as the result of an
aio_read() or aio_write() function.

ERRORS
The lio_listio() function shall fail if:

EAGAIN
The resources necessary to queue all the I/O requests were not available. The application may
check the error status for each aiocb to determine the individual request(s) that failed.

EAGAIN
The number of entries indicated by nent would cause the system-wide limit {AIO_MAX} to be
exceeded.

EINVAL
The mode argument is not a proper value, or the value of nent was greater than {AIO_LIS-
TIO_MAX}.

EINTR
A signal was delivered while waiting for all I/O requests to complete during an LIO_WAIT opera-
tion. Note that, since each I/O operation invoked by lio_listio() may possibly provoke a signal
when it completes, this error return may be caused by the completion of one (or more) of the very
I/O operations being awaited. Outstanding I/O requests are not canceled, and the application shall
examine each list element to determine whether the request was initiated, canceled, or completed.

EIO One or more of the individual I/O operations failed. The application may check the error status for
each aiocb structure to determine the individual request(s) that failed.

In addition to the errors returned by the lio_listio() function, if the lio_listio() function succeeds or fails
with errors of [EAGAIN], [EINTR], or [EIO], then some of the I/O specified by the list may have been
initiated. If the lio_listio() function fails with an error code other than [EAGAIN], [EINTR], or [EIO], no
operations from the list shall have been initiated. The I/O operation indicated by each list element can en-
counter errors specific to the individual read or write function being performed. In this event, the error sta-
tus for each aiocb control block contains the associated error code. The error codes that can be set are the
same as would be set by a read() or write() function, with the following additional error codes possible:

EAGAIN
The requested I/O operation was not queued due to resource limitations.

ECANCELED
The requested I/O was canceled before the I/O completed due to an explicit aio_cancel() request.

EFBIG
The aiocbp−>aio_lio_opcode is LIO_WRITE, the file is a regular file, aiocbp−>aio_nbytes is
greater than 0, and the aiocbp−>aio_offset is greater than or equal to the offset maximum in the
open file description associated with aiocbp−>aio_fildes.

IEEE/The Open Group 2017 2

LIO_LISTIO(3P) POSIX Programmer’s Manual LIO_LISTIO(3P)

EINPROGRESS
The requested I/O is in progress.

EOVERFLOW
The aiocbp−>aio_lio_opcode is LIO_READ, the file is a regular file, aiocbp−>aio_nbytes is
greater than 0, and the aiocbp−>aio_offset is before the end-of-file and is greater than or equal to
the offset maximum in the open file description associated with aiocbp−>aio_fildes.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Although it may appear that there are inconsistencies in the specified circumstances for error codes, the
[EIO] error condition applies when any circumstance relating to an individual operation makes that opera-
tion fail. This might be due to a badly formulated request (for example, the aio_lio_opcode field is invalid,
and aio_error() returns [EINVAL]) or might arise from application behavior (for example, the file descrip-
tor is closed before the operation is initiated, and aio_error() returns [EBADF]).

The limitation on the set of error codes returned when operations from the list shall have been initiated en-
ables applications to know when operations have been started and whether aio_error() is valid for a specific
operation.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read(), aio_write(), aio_error(), aio_return(), aio_cancel(), close(), exec , exit(), fork(), lseek(),
read()

The Base Definitions volume of POSIX.1-2017, <aio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

LISTEN(3P) POSIX Programmer’s Manual LISTEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
listen — listen for socket connections and limit the queue of incoming connections

SYNOPSIS
#include <sys/socket.h>

int listen(int socket, int backlog);

DESCRIPTION
The listen() function shall mark a connection-mode socket, specified by the socket argument, as accepting
connections.

The backlog argument provides a hint to the implementation which the implementation shall use to limit
the number of outstanding connections in the socket’s listen queue. Implementations may impose a limit on
backlog and silently reduce the specified value. Normally, a larger backlog argument value shall result in a
larger or equal length of the listen queue. Implementations shall support values of backlog up to SOMAX-
CONN, defined in <sys/socket.h>.

The implementation may include incomplete connections in its listen queue. The limits on the number of
incomplete connections and completed connections queued may be different.

The implementation may have an upper limit on the length of the listen queue—either global or per accept-
ing socket. If backlog exceeds this limit, the length of the listen queue is set to the limit.

If listen() is called with a backlog argument value that is less than 0, the function behaves as if it had been
called with a backlog argument value of 0.

A backlog argument of 0 may allow the socket to accept connections, in which case the length of the listen
queue may be set to an implementation-defined minimum value.

The socket in use may require the process to have appropriate privileges to use the listen() function.

RETURN VALUE
Upon successful completions, listen() shall return 0; otherwise, −1 shall be returned and errno set to indi-
cate the error.

ERRORS
The listen() function shall fail if:

EBADF
The socket argument is not a valid file descriptor.

EDESTADDRREQ
The socket is not bound to a local address, and the protocol does not support listening on an un-
bound socket.

EINVAL
The socket is already connected.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The socket protocol does not support listen().

The listen() function may fail if:

EACCES
The calling process does not have appropriate privileges.

IEEE/The Open Group 2017 1

LISTEN(3P) POSIX Programmer’s Manual LISTEN(3P)

EINVAL
The socket has been shut down.

ENOBUFS
Insufficient resources are available in the system to complete the call.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), connect(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LLABS(3P) POSIX Programmer’s Manual LLABS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
llabs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long long llabs(long long i);

DESCRIPTION
Refer to labs().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

LLDIV(3P) POSIX Programmer’s Manual LLDIV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

lldiv_t lldiv(long long numer, long long denom);

DESCRIPTION
Refer to ldiv().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

LLRINT(3P) POSIX Programmer’s Manual LLRINT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
llrint, llrintf, llrintl — round to the nearest integer value using current rounding direction

SYNOPSIS
#include <math.h>

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding according to the current
rounding direction.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

If x is NaN, a domain error shall occur, and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, an unspecified value shall be re-
turned. On systems that support the IEC 60559 Floating-Point option, a domain error shall occur; other-
wise, a domain error may occur.

If the correct value is negative and too large to represent as a long long, an unspecified value shall be re-
turned. On systems that support the IEC 60559 Floating-Point option, a domain error shall occur; other-
wise, a domain error may occur.

ERRORS
These functions shall fail if:

Domain Error
The x argument is NaN or ±Inf, or the correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Domain Error
The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

LLRINT(3P) POSIX Programmer’s Manual LLRINT(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions provide floating-to-integer conversions. They round according to the current rounding di-
rection. If the rounded value is outside the range of the return type, the numeric result is unspecified and the
invalid floating-point exception is raised. When they raise no other floating-point exception and the result
differs from the argument, they raise the inexact floating-point exception.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), lrint()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LLROUND(3P) POSIX Programmer’s Manual LLROUND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
llround, llroundf, llroundl — round to nearest integer value

SYNOPSIS
#include <math.h>

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding halfway cases away from
zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

If x is NaN, a domain error shall occur, and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, an unspecified value shall be re-
turned. On systems that support the IEC 60559 Floating-Point option, a domain error shall occur; other-
wise, a domain error may occur.

If the correct value is negative and too large to represent as a long long, an unspecified value shall be re-
turned. On systems that support the IEC 60559 Floating-Point option, a domain error shall occur; other-
wise, a domain error may occur.

ERRORS
These functions shall fail if:

Domain Error
The x argument is NaN or ±Inf, or the correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Domain Error
The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

LLROUND(3P) POSIX Programmer’s Manual LLROUND(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions differ from the llrint() functions in that the default rounding direction for the llround()
functions round halfway cases away from zero and need not raise the inexact floating-point exception for
non-integer arguments that round to within the range of the return type.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), lround()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LOCALECONV(3P) POSIX Programmer’s Manual LOCALECONV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
localeconv — return locale-specific information

SYNOPSIS
#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The localeconv() function shall set the components of an object with the type struct lconv with the values
appropriate for the formatting of numeric quantities (monetary and otherwise) according to the rules of the
current locale.

The members of the structure with type char * are pointers to strings, any of which (except decimal_point)
can point to "", to indicate that the value is not available in the current locale or is of zero length. The
members with type char are non-negative numbers, any of which can be {CHAR_MAX} to indicate that
the value is not available in the current locale.

The members include the following:

char *decimal_point
The radix character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point character in formatted non-
monetary quantities.

char *grouping
A string whose elements taken as one-byte integer values indicate the size of each group of digits in
formatted non-monetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first three characters con-
tain the alphabetic international currency symbol in accordance with those specified in the
ISO 4217: 2001 standard. The fourth character (immediately preceding the null byte) is the charac-
ter used to separate the international currency symbol from the monetary quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The radix character used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted monetary quantities.

char *mon_grouping
A string whose elements taken as one-byte integer values indicate the size of each group of digits in
formatted monetary quantities.

char *positive_sign
The string used to indicate a non-negative valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative valued formatted monetary quantity.

IEEE/The Open Group 2017 1

LOCALECONV(3P) POSIX Programmer’s Manual LOCALECONV(3P)

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in an internationally
formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a formatted mone-
tary quantity.

char p_cs_precedes
Set to 1 if the currency_symbol precedes the value for a non-negative formatted monetary quantity.
Set to 0 if the symbol succeeds the value.

char p_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and the value for a
non-negative formatted monetary quantity.

char n_cs_precedes
Set to 1 if the currency_symbol precedes the value for a negative formatted monetary quantity. Set
to 0 if the symbol succeeds the value.

char n_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and the value for a
negative formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative formatted monetary
quantity.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative formatted monetary
quantity.

char int_p_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a non-negative
internationally formatted monetary quantity.

char int_n_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a negative in-
ternationally formatted monetary quantity.

char int_p_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and the value for a
non-negative internationally formatted monetary quantity.

char int_n_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and the value for a
negative internationally formatted monetary quantity.

char int_p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative internationally for-
matted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative internationally format-
ted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

{CHAR_MAX}
No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The next element
is examined to determine the size of the next group of digits before the current group.

IEEE/The Open Group 2017 2

LOCALECONV(3P) POSIX Programmer’s Manual LOCALECONV(3P)

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and int_n_sep_by_space are in-
terpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value; other-
wise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a space sepa-
rates the sign string from the value.

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is used in-
stead of a space.

The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are interpreted accord-
ing to the following:

0 Parentheses surround the quantity and currency_symbol or int_curr_symbol.

1 The sign string precedes the quantity and currency_symbol or int_curr_symbol.

2 The sign string succeeds the quantity and currency_symbol or int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or int_curr_symbol.

The implementation shall behave as if no function in this volume of POSIX.1-2017 calls localeconv().

The localeconv() function need not be thread-safe.

RETURN VALUE
The localeconv() function shall return a pointer to the filled-in object. The application shall not modify the
structure to which the return value points, nor any storage areas pointed to by pointers within the structure.
The returned pointer, and pointers within the structure, might be invalidated or the structure or the storage
areas might be overwritten by a subsequent call to localeconv(). In addition, the returned pointer, and
pointers within the structure, might be invalidated or the structure or the storage areas might be overwritten
by subsequent calls to setlocale() with the categories LC_ALL, LC_MONETARY, or LC_NUMERIC, or
by calls to uselocale() which change the categories LC_MONETARY or LC_NUMERIC. The returned
pointer, pointers within the structure, the structure, and the storage areas might also be invalidated if the
calling thread is terminated.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The following table illustrates the rules which may be used by four countries to format monetary quantities.

center box tab(!); cB | cB | cB | cB l | l | l | l. Country!Positive Format!Negative Format!International For-
mat _ Italy!€.1.230!−€.1.230!EUR.1.230 Netherlands!€ 1.234,56!€ −1.234,56!EUR 1.234,56 Nor-
way!kr1.234,56!kr1.234,56−!NOK 1.234,56 Switzerland!SFrs.1,234.56!SFrs.1,234.56C!CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure returned by lo-

caleconv() are:

center box tab(!); cB | cB | cB | cB | cB lb | cf5 | cf5 | cf5 | cf5. !Italy!Netherlands!Norway!Switzerland _
int_curr_symbol!"EUR."!"EUR "!"NOK "!"CHF " currency_symbol!"€."!"€"!"kr"!"SFrs." mon_deci-
mal_point!""!","!","!"." mon_thousands_sep!"."!"."!"."!"," mon_grouping!"\3"!"\3"!"\3"!"\3" posi-
tive_sign!""!""!""!"" negative_sign!"-"!"-"!"-"!"C" int_frac_digits!0!2!2!2 frac_digits!0!2!2!2 p_cs_pre-
cedes!1!1!1!1 p_sep_by_space!0!1!0!0 n_cs_precedes!1!1!1!1 n_sep_by_space!0!1!0!0
p_sign_posn!1!1!1!1 n_sign_posn!1!4!2!2 int_p_cs_precedes!1!1!1!1 int_n_cs_precedes!1!1!1!1

IEEE/The Open Group 2017 3

LOCALECONV(3P) POSIX Programmer’s Manual LOCALECONV(3P)

int_p_sep_by_space!0!0!0!0 int_n_sep_by_space!0!0!0!0 int_p_sign_posn!1!1!1!1
int_n_sign_posn!1!4!4!2

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), fscanf(), isalpha(), isascii(), nl_langinfo(), setlocale(), strcat(), strchr(), strcmp(), strcoll(),
strcpy(), strftime(), strlen(), strpbrk(), strspn(), strtok(), strxfrm(), strtod(), uselocale()

The Base Definitions volume of POSIX.1-2017, <langinfo.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

LOCALTIME(3P) POSIX Programmer’s Manual LOCALTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
localtime, localtime_r — convert a time value to a broken-down local time

SYNOPSIS
#include <time.h>

struct tm *localtime(const time_t *timer);
struct tm *localtime_r(const time_t *restrict timer,

struct tm *restrict result);

DESCRIPTION
For localtime(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The localtime() function shall convert the time in seconds since the Epoch pointed to by timer into a bro-
ken-down time, expressed as a local time. The function corrects for the timezone and any seasonal time ad-
justments. Local timezone information is used as though localtime() calls tzset().

The relationship between a time in seconds since the Epoch used as an argument to localtime() and the tm
structure (defined in the <time.h> header) is that the result shall be as specified in the expression given in
the definition of seconds since the Epoch (see the Base Definitions volume of POSIX.1-2017, Section 4.16,
Seconds Since the Epoch) corrected for timezone and any seasonal time adjustments, where the names in
the structure and in the expression correspond.

The same relationship shall apply for localtime_r().

The localtime() function need not be thread-safe.

The asctime(), ctime(), gmtime(), and localtime() functions shall return values in one of two static objects: a
broken-down time structure and an array of type char. Execution of any of the functions may overwrite the
information returned in either of these objects by any of the other functions.

The localtime_r() function shall convert the time in seconds since the Epoch pointed to by timer into a bro-
ken-down time stored in the structure to which result points. The localtime_r() function shall also return a
pointer to that same structure.

Unlike localtime(), the localtime_r() function is not required to set tzname. If localtime_r() sets tzname, it
shall also set daylight and timezone. If localtime_r() does not set tzname, it shall not set daylight and shall
not set timezone.

RETURN VALUE
Upon successful completion, the localtime() function shall return a pointer to the broken-down time struc-
ture. If an error is detected, localtime() shall return a null pointer and set errno to indicate the error.

Upon successful completion, localtime_r() shall return a pointer to the structure pointed to by the argument
result. If an error is detected, localtime_r() shall return a null pointer and set errno to indicate the error.

ERRORS
The localtime() and localtime_r() functions shall fail if:

EOVERFLOW
The result cannot be represented.

The following sections are informative.

EXAMPLES
Getting the Local Date and Time

The following example uses the time() function to calculate the time elapsed, in seconds, since January 1,
1970 0:00 UTC (the Epoch), localtime() to convert that value to a broken-down time, and asctime() to

IEEE/The Open Group 2017 1

LOCALTIME(3P) POSIX Programmer’s Manual LOCALTIME(3P)

convert the broken-down time values into a printable string.

#include <stdio.h>
#include <time.h>

int main(void)
{

time_t result;

result = time(NULL);
printf("%s%ju secs since the Epoch\n",

asctime(localtime(&result)),
(uintmax_t)result);

return(0);
}

This example writes the current time to stdout in a form like this:

Wed Jun 26 10:32:15 1996
835810335 secs since the Epoch

Getting the Modification Time for a File
The following example prints the last data modification timestamp in the local timezone for a given file.

#include <stdio.h>
#include <time.h>
#include <sys/stat.h>

int
print_file_time(const char *pathname)
{

struct stat statbuf;
struct tm *tm;
char timestr[BUFSIZ];

if(stat(pathname, &statbuf) = = -1)
return -1;

if((tm = localtime(&statbuf.st_mtime)) = = NULL)
return -1;

if(strftime(timestr, sizeof(timestr), "%Y-%m-%d %H:%M:%S", tm) = = 0)
return -1;

printf("%s: %s.%09ld\n", pathname, timestr, statbuf.st_mtim.tv_nsec);
return 0;

}

Timing an Event
The following example gets the current time, converts it to a string using localtime() and asctime(), and
prints it to standard output using fputs(). It then prints the number of minutes to an event being timed.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...

IEEE/The Open Group 2017 2

LOCALTIME(3P) POSIX Programmer’s Manual LOCALTIME(3P)

time(&now);
printf("The time is ");
fputs(asctime(localtime(&now)), stdout);
printf("There are still %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The localtime_r() function is thread-safe and returns values in a user-supplied buffer instead of possibly us-
ing a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), getdate(), gmtime(), mktime(), strftime(), strptime(), time(),
tzset(), utime()

The Base Definitions volume of POSIX.1-2017, Section 4.16, Seconds Since the Epoch, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

LOCKF(3P) POSIX Programmer’s Manual LOCKF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lockf — record locking on files

SYNOPSIS
#include <unistd.h>

int lockf(int fildes, int function, off_t size);

DESCRIPTION
The lockf() function shall lock sections of a file with advisory-mode locks. Calls to lockf() from threads in
other processes which attempt to lock the locked file section shall either return an error value or block until
the section becomes unlocked. All the locks for a process are removed when the process terminates. Record
locking with lockf() shall be supported for regular files and may be supported for other files.

The fildes argument is an open file descriptor. To establish a lock with this function, the file descriptor shall
be opened with write-only permission (O_WRONLY) or with read/write permission (O_RDWR).

The function argument is a control value which specifies the action to be taken. The permissible values for
function are defined in <unistd.h> as follows:

box tab(!) center; cB | cB l | l. Function!Description _ F_ULOCK!Unlock locked sections. F_LOCK!Lock
a section for exclusive use. F_TLOCK!Test and lock a section for exclusive use. F_TEST!Test a section
for locks by other processes.

F_TEST shall detect if a lock by another process is present on the specified section.

F_LOCK and F_TLOCK shall both lock a section of a file if the section is available.

F_ULOCK shall remove locks from a section of the file.

The size argument is the number of contiguous bytes to be locked or unlocked. The section to be locked or
unlocked starts at the current offset in the file and extends forward for a positive size or backward for a neg-
ative size (the preceding bytes up to but not including the current offset). If size is 0, the section from the
current offset through the largest possible file offset shall be locked (that is, from the current offset through
the present or any future end-of-file). An area need not be allocated to the file to be locked because locks
may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained by a pre-
viously locked section for the same process. When this occurs, or if adjacent locked sections would occur,
the sections shall be combined into a single locked section. If the request would cause the number of locks
to exceed a system-imposed limit, the request shall fail.

F_LOCK and F_TLOCK requests differ only by the action taken if the section is not available. F_LOCK
shall block the calling thread until the section is available. F_TLOCK shall cause the function to fail if the
section is already locked by another process.

File locks shall be released on first close by the locking process of any file descriptor for the file.

F_ULOCK requests may release (wholly or in part) one or more locked sections controlled by the process.
Locked sections shall be unlocked starting at the current file offset through size bytes or to the end-of-file if
size is (off_t)0. When all of a locked section is not released (that is, when the beginning or end of the area
to be unlocked falls within a locked section), the remaining portions of that section shall remain locked by
the process. Releasing the center portion of a locked section shall cause the remaining locked beginning
and end portions to become two separate locked sections. If the request would cause the number of locks in
the system to exceed a system-imposed limit, the request shall fail.

A potential for deadlock occurs if the threads of a process controlling a locked section are blocked by ac-
cessing a locked section of another process. If the system detects that deadlock would occur, lockf() shall
fail with an [EDEADLK] error.

IEEE/The Open Group 2017 1

LOCKF(3P) POSIX Programmer’s Manual LOCKF(3P)

The interaction between fcntl() and lockf() locks is unspecified.

Blocking on a section shall be interrupted by any signal.

An F_ULOCK request in which size is non-zero and the offset of the last byte of the requested section is
the maximum value for an object of type off_t, when the process has an existing lock in which size is 0 and
which includes the last byte of the requested section, shall be treated as a request to unlock from the start of
the requested section with a size equal to 0. Otherwise, an F_ULOCK request shall attempt to unlock only
the requested section.

Attempting to lock a section of a file that is associated with a buffered stream produces unspecified results.

RETURN VALUE
Upon successful completion, lockf() shall return 0. Otherwise, it shall return −1, set errno to indicate an er-
ror, and existing locks shall not be changed.

ERRORS
The lockf() function shall fail if:

EBADF
The fildes argument is not a valid open file descriptor; or function is F_LOCK or F_TLOCK and
fildes is not a valid file descriptor open for writing.

EACCES or EAGAIN
The function argument is F_TLOCK or F_TEST and the section is already locked by another
process.

EDEADLK
The function argument is F_LOCK and a deadlock is detected.

EINTR
A signal was caught during execution of the function.

EINVAL
The function argument is not one of F_LOCK, F_TLOCK, F_TEST, or F_ULOCK; or size plus
the current file offset is less than 0.

EOVERFLOW
The offset of the first, or if size is not 0 then the last, byte in the requested section cannot be repre-
sented correctly in an object of type off_t.

The lockf() function may fail if:

EAGAIN
The function argument is F_LOCK or F_TLOCK and the file is mapped with mmap().

EDEADLK or ENOLCK
The function argument is F_LOCK, F_TLOCK, or F_ULOCK, and the request would cause the
number of locks to exceed a system-imposed limit.

EOPNOTSUPP or EINVAL
The implementation does not support the locking of files of the type indicated by the fildes argu-
ment.

The following sections are informative.

EXAMPLES
Locking a Portion of a File

In the following example, a file named /home/cnd/mod1 is being modified. Other processes that use lock-
ing are prevented from changing it during this process. Only the first 10 000 bytes are locked, and the lock
call fails if another process has any part of this area locked already.

#include <fcntl.h>
#include <unistd.h>

IEEE/The Open Group 2017 2

LOCKF(3P) POSIX Programmer’s Manual LOCKF(3P)

int fildes;
int status;
...
fildes = open("/home/cnd/mod1", O_RDWR);
status = lockf(fildes, F_TLOCK, (off_t)10000);

APPLICATION USAGE
Record-locking should not be used in combination with the fopen(), fread(), fwrite(), and other stdio func-
tions. Instead, the more primitive, non-buffered functions (such as open()) should be used. Unexpected re-
sults may occur in processes that do buffering in the user address space. The process may later read/write
data which is/was locked. The stdio functions are the most common source of unexpected buffering.

The alarm() function may be used to provide a timeout facility in applications requiring it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), chmod(), close(), creat(), fcntl(), fopen(), mmap(), open(), read(), write()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

LOG(3P) POSIX Programmer’s Manual LOG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
log, logf, logl — natural logarithm function

SYNOPSIS
#include <math.h>

double log(double x);
float logf(float x);
long double logl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the natural logarithm of their argument x, log
e
(x).

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the natural logarithm of x.

If x is ±0, a pole error shall occur and log(), logf(), and logl() shall return −HUGE_VAL, −HUGE_VALF,
and −HUGE_VALL, respectively.

For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, x shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The finite value of x is negative, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

IEEE/The Open Group 2017 1

LOG(3P) POSIX Programmer’s Manual LOG(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan(), log10(), log1p()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LOG10(3P) POSIX Programmer’s Manual LOG10(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
log10, log10f, log10l — base 10 logarithm function

SYNOPSIS
#include <math.h>

double log10(double x);
float log10f(float x);
long double log10l(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the base 10 logarithm of their argument x, log
10

(x).

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the base 10 logarithm of x.

If x is ±0, a pole error shall occur and log10(), log10f(), and log10l() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The finite value of x is negative, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

IEEE/The Open Group 2017 1

LOG10(3P) POSIX Programmer’s Manual LOG10(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), log(), pow()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LOG1P(3P) POSIX Programmer’s Manual LOG1P(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
log1p, log1pf, log1pl — compute a natural logarithm

SYNOPSIS
#include <math.h>

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute log
e
(1.0 + x).

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the natural logarithm of 1.0 + x.

If x is −1, a pole error shall occur and log1p(), log1pf(), and log1pl() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

For finite values of x that are less than −1, or if x is −Inf, a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

If x is NaN, a NaN shall be returned.

If x is ±0, or +Inf, x shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, log1p(), log1pf(), and log1pl() shall return an implementation-defined value no greater
in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

Domain Error
The finite value of x is less than −1, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The value of x is −1.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

These functions may fail if:

Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

IEEE/The Open Group 2017 1

LOG1P(3P) POSIX Programmer’s Manual LOG1P(3P)

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), log()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LOG2(3P) POSIX Programmer’s Manual LOG2(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
log2, log2f, log2l — compute base 2 logarithm functions

SYNOPSIS
#include <math.h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the base 2 logarithm of their argument x, log
2
(x).

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the base 2 logarithm of x.

If x is ±0, a pole error shall occur and log2(), log2f(), and log2l() shall return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

For finite values of x that are less than 0, or if x is −Inf, a domain error shall occur, and either a NaN (if
supported), or an implementation-defined value shall be returned.

If x is NaN, a NaN shall be returned.

If x is 1, +0 shall be returned.

If x is +Inf, x shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The finite value of x is less than zero, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

IEEE/The Open Group 2017 1

LOG2(3P) POSIX Programmer’s Manual LOG2(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), log()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LOGB(3P) POSIX Programmer’s Manual LOGB(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
logb, logbf, logbl — radix-independent exponent

SYNOPSIS
#include <math.h>

double logb(double x);
float logbf(float x);
long double logbl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the exponent of x, which is the integral part of log
r

| x |, as a signed floating-
point value, for non-zero x, where r is the radix of the machine’s floating-point arithmetic, which is the
value of FLT_RADIX defined in the <float.h> header.

If x is subnormal it is treated as though it were normalized; thus for finite positive x:

1 <= x * FLT_RADIX-logb(x) < FLT_RADIX

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the exponent of x.

If x is ±0, logb(), logbf(), and logbl() shall return −HUGE_VAL, −HUGE_VALF, and −HUGE_VALL, re-
spectively.

On systems that support the IEC 60559 Floating-Point option, a pole error shall occur;
otherwise, a pole error may occur.

If x is NaN, a NaN shall be returned.

If x is ±Inf, +Inf shall be returned.

ERRORS
These functions shall fail if:

Pole Error The value of x is ±0.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

These functions may fail if:

Pole Error The value of x is 0.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

LOGB(3P) POSIX Programmer’s Manual LOGB(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), ilogb(), scalbln()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <float.h>, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LOGF(3P) POSIX Programmer’s Manual LOGF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
logf, logl — natural logarithm function

SYNOPSIS
#include <math.h>

float logf(float x);
long double logl(long double x);

DESCRIPTION
Refer to log().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

LONGJMP(3P) POSIX Programmer’s Manual LONGJMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

void longjmp(jmp_buf env, int val);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The longjmp() function shall restore the environment saved by the most recent invocation of setjmp() in the
same process, with the corresponding jmp_buf argument. If the most recent invocation of setjmp() with the
corresponding jmp_buf occurred in another thread, or if there is no such invocation, or if the function con-
taining the invocation of setjmp() has terminated execution in the interim, or if the invocation of setjmp()
was within the scope of an identifier with variably modified type and execution has left that scope in the in-
terim, the behavior is undefined. It is unspecified whether longjmp() restores the signal mask, leaves the
signal mask unchanged, or restores it to its value at the time setjmp() was called.

All accessible objects have values, and all other components of the abstract machine have state (for exam-
ple, floating-point status flags and open files), as of the time longjmp() was called, except that the values of
objects of automatic storage duration are unspecified if they meet all the following conditions:

* They are local to the function containing the corresponding setjmp() invocation.

* They do not have volatile-qualified type.

* They are changed between the setjmp() invocation and longjmp() call.

Although longjmp() is an async-signal-safe function, if it is invoked from a signal handler which inter-
rupted a non-async-signal-safe function or equivalent (such as the processing equivalent to exit() performed
after a return from the initial call to main()), the behavior of any subsequent call to a non-async-signal-safe
function or equivalent is undefined.

The effect of a call to longjmp() where initialization of the jmp_buf structure was not performed in the
calling thread is undefined.

RETURN VALUE
After longjmp() is completed, program execution continues as if the corresponding invocation of setjmp()
had just returned the value specified by val. The longjmp() function shall not cause setjmp() to return 0; if
val is 0, setjmp() shall return 1.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications whose behavior depends on the value of the signal mask should not use longjmp() and
setjmp(), since their effect on the signal mask is unspecified, but should instead use the siglongjmp() and
sigsetjmp() functions (which can save and restore the signal mask under application control).

It is recommended that applications do not call longjmp() or siglongjmp() from signal handlers. To avoid
undefined behavior when calling these functions from a signal handler, the application needs to ensure one
of the following two things:

IEEE/The Open Group 2017 1

LONGJMP(3P) POSIX Programmer’s Manual LONGJMP(3P)

1. After the call to longjmp() or siglongjmp() the process only calls async-signal-safe functions and does
not return from the initial call to main().

2. Any signal whose handler calls longjmp() or siglongjmp() is blocked during every call to a non-async-
signal-safe function, and no such calls are made after returning from the initial call to main().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setjmp(), sigaction(), siglongjmp(), sigsetjmp()

The Base Definitions volume of POSIX.1-2017, <setjmp.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LRAND48(3P) POSIX Programmer’s Manual LRAND48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
#include <stdlib.h>

long lrand48(void);

DESCRIPTION
Refer to drand48().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

LRINT(3P) POSIX Programmer’s Manual LRINT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lrint, lrintf, lrintl — round to nearest integer value using current rounding direction

SYNOPSIS
#include <math.h>

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding according to the current
rounding direction.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

If x is NaN, a domain error shall occur and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, an unspecified value shall be returned.
On systems that support the IEC 60559 Floating-Point option, a domain error shall occur; otherwise, a do-
main error may occur.

If the correct value is negative and too large to represent as a long, an unspecified value shall be returned.
On systems that support the IEC 60559 Floating-Point option, a domain error shall occur; otherwise, a do-
main error may occur.

ERRORS
These functions shall fail if:

Domain Error
The x argument is NaN or ±Inf, or the correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Domain Error
The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

LRINT(3P) POSIX Programmer’s Manual LRINT(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions provide floating-to-integer conversions. They round according to the current rounding di-
rection. If the rounded value is outside the range of the return type, the numeric result is unspecified and the
invalid floating-point exception is raised. When they raise no other floating-point exception and the result
differs from the argument, they raise the inexact floating-point exception.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), llrint()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LROUND(3P) POSIX Programmer’s Manual LROUND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lround, lroundf, lroundl — round to nearest integer value

SYNOPSIS
#include <math.h>

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall round their argument to the nearest integer value, rounding halfway cases away from
zero, regardless of the current rounding direction.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value.

If x is NaN, a domain error shall occur and an unspecified value is returned.

If x is +Inf, a domain error shall occur and an unspecified value is returned.

If x is −Inf, a domain error shall occur and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, an unspecified value shall be returned.
On systems that support the IEC 60559 Floating-Point option, a domain shall occur; otherwise, a domain
error may occur.

If the correct value is negative and too large to represent as a long, an unspecified value shall be returned.
On systems that support the IEC 60559 Floating-Point option, a domain shall occur; otherwise, a domain
error may occur.

ERRORS
These functions shall fail if:

Domain Error
The x argument is NaN or ±Inf, or the correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Domain Error
The correct value is not representable as an integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

LROUND(3P) POSIX Programmer’s Manual LROUND(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions differ from the lrint() functions in the default rounding direction, with the lround() func-
tions rounding halfway cases away from zero and needing not to raise the inexact floating-point exception
for non-integer arguments that round to within the range of the return type.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), llround()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LSEARCH(3P) POSIX Programmer’s Manual LSEARCH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lsearch, lfind — linear search and update

SYNOPSIS
#include <search.h>

void *lsearch(const void *key, void *base, size_t *nelp, size_t width,
int (*compar)(const void *, const void *));

void *lfind(const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

DESCRIPTION
The lsearch() function shall linearly search the table and return a pointer into the table for the matching en-
try. If the entry does not occur, it shall be added at the end of the table. The key argument points to the entry
to be sought in the table. The base argument points to the first element in the table. The width argument is
the size of an element in bytes. The nelp argument points to an integer containing the current number of el-
ements in the table. The integer to which nelp points shall be incremented if the entry is added to the table.
The compar argument points to a comparison function which the application shall supply (for example, str-

cmp()). It is called with two arguments that point to the elements being compared. The application shall en-
sure that the function returns 0 if the elements are equal, and non-zero otherwise.

The lfind() function shall be equivalent to lsearch(), except that if the entry is not found, it is not added to
the table. Instead, a null pointer is returned.

RETURN VALUE
If the searched for entry is found, both lsearch() and lfind() shall return a pointer to it. Otherwise, lfind()
shall return a null pointer and lsearch() shall return a pointer to the newly added element.

Both functions shall return a null pointer in case of error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Storing Strings in a Table

This fragment reads in less than or equal to TABSIZE strings of length less than or equal to ELSIZE and
stores them in a table, eliminating duplicates.

#include <stdio.h>
#include <string.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
...
while (fgets(line, ELSIZE, stdin) != NULL && nel < TABSIZE)

(void) lsearch(line, tab, &nel,
ELSIZE, (int (*)(const void *, const void *)) strcmp);

...

IEEE/The Open Group 2017 1

LSEARCH(3P) POSIX Programmer’s Manual LSEARCH(3P)

Finding a Matching Entry
The following example finds any line that reads "Thisisatest.".

#include <search.h>
#include <string.h>
...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
char *findline;
void *entry;

findline = "This is a test.\n";

entry = lfind(findline, tab, &nel, ELSIZE, (
int (*)(const void *, const void *)) strcmp);

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in the elements
in addition to the values being compared.

Undefined results can occur if there is not enough room in the table to add a new item.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), tdelete()

The Base Definitions volume of POSIX.1-2017, <search.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LSEEK(3P) POSIX Programmer’s Manual LSEEK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lseek — move the read/write file offset

SYNOPSIS
#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

DESCRIPTION
The lseek() function shall set the file offset for the open file description associated with the file descriptor
fildes, as follows:

* If whence is SEEK_SET, the file offset shall be set to offset bytes.

* If whence is SEEK_CUR, the file offset shall be set to its current location plus offset.

* If whence is SEEK_END, the file offset shall be set to the size of the file plus offset.

The symbolic constants SEEK_SET, SEEK_CUR, and SEEK_END are defined in <unistd.h>.

The behavior of lseek() on devices which are incapable of seeking is implementation-defined. The value of
the file offset associated with such a device is undefined.

The lseek() function shall allow the file offset to be set beyond the end of the existing data in the file. If data
is later written at this point, subsequent reads of data in the gap shall return bytes with the value 0 until data
is actually written into the gap.

The lseek() function shall not, by itself, extend the size of a file.

If fildes refers to a shared memory object, the result of the lseek() function is unspecified.

If fildes refers to a typed memory object, the result of the lseek() function is unspecified.

RETURN VALUE
Upon successful completion, the resulting offset, as measured in bytes from the beginning of the file, shall
be returned. Otherwise, −1 shall be returned, errno shall be set to indicate the error, and the file offset shall
remain unchanged.

ERRORS
The lseek() function shall fail if:

EBADF
The fildes argument is not an open file descriptor.

EINVAL
The whence argument is not a proper value, or the resulting file offset would be negative for a reg-
ular file, block special file, or directory.

EOVERFLOW
The resulting file offset would be a value which cannot be represented correctly in an object of
type off_t.

ESPIPE
The fildes argument is associated with a pipe, FIFO, or socket.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

IEEE/The Open Group 2017 1

LSEEK(3P) POSIX Programmer’s Manual LSEEK(3P)

RATIONALE
The ISO C standard includes the functions fgetpos() and fsetpos(), which work on very large files by use of
a special positioning type.

Although lseek() may position the file offset beyond the end of the file, this function does not itself extend
the size of the file. While the only function in POSIX.1-2008 that may directly extend the size of the file is
write(), truncate(), and ftruncate(), several functions originally derived from the ISO C standard, such as
fwrite(), fprintf(), and so on, may do so (by causing calls on write()).

An invalid file offset that would cause [EINVAL] to be returned may be both implementation-defined and
device-dependent (for example, memory may have few inv alid values). A negative file offset may be valid
for some devices in some implementations.

The POSIX.1-1990 standard did not specifically prohibit lseek() from returning a negative offset. Therefore,
an application was required to clear errno prior to the call and check errno upon return to determine
whether a return value of (off_t)−1 is a negative offset or an indication of an error condition. The standard
developers did not wish to require this action on the part of a conforming application, and chose to require
that errno be set to [EINVAL] when the resulting file offset would be negative for a regular file, block spe-
cial file, or directory.

FUTURE DIRECTIONS
None.

SEE ALSO
open()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

LSTAT(3P) POSIX Programmer’s Manual LSTAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
lstat — get file status

SYNOPSIS
#include <sys/stat.h>

int lstat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
Refer to fstatat().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MALLOC(3P) POSIX Programmer’s Manual MALLOC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
malloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The malloc() function shall allocate unused space for an object whose size in bytes is specified by size and
whose value is unspecified.

The order and contiguity of storage allocated by successive calls to malloc() is unspecified. The pointer re-
turned if the allocation succeeds shall be suitably aligned so that it may be assigned to a pointer to any type
of object and then used to access such an object in the space allocated (until the space is explicitly freed or
reallocated). Each such allocation shall yield a pointer to an object disjoint from any other object. The
pointer returned points to the start (lowest byte address) of the allocated space. If the space cannot be allo-
cated, a null pointer shall be returned. If the size of the space requested is 0, the behavior is implementa-
tion-defined: either a null pointer shall be returned, or the behavior shall be as if the size were some non-
zero value, except that the behavior is undefined if the returned pointer is used to access an object.

RETURN VALUE
Upon successful completion with size not equal to 0, malloc() shall return a pointer to the allocated space.
If size is 0, either:

* A null pointer shall be returned and errno may be set to an implementation-defined value, or

* A pointer to the allocated space shall be returned. The application shall ensure that the pointer is not
used to access an object.

Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The malloc() function shall fail if:

ENOMEM
Insufficient storage space is available.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc(), free(), getrlimit(), posix_memalign(), realloc()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

IEEE/The Open Group 2017 1

MALLOC(3P) POSIX Programmer’s Manual MALLOC(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MBLEN(3P) POSIX Programmer’s Manual MBLEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mblen — get number of bytes in a character

SYNOPSIS
#include <stdlib.h>

int mblen(const char *s, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If s is not a null pointer, mblen() shall determine the number of bytes constituting the character pointed to
by s. Except that the shift state of mbtowc() is not affected, it shall be equivalent to:

mbtowc((wchar_t *)0, s, n);

The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls mblen().

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a state-de-
pendent encoding, this function shall be placed into its initial state by a call for which its character pointer
argument, s, is a null pointer. Subsequent calls with s as other than a null pointer shall cause the internal
state of the function to be altered as necessary. A call with s as a null pointer shall cause this function to re-
turn a non-zero value if encodings have state dependency, and 0 otherwise. If the implementation employs
special bytes to change the shift state, these bytes shall not produce separate wide-character codes, but shall
be grouped with an adjacent character. Changing the LC_CTYPE category causes the shift state of this
function to be unspecified.

The mblen() function need not be thread-safe.

RETURN VALUE
If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings, respectively, do or
do not have state-dependent encodings. If s is not a null pointer, mblen() shall either return 0 (if s points to
the null byte), or return the number of bytes that constitute the character (if the next n or fewer bytes form a
valid character), or return −1 (if they do not form a valid character) and may set errno to indicate the error.
In no case shall the value returned be greater than n or the value of the {MB_CUR_MAX} macro.

ERRORS
The mblen() function may fail if:

EILSEQ
An invalid character sequence is detected. In the POSIX locale an [EILSEQ] error cannot occur
since all byte values are valid characters.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 1

MBLEN(3P) POSIX Programmer’s Manual MBLEN(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
mbtowc(), mbstowcs(), wctomb(), wcstombs()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MBRLEN(3P) POSIX Programmer’s Manual MBRLEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mbrlen — get number of bytes in a character (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrlen(const char *restrict s, size_t n,
mbstate_t *restrict ps);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If s is not a null pointer, mbrlen() shall determine the number of bytes constituting the character pointed to
by s. It shall be equivalent to:

mbstate_t internal;
mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen() function shall use its own internal mbstate_t object, which is initialized
at program start-up to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps shall be
used to completely describe the current conversion state of the associated character sequence. The imple-
mentation shall behave as if no function defined in this volume of POSIX.1-2017 calls mbrlen().

The behavior of this function is affected by the LC_CTYPE category of the current locale.

The mbrlen() function need not be thread-safe if called with a NULL ps argument.

The mbrlen() function shall not change the setting of errno if successful.

RETURN VALUE
The mbrlen() function shall return the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null wide charac-
ter.

positive If the next n or fewer bytes complete a valid character; the value returned shall be the num-
ber of bytes that complete the character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character, and all n bytes
have been processed. When n has at least the value of the {MB_CUR_MAX} macro, this
case can only occur if s points at a sequence of redundant shift sequences (for implementa-
tions with state-dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not contribute to a
complete and valid character. In this case, [EILSEQ] shall be stored in errno and the con-
version state is undefined.

ERRORS
The mbrlen() function shall fail if:

EILSEQ
An invalid character sequence is detected. In the POSIX locale an [EILSEQ] error cannot occur
since all byte values are valid characters.

The mbrlen() function may fail if:

IEEE/The Open Group 2017 1

MBRLEN(3P) POSIX Programmer’s Manual MBRLEN(3P)

EINVAL
ps points to an object that contains an invalid conversion state.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbrtowc()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MBRTOWC(3P) POSIX Programmer’s Manual MBRTOWC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mbrtowc — convert a character to a wide-character code (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrtowc(wchar_t *restrict pwc, const char *restrict s,
size_t n, mbstate_t *restrict ps);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If s is a null pointer, the mbrtowc() function shall be equivalent to the call:

mbrtowc(NULL, "", 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc() function shall inspect at most n bytes beginning at the byte pointed
to by s to determine the number of bytes needed to complete the next character (including any shift se-
quences). If the function determines that the next character is completed, it shall determine the value of the
corresponding wide character and then, if pwc is not a null pointer, shall store that value in the object
pointed to by pwc. If the corresponding wide character is the null wide character, the resulting state de-
scribed shall be the initial conversion state.

If ps is a null pointer, the mbrtowc() function shall use its own internal mbstate_t object, which shall be
initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object pointed to by
ps shall be used to completely describe the current conversion state of the associated character sequence.
The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls mbr-

towc().

The behavior of this function is affected by the LC_CTYPE category of the current locale.

The mbrtowc() function need not be thread-safe if called with a NULL ps argument.

The mbrtowc() function shall not change the setting of errno if successful.

RETURN VALUE
The mbrtowc() function shall return the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null wide charac-
ter (which is the value stored).

between 1 and n inclusive
If the next n or fewer bytes complete a valid character (which is the value stored); the value
returned shall be the number of bytes that complete the character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character, and all n bytes
have been processed (no value is stored). When n has at least the value of the
{MB_CUR_MAX} macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not contribute to a
complete and valid character (no value is stored). In this case, [EILSEQ] shall be stored in
errno and the conversion state is undefined.

IEEE/The Open Group 2017 1

MBRTOWC(3P) POSIX Programmer’s Manual MBRTOWC(3P)

ERRORS
The mbrtowc() function shall fail if:

EILSEQ
An invalid character sequence is detected. In the POSIX locale an [EILSEQ] error cannot occur
since all byte values are valid characters.

The mbrtowc() function may fail if:

EINVAL
ps points to an object that contains an invalid conversion state.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbsrtowcs()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MBSINIT(3P) POSIX Programmer’s Manual MBSINIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mbsinit — determine conversion object status

SYNOPSIS
#include <wchar.h>

int mbsinit(const mbstate_t *ps);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If ps is not a null pointer, the mbsinit() function shall determine whether the object pointed to by ps de-
scribes an initial conversion state.

RETURN VALUE
The mbsinit() function shall return non-zero if ps is a null pointer, or if the pointed-to object describes an
initial conversion state; otherwise, it shall return zero.

If an mbstate_t object is altered by any of the functions described as ‘‘restartable’’, and is then used with a
different character sequence, or in the other conversion direction, or with a different LC_CTYPE category
setting than on earlier function calls, the behavior is undefined.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The mbstate_t object is used to describe the current conversion state from a particular character sequence
to a wide-character sequence (or vice versa) under the rules of a particular setting of the LC_CTYPE cate-
gory of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of a new char-
acter sequence in the initial shift state. A zero valued mbstate_t object is at least one way to describe an
initial conversion state. A zero valued mbstate_t object can be used to initiate conversion involving any
character sequence, in any LC_CTYPE category setting.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbrlen(), mbrtowc(), mbsrtowcs(), wcrtomb(), wcsrtombs()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

MBSINIT(3P) POSIX Programmer’s Manual MBSINIT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MBSRTOWCS(3P) POSIX Programmer’s Manual MBSRTOWCS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mbsnrtowcs, mbsrtowcs — convert a character string to a wide-character string (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbsnrtowcs(wchar_t *restrict dst, const char **restrict src,
size_t nmc, size_t len, mbstate_t *restrict ps);

size_t mbsrtowcs(wchar_t *restrict dst, const char **restrict src,
size_t len, mbstate_t *restrict ps);

DESCRIPTION
For mbsrtowcs(): The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is unintentional. This volume
of POSIX.1-2017 defers to the ISO C standard.

The mbsrtowcs() function shall convert a sequence of characters, beginning in the conversion state de-
scribed by the object pointed to by ps, from the array indirectly pointed to by src into a sequence of corre-
sponding wide characters. If dst is not a null pointer, the converted characters shall be stored into the array
pointed to by dst. Conversion continues up to and including a terminating null character, which shall also
be stored. Conversion shall stop early in either of the following cases:

* A sequence of bytes is encountered that does not form a valid character.

* len codes have been stored into the array pointed to by dst (and dst is not a null pointer).

Each conversion shall take place as if by a call to the mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null pointer (if con-
version stopped due to reaching a terminating null character) or the address just past the last character con-
verted (if any). If conversion stopped due to reaching a terminating null character, and if dst is not a null
pointer, the resulting state described shall be the initial conversion state.

If ps is a null pointer, the mbsrtowcs() function shall use its own internal mbstate_t object, which is initial-
ized at program start-up to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps

shall be used to completely describe the current conversion state of the associated character sequence.

The mbsnrtowcs() function shall be equivalent to the mbsrtowcs() function, except that the conversion of
characters indirectly pointed to by src is limited to at most nmc bytes (the size of the input buffer), and un-
der conditions where mbsrtowcs() would assign the address just past the last character converted (if any) to
the pointer object pointed to by src, mbsnrtowcs() shall instead assign the address just past the last byte
processed (if any) to that pointer object. If the input buffer ends with an incomplete character, it is unspeci-
fied whether conversion stops at the end of the previous character (if any), or at the end of the input buffer.
In the latter case, a subsequent call to mbsnrtowcs() with an input buffer that starts with the remainder of
the incomplete character shall correctly complete the conversion of that character.

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls these
functions.

The mbsnrtowcs() and mbsrtowcs() functions need not be thread-safe if called with a NULL ps argument.

The mbsrtowcs() function shall not change the setting of errno if successful.

RETURN VALUE
If the input conversion encounters a sequence of bytes that do not form a valid character, an encoding error
occurs. In this case, these functions shall store the value of the macro [EILSEQ] in errno and shall return
(size_t)−1; the conversion state is undefined. Otherwise, these functions shall return the number of

IEEE/The Open Group 2017 1

MBSRTOWCS(3P) POSIX Programmer’s Manual MBSRTOWCS(3P)

characters successfully converted, not including the terminating null (if any).

ERRORS
These functions shall fail if:

EILSEQ
An invalid character sequence is detected. In the POSIX locale an [EILSEQ] error cannot occur
since all byte values are valid characters.

These functions may fail if:

EINVAL
ps points to an object that contains an invalid conversion state.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version may require that when the input buffer ends with an incomplete character, conversion stops
at the end of the input buffer.

SEE ALSO
iconv(), mbrtowc(), mbsinit()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MBSTOWCS(3P) POSIX Programmer’s Manual MBSTOWCS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mbstowcs — convert a character string to a wide-character string

SYNOPSIS
#include <stdlib.h>

size_t mbstowcs(wchar_t *restrict pwcs, const char *restrict s,
size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The mbstowcs() function shall convert a sequence of characters that begins in the initial shift state from the
array pointed to by s into a sequence of corresponding wide-character codes and shall store not more than n

wide-character codes into the array pointed to by pwcs. No characters that follow a null byte (which is
converted into a wide-character code with value 0) shall be examined or converted. Each character shall be
converted as if by a call to mbtowc(), except that the shift state of mbtowc() is not affected.

No more than n elements shall be modified in the array pointed to by pwcs. If copying takes place between
objects that overlap, the behavior is undefined.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale. If pwcs is
a null pointer, mbstowcs() shall return the length required to convert the entire array regardless of the value
of n, but no values are stored.

RETURN VALUE
If an invalid character is encountered, mbstowcs() shall return (size_t)−1 and shall set errno to indicate the
error.

Otherwise, mbstowcs() shall return the number of the array elements modified (or required if pwcs is null),
not including a terminating 0 code, if any. The array shall not be zero-terminated if the value returned is n.

ERRORS
The mbstowcs() function shall fail if:

EILSEQ
An invalid character sequence is detected. In the POSIX locale an [EILSEQ] error cannot occur
since all byte values are valid characters.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), wctomb(), wcstombs()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

IEEE/The Open Group 2017 1

MBSTOWCS(3P) POSIX Programmer’s Manual MBSTOWCS(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MBTOWC(3P) POSIX Programmer’s Manual MBTOWC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mbtowc — convert a character to a wide-character code

SYNOPSIS
#include <stdlib.h>

int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If s is not a null pointer, mbtowc() shall determine the number of bytes that constitute the character pointed
to by s. It shall then determine the wide-character code for the value of type wchar_t that corresponds to
that character. (The value of the wide-character code corresponding to the null byte is 0.) If the character is
valid and pwc is not a null pointer, mbtowc() shall store the wide-character code in the object pointed to by
pwc.

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a state-de-
pendent encoding, this function is placed into its initial state by a call for which its character pointer argu-
ment, s, is a null pointer. Subsequent calls with s as other than a null pointer shall cause the internal state of
the function to be altered as necessary. A call with s as a null pointer shall cause this function to return a
non-zero value if encodings have state dependency, and 0 otherwise. If the implementation employs special
bytes to change the shift state, these bytes shall not produce separate wide-character codes, but shall be
grouped with an adjacent character. Changing the LC_CTYPE category causes the shift state of this func-
tion to be unspecified. At most n bytes of the array pointed to by s shall be examined.

The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls mbtowc().

The mbtowc() function need not be thread-safe.

RETURN VALUE
If s is a null pointer, mbtowc() shall return a non-zero or 0 value, if character encodings, respectively, do or
do not have state-dependent encodings. If s is not a null pointer, mbtowc() shall either return 0 (if s points
to the null byte), or return the number of bytes that constitute the converted character (if the next n or fewer
bytes form a valid character), or return −1 and shall set errno to indicate the error (if they do not form a
valid character).

In no case shall the value returned be greater than n or the value of the {MB_CUR_MAX} macro.

ERRORS
The mbtowc() function shall fail if:

EILSEQ
An invalid character sequence is detected. In the POSIX locale an [EILSEQ] error cannot occur
since all byte values are valid characters.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 1

MBTOWC(3P) POSIX Programmer’s Manual MBTOWC(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbstowcs(), wctomb(), wcstombs()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MEMCCPY(3P) POSIX Programmer’s Manual MEMCCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
memccpy — copy bytes in memory

SYNOPSIS
#include <string.h>

void *memccpy(void *restrict s1, const void *restrict s2,
int c, size_t n);

DESCRIPTION
The memccpy() function shall copy bytes from memory area s2 into s1, stopping after the first occurrence
of byte c (converted to an unsigned char) is copied, or after n bytes are copied, whichever comes first. If
copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The memccpy() function shall return a pointer to the byte after the copy of c in s1, or a null pointer if c was
not found in the first n bytes of s2.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The memccpy() function does not check for the overflow of the receiving memory area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MEMCHR(3P) POSIX Programmer’s Manual MEMCHR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
memchr — find byte in memory

SYNOPSIS
#include <string.h>

void *memchr(const void *s, int c, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The memchr() function shall locate the first occurrence of c (converted to an unsigned char) in the initial n

bytes (each interpreted as unsigned char) pointed to by s.

Implementations shall behave as if they read the memory byte by byte from the beginning of the bytes
pointed to by s and stop at the first occurrence of c (if it is found in the initial n bytes).

RETURN VALUE
The memchr() function shall return a pointer to the located byte, or a null pointer if the byte is not found.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MEMCMP(3P) POSIX Programmer’s Manual MEMCMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
memcmp — compare bytes in memory

SYNOPSIS
#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The memcmp() function shall compare the first n bytes (each interpreted as unsigned char) of the object
pointed to by s1 to the first n bytes of the object pointed to by s2.

The sign of a non-zero return value shall be determined by the sign of the difference between the values of
the first pair of bytes (both interpreted as type unsigned char) that differ in the objects being compared.

RETURN VALUE
The memcmp() function shall return an integer greater than, equal to, or less than 0, if the object pointed to
by s1 is greater than, equal to, or less than the object pointed to by s2, respectively.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MEMCPY(3P) POSIX Programmer’s Manual MEMCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
memcpy — copy bytes in memory

SYNOPSIS
#include <string.h>

void *memcpy(void *restrict s1, const void *restrict s2, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object pointed to by s1.
If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The memcpy() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The memcpy() function does not check for the overflow of the receiving memory area.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MEMMOVE(3P) POSIX Programmer’s Manual MEMMOVE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
memmove — copy bytes in memory with overlapping areas

SYNOPSIS
#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The memmove() function shall copy n bytes from the object pointed to by s2 into the object pointed to by
s1. Copying takes place as if the n bytes from the object pointed to by s2 are first copied into a temporary
array of n bytes that does not overlap the objects pointed to by s1 and s2, and then the n bytes from the
temporary array are copied into the object pointed to by s1.

RETURN VALUE
The memmove() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MEMSET(3P) POSIX Programmer’s Manual MEMSET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
memset — set bytes in memory

SYNOPSIS
#include <string.h>

void *memset(void *s, int c, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The memset() function shall copy c (converted to an unsigned char) into each of the first n bytes of the ob-
ject pointed to by s.

RETURN VALUE
The memset() function shall return s; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MKDIR(3P) POSIX Programmer’s Manual MKDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mkdir, mkdirat — make a directory

SYNOPSIS
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

#include <fcntl.h>

int mkdirat(int fd, const char *path, mode_t mode);

DESCRIPTION
The mkdir() function shall create a new directory with name path. The file permission bits of the new di-
rectory shall be initialized from mode. These file permission bits of the mode argument shall be modified
by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the meaning of these additional bits is imple-
mentation-defined.

The directory’s user ID shall be set to the process’ effective user ID. The directory’s group ID shall be set
to the group ID of the parent directory or to the effective group ID of the process. Implementations shall
provide a way to initialize the directory’s group ID to the group ID of the parent directory. Implementations
may, but need not, provide an implementation-defined way to initialize the directory’s group ID to the ef-
fective group ID of the calling process.

The newly created directory shall be an empty directory.

If path names a symbolic link, mkdir() shall fail and set errno to [EEXIST].

Upon successful completion, mkdir() shall mark for update the last data access, last data modification, and
last file status change timestamps of the directory. Also, the last data modification and last file status change
timestamps of the directory that contains the new entry shall be marked for update.

The mkdirat() function shall be equivalent to the mkdir() function except in the case where path specifies a
relative path. In this case the newly created directory is created relative to the directory associated with the
file descriptor fd instead of the current working directory. If the access mode of the open file description as-
sociated with the file descriptor is not O_SEARCH, the function shall check whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the access mode is
O_SEARCH, the function shall not perform the check.

If mkdirat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used and the behavior shall be identical to a call to mkdir().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error. If −1 is returned, no directory shall be created.

ERRORS
These functions shall fail if:

EACCES
Search permission is denied on a component of the path prefix, or write permission is denied on
the parent directory of the directory to be created.

EEXIST
The named file exists.

IEEE/The Open Group 2017 1

MKDIR(3P) POSIX Programmer’s Manual MKDIR(3P)

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

EMLINK
The link count of the parent directory would exceed {LINK_MAX}.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of the path prefix specified by path does not name an existing directory or path is an
empty string.

ENOSPC
The file system does not contain enough space to hold the contents of the new directory or to ex-
tend the parent directory of the new directory.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory.

EROFS
The parent directory resides on a read-only file system.

In addition, the mkdirat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Creating a Directory

The following example shows how to create a directory named /home/cnd/mod1, with read/write/search
permissions for owner and group, and with read/search permissions for others.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkdir("/home/cnd/mod1", S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

IEEE/The Open Group 2017 2

MKDIR(3P) POSIX Programmer’s Manual MKDIR(3P)

APPLICATION USAGE
None.

RATIONALE
The mkdir() function originated in 4.2 BSD and was added to System V in Release 3.0.

4.3 BSD detects [ENAMETOOLONG].

The POSIX.1-1990 standard required that the group ID of a newly created directory be set to the group ID
of its parent directory or to the effective group ID of the creating process. FIPS 151-2 required that imple-
mentations provide a way to have the group ID be set to the group ID of the containing directory, but did
not prohibit implementations also supporting a way to set the group ID to the effective group ID of the cre-
ating process. Conforming applications should not assume which group ID will be used. If it matters, an
application can use chown() to set the group ID after the directory is created, or determine under what con-
ditions the implementation will set the desired group ID.

The purpose of the mkdirat() function is to create a directory in directories other than the current working
directory without exposure to race conditions. Any part of the path of a file could be changed in parallel to
the call to mkdir(), resulting in unspecified behavior. By opening a file descriptor for the target directory
and using the mkdirat() function it can be guaranteed that the newly created directory is located relative to
the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), mkdtemp(), mknod(), umask()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_stat.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

MKDTEMP(3P) POSIX Programmer’s Manual MKDTEMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mkdtemp, mkstemp — create a unique directory or file

SYNOPSIS
#include <stdlib.h>

char *mkdtemp(char *template);
int mkstemp(char *template);

DESCRIPTION
The mkdtemp() function shall create a directory with a unique name derived from template. The applica-
tion shall ensure that the string provided in template is a pathname ending with at least six trailing ’X’ char-
acters. The mkdtemp() function shall modify the contents of template by replacing six or more ’X’ charac-
ters at the end of the pathname with the same number of characters from the portable filename character set.
The characters shall be chosen such that the resulting pathname does not duplicate the name of an existing
file at the time of the call to mkdtemp(). The mkdtemp() function shall use the resulting pathname to create
the new directory as if by a call to:

mkdir(pathname, S_IRWXU)

The mkstemp() function shall create a regular file with a unique name derived from template and return a
file descriptor for the file open for reading and writing. The application shall ensure that the string provided
in template is a pathname ending with at least six trailing ’X’ characters. The mkstemp() function shall
modify the contents of template by replacing six or more ’X’ characters at the end of the pathname with the
same number of characters from the portable filename character set. The characters shall be chosen such
that the resulting pathname does not duplicate the name of an existing file at the time of the call to mk-

stemp(). The mkstemp() function shall use the resulting pathname to create the file, and obtain a file de-
scriptor for it, as if by a call to:

open(pathname, O_RDWR|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)

By behaving as if the O_EXCL flag for open() is set, the function prevents any possible race condition be-
tween testing whether the file exists and opening it for use.

RETURN VALUE
Upon successful completion, the mkdtemp() function shall return the value of template. Otherwise, it shall
return a null pointer and shall set errno to indicate the error.

Upon successful completion, the mkstemp() function shall return an open file descriptor. Otherwise, it shall
return −1 and shall set errno to indicate the error.

ERRORS
The mkdtemp() function shall fail if:

EACCES
Search permission is denied on a component of the path prefix, or write permission is denied on
the parent directory of the directory to be created.

EINVAL
The string pointed to by template does not end in "XXXXXX".

ELOOP
A loop exists in symbolic links encountered during resolution of the path of the directory to be
created.

IEEE/The Open Group 2017 1

MKDTEMP(3P) POSIX Programmer’s Manual MKDTEMP(3P)

EMLINK
The link count of the parent directory would exceed {LINK_MAX}.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of the path prefix specified by the template argument does not name an existing di-
rectory.

ENOSPC
The file system does not contain enough space to hold the contents of the new directory or to ex-
tend the parent directory of the new directory.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory.

EROFS
The parent directory resides on a read-only file system.

The mkdtemp() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path of
the directory to be created.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The error conditions for the mkstemp() function are defined in open().

The following sections are informative.

EXAMPLES
Generating a Pathname

The following example creates a file with a 10-character name beginning with the characters "file" and
opens the file for reading and writing. The value returned as the value of fd is a file descriptor that identifies
the file.

#include <stdlib.h>
...
char template[] = "/tmp/fileXXXXXX";
int fd;

fd = mkstemp(template);

APPLICATION USAGE
It is possible to run out of letters.

Portable applications should pass exactly six trailing ’X’s in the template and no more; implementations
may treat any additional trailing ’X’s as either a fixed or replaceable part of the template. To be sure of only
passing six, a fixed string of at least one non-’X’ character should precede the six ’X’s.

Since ’X’ is in the portable filename character set, some of the replacement characters can be ’X’s, leaving
part (or even all) of the template effectively unchanged.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 2

MKDTEMP(3P) POSIX Programmer’s Manual MKDTEMP(3P)

SEE ALSO
getpid(), mkdir(), open(), tmpfile(), tmpnam()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

MKFIFO(3P) POSIX Programmer’s Manual MKFIFO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mkfifo, mkfifoat — make a FIFO special file

SYNOPSIS
#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);

#include <fcntl.h>

int mkfifoat(int fd, const char *path, mode_t mode);

DESCRIPTION
The mkfifo() function shall create a new FIFO special file named by the pathname pointed to by path. The
file permission bits of the new FIFO shall be initialized from mode. The file permission bits of the mode

argument shall be modified by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the effect is implementation-defined.

If path names a symbolic link, mkfifo() shall fail and set errno to [EEXIST].

The FIFO’s user ID shall be set to the process’ effective user ID. The FIFO’s group ID shall be set to the
group ID of the parent directory or to the effective group ID of the process. Implementations shall provide a
way to initialize the FIFO’s group ID to the group ID of the parent directory. Implementations may, but
need not, provide an implementation-defined way to initialize the FIFO’s group ID to the effective group ID
of the calling process.

Upon successful completion, mkfifo() shall mark for update the last data access, last data modification, and
last file status change timestamps of the file. Also, the last data modification and last file status change
timestamps of the directory that contains the new entry shall be marked for update.

The mkfifoat() function shall be equivalent to the mkfifo() function except in the case where path specifies a
relative path. In this case the newly created FIFO is created relative to the directory associated with the file
descriptor fd instead of the current working directory. If the access mode of the open file description asso-
ciated with the file descriptor is not O_SEARCH, the function shall check whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the access mode is
O_SEARCH, the function shall not perform the check.

If mkfifoat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used and the behavior shall be identical to a call to mkfifo().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error. If −1 is returned, no FIFO shall be created.

ERRORS
These functions shall fail if:

EACCES
A component of the path prefix denies search permission, or write permission is denied on the par-
ent directory of the FIFO to be created.

EEXIST
The named file already exists.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

IEEE/The Open Group 2017 1

MKFIFO(3P) POSIX Programmer’s Manual MKFIFO(3P)

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of the path prefix of path does not name an existing file or path is an empty string.

ENOENT or ENOTDIR
The path argument contains at least one non-<slash> character and ends with one or more trailing
<slash> characters. If path without the trailing <slash> characters would name an existing file, an
[ENOENT] error shall not occur.

ENOSPC
The directory that would contain the new file cannot be extended or the file system is out of file-al-
location resources.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory.

EROFS
The named file resides on a read-only file system.

The mkfifoat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Creating a FIFO File

The following example shows how to create a FIFO file named /home/cnd/mod_done, with read/write per-
missions for owner, and with read permissions for group and others.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkfifo("/home/cnd/mod_done", S_IWUSR | S_IRUSR |

S_IRGRP | S_IROTH);

IEEE/The Open Group 2017 2

MKFIFO(3P) POSIX Programmer’s Manual MKFIFO(3P)

APPLICATION USAGE
None.

RATIONALE
The syntax of this function is intended to maintain compatibility with historical implementations of
mknod(). The latter function was included in the 1984 /usr/group standard but only for use in creating
FIFO special files. The mknod() function was originally excluded from the POSIX.1-1988 standard as im-
plementation-defined and replaced by mkdir() and mkfifo(). The mknod() function is now included for
alignment with the Single UNIX Specification.

The POSIX.1-1990 standard required that the group ID of a newly created FIFO be set to the group ID of
its parent directory or to the effective group ID of the creating process. FIPS 151-2 required that implemen-
tations provide a way to have the group ID be set to the group ID of the containing directory, but did not
prohibit implementations also supporting a way to set the group ID to the effective group ID of the creating
process. Conforming applications should not assume which group ID will be used. If it matters, an applica-
tion can use chown() to set the group ID after the FIFO is created, or determine under what conditions the
implementation will set the desired group ID.

The purpose of the mkfifoat() function is to create a FIFO special file in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be changed in
parallel to a call to mkfifo(), resulting in unspecified behavior. By opening a file descriptor for the target di-
rectory and using the mkfifoat() function it can be guaranteed that the newly created FIFO is located relative
to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), mknod(), umask()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_stat.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

MKNOD(3P) POSIX Programmer’s Manual MKNOD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mknod, mknodat — make directory, special file, or regular file

SYNOPSIS
#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

#include <fcntl.h>

int mknodat(int fd, const char *path, mode_t mode, dev_t dev);

DESCRIPTION
The mknod() function shall create a new file named by the pathname to which the argument path points.

The file type for path is OR’ed into the mode argument, and the application shall select one of the follow-
ing symbolic constants:

tab(!) box center; cB | cB lw(1i) | lw(3i). Name!Description _ S_IFIFO!FIFO-special S_IFCHR!Character-
special (non-portable) S_IFDIR!Directory (non-portable) S_IFBLK!Block-special (non-portable)
S_IFREG!Regular (non-portable)

The only portable use of mknod() is to create a FIFO-special file. If mode is not S_IFIFO or dev is not 0,
the behavior of mknod() is unspecified.

The permissions for the new file are OR’ed into the mode argument, and may be selected from any combi-
nation of the following symbolic constants:

tab(!) box center; cB | cB lw(1i) | lw(3i). Name!Description _ S_ISUID!Set user ID on execution. S_IS-
GID!Set group ID on execution. S_IRWXU!Read, write, or execute (search) by owner. S_IRUSR!Read by
owner. S_IWUSR!Write by owner. S_IXUSR!Execute (search) by owner. S_IRWXG!Read, write, or exe-
cute (search) by group. S_IRGRP!Read by group. S_IWGRP!Write by group. S_IXGRP!Execute
(search) by group. S_IRWXO!Read, write, or execute (search) by others. S_IROTH!Read by others.
S_IWOTH!Write by others. S_IXOTH!Execute (search) by others. S_ISVTX!On directories, restricted
deletion flag.

The user ID of the file shall be initialized to the effective user ID of the process. The group ID of the file
shall be initialized to either the effective group ID of the process or the group ID of the parent directory.
Implementations shall provide a way to initialize the file’s group ID to the group ID of the parent directory.
Implementations may, but need not, provide an implementation-defined way to initialize the file’s group ID
to the effective group ID of the calling process. The owner, group, and other permission bits of mode shall
be modified by the file mode creation mask of the process. The mknod() function shall clear each bit whose
corresponding bit in the file mode creation mask of the process is set.

If path names a symbolic link, mknod() shall fail and set errno to [EEXIST].

Upon successful completion, mknod() shall mark for update the last data access, last data modification, and
last file status change timestamps of the file. Also, the last data modification and last file status change
timestamps of the directory that contains the new entry shall be marked for update.

Only a process with appropriate privileges may invoke mknod() for file types other than FIFO-special.

The mknodat() function shall be equivalent to the mknod() function except in the case where path specifies
a relative path. In this case the newly created directory, special file, or regular file is located relative to the
directory associated with the file descriptor fd instead of the current working directory. If the access mode
of the open file description associated with the file descriptor is not O_SEARCH, the function shall check
whether directory searches are permitted using the current permissions of the directory underlying the file
descriptor. If the access mode is O_SEARCH, the function shall not perform the check.

If mknodat() is passed the special value AT_FDCWD in the fd parameter, the current working directory

IEEE/The Open Group 2017 1

MKNOD(3P) POSIX Programmer’s Manual MKNOD(3P)

shall be used and the behavior shall be identical to a call to mknod().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error. If −1 is returned, the new file shall not be created.

ERRORS
These functions shall fail if:

EACCES
A component of the path prefix denies search permission, or write permission is denied on the par-
ent directory.

EEXIST
The named file exists.

EINVAL
An invalid argument exists.

EIO An I/O error occurred while accessing the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of the path prefix of path does not name an existing file or path is an empty string.

ENOENT or ENOTDIR
The path argument contains at least one non-<slash> character and ends with one or more trailing
<slash> characters. If path without the trailing <slash> characters would name an existing file, an
[ENOENT] error shall not occur.

ENOSPC
The directory that would contain the new file cannot be extended or the file system is out of file al-
location resources.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory.

EPERM
The invoking process does not have appropriate privileges and the file type is not FIFO-special.

EROFS
The directory in which the file is to be created is located on a read-only file system.

The mknodat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

IEEE/The Open Group 2017 2

MKNOD(3P) POSIX Programmer’s Manual MKNOD(3P)

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Creating a FIFO Special File

The following example shows how to create a FIFO special file named /home/cnd/mod_done, with
read/write permissions for owner, and with read permissions for group and others.

#include <sys/types.h>
#include <sys/stat.h>

dev_t dev;
int status;
...
status = mknod("/home/cnd/mod_done", S_IFIFO | S_IWUSR |

S_IRUSR | S_IRGRP | S_IROTH, dev);

APPLICATION USAGE
The mkfifo() function is preferred over this function for making FIFO special files.

RATIONALE
The POSIX.1-1990 standard required that the group ID of a newly created file be set to the group ID of its
parent directory or to the effective group ID of the creating process. FIPS 151-2 required that implementa-
tions provide a way to have the group ID be set to the group ID of the containing directory, but did not pro-
hibit implementations also supporting a way to set the group ID to the effective group ID of the creating
process. Conforming applications should not assume which group ID will be used. If it matters, an applica-
tion can use chown() to set the group ID after the file is created, or determine under what conditions the im-
plementation will set the desired group ID.

The purpose of the mknodat() function is to create directories, special files, or regular files in directories
other than the current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to mknod(), resulting in unspecified behavior. By opening a file de-
scriptor for the target directory and using the mknodat() function it can be guaranteed that the newly created
directory, special file, or regular file is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), exec , fstatat(), mkdir(), mkfifo(), open(), umask()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_stat.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

MKSTEMP(3P) POSIX Programmer’s Manual MKSTEMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mkstemp — create a unique file

SYNOPSIS
#include <stdlib.h>

int mkstemp(char *template);

DESCRIPTION
Refer to mkdtemp().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MKTIME(3P) POSIX Programmer’s Manual MKTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mktime — convert broken-down time into time since the Epoch

SYNOPSIS
#include <time.h>

time_t mktime(struct tm *timeptr);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The mktime() function shall convert the broken-down time, expressed as local time, in the structure pointed
to by timeptr, into a time since the Epoch value with the same encoding as that of the values returned by
time(). The original values of the tm_wday and tm_yday components of the structure shall be ignored, and
the original values of the other components shall not be restricted to the ranges described in <time.h>.

A positive or 0 value for tm_isdst shall cause mktime() to presume initially that Daylight Savings Time, re-
spectively, is or is not in effect for the specified time. A negative value for tm_isdst shall cause mktime() to
attempt to determine whether Daylight Savings Time is in effect for the specified time.

Local timezone information shall be set as though mktime() called tzset().

The relationship between the tm structure (defined in the <time.h> header) and the time in seconds since
the Epoch is that the result shall be as specified in the expression given in the definition of seconds since the
Epoch (see the Base Definitions volume of POSIX.1-2017, Section 4.16, Seconds Since the Epoch) cor-
rected for timezone and any seasonal time adjustments, where the names other than tm_yday in the struc-
ture and in the expression correspond, and the tm_yday value used in the expression is the day of the year
from 0 to 365 inclusive, calculated from the other tm structure members specified in <time.h> (excluding
tm_wday).

Upon successful completion, the values of the tm_wday and tm_yday components of the structure shall be
set appropriately, and the other components shall be set to represent the specified time since the Epoch, but
with their values forced to the ranges indicated in the <time.h> entry; the final value of tm_mday shall not
be set until tm_mon and tm_year are determined.

RETURN VALUE
The mktime() function shall return the specified time since the Epoch encoded as a value of type time_t. If
the time since the Epoch cannot be represented, the function shall return the value (time_t)−1 and set errno

to indicate the error.

ERRORS
The mktime() function shall fail if:

EOVERFLOW
The result cannot be represented.

The following sections are informative.

EXAMPLES
What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>

struct tm time_str;

IEEE/The Open Group 2017 1

MKTIME(3P) POSIX Programmer’s Manual MKTIME(3P)

char daybuf[20];

int main(void)
{

time_str.tm_year = 2001 — 1900;
time_str.tm_mon = 7 — 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;
if (mktime(&time_str) == -1)

(void)puts("-unknown-");
else {

(void)strftime(daybuf, sizeof(daybuf), "%A", &time_str);
(void)puts(daybuf);

}
return 0;

}

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), gmtime(), localtime(), strftime(), strptime(), time(), tzset(),
utime()

The Base Definitions volume of POSIX.1-2017, Section 4.16, Seconds Since the Epoch, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MLOCK(3P) POSIX Programmer’s Manual MLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mlock, munlock — lock or unlock a range of process address space (REALTIME)

SYNOPSIS
#include <sys/mman.h>

int mlock(const void *addr, size_t len);
int munlock(const void *addr, size_t len);

DESCRIPTION
The mlock() function shall cause those whole pages containing any part of the address space of the process
starting at address addr and continuing for len bytes to be memory-resident until unlocked or until the
process exits or execs another process image. The implementation may require that addr be a multiple of
{PAGESIZE}.

The munlock() function shall unlock those whole pages containing any part of the address space of the
process starting at address addr and continuing for len bytes, regardless of how many times mlock() has
been called by the process for any of the pages in the specified range. The implementation may require that
addr be a multiple of {PAGESIZE}.

If any of the pages in the range specified to a call to munlock() are also mapped into the address spaces of
other processes, any locks established on those pages by another process are unaffected by the call of this
process to munlock(). If any of the pages in the range specified by a call to munlock() are also mapped into
other portions of the address space of the calling process outside the range specified, any locks established
on those pages via the other mappings are also unaffected by this call.

Upon successful return from mlock(), pages in the specified range shall be locked and memory-resident.
Upon successful return from munlock(), pages in the specified range shall be unlocked with respect to the
address space of the process. Memory residency of unlocked pages is unspecified.

Appropriate privileges are required to lock process memory with mlock().

RETURN VALUE
Upon successful completion, the mlock() and munlock() functions shall return a value of zero. Otherwise,
no change is made to any locks in the address space of the process, and the function shall return a value of
−1 and set errno to indicate the error.

ERRORS
The mlock() and munlock() functions shall fail if:

ENOMEM
Some or all of the address range specified by the addr and len arguments does not correspond to
valid mapped pages in the address space of the process.

The mlock() function shall fail if:

EAGAIN
Some or all of the memory identified by the operation could not be locked when the call was
made.

The mlock() and munlock() functions may fail if:

EINVAL
The addr argument is not a multiple of {PAGESIZE}.

The mlock() function may fail if:

ENOMEM
Locking the pages mapped by the specified range would exceed an implementation-defined limit
on the amount of memory that the process may lock.

IEEE/The Open Group 2017 1

MLOCK(3P) POSIX Programmer’s Manual MLOCK(3P)

EPERM
The calling process does not have appropriate privileges to perform the requested operation.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), mlockall(), munmap()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MLOCKALL(3P) POSIX Programmer’s Manual MLOCKALL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mlockall, munlockall — lock/unlock the address space of a process (REALTIME)

SYNOPSIS
#include <sys/mman.h>

int mlockall(int flags);
int munlockall(void);

DESCRIPTION
The mlockall() function shall cause all of the pages mapped by the address space of a process to be mem-
ory-resident until unlocked or until the process exits or execs another process image. The flags argument
determines whether the pages to be locked are those currently mapped by the address space of the process,
those that are mapped in the future, or both. The flags argument is constructed from the bitwise-inclusive
OR of one or more of the following symbolic constants, defined in <sys/mman.h>:

MCL_CURRENT
Lock all of the pages currently mapped into the address space of the process.

MCL_FUTURE
Lock all of the pages that become mapped into the address space of the process in the future,
when those mappings are established.

If MCL_FUTURE is specified, and the automatic locking of future mappings eventually causes the amount
of locked memory to exceed the amount of available physical memory or any other implementation-defined
limit, the behavior is implementation-defined. The manner in which the implementation informs the appli-
cation of these situations is also implementation-defined.

The munlockall() function shall unlock all currently mapped pages of the address space of the process. Any
pages that become mapped into the address space of the process after a call to munlockall() shall not be
locked, unless there is an intervening call to mlockall() specifying MCL_FUTURE or a subsequent call to
mlockall() specifying MCL_CURRENT. If pages mapped into the address space of the process are also
mapped into the address spaces of other processes and are locked by those processes, the locks established
by the other processes shall be unaffected by a call by this process to munlockall().

Upon successful return from the mlockall() function that specifies MCL_CURRENT, all currently mapped
pages of the address space of the process shall be memory-resident and locked. Upon return from the
munlockall() function, all currently mapped pages of the address space of the process shall be unlocked
with respect to the address space of the process. The memory residency of unlocked pages is unspecified.

Appropriate privileges are required to lock process memory with mlockall().

RETURN VALUE
Upon successful completion, the mlockall() function shall return a value of zero. Otherwise, no additional
memory shall be locked, and the function shall return a value of −1 and set errno to indicate the error. The
effect of failure of mlockall() on previously existing locks in the address space is unspecified.

If it is supported by the implementation, the munlockall() function shall always return a value of zero. Oth-
erwise, the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The mlockall() function shall fail if:

EAGAIN
Some or all of the memory identified by the operation could not be locked when the call was
made.

IEEE/The Open Group 2017 1

MLOCKALL(3P) POSIX Programmer’s Manual MLOCKALL(3P)

EINVAL
The flags argument is zero, or includes unimplemented flags.

The mlockall() function may fail if:

ENOMEM
Locking all of the pages currently mapped into the address space of the process would exceed an
implementation-defined limit on the amount of memory that the process may lock.

EPERM
The calling process does not have appropriate privileges to perform the requested operation.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , exit(), fork(), mlock(), munmap()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MMAP(3P) POSIX Programmer’s Manual MMAP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mmap — map pages of memory

SYNOPSIS
#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags,
int fildes, off_t off);

DESCRIPTION
The mmap() function shall establish a mapping between an address space of a process and a memory ob-
ject.

The mmap() function shall be supported for the following memory objects:

* Regular files

* Shared memory objects

* Typed memory objects

Support for any other type of file is unspecified.

The format of the call is as follows:

pa=mmap(addr, len, prot, flags, fildes, off);

The mmap() function shall establish a mapping between the address space of the process at an address pa

for len bytes to the memory object represented by the file descriptor fildes at offset off for len bytes. The
value of pa is an implementation-defined function of the parameter addr and the values of flags, further de-
scribed below. A successful mmap() call shall return pa as its result. The address range starting at pa and
continuing for len bytes shall be legitimate for the possible (not necessarily current) address space of the
process. The range of bytes starting at off and continuing for len bytes shall be legitimate for the possible
(not necessarily current) offsets in the memory object represented by fildes.

If fildes represents a typed memory object opened with either the POSIX_TYPED_MEM_ALLOCATE
flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the memory object to be mapped shall be
that portion of the typed memory object allocated by the implementation as specified below. In this case, if
off is non-zero, the behavior of mmap() is undefined. If fildes refers to a valid typed memory object that is
not accessible from the calling process, mmap() shall fail.

The mapping established by mmap() shall replace any previous mappings for those whole pages containing
any part of the address space of the process starting at pa and continuing for len bytes.

If the size of the mapped file changes after the call to mmap() as a result of some other operation on the
mapped file, the effect of references to portions of the mapped region that correspond to added or removed
portions of the file is unspecified.

If len is zero, mmap() shall fail and no mapping shall be established.

The parameter prot determines whether read, write, execute, or some combination of accesses are permitted
to the data being mapped. The prot shall be either PROT_NONE or the bitwise-inclusive OR of one or
more of the other flags in the following table, defined in the <sys/mman.h> header.

center box tab(!); cB | cB lw(1.5i) | lw(2i). Symbolic Constant!Description _ PROT_READ!Data can be
read. PROT_WRITE!Data can be written. PROT_EXEC!Data can be executed. PROT_NONE!Data can-
not be accessed.

If an implementation cannot support the combination of access types specified by prot, the call to mmap()

IEEE/The Open Group 2017 1

MMAP(3P) POSIX Programmer’s Manual MMAP(3P)

shall fail.

An implementation may permit accesses other than those specified by prot; howev er, the implementation
shall not permit a write to succeed where PROT_WRITE has not been set and shall not permit any access
where PROT_NONE alone has been set. The implementation shall support at least the following values of
prot: PROT_NONE, PROT_READ, PROT_WRITE, and the bitwise-inclusive OR of PROT_READ and
PROT_WRITE. The file descriptor fildes shall have been opened with read permission, regardless of the
protection options specified. If PROT_WRITE is specified, the application shall ensure that it has opened
the file descriptor fildes with write permission unless MAP_PRIVATE is specified in the flags parameter as
described below.

The parameter flags provides other information about the handling of the mapped data. The value of flags

is the bitwise-inclusive OR of these options, defined in <sys/mman.h>:

center box tab(!); cB | cB lw(1.5i) | lw(2i). Symbolic Constant!Description _ MAP_SHARED!Changes are
shared. MAP_PRIVATE!Changes are private. MAP_FIXED!Interpret addr exactly.

It is implementation-defined whether MAP_FIXED shall be supported. MAP_FIXED shall be supported
on XSI-conformant systems.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory object. If
MAP_SHARED is specified, write references shall change the underlying object. If MAP_PRIVATE is
specified, modifications to the mapped data by the calling process shall be visible only to the calling
process and shall not change the underlying object. It is unspecified whether modifications to the underly-
ing object done after the MAP_PRIVATE mapping is established are visible through the MAP_PRIVATE
mapping. Either MAP_SHARED or MAP_PRIVATE can be specified, but not both. The mapping type is
retained across fork().

The state of synchronization objects such as mutexes, semaphores, barriers, and conditional variables
placed in shared memory mapped with MAP_SHARED becomes undefined when the last region in any
process containing the synchronization object is unmapped.

When fildes represents a typed memory object opened with either the POSIX_TYPED_MEM_ALLO-
CATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, mmap() shall, if there are enough
resources available, map len bytes allocated from the corresponding typed memory object which were not
previously allocated to any process in any processor that may access that typed memory object. If there are
not enough resources available, the function shall fail. If fildes represents a typed memory object opened
with the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, these allocated bytes shall be contiguous
within the typed memory object. If fildes represents a typed memory object opened with the
POSIX_TYPED_MEM_ALLOCATE flag, these allocated bytes may be composed of non-contiguous frag-
ments within the typed memory object. If fildes represents a typed memory object opened with neither the
POSIX_TYPED_MEM_ALLOCATE_CONTIG flag nor the POSIX_TYPED_MEM_ALLOCATE flag, len

bytes starting at offset off within the typed memory object are mapped, exactly as when mapping a file or
shared memory object. In this case, if two processes map an area of typed memory using the same off and
len values and using file descriptors that refer to the same memory pool (either from the same port or from
a different port), both processes shall map the same region of storage.

When MAP_FIXED is set in the flags argument, the implementation is informed that the value of pa shall
be addr, exactly. If MAP_FIXED is set, mmap() may return MAP_FAILED and set errno to [EINVAL]. If
a MAP_FIXED request is successful, then any previous mappings or memory locks for those whole pages
containing any part of the address range [pa,pa+len) shall be removed, as if by an appropriate call to mun-

map(), before the new mapping is established.

When MAP_FIXED is not set, the implementation uses addr in an implementation-defined manner to ar-
rive at pa. The pa so chosen shall be an area of the address space that the implementation deems suitable
for a mapping of len bytes to the file. All implementations interpret an addr value of 0 as granting the im-
plementation complete freedom in selecting pa, subject to constraints described below. A non-zero value of
addr is taken to be a suggestion of a process address near which the mapping should be placed. When the
implementation selects a value for pa, it nev er places a mapping at address 0, nor does it replace any extant
mapping.

IEEE/The Open Group 2017 2

MMAP(3P) POSIX Programmer’s Manual MMAP(3P)

If MAP_FIXED is specified and addr is non-zero, it shall have the same remainder as the off parameter,
modulo the page size as returned by sysconf() when passed _SC_PAGESIZE or _SC_PAGE_SIZE. The im-
plementation may require that off is a multiple of the page size. If MAP_FIXED is specified, the implemen-
tation may require that addr is a multiple of the page size. The system performs mapping operations over
whole pages. Thus, while the parameter len need not meet a size or alignment constraint, the system shall
include, in any mapping operation, any partial page specified by the address range starting at pa and contin-
uing for len bytes.

The system shall always zero-fill any partial page at the end of an object. Further, the system shall never
write out any modified portions of the last page of an object which are beyond its end. References within
the address range starting at pa and continuing for len bytes to whole pages following the end of an object
shall result in delivery of a SIGBUS signal.

An implementation may generate SIGBUS signals when a reference would cause an error in the mapped
object, such as out-of-space condition.

The mmap() function shall add an extra reference to the file associated with the file descriptor fildes which
is not removed by a subsequent close() on that file descriptor. This reference shall be removed when there
are no more mappings to the file.

The last data access timestamp of the mapped file may be marked for update at any time between the
mmap() call and the corresponding munmap() call. The initial read or write reference to a mapped region
shall cause the file’s last data access timestamp to be marked for update if it has not already been marked
for update.

The last data modification and last file status change timestamps of a file that is mapped with
MAP_SHARED and PROT_WRITE shall be marked for update at some point in the interval between a
write reference to the mapped region and the next call to msync() with MS_ASYNC or MS_SYNC for that
portion of the file by any process. If there is no such call and if the underlying file is modified as a result of
a write reference, then these timestamps shall be marked for update at some time after the write reference.

There may be implementation-defined limits on the number of memory regions that can be mapped (per
process or per system).

If such a limit is imposed, whether the number of memory regions that can be mapped by a process is de-
creased by the use of shmat() is implementation-defined.

If mmap() fails for reasons other than [EBADF], [EINVAL], or [ENOTSUP], some of the mappings in the
address range starting at addr and continuing for len bytes may have been unmapped.

RETURN VALUE
Upon successful completion, the mmap() function shall return the address at which the mapping was placed
(pa); otherwise, it shall return a value of MAP_FAILED and set errno to indicate the error. The symbol
MAP_FAILED is defined in the <sys/mman.h> header. No successful return from mmap() shall return the
value MAP_FAILED.

ERRORS
The mmap() function shall fail if:

EACCES
The fildes argument is not open for read, regardless of the protection specified, or fildes is not
open for write and PROT_WRITE was specified for a MAP_SHARED type mapping.

EAGAIN
The mapping could not be locked in memory, if required by mlockall(), due to a lack of resources.

EBADF
The fildes argument is not a valid open file descriptor.

EINVAL
The value of len is zero.

IEEE/The Open Group 2017 3

MMAP(3P) POSIX Programmer’s Manual MMAP(3P)

EINVAL
The value of flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is set).

EMFILE
The number of mapped regions would exceed an implementation-defined limit (per process or per
system).

ENODEV
The fildes argument refers to a file whose type is not supported by mmap().

ENOMEM
MAP_FIXED was specified, and the range [addr,addr+len) exceeds that allowed for the address
space of a process; or, if MAP_FIXED was not specified and there is insufficient room in the ad-
dress space to effect the mapping.

ENOMEM
The mapping could not be locked in memory, if required by mlockall(), because it would require
more space than the system is able to supply.

ENOMEM
Not enough unallocated memory resources remain in the typed memory object designated by
fildes to allocate len bytes.

ENOTSUP
MAP_FIXED or MAP_PRIVATE was specified in the flags argument and the implementation
does not support this functionality.

The implementation does not support the combination of accesses requested in the prot ar-
gument.

ENXIO
Addresses in the range [off,off+len) are invalid for the object specified by fildes.

ENXIO
MAP_FIXED was specified in flags and the combination of addr, len, and off is invalid for the
object specified by fildes.

ENXIO
The fildes argument refers to a typed memory object that is not accessible from the calling
process.

EOVERFLOW
The file is a regular file and the value of off plus len exceeds the offset maximum established in the
open file description associated with fildes.

The mmap() function may fail if:

EINVAL
The addr argument (if MAP_FIXED was specified) or off is not a multiple of the page size as re-
turned by sysconf(), or is considered invalid by the implementation.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Use of mmap() may reduce the amount of memory available to other memory allocation functions.

Use of MAP_FIXED may result in unspecified behavior in further use of malloc() and shmat(). The use of
MAP_FIXED is discouraged, as it may prevent an implementation from making the most effective use of
resources. Most implementations require that off and addr are multiples of the page size as returned by
sysconf().

The application must ensure correct synchronization when using mmap() in conjunction with any other file

IEEE/The Open Group 2017 4

MMAP(3P) POSIX Programmer’s Manual MMAP(3P)

access method, such as read() and write(), standard input/output, and shmat().

The mmap() function allows access to resources via address space manipulations, instead of read()/write().
Once a file is mapped, all a process has to do to access it is use the data at the address to which the file was
mapped. So, using pseudo-code to illustrate the way in which an existing program might be changed to use
mmap(), the following:

fildes = open(...)
lseek(fildes, some_offset)
read(fildes, buf, len)
/* Use data in buf. */

becomes:

fildes = open(...)
address = mmap(0, len, PROT_READ, MAP_PRIVATE, fildes, some_offset)
/* Use data at address. */

RATIONALE
After considering several other alternatives, it was decided to adopt the mmap() definition found in SVR4
for mapping memory objects into process address spaces. The SVR4 definition is minimal, in that it de-
scribes only what has been built, and what appears to be necessary for a general and portable mapping fa-
cility.

Note that while mmap() was first designed for mapping files, it is actually a general-purpose mapping facil-
ity. It can be used to map any appropriate object, such as memory, files, devices, and so on, into the address
space of a process.

When a mapping is established, it is possible that the implementation may need to map more than is re-
quested into the address space of the process because of hardware requirements. An application, however,
cannot count on this behavior. Implementations that do not use a paged architecture may simply allocate a
common memory region and return the address of it; such implementations probably do not allocate any
more than is necessary. References past the end of the requested area are unspecified.

If an application requests a mapping that overlaps existing mappings in the process, it might be desirable
that an implementation detect this and inform the application. However, if the program specifies a fixed ad-
dress mapping (which requires some implementation knowledge to determine a suitable address, if the
function is supported at all), then the program is presumed to be successfully managing its own address
space and should be trusted when it asks to map over existing data structures. Furthermore, it is also desir-
able to make as few system calls as possible, and it might be considered onerous to require an munmap()
before an mmap() to the same address range. This volume of POSIX.1-2017 specifies that the new mapping
replaces any existing mappings (implying an automatic munmap() on the address range), following existing
practice in this regard. The standard developers also considered whether there should be a way for new
mappings to overlay existing mappings, but found no existing practice for this.

It is not expected that all hardware implementations are able to support all combinations of permissions at
all addresses. Implementations are required to disallow write access to mappings without write permission
and to disallow access to mappings without any access permission. Other than these restrictions, implemen-
tations may allow access types other than those requested by the application. For example, if the application
requests only PROT_WRITE, the implementation may also allow read access. A call to mmap() fails if the
implementation cannot support allowing all the access requested by the application. For example, some im-
plementations cannot support a request for both write access and execute access simultaneously. All imple-
mentations must support requests for no access, read access, write access, and both read and write access.
Strictly conforming code must only rely on the required checks. These restrictions allow for portability
across a wide range of hardware.

The MAP_FIXED address treatment is likely to fail for non-page-aligned values and for certain

IEEE/The Open Group 2017 5

MMAP(3P) POSIX Programmer’s Manual MMAP(3P)

architecture-dependent address ranges. Conforming implementations cannot count on being able to choose
address values for MAP_FIXED without utilizing non-portable, implementation-defined knowledge. None-
theless, MAP_FIXED is provided as a standard interface conforming to existing practice for utilizing such
knowledge when it is available.

Similarly, in order to allow implementations that do not support virtual addresses, support for directly spec-
ifying any mapping addresses via MAP_FIXED is not required and thus a conforming application may not
count on it.

The MAP_PRIVATE function can be implemented efficiently when memory protection hardware is avail-
able. When such hardware is not available, implementations can implement such ‘‘mappings’’ by simply
making a real copy of the relevant data into process private memory, though this tends to behave similarly
to read().

The function has been defined to allow for many different models of using shared memory. Howev er, all
uses are not equally portable across all machine architectures. In particular, the mmap() function allows the
system as well as the application to specify the address at which to map a specific region of a memory ob-
ject. The most portable way to use the function is always to let the system choose the address, specifying
NULL as the value for the argument addr and not to specify MAP_FIXED.

If it is intended that a particular region of a memory object be mapped at the same address in a group of
processes (on machines where this is even possible), then MAP_FIXED can be used to pass in the desired
mapping address. The system can still be used to choose the desired address if the first such mapping is
made without specifying MAP_FIXED, and then the resulting mapping address can be passed to subse-
quent processes for them to pass in via MAP_FIXED. The availability of a specific address range cannot be
guaranteed, in general.

The mmap() function can be used to map a region of memory that is larger than the current size of the ob-
ject. Memory access within the mapping but beyond the current end of the underlying objects may result in
SIGBUS signals being sent to the process. The reason for this is that the size of the object can be manipu-
lated by other processes and can change at any moment. The implementation should tell the application that
a memory reference is outside the object where this can be detected; otherwise, written data may be lost
and read data may not reflect actual data in the object.

Note that references beyond the end of the object do not extend the object as the new end cannot be deter-
mined precisely by most virtual memory hardware. Instead, the size can be directly manipulated by ftrun-

cate().

Process memory locking does apply to shared memory regions, and the MCL_FUTURE argument to
mlockall() can be relied upon to cause new shared memory regions to be automatically locked.

Existing implementations of mmap() return the value −1 when unsuccessful. Since the casting of this value
to type void * cannot be guaranteed by the ISO C standard to be distinct from a successful value, this vol-
ume of POSIX.1-2017 defines the symbol MAP_FAILED, which a conforming implementation does not
return as the result of a successful call.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fcntl(), fork(), lockf(), msync(), munmap(), mprotect(), posix_typed_mem_open(), shmat(),
sysconf()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 6

MMAP(3P) POSIX Programmer’s Manual MMAP(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 7

MODF(3P) POSIX Programmer’s Manual MODF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
modf, modff, modfl — decompose a floating-point number

SYNOPSIS
#include <math.h>

double modf(double x, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall break the argument x into integral and fractional parts, each of which has the same
sign as the argument. It stores the integral part as a double (for the modf() function), a float (for the modff()
function), or a long double (for the modfl() function), in the object pointed to by iptr.

RETURN VALUE
Upon successful completion, these functions shall return the signed fractional part of x.

If x is NaN, a NaN shall be returned, and *iptr shall be set to a NaN.

If x is ±Inf, ±0 shall be returned, and *iptr shall be set to ±Inf.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The modf() function computes the function result and *iptr such that:

a = modf(x, iptr) ;
x == a+*iptr ;

allowing for the usual floating-point inaccuracies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
frexp(), isnan(), ldexp()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 1

MODF(3P) POSIX Programmer’s Manual MODF(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MPROTECT(3P) POSIX Programmer’s Manual MPROTECT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mprotect — set protection of memory mapping

SYNOPSIS
#include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

DESCRIPTION
The mprotect() function shall change the access protections to be that specified by prot for those whole
pages containing any part of the address space of the process starting at address addr and continuing for len

bytes. The parameter prot determines whether read, write, execute, or some combination of accesses are
permitted to the data being mapped. The prot argument should be either PROT_NONE or the bitwise-inclu-
sive OR of one or more of PROT_READ, PROT_WRITE, and PROT_EXEC.

If an implementation cannot support the combination of access types specified by prot, the call to mpro-

tect() shall fail.

An implementation may permit accesses other than those specified by prot; howev er, no implementation
shall permit a write to succeed where PROT_WRITE has not been set or shall permit any access where
PROT_NONE alone has been set. Implementations shall support at least the following values of prot:
PROT_NONE, PROT_READ, PROT_WRITE, and the bitwise-inclusive OR of PROT_READ and
PROT_WRITE. If PROT_WRITE is specified, the application shall ensure that it has opened the mapped
objects in the specified address range with write permission, unless MAP_PRIVATE was specified in the
original mapping, regardless of whether the file descriptors used to map the objects have since been closed.

The implementation may require that addr be a multiple of the page size as returned by sysconf().

The behavior of this function is unspecified if the mapping was not established by a call to mmap().

When mprotect() fails for reasons other than [EINVAL], the protections on some of the pages in the range
[addr,addr+len) may have been changed.

RETURN VALUE
Upon successful completion, mprotect() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The mprotect() function shall fail if:

EACCES
The prot argument specifies a protection that violates the access permission the process has to the
underlying memory object.

EAGAIN
The prot argument specifies PROT_WRITE over a MAP_PRIVATE mapping and there are insuffi-
cient memory resources to reserve for locking the private page.

ENOMEM
Addresses in the range [addr,addr+len) are invalid for the address space of a process, or specify
one or more pages which are not mapped.

ENOMEM
The prot argument specifies PROT_WRITE on a MAP_PRIVATE mapping, and it would require
more space than the system is able to supply for locking the private pages, if required.

ENOTSUP
The implementation does not support the combination of accesses requested in the prot argument.

The mprotect() function may fail if:

IEEE/The Open Group 2017 1

MPROTECT(3P) POSIX Programmer’s Manual MPROTECT(3P)

EINVAL
The addr argument is not a multiple of the page size as returned by sysconf().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Most implementations require that addr is a multiple of the page size as returned by sysconf().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MQ_CLOSE(3P) POSIX Programmer’s Manual MQ_CLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_close — close a message queue (REALTIME)

SYNOPSIS
#include <mqueue.h>

int mq_close(mqd_t mqdes);

DESCRIPTION
The mq_close() function shall remove the association between the message queue descriptor, mqdes, and its
message queue. The results of using this message queue descriptor after successful return from this
mq_close(), and until the return of this message queue descriptor from a subsequent mq_open(), are unde-
fined.

If the process has successfully attached a notification request to the message queue via this mqdes, this at-
tachment shall be removed, and the message queue is available for another process to attach for notification.

RETURN VALUE
Upon successful completion, the mq_close() function shall return a value of zero; otherwise, the function
shall return a value of −1 and set errno to indicate the error.

ERRORS
The mq_close() function shall fail if:

EBADF
The mqdes argument is not a valid message queue descriptor.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_unlink(), msgctl(), msgget(), msgrcv(), msgsnd()

The Base Definitions volume of POSIX.1-2017, <mqueue.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MQ_GETATTR(3P) POSIX Programmer’s Manual MQ_GETATTR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_getattr — get message queue attributes (REALTIME)

SYNOPSIS
#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

DESCRIPTION
The mq_getattr() function shall obtain status information and attributes of the message queue and the open
message queue description associated with the message queue descriptor.

The mqdes argument specifies a message queue descriptor.

The results shall be returned in the mq_attr structure referenced by the mqstat argument.

Upon return, the following members shall have the values associated with the open message queue descrip-
tion as set when the message queue was opened and as modified by subsequent mq_setattr() calls:
mq_flags.

The following attributes of the message queue shall be returned as set at message queue creation:
mq_maxmsg, mq_msgsize.

Upon return, the following members within the mq_attr structure referenced by the mqstat argument shall
be set to the current state of the message queue:

mq_curmsgs

The number of messages currently on the queue.

RETURN VALUE
Upon successful completion, the mq_getattr() function shall return zero. Otherwise, the function shall re-
turn −1 and set errno to indicate the error.

ERRORS
The mq_getattr() function may fail if:

EBADF
The mqdes argument is not a valid message queue descriptor.

The following sections are informative.

EXAMPLES
See mq_notify().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_notify(), mq_open(), mq_send(), mq_setattr(), msgctl(), msgget(), msgrcv(), msgsnd()

The Base Definitions volume of POSIX.1-2017, <mqueue.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 1

MQ_GETATTR(3P) POSIX Programmer’s Manual MQ_GETATTR(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MQ_NOTIFY(3P) POSIX Programmer’s Manual MQ_NOTIFY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_notify — notify process that a message is available (REALTIME)

SYNOPSIS
#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

DESCRIPTION
If the argument notification is not NULL, this function shall register the calling process to be notified of
message arrival at an empty message queue associated with the specified message queue descriptor, mqdes.
The notification specified by the notification argument shall be sent to the process when the message queue
transitions from empty to non-empty. At any time, only one process may be registered for notification by a
message queue. If the calling process or any other process has already registered for notification of message
arrival at the specified message queue, subsequent attempts to register for that message queue shall fail.

If notification is NULL and the process is currently registered for notification by the specified message
queue, the existing registration shall be removed.

When the notification is sent to the registered process, its registration shall be removed. The message queue
shall then be available for registration.

If a process has registered for notification of message arrival at a message queue and some thread is blocked
in mq_receive() or mq_timedreceive() waiting to receive a message when a message arrives at the queue,
the arriving message shall satisfy the appropriate mq_receive() or mq_timedreceive(), respectively. The re-
sulting behavior is as if the message queue remains empty, and no notification shall be sent.

RETURN VALUE
Upon successful completion, the mq_notify() function shall return a value of zero; otherwise, the function
shall return a value of −1 and set errno to indicate the error.

ERRORS
The mq_notify() function shall fail if:

EBADF
The mqdes argument is not a valid message queue descriptor.

EBUSY
A process is already registered for notification by the message queue.

The mq_notify() function may fail if:

EINVAL
The notification argument is NULL and the process is currently not registered.

The following sections are informative.

EXAMPLES
The following program registers a notification request for the message queue named in its command-line
argument. Notification is performed by creating a thread. The thread executes a function which reads one
message from the queue and then terminates the process.

#include <pthread.h>
#include <mqueue.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

IEEE/The Open Group 2017 1

MQ_NOTIFY(3P) POSIX Programmer’s Manual MQ_NOTIFY(3P)

#include <unistd.h>

static void /* Thread start function */
tfunc(union sigval sv)
{

struct mq_attr attr;
ssize_t nr;
void *buf;
mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

/* Determine maximum msg size; allocate buffer to receive msg */

if (mq_getattr(mqdes, &attr) == -1) {
perror("mq_getattr");
exit(EXIT_FAILURE);

}
buf = malloc(attr.mq_msgsize);

if (buf == NULL) {
perror("malloc");
exit(EXIT_FAILURE);

}

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);
if (nr == -1) {

perror("mq_receive");
exit(EXIT_FAILURE);

}

printf("Read %ld bytes from message queue\n", (long) nr);
free(buf);
exit(EXIT_SUCCESS); /* Terminate the process */

}

int
main(int argc, char *argv[])
{

mqd_t mqdes;
struct sigevent not;

assert(argc == 2);

mqdes = mq_open(argv[1], O_RDONLY);
if (mqdes == (mqd_t) -1) {

perror("mq_open");
exit(EXIT_FAILURE);

}

not.sigev_notify = SIGEV_THREAD;
not.sigev_notify_function = tfunc;
not.sigev_notify_attributes = NULL;
not.sigev_value.sival_ptr = &mqdes; /* Arg. to thread func. */
if (mq_notify(mqdes, ¬) == -1) {

perror("mq_notify");
exit(EXIT_FAILURE);

}

pause(); /* Process will be terminated by thread function */
}

IEEE/The Open Group 2017 2

MQ_NOTIFY(3P) POSIX Programmer’s Manual MQ_NOTIFY(3P)

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), mq_receive(), msgctl(), msgget(), msgrcv(), msgsnd()

The Base Definitions volume of POSIX.1-2017, <mqueue.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

MQ_OPEN(3P) POSIX Programmer’s Manual MQ_OPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_open — open a message queue (REALTIME)

SYNOPSIS
#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...);

DESCRIPTION
The mq_open() function shall establish the connection between a process and a message queue with a mes-
sage queue descriptor. It shall create an open message queue description that refers to the message queue,
and a message queue descriptor that refers to that open message queue description. The message queue de-
scriptor is used by other functions to refer to that message queue. The name argument points to a string
naming a message queue. It is unspecified whether the name appears in the file system and is visible to
other functions that take pathnames as arguments. The name argument conforms to the construction rules
for a pathname, except that the interpretation of <slash> characters other than the leading <slash> character
in name is implementation-defined, and that the length limits for the name argument are implementation-
defined and need not be the same as the pathname limits {PATH_MAX} and {NAME_MAX}. If name be-
gins with the <slash> character, then processes calling mq_open() with the same value of name shall refer
to the same message queue object, as long as that name has not been removed. If name does not begin with
the <slash> character, the effect is implementation-defined. If the name argument is not the name of an ex-
isting message queue and creation is not requested, mq_open() shall fail and return an error.

A message queue descriptor may be implemented using a file descriptor, in which case applications can
open up to at least {OPEN_MAX} file and message queues.

The oflag argument requests the desired receive and/or send access to the message queue. The requested ac-
cess permission to receive messages or send messages shall be granted if the calling process would be
granted read or write access, respectively, to an equivalently protected file.

The value of oflag is the bitwise-inclusive OR of values from the following list. Applications shall specify
exactly one of the first three values (access modes) below in the value of oflag:

O_RDONLY Open the message queue for receiving messages. The process can use the returned message
queue descriptor with mq_receive(), but not mq_send(). A message queue may be open mul-
tiple times in the same or different processes for receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the returned message queue de-
scriptor with mq_send() but not mq_receive(). A message queue may be open multiple times
in the same or different processes for sending messages.

O_RDWR Open the queue for both receiving and sending messages. The process can use any of the
functions allowed for O_RDONLY and O_WRONLY. A message queue may be open multi-
ple times in the same or different processes for sending messages.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT Create a message queue. It requires two additional arguments: mode, which shall be of type
mode_t, and attr, which shall be a pointer to an mq_attr structure. If the pathname name

has already been used to create a message queue that still exists, then this flag shall have no
effect, except as noted under O_EXCL. Otherwise, a message queue shall be created with-
out any messages in it. The user ID of the message queue shall be set to the effective user ID
of the process. The group ID of the message queue shall be set to the effective group ID of
the process; however, if the name argument is visible in the file system, the group ID may be
set to the group ID of the containing directory. When bits in mode other than the file permis-
sion bits are specified, the effect is unspecified. If attr is NULL, the message queue shall be
created with implementation-defined default message queue attributes. If attr is non-NULL

IEEE/The Open Group 2017 1

MQ_OPEN(3P) POSIX Programmer’s Manual MQ_OPEN(3P)

and the calling process has appropriate privileges on name, the message queue mq_maxmsg

and mq_msgsize attributes shall be set to the values of the corresponding members in the
mq_attr structure referred to by attr. The values of the mq_flags and mq_curmsgs mem-
bers of the mq_attr structure shall be ignored. If attr is non-NULL, but the calling process
does not have appropriate privileges on name, the mq_open() function shall fail and return
an error without creating the message queue.

O_EXCL If O_EXCL and O_CREAT are set, mq_open() shall fail if the message queue name exists.
The check for the existence of the message queue and the creation of the message queue if it
does not exist shall be atomic with respect to other threads executing mq_open() naming the
same name with O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set,
the result is undefined.

O_NONBLOCK
Determines whether an mq_send() or mq_receive() waits for resources or messages that are
not currently available, or fails with errno set to [EAGAIN]; see mq_send() and mq_re-

ceive() for details.

The mq_open() function does not add or remove messages from the queue.

RETURN VALUE
Upon successful completion, the function shall return a message queue descriptor; otherwise, the function
shall return (mqd_t)−1 and set errno to indicate the error.

ERRORS
The mq_open() function shall fail if:

EACCES
The message queue exists and the permissions specified by oflag are denied, or the message queue
does not exist and permission to create the message queue is denied.

EEXIST
O_CREAT and O_EXCL are set and the named message queue already exists.

EINTR
The mq_open() function was interrupted by a signal.

EINVAL
The mq_open() function is not supported for the given name.

EINVAL
O_CREAT was specified in oflag, the value of attr is not NULL, and either mq_maxmsg or
mq_msgsize was less than or equal to zero.

EMFILE
Too many message queue descriptors or file descriptors are currently in use by this process.

ENFILE
Too many message queues are currently open in the system.

ENOENT
O_CREAT is not set and the named message queue does not exist.

ENOSPC
There is insufficient space for the creation of the new message queue.

If any of the following conditions occur, the mq_open() function may return (mqd_t)−1 and set errno to the
corresponding value.

ENAMETOOLONG
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems that do not support
the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI systems, or has a pathname compo-
nent that is longer than {_POSIX_NAME_MAX} on systems that do not support the XSI option
or longer than {_XOPEN_NAME_MAX} on XSI systems.

IEEE/The Open Group 2017 2

MQ_OPEN(3P) POSIX Programmer’s Manual MQ_OPEN(3P)

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the mq_open() and mq_unlink() functions to have semantics similar to nor-
mal file system operations.

SEE ALSO
mq_close(), mq_getattr(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(),
msgrcv(), msgsnd()

The Base Definitions volume of POSIX.1-2017, <mqueue.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

MQ_RECEIVE(3P) POSIX Programmer’s Manual MQ_RECEIVE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_receive, mq_timedreceive — receive a message from a message queue (REALTIME)

SYNOPSIS
#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio);

#include <mqueue.h>
#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abstime);

DESCRIPTION
The mq_receive() function shall receive the oldest of the highest priority message(s) from the message
queue specified by mqdes. If the size of the buffer in bytes, specified by the msg_len argument, is less than
the mq_msgsize attribute of the message queue, the function shall fail and return an error. Otherwise, the se-
lected message shall be removed from the queue and copied to the buffer pointed to by the msg_ptr argu-
ment.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

If the argument msg_prio is not NULL, the priority of the selected message shall be stored in the location
referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue description
associated with mqdes, mq_receive() shall block until a message is enqueued on the message queue or until
mq_receive() is interrupted by a signal. If more than one thread is waiting to receive a message when a mes-
sage arrives at an empty queue and the Priority Scheduling option is supported, then the thread of highest
priority that has been waiting the longest shall be selected to receive the message. Otherwise, it is unspeci-
fied which waiting thread receives the message. If the specified message queue is empty and O_NON-
BLOCK is set in the message queue description associated with mqdes, no message shall be removed from
the queue, and mq_receive() shall return an error.

The mq_timedreceive() function shall receive the oldest of the highest priority messages from the message
queue specified by mqdes as described for the mq_receive() function. However, if O_NONBLOCK was not
specified when the message queue was opened via the mq_open() function, and no message exists on the
queue to satisfy the receive, the wait for such a message shall be terminated when the specified timeout ex-
pires. If O_NONBLOCK is set, this function is equivalent to mq_receive().

The timeout expires when the absolute time specified by abstime passes, as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abstime), or if the absolute
time specified by abstime has already been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall be the
resolution of the clock on which it is based. The timespec argument is defined in the <time.h> header.

Under no circumstance shall the operation fail with a timeout if a message can be removed from the mes-
sage queue immediately. The validity of the abstime parameter need not be checked if a message can be re-
moved from the message queue immediately.

RETURN VALUE
Upon successful completion, the mq_receive() and mq_timedreceive() functions shall return the length of
the selected message in bytes and the message shall be removed from the queue. Otherwise, no message
shall be removed from the queue, the functions shall return a value of −1, and set errno to indicate the error.

IEEE/The Open Group 2017 1

MQ_RECEIVE(3P) POSIX Programmer’s Manual MQ_RECEIVE(3P)

ERRORS
These functions shall fail if:

EAGAIN
O_NONBLOCK was set in the message description associated with mqdes, and the specified mes-
sage queue is empty.

EBADF
The mqdes argument is not a valid message queue descriptor open for reading.

EMSGSIZE
The specified message buffer size, msg_len, is less than the message size attribute of the message
queue.

EINTR
The mq_receive() or mq_timedreceive() operation was interrupted by a signal.

EINVAL
The process or thread would have blocked, and the abstime parameter specified a nanoseconds
field value less than zero or greater than or equal to 1 000 million.

ETIMEDOUT
The O_NONBLOCK flag was not set when the message queue was opened, but no message ar-
rived on the queue before the specified timeout expired.

These functions may fail if:

EBADMSG
The implementation has detected a data corruption problem with the message.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), msgctl(), msgget(), msgrcv(), msgsnd(), time()

The Base Definitions volume of POSIX.1-2017, <mqueue.h>, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MQ_SEND(3P) POSIX Programmer’s Manual MQ_SEND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_send, mq_timedsend — send a message to a message queue (REALTIME)

SYNOPSIS
#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio);

#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio, const struct timespec *abstime);

DESCRIPTION
The mq_send() function shall add the message pointed to by the argument msg_ptr to the message queue
specified by mqdes. The msg_len argument specifies the length of the message, in bytes, pointed to by
msg_ptr. The value of msg_len shall be less than or equal to the mq_msgsize attribute of the message
queue, or mq_send() shall fail.

If the specified message queue is not full, mq_send() shall behave as if the message is inserted into the mes-
sage queue at the position indicated by the msg_prio argument. A message with a larger numeric value of
msg_prio shall be inserted before messages with lower values of msg_prio. A message shall be inserted af-
ter other messages in the queue, if any, with equal msg_prio. The value of msg_prio shall be less than
{MQ_PRIO_MAX}.

If the specified message queue is full and O_NONBLOCK is not set in the message queue description asso-
ciated with mqdes, mq_send() shall block until space becomes available to enqueue the message, or until
mq_send() is interrupted by a signal. If more than one thread is waiting to send when space becomes avail-
able in the message queue and the Priority Scheduling option is supported, then the thread of the highest
priority that has been waiting the longest shall be unblocked to send its message. Otherwise, it is unspeci-
fied which waiting thread is unblocked. If the specified message queue is full and O_NONBLOCK is set in
the message queue description associated with mqdes, the message shall not be queued and mq_send() shall
return an error.

The mq_timedsend() function shall add a message to the message queue specified by mqdes in the manner
defined for the mq_send() function. However, if the specified message queue is full and O_NONBLOCK is
not set in the message queue description associated with mqdes, the wait for sufficient room in the queue
shall be terminated when the specified timeout expires. If O_NONBLOCK is set in the message queue de-
scription, this function shall be equivalent to mq_send().

The timeout shall expire when the absolute time specified by abstime passes, as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abstime), or if the absolute
time specified by abstime has already been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall be the
resolution of the clock on which it is based. The timespec argument is defined in the <time.h> header.

Under no circumstance shall the operation fail with a timeout if there is sufficient room in the queue to add
the message immediately. The validity of the abstime parameter need not be checked when there is suffi-
cient room in the queue.

RETURN VALUE
Upon successful completion, the mq_send() and mq_timedsend() functions shall return a value of zero. Oth-
erwise, no message shall be enqueued, the functions shall return −1, and errno shall be set to indicate the
error.

IEEE/The Open Group 2017 1

MQ_SEND(3P) POSIX Programmer’s Manual MQ_SEND(3P)

ERRORS
The mq_send() and mq_timedsend() functions shall fail if:

EAGAIN
The O_NONBLOCK flag is set in the message queue description associated with mqdes, and the
specified message queue is full.

EBADF
The mqdes argument is not a valid message queue descriptor open for writing.

EINTR
A signal interrupted the call to mq_send() or mq_timedsend().

EINVAL
The value of msg_prio was outside the valid range.

EINVAL
The process or thread would have blocked, and the abstime parameter specified a nanoseconds
field value less than zero or greater than or equal to 1 000 million.

EMSGSIZE
The specified message length, msg_len, exceeds the message size attribute of the message queue.

ETIMEDOUT
The O_NONBLOCK flag was not set when the message queue was opened, but the timeout ex-
pired before the message could be added to the queue.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the applica-
tion. Message priorities range from 0 to {MQ_PRIO_MAX}−1.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_receive(), mq_setattr(), time()

The Base Definitions volume of POSIX.1-2017, <mqueue.h>, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MQ_SETATTR(3P) POSIX Programmer’s Manual MQ_SETATTR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_setattr — set message queue attributes (REALTIME)

SYNOPSIS
#include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *restrict mqstat,
struct mq_attr *restrict omqstat);

DESCRIPTION
The mq_setattr() function shall set attributes associated with the open message queue description refer-
enced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr structure
shall be set to the specified values upon successful completion of mq_setattr():

mq_flags The value of this member is the bitwise-logical OR of zero or more of O_NONBLOCK and
any implementation-defined flags.

The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure shall be
ignored by mq_setattr().

If omqstat is non-NULL, the mq_setattr() function shall store, in the location referenced by omqstat, the
previous message queue attributes and the current queue status. These values shall be the same as would be
returned by a call to mq_getattr() at that point.

RETURN VALUE
Upon successful completion, the function shall return a value of zero and the attributes of the message
queue shall have been changed as specified.

Otherwise, the message queue attributes shall be unchanged, and the function shall return a value of −1 and
set errno to indicate the error.

ERRORS
The mq_setattr() function shall fail if:

EBADF
The mqdes argument is not a valid message queue descriptor.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_open(), mq_send(), msgctl(), msgget(), msgrcv(), msgsnd()

The Base Definitions volume of POSIX.1-2017, <mqueue.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

MQ_SETATTR(3P) POSIX Programmer’s Manual MQ_SETATTR(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MQ_TIMEDRECEIVE(3P) POSIX Programmer’s Manual MQ_TIMEDRECEIVE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_timedreceive — receive a message from a message queue (ADVANCED REALTIME)

SYNOPSIS
#include <mqueue.h>
#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to mq_receive().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MQ_TIMEDSEND(3P) POSIX Programmer’s Manual MQ_TIMEDSEND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_timedsend — send a message to a message queue (ADVANCED REALTIME)

SYNOPSIS
#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio, const struct timespec *abstime);

DESCRIPTION
Refer to mq_send().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MQ_UNLINK(3P) POSIX Programmer’s Manual MQ_UNLINK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mq_unlink — remove a message queue (REALTIME)

SYNOPSIS
#include <mqueue.h>

int mq_unlink(const char *name);

DESCRIPTION
The mq_unlink() function shall remove the message queue named by the string name. If one or more pro-
cesses have the message queue open when mq_unlink() is called, destruction of the message queue shall be
postponed until all references to the message queue have been closed. However, the mq_unlink() call need
not block until all references have been closed; it may return immediately.

After a successful call to mq_unlink(), reuse of the name shall subsequently cause mq_open() to behave as
if no message queue of this name exists (that is, mq_open() will fail if O_CREAT is not set, or will create a
new message queue if O_CREAT is set).

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the named message
queue shall be unchanged by this function call, and the function shall return a value of −1 and set errno to
indicate the error.

ERRORS
The mq_unlink() function shall fail if:

EACCES
Permission is denied to unlink the named message queue.

EINTR
The call to mq_unlink() blocked waiting for all references to the named message queue to be
closed and a signal interrupted the call.

ENOENT
The named message queue does not exist.

The mq_unlink() function may fail if:

ENAMETOOLONG
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems that do not support
the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI systems, or has a pathname compo-
nent that is longer than {_POSIX_NAME_MAX} on systems that do not support the XSI option
or longer than {_XOPEN_NAME_MAX} on XSI systems. A call to mq_unlink() with a name ar-
gument that contains the same message queue name as was previously used in a successful
mq_open() call shall not give an [ENAMETOOLONG] error.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the mq_open() and mq_unlink() functions to have semantics similar to nor-
mal file system operations.

IEEE/The Open Group 2017 1

MQ_UNLINK(3P) POSIX Programmer’s Manual MQ_UNLINK(3P)

SEE ALSO
mq_close(), mq_open(), msgctl(), msgget(), msgrcv(), msgsnd()

The Base Definitions volume of POSIX.1-2017, <mqueue.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MRAND48(3P) POSIX Programmer’s Manual MRAND48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
mrand48 — generate uniformly distributed pseudo-random signed long integers

SYNOPSIS
#include <stdlib.h>

long mrand48(void);

DESCRIPTION
Refer to drand48().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MSGCTL(3P) POSIX Programmer’s Manual MSGCTL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
msgctl — XSI message control operations

SYNOPSIS
#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

DESCRIPTION
The msgctl() function operates on XSI message queues (see the Base Definitions volume of POSIX.1-2017,
Section 3.226, Message Queue). It is unspecified whether this function interoperates with the realtime in-
terprocess communication facilities defined in Section 2.8, Realtime.

The msgctl() function shall provide message control operations as specified by cmd . The following values
for cmd , and the message control operations they specify, are:

IPC_STAT Place the current value of each member of the msqid_ds data structure associated with
msqid into the structure pointed to by buf . The contents of this structure are defined in
<sys/msg.h>.

IPC_SET Set the value of the following members of the msqid_ds data structure associated with
msqid to the corresponding value found in the structure pointed to by buf :

msg_perm.uid
msg_perm.gid
msg_perm.mode
msg_qbytes

Also, the msg_ctime timestamp shall be set to the current time, as described in Section 2.7.1,
IPC General Description.

IPC_SET can only be executed by a process with appropriate privileges or that has an effec-
tive user ID equal to the value of msg_perm.cuid or msg_perm.uid in the msqid_ds data
structure associated with msqid . Only a process with appropriate privileges can raise the
value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system and destroy the
message queue and msqid_ds data structure associated with it. IPC_RMD can only be exe-
cuted by a process with appropriate privileges or one that has an effective user ID equal to
the value of msg_perm.cuid or msg_perm.uid in the msqid_ds data structure associated
with msqid .

RETURN VALUE
Upon successful completion, msgctl() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The msgctl() function shall fail if:

EACCES
The argument cmd is IPC_STAT and the calling process does not have read permission; see Sec-

tion 2.7 , XSI Interprocess Communication.

EINVAL
The value of msqid is not a valid message queue identifier; or the value of cmd is not a valid com-
mand.

IEEE/The Open Group 2017 1

MSGCTL(3P) POSIX Programmer’s Manual MSGCTL(3P)

EPERM
The argument cmd is IPC_RMID or IPC_SET and the effective user ID of the calling process is
not equal to that of a process with appropriate privileges and it is not equal to the value of
msg_perm.cuid or msg_perm.uid in the data structure associated with msqid .

EPERM
The argument cmd is IPC_SET, an attempt is being made to increase to the value of msg_qbytes,
and the effective user ID of the calling process does not have appropriate privileges.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication (IPC). Appli-
cation developers who need to use IPC should design their applications so that modules using the IPC rou-
tines described in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alterna-
tive interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, mq_close(), mq_getattr(), mq_no-

tify(), mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgget(), msgrcv(), msgsnd()

The Base Definitions volume of POSIX.1-2017, Section 3.226, Message Queue, <sys_msg.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MSGGET(3P) POSIX Programmer’s Manual MSGGET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
msgget — get the XSI message queue identifier

SYNOPSIS
#include <sys/msg.h>

int msgget(key_t key, int msgflg);

DESCRIPTION
The msgget() function operates on XSI message queues (see the Base Definitions volume of
POSIX.1-2017, Section 3.226, Message Queue). It is unspecified whether this function interoperates with
the realtime interprocess communication facilities defined in Section 2.8, Realtime.

The msgget() function shall return the message queue identifier associated with the argument key.

A message queue identifier, associated message queue, and data structure (see <sys/msg.h>), shall be cre-
ated for the argument key if one of the following is true:

* The argument key is equal to IPC_PRIVATE.

* The argument key does not already have a message queue identifier associated with it, and (msgflg &
IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new message queue identifier shall be initialized as
follows:

* msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid shall be set to the effective
user ID and effective group ID, respectively, of the calling process.

* The low-order 9 bits of msg_perm.mode shall be set to the low-order 9 bits of msgflg.

* msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime shall be set to 0.

* msg_ctime shall be set to the current time, as described in Section 2.7.1, IPC General Description.

* msg_qbytes shall be set to the system limit.

RETURN VALUE
Upon successful completion, msgget() shall return a non-negative integer, namely a message queue identi-
fier. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The msgget() function shall fail if:

EACCES
A message queue identifier exists for the argument key, but operation permission as specified by
the low-order 9 bits of msgflg would not be granted; see Section 2.7 , XSI Interprocess Communi-

cation.

EEXIST
A message queue identifier exists for the argument key but ((msgflg & IPC_CREAT) && (msgflg

& IPC_EXCL)) is non-zero.

ENOENT
A message queue identifier does not exist for the argument key and (msgflg & IPC_CREAT) is 0.

ENOSPC
A message queue identifier is to be created but the system-imposed limit on the maximum number
of allowed message queue identifiers system-wide would be exceeded.

The following sections are informative.

IEEE/The Open Group 2017 1

MSGGET(3P) POSIX Programmer’s Manual MSGGET(3P)

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication (IPC). Appli-
cation developers who need to use IPC should design their applications so that modules using the IPC rou-
tines described in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alterna-
tive interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, ftok(), mq_close(), mq_getattr(),
mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgrcv(), ms-

gsnd()

The Base Definitions volume of POSIX.1-2017, Section 3.226, Message Queue, <sys_msg.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MSGRCV(3P) POSIX Programmer’s Manual MSGRCV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
msgrcv — XSI message receive operation

SYNOPSIS
#include <sys/msg.h>

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,
int msgflg);

DESCRIPTION
The msgrcv() function operates on XSI message queues (see the Base Definitions volume of
POSIX.1-2017, Section 3.226, Message Queue). It is unspecified whether this function interoperates with
the realtime interprocess communication facilities defined in Section 2.8, Realtime.

The msgrcv() function shall read a message from the queue associated with the message queue identifier
specified by msqid and place it in the user-defined buffer pointed to by msgp.

The application shall ensure that the argument msgp points to a user-defined buffer that contains first a field
of type long specifying the type of the message, and then a data portion that holds the data bytes of the
message. The structure below is an example of what this user-defined buffer might look like:

struct mymsg {
long mtype; /* Message type. */
char mtext[1]; /* Message text. */

}

The structure member mtype is the received message’s type as specified by the sending process.

The structure member mtext is the text of the message.

The argument msgsz specifies the size in bytes of mtext. The received message shall be truncated to msgsz

bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is non-zero. The truncated part of the
message shall be lost and no indication of the truncation shall be given to the calling process.

If the value of msgsz is greater than {SSIZE_MAX}, the result is implementation-defined.

The argument msgtyp specifies the type of message requested as follows:

* If msgtyp is 0, the first message on the queue shall be received.

* If msgtyp is greater than 0, the first message of type msgtyp shall be received.

* If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the absolute
value of msgtyp shall be received.

The argument msgflg specifies the action to be taken if a message of the desired type is not on the queue.
These are as follows:

* If (msgflg & IPC_NOWAIT) is non-zero, the calling thread shall return immediately with a return
value of −1 and errno set to [ENOMSG].

* If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the following
occurs:

-- A message of the desired type is placed on the queue.

-- The message queue identifier msqid is removed from the system; when this occurs, errno shall be
set to [EIDRM] and −1 shall be returned.

IEEE/The Open Group 2017 1

MSGRCV(3P) POSIX Programmer’s Manual MSGRCV(3P)

-- The calling thread receives a signal that is to be caught; in this case a message is not received and
the calling thread resumes execution in the manner prescribed in sigaction().

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid:

* msg_qnum shall be decremented by 1.

* msg_lrpid shall be set to the process ID of the calling process.

* msg_rtime shall be set to the current time, as described in Section 2.7.1, IPC General Description.

RETURN VALUE
Upon successful completion, msgrcv() shall return a value equal to the number of bytes actually placed into
the buffer mtext. Otherwise, no message shall be received, msgrcv() shall return −1, and errno shall be set
to indicate the error.

ERRORS
The msgrcv() function shall fail if:

E2BIG The value of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is 0.

EACCES
Operation permission is denied to the calling process; see Section 2.7 , XSI Interprocess Communi-

cation.

EIDRM
The message queue identifier msqid is removed from the system.

EINTR
The msgrcv() function was interrupted by a signal.

EINVAL
msqid is not a valid message queue identifier.

ENOMSG
The queue does not contain a message of the desired type and (msgflg & IPC_NOWAIT) is non-
zero.

The following sections are informative.

EXAMPLES
Receiving a Message

The following example receives the first message on the queue (based on the value of the msgtyp argument,
0). The queue is identified by the msqid argument (assuming that the value has previously been set). This
call specifies that an error should be reported if no message is available, but not if the message is too large.
The message size is calculated directly using the sizeof operator.

#include <sys/msg.h>
...
int result;
int msqid;
struct message {

long type;
char text[20];

} msg;
long msgtyp = 0;
...
result = msgrcv(msqid, (void *) &msg, sizeof(msg.text),

msgtyp, MSG_NOERROR | IPC_NOWAIT);

IEEE/The Open Group 2017 2

MSGRCV(3P) POSIX Programmer’s Manual MSGRCV(3P)

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication (IPC). Appli-
cation developers who need to use IPC should design their applications so that modules using the IPC rou-
tines described in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alterna-
tive interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, mq_close(), mq_getattr(), mq_no-

tify(), mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(), msgsnd(),
sigaction()

The Base Definitions volume of POSIX.1-2017, Section 3.226, Message Queue, <sys_msg.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

MSGSND(3P) POSIX Programmer’s Manual MSGSND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
msgsnd — XSI message send operation

SYNOPSIS
#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

DESCRIPTION
The msgsnd() function operates on XSI message queues (see the Base Definitions volume of
POSIX.1-2017, Section 3.226, Message Queue). It is unspecified whether this function interoperates with
the realtime interprocess communication facilities defined in Section 2.8, Realtime.

The msgsnd() function shall send a message to the queue associated with the message queue identifier spec-
ified by msqid .

The application shall ensure that the argument msgp points to a user-defined buffer that contains first a field
of type long specifying the type of the message, and then a data portion that holds the data bytes of the
message. The structure below is an example of what this user-defined buffer might look like:

struct mymsg {
long mtype; /* Message type. */
char mtext[1]; /* Message text. */

}

The structure member mtype is a non-zero positive type long that can be used by the receiving process for
message selection.

The structure member mtext is any text of length msgsz bytes. The argument msgsz can range from 0 to a
system-imposed maximum.

The argument msgflg specifies the action to be taken if one or more of the following is true:

* The number of bytes already on the queue is equal to msg_qbytes; see <sys/msg.h>.

* The total number of messages on all queues system-wide is equal to the system-imposed limit.

These actions are as follows:

* If (msgflg & IPC_NOWAIT) is non-zero, the message shall not be sent and the calling thread shall re-
turn immediately.

* If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the following
occurs:

-- The condition responsible for the suspension no longer exists, in which case the message is sent.

-- The message queue identifier msqid is removed from the system; when this occurs, errno shall be
set to [EIDRM] and −1 shall be returned.

-- The calling thread receives a signal that is to be caught; in this case the message is not sent and
the calling thread resumes execution in the manner prescribed in sigaction().

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid; see <sys/msg.h>:

* msg_qnum shall be incremented by 1.

* msg_lspid shall be set to the process ID of the calling process.

IEEE/The Open Group 2017 1

MSGSND(3P) POSIX Programmer’s Manual MSGSND(3P)

* msg_stime shall be set to the current time, as described in Section 2.7.1, IPC General Description.

RETURN VALUE
Upon successful completion, msgsnd() shall return 0; otherwise, no message shall be sent, msgsnd() shall
return −1, and errno shall be set to indicate the error.

ERRORS
The msgsnd() function shall fail if:

EACCES
Operation permission is denied to the calling process; see Section 2.7 , XSI Interprocess Communi-

cation.

EAGAIN
The message cannot be sent for one of the reasons cited above and (msgflg & IPC_NOWAIT) is
non-zero.

EIDRM
The message queue identifier msqid is removed from the system.

EINTR
The msgsnd() function was interrupted by a signal.

EINVAL
The value of msqid is not a valid message queue identifier, or the value of mtype is less than 1; or
the value of msgsz is greater than the system-imposed limit.

The following sections are informative.

EXAMPLES
Sending a Message

The following example sends a message to the queue identified by the msqid argument (assuming that value
has previously been set). This call specifies that an error should be reported if no message is available. The
message size is calculated directly using the sizeof operator.

#include <sys/msg.h>
...
int result;
int msqid;
struct message {

long type;
char text[20];

} msg;

msg.type = 1;
strcpy(msg.text, "This is message 1");
...
result = msgsnd(msqid, (void *) &msg, sizeof(msg.text), IPC_NOWAIT);

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication (IPC). Appli-
cation developers who need to use IPC should design their applications so that modules using the IPC rou-
tines described in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alterna-
tive interfaces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 2

MSGSND(3P) POSIX Programmer’s Manual MSGSND(3P)

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, mq_close(), mq_getattr(), mq_no-

tify(), mq_open(), mq_receive(), mq_send(), mq_setattr(), mq_unlink(), msgctl(), msgget(), msgrcv(),
sigaction()

The Base Definitions volume of POSIX.1-2017, Section 3.226, Message Queue, <sys_msg.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

MSYNC(3P) POSIX Programmer’s Manual MSYNC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
msync — synchronize memory with physical storage

SYNOPSIS
#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

DESCRIPTION
The msync() function shall write all modified data to permanent storage locations, if any, in those whole
pages containing any part of the address space of the process starting at address addr and continuing for len

bytes. If no such storage exists, msync() need not have any effect. If requested, the msync() function shall
then invalidate cached copies of data.

The implementation may require that addr be a multiple of the page size as returned by sysconf().

For mappings to files, the msync() function shall ensure that all write operations are completed as defined
for synchronized I/O data integrity completion. It is unspecified whether the implementation also writes out
other file attributes. When the msync() function is called on MAP_PRIVATE mappings, any modified data
shall not be written to the underlying object and shall not cause such data to be made visible to other pro-
cesses. It is unspecified whether data in MAP_PRIVATE mappings has any permanent storage locations.
The effect of msync() on a shared memory object or a typed memory object is unspecified. The behavior of
this function is unspecified if the mapping was not established by a call to mmap().

The flags argument is constructed from the bitwise-inclusive OR of one or more of the following flags de-
fined in the <sys/mman.h> header:

center box tab(!); cB | cB lw(1.5i) | lw(2i). Symbolic Constant!Description _ MS_ASYNC!Perform asyn-
chronous writes. MS_SYNC!Perform synchronous writes. MS_INVALIDATE!Invalidate cached data.

When MS_ASYNC is specified, msync() shall return immediately once all the write operations are initiated
or queued for servicing; when MS_SYNC is specified, msync() shall not return until all write operations are
completed as defined for synchronized I/O data integrity completion. Either MS_ASYNC or MS_SYNC
shall be specified, but not both.

When MS_INVALIDATE is specified, msync() shall invalidate all cached copies of mapped data that are in-
consistent with the permanent storage locations such that subsequent references shall obtain data that was
consistent with the permanent storage locations sometime between the call to msync() and the first subse-
quent memory reference to the data.

If msync() causes any write to a file, the file’s last data modification and last file status change timestamps
shall be marked for update.

RETURN VALUE
Upon successful completion, msync() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The msync() function shall fail if:

EBUSY
Some or all of the addresses in the range starting at addr and continuing for len bytes are locked,
and MS_INVALIDATE is specified.

EINVAL
The value of flags is invalid.

IEEE/The Open Group 2017 1

MSYNC(3P) POSIX Programmer’s Manual MSYNC(3P)

ENOMEM
The addresses in the range starting at addr and continuing for len bytes are outside the range al-
lowed for the address space of a process or specify one or more pages that are not mapped.

The msync() function may fail if:

EINVAL
The value of addr is not a multiple of the page size as returned by sysconf().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The msync() function is only supported if the Synchronized Input and Output option is supported, and thus
need not be available on all implementations.

The msync() function should be used by programs that require a memory object to be in a known state; for
example, in building transaction facilities.

Normal system activity can cause pages to be written to disk. Therefore, there are no guarantees that
msync() is the only control over when pages are or are not written to disk.

RATIONALE
The msync() function writes out data in a mapped region to the permanent storage for the underlying object.
The call to msync() ensures data integrity of the file.

After the data is written out, any cached data may be invalidated if the MS_INVALIDATE flag was speci-
fied. This is useful on systems that do not support read/write consistency.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

MUNLOCK(3P) POSIX Programmer’s Manual MUNLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
munlock — unlock a range of process address space

SYNOPSIS
#include <sys/mman.h>

int munlock(const void *addr, size_t len);

DESCRIPTION
Refer to mlock().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MUNLOCKALL(3P) POSIX Programmer’s Manual MUNLOCKALL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
munlockall — unlock the address space of a process

SYNOPSIS
#include <sys/mman.h>

int munlockall(void);

DESCRIPTION
Refer to mlockall().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

MUNMAP(3P) POSIX Programmer’s Manual MUNMAP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
munmap — unmap pages of memory

SYNOPSIS
#include <sys/mman.h>

int munmap(void *addr, size_t len);

DESCRIPTION
The munmap() function shall remove any mappings for those entire pages containing any part of the ad-
dress space of the process starting at addr and continuing for len bytes. Further references to these pages
shall result in the generation of a SIGSEGV signal to the process. If there are no mappings in the specified
address range, then munmap() has no effect.

The implementation may require that addr be a multiple of the page size as returned by sysconf().

If a mapping to be removed was private, any modifications made in this address range shall be discarded.

Any memory locks (see mlock() and mlockall()) associated with this address range shall be removed, as if
by an appropriate call to munlock().

If a mapping removed from a typed memory object causes the corresponding address range of the memory
pool to be inaccessible by any process in the system except through allocatable mappings (that is, mappings
of typed memory objects opened with the POSIX_TYPED_MEM_MAP_ALLOCATABLE flag), then that
range of the memory pool shall become deallocated and may become available to satisfy future typed mem-
ory allocation requests.

A mapping removed from a typed memory object opened with the POSIX_TYPED_MEM_MAP_ALLO-
CATABLE flag shall not affect in any way the availability of that typed memory for allocation.

The behavior of this function is unspecified if the mapping was not established by a call to mmap().

RETURN VALUE
Upon successful completion, munmap() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The munmap() function shall fail if:

EINVAL
Addresses in the range [addr,addr+len) are outside the valid range for the address space of a
process.

EINVAL
The len argument is 0.

The munmap() function may fail if:

EINVAL
The addr argument is not a multiple of the page size as returned by sysconf().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

IEEE/The Open Group 2017 1

MUNMAP(3P) POSIX Programmer’s Manual MUNMAP(3P)

RATIONALE
The munmap() function corresponds to SVR4, just as the mmap() function does.

It is possible that an application has applied process memory locking to a region that contains shared mem-
ory. If this has occurred, the munmap() call ignores those locks and, if necessary, causes those locks to be
removed.

Most implementations require that addr is a multiple of the page size as returned by sysconf().

FUTURE DIRECTIONS
None.

SEE ALSO
mlock(), mlockall(), mmap(), posix_typed_mem_open(), sysconf()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

NAN(3P) POSIX Programmer’s Manual NAN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
nan, nanf, nanl — return quiet NaN

SYNOPSIS
#include <math.h>

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The function call nan("n-char-sequence") shall be equivalent to:

strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan(" ") shall be equivalent to:

strtod("NAN()", (char **) NULL)

If tagp does not point to an n-char sequence or an empty string, the function call shall be equivalent to:

strtod("NAN", (char **) NULL)

Function calls to nanf() and nanl() are equivalent to the corresponding function calls to strtof() and str-

told().

RETURN VALUE
These functions shall return a quiet NaN, if available, with content indicated through tagp.

If the implementation does not support quiet NaNs, these functions shall return zero.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod()

The Base Definitions volume of POSIX.1-2017, <math.h>

IEEE/The Open Group 2017 1

NAN(3P) POSIX Programmer’s Manual NAN(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

NANOSLEEP(3P) POSIX Programmer’s Manual NANOSLEEP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
nanosleep — high resolution sleep

SYNOPSIS
#include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

DESCRIPTION
The nanosleep() function shall cause the current thread to be suspended from execution until either the time
interval specified by the rqtp argument has elapsed or a signal is delivered to the calling thread, and its ac-
tion is to invoke a signal-catching function or to terminate the process. The suspension time may be longer
than requested because the argument value is rounded up to an integer multiple of the sleep resolution or
because of the scheduling of other activity by the system. But, except for the case of being interrupted by a
signal, the suspension time shall not be less than the time specified by rqtp, as measured by the system
clock CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any signal.

RETURN VALUE
If the nanosleep() function returns because the requested time has elapsed, its return value shall be zero.

If the nanosleep() function returns because it has been interrupted by a signal, it shall return a value of −1
and set errno to indicate the interruption. If the rmtp argument is non-NULL, the timespec structure refer-
enced by it is updated to contain the amount of time remaining in the interval (the requested time minus the
time actually slept). The rqtp and rmtp arguments can point to the same object. If the rmtp argument is
NULL, the remaining time is not returned.

If nanosleep() fails, it shall return a value of −1 and set errno to indicate the error.

ERRORS
The nanosleep() function shall fail if:

EINTR
The nanosleep() function was interrupted by a signal.

EINVAL
The rqtp argument specified a nanosecond value less than zero or greater than or equal to 1 000
million.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
It is common to suspend execution of a thread for an interval in order to poll the status of a non-interrupting
function. A large number of actual needs can be met with a simple extension to sleep() that provides finer
resolution.

In the POSIX.1-1990 standard and SVR4, it is possible to implement such a routine, but the frequency of
wakeup is limited by the resolution of the alarm() and sleep() functions. In 4.3 BSD, it is possible to write
such a routine using no static storage and reserving no system facilities. Although it is possible to write a
function with similar functionality to sleep() using the remainder of the timer_*() functions, such a func-
tion requires the use of signals and the reservation of some signal number. This volume of POSIX.1-2017
requires that nanosleep() be non-intrusive of the signals function.

IEEE/The Open Group 2017 1

NANOSLEEP(3P) POSIX Programmer’s Manual NANOSLEEP(3P)

The nanosleep() function shall return a value of 0 on success and −1 on failure or if interrupted. This latter
case is different from sleep(). This was done because the remaining time is returned via an argument struc-
ture pointer, rmtp, instead of as the return value.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_nanosleep(), sleep()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

NEARBYINT(3P) POSIX Programmer’s Manual NEARBYINT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
nearbyint, nearbyintf, nearbyintl — floating-point rounding functions

SYNOPSIS
#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall round their argument to an integer value in floating-point format, using the current
rounding direction and without raising the inexact floating-point exception.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value. The result shall have
the same sign as x.

If x is NaN, a NaN shall be returned.

If x is ±0, ±0 shall be returned.

If x is ±Inf, x shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The return value
should be tested before assigning it to an integer type to avoid the undefined results of an integer overflow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 1

NEARBYINT(3P) POSIX Programmer’s Manual NEARBYINT(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

NEWLOCALE(3P) POSIX Programmer’s Manual NEWLOCALE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
newlocale — create or modify a locale object

SYNOPSIS
#include <locale.h>

locale_t newlocale(int category_mask, const char *locale,
locale_t base);

DESCRIPTION
The newlocale() function shall create a new locale object or modify an existing one. If the base argument
is (locale_t)0, a new locale object shall be created. It is unspecified whether the locale object pointed to by
base shall be modified, or freed and a new locale object created.

The category_mask argument specifies the locale categories to be set or modified. Values for cate-

gory_mask shall be constructed by a bitwise-inclusive OR of the symbolic constants LC_CTYPE_MASK ,
LC_NUMERIC_MASK , LC_TIME_MASK , LC_COLLATE_MASK , LC_MONETARY_MASK , and
LC_MESSAGES_MASK , or any of the implementation-defined mask values defined in <locale.h>.

For each category with the corresponding bit set in category_mask the data from the locale named by locale

shall be used. In the case of modifying an existing locale object, the data from the locale named by locale

shall replace the existing data within the locale object. If a completely new locale object is created, the data
for all sections not requested by category_mask shall be taken from the default locale.

The following preset values of locale are defined for all settings of category_mask:

"POSIX" Specifies the minimal environment for C-language translation called the POSIX locale.

"C" Equivalent to "POSIX".

" " Specifies an implementation-defined native environment. This corresponds to the value of
the associated environment variables, LC_* and LANG; see the Base Definitions volume of
POSIX.1-2017, Chapter 7 , Locale and Chapter 8, Environment Variables.

If the base argument is not (locale_t)0 and the newlocale() function call succeeds, the contents of base are
unspecified. Applications shall ensure that they stop using base as a locale object before calling newlo-

cale(). If the function call fails and the base argument is not (locale_t)0, the contents of base shall remain
valid and unchanged.

The behavior is undefined if the base argument is the special locale object LC_GLOBAL_LOCALE, or is
not a valid locale object handle and is not (locale_t)0.

RETURN VALUE
Upon successful completion, the newlocale() function shall return a handle which the caller may use on
subsequent calls to duplocale(), freelocale(), and other functions taking a locale_t argument.

Upon failure, the newlocale() function shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The newlocale() function shall fail if:

ENOMEM
There is not enough memory available to create the locale object or load the locale data.

EINVAL
The category_mask contains a bit that does not correspond to a valid category.

ENOENT
For any of the categories in category_mask, the locale data is not available.

The newlocale() function may fail if:

IEEE/The Open Group 2017 1

NEWLOCALE(3P) POSIX Programmer’s Manual NEWLOCALE(3P)

EINVAL
The locale argument is not a valid string pointer.

The following sections are informative.

EXAMPLES
Constructing a Locale Object from Different Locales

The following example shows the construction of a locale where the LC_CTYPE category data comes from
a locale loc1 and the LC_TIME category data from a locale loc2:

#include <locale.h>
...
locale_t loc, new_loc;

/* Get the "loc1" data. */

loc = newlocale (LC_CTYPE_MASK, "loc1", (locale_t)0);
if (loc == (locale_t) 0)

abort ();

/* Get the "loc2" data. */

new_loc = newlocale (LC_TIME_MASK, "loc2", loc);
if (new_loc != (locale_t) 0)

/* We don t abort if this fails. In this case this
simply used to unchanged locale object. */

loc = new_loc;

...

Freeing up a Locale Object
The following example shows a code fragment to free a locale object created by newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", (locale_t)0);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

APPLICATION USAGE
Handles for locale objects created by the newlocale() function should either be released by a corresponding
call to freelocale(), or be used as a base locale to another newlocale() call.

The special locale object LC_GLOBAL_LOCALE must not be passed for the base argument, even when
returned by the uselocale() function.

RATIONALE
None.

IEEE/The Open Group 2017 2

NEWLOCALE(3P) POSIX Programmer’s Manual NEWLOCALE(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), freelocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, Chapter 8, Environment Variables,
<locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

NEXTAFTER(3P) POSIX Programmer’s Manual NEXTAFTER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl — next representable floating-point
number

SYNOPSIS
#include <math.h>

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The nextafter(), nextafterf(), and nextafterl() functions shall compute the next representable floating-point
value following x in the direction of y. Thus, if y is less than x, nextafter() shall return the largest repre-
sentable floating-point number less than x. The nextafter(), nextafterf(), and nextafterl() functions shall re-
turn y if x equals y.

The nexttoward(), nexttowardf(), and nexttowardl() functions shall be equivalent to the corresponding
nextafter() functions, except that the second parameter shall have type long double and the functions shall
return y converted to the type of the function if x equals y.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the next representable floating-point value follow-
ing x in the direction of y.

If x==y, y (of the type x) shall be returned.

If x is finite and the correct function value would overflow, a range error shall occur and ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) shall be returned as appropriate for the re-
turn type of the function.

If x or y is NaN, a NaN shall be returned.

If x!=y and the correct function value is subnormal, zero, or underflows, a range error shall occur, and
the correct function value (if representable) or
0.0 shall be returned.

ERRORS
These functions shall fail if:

Range Error The correct value overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

IEEE/The Open Group 2017 1

NEXTAFTER(3P) POSIX Programmer’s Manual NEXTAFTER(3P)

Range Error The correct value is subnormal or underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

When <tgmath.h> is included, note that the return type of nextafter() depends on the generic typing de-
duced from both arguments, while the return type of nexttoward() depends only on the generic typing of the
first argument.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>, <tgmath.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

NFTW(3P) POSIX Programmer’s Manual NFTW(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
nftw — walk a file tree

SYNOPSIS
#include <ftw.h>

int nftw(const char *path, int (*fn)(const char *,
const struct stat *, int, struct FTW *), int fd_limit, int flags);

DESCRIPTION
The nftw() function shall recursively descend the directory hierarchy rooted in path. The nftw() function
has a similar effect to ftw() except that it takes an additional argument flags, which is a bitwise-inclusive
OR of zero or more of the following flags:

FTW_CHDIR
If set, nftw() shall change the current working directory to each directory as it reports files in
that directory. If clear, nftw() shall not change the current working directory.

FTW_DEPTH
If set, nftw() shall report all files in a directory before reporting the directory itself. If clear,
nftw() shall report any directory before reporting the files in that directory.

FTW_MOUNT
If set, nftw() shall only report files in the same file system as path. If clear, nftw() shall re-
port all files encountered during the walk.

FTW_PHYS If set, nftw() shall perform a physical walk and shall not follow symbolic links.

If FTW_PHYS is clear and FTW_DEPTH is set, nftw() shall follow links instead of reporting them, but
shall not report any directory that would be a descendant of itself. If FTW_PHYS is clear and
FTW_DEPTH is clear, nftw() shall follow links instead of reporting them, but shall not report the contents
of any directory that would be a descendant of itself.

At each file it encounters, nftw() shall call the user-supplied function fn with four arguments:

* The first argument is the pathname of the object.

* The second argument is a pointer to the stat buffer containing information on the object, filled in as if
fstatat(), stat(), or lstat() had been called to retrieve the information.

* The third argument is an integer giving additional information. Its value is one of the following:

FTW_D The object is a directory.

FTW_DNR
The object is a directory that cannot be read. The fn function shall not be called for any of
its descendants.

FTW_DP The object is a directory and subdirectories have been visited. (This condition shall only
occur if the FTW_DEPTH flag is included in flags.)

FTW_F The object is a non-directory file.

FTW_NS The stat() function failed on the object because of lack of appropriate permission. The
stat buffer passed to fn is undefined. Failure of stat() for any other reason is considered an
error and nftw() shall return −1.

FTW_SL The object is a symbolic link. (This condition shall only occur if the FTW_PHYS flag is
included in flags.)

IEEE/The Open Group 2017 1

NFTW(3P) POSIX Programmer’s Manual NFTW(3P)

FTW_SLN The object is a symbolic link that does not name an existing file. (This condition shall
only occur if the FTW_PHYS flag is not included in flags.)

* The fourth argument is a pointer to an FTW structure. The value of base is the offset of the object’s
filename in the pathname passed as the first argument to fn. The value of level indicates depth relative
to the root of the walk, where the root level is 0.

The results are unspecified if the application-supplied fn function does not preserve the current working di-
rectory.

The argument fd_limit sets the maximum number of file descriptors that shall be used by nftw() while
traversing the file tree. At most one file descriptor shall be used for each directory level.

The nftw() function need not be thread-safe.

RETURN VALUE
The nftw() function shall continue until the first of the following conditions occurs:

* An invocation of fn shall return a non-zero value, in which case nftw() shall return that value.

* The nftw() function detects an error other than [EACCES] (see FTW_DNR and FTW_NS above), in
which case nftw() shall return −1 and set errno to indicate the error.

* The tree is exhausted, in which case nftw() shall return 0.

ERRORS
The nftw() function shall fail if:

EACCES
Search permission is denied for any component of path or read permission is denied for path, or
fn returns −1 and does not reset errno.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of path names an existing file that is neither a directory nor a symbolic link to a di-
rectory.

EOVERFLOW
A field in the stat structure cannot be represented correctly in the current programming environ-
ment for one or more files found in the file hierarchy.

The nftw() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

EMFILE
All file descriptors available to the process are currently open.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENFILE
Too many files are currently open in the system.

In addition, errno may be set if the function pointed to by fn causes errno to be set.

The following sections are informative.

IEEE/The Open Group 2017 2

NFTW(3P) POSIX Programmer’s Manual NFTW(3P)

EXAMPLES
The following program traverses the directory tree under the path named in its first command-line argu-
ment, or under the current directory if no argument is supplied. It displays various information about each
file. The second command-line argument can be used to specify characters that control the value assigned to
the flags argument when calling nftw().

#include <ftw.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

static int
display_info(const char *fpath, const struct stat *sb,

int tflag, struct FTW *ftwbuf)
{

printf("%-3s %2d %7jd %-40s %d %s\n",
(tflag == FTW_D) ? "d" : (tflag == FTW_DNR) ? "dnr" :
(tflag == FTW_DP) ? "dp" : (tflag == FTW_F) ?

(S_ISBLK(sb->st_mode) ? "f b" :
S_ISCHR(sb->st_mode) ? "f c" :
S_ISFIFO(sb->st_mode) ? "f p" :
S_ISREG(sb->st_mode) ? "f r" :
S_ISSOCK(sb->st_mode) ? "f s" : "f ?") :

(tflag == FTW_NS) ? "ns" : (tflag == FTW_SL) ? "sl" :
(tflag == FTW_SLN) ? "sln" : "?",
ftwbuf->level, (intmax_t) sb->st_size,
fpath, ftwbuf->base, fpath + ftwbuf->base);

return 0; /* To tell nftw() to continue */
}

int
main(int argc, char *argv[])
{

int flags = 0;

if (argc > 2 && strchr(argv[2], 'd') != NULL)
flags |= FTW_DEPTH;

if (argc > 2 && strchr(argv[2], 'p') != NULL)
flags |= FTW_PHYS;

if (nftw((argc < 2) ? "." : argv[1], display_info, 20, flags) == -1)
{

perror("nftw");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

APPLICATION USAGE
The nftw() function may allocate dynamic storage during its operation. If nftw() is forcibly terminated, such
as by longjmp() or siglongjmp() being executed by the function pointed to by fn or an interrupt routine,
nftw() does not have a chance to free that storage, so it remains permanently allocated. A safe way to handle
interrupts is to store the fact that an interrupt has occurred, and arrange to have the function pointed to by
fn return a non-zero value at its next invocation.

IEEE/The Open Group 2017 3

NFTW(3P) POSIX Programmer’s Manual NFTW(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), fstatat(), readdir()

The Base Definitions volume of POSIX.1-2017, <ftw.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

NICE(3P) POSIX Programmer’s Manual NICE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
nice — change the nice value of a process

SYNOPSIS
#include <unistd.h>

int nice(int incr);

DESCRIPTION
The nice() function shall add the value of incr to the nice value of the calling process. A nice value of a
process is a non-negative number for which a more positive value shall result in less favorable scheduling.

A maximum nice value of 2*{NZERO}−1 and a minimum nice value of 0 shall be imposed by the system.
Requests for values above or below these limits shall result in the nice value being set to the corresponding
limit. Only a process with appropriate privileges can lower the nice value.

Calling the nice() function has no effect on the priority of processes or threads with policy SCHED_FIFO
or SCHED_RR. The effect on processes or threads with other scheduling policies is implementation-de-
fined.

The nice value set with nice() shall be applied to the process. If the process is multi-threaded, the nice value
shall affect all system scope threads in the process.

As −1 is a permissible return value in a successful situation, an application wishing to check for error situa-
tions should set errno to 0, then call nice(), and if it returns −1, check to see whether errno is non-zero.

RETURN VALUE
Upon successful completion, nice() shall return the new nice value −{NZERO}. Otherwise, −1 shall be re-
turned, the nice value of the process shall not be changed, and errno shall be set to indicate the error.

ERRORS
The nice() function shall fail if:

EPERM
The incr argument is negative and the calling process does not have appropriate privileges.

The following sections are informative.

EXAMPLES
Changing the Nice Value

The following example adds the value of the incr argument, −20, to the nice value of the calling process.

#include <unistd.h>
...
int incr = -20;
int ret;

ret = nice(incr);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

NICE(3P) POSIX Programmer’s Manual NICE(3P)

SEE ALSO
exec , getpriority()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

NL_LANGINFO(3P) POSIX Programmer’s Manual NL_LANGINFO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
nl_langinfo, nl_langinfo_l — language information

SYNOPSIS
#include <langinfo.h>

char *nl_langinfo(nl_item item);
char *nl_langinfo_l(nl_item item, locale_t locale);

DESCRIPTION
The nl_langinfo() and nl_langinfo_l() functions shall return a pointer to a string containing information rel-
evant to the particular language or cultural area defined in the current locale, or in the locale represented by
locale, respectively (see <langinfo.h>). The manifest constant names and values of item are defined in
<langinfo.h>. For example:

nl_langinfo(ABDAY_1)

would return a pointer to the string "Dom" if the identified language was Portuguese, and "Sun" if the
identified language was English.

nl_langinfo_l(ABDAY_1, loc)

would return a pointer to the string "Dom" if the identified language of the locale represented by loc was
Portuguese, and "Sun" if the identified language of the locale represented by loc was English.

The nl_langinfo() function need not be thread-safe.

The behavior is undefined if the locale argument to nl_langinfo_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
In a locale where langinfo data is not defined, these functions shall return a pointer to the corresponding
string in the POSIX locale. In all locales, these functions shall return a pointer to an empty string if item

contains an invalid setting.

The application shall not modify the string returned. The pointer returned by nl_langinfo() might be invali-
dated or the string content might be overwritten by a subsequent call to nl_langinfo() in any thread or to
nl_langinfo_l() in the same thread or the initial thread, by subsequent calls to setlocale() with a category
corresponding to the category of item (see <langinfo.h>) or the category LC_ALL, or by subsequent calls
to uselocale() which change the category corresponding to the category of item. The pointer returned by
nl_langinfo_l() might be invalidated or the string content might be overwritten by a subsequent call to
nl_langinfo_l() in the same thread or to nl_langinfo() in any thread, or by subsequent calls to freelocale() or
newlocale() which free or modify the locale object that was passed to nl_langinfo_l(). The returned pointer
and the string content might also be invalidated if the calling thread is terminated.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Getting Date and Time Formatting Information

The following example returns a pointer to a string containing date and time formatting information, as de-
fined in the LC_TIME category of the current locale.

IEEE/The Open Group 2017 1

NL_LANGINFO(3P) POSIX Programmer’s Manual NL_LANGINFO(3P)

#include <time.h>
#include <langinfo.h>
...
strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);
...

APPLICATION USAGE
The array pointed to by the return value should not be modified by the program, but may be modified by
further calls to these functions.

RATIONALE
The possible interactions between internal data used by nl_langinfo() and nl_langinfo_l() are complicated
by the fact that nl_langinfo_l() must be thread-safe but nl_langinfo() need not be. The various implementa-
tion choices are:

1. nl_langinfo_l() and nl_langinfo() use separate buffers, or at least one of them does not use an internal
string buffer. In this case there are no interactions.

2. nl_langinfo_l() and nl_langinfo() share an internal per-thread buffer. There can be interactions, but
only in the same thread.

3. nl_langinfo_l() uses an internal per-thread buffer, and nl_langinfo() uses (in all threads) the same buf-
fer that nl_langinfo_l() uses in the initial thread. There can be interactions, but only when nl_lang-

info_l() is called in the initial thread.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <langinfo.h>, <locale.h>,
<nl_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

NRAND48(3P) POSIX Programmer’s Manual NRAND48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
nrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
#include <stdlib.h>

long nrand48(unsigned short xsubi[3]);

DESCRIPTION
Refer to drand48().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

NTOHL(3P) POSIX Programmer’s Manual NTOHL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <arpa/inet.h>

uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
Refer to htonl().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

OPEN(3P) POSIX Programmer’s Manual OPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
open, openat — open file

SYNOPSIS
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *path, int oflag, ...);
int openat(int fd, const char *path, int oflag, ...);

DESCRIPTION
The open() function shall establish the connection between a file and a file descriptor. It shall create an open
file description that refers to a file and a file descriptor that refers to that open file description. The file de-
scriptor is used by other I/O functions to refer to that file. The path argument points to a pathname naming
the file.

The open() function shall return a file descriptor for the named file, allocated as described in Section 2.14,
File Descriptor Allocation. The open file description is new, and therefore the file descriptor shall not share
it with any other process in the system. The FD_CLOEXEC file descriptor flag associated with the new file
descriptor shall be cleared unless the O_CLOEXEC flag is set in oflag.

The file offset used to mark the current position within the file shall be set to the beginning of the file.

The file status flags and file access modes of the open file description shall be set according to the value of
oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fc-

ntl.h>. Applications shall specify exactly one of the first five values (file access modes) below in the value
of oflag:

O_EXEC Open for execute only (non-directory files). The result is unspecified if this flag is applied
to a directory.

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing. The result is undefined if this flag is applied to a FIFO.

O_SEARCH Open directory for search only. The result is unspecified if this flag is applied to a non-di-
rectory file.

O_WRONLY Open for writing only.

Any combination of the following may be used:

O_APPEND If set, the file offset shall be set to the end of the file prior to each write.

O_CLOEXEC If set, the FD_CLOEXEC flag for the new file descriptor shall be set.

O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL below. Otherwise,
if O_DIRECTORY is not set the file shall be created as a regular file; the user ID of the
file shall be set to the effective user ID of the process; the group ID of the file shall be set
to the group ID of the file’s parent directory or to the effective group ID of the process;
and the access permission bits (see <sys/stat.h>) of the file mode shall be set to the value
of the argument following the oflag argument taken as type mode_t modified as follows: a
bitwise AND is performed on the file-mode bits and the corresponding bits in the comple-
ment of the process’ file mode creation mask. Thus, all bits in the file mode whose corre-
sponding bit in the file mode creation mask is set are cleared. When bits other than the file
permission bits are set, the effect is unspecified. The argument following the oflag argu-
ment does not affect whether the file is open for reading, writing, or for both. Implementa-
tions shall provide a way to initialize the file’s group ID to the group ID of the parent

IEEE/The Open Group 2017 1

OPEN(3P) POSIX Programmer’s Manual OPEN(3P)

directory. Implementations may, but need not, provide an implementation-defined way to
initialize the file’s group ID to the effective group ID of the calling process.

O_DIRECTORY
If path resolves to a non-directory file, fail and set errno to [ENOTDIR].

O_DSYNC Write I/O operations on the file descriptor shall complete as defined by synchronized I/O
data integrity completion.

O_EXCL If O_CREAT and O_EXCL are set, open() shall fail if the file exists. The check for the ex-
istence of the file and the creation of the file if it does not exist shall be atomic with re-
spect to other threads executing open() naming the same filename in the same directory
with O_EXCL and O_CREAT set. If O_EXCL and O_CREAT are set, and path names a
symbolic link, open() shall fail and set errno to [EEXIST], reg ardless of the contents of
the symbolic link. If O_EXCL is set and O_CREAT is not set, the result is undefined.

O_NOCTTY If set and path identifies a terminal device, open() shall not cause the terminal device to
become the controlling terminal for the process. If path does not identify a terminal de-
vice, O_NOCTTY shall be ignored.

O_NOFOLLOW
If path names a symbolic link, fail and set errno to [ELOOP].

O_NONBLOCK
When opening a FIFO with O_RDONLY or O_WRONLY set:

* If O_NONBLOCK is set, an open() for reading-only shall return without delay. An
open() for writing-only shall return an error if no process currently has the file open
for reading.

* If O_NONBLOCK is clear, an open() for reading-only shall block the calling thread
until a thread opens the file for writing. An open() for writing-only shall block the
calling thread until a thread opens the file for reading.

When opening a block special or character special file that supports non-blocking opens:

* If O_NONBLOCK is set, the open() function shall return without blocking for the
device to be ready or available. Subsequent behavior of the device is device-specific.

* If O_NONBLOCK is clear, the open() function shall block the calling thread until
the device is ready or available before returning.

Otherwise, the O_NONBLOCK flag shall not cause an error, but it is unspecified whether
the file status flags will include the O_NONBLOCK flag.

O_RSYNC Read I/O operations on the file descriptor shall complete at the same level of integrity as
specified by the O_DSYNC and O_SYNC flags. If both O_DSYNC and O_RSYNC are
set in oflag, all I/O operations on the file descriptor shall complete as defined by synchro-
nized I/O data integrity completion. If both O_SYNC and O_RSYNC are set in flags, all
I/O operations on the file descriptor shall complete as defined by synchronized I/O file in-
tegrity completion.

O_SYNC Write I/O operations on the file descriptor shall complete as defined by synchronized I/O
file integrity completion.

The O_SYNC flag shall be supported for regular files, even if the Synchronized Input and
Output option is not supported.

O_TRUNC If the file exists and is a regular file, and the file is successfully opened O_RDWR or
O_WRONLY, its length shall be truncated to 0, and the mode and owner shall be un-
changed. It shall have no effect on FIFO special files or terminal device files. Its effect on
other file types is implementation-defined. The result of using O_TRUNC without either
O_RDWR or O_WRONLY is undefined.

IEEE/The Open Group 2017 2

OPEN(3P) POSIX Programmer’s Manual OPEN(3P)

O_TTY_INIT If path identifies a terminal device other than a pseudo-terminal, the device is not already
open in any process, and either O_TTY_INIT is set in oflag or O_TTY_INIT has the
value zero, open() shall set any non-standard termios structure terminal parameters to a
state that provides conforming behavior; see the Base Definitions volume of
POSIX.1-2017, Section 11.2, Parameters that Can be Set. It is unspecified whether
O_TTY_INIT has any effect if the device is already open in any process. If path identifies
the slave side of a pseudo-terminal that is not already open in any process, open() shall set
any non-standard termios structure terminal parameters to a state that provides conform-
ing behavior, reg ardless of whether O_TTY_INIT is set. If path does not identify a termi-
nal device, O_TTY_INIT shall be ignored.

If O_CREAT and O_DIRECTORY are set and the requested access mode is neither O_WRONLY nor
O_RDWR, the result is unspecified.

If O_CREAT is set and the file did not previously exist, upon successful completion, open() shall mark for
update the last data access, last data modification, and last file status change timestamps of the file and the
last data modification and last file status change timestamps of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open() shall mark for up-
date the last data modification and last file status change timestamps of the file.

If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR’ed with either
O_RDONLY, O_WRONLY, or O_RDWR. Other flag values are not applicable to STREAMS devices and
shall have no effect on them. The value O_NONBLOCK affects the operation of STREAMS drivers and
certain functions applied to file descriptors associated with STREAMS files. For STREAMS drivers, the
implementation of O_NONBLOCK is device-specific.

The application shall ensure that it specifies the O_TTY_INIT flag on the first open of a terminal device
since system boot or since the device was closed by the process that last had it open. The application need
not specify the O_TTY_INIT flag when opening pseudo-terminals. If path names the master side of a
pseudo-terminal device, then it is unspecified whether open() locks the slave side so that it cannot be
opened. Conforming applications shall call unlockpt() before opening the slave side.

The largest value that can be represented correctly in an object of type off_t shall be established as the off-
set maximum in the open file description.

The openat() function shall be equivalent to the open() function except in the case where path specifies a
relative path. In this case the file to be opened is determined relative to the directory associated with the file
descriptor fd instead of the current working directory. If the access mode of the open file description asso-
ciated with the file descriptor is not O_SEARCH, the function shall check whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the access mode is
O_SEARCH, the function shall not perform the check.

The oflag parameter and the optional fourth parameter correspond exactly to the parameters of open().

If openat() is passed the special value AT_FDCWD in the fd parameter, the current working directory shall
be used and the behavior shall be identical to a call to open().

RETURN VALUE
Upon successful completion, these functions shall open the file and return a non-negative integer represent-
ing the file descriptor. Otherwise, these functions shall return −1 and set errno to indicate the error. If −1 is
returned, no files shall be created or modified.

ERRORS
These functions shall fail if:

EACCES
Search permission is denied on a component of the path prefix, or the file exists and the permis-
sions specified by oflag are denied, or the file does not exist and write permission is denied for the
parent directory of the file to be created, or O_TRUNC is specified and write permission is denied.

IEEE/The Open Group 2017 3

OPEN(3P) POSIX Programmer’s Manual OPEN(3P)

EEXIST
O_CREAT and O_EXCL are set, and the named file exists.

EINTR
A signal was caught during open().

EINVAL
The implementation does not support synchronized I/O for this file.

EIO The path argument names a STREAMS file and a hangup or error occurred during the open().

EISDIR
The named file is a directory and oflag includes O_WRONLY or O_RDWR, or includes
O_CREAT without O_DIRECTORY.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument, or O_NO-
FOLLOW was specified and the path argument names a symbolic link.

EMFILE
All file descriptors available to the process are currently open.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENFILE
The maximum allowable number of files is currently open in the system.

ENOENT
O_CREAT is not set and a component of path does not name an existing file, or O_CREAT is set
and a component of the path prefix of path does not name an existing file, or path points to an
empty string.

ENOENT or ENOTDIR
O_CREAT is set, and the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters. If path without the trailing <slash> characters would
name an existing file, an [ENOENT] error shall not occur.

ENOSR
The path argument names a STREAMS-based file and the system is unable to allocate a
STREAM.

ENOSPC
The directory or file system that would contain the new file cannot be expanded, the file does not
exist, and O_CREAT is specified.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory; or O_CREAT and O_EXCL are not specified, the path argument contains at
least one non-<slash> character and ends with one or more trailing <slash> characters, and the last
pathname component names an existing file that is neither a directory nor a symbolic link to a di-
rectory; or O_DIRECTORY was specified and the path argument resolves to a non-directory file.

ENXIO
O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set, and no process has the file
open for reading.

ENXIO
The named file is a character special or block special file, and the device associated with this spe-
cial file does not exist.

EOVERFLOW
The named file is a regular file and the size of the file cannot be represented correctly in an object
of type off_t.

IEEE/The Open Group 2017 4

OPEN(3P) POSIX Programmer’s Manual OPEN(3P)

EROFS
The named file resides on a read-only file system and either O_WRONLY, O_RDWR, O_CREAT
(if the file does not exist), or O_TRUNC is set in the oflag argument.

The openat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

EAGAIN
The path argument names the slave side of a pseudo-terminal device that is locked.

EINVAL
The value of the oflag argument is not valid.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENOMEM
The path argument names a STREAMS file and the system is unable to allocate resources.

EOPNOTSUPP
The path argument names a socket.

ETXTBSY
The file is a pure procedure (shared text) file that is being executed and oflag is O_WRONLY or
O_RDWR.

The following sections are informative.

EXAMPLES
Opening a File for Writing by the Owner

The following example opens the file /tmp/file, either by creating it (if it does not already exist), or by trun-
cating its length to 0 (if it does exist). In the former case, if the call creates a new file, the access permission
bits in the file mode of the file are set to permit reading and writing by the owner, and to permit reading
only by group members and others.

If the call to open() is successful, the file is opened for writing.

#include <fcntl.h>
...
int fd;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *pathname = "/tmp/file";
...
fd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

IEEE/The Open Group 2017 5

OPEN(3P) POSIX Programmer’s Manual OPEN(3P)

...

Opening a File Using an Existence Check
The following example uses the open() function to try to create the LOCKFILE file and open it for writ-
ing. Since the open() function specifies the O_EXCL flag, the call fails if the file already exists. In that case,
the program assumes that someone else is updating the password file and exits.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd; /* Integer for file descriptor returned by open() call. */
...
if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}
...

Opening a File for Writing
The following example opens a file for writing, creating the file if it does not already exist. If the file does
exist, the system truncates the file to zero bytes.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
int pfd;
char pathname[PATH_MAX+1];
...
if ((pfd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
{

perror("Cannot open output file\n"); exit(1);
}
...

APPLICATION USAGE
POSIX.1-2008 does not require that terminal parameters be automatically set to any state on first open, nor
that they be reset after the last close. It is possible for a non-conforming application to leave a terminal de-
vice in a state where the next process to use that device finds it in a non-conforming state, but has no way of
determining this. To ensure that the device is set to a conforming initial state, applications which perform a
first open of a terminal (other than a pseudo-terminal) should do so using the O_TTY_INIT flag to set the
parameters associated with the terminal to a conforming state.

Except as specified in this volume of POSIX.1-2017, the flags allowed in oflag are not mutually-exclusive
and any number of them may be used simultaneously. Not all combinations of flags make sense. For exam-
ple, using O_SEARCH | O_CREAT will successfully open a pre-existing directory for searching, but if
there is no existing file by that name, then it is unspecified whether a regular file will be created. Likewise,
if a non-directory file descriptor is successfully returned, it is unspecified whether that descriptor will have

IEEE/The Open Group 2017 6

OPEN(3P) POSIX Programmer’s Manual OPEN(3P)

execute permissions as if by O_EXEC (note that it is unspecified whether O_EXEC and O_SEARCH have
the same value).

RATIONALE
Some implementations permit opening FIFOs with O_RDWR. Since FIFOs could be implemented in other
ways, and since two file descriptors can be used to the same effect, this possibility is left as undefined.

See getgroups() about the group of a newly created file.

The use of open() to create a regular file is preferable to the use of creat(), because the latter is redundant
and included only for historical reasons.

The use of the O_TRUNC flag on FIFOs and directories (pipes cannot be open()-ed) must be permissible
without unexpected side-effects (for example, creat() on a FIFO must not remove data). Since terminal spe-
cial files might have type-ahead data stored in the buffer, O_TRUNC should not affect their content, partic-
ularly if a program that normally opens a regular file should open the current controlling terminal instead.
Other file types, particularly implementation-defined ones, are left implementation-defined.

POSIX.1-2008 permits [EACCES] to be returned for conditions other than those explicitly listed.

The O_NOCTTY flag was added to allow applications to avoid unintentionally acquiring a controlling ter-
minal as a side-effect of opening a terminal file. This volume of POSIX.1-2017 does not specify how a con-
trolling terminal is acquired, but it allows an implementation to provide this on open() if the O_NOCTTY
flag is not set and other conditions specified in the Base Definitions volume of POSIX.1-2017, Chapter 11,
General Terminal Interface are met.

In historical implementations the value of O_RDONLY is zero. Because of that, it is not possible to detect
the presence of O_RDONLY and another option. Future implementations should encode O_RDONLY and
O_WRONLY as bit flags so that:

O_RDONLY | O_WRONLY == O_RDWR

O_EXEC and O_SEARCH are specified as two of the five file access modes. Since O_EXEC does not ap-
ply to directories, and O_SEARCH only applies to directories, their values need not be distinct. Since
O_RDONLY has historically had the value zero, implementations are not able to distinguish between
O_SEARCH and O_SEARCH | O_RDONLY, and similarly for O_EXEC.

In general, the open() function follows the symbolic link if path names a symbolic link. However, the
open() function, when called with O_CREAT and O_EXCL, is required to fail with [EEXIST] if path

names an existing symbolic link, even if the symbolic link refers to a nonexistent file. This behavior is re-
quired so that privileged applications can create a new file in a known location without the possibility that a
symbolic link might cause the file to be created in a different location.

For example, a privileged application that must create a file with a predictable name in a user-writable di-
rectory, such as the user’s home directory, could be compromised if the user creates a symbolic link with
that name that refers to a nonexistent file in a system directory. If the user can influence the contents of a
file, the user could compromise the system by creating a new system configuration or spool file that would
then be interpreted by the system. The test for a symbolic link which refers to a nonexisting file must be
atomic with the creation of a new file.

In addition, the open() function refuses to open non-directories if the O_DIRECTORY flag is set. This
avoids race conditions whereby a user might compromise the system by substituting a hard link to a sensi-
tive file (e.g., a device or a FIFO) while a privileged application is running, where opening a file even for
read access might have undesirable side-effects.

In addition, the open() function does not follow symbolic links if the O_NOFOLLOW flag is set. This
avoids race conditions whereby a user might compromise the system by substituting a symbolic link to a
sensitive file (e.g., a device) while a privileged application is running, where opening a file even for read ac-
cess might have undesirable side-effects.

The POSIX.1-1990 standard required that the group ID of a newly created file be set to the group ID of its

IEEE/The Open Group 2017 7

OPEN(3P) POSIX Programmer’s Manual OPEN(3P)

parent directory or to the effective group ID of the creating process. FIPS 151-2 required that implementa-
tions provide a way to have the group ID be set to the group ID of the containing directory, but did not pro-
hibit implementations also supporting a way to set the group ID to the effective group ID of the creating
process. Conforming applications should not assume which group ID will be used. If it matters, an applica-
tion can use chown() to set the group ID after the file is created, or determine under what conditions the im-
plementation will set the desired group ID.

The purpose of the openat() function is to enable opening files in directories other than the current working
directory without exposure to race conditions. Any part of the path of a file could be changed in parallel to
a call to open(), resulting in unspecified behavior. By opening a file descriptor for the target directory and
using the openat() function it can be guaranteed that the opened file is located relative to the desired direc-
tory. Some implementations use the openat() function for other purposes as well. In some cases, if the oflag

parameter has the O_XATTR bit set, the returned file descriptor provides access to extended attributes. This
functionality is not standardized here.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), close(), creat(), dirfd(), dup(), exec , fcntl(), fdopendir(), link(), lseek(), mkdtemp(),
mknod(), read(), symlink(), umask(), unlockpt(), write()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <fcntl.h>,
<sys_stat.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 8

OPEN_MEMSTREAM(3P) POSIX Programmer’s Manual OPEN_MEMSTREAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
open_memstream, open_wmemstream — open a dynamic memory buffer stream

SYNOPSIS
#include <stdio.h>

FILE *open_memstream(char **bufp, size_t *sizep);

#include <wchar.h>

FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

DESCRIPTION
The open_memstream() and open_wmemstream() functions shall create an I/O stream associated with a dy-
namically allocated memory buffer. The stream shall be opened for writing and shall be seekable.

The stream associated with a call to open_memstream() shall be byte-oriented.

The stream associated with a call to open_wmemstream() shall be wide-oriented.

The stream shall maintain a current position in the allocated buffer and a current buffer length. The position
shall be initially set to zero (the start of the buffer). Each write to the stream shall start at the current posi-
tion and move this position by the number of successfully written bytes for open_memstream() or the num-
ber of successfully written wide characters for open_wmemstream(). The length shall be initially set to
zero. If a write moves the position to a value larger than the current length, the current length shall be set to
this position. In this case a null character for open_memstream() or a null wide character for open_wmem-

stream() shall be appended to the current buffer. For both functions the terminating null is not included in
the calculation of the buffer length.

After a successful fflush() or fclose(), the pointer referenced by bufp shall contain the address of the buffer,
and the variable pointed to by sizep shall contain the smaller of the current buffer length and the number of
bytes for open_memstream(), or the number of wide characters for open_wmemstream(), between the be-
ginning of the buffer and the current file position indicator.

After a successful fflush() the pointer referenced by bufp and the variable referenced by sizep remain valid
only until the next write operation on the stream or a call to fclose().

After a successful fclose(), the pointer referenced by bufp can be passed to free().

RETURN VALUE
Upon successful completion, these functions shall return a pointer to the object controlling the stream. Oth-
erwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
These functions shall fail if:

EMFILE
{STREAM_MAX} streams are currently open in the calling process.

These functions may fail if:

EINVAL
bufp or sizep are NULL.

EMFILE
{FOPEN_MAX} streams are currently open in the calling process.

ENOMEM
Memory for the stream or the buffer could not be allocated.

The following sections are informative.

IEEE/The Open Group 2017 1

OPEN_MEMSTREAM(3P) POSIX Programmer’s Manual OPEN_MEMSTREAM(3P)

EXAMPLES
#include <stdio.h>
#include <stdlib.h>

int
main (void)
{

FILE *stream;
char *buf;
size_t len;
off_t eob;

stream = open_memstream (&buf, &len);
if (stream == NULL)

/* handle error */ ;
fprintf (stream, "hello my world");
fflush (stream);
printf ("buf=%s, len=%zu\n", buf, len);
eob = ftello(stream);
fseeko (stream, 0, SEEK_SET);
fprintf (stream, "good-bye");
fseeko (stream, eob, SEEK_SET);
fclose (stream);
printf ("buf=%s, len=%zu\n", buf, len);
free (buf);
return 0;

}

This program produces the following output:

buf=hello my world, len=14
buf=good-bye world, len=14

APPLICATION USAGE
The buffer created by these functions should be freed by the application after closing the stream, by means
of a call to free().

RATIONALE
These functions are similar to fmemopen() except that the memory is always allocated dynamically by the
function, and the stream is opened only for output.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fdopen(), fflush(), fmemopen(), fopen(), free(), freopen()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 2

OPEN_MEMSTREAM(3P) POSIX Programmer’s Manual OPEN_MEMSTREAM(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

OPENAT(3P) POSIX Programmer’s Manual OPENAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
openat — open file relative to directory file descriptor

SYNOPSIS
#include <fcntl.h>

int openat(int fd, const char *path, int oflag, ...);

DESCRIPTION
Refer to open().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

OPENDIR(3P) POSIX Programmer’s Manual OPENDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
opendir — open directory associated with file descriptor

SYNOPSIS
#include <dirent.h>

DIR *opendir(const char *dirname);

DESCRIPTION
Refer to fdopendir().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

OPENLOG(3P) POSIX Programmer’s Manual OPENLOG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
openlog — open a connection to the logging facility

SYNOPSIS
#include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

DESCRIPTION
Refer to closelog().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

OPTARG(3P) POSIX Programmer’s Manual OPTARG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
optarg, opterr, optind, optopt — options parsing variables

SYNOPSIS
#include <unistd.h>

extern char *optarg;
extern int opterr, optind, optopt;

DESCRIPTION
Refer to getopt().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PATHCONF(3P) POSIX Programmer’s Manual PATHCONF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long pathconf(const char *path, int name);

DESCRIPTION
Refer to fpathconf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PA USE(3P) POSIX Programmer’s Manual PAUSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pause — suspend the thread until a signal is received

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
The pause() function shall suspend the calling thread until delivery of a signal whose action is either to exe-
cute a signal-catching function or to terminate the process.

If the action is to terminate the process, pause() shall not return.

If the action is to execute a signal-catching function, pause() shall return after the signal-catching function
returns.

RETURN VALUE
Since pause() suspends thread execution indefinitely unless interrupted by a signal, there is no successful
completion return value. A value of −1 shall be returned and errno set to indicate the error.

ERRORS
The pause() function shall fail if:

EINTR
A signal is caught by the calling process and control is returned from the signal-catching function.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Many common uses of pause() have timing windows. The scenario involves checking a condition related to
a signal and, if the signal has not occurred, calling pause(). When the signal occurs between the check and
the call to pause(), the process often blocks indefinitely. The sigprocmask() and sigsuspend() functions can
be used to avoid this type of problem.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigsuspend()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PCLOSE(3P) POSIX Programmer’s Manual PCLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pclose — close a pipe stream to or from a process

SYNOPSIS
#include <stdio.h>

int pclose(FILE *stream);

DESCRIPTION
The pclose() function shall close a stream that was opened by popen(), wait for the command to terminate,
and return the termination status of the process that was running the command language interpreter. How-
ev er, if a call caused the termination status to be unavailable to pclose(), then pclose() shall return −1 with
errno set to [ECHILD] to report this situation. This can happen if the application calls one of the following
functions:

* wait()

* waitpid() with a pid argument less than or equal to 0 or equal to the process ID of the command line
interpreter

* Any other function not defined in this volume of POSIX.1-2017 that could do one of the above

In any case, pclose() shall not return before the child process created by popen() has terminated.

If the command language interpreter cannot be executed, the child termination status returned by pclose()
shall be as if the command language interpreter terminated using exit(127) or _exit(127).

The pclose() function shall not affect the termination status of any child of the calling process other than the
one created by popen() for the associated stream.

If the argument stream to pclose() is not a pointer to a stream created by popen(), the result of pclose() is
undefined.

If a thread is canceled during execution of pclose(), the behavior is undefined.

RETURN VALUE
Upon successful return, pclose() shall return the termination status of the command language interpreter.
Otherwise, pclose() shall return −1 and set errno to indicate the error.

ERRORS
The pclose() function shall fail if:

ECHILD
The status of the child process could not be obtained, as described above.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There is a requirement that pclose() not return before the child process terminates. This is intended to disal-
low implementations that return [EINTR] if a signal is received while waiting. If pclose() returned before
the child terminated, there would be no way for the application to discover which child used to be associ-
ated with the stream, and it could not do the cleanup itself.

If the stream pointed to by stream was not created by popen(), historical implementations of pclose() return
−1 without setting errno. To avoid requiring pclose() to set errno in this case, POSIX.1-2008 makes the

IEEE/The Open Group 2017 1

PCLOSE(3P) POSIX Programmer’s Manual PCLOSE(3P)

behavior unspecified. An application should not use pclose() to close any stream that was not created by
popen().

Some historical implementations of pclose() either block or ignore the signals SIGINT, SIGQUIT, and
SIGHUP while waiting for the child process to terminate. Since this behavior is not described for the
pclose() function in POSIX.1-2008, such implementations are not conforming. Also, some historical imple-
mentations return [EINTR] if a signal is received, even though the child process has not terminated. Such
implementations are also considered non-conforming.

Consider, for example, an application that uses:

popen("command", "r")

to start command , which is part of the same application. The parent writes a prompt to its standard output
(presumably the terminal) and then reads from the popen()ed stream. The child reads the response from the
user, does some transformation on the response (pathname expansion, perhaps) and writes the result to its
standard output. The parent process reads the result from the pipe, does something with it, and prints an-
other prompt. The cycle repeats. Assuming that both processes do appropriate buffer flushing, this would be
expected to work.

To conform to POSIX.1-2008, pclose() must use waitpid(), or some similar function, instead of wait().

The code sample below illustrates how the pclose() function might be implemented on a system conforming
to POSIX.1-2008.

int pclose(FILE *stream)
{

int stat;
pid_t pid;

pid = <pid for process created for stream by popen()>
(void) fclose(stream);
while (waitpid(pid, &stat, 0) == -1) {

if (errno != EINTR){
stat = -1;
break;

}
}
return(stat);

}

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), popen(), wait()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 2

PCLOSE(3P) POSIX Programmer’s Manual PCLOSE(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PERROR(3P) POSIX Programmer’s Manual PERROR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
perror — write error messages to standard error

SYNOPSIS
#include <stdio.h>

void perror(const char *s);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The perror() function shall map the error number accessed through the symbol errno to a language-depen-
dent error message, which shall be written to the standard error stream as follows:

* First (if s is not a null pointer and the character pointed to by s is not the null byte), the string pointed
to by s followed by a <colon> and a <space>.

* Then an error message string followed by a <newline>.

The contents of the error message strings shall be the same as those returned by strerror() with argument
errno.

The perror() function shall mark for update the last data modification and last file status change timestamps
of the file associated with the standard error stream at some time between its successful completion and
exit(), abort(), or the completion of fflush() or fclose() on stderr.

The perror() function shall not change the orientation of the standard error stream.

On error, perror() shall set the error indicator for the stream to which stderr points, and shall set errno to
indicate the error.

Since no value is returned, an application wishing to check for error situations should call clearerr(stderr)
before calling perror(), then if ferror(stderr) returns non-zero, the value of errno indicates which error oc-
curred.

RETURN VALUE
The perror() function shall not return a value.

ERRORS
Refer to fputc().

The following sections are informative.

EXAMPLES
Printing an Error Message for a Function

The following example replaces bufptr with a buffer that is the necessary size. If an error occurs, the per-

ror() function prints a message and the program exits.

#include <stdio.h>
#include <stdlib.h>
...
char *bufptr;
size_t szbuf;
...
if ((bufptr = malloc(szbuf)) == NULL) {

perror("malloc"); exit(2);

IEEE/The Open Group 2017 1

PERROR(3P) POSIX Programmer’s Manual PERROR(3P)

}
...

APPLICATION USAGE
Application writers may prefer to use alternative interfaces instead of perror(), such as strerror_r() in com-
bination with fprintf().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), fputc(), psiginfo(), strerror()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PIPE(3P) POSIX Programmer’s Manual PIPE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pipe — create an interprocess channel

SYNOPSIS
#include <unistd.h>

int pipe(int fildes[2]);

DESCRIPTION
The pipe() function shall create a pipe and place two file descriptors, one each into the arguments fildes[0]
and fildes[1], that refer to the open file descriptions for the read and write ends of the pipe. The file descrip-
tors shall be allocated as described in Section 2.14, File Descriptor Allocation. The O_NONBLOCK and
FD_CLOEXEC flags shall be clear on both file descriptors. (The fcntl() function can be used to set both
these flags.)

Data can be written to the file descriptor fildes[1] and read from the file descriptor fildes[0]. A read on the
file descriptor fildes[0] shall access data written to the file descriptor fildes[1] on a first-in-first-out basis. It
is unspecified whether fildes[0] is also open for writing and whether fildes[1] is also open for reading.

A process has the pipe open for reading (correspondingly writing) if it has a file descriptor open that refers
to the read end, fildes[0] (write end, fildes[1]).

The pipe’s user ID shall be set to the effective user ID of the calling process.

The pipe’s group ID shall be set to the effective group ID of the calling process.

Upon successful completion, pipe() shall mark for update the last data access, last data modification, and
last file status change timestamps of the pipe.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to indicate
the error, no file descriptors shall be allocated and the contents of fildes shall be left unmodified.

ERRORS
The pipe() function shall fail if:

EMFILE
All, or all but one, of the file descriptors available to the process are currently open.

ENFILE
The number of simultaneously open files in the system would exceed a system-imposed limit.

The following sections are informative.

EXAMPLES
Using a Pipe to Pass Data Between a Parent Process and a Child Process

The following example demonstrates the use of a pipe to transfer data between a parent process and a child
process. Error handling is excluded, but otherwise this code demonstrates good practice when using pipes:
after the fork() the two processes close the unused ends of the pipe before they commence transferring data.

#include <stdlib.h>
#include <unistd.h>
...

int fildes[2];
const int BSIZE = 100;
char buf[BSIZE];
ssize_t nbytes;

IEEE/The Open Group 2017 1

PIPE(3P) POSIX Programmer’s Manual PIPE(3P)

int status;

status = pipe(fildes);
if (status == -1) {

/* an error occurred */
...

}

switch (fork()) {
case -1: /* Handle error */

break;

case 0: /* Child - reads from pipe */
close(fildes[1]); /* Write end is unused */
nbytes = read(fildes[0], buf, BSIZE); /* Get data from pipe */
/* At this point, a further read would see end-of-file ... */
close(fildes[0]); /* Finished with pipe */
exit(EXIT_SUCCESS);

default: /* Parent - writes to pipe */
close(fildes[0]); /* Read end is unused */
write(fildes[1], "Hello world\n", 12); /* Write data on pipe */
close(fildes[1]); /* Child will see EOF */
exit(EXIT_SUCCESS);

}

APPLICATION USAGE
None.

RATIONALE
The wording carefully avoids using the verb ‘‘to open’’ in order to avoid any implication of use of open();
see also write().

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14, File Descriptor Allocation, fcntl(), read(), write()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POLL(3P) POSIX Programmer’s Manual POLL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
poll — input/output multiplexing

SYNOPSIS
#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

DESCRIPTION
The poll() function provides applications with a mechanism for multiplexing input/output over a set of file
descriptors. For each member of the array pointed to by fds, poll() shall examine the given file descriptor
for the event(s) specified in events. The number of pollfd structures in the fds array is specified by nfds.
The poll() function shall identify those file descriptors on which an application can read or write data, or on
which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of interest for each file de-
scriptor. It is a pointer to an array with one member for each open file descriptor of interest. The array’s
members are pollfd structures within which fd specifies an open file descriptor and events and re vents are
bitmasks constructed by OR’ing a combination of the following event flags:

POLLIN Data other than high-priority data may be read without blocking.

For STREAMS, this flag is set in re vents ev en if the message is of zero length. This flag
shall be equivalent to POLLRDNORM | POLLRDBAND.

POLLRDNORM
Normal data may be read without blocking.

For STREAMS, data on priority band 0 may be read without blocking. This flag is set in
re vents ev en if the message is of zero length.

POLLRDBAND
Priority data may be read without blocking.

For STREAMS, data on priority bands greater than 0 may be read without blocking. This
flag is set in re vents ev en if the message is of zero length.

POLLPRI High-priority data may be read without blocking.

For STREAMS, this flag is set in re vents ev en if the message is of zero length.

POLLOUT Normal data may be written without blocking.

For STREAMS, data on priority band 0 may be written without blocking.

POLLWRNORM
Equivalent to POLLOUT.

POLLWRBAND
Priority data may be written.

For STREAMS, data on priority bands greater than 0 may be written without blocking. If
any priority band has been written to on this STREAM, this event only examines bands that
have been written to at least once.

POLLERR An error has occurred on the device or stream. This flag is only valid in the re vents bitmask;
it shall be ignored in the events member.

POLLHUP A device has been disconnected, or a pipe or FIFO has been closed by the last process that
had it open for writing. Once set, the hangup state of a FIFO shall persist until some process
opens the FIFO for writing or until all read-only file descriptors for the FIFO are closed.

IEEE/The Open Group 2017 1

POLL(3P) POSIX Programmer’s Manual POLL(3P)

This event and POLLOUT are mutually-exclusive; a stream can never be writable if a
hangup has occurred. However, this event and POLLIN, POLLRDNORM, POLLRDBAND,
or POLLPRI are not mutually-exclusive. This flag is only valid in the re vents bitmask; it
shall be ignored in the events member.

POLLNVAL The specified fd value is invalid. This flag is only valid in the re vents member; it shall ig-
nored in the events member.

The significance and semantics of normal, priority, and high-priority data are file and device-specific.

If the value of fd is less than 0, events shall be ignored, and re vents shall be set to 0 in that entry on return
from poll().

In each pollfd structure, poll() shall clear the re vents member, except that where the application requested a
report on a condition by setting one of the bits of events listed above, poll() shall set the corresponding bit
in re vents if the requested condition is true. In addition, poll() shall set the POLLHUP, POLLERR, and
POLLNVAL flag in re vents if the condition is true, even if the application did not set the corresponding bit
in events.

If none of the defined events have occurred on any selected file descriptor, poll() shall wait at least timeout

milliseconds for an event to occur on any of the selected file descriptors. If the value of timeout is 0, poll()
shall return immediately. If the value of timeout is −1, poll() shall block until a requested event occurs or
until the call is interrupted.

Implementations may place limitations on the granularity of timeout intervals. If the requested timeout in-
terval requires a finer granularity than the implementation supports, the actual timeout interval shall be
rounded up to the next supported value.

The poll() function shall not be affected by the O_NONBLOCK flag.

The poll() function shall support regular files, terminal and pseudo-terminal devices, FIFOs, pipes, sockets
and STREAMS-based files. The behavior of poll() on elements of fds that refer to other types of file is un-
specified.

Regular files shall always poll TRUE for reading and writing.

A file descriptor for a socket that is listening for connections shall indicate that it is ready for reading, once
connections are available. A file descriptor for a socket that is connecting asynchronously shall indicate
that it is ready for writing, once a connection has been established.

Provided the application does not perform any action that results in unspecified or undefined behavior, the
value of the fd and events members of each element of fds shall not be modified by poll().

RETURN VALUE
Upon successful completion, poll() shall return a non-negative value. A positive value indicates the total
number of pollfd structures that have selected events (that is, those for which the re vents member is non-
zero). A value of 0 indicates that the call timed out and no file descriptors have been selected. Upon failure,
poll() shall return −1 and set errno to indicate the error.

ERRORS
The poll() function shall fail if:

EAGAIN
The allocation of internal data structures failed but a subsequent request may succeed.

EINTR
A signal was caught during poll().

EINVAL
The nfds argument is greater than {OPEN_MAX}, or one of the fd members refers to a STREAM
or multiplexer that is linked (directly or indirectly) downstream from a multiplexer.

The following sections are informative.

IEEE/The Open Group 2017 2

POLL(3P) POSIX Programmer’s Manual POLL(3P)

EXAMPLES
Checking for Events on a Stream

The following example opens a pair of STREAMS devices and then waits for either one to become
writable. This example proceeds as follows:

1. Sets the timeout parameter to 500 milliseconds.

2. Opens the STREAMS devices /dev/dev0 and /dev/dev1, and then polls them, specifying POLLOUT
and POLLWRBAND as the events of interest.

The STREAMS device names /dev/dev0 and /dev/dev1 are only examples of how STREAMS devices
can be named; STREAMS naming conventions may vary among systems conforming to the
POSIX.1-2008.

3. Uses the ret variable to determine whether an event has occurred on either of the two STREAMS. The
poll() function is given 500 milliseconds to wait for an event to occur (if it has not occurred prior to
the poll() call).

4. Checks the returned value of ret. If a positive value is returned, one of the following can be done:

a. Priority data can be written to the open STREAM on priority bands greater than 0, because the
POLLWRBAND event occurred on the open STREAM (fds[0] or fds[1]).

b. Data can be written to the open STREAM on priority-band 0, because the POLLOUT event oc-
curred on the open STREAM (fds[0] or fds[1]).

5. If the returned value is not a positive value, permission to write data to the open STREAM (on any pri-
ority band) is denied.

6. If the POLLHUP event occurs on the open STREAM (fds[0] or fds[1]), the device on the open
STREAM has disconnected.

#include <stropts.h>
#include <poll.h>
...
struct pollfd fds[2];
int timeout_msecs = 500;
int ret;

int i;

/* Open STREAMS device. */
fds[0].fd = open("/dev/dev0", ...);
fds[1].fd = open("/dev/dev1", ...);
fds[0].events = POLLOUT | POLLWRBAND;
fds[1].events = POLLOUT | POLLWRBAND;

ret = poll(fds, 2, timeout_msecs);

if (ret > 0) {
/* An event on one of the fds has occurred. */
for (i=0; i<2; i++) {

if (fds[i].revents & POLLWRBAND) {
/* Priority data may be written on device number i. */

...
}
if (fds[i].revents & POLLOUT) {
/* Data may be written on device number i. */

...
}
if (fds[i].revents & POLLHUP) {
/* A hangup has occurred on device number i. */

IEEE/The Open Group 2017 3

POLL(3P) POSIX Programmer’s Manual POLL(3P)

...
}

}
}

APPLICATION USAGE
None.

RATIONALE
The POLLHUP event does not occur for FIFOs just because the FIFO is not open for writing. It only occurs
when the FIFO is closed by the last writer and persists until some process opens the FIFO for writing or un-
til all read-only file descriptors for the FIFO are closed.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.6, STREAMS, getmsg(), pselect(), putmsg(), read(), write()

The Base Definitions volume of POSIX.1-2017, <poll.h>, <stropts.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

POPEN(3P) POSIX Programmer’s Manual POPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
popen — initiate pipe streams to or from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(const char *command, const char *mode);

DESCRIPTION
The popen() function shall execute the command specified by the string command . It shall create a pipe be-
tween the calling program and the executed command, and shall return a pointer to a stream that can be
used to either read from or write to the pipe.

The environment of the executed command shall be as if a child process were created within the popen()
call using the fork() function, and the child invoked the sh utility using the call:

execl(shell path, "sh", "-c", command, (char *)0);

where shell path is an unspecified pathname for the sh utility.

The popen() function shall ensure that any streams from previous popen() calls that remain open in the par-
ent process are closed in the new child process.

The mode argument to popen() is a string that specifies I/O mode:

1. If mode is r, when the child process is started, its file descriptor STDOUT_FILENO shall be the
writable end of the pipe, and the file descriptor fileno(stream) in the calling process, where stream is
the stream pointer returned by popen(), shall be the readable end of the pipe.

2. If mode is w, when the child process is started its file descriptor STDIN_FILENO shall be the readable
end of the pipe, and the file descriptor fileno(stream) in the calling process, where stream is the stream
pointer returned by popen(), shall be the writable end of the pipe.

3. If mode is any other value, the result is unspecified.

After popen(), both the parent and the child process shall be capable of executing independently before ei-
ther terminates.

Pipe streams are byte-oriented.

RETURN VALUE
Upon successful completion, popen() shall return a pointer to an open stream that can be used to read or
write to the pipe. Otherwise, it shall return a null pointer and may set errno to indicate the error.

ERRORS
The popen() function shall fail if:

EMFILE
{STREAM_MAX} streams are currently open in the calling process.

The popen() function may fail if:

EMFILE
{FOPEN_MAX} streams are currently open in the calling process.

EINVAL
The mode argument is invalid.

The popen() function may also set errno values as described by fork() or pipe().

The following sections are informative.

IEEE/The Open Group 2017 1

POPEN(3P) POSIX Programmer’s Manual POPEN(3P)

EXAMPLES
Using popen() to Obtain a List of Files from the ls Utility

The following example demonstrates the use of popen() and pclose() to execute the command ls* in order
to obtain a list of files in the current directory:

#include <stdio.h>
...

FILE *fp;
int status;
char path[PATH_MAX];

fp = popen("ls *", "r");
if (fp == NULL)

/* Handle error */;

while (fgets(path, PATH_MAX, fp) != NULL)
printf("%s", path);

status = pclose(fp);
if (status == -1) {

/* Error reported by pclose() */
...

} else {
/* Use macros described under wait() to inspect ‘status' in order

to determine success/failure of command executed by popen() */
...

}

APPLICATION USAGE
Since open files are shared, a mode r command can be used as an input filter and a mode w command as an
output filter.

Buffered reading before opening an input filter may leave the standard input of that filter mispositioned.
Similar problems with an output filter may be prevented by careful buffer flushing; for example, with
fflush().

A stream opened by popen() should be closed by pclose().

The behavior of popen() is specified for values of mode of r and w. Other modes such as rb and wb might
be supported by specific implementations, but these would not be portable features. Note that historical im-
plementations of popen() only check to see if the first character of mode is r. Thus, a mode of robert the

robot would be treated as mode r, and a mode of anything else would be treated as mode w.

If the application calls waitpid() or waitid() with a pid argument greater than 0, and it still has a stream that
was called with popen() open, it must ensure that pid does not refer to the process started by popen().

To determine whether or not the environment specified in the Shell and Utilities volume of POSIX.1-2017
is present, use the function call:

sysconf(_SC_2_VERSION)

(See sysconf()).

RATIONALE
The popen() function should not be used by programs that have set user (or group) ID privileges. The fork()
and exec family of functions (except execlp() and execvp()), should be used instead. This prevents any un-
foreseen manipulation of the environment of the user that could cause execution of commands not antici-
pated by the calling program.

IEEE/The Open Group 2017 2

POPEN(3P) POSIX Programmer’s Manual POPEN(3P)

If the original and popen()ed processes both intend to read or write or read and write a common file, and ei-
ther will be using FILE-type C functions (fread(), fwrite(), and so on), the rules for sharing file handles
must be observed (see Section 2.5.1, Interaction of File Descriptors and Standard I/O Streams).

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fork(), pclose(), pipe(), sysconf(), system(), wait(), waitid()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

The Shell and Utilities volume of POSIX.1-2017, sh

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

POSIX_FADVISE(3P) POSIX Programmer’s Manual POSIX_FADVISE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_fadvise — file advisory information (ADVANCED REALTIME)

SYNOPSIS
#include <fcntl.h>

int posix_fadvise(int fd, off_t offset, off_t len, int advice);

DESCRIPTION
The posix_fadvise() function shall advise the implementation on the expected behavior of the application
with respect to the data in the file associated with the open file descriptor, fd , starting at offset and continu-
ing for len bytes. The specified range need not currently exist in the file. If len is zero, all data following
offset is specified. The implementation may use this information to optimize handling of the specified data.
The posix_fadvise() function shall have no effect on the semantics of other operations on the specified data,
although it may affect the performance of other operations.

The advice to be applied to the data is specified by the advice parameter and may be one of the following
values:

POSIX_FADV_NORMAL
Specifies that the application has no advice to give on its behavior with respect to the specified data.
It is the default characteristic if no advice is given for an open file.

POSIX_FADV_SEQUENTIAL
Specifies that the application expects to access the specified data sequentially from lower offsets to
higher offsets.

POSIX_FADV_RANDOM
Specifies that the application expects to access the specified data in a random order.

POSIX_FADV_WILLNEED
Specifies that the application expects to access the specified data in the near future.

POSIX_FADV_DONTNEED
Specifies that the application expects that it will not access the specified data in the near future.

POSIX_FADV_NOREUSE
Specifies that the application expects to access the specified data once and then not reuse it there-
after.

These values are defined in <fcntl.h>.

RETURN VALUE
Upon successful completion, posix_fadvise() shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The posix_fadvise() function shall fail if:

EBADF
The fd argument is not a valid file descriptor.

EINVAL
The value of advice is invalid, or the value of len is less than zero.

ESPIPE
The fd argument is associated with a pipe or FIFO.

The following sections are informative.

IEEE/The Open Group 2017 1

POSIX_FADVISE(3P) POSIX Programmer’s Manual POSIX_FADVISE(3P)

EXAMPLES
None.

APPLICATION USAGE
The posix_fadvise() function is part of the Advisory Information option and need not be provided on all im-
plementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_madvise()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_FALLOCATE(3P) POSIX Programmer’s Manual POSIX_FALLOCATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_fallocate — file space control (ADVANCED REALTIME)

SYNOPSIS
#include <fcntl.h>

int posix_fallocate(int fd, off_t offset, off_t len);

DESCRIPTION
The posix_fallocate() function shall ensure that any required storage for regular file data starting at offset

and continuing for len bytes is allocated on the file system storage media. If posix_fallocate() returns suc-
cessfully, subsequent writes to the specified file data shall not fail due to the lack of free space on the file
system storage media.

If the offset+len is beyond the current file size, then posix_fallocate() shall adjust the file size to offset+len.
Otherwise, the file size shall not be changed.

It is implementation-defined whether a previous posix_fadvise() call influences allocation strategy.

Space allocated via posix_fallocate() shall be freed by a successful call to creat() or open() that truncates
the size of the file. Space allocated via posix_fallocate() may be freed by a successful call to ftruncate() that
reduces the file size to a size smaller than offset+len.

RETURN VALUE
Upon successful completion, posix_fallocate() shall return zero; otherwise, an error number shall be re-
turned to indicate the error.

ERRORS
The posix_fallocate() function shall fail if:

EBADF
The fd argument is not a valid file descriptor.

EBADF
The fd argument references a file that was opened without write permission.

EFBIG
The value of offset+len is greater than the maximum file size.

EINTR
A signal was caught during execution.

EINVAL
The len argument is less than zero, or the offset argument is less than zero, or the underlying file
system does not support this operation.

EIO An I/O error occurred while reading from or writing to a file system.

ENODEV
The fd argument does not refer to a regular file.

ENOSPC
There is insufficient free space remaining on the file system storage media.

ESPIPE
The fd argument is associated with a pipe or FIFO.

The posix_fallocate() function may fail if:

IEEE/The Open Group 2017 1

POSIX_FALLOCATE(3P) POSIX Programmer’s Manual POSIX_FALLOCATE(3P)

EINVAL
The len argument is zero.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The posix_fallocate() function is part of the Advisory Information option and need not be provided on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), ftruncate(), open(), unlink()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_MADVISE(3P) POSIX Programmer’s Manual POSIX_MADVISE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_madvise — memory advisory information and alignment control (ADVANCED REALTIME)

SYNOPSIS
#include <sys/mman.h>

int posix_madvise(void *addr, size_t len, int advice);

DESCRIPTION
The posix_madvise() function shall advise the implementation on the expected behavior of the application
with respect to the data in the memory starting at address addr, and continuing for len bytes. The imple-
mentation may use this information to optimize handling of the specified data. The posix_madvise() func-
tion shall have no effect on the semantics of access to memory in the specified range, although it may affect
the performance of access.

The implementation may require that addr be a multiple of the page size, which is the value returned by
sysconf() when the name value _SC_PAGESIZE is used.

The advice to be applied to the memory range is specified by the advice parameter and may be one of the
following values:

POSIX_MADV_NORMAL
Specifies that the application has no advice to give on its behavior with respect to the specified
range. It is the default characteristic if no advice is given for a range of memory.

POSIX_MADV_SEQUENTIAL
Specifies that the application expects to access the specified range sequentially from lower ad-
dresses to higher addresses.

POSIX_MADV_RANDOM
Specifies that the application expects to access the specified range in a random order.

POSIX_MADV_WILLNEED
Specifies that the application expects to access the specified range in the near future.

POSIX_MADV_DONTNEED
Specifies that the application expects that it will not access the specified range in the near future.

These values are defined in the <sys/mman.h> header.

RETURN VALUE
Upon successful completion, posix_madvise() shall return zero; otherwise, an error number shall be re-
turned to indicate the error.

ERRORS
The posix_madvise() function shall fail if:

EINVAL
The value of advice is invalid.

ENOMEM
Addresses in the range starting at addr and continuing for len bytes are partly or completely out-
side the range allowed for the address space of the calling process.

The posix_madvise() function may fail if:

EINVAL
The value of addr is not a multiple of the value returned by sysconf() when the name value
_SC_PAGESIZE is used.

IEEE/The Open Group 2017 1

POSIX_MADVISE(3P) POSIX Programmer’s Manual POSIX_MADVISE(3P)

EINVAL
The value of len is zero.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The posix_madvise() function is part of the Advisory Information option and need not be provided on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), posix_fadvise(), sysconf()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_MEM_OFFSET(3P) POSIX Programmer’s Manual POSIX_MEM_OFFSET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_mem_offset — find offset and length of a mapped typed memory block (ADVANCED REAL-
TIME)

SYNOPSIS
#include <sys/mman.h>

int posix_mem_offset(const void *restrict addr, size_t len,
off_t *restrict off, size_t *restrict contig_len,
int *restrict fildes);

DESCRIPTION
The posix_mem_offset() function shall return in the variable pointed to by off a value that identifies the off-
set (or location), within a memory object, of the memory block currently mapped at addr. The function
shall return in the variable pointed to by fildes, the descriptor used (via mmap()) to establish the mapping
which contains addr. If that descriptor was closed since the mapping was established, the returned value of
fildes shall be −1. The len argument specifies the length of the block of the memory object the user wishes
the offset for; upon return, the value pointed to by contig_len shall equal either len, or the length of the
largest contiguous block of the memory object that is currently mapped to the calling process starting at
addr, whichever is smaller.

If the memory object mapped at addr is a typed memory object, then if the off and contig_len values ob-
tained by calling posix_mem_offset() are used in a call to mmap() with a file descriptor that refers to the
same memory pool as fildes (either through the same port or through a different port), and that was opened
with neither the POSIX_TYPED_MEM_ALLOCATE nor the POSIX_TYPED_MEM_ALLOCATE_CON-
TIG flag, the typed memory area that is mapped shall be exactly the same area that was mapped at addr in
the address space of the process that called posix_mem_offset().

If the memory object specified by fildes is not a typed memory object, then the behavior of this function is
implementation-defined.

RETURN VALUE
Upon successful completion, the posix_mem_offset() function shall return zero; otherwise, the correspond-
ing error status value shall be returned.

ERRORS
The posix_mem_offset() function shall fail if:

EACCES
The process has not mapped a memory object supported by this function at the given address
addr.

This function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

POSIX_MEM_OFFSET(3P) POSIX Programmer’s Manual POSIX_MEM_OFFSET(3P)

SEE ALSO
mmap(), posix_typed_mem_open()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_MEMALIGN(3P) POSIX Programmer’s Manual POSIX_MEMALIGN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_memalign — aligned memory allocation (ADVANCED REALTIME)

SYNOPSIS
#include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);

DESCRIPTION
The posix_memalign() function shall allocate size bytes aligned on a boundary specified by alignment, and
shall return a pointer to the allocated memory in memptr. The value of alignment shall be a power of two
multiple of sizeof (void *).

Upon successful completion, the value pointed to by memptr shall be a multiple of alignment.

If the size of the space requested is 0, the behavior is implementation-defined: either a null pointer shall be
returned in memptr, or the behavior shall be as if the size were some non-zero value, except that the behav-
ior is undefined if the the value returned in memptr is used to access an object.

The free() function shall deallocate memory that has previously been allocated by posix_memalign().

RETURN VALUE
Upon successful completion, posix_memalign() shall return zero; otherwise, an error number shall be re-
turned to indicate the error and the contents of memptr shall either be left unmodified or be set to a null
pointer.

If size is 0, either:

* posix_memalign() shall not attempt to allocate any space, in which case either an implementation-de-
fined error number shall be returned, or zero shall be returned with a null pointer returned in memptr,
or

* posix_memalign() shall attempt to allocate some space and, if the allocation succeeds, zero shall be re-
turned and a pointer to the allocated space shall be returned in memptr. The application shall ensure
that the pointer is not used to access an object.

ERRORS
The posix_memalign() function shall fail if:

EINVAL
The value of the alignment parameter is not a power of two multiple of sizeof (void *).

ENOMEM
There is insufficient memory available with the requested alignment.

The following sections are informative.

EXAMPLES
The following example shows how applications can obtain consistent behavior on error by setting *memptr

to be a null pointer before calling posix_memalign().

void *ptr = NULL;
...
//do some work, which might goto error
if (posix_memalign(&ptr, align, size))

goto error;

//do some more work, which might goto error
...

IEEE/The Open Group 2017 1

POSIX_MEMALIGN(3P) POSIX Programmer’s Manual POSIX_MEMALIGN(3P)

error:
free(ptr);
//more cleanup;

APPLICATION USAGE
The posix_memalign() function is part of the Advisory Information option and need not be provided on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_OPENPT(3P) POSIX Programmer’s Manual POSIX_OPENPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_openpt — open a pseudo-terminal device

SYNOPSIS
#include <stdlib.h>
#include <fcntl.h>

int posix_openpt(int oflag);

DESCRIPTION
The posix_openpt() function shall establish a connection between a master device for a pseudo-terminal and
a file descriptor. The file descriptor shall be allocated as described in Section 2.14, File Descriptor Alloca-

tion and can be used by other I/O functions that refer to that pseudo-terminal.

The file status flags and file access modes of the open file description shall be set according to the value of
oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fc-

ntl.h>:

O_RDWR Open for reading and writing.

O_NOCTTY If set posix_openpt() shall not cause the terminal device to become the controlling terminal
for the process.

The behavior of other values for the oflag argument is unspecified.

RETURN VALUE
Upon successful completion, the posix_openpt() function shall open a file descriptor for a master pseudo-
terminal device and return a non-negative integer representing the file descriptor. Otherwise, −1 shall be re-
turned and errno set to indicate the error.

ERRORS
The posix_openpt() function shall fail if:

EMFILE
All file descriptors available to the process are currently open.

ENFILE
The maximum allowable number of files is currently open in the system.

The posix_openpt() function may fail if:

EINVAL
The value of oflag is not valid.

EAGAIN
Out of pseudo-terminal resources.

ENOSR
Out of STREAMS resources.

The following sections are informative.

EXAMPLES
Opening a Pseudo-Terminal and Returning the Name of the Slave Device and a File Descriptor

#include <fcntl.h>
#include <stdio.h>

int masterfd, slavefd;
char *slavedevice;

IEEE/The Open Group 2017 1

POSIX_OPENPT(3P) POSIX Programmer’s Manual POSIX_OPENPT(3P)

masterfd = posix_openpt(O_RDWR|O_NOCTTY);

if (masterfd == -1
|| grantpt (masterfd) == -1
|| unlockpt (masterfd) == -1
|| (slavedevice = ptsname (masterfd)) == NULL)
return -1;

printf("slave device is: %s\n", slavedevice);

slavefd = open(slavedevice, O_RDWR|O_NOCTTY);
if (slavefd < 0)

return -1;

APPLICATION USAGE
This function is a method for portably obtaining a file descriptor of a master terminal device for a pseudo-
terminal. The grantpt() and ptsname() functions can be used to manipulate mode and ownership permis-
sions, and to obtain the name of the slave device, respectively.

RATIONALE
The standard developers considered the matter of adding a special device for cloning master pseudo-termi-
nals: the /dev/ptmx device. However, consensus could not be reached, and it was felt that adding a new
function would permit other implementations. The posix_openpt() function is designed to complement the
grantpt(), ptsname(), and unlockpt() functions.

On implementations supporting the /dev/ptmx clone device, opening the master device of a pseudo-termi-
nal is simply:

mfdp = open("/dev/ptmx", oflag);
if (mfdp < 0)

return -1;

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14, File Descriptor Allocation, grantpt(), open(), ptsname(), unlockpt()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWN(3P) POSIX Programmer’s Manual POSIX_SPAWN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawn, posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawn(pid_t *restrict pid, const char *restrict path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

DESCRIPTION
The posix_spawn() and posix_spawnp() functions shall create a new process (child process) from the speci-
fied process image. The new process image shall be constructed from a regular executable file called the
new process image file.

When a C program is executed as the result of this call, it shall be entered as a C-language function call as
follows:

int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments themselves. In
addition, the following variable:

extern char **environ;

shall be initialized as a pointer to an array of character pointers to the environment strings.

The argument argv is an array of character pointers to null-terminated strings. The last member of this array
shall be a null pointer and is not counted in argc. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a filename string that is associated with the
process image being started by the posix_spawn() or posix_spawnp() function.

The argument envp is an array of character pointers to null-terminated strings. These strings constitute the
environment for the new process image. The environment array is terminated by a null pointer.

The number of bytes available for the combined argument and environment lists of the child process is
{ARG_MAX}. The implementation shall specify in the system documentation (see the Base Definitions
volume of POSIX.1-2017, Chapter 2, Conformance) whether any list overhead, such as length words, null
terminators, pointers, or alignment bytes, is included in this total.

The path argument to posix_spawn() is a pathname that identifies the new process image file to execute.

The file parameter to posix_spawnp() shall be used to construct a pathname that identifies the new process
image file. If the file parameter contains a <slash> character, the file parameter shall be used as the path-
name for the new process image file. Otherwise, the path prefix for this file shall be obtained by a search of
the directories passed as the environment variable PA TH (see the Base Definitions volume of
POSIX.1-2017, Chapter 8, Environment Variables). If this environment variable is not defined, the results
of the search are implementation-defined.

If file_actions is a null pointer, then file descriptors open in the calling process shall remain open in the

IEEE/The Open Group 2017 1

POSIX_SPAWN(3P) POSIX Programmer’s Manual POSIX_SPAWN(3P)

child process, except for those whose close-on-exec flag FD_CLOEXEC is set (see fcntl()). For those file
descriptors that remain open, the child process shall not inherit any file locks, but all remaining attributes of
the corresponding open file descriptions (see fcntl()), shall remain unchanged.

If file_actions is not NULL, then the file descriptors open in the child process shall be those open in the
calling process as modified by the spawn file actions object pointed to by file_actions and the
FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have been pro-
cessed. The effective order of processing the spawn file actions shall be:

1. The set of open file descriptors for the child process shall initially be the same set as is open for the
calling process. The child process shall not inherit any file locks, but all remaining attributes of the
corresponding open file descriptions (see fcntl()), shall remain unchanged.

2. The signal mask, signal default actions, and the effective user and group IDs for the child process shall
be changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object shall be performed in the order in which they
were added to the spawn file actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set (see fcntl()) shall be closed.

If file descriptor 0, 1, or 2 would otherwise be closed in the new process image created by posix_spawn() or
posix_spawnp(), implementations may open an unspecified file for the file descriptor in the new process im-
age. If a standard utility or a conforming application is executed with file descriptor 0 not open for reading
or with file descriptor 1 or 2 not open for writing, the environment in which the utility or application is exe-
cuted shall be deemed non-conforming, and consequently the utility or application might not behave as de-
scribed in this standard.

The posix_spawnattr_t spawn attributes object type is defined in <spawn.h>. It shall contain at least the
attributes defined below.

If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object referenced by at-

trp, and the spawn-pgroup attribute of the same object is non-zero, then the child’s process group shall be
as specified in the spawn-pgroup attribute of the object referenced by attrp.

As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object
referenced by attrp, and the spawn-pgroup attribute of the same object is set to zero, then the child shall be
in a new process group with a process group ID equal to its process ID.

If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object referenced by
attrp, the new child process shall inherit the parent’s process group.

If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object referenced
by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image shall initially have the
scheduling policy of the calling process with the scheduling parameters specified in the spawn-schedparam

attribute of the object referenced by attrp.

If the POSIX_SPAWN_SETSCHEDULER flag is set in the spawn-flags attribute of the object referenced
by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag), the new process im-
age shall initially have the scheduling policy specified in the spawn-schedpolicy attribute of the object ref-
erenced by attrp and the scheduling parameters specified in the spawn-schedparam attribute of the same
object.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp governs
the effective user ID of the child process. If this flag is not set, the child process shall inherit the effective
user ID of the parent process. If this flag is set, the effective user ID of the child process shall be reset to the
parent’s real user ID. In either case, if the set-user-ID mode bit of the new process image file is set, the ef-
fective user ID of the child process shall become that file’s owner ID before the new process image begins
execution.

The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp also
governs the effective group ID of the child process. If this flag is not set, the child process shall inherit the
effective group ID of the parent process. If this flag is set, the effective group ID of the child process shall

IEEE/The Open Group 2017 2

POSIX_SPAWN(3P) POSIX Programmer’s Manual POSIX_SPAWN(3P)

be reset to the parent’s real group ID. In either case, if the set-group-ID mode bit of the new process image
file is set, the effective group ID of the child process shall become that file’s group ID before the new
process image begins execution.

If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object referenced by
attrp, the child process shall initially have the signal mask specified in the spawn-sigmask attribute of the
object referenced by attrp.

If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced by at-

trp, the signals specified in the spawn-sigdefault attribute of the same object shall be set to their default ac-
tions in the child process. Signals set to the default action in the parent process shall be set to the default ac-
tion in the child process.

Signals set to be caught by the calling process shall be set to the default action in the child process.

Except for SIGCHLD, signals set to be ignored by the calling process image shall be set to be ignored by
the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the
spawn-flags attribute of the object referenced by attrp and the signals being indicated in the spawn-sigde-

fault attribute of the object referenced by attrp.

If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the SIGCHLD
signal is set to be ignored or to the default action in the child process, unless otherwise specified by the
POSIX_SPAWN_SETSIGDEF flag being set in the spawn_flags attribute of the object referenced by attrp

and the SIGCHLD signal being indicated in the spawn_sigdefault attribute of the object referenced by at-

trp.

If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced by attrp as
specified above or by the file descriptor manipulations specified in file_actions, shall appear in the new
process image as though fork() had been called to create a child process and then a member of the exec

family of functions had been called by the child process to execute the new process image.

It is implementation-defined whether the fork handlers are run when posix_spawn() or posix_spawnp() is
called.

RETURN VALUE
Upon successful completion, posix_spawn() and posix_spawnp() shall return the process ID of the child
process to the parent process, in the variable pointed to by a non-NULL pid argument, and shall return zero
as the function return value. Otherwise, no child process shall be created, the value stored into the variable
pointed to by a non-NULL pid is unspecified, and an error number shall be returned as the function return
value to indicate the error. If the pid argument is a null pointer, the process ID of the child is not returned to
the caller.

ERRORS
These functions may fail if:

EINVAL
The value specified by file_actions or attrp is invalid.

If this error occurs after the calling process successfully returns from the posix_spawn() or posix_spawnp()
function, the child process may exit with exit status 127.

If posix_spawn() or posix_spawnp() fail for any of the reasons that would cause fork() or one of the exec

family of functions to fail, an error value shall be returned as described by fork() and exec, respectively (or,
if the error occurs after the calling process successfully returns, the child process shall exit with exit status
127).

If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by attrp, and
posix_spawn() or posix_spawnp() fails while changing the child’s process group, an error value shall be re-
turned as described by setpgid() (or, if the error occurs after the calling process successfully returns, the
child process shall exit with exit status 127).

IEEE/The Open Group 2017 3

POSIX_SPAWN(3P) POSIX Programmer’s Manual POSIX_SPAWN(3P)

If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set in the
spawn-flags attribute of the object referenced by attrp, then if posix_spawn() or posix_spawnp() fails for
any of the reasons that would cause sched_setparam() to fail, an error value shall be returned as described
by sched_setparam() (or, if the error occurs after the calling process successfully returns, the child process
shall exit with exit status 127).

If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by attrp,
and if posix_spawn() or posix_spawnp() fails for any of the reasons that would cause sched_setscheduler()
to fail, an error value shall be returned as described by sched_setscheduler() (or, if the error occurs after the
calling process successfully returns, the child process shall exit with exit status 127).

If the file_actions argument is not NULL, and specifies any close, dup2, or open actions to be performed,
and if posix_spawn() or posix_spawnp() fails for any of the reasons that would cause close(), dup2(), or
open() to fail, an error value shall be returned as described by close(), dup2(), and open(), respectively (or,
if the error occurs after the calling process successfully returns, the child process shall exit with exit status
127). An open file action may, by itself, result in any of the errors described by close() or dup2(), in addi-
tion to those described by open().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

See also the APPLICATION USAGE section for exec .

RATIONALE
The posix_spawn() function and its close relation posix_spawnp() have been introduced to overcome the
following perceived difficulties with fork(): the fork() function is difficult or impossible to implement with-
out swapping or dynamic address translation.

* Swapping is generally too slow for a realtime environment.

* Dynamic address translation is not available everywhere that POSIX might be useful.

* Processes are too useful to simply option out of POSIX whenever it must run without address transla-
tion or other MMU services.

Thus, POSIX needs process creation and file execution primitives that can be efficiently implemented with-
out address translation or other MMU services.

The posix_spawn() function is implementable as a library routine, but both posix_spawn() and
posix_spawnp() are designed as kernel operations. Also, although they may be an efficient replacement for
many fork()/exec pairs, their goal is to provide useful process creation primitives for systems that have diffi-
culty with fork(), not to provide drop-in replacements for fork()/exec.

This view of the role of posix_spawn() and posix_spawnp() influenced the design of their API. It does not
attempt to provide the full functionality of fork()/exec in which arbitrary user-specified operations of any
sort are permitted between the creation of the child process and the execution of the new process image;
any attempt to reach that level would need to provide a programming language as parameters. Instead,
posix_spawn() and posix_spawnp() are process creation primitives like the Start_Process and
Start_Process_Search Ada language bindings package POSIX_Process_Primitives and also like those in
many operating systems that are not UNIX systems, but with some POSIX-specific additions.

To achieve its coverage goals, posix_spawn() and posix_spawnp() have control of six types of inheritance:
file descriptors, process group ID, user and group ID, signal mask, scheduling, and whether each signal ig-
nored in the parent will remain ignored in the child, or be reset to its default action in the child.

Control of file descriptors is required to allow an independently written child process image to access data
streams opened by and even generated or read by the parent process without being specifically coded to
know which parent files and file descriptors are to be used. Control of the process group ID is required to

IEEE/The Open Group 2017 4

POSIX_SPAWN(3P) POSIX Programmer’s Manual POSIX_SPAWN(3P)

control how the job control of the child process relates to that of the parent.

Control of the signal mask and signal defaulting is sufficient to support the implementation of system(). Al-
though support for system() is not explicitly one of the goals for posix_spawn() and posix_spawnp(), it is
covered under the ‘‘at least 50%’’ coverage goal.

The intention is that the normal file descriptor inheritance across fork(), the subsequent effect of the speci-
fied spawn file actions, and the normal file descriptor inheritance across one of the exec family of functions
should fully specify open file inheritance. The implementation need make no decisions regarding the set of
open file descriptors when the child process image begins execution, those decisions having already been
made by the caller and expressed as the set of open file descriptors and their FD_CLOEXEC flags at the
time of the call and the spawn file actions object specified in the call. We hav e been assured that in cases
where the POSIX Start_Process Ada primitives hav e been implemented in a library, this method of control-
ling file descriptor inheritance may be implemented very easily.

We can identify several problems with posix_spawn() and posix_spawnp(), but there does not appear to be a
solution that introduces fewer problems. Environment modification for child process attributes not specifi-
able via the attrp or file_actions arguments must be done in the parent process, and since the parent gener-
ally wants to save its context, it is more costly than similar functionality with fork()/exec. It is also compli-
cated to modify the environment of a multi-threaded process temporarily, since all threads must agree when
it is safe for the environment to be changed. However, this cost is only borne by those invocations of
posix_spawn() and posix_spawnp() that use the additional functionality. Since extensive modifications are
not the usual case, and are particularly unlikely in time-critical code, keeping much of the environment con-
trol out of posix_spawn() and posix_spawnp() is appropriate design.

The posix_spawn() and posix_spawnp() functions do not have all the power of fork()/exec. This is to be ex-
pected. The fork() function is a wonderfully powerful operation. We do not expect to duplicate its function-
ality in a simple, fast function with no special hardware requirements. It is worth noting that posix_spawn()
and posix_spawnp() are very similar to the process creation operations on many operating systems that are
not UNIX systems.

Requirements
The requirements for posix_spawn() and posix_spawnp() are:

* They must be implementable without an MMU or unusual hardware.

* They must be compatible with existing POSIX standards.

Additional goals are:

* They should be efficiently implementable.

* They should be able to replace at least 50% of typical executions of fork().

* A system with posix_spawn() and posix_spawnp() and without fork() should be useful, at least for re-
altime applications.

* A system with fork() and the exec family should be able to implement posix_spawn() and
posix_spawnp() as library routines.

Tw o-Syntax
POSIX exec has several calling sequences with approximately the same functionality. These appear to be
required for compatibility with existing practice. Since the existing practice for the posix_spawn*() func-
tions is otherwise substantially unlike POSIX, we feel that simplicity outweighs compatibility. There are,
therefore, only two names for the posix_spawn*() functions.

The parameter list does not differ between posix_spawn() and posix_spawnp(); posix_spawnp() interprets
the second parameter more elaborately than posix_spawn().

Compatibility with POSIX.5 (Ada)
The Start_Process and Start_Process_Search procedures from the POSIX_Process_Primitives package
from the Ada language binding to POSIX.1 encapsulate fork() and exec functionality in a manner similar to
that of posix_spawn() and posix_spawnp(). Originally, in keeping with our simplicity goal, the standard

IEEE/The Open Group 2017 5

POSIX_SPAWN(3P) POSIX Programmer’s Manual POSIX_SPAWN(3P)

developers had limited the capabilities of posix_spawn() and posix_spawnp() to a subset of the capabilities
of Start_Process and Start_Process_Search; certain non-default capabilities were not supported. However,
based on suggestions by the ballot group to improve file descriptor mapping or drop it, and on the advice of
an Ada Language Bindings working group member, the standard developers decided that posix_spawn()
and posix_spawnp() should be sufficiently powerful to implement Start_Process and Start_Process_Search.
The rationale is that if the Ada language binding to such a primitive had already been approved as an IEEE
standard, there can be little justification for not approving the functionally-equivalent parts of a C binding.
The only three capabilities provided by posix_spawn() and posix_spawnp() that are not provided by
Start_Process and Start_Process_Search are optionally specifying the child’s process group ID, the set of
signals to be reset to default signal handling in the child process, and the child’s scheduling policy and pa-
rameters.

For the Ada language binding for Start_Process to be implemented with posix_spawn(), that binding would
need to explicitly pass an empty signal mask and the parent’s environment to posix_spawn() whenever the
caller of Start_Process allowed these arguments to default, since posix_spawn() does not provide such de-
faults. The ability of Start_Process to mask user-specified signals during its execution is functionally
unique to the Ada language binding and must be dealt with in the binding separately from the call to
posix_spawn().

Process Group
The process group inheritance field can be used to join the child process with an existing process group. By
assigning a value of zero to the spawn-pgroup attribute of the object referenced by attrp, the setpgid()
mechanism will place the child process in a new process group.

Threads
Without the posix_spawn() and posix_spawnp() functions, systems without address translation can still use
threads to give an abstraction of concurrency. In many cases, thread creation suffices, but it is not always a
good substitute. The posix_spawn() and posix_spawnp() functions are considerably ‘‘heavier’’ than thread
creation. Processes have sev eral important attributes that threads do not. Even without address translation, a
process may have base-and-bound memory protection. Each process has a process environment including
security attributes and file capabilities, and powerful scheduling attributes. Processes abstract the behavior
of non-uniform-memory-architecture multi-processors better than threads, and they are more convenient to
use for activities that are not closely linked.

The posix_spawn() and posix_spawnp() functions may not bring support for multiple processes to every
configuration. Process creation is not the only piece of operating system support required to support multi-
ple processes. The total cost of support for multiple processes may be quite high in some circumstances.
Existing practice shows that support for multiple processes is uncommon and threads are common among
‘‘tiny kernels’’. There should, therefore, probably continue to be AEPs for operating systems with only one
process.

Asynchronous Error Notification
A library implementation of posix_spawn() or posix_spawnp() may not be able to detect all possible errors
before it forks the child process. POSIX.1-2008 provides for an error indication returned from a child
process which could not successfully complete the spawn operation via a special exit status which may be
detected using the status value returned by wait(), waitid(), and waitpid().

The stat_val interface and the macros used to interpret it are not well suited to the purpose of returning API
errors, but they are the only path available to a library implementation. Thus, an implementation may cause
the child process to exit with exit status 127 for any error detected during the spawn process after the
posix_spawn() or posix_spawnp() function has successfully returned.

The standard developers had proposed using two additional macros to interpret stat_val. The first, WIFS-
PA WNFAIL, would have detected a status that indicated that the child exited because of an error detected
during the posix_spawn() or posix_spawnp() operations rather than during actual execution of the child
process image; the second, WSPAWNERRNO, would have extracted the error value if WIFSPAWNFAIL
indicated a failure. Unfortunately, the ballot group strongly opposed this because it would make a library
implementation of posix_spawn() or posix_spawnp() dependent on kernel modifications to waitpid() to be
able to embed special information in stat_val to indicate a spawn failure.

IEEE/The Open Group 2017 6

POSIX_SPAWN(3P) POSIX Programmer’s Manual POSIX_SPAWN(3P)

The 8 bits of child process exit status that are guaranteed by POSIX.1-2008 to be accessible to the waiting
parent process are insufficient to disambiguate a spawn error from any other kind of error that may be re-
turned by an arbitrary process image. No other bits of the exit status are required to be visible in stat_val,
so these macros could not be strictly implemented at the library level. Reserving an exit status of 127 for
such spawn errors is consistent with the use of this value by system() and popen() to signal failures in these
operations that occur after the function has returned but before a shell is able to execute. The exit status of
127 does not uniquely identify this class of error, nor does it provide any detailed information on the nature
of the failure. Note that a kernel implementation of posix_spawn() or posix_spawnp() is permitted (and en-
couraged) to return any possible error as the function value, thus providing more detailed failure informa-
tion to the parent process.

Thus, no special macros are available to isolate asynchronous posix_spawn() or posix_spawnp() errors. In-
stead, errors detected by the posix_spawn() or posix_spawnp() operations in the context of the child process
before the new process image executes are reported by setting the child’s exit status to 127. The calling
process may use the WIFEXITED and WEXITSTATUS macros on the stat_val stored by the wait() or
waitpid() functions to detect spawn failures to the extent that other status values with which the child
process image may exit (before the parent can conclusively determine that the child process image has be-
gun execution) are distinct from exit status 127.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), chmod(), close(), dup(), exec , exit(), fcntl(), fork(), fstatat(), kill(), open(),
posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(), posix_spawn_file_ac-

tions_destroy(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(), posix_spawnattr_get-

flags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpol-

icy(), posix_spawnattr_getsigmask(), sched_setparam(), sched_setscheduler(), setpgid(), setuid(),
times(), wait(), waitid()

The Base Definitions volume of POSIX.1-2017, Chapter 8, Environment Variables, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 7

POSIX_SPAWN_FILE_ACTIONS_ADDCLOSE(3P)POSIX Programmer’s ManualPOSIX_SPAWN_FILE_ACTIONS_ADDCLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen — add close or open action to
spawn file actions object (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t
*file_actions, int fildes);

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t
*restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

DESCRIPTION
These functions shall add or delete a close or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in <spawn.h>) and is used to
specify a series of actions to be performed by a posix_spawn() or posix_spawnp() operation in order to ar-
rive at the set of open file descriptors for the child process given the set of open file descriptors of the par-
ent. POSIX.1-2008 does not define comparison or assignment operators for the type posix_spawn_file_ac-
tions_t.

A spawn file actions object, when passed to posix_spawn() or posix_spawnp(), shall specify how the set of
open file descriptors in the calling process is transformed into a set of potentially open file descriptors for
the spawned process. This transformation shall be as if the specified sequence of actions was performed ex-
actly once, in the context of the spawned process (prior to execution of the new process image), in the order
in which the actions were added to the object; additionally, when the new process image is executed, any
file descriptor (from this new set) which has its FD_CLOEXEC flag set shall be closed (see
posix_spawn()).

The posix_spawn_file_actions_addclose() function shall add a close action to the object referenced by
file_actions that shall cause the file descriptor fildes to be closed (as if close(fildes) had been called) when
a new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen() function shall add an open action to the object referenced by
file_actions that shall cause the file named by path to be opened (as if open(path, oflag, mode) had been
called, and the returned file descriptor, if not fildes, had been changed to fildes) when a new process is
spawned using this file actions object. If fildes was already an open file descriptor, it shall be closed before
the new file is opened.

The string described by path shall be copied by the posix_spawn_file_actions_addopen() function.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The posix_spawn_file_actions_addopen() function shall fail if:

EBADF
The value specified by fildes is negative or greater than or equal to {OPEN_MAX}.

The posix_spawn_file_actions_addclose() function shall fail if:

EBADF
The value specified by fildes is negative.

These functions may fail if:

IEEE/The Open Group 2017 1

POSIX_SPAWN_FILE_ACTIONS_ADDCLOSE(3P)POSIX Programmer’s ManualPOSIX_SPAWN_FILE_ACTIONS_ADDCLOSE(3P)

EINVAL
The value specified by file_actions is invalid.

ENOMEM
Insufficient memory exists to add to the spawn file actions object.

It shall not be considered an error for the fildes argument passed to these functions to specify a file descrip-
tor for which the specified operation could not be performed at the time of the call. Any such error will be
detected when the associated file actions object is later used during a posix_spawn() or posix_spawnp() op-
eration.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

Implementations may use file descriptors that must be inherited into child processes for the child process to
remain conforming, such as for message catalog or tracing purposes. Therefore, an application that calls
posix_spawn_file_actions_addclose() with an arbitrary integer risks non-conforming behavior, and this
function can only portably be used to close file descriptor values that the application has obtained through
explicit actions, or for the three file descriptors corresponding to the standard file streams. In order to avoid
a race condition of leaking an unintended file descriptor into a child process, an application should consider
opening all file descriptors with the FD_CLOEXEC bit set unless the file descriptor is intended to be inher-
ited across exec.

RATIONALE
A spawn file actions object may be initialized to contain an ordered sequence of close(), dup2(), and open()
operations to be used by posix_spawn() or posix_spawnp() to arrive at the set of open file descriptors inher-
ited by the spawned process from the set of open file descriptors in the parent at the time of the
posix_spawn() or posix_spawnp() call. It had been suggested that the close() and dup2() operations alone
are sufficient to rearrange file descriptors, and that files which need to be opened for use by the spawned
process can be handled either by having the calling process open them before the posix_spawn() or
posix_spawnp() call (and close them after), or by passing pathnames to the spawned process (in argv) so
that it may open them itself. The standard developers recommend that applications use one of these two
methods when practical, since detailed error status on a failed open operation is always available to the ap-
plication this way. Howev er, the standard developers feel that allowing a spawn file actions object to specify
open operations is still appropriate because:

1. It is consistent with equivalent POSIX.5 (Ada) functionality.

2. It supports the I/O redirection paradigm commonly employed by POSIX programs designed to be in-
voked from a shell. When such a program is the child process, it may not be designed to open files on
its own.

3. It allows file opens that might otherwise fail or violate file ownership/access rights if executed by the
parent process.

Regarding 2. above, note that the spawn open file action provides to posix_spawn() and posix_spawnp() the
same capability that the shell redirection operators provide to system(), only without the intervening execu-
tion of a shell; for example:

system ("myprog <file1 3<file2");

Regarding 3. above, note that if the calling process needs to open one or more files for access by the
spawned process, but has insufficient spare file descriptors, then the open action is necessary to allow the
open() to occur in the context of the child process after other file descriptors have been closed (that must re-
main open in the parent).

IEEE/The Open Group 2017 2

POSIX_SPAWN_FILE_ACTIONS_ADDCLOSE(3P)POSIX Programmer’s ManualPOSIX_SPAWN_FILE_ACTIONS_ADDCLOSE(3P)

Additionally, if a parent is executed from a file having a ‘‘set-user-id’’ mode bit set and the
POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created within the parent process will
(possibly incorrectly) have the parent’s effective user ID as its owner, whereas a file created via an open()
action during posix_spawn() or posix_spawnp() will have the parent’s real ID as its owner; and an open by
the parent process may successfully open a file to which the real user should not have access or fail to open
a file to which the real user should have access.

File Descriptor Mapping
The standard developers had originally proposed using an array which specified the mapping of child file
descriptors back to those of the parent. It was pointed out by the ballot group that it is not possible to
reshuffle file descriptors arbitrarily in a library implementation of posix_spawn() or posix_spawnp() without
provision for one or more spare file descriptor entries (which simply may not be available). Such an array
requires that an implementation develop a complex strategy to achieve the desired mapping without inad-
vertently closing the wrong file descriptor at the wrong time.

It was noted by a member of the Ada Language Bindings working group that the approved Ada Language
Start_Process family of POSIX process primitives use a caller-specified set of file actions to alter the nor-
mal fork()/exec semantics for inheritance of file descriptors in a very flexible way, yet no such problems ex-
ist because the burden of determining how to achieve the final file descriptor mapping is completely on the
application. Furthermore, although the file actions interface appears frightening at first glance, it is actually
quite simple to implement in either a library or the kernel.

The posix_spawn_file_actions_addclose() function is not required to check whether the file descriptor is
less than {OPEN_MAX} because on some implementations {OPEN_MAX} reflects the RLIMIT_NOFILE
soft limit and therefore calling setrlimit() to reduce this limit can result in an {OPEN_MAX} value less
than or equal to an already open file descriptor. Applications need to be able to close such file descriptors
on spawn. On implementations where {OPEN_MAX} does not change, it is recommended that
posix_spawn_file_actions_addclose() should return [EBADF] if fildes is greater than or equal to
{OPEN_MAX}.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), open(), posix_spawn(), posix_spawn_file_actions_adddup2(), posix_spawn_file_ac-

tions_destroy()

The Base Definitions volume of POSIX.1-2017, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

POSIX_SPAWN_FILE_ACTIONS_ADDDUP2(3P)POSIX Programmer’s ManualPOSIX_SPAWN_FILE_ACTIONS_ADDDUP2(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawn_file_actions_adddup2 — add dup2 action to spawn file actions object (ADVANCED REAL-
TIME)

SYNOPSIS
#include <spawn.h>

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t
*file_actions, int fildes, int newfildes);

DESCRIPTION
The posix_spawn_file_actions_adddup2() function shall add a dup2() action to the object referenced by
file_actions that shall cause the file descriptor fildes to be duplicated as newfildes (as if dup2(fildes, new-

fildes) had been called) when a new process is spawned using this file actions object.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

RETURN VALUE
Upon successful completion, the posix_spawn_file_actions_adddup2() function shall return zero; other-
wise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawn_file_actions_adddup2() function shall fail if:

EBADF
The value specified by fildes or newfildes is negative or greater than or equal to {OPEN_MAX}.

ENOMEM
Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2() function may fail if:

EINVAL
The value specified by file_actions is invalid.

It shall not be considered an error for the fildes argument passed to the posix_spawn_file_actions_ad-

ddup2() function to specify a file descriptor for which the specified operation could not be performed at the
time of the call. Any such error will be detected when the associated file actions object is later used during
a posix_spawn() or posix_spawnp() operation.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The posix_spawn_file_actions_adddup2() function is part of the Spawn option and need not be provided on
all implementations.

Implementations may use file descriptors that must be inherited into child processes for the child process to
remain conforming, such as for message catalog or tracing purposes. Therefore, an application that calls
posix_spawn_file_actions_adddup2() with an arbitrary integer for newfildes risks non-conforming behavior,
and this function can only portably be used to overwrite file descriptor values that the application has ob-
tained through explicit actions, or for the three file descriptors corresponding to the standard file streams. In
order to avoid a race condition of leaking an unintended file descriptor into a child process, an application
should consider opening all file descriptors with the FD_CLOEXEC bit set unless the file descriptor is in-
tended to be inherited across exec.

IEEE/The Open Group 2017 1

POSIX_SPAWN_FILE_ACTIONS_ADDDUP2(3P)POSIX Programmer’s ManualPOSIX_SPAWN_FILE_ACTIONS_ADDDUP2(3P)

RATIONALE
Refer to the RATIONALE section in posix_spawn_file_actions_addclose().

FUTURE DIRECTIONS
None.

SEE ALSO
dup(), posix_spawn(), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_destroy()

The Base Definitions volume of POSIX.1-2017, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWN_FILE_ACTIONS_ADDOPEN(3P)POSIX Programmer’s ManualPOSIX_SPAWN_FILE_ACTIONS_ADDOPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawn_file_actions_addopen — add open action to spawn file actions object (ADVANCED REAL-
TIME)

SYNOPSIS
#include <spawn.h>

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t
*restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

DESCRIPTION
Refer to posix_spawn_file_actions_addclose().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_SPAWN_FILE_ACTIONS_DESTROY(3P)POSIX Programmer’s ManualPOSIX_SPAWN_FILE_ACTIONS_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawn_file_actions_destroy, posix_spawn_file_actions_init — destroy and initialize spawn file ac-
tions object (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t
*file_actions);

int posix_spawn_file_actions_init(posix_spawn_file_actions_t
*file_actions);

DESCRIPTION
The posix_spawn_file_actions_destroy() function shall destroy the object referenced by file_actions; the
object becomes, in effect, uninitialized. An implementation may cause posix_spawn_file_actions_destroy()
to set the object referenced by file_actions to an invalid value. A destroyed spawn file actions object can be
reinitialized using posix_spawn_file_actions_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

The posix_spawn_file_actions_init() function shall initialize the object referenced by file_actions to con-
tain no file actions for posix_spawn() or posix_spawnp() to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

The effect of initializing an already initialized spawn file actions object is undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The posix_spawn_file_actions_init() function shall fail if:

ENOMEM
Insufficient memory exists to initialize the spawn file actions object.

The posix_spawn_file_actions_destroy() function may fail if:

EINVAL
The value specified by file_actions is invalid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
Refer to the RATIONALE section in posix_spawn_file_actions_addclose().

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawn_file_actions_addclose()

The Base Definitions volume of POSIX.1-2017, <spawn.h>

IEEE/The Open Group 2017 1

POSIX_SPAWN_FILE_ACTIONS_DESTROY(3P)POSIX Programmer’s ManualPOSIX_SPAWN_FILE_ACTIONS_DESTROY(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWNATTR_DESTROY(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_destroy, posix_spawnattr_init — destroy and initialize spawn attributes object (AD-
VANCED REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attr);
int posix_spawnattr_init(posix_spawnattr_t *attr);

DESCRIPTION
The posix_spawnattr_destroy() function shall destroy a spawn attributes object. A destroyed attr attributes
object can be reinitialized using posix_spawnattr_init(); the results of otherwise referencing the object after
it has been destroyed are undefined. An implementation may cause posix_spawnattr_destroy() to set the ob-
ject referenced by attr to an invalid value.

The posix_spawnattr_init() function shall initialize a spawn attributes object attr with the default value for
all of the individual attributes used by the implementation. Results are undefined if posix_spawnattr_init()
is called specifying an already initialized attr attributes object.

A spawn attributes object is of type posix_spawnattr_t (defined in <spawn.h>) and is used to specify the
inheritance of process attributes across a spawn operation. POSIX.1-2008 does not define comparison or as-
signment operators for the type posix_spawnattr_t.

Each implementation shall document the individual attributes it uses and their default values unless these
values are defined by POSIX.1-2008. Attributes not defined by POSIX.1-2008, their default values, and the
names of the associated functions to get and set those attribute values are implementation-defined.

The resulting spawn attributes object (possibly modified by setting individual attribute values), is used to
modify the behavior of posix_spawn() or posix_spawnp(). After a spawn attributes object has been used to
spawn a process by a call to a posix_spawn() or posix_spawnp(), any function affecting the attributes object
(including destruction) shall not affect any process that has been spawned in this way.

RETURN VALUE
Upon successful completion, posix_spawnattr_destroy() and posix_spawnattr_init() shall return zero; oth-
erwise, an error number shall be returned to indicate the error.

ERRORS
The posix_spawnattr_init() function shall fail if:

ENOMEM
Insufficient memory exists to initialize the spawn attributes object.

The posix_spawnattr_destroy() function may fail if:

EINVAL
The value specified by attr is invalid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
The original spawn interface proposed in POSIX.1-2008 defined the attributes that specify the inheritance
of process attributes across a spawn operation as a structure. In order to be able to separate optional individ-
ual attributes under their appropriate options (that is, the spawn-schedparam and spawn-schedpolicy

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_DESTROY(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_DESTROY(3P)

attributes depending upon the Process Scheduling option), and also for extensibility and consistency with
the newer POSIX interfaces, the attributes interface has been changed to an opaque data type. This interface
now consists of the type posix_spawnattr_t, representing a spawn attributes object, together with associ-
ated functions to initialize or destroy the attributes object, and to set or get each individual attribute. Al-
though the new object-oriented interface is more verbose than the original structure, it is simple to use,
more extensible, and easy to implement.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(), posix_spawnattr_getp-

group(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsig-

mask()

The Base Definitions volume of POSIX.1-2017, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWNATTR_GETFLAGS(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_GETFLAGS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_getflags, posix_spawnattr_setflags — get and set the spawn-flags attribute of a spawn at-
tributes object (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
short *restrict flags);

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

DESCRIPTION
The posix_spawnattr_getflags() function shall obtain the value of the spawn-flags attribute from the at-
tributes object referenced by attr.

The posix_spawnattr_setflags() function shall set the spawn-flags attribute in an initialized attributes object
referenced by attr.

The spawn-flags attribute is used to indicate which process attributes are to be changed in the new process
image when invoking posix_spawn() or posix_spawnp(). It is the bitwise-inclusive OR of zero or more of
the following flags:

POSIX_SPAWN_RESETIDS
POSIX_SPAWN_SETPGROUP
POSIX_SPAWN_SETSIGDEF
POSIX_SPAWN_SETSIGMASK
POSIX_SPAWN_SETSCHEDPARAM
POSIX_SPAWN_SETSCHEDULER

These flags are defined in <spawn.h>. The default value of this attribute shall be as if no flags were set.

RETURN VALUE
Upon successful completion, posix_spawnattr_getflags() shall return zero and store the value of the spawn-

flags attribute of attr into the object referenced by the flags parameter; otherwise, an error number shall be
returned to indicate the error.

Upon successful completion, posix_spawnattr_setflags() shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
These functions may fail if:

EINVAL
The value specified by attr is invalid.

The posix_spawnattr_setflags() function may fail if:

EINVAL
The value of the attribute being set is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_GETFLAGS(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_GETFLAGS(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(), posix_spawnattr_getp-

group(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsig-

mask()

The Base Definitions volume of POSIX.1-2017, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWNATTR_GETPGROUP(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_GETPGROUP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_getpgroup, posix_spawnattr_setpgroup — get and set the spawn-pgroup attribute of a
spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

DESCRIPTION
The posix_spawnattr_getpgroup() function shall obtain the value of the spawn-pgroup attribute from the at-
tributes object referenced by attr.

The posix_spawnattr_setpgroup() function shall set the spawn-pgroup attribute in an initialized attributes
object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new process image in a spawn
operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The default value of this
attribute shall be zero.

RETURN VALUE
Upon successful completion, posix_spawnattr_getpgroup() shall return zero and store the value of the
spawn-pgroup attribute of attr into the object referenced by the pgroup parameter; otherwise, an error num-
ber shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setpgroup() shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
These functions may fail if:

EINVAL
The value specified by attr is invalid.

The posix_spawnattr_setpgroup() function may fail if:

EINVAL
The value of the attribute being set is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(), posix_spawnattr_get-

flags(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsig-

mask()

The Base Definitions volume of POSIX.1-2017, <spawn.h>

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_GETPGROUP(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_GETPGROUP(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWNATTR_GETSCHEDPARAM(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_GETSCHEDPARAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_getschedparam, posix_spawnattr_setschedparam — get and set the spawn-schedparam at-
tribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>
#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t
*restrict attr, struct sched_param *restrict schedparam);

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

DESCRIPTION
The posix_spawnattr_getschedparam() function shall obtain the value of the spawn-schedparam attribute
from the attributes object referenced by attr.

The posix_spawnattr_setschedparam() function shall set the spawn-schedparam attribute in an initialized
attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned to the new process
image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or POSIX_SPAWN_SETSCHED-
PARAM is set in the spawn-flags attribute). The default value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedparam() shall return zero and store the value of the
spawn-schedparam attribute of attr into the object referenced by the schedparam parameter; otherwise, an
error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedparam() shall return zero; otherwise, an error num-
ber shall be returned to indicate the error.

ERRORS
These functions may fail if:

EINVAL
The value specified by attr is invalid.

The posix_spawnattr_setschedparam() function may fail if:

EINVAL
The value of the attribute being set is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided on all im-
plementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_GETSCHEDPARAM(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_GETSCHEDPARAM(3P)

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(), posix_spawnattr_get-

flags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask()

The Base Definitions volume of POSIX.1-2017, <sched.h>, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWNATTR_GETSCHEDPOLICY(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_GETSCHEDPOLICY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy — get and set the spawn-schedpolicy at-
tribute of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>
#include <sched.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t
*restrict attr, int *restrict schedpolicy);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

DESCRIPTION
The posix_spawnattr_getschedpolicy() function shall obtain the value of the spawn-schedpolicy attribute
from the attributes object referenced by attr.

The posix_spawnattr_setschedpolicy() function shall set the spawn-schedpolicy attribute in an initialized at-
tributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new process image
in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute). The de-
fault value of this attribute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getschedpolicy() shall return zero and store the value of the
spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy parameter; otherwise, an
error number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedpolicy() shall return zero; otherwise, an error num-
ber shall be returned to indicate the error.

ERRORS
These functions may fail if:

EINVAL
The value specified by attr is invalid.

The posix_spawnattr_setschedpolicy() function may fail if:

EINVAL
The value of the attribute being set is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn and Process Scheduling options and need not be provided on all im-
plementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_GETSCHEDPOLICY(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_GETSCHEDPOLICY(3P)

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(), posix_spawnattr_get-

flags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getsig-

mask()

The Base Definitions volume of POSIX.1-2017, <sched.h>, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWNATTR_GETSIGDEFAULT(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_GETSIGDEFAULT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault — get and set the spawn-sigdefault attribute
of a spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
#include <signal.h>
#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t
*restrict attr, sigset_t *restrict sigdefault);

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

DESCRIPTION
The posix_spawnattr_getsigdefault() function shall obtain the value of the spawn-sigdefault attribute from
the attributes object referenced by attr.

The posix_spawnattr_setsigdefault() function shall set the spawn-sigdefault attribute in an initialized at-
tributes object referenced by attr.

The spawn-sigdefault attribute represents the set of signals to be forced to default signal handling in the
new process image (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags attribute) by a spawn opera-
tion. The default value of this attribute shall be an empty signal set.

RETURN VALUE
Upon successful completion, posix_spawnattr_getsigdefault() shall return zero and store the value of the
spawn-sigdefault attribute of attr into the object referenced by the sigdefault parameter; otherwise, an error
number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigdefault() shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
These functions may fail if:

EINVAL
The value specified by attr is invalid.

The posix_spawnattr_setsigdefault() function may fail if:

EINVAL
The value of the attribute being set is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getflags(), posix_spawnattr_getpgroup(),
posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask()

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_GETSIGDEFAULT(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_GETSIGDEFAULT(3P)

The Base Definitions volume of POSIX.1-2017, <signal.h>, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWNATTR_GETSIGMASK(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_GETSIGMASK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_getsigmask, posix_spawnattr_setsigmask — get and set the spawn-sigmask attribute of a
spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
#include <signal.h>
#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

DESCRIPTION
The posix_spawnattr_getsigmask() function shall obtain the value of the spawn-sigmask attribute from the
attributes object referenced by attr.

The posix_spawnattr_setsigmask() function shall set the spawn-sigmask attribute in an initialized attributes
object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process image of a spawn oper-
ation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The default value of this attri-
bute is unspecified.

RETURN VALUE
Upon successful completion, posix_spawnattr_getsigmask() shall return zero and store the value of the
spawn-sigmask attribute of attr into the object referenced by the sigmask parameter; otherwise, an error
number shall be returned to indicate the error.

Upon successful completion, posix_spawnattr_setsigmask() shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
These functions may fail if:

EINVAL
The value specified by attr is invalid.

The posix_spawnattr_setsigmask() function may fail if:

EINVAL
The value of the attribute being set is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Spawn option and need not be provided on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
posix_spawn(), posix_spawnattr_destroy(), posix_spawnattr_getsigdefault(), posix_spawnattr_get-

flags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_GETSIGMASK(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_GETSIGMASK(3P)

posix_spawnattr_getschedpolicy()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <spawn.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_SPAWNATTR_INIT(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_init — initialize the spawn attributes object (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawnattr_init(posix_spawnattr_t *attr);

DESCRIPTION
Refer to posix_spawnattr_destroy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_SETFLAGS(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_SETFLAGS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_setflags — set the spawn-flags attribute of a spawn attributes object (ADVANCED RE-
ALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

DESCRIPTION
Refer to posix_spawnattr_getflags().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_SETPGROUP(3P) POSIX Programmer’s Manual POSIX_SPAWNATTR_SETPGROUP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_setpgroup — set the spawn-pgroup attribute of a spawn attributes object (ADVANCED
REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

DESCRIPTION
Refer to posix_spawnattr_getpgroup().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_SETSCHEDPARAM(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_SETSCHEDPARAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_setschedparam — set the spawn-schedparam attribute of a spawn attributes object (AD-
VANCED REALTIME)

SYNOPSIS
#include <sched.h>
#include <spawn.h>

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

DESCRIPTION
Refer to posix_spawnattr_getschedparam().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_SETSCHEDPOLICY(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_SETSCHEDPOLICY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_setschedpolicy — set the spawn-schedpolicy attribute of a spawn attributes object (AD-
VANCED REALTIME)

SYNOPSIS
#include <sched.h>
#include <spawn.h>

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

DESCRIPTION
Refer to posix_spawnattr_getschedpolicy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_SETSIGDEFAULT(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_SETSIGDEFAULT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_setsigdefault — set the spawn-sigdefault attribute of a spawn attributes object (AD-
VANCED REALTIME)

SYNOPSIS
#include <signal.h>
#include <spawn.h>

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

DESCRIPTION
Refer to posix_spawnattr_getsigdefault().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_SPAWNATTR_SETSIGMASK(3P)POSIX Programmer’s ManualPOSIX_SPAWNATTR_SETSIGMASK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnattr_setsigmask — set the spawn-sigmask attribute of a spawn attributes object (ADVANCED
REALTIME)

SYNOPSIS
#include <signal.h>
#include <spawn.h>

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

DESCRIPTION
Refer to posix_spawnattr_getsigmask().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_SPAWNP(3P) POSIX Programmer’s Manual POSIX_SPAWNP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_spawnp — spawn a process (ADVANCED REALTIME)

SYNOPSIS
#include <spawn.h>

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

DESCRIPTION
Refer to posix_spawn().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_DESTROY(3P) POSIX Programmer’s Manual POSIX_TRACE_ATTR_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_destroy, posix_trace_attr_init — destroy and initialize the trace stream attributes object
(TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_attr_destroy(trace_attr_t *attr);
int posix_trace_attr_init(trace_attr_t *attr);

DESCRIPTION
The posix_trace_attr_destroy() function shall destroy an initialized trace attributes object. A destroyed attr

attributes object can be reinitialized using posix_trace_attr_init(); the results of otherwise referencing the
object after it has been destroyed are undefined.

The posix_trace_attr_init() function shall initialize a trace attributes object attr with the default value for
all of the individual attributes used by a given implementation. The read-only generation-version and clock-

resolution attributes of the newly initialized trace attributes object shall be set to their appropriate values
(see Section 2.11.1.2, posix_trace_status_info Structure).

Results are undefined if posix_trace_attr_init() is called specifying an already initialized attr attributes ob-
ject.

Implementations may add extensions to the trace attributes object structure as permitted in the Base Defini-
tions volume of POSIX.1-2017, Chapter 2, Conformance.

The resulting attributes object (possibly modified by setting individual attributes values), when used by
posix_trace_create(), defines the attributes of the trace stream created. A single attributes object can be
used in multiple calls to posix_trace_create(). After one or more trace streams have been created using an
attributes object, any function affecting that attributes object, including destruction, shall not affect any
trace stream previously created. An initialized attributes object also serves to receive the attributes of an ex-
isting trace stream or trace log when calling the posix_trace_get_attr() function.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

ERRORS
The posix_trace_attr_destroy() function may fail if:

EINVAL
The value of attr is invalid.

The posix_trace_attr_init() function shall fail if:

ENOMEM
Insufficient memory exists to initialize the trace attributes object.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_DESTROY(3P) POSIX Programmer’s Manual POSIX_TRACE_ATTR_DESTROY(3P)

FUTURE DIRECTIONS
The posix_trace_attr_destroy() and posix_trace_attr_init() functions may be removed in a future version.

SEE ALSO
posix_trace_create(), posix_trace_get_attr(), uname()

The Base Definitions volume of POSIX.1-2017, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_ATTR_GETCLOCKRES(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETCLOCKRES(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_getclockres, posix_trace_attr_getcreatetime, posix_trace_attr_getgenversion,
posix_trace_attr_getname, posix_trace_attr_setname — retrieve and set information about a trace stream
(TRACING)

SYNOPSIS
#include <time.h>
#include <trace.h>

int posix_trace_attr_getclockres(const trace_attr_t *attr,
struct timespec *resolution);

int posix_trace_attr_getcreatetime(const trace_attr_t *attr,
struct timespec *createtime);

#include <trace.h>

int posix_trace_attr_getgenversion(const trace_attr_t *attr,
char *genversion);

int posix_trace_attr_getname(const trace_attr_t *attr,
char *tracename);

int posix_trace_attr_setname(trace_attr_t *attr,
const char *tracename);

DESCRIPTION
The posix_trace_attr_getclockres() function shall copy the clock resolution of the clock used to generate
timestamps from the clock-resolution attribute of the attributes object pointed to by the attr argument into
the structure pointed to by the resolution argument.

The posix_trace_attr_getcreatetime() function shall copy the trace stream creation time from the creation-

time attribute of the attributes object pointed to by the attr argument into the structure pointed to by the cre-

atetime argument. The creation-time attribute shall represent the time of creation of the trace stream.

The posix_trace_attr_getgenversion() function shall copy the string containing version information from
the generation-version attribute of the attributes object pointed to by the attr argument into the string
pointed to by the genversion argument. The genversion argument shall be the address of a character array
which can store at least {TRACE_NAME_MAX} characters.

The posix_trace_attr_getname() function shall copy the string containing the trace name from the trace-

name attribute of the attributes object pointed to by the attr argument into the string pointed to by the trace-

name argument. The tracename argument shall be the address of a character array which can store at least
{TRACE_NAME_MAX} characters.

The posix_trace_attr_setname() function shall set the name in the trace-name attribute of the attributes ob-
ject pointed to by the attr argument, using the trace name string supplied by the tracename argument. If the
supplied string contains more than {TRACE_NAME_MAX} characters, the name copied into the trace-

name attribute may be truncated to one less than the length of {TRACE_NAME_MAX} characters. The de-
fault value is a null string.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

If successful, the posix_trace_attr_getclockres() function stores the clock-resolution attribute value in the
object pointed to by resolution. Otherwise, the content of this object is unspecified.

If successful, the posix_trace_attr_getcreatetime() function stores the trace stream creation time in the ob-
ject pointed to by createtime. Otherwise, the content of this object is unspecified.

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_GETCLOCKRES(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETCLOCKRES(3P)

If successful, the posix_trace_attr_getgenversion() function stores the trace version information in the
string pointed to by genversion. Otherwise, the content of this string is unspecified.

If successful, the posix_trace_attr_getname() function stores the trace name in the string pointed to by tra-

cename. Otherwise, the content of this string is unspecified.

ERRORS
The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
and posix_trace_attr_getname() functions may fail if:

EINVAL
The value specified by one of the arguments is invalid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
posix_trace_attr_getname(), and posix_trace_attr_setname() functions may be removed in a future version.

SEE ALSO
posix_trace_attr_destroy(), posix_trace_create(), posix_trace_get_attr(), uname()

The Base Definitions volume of POSIX.1-2017, <time.h>, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_ATTR_GETINHERITED(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETINHERITED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_getinherited, posix_trace_attr_getlogfullpolicy, posix_trace_attr_getstreamfullpolicy,
posix_trace_attr_setinherited, posix_trace_attr_setlogfullpolicy, posix_trace_attr_setstreamfullpolicy — re-
trieve and set the behavior of a trace stream (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_attr_getinherited(const trace_attr_t *restrict attr,
int *restrict inheritancepolicy);

int posix_trace_attr_getlogfullpolicy(const trace_attr_t *restrict attr,
int *restrict logpolicy);

int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict
attr, int *restrict streampolicy);

int posix_trace_attr_setinherited(trace_attr_t *attr,
int inheritancepolicy);

int posix_trace_attr_setlogfullpolicy(trace_attr_t *attr,
int logpolicy);

int posix_trace_attr_setstreamfullpolicy(trace_attr_t *attr,
int streampolicy);

DESCRIPTION
The posix_trace_attr_getinherited() and posix_trace_attr_setinherited() functions, respectively, shall get
and set the inheritance policy stored in the inheritance attribute for traced processes across the fork() and
spawn() operations. The inheritance attribute of the attributes object pointed to by the attr argument shall
be set to one of the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_CLOSE_FOR_CHILD
After a fork() or spawn() operation, the child shall not be traced, and tracing of the parent shall con-
tinue.

POSIX_TRACE_INHERITED
After a fork() or spawn() operation, if the parent is being traced, its child shall be concurrently
traced using the same trace stream.

The default value for the inheritance attribute is POSIX_TRACE_CLOSE_FOR_CHILD.

The posix_trace_attr_getlogfullpolicy() and posix_trace_attr_setlogfullpolicy() functions, respectively,
shall get and set the trace log full policy stored in the log-full-policy attribute of the attributes object pointed
to by the attr argument.

The log-full-policy attribute shall be set to one of the following values defined by manifest constants in the
<trace.h> header:

POSIX_TRACE_LOOP
The trace log shall loop until the associated trace stream is stopped. This policy means that when
the trace log gets full, the file system shall reuse the resources allocated to the oldest trace events
that were recorded. In this way, the trace log will always contain the most recent trace events
flushed.

POSIX_TRACE_UNTIL_FULL
The trace stream shall be flushed to the trace log until the trace log is full. This condition can be de-
duced from the posix_log_full_status member status (see the posix_trace_status_info structure de-
fined in <trace.h>). The last recorded trace event shall be the POSIX_TRACE_STOP trace event.

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_GETINHERITED(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETINHERITED(3P)

POSIX_TRACE_APPEND
The associated trace stream shall be flushed to the trace log without log size limitation. If the appli-
cation specifies POSIX_TRACE_APPEND, the implementation shall ignore the log-max-size attri-
bute.

The default value for the log-full-policy attribute is POSIX_TRACE_LOOP.

The posix_trace_attr_getstreamfullpolicy() and posix_trace_attr_setstreamfullpolicy() functions, respec-
tively, shall get and set the trace stream full policy stored in the stream-full-policy attribute of the attributes
object pointed to by the attr argument.

The stream-full-policy attribute shall be set to one of the following values defined by manifest constants in
the <trace.h> header:

POSIX_TRACE_LOOP
The trace stream shall loop until explicitly stopped by the posix_trace_stop() function. This policy
means that when the trace stream is full, the trace system shall reuse the resources allocated to the
oldest trace events recorded. In this way, the trace stream will always contain the most recent trace
ev ents recorded.

POSIX_TRACE_UNTIL_FULL
The trace stream will run until the trace stream resources are exhausted. Then the trace stream will
stop. This condition can be deduced from posix_stream_status and posix_stream_full_status (see
the posix_trace_status_info structure defined in <trace.h>). When this trace stream is read, a
POSIX_TRACE_STOP trace event shall be reported after reporting the last recorded trace event.
The trace system shall reuse the resources allocated to any trace events already reported—see the
posix_trace_getnext_event(), posix_trace_trygetnext_event(), and posix_trace_timedgetnext_event()
functions—or already flushed for an active trace stream with log if the Trace Log option is sup-
ported; see the posix_trace_flush() function. The trace system shall restart the trace stream when it
is empty and may restart it sooner. A POSIX_TRACE_START trace event shall be reported before
reporting the next recorded trace event.

POSIX_TRACE_FLUSH
If the Trace Log option is supported, this policy is identical to the POSIX_TRACE_UNTIL_FULL
trace stream full policy except that the trace stream shall be flushed regularly as if
posix_trace_flush() had been explicitly called. Defining this policy for an active trace stream with-
out log shall be invalid.

The default value for the stream-full-policy attribute shall be POSIX_TRACE_LOOP for an active trace
stream without log.

If the Trace Log option is supported, the default value for the stream-full-policy attribute shall be
POSIX_TRACE_FLUSH for an active trace stream with log.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

If successful, the posix_trace_attr_getinherited() function shall store the inheritance attribute value in the
object pointed to by inheritancepolicy. Otherwise, the content of this object is undefined.

If successful, the posix_trace_attr_getlogfullpolicy() function shall store the log-full-policy attribute value
in the object pointed to by logpolicy. Otherwise, the content of this object is undefined.

If successful, the posix_trace_attr_getstreamfullpolicy() function shall store the stream-full-policy attribute
value in the object pointed to by streampolicy. Otherwise, the content of this object is undefined.

ERRORS
These functions may fail if:

EINVAL
The value specified by at least one of the arguments is invalid.

IEEE/The Open Group 2017 2

POSIX_TRACE_ATTR_GETINHERITED(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETINHERITED(3P)

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The following functions:

posix_trace_attr_getinherited()
posix_trace_attr_getlogfullpolicy()
posix_trace_attr_getstreamfullpolicy()
posix_trace_attr_setinherited()
posix_trace_attr_setlogfullpolicy()
posix_trace_attr_setstreamfullpolicy()

may be removed in a future version.

SEE ALSO
fork(), posix_trace_attr_destroy(), posix_trace_create(), posix_trace_get_attr(), posix_trace_get-

next_event(), posix_trace_start()

The Base Definitions volume of POSIX.1-2017, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

POSIX_TRACE_ATTR_GETLOGSIZE(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETLOGSIZE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_getlogsize, posix_trace_attr_getmaxdatasize, posix_trace_attr_getmaxsystemeventsize,
posix_trace_attr_getmaxusereventsize, posix_trace_attr_getstreamsize, posix_trace_attr_setlogsize,
posix_trace_attr_setmaxdatasize, posix_trace_attr_setstreamsize — retrieve and set trace stream size at-
tributes (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_getlogsize(const trace_attr_t *restrict attr,
size_t *restrict logsize);

int posix_trace_attr_getmaxdatasize(const trace_attr_t *restrict attr,
size_t *restrict maxdatasize);

int posix_trace_attr_getmaxsystemeventsize(
const trace_attr_t *restrict attr,
size_t *restrict eventsize);

int posix_trace_attr_getmaxusereventsize(
const trace_attr_t *restrict attr,
size_t data_len, size_t *restrict eventsize);

int posix_trace_attr_getstreamsize(const trace_attr_t *restrict attr,
size_t *restrict streamsize);

int posix_trace_attr_setlogsize(trace_attr_t *attr,
size_t logsize);

int posix_trace_attr_setmaxdatasize(trace_attr_t *attr,
size_t maxdatasize);

int posix_trace_attr_setstreamsize(trace_attr_t *attr,
size_t streamsize);

DESCRIPTION
The posix_trace_attr_getlogsize() function shall copy the log size, in bytes, from the log-max-size attribute
of the attributes object pointed to by the attr argument into the variable pointed to by the logsize argument.
This log size is the maximum total of bytes that shall be allocated for system and user trace events in the
trace log. The default value for the log-max-size attribute is implementation-defined.

The posix_trace_attr_setlogsize() function shall set the maximum allowed size, in bytes, in the log-max-

size attribute of the attributes object pointed to by the attr argument, using the size value supplied by the
logsize argument.

The trace log size shall be used if the log-full-policy attribute is set to POSIX_TRACE_LOOP or
POSIX_TRACE_UNTIL_FULL. If the log-full-policy attribute is set to POSIX_TRACE_APPEND, the
implementation shall ignore the log-max-size attribute.

The posix_trace_attr_getmaxdatasize() function shall copy the maximum user trace event data size, in
bytes, from the max-data-size attribute of the attributes object pointed to by the attr argument into the vari-
able pointed to by the maxdatasize argument. The default value for the max-data-size attribute is imple-
mentation-defined.

The posix_trace_attr_getmaxsystemeventsize() function shall calculate the maximum memory size, in
bytes, required to store a single system trace event. This value is calculated for the trace stream attributes
object pointed to by the attr argument and is returned in the variable pointed to by the eventsize argument.

The values returned as the maximum memory sizes of the user and system trace events shall be such that if
the sum of the maximum memory sizes of a set of the trace events that may be recorded in a trace stream is
less than or equal to the stream-min-size attribute of that trace stream, the system provides the necessary

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_GETLOGSIZE(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETLOGSIZE(3P)

resources for recording all those trace events, without loss.

The posix_trace_attr_getmaxusereventsize() function shall calculate the maximum memory size, in bytes,
required to store a single user trace event generated by a call to posix_trace_event() with a data_len param-
eter equal to the data_len value specified in this call. This value is calculated for the trace stream attributes
object pointed to by the attr argument and is returned in the variable pointed to by the eventsize argument.

The posix_trace_attr_getstreamsize() function shall copy the stream size, in bytes, from the stream-min-

size attribute of the attributes object pointed to by the attr argument into the variable pointed to by the
streamsize argument.

This stream size is the current total memory size reserved for system and user trace events in the trace
stream. The default value for the stream-min-size attribute is implementation-defined. The stream size
refers to memory used to store trace event records. Other stream data (for example, trace attribute values)
shall not be included in this size.

The posix_trace_attr_setmaxdatasize() function shall set the maximum allowed size, in bytes, in the max-

data-size attribute of the attributes object pointed to by the attr argument, using the size value supplied by
the maxdatasize argument. This maximum size is the maximum allowed size for the user data argument
which may be passed to posix_trace_event(). The implementation shall be allowed to truncate data passed
to trace_user_event which is longer than maxdatasize.

The posix_trace_attr_setstreamsize() function shall set the minimum allowed size, in bytes, in the stream-

min-size attribute of the attributes object pointed to by the attr argument, using the size value supplied by
the streamsize argument.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

The posix_trace_attr_getlogsize() function stores the maximum trace log allowed size in the object pointed
to by logsize, if successful.

The posix_trace_attr_getmaxdatasize() function stores the maximum trace event record memory size in the
object pointed to by maxdatasize, if successful.

The posix_trace_attr_getmaxsystemeventsize() function stores the maximum memory size to store a single
system trace event in the object pointed to by eventsize, if successful.

The posix_trace_attr_getmaxusereventsize() function stores the maximum memory size to store a single
user trace event in the object pointed to by eventsize, if successful.

The posix_trace_attr_getstreamsize() function stores the maximum trace stream allowed size in the object
pointed to by streamsize, if successful.

ERRORS
These functions may fail if:

EINVAL
The value specified by one of the arguments is invalid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The following functions:

IEEE/The Open Group 2017 2

POSIX_TRACE_ATTR_GETLOGSIZE(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETLOGSIZE(3P)

posix_trace_attr_getlogsize()
posix_trace_attr_getmaxdatasize()
posix_trace_attr_getmaxsystemeventsize()
posix_trace_attr_getmaxusereventsize()
posix_trace_attr_getstreamsize()
posix_trace_attr_setlogsize()
posix_trace_attr_setmaxdatasize()
posix_trace_attr_setstreamsize()

may be removed in a future version.

SEE ALSO
posix_trace_attr_destroy(), posix_trace_create(), posix_trace_event(), posix_trace_get_attr()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

POSIX_TRACE_ATTR_GETNAME(3P) POSIX Programmer’s Manual POSIX_TRACE_ATTR_GETNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_getname — retrieve and set information about a trace stream (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_attr_getname(const trace_attr_t *attr,
char *tracename);

DESCRIPTION
Refer to posix_trace_attr_getclockres().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_GETSTREAMFULLPOLICY(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETSTREAMFULLPOLICY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_getstreamfullpolicy — retrieve and set the behavior of a trace stream (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_attr_getstreamfullpolicy(const trace_attr_t *restrict
attr, int *restrict streampolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_GETSTREAMSIZE(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_GETSTREAMSIZE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_getstreamsize — retrieve and set trace stream size attributes (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_getstreamsize(const trace_attr_t *restrict attr,
size_t *restrict streamsize);

DESCRIPTION
Refer to posix_trace_attr_getlogsize().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_INIT(3P) POSIX Programmer’s Manual POSIX_TRACE_ATTR_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_init — initialize the trace stream attributes object (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_attr_init(trace_attr_t *attr);

DESCRIPTION
Refer to posix_trace_attr_destroy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_SETINHERITED(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_SETINHERITED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_setinherited, posix_trace_attr_setlogfullpolicy — retrieve and set the behavior of a trace
stream (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_attr_setinherited(trace_attr_t *attr,
int inheritancepolicy);

int posix_trace_attr_setlogfullpolicy(trace_attr_t *attr,
int logpolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_SETLOGSIZE(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_SETLOGSIZE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_setlogsize, posix_trace_attr_setmaxdatasize — retrieve and set trace stream size attributes
(TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_setlogsize(trace_attr_t *attr,
size_t logsize);

int posix_trace_attr_setmaxdatasize(trace_attr_t *attr,
size_t maxdatasize);

DESCRIPTION
Refer to posix_trace_attr_getlogsize().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_SETNAME(3P) POSIX Programmer’s Manual POSIX_TRACE_ATTR_SETNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_setname — retrieve and set information about a trace stream (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_attr_setname(trace_attr_t *attr,
const char *tracename);

DESCRIPTION
Refer to posix_trace_attr_getclockres().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_SETSTREAMFULLPOLICY(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_SETSTREAMFULLPOLICY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_setstreamfullpolicy — retrieve and set the behavior of a trace stream (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_attr_setstreamfullpolicy(trace_attr_t *attr,
int streampolicy);

DESCRIPTION
Refer to posix_trace_attr_getinherited().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_ATTR_SETSTREAMSIZE(3P)POSIX Programmer’s ManualPOSIX_TRACE_ATTR_SETSTREAMSIZE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_attr_setstreamsize — retrieve and set trace stream size attributes (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_attr_setstreamsize(trace_attr_t *attr,
size_t streamsize);

DESCRIPTION
Refer to posix_trace_attr_getlogsize().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_CLEAR(3P) POSIX Programmer’s Manual POSIX_TRACE_CLEAR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_clear — clear trace stream and trace log (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_clear(trace_id_t trid);

DESCRIPTION
The posix_trace_clear() function shall reinitialize the trace stream identified by the argument trid as if it
were returning from the posix_trace_create() function, except that the same allocated resources shall be
reused, the mapping of trace event type identifiers to trace event names shall be unchanged, and the trace
stream status shall remain unchanged (that is, if it was running, it remains running and if it was suspended,
it remains suspended).

All trace events in the trace stream recorded before the call to posix_trace_clear() shall be lost. The
posix_stream_full_status status shall be set to POSIX_TRACE_NOT_FULL. There is no guarantee that all
trace events that occurred during the posix_trace_clear() call are recorded; the behavior with respect to
trace points that may occur during this call is unspecified.

If the Trace Log option is supported and the trace stream has been created with a log, the
posix_trace_clear() function shall reinitialize the trace stream with the same behavior as if the trace stream
was created without the log, plus it shall reinitialize the trace log associated with the trace stream identified
by the argument trid as if it were returning from the posix_trace_create_withlog() function, except that the
same allocated resources, for the trace log, may be reused and the associated trace stream status remains
unchanged. The first trace event recorded in the trace log after the call to posix_trace_clear() shall be the
same as the first trace event recorded in the active trace stream after the call to posix_trace_clear(). The
posix_log_full_status status shall be set to POSIX_TRACE_NOT_FULL. There is no guarantee that all
trace events that occurred during the posix_trace_clear() call are recorded in the trace log; the behavior
with respect to trace points that may occur during this call is unspecified. If the log full policy is
POSIX_TRACE_APPEND, the effect of a call to this function is unspecified for the trace log associated
with the trace stream identified by the trid argument.

RETURN VALUE
Upon successful completion, the posix_trace_clear() function shall return a value of zero. Otherwise, it
shall return the corresponding error number.

ERRORS
The posix_trace_clear() function shall fail if:

EINVAL
The value of the trid argument does not correspond to an active trace stream.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_clear() function may be removed in a future version.

IEEE/The Open Group 2017 1

POSIX_TRACE_CLEAR(3P) POSIX Programmer’s Manual POSIX_TRACE_CLEAR(3P)

SEE ALSO
posix_trace_attr_destroy(), posix_trace_create(), posix_trace_get_attr()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_CLOSE(3P) POSIX Programmer’s Manual POSIX_TRACE_CLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_close, posix_trace_open, posix_trace_rewind — trace log management (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_close(trace_id_t trid);
int posix_trace_open(int file_desc, trace_id_t *trid);
int posix_trace_rewind(trace_id_t trid);

DESCRIPTION
The posix_trace_close() function shall deallocate the trace log identifier indicated by trid , and all of its as-
sociated resources. If there is no valid trace log pointed to by the trid , this function shall fail.

The posix_trace_open() function shall allocate the necessary resources and establish the connection be-
tween a trace log identified by the file_desc argument and a trace stream identifier identified by the object
pointed to by the trid argument. The file_desc argument should be a valid open file descriptor that corre-
sponds to a trace log. The file_desc argument shall be open for reading. The current trace event timestamp,
which specifies the timestamp of the trace event that will be read by the next call to posix_trace_get-

next_event(), shall be set to the timestamp of the oldest trace event recorded in the trace log identified by
trid .

The posix_trace_open() function shall return a trace stream identifier in the variable pointed to by the trid

argument, that may only be used by the following functions:

tab(!); l l. T{
posix_trace_close()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
T}!T{
posix_trace_get_attr()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_rewind()
T}

In particular, notice that the operations normally used by a trace controller process, such as
posix_trace_start(), posix_trace_stop(), or posix_trace_shutdown(), cannot be invoked using the trace
stream identifier returned by the posix_trace_open() function.

The posix_trace_rewind() function shall reset the current trace event timestamp, which specifies the time-
stamp of the trace event that will be read by the next call to posix_trace_getnext_event(), to the timestamp
of the oldest trace event recorded in the trace log identified by trid .

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

If successful, the posix_trace_open() function stores the trace stream identifier value in the object pointed
to by trid .

ERRORS
The posix_trace_open() function shall fail if:

IEEE/The Open Group 2017 1

POSIX_TRACE_CLOSE(3P) POSIX Programmer’s Manual POSIX_TRACE_CLOSE(3P)

EINTR
The operation was interrupted by a signal and thus no trace log was opened.

EINVAL
The object pointed to by file_desc does not correspond to a valid trace log.

The posix_trace_close() and posix_trace_rewind() functions may fail if:

EINVAL
The object pointed to by trid does not correspond to a valid trace log.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_close(), posix_trace_open(), and posix_trace_rewind() functions may be removed in a fu-
ture version.

SEE ALSO
posix_trace_get_attr(), posix_trace_get_filter(), posix_trace_getnext_event()

The Base Definitions volume of POSIX.1-2017, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_CREATE(3P) POSIX Programmer’s Manual POSIX_TRACE_CREATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_create, posix_trace_create_withlog, posix_trace_flush, posix_trace_shutdown — trace stream
initialization, flush, and shutdown from a process (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_create(pid_t pid,
const trace_attr_t *restrict attr,
trace_id_t *restrict trid);

int posix_trace_create_withlog(pid_t pid,
const trace_attr_t *restrict attr, int file_desc,
trace_id_t *restrict trid);

int posix_trace_flush(trace_id_t trid);
int posix_trace_shutdown(trace_id_t trid);

DESCRIPTION
The posix_trace_create() function shall create an active trace stream. It allocates all the resources needed
by the trace stream being created for tracing the process specified by pid in accordance with the attr argu-
ment. The attr argument represents the initial attributes of the trace stream and shall have been initialized
by the function posix_trace_attr_init() prior to the posix_trace_create() call. If the argument attr is NULL,
the default attributes shall be used. The attr attributes object shall be manipulated through a set of functions
described in the posix_trace_attr family of functions. If the attributes of the object pointed to by attr are
modified later, the attributes of the trace stream shall not be affected. The creation-time attribute of the
newly created trace stream shall be set to the value of the system clock, if the Timers option is not sup-
ported, or to the value of the CLOCK_REALTIME clock, if the Timers option is supported.

The pid argument represents the target process to be traced. If the process executing this function does not
have appropriate privileges to trace the process identified by pid , an error shall be returned. If the pid argu-
ment is zero, the calling process shall be traced.

The posix_trace_create() function shall store the trace stream identifier of the new trace stream in the object
pointed to by the trid argument. This trace stream identifier shall be used in subsequent calls to control trac-
ing. The trid argument may only be used by the following functions:

tab(!); l l. T{
posix_trace_clear()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_get_attr()
posix_trace_get_status()
T}!T{
posix_trace_getnext_event()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_timedgetnext_event()
posix_trace_trid_eventid_open()
posix_trace_trygetnext_event()
T}

IEEE/The Open Group 2017 1

POSIX_TRACE_CREATE(3P) POSIX Programmer’s Manual POSIX_TRACE_CREATE(3P)

If the Trace Event Filter option is supported, the following additional functions may use the trid argument:

tab(!); l l. T{ posix_trace_get_filter() T}!T{ posix_trace_set_filter() T}

In particular, notice that the operations normally used by a trace analyzer process, such as
posix_trace_rewind() or posix_trace_close(), cannot be invoked using the trace stream identifier returned
by the posix_trace_create() function.

A trace stream shall be created in a suspended state. If the Trace Event Filter option is supported, its trace
ev ent type filter shall be empty.

The posix_trace_create() function may be called multiple times from the same or different processes, with
the system-wide limit indicated by the runtime invariant value {TRACE_SYS_MAX}, which has the mini-
mum value {_POSIX_TRACE_SYS_MAX}.

The trace stream identifier returned by the posix_trace_create() function in the argument pointed to by trid

is valid only in the process that made the function call. If it is used from another process, that is a child
process, in functions defined in POSIX.1-2008, these functions shall return with the error [EINVAL].

The posix_trace_create_withlog() function shall be equivalent to posix_trace_create(), except that it asso-
ciates a trace log with this stream. The file_desc argument shall be the file descriptor designating the trace
log destination. The function shall fail if this file descriptor refers to a file with a file type that is not com-
patible with the log policy associated with the trace log. The list of the appropriate file types that are com-
patible with each log policy is implementation-defined.

The posix_trace_create_withlog() function shall return in the parameter pointed to by trid the trace stream
identifier, which uniquely identifies the newly created trace stream, and shall be used in subsequent calls to
control tracing. The trid argument may only be used by the following functions:

tab(!); l l. T{
posix_trace_clear()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
T}!T{
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_timedgetnext_event()
posix_trace_trid_eventid_open()
T}

If the Trace Event Filter option is supported, the following additional functions may use the trid argument:

tab(!); l l. T{ posix_trace_get_filter() T}!T{ posix_trace_set_filter() T}

In particular, notice that the operations normally used by a trace analyzer process, such as
posix_trace_rewind() or posix_trace_close(), cannot be invoked using the trace stream identifier returned
by the posix_trace_create_withlog() function.

The posix_trace_flush() function shall initiate a flush operation which copies the contents of the trace
stream identified by the argument trid into the trace log associated with the trace stream at the creation
time. If no trace log has been associated with the trace stream pointed to by trid , this function shall return
an error. The termination of the flush operation can be polled by the posix_trace_get_status() function. Dur-
ing the flush operation, it shall be possible to trace new trace events up to the point when the trace stream
becomes full. After flushing is completed, the space used by the flushed trace events shall be available for
tracing new trace events.

IEEE/The Open Group 2017 2

POSIX_TRACE_CREATE(3P) POSIX Programmer’s Manual POSIX_TRACE_CREATE(3P)

If flushing the trace stream causes the resulting trace log to become full, the trace log full policy shall be
applied. If the trace log-full-policy attribute is set, the following occurs:

POSIX_TRACE_UNTIL_FULL
The trace events that have not yet been flushed shall be discarded.

POSIX_TRACE_LOOP
The trace events that have not yet been flushed shall be written to the beginning of the trace log,
overwriting previous trace events stored there.

POSIX_TRACE_APPEND
The trace events that have not yet been flushed shall be appended to the trace log.

The posix_trace_shutdown() function shall stop the tracing of trace events in the trace stream identified by
trid , as if posix_trace_stop() had been invoked. The posix_trace_shutdown() function shall free all the re-
sources associated with the trace stream.

The posix_trace_shutdown() function shall not return until all the resources associated with the trace stream
have been freed. When the posix_trace_shutdown() function returns, the trid argument becomes an invalid
trace stream identifier. A call to this function shall unconditionally deallocate the resources regardless of
whether all trace events have been retrieved by the analyzer process. Any thread blocked on one of the
trace_getnext_event() functions (which specified this trid) before this call is unblocked with the error [EIN-
VAL].

If the process exits, invokes a member of the exec family of functions, or is terminated, the trace streams
that the process had created and that have not yet been shut down, shall be automatically shut down as if an
explicit call were made to the posix_trace_shutdown() function.

For an active trace stream with log, when the posix_trace_shutdown() function is called, all trace events
that have not yet been flushed to the trace log shall be flushed, as in the posix_trace_flush() function, and
the trace log shall be closed.

When a trace log is closed, all the information that may be retrieved later from the trace log through the
trace interface shall have been written to the trace log. This information includes the trace attributes, the list
of trace event types (with the mapping between trace event names and trace event type identifiers), and the
trace status.

In addition, unspecified information shall be written to the trace log to allow detection of a valid trace log
during the posix_trace_open() operation.

The posix_trace_shutdown() function shall not return until all trace events have been flushed.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

The posix_trace_create() and posix_trace_create_withlog() functions store the trace stream identifier value
in the object pointed to by trid , if successful.

ERRORS
The posix_trace_create() and posix_trace_create_withlog() functions shall fail if:

EAGAIN
No more trace streams can be started now. {TRACE_SYS_MAX} has been exceeded.

EINTR
The operation was interrupted by a signal. No trace stream was created.

EINVAL
One or more of the trace parameters specified by the attr parameter is invalid.

ENOMEM
The implementation does not currently have sufficient memory to create the trace stream with the
specified parameters.

IEEE/The Open Group 2017 3

POSIX_TRACE_CREATE(3P) POSIX Programmer’s Manual POSIX_TRACE_CREATE(3P)

EPERM
The caller does not have appropriate privileges to trace the process specified by pid .

ESRCH
The pid argument does not refer to an existing process.

The posix_trace_create_withlog() function shall fail if:

EBADF
The file_desc argument is not a valid file descriptor open for writing.

EINVAL
The file_desc argument refers to a file with a file type that does not support the log policy associ-
ated with the trace log.

ENOSPC
No space left on device. The device corresponding to the argument file_desc does not contain the
space required to create this trace log.

The posix_trace_flush() and posix_trace_shutdown() functions shall fail if:

EINVAL
The value of the trid argument does not correspond to an active trace stream with log.

EFBIG
The trace log file has attempted to exceed an implementation-defined maximum file size.

ENOSPC
No space left on device.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_create(), posix_trace_create_withlog(), posix_trace_flush(), and posix_trace_shutdown()
functions may be removed in a future version.

SEE ALSO
clock_getres(), exec , posix_trace_attr_destroy(), posix_trace_clear(), posix_trace_close(),
posix_trace_eventid_equal(), posix_trace_eventtypelist_getnext_id(), posix_trace_get_attr(),
posix_trace_get_filter(), posix_trace_getnext_event(), posix_trace_start(), posix_trace_start(), time()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

POSIX_TRACE_EVENT(3P) POSIX Programmer’s Manual POSIX_TRACE_EVENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_event, posix_trace_eventid_open — trace functions for instrumenting application code
(TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

void posix_trace_event(trace_event_id_t event_id,
const void *restrict data_ptr, size_t data_len);

int posix_trace_eventid_open(const char *restrict event_name,
trace_event_id_t *restrict event_id);

DESCRIPTION
The posix_trace_event() function shall record the event_id and the user data pointed to by data_ptr in the
trace stream into which the calling process is being traced and in which event_id is not filtered out. If the
total size of the user trace event data represented by data_len is not greater than the declared maximum size
for user trace event data, then the truncation-status attribute of the trace event recorded is
POSIX_TRACE_NOT_TRUNCATED. Otherwise, the user trace event data is truncated to this declared
maximum size and the truncation-status attribute of the trace event recorded is POSIX_TRACE_TRUN-
CATED_RECORD.

If there is no trace stream created for the process or if the created trace stream is not running, or if the trace
ev ent specified by event_id is filtered out in the trace stream, the posix_trace_event() function shall have no
effect.

The posix_trace_eventid_open() function shall associate a user trace event name with a trace event type
identifier for the calling process. The trace event name is the string pointed to by the argument event_name.
It shall have a maximum of {TRACE_EVENT_NAME_MAX} characters (which has the minimum value
{_POSIX_TRACE_EVENT_NAME_MAX}). The number of user trace event type identifiers that can be
defined for any giv en process is limited by the maximum value {TRACE_USER_EVENT_MAX}, which
has the minimum value {POSIX_TRACE_USER_EVENT_MAX}.

If the Trace Inherit option is not supported, the posix_trace_eventid_open() function shall associate the user
trace event name pointed to by the event_name argument with a trace event type identifier that is unique for
the traced process, and is returned in the variable pointed to by the event_id argument. If the user trace
ev ent name has already been mapped for the traced process, then the previously assigned trace event type
identifier shall be returned. If the per-process user trace event name limit represented by
{TRACE_USER_EVENT_MAX} has been reached, the pre-defined POSIX_TRACE_UN-
NAMED_USEREVENT (see Table 2-7 , Tr ace Option: User Trace Event) user trace event shall be re-
turned.

If the Trace Inherit option is supported, the posix_trace_eventid_open() function shall associate the user
trace event name pointed to by the event_name argument with a trace event type identifier that is unique for
all the processes being traced in this same trace stream, and is returned in the variable pointed to by the
event_id argument. If the user trace event name has already been mapped for the traced processes, then the
previously assigned trace event type identifier shall be returned. If the per-process user trace event name
limit represented by {TRACE_USER_EVENT_MAX} has been reached, the pre-defined
POSIX_TRACE_UNNAMED_USEREVENT (Table 2-7 , Tr ace Option: User Trace Event) user trace
ev ent shall be returned.

Note: The above procedure, together with the fact that multiple processes can only be traced into the
same trace stream by inheritance, ensure that all the processes that are traced into a trace
stream have the same mapping of trace event names to trace event type identifiers.

IEEE/The Open Group 2017 1

POSIX_TRACE_EVENT(3P) POSIX Programmer’s Manual POSIX_TRACE_EVENT(3P)

If there is no trace stream created, the posix_trace_eventid_open() function shall store this information for
future trace streams created for this process.

RETURN VALUE
No return value is defined for the posix_trace_event() function.

Upon successful completion, the posix_trace_eventid_open() function shall return a value of zero. Other-
wise, it shall return the corresponding error number. The posix_trace_eventid_open() function stores the
trace event type identifier value in the object pointed to by event_id , if successful.

ERRORS
The posix_trace_eventid_open() function shall fail if:

ENAMETOOLONG
The size of the name pointed to by the event_name argument was longer than the implementation-
defined value {TRACE_EVENT_NAME_MAX}.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_event() and posix_trace_eventid_open() functions may be removed in a future version.

SEE ALSO
Table 2-7 , Tr ace Option: User Trace Event, exec , posix_trace_eventid_equal(), posix_trace_start()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_EVENTID_EQUAL(3P) POSIX Programmer’s Manual POSIX_TRACE_EVENTID_EQUAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_eventid_equal, posix_trace_eventid_get_name, posix_trace_trid_eventid_open — manipulate
the trace event type identifier (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_eventid_equal(trace_id_t trid, trace_event_id_t event1,
trace_event_id_t event2);

int posix_trace_eventid_get_name(trace_id_t trid,
trace_event_id_t event, char *event_name);

int posix_trace_trid_eventid_open(trace_id_t trid,
const char *restrict event_name,
trace_event_id_t *restrict event);

DESCRIPTION
The posix_trace_eventid_equal() function shall compare the trace event type identifiers event1 and event2

from the same trace stream or the same trace log identified by the trid argument. If the trace event type
identifiers event1 and event2 are from different trace streams, the return value shall be unspecified.

The posix_trace_eventid_get_name() function shall return, in the argument pointed to by event_name, the
trace event name associated with the trace event type identifier identified by the argument event, for the
trace stream or for the trace log identified by the trid argument. The name of the trace event shall have a
maximum of {TRACE_EVENT_NAME_MAX} characters (which has the minimum value
{_POSIX_TRACE_EVENT_NAME_MAX}). Successive calls to this function with the same trace event
type identifier and the same trace stream identifier shall return the same event name.

The posix_trace_trid_eventid_open() function shall associate a user trace event name with a trace event
type identifier for a given trace stream. The trace stream is identified by the trid argument, and it shall be an
active trace stream. The trace event name is the string pointed to by the argument event_name. It shall have
a maximum of {TRACE_EVENT_NAME_MAX} characters (which has the minimum value
{_POSIX_TRACE_EVENT_NAME_MAX}). The number of user trace event type identifiers that can be
defined for any giv en process is limited by the maximum value {TRACE_USER_EVENT_MAX}, which
has the minimum value {_POSIX_TRACE_USER_EVENT_MAX}.

If the Trace Inherit option is not supported, the posix_trace_trid_eventid_open() function shall associate the
user trace event name pointed to by the event_name argument with a trace event type identifier that is
unique for the process being traced in the trace stream identified by the trid argument, and is returned in the
variable pointed to by the event argument. If the user trace event name has already been mapped for the
traced process, then the previously assigned trace event type identifier shall be returned. If the per-process
user trace event name limit represented by {TRACE_USER_EVENT_MAX} has been reached, the pre-de-
fined POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-7 , Tr ace Option: User Trace Event) user
trace event shall be returned.

If the Trace Inherit option is supported, the posix_trace_trid_eventid_open() function shall associate the
user trace event name pointed to by the event_name argument with a trace event type identifier that is
unique for all the processes being traced in the trace stream identified by the trid argument, and is returned
in the variable pointed to by the event argument. If the user trace event name has already been mapped for
the traced processes, then the previously assigned trace event type identifier shall be returned. If the per-
process user trace event name limit represented by {TRACE_USER_EVENT_MAX} has been reached, the
pre-defined POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-7 , Tr ace Option: User Trace Event)
user trace event shall be returned.

IEEE/The Open Group 2017 1

POSIX_TRACE_EVENTID_EQUAL(3P) POSIX Programmer’s Manual POSIX_TRACE_EVENTID_EQUAL(3P)

RETURN VALUE
Upon successful completion, the posix_trace_eventid_get_name() and posix_trace_trid_eventid_open()
functions shall return a value of zero. Otherwise, they shall return the corresponding error number.

The posix_trace_eventid_equal() function shall return a non-zero value if event1 and event2 are equal; oth-
erwise, a value of zero shall be returned. No errors are defined. If either event1 or event2 are not valid trace
ev ent type identifiers for the trace stream specified by trid or if the trid is invalid, the behavior shall be un-
specified.

The posix_trace_eventid_get_name() function stores the trace event name value in the object pointed to by
event_name, if successful.

The posix_trace_trid_eventid_open() function stores the trace event type identifier value in the object
pointed to by event, if successful.

ERRORS
The posix_trace_eventid_get_name() and posix_trace_trid_eventid_open() functions shall fail if:

EINVAL
The trid argument was not a valid trace stream identifier.

The posix_trace_trid_eventid_open() function shall fail if:

ENAMETOOLONG
The size of the name pointed to by the event_name argument was longer than the implementation-
defined value {TRACE_EVENT_NAME_MAX}.

The posix_trace_eventid_get_name() function shall fail if:

EINVAL
The trace event type identifier event was not associated with any name.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventid_equal(), posix_trace_eventid_get_name(), and posix_trace_trid_eventid_open()
functions may be removed in a future version.

SEE ALSO
Table 2-7 , Tr ace Option: User Trace Event, exec , posix_trace_event(), posix_trace_getnext_event()

The Base Definitions volume of POSIX.1-2017, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_EVENTID_OPEN(3P) POSIX Programmer’s Manual POSIX_TRACE_EVENTID_OPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_eventid_open — trace functions for instrumenting application code (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_eventid_open(const char *restrict event_name,
trace_event_id_t *restrict event_id);

DESCRIPTION
Refer to posix_trace_event().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_EVENTSET_ADD(3P) POSIX Programmer’s Manual POSIX_TRACE_EVENTSET_ADD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_eventset_add, posix_trace_eventset_del, posix_trace_eventset_empty,
posix_trace_eventset_fill, posix_trace_eventset_ismember — manipulate trace event type sets (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_eventset_add(trace_event_id_t event_id,
trace_event_set_t *set);

int posix_trace_eventset_del(trace_event_id_t event_id,
trace_event_set_t *set);

int posix_trace_eventset_empty(trace_event_set_t *set);
int posix_trace_eventset_fill(trace_event_set_t *set, int what);
int posix_trace_eventset_ismember(trace_event_id_t event_id,

const trace_event_set_t *restrict set, int *restrict ismember);

DESCRIPTION
These primitives manipulate sets of trace event types. They operate on data objects addressable by the ap-
plication, not on the current trace event filter of any trace stream.

The posix_trace_eventset_add() and posix_trace_eventset_del() functions, respectively, shall add or delete
the individual trace event type specified by the value of the argument event_id to or from the trace event
type set pointed to by the argument set. Adding a trace event type already in the set or deleting a trace
ev ent type not in the set shall not be considered an error.

The posix_trace_eventset_empty() function shall initialize the trace event type set pointed to by the set ar-
gument such that all trace event types defined, both system and user, shall be excluded from the set.

The posix_trace_eventset_fill() function shall initialize the trace event type set pointed to by the argument
set, such that the set of trace event types defined by the argument what shall be included in the set. The
value of the argument what shall consist of one of the following values, as defined in the <trace.h> header:

POSIX_TRACE_WOPID_EVENTS
All the process-independent implementation-defined system trace event types are included in the
set.

POSIX_TRACE_SYSTEM_EVENTS
All the implementation-defined system trace event types are included in the set, as are those defined
in POSIX.1-2008.

POSIX_TRACE_ALL_EVENTS
All trace event types defined, both system and user, are included in the set.

Applications shall call either posix_trace_eventset_empty() or posix_trace_eventset_fill() at least once for
each object of type trace_event_set_t prior to any other use of that object. If such an object is not initial-
ized in this way, but is nonetheless supplied as an argument to any of the posix_trace_eventset_add(),
posix_trace_eventset_del(), or posix_trace_eventset_ismember() functions, the results are undefined.

The posix_trace_eventset_ismember() function shall test whether the trace event type specified by the value
of the argument event_id is a member of the set pointed to by the argument set. The value returned in the
object pointed to by ismember argument is zero if the trace event type identifier is not a member of the set
and a value different from zero if it is a member of the set.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

IEEE/The Open Group 2017 1

POSIX_TRACE_EVENTSET_ADD(3P) POSIX Programmer’s Manual POSIX_TRACE_EVENTSET_ADD(3P)

ERRORS
These functions may fail if:

EINVAL
The value of one of the arguments is invalid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventset_add(), posix_trace_eventset_del(), posix_trace_eventset_empty(),
posix_trace_eventset_fill(), and posix_trace_eventset_ismember() functions may be removed in a future
version.

SEE ALSO
posix_trace_eventid_equal(), posix_trace_get_filter()

The Base Definitions volume of POSIX.1-2017, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_EVENTTYPELIST_GETNEXT_ID(3P)POSIX Programmer’s ManualPOSIX_TRACE_EVENTTYPELIST_GETNEXT_ID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_eventtypelist_getnext_id, posix_trace_eventtypelist_rewind — iterate over a mapping of trace
ev ent types (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_eventtypelist_getnext_id(trace_id_t trid,
trace_event_id_t *restrict event, int *restrict unavailable);

int posix_trace_eventtypelist_rewind(trace_id_t trid);

DESCRIPTION
The first time posix_trace_eventtypelist_getnext_id() is called, the function shall return in the variable
pointed to by event the first trace event type identifier of the list of trace events of the trace stream identified
by the trid argument. Successive calls to posix_trace_eventtypelist_getnext_id() return in the variable
pointed to by event the next trace event type identifier in that same list. Each time a trace event type identi-
fier is successfully written into the variable pointed to by the event argument, the variable pointed to by the
unavailable argument shall be set to zero. When no more trace event type identifiers are available, and so
none is returned, the variable pointed to by the unavailable argument shall be set to a value different from
zero.

The posix_trace_eventtypelist_rewind() function shall reset the next trace event type identifier to be read to
the first trace event type identifier from the list of trace events used in the trace stream identified by trid .

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

The posix_trace_eventtypelist_getnext_id() function stores the trace event type identifier value in the object
pointed to by event, if successful.

ERRORS
These functions shall fail if:

EINVAL
The trid argument was not a valid trace stream identifier.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_eventtypelist_getnext_id() and posix_trace_eventtypelist_rewind() functions may be re-
moved in a future version.

SEE ALSO
posix_trace_event(), posix_trace_eventid_equal(), posix_trace_getnext_event()

The Base Definitions volume of POSIX.1-2017, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

POSIX_TRACE_EVENTTYPELIST_GETNEXT_ID(3P)POSIX Programmer’s ManualPOSIX_TRACE_EVENTTYPELIST_GETNEXT_ID(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_FLUSH(3P) POSIX Programmer’s Manual POSIX_TRACE_FLUSH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_flush — trace stream flush from a process (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_flush(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_create().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_GET_ATTR(3P) POSIX Programmer’s Manual POSIX_TRACE_GET_ATTR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_get_attr, posix_trace_get_status — retrieve the trace attributes or trace status (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_get_attr(trace_id_t trid, trace_attr_t *attr);
int posix_trace_get_status(trace_id_t trid,

struct posix_trace_status_info *statusinfo);

DESCRIPTION
The posix_trace_get_attr() function shall copy the attributes of the active trace stream identified by trid into
the object pointed to by the attr argument. If the Trace Log option is supported, trid may represent a pre-
recorded trace log.

The posix_trace_get_status() function shall return, in the structure pointed to by the statusinfo argument,
the current trace status for the trace stream identified by the trid argument. These status values returned in
the structure pointed to by statusinfo shall have been appropriately read to ensure that the returned values
are consistent. If the Trace Log option is supported and the trid argument refers to a pre-recorded trace
stream, the status shall be the status of the completed trace stream.

Each time the posix_trace_get_status() function is used, the overrun status of the trace stream shall be reset
to POSIX_TRACE_NO_OVERRUN immediately after the call completes. If the Trace Log option is sup-
ported, the posix_trace_get_status() function shall behave the same as when the option is not supported ex-
cept for the following differences:

* If the trid argument refers to a trace stream with log, each time the posix_trace_get_status() function
is used, the log overrun status of the trace stream shall be reset to POSIX_TRACE_NO_OVERRUN
and the flush_error status shall be reset to zero immediately after the call completes.

* If the trid argument refers to a pre-recorded trace stream, the status returned shall be the status of the
completed trace stream and the status values of the trace stream shall not be reset.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

The posix_trace_get_attr() function stores the trace attributes in the object pointed to by attr, if successful.

The posix_trace_get_status() function stores the trace status in the object pointed to by statusinfo, if suc-
cessful.

ERRORS
These functions shall fail if:

EINVAL
The trace stream argument trid does not correspond to a valid active trace stream or a valid trace
log.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 1

POSIX_TRACE_GET_ATTR(3P) POSIX Programmer’s Manual POSIX_TRACE_GET_ATTR(3P)

FUTURE DIRECTIONS
The posix_trace_get_attr() and posix_trace_get_status() functions may be removed in a future version.

SEE ALSO
posix_trace_attr_destroy(), posix_trace_close(), posix_trace_create()

The Base Definitions volume of POSIX.1-2017, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_GET_FILTER(3P) POSIX Programmer’s Manual POSIX_TRACE_GET_FILTER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_get_filter, posix_trace_set_filter — retrieve and set the filter of an initialized trace stream
(TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_get_filter(trace_id_t trid, trace_event_set_t *set);
int posix_trace_set_filter(trace_id_t trid,

const trace_event_set_t *set, int how);

DESCRIPTION
The posix_trace_get_filter() function shall retrieve, into the argument pointed to by set, the actual trace
ev ent filter from the trace stream specified by trid .

The posix_trace_set_filter() function shall change the set of filtered trace event types after a trace stream
identified by the trid argument is created. This function may be called prior to starting the trace stream, or
while the trace stream is active. By default, if no call is made to posix_trace_set_filter(), all trace events
shall be recorded (that is, none of the trace event types are filtered out).

If this function is called while the trace is in progress, a special system trace event, POSIX_TRACE_FIL-
TER, shall be recorded in the trace indicating both the old and the new sets of filtered trace event types (see
Table 2-4, Tr ace and Trace Event Filter Options: System Trace Events and Table 2-6, Tr ace, Tr ace Log,
and Trace Event Filter Options: System Trace Events).

If the posix_trace_set_filter() function is interrupted by a signal, an error shall be returned and the filter
shall not be changed. In this case, the state of the trace stream shall not be changed.

The value of the argument how indicates the manner in which the set is to be changed and shall have one of
the following values, as defined in the <trace.h> header:

POSIX_TRACE_SET_EVENTSET
The resulting set of trace event types to be filtered shall be the trace event type set pointed to by the
argument set.

POSIX_TRACE_ADD_EVENTSET
The resulting set of trace event types to be filtered shall be the union of the current set and the trace
ev ent type set pointed to by the argument set.

POSIX_TRACE_SUB_EVENTSET
The resulting set of trace event types to be filtered shall be all trace event types in the current set that
are not in the set pointed to by the argument set; that is, remove each element of the specified set
from the current filter.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

The posix_trace_get_filter() function stores the set of filtered trace event types in set, if successful.

ERRORS
These functions shall fail if:

EINVAL
The value of the trid argument does not correspond to an active trace stream or the value of the ar-
gument pointed to by set is invalid.

IEEE/The Open Group 2017 1

POSIX_TRACE_GET_FILTER(3P) POSIX Programmer’s Manual POSIX_TRACE_GET_FILTER(3P)

EINTR
The operation was interrupted by a signal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_get_filter() and posix_trace_set_filter() functions may be removed in a future version.

SEE ALSO
Table 2-4, Tr ace and Trace Event Filter Options: System Trace Events, Table 2-6, Tr ace, Tr ace Log, and

Tr ace Event Filter Options: System Trace Events, posix_trace_eventset_add()

The Base Definitions volume of POSIX.1-2017, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_GET_STATUS(3P) POSIX Programmer’s Manual POSIX_TRACE_GET_STATUS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_get_status — retrieve the trace status (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_get_status(trace_id_t trid,
struct posix_trace_status_info *statusinfo);

DESCRIPTION
Refer to posix_trace_get_attr().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_GETNEXT_EVENT(3P) POSIX Programmer’s Manual POSIX_TRACE_GETNEXT_EVENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event — retrieve a
trace event (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_getnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

int posix_trace_timedgetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable,
const struct timespec *restrict abstime);

int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

DESCRIPTION
The posix_trace_getnext_event() function shall report a recorded trace event either from an active trace
stream without log or a pre-recorded trace stream identified by the trid argument. The posix_trace_tryget-

next_event() function shall report a recorded trace event from an active trace stream without log identified
by the trid argument.

The trace event information associated with the recorded trace event shall be copied by the function into the
structure pointed to by the argument event and the data associated with the trace event shall be copied into
the buffer pointed to by the data argument.

The posix_trace_getnext_event() function shall block if the trid argument identifies an active trace stream
and there is currently no trace event ready to be retrieved. When returning, if a recorded trace event was re-
ported, the variable pointed to by the unavailable argument shall be set to zero. Otherwise, the variable
pointed to by the unavailable argument shall be set to a value different from zero.

The posix_trace_timedgetnext_event() function shall attempt to get another trace event from an active trace
stream without log, as in the posix_trace_getnext_event() function. However, if no trace event is available
from the trace stream, the implied wait shall be terminated when the timeout specified by the argument ab-

stime expires, and the function shall return the error [ETIMEDOUT].

The timeout shall expire when the absolute time specified by abstime passes, as measured by the clock
upon which timeouts are based (that is, when the value of that clock equals or exceeds abstime), or if the
absolute time specified by abstime has already passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall be the
resolution of the clock on which it is based. The timespec data type is defined in the <time.h> header.

Under no circumstance shall the function fail with a timeout if a trace event is immediately available from
the trace stream. The validity of the abstime argument need not be checked if a trace event is immediately
available from the trace stream.

The behavior of this function for a pre-recorded trace stream is unspecified.

The posix_trace_trygetnext_event() function shall not block. This function shall return an error if the trid

argument identifies a pre-recorded trace stream. If a recorded trace event was reported, the variable pointed

IEEE/The Open Group 2017 1

POSIX_TRACE_GETNEXT_EVENT(3P) POSIX Programmer’s Manual POSIX_TRACE_GETNEXT_EVENT(3P)

to by the unavailable argument shall be set to zero. Otherwise, if no trace event was reported, the variable
pointed to by the unavailable argument shall be set to a value different from zero.

The argument num_bytes shall be the size of the buffer pointed to by the data argument. The argument
data_len reports to the application the length in bytes of the data record just transferred. If num_bytes is
greater than or equal to the size of the data associated with the trace event pointed to by the event argument,
all the recorded data shall be transferred. In this case, the truncation-status member of the trace event struc-
ture shall be either POSIX_TRACE_NOT_TRUNCATED, if the trace event data was recorded without
truncation while tracing, or POSIX_TRACE_TRUNCATED_RECORD, if the trace event data was trun-
cated when it was recorded. If the num_bytes argument is less than the length of recorded trace event data,
the data transferred shall be truncated to a length of num_bytes, the value stored in the variable pointed to
by data_len shall be equal to num_bytes, and the truncation-status member of the event structure argument
shall be set to POSIX_TRACE_TRUNCATED_READ (see the posix_trace_event_info structure defined
in <trace.h>).

The report of a trace event shall be sequential starting from the oldest recorded trace event. Trace events
shall be reported in the order in which they were generated, up to an implementation-defined time resolu-
tion that causes the ordering of trace events occurring very close to each other to be unknown. Once re-
ported, a trace event cannot be reported again from an active trace stream. Once a trace event is reported
from an active trace stream without log, the trace stream shall make the resources associated with that trace
ev ent available to record future generated trace events.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

If successful, these functions store:

* The recorded trace event in the object pointed to by event

* The trace event information associated with the recorded trace event in the object pointed to by data

* The length of this trace event information in the object pointed to by data_len

* The value of zero in the object pointed to by unavailable

ERRORS
These functions shall fail if:

EINVAL
The trace stream identifier argument trid is invalid.

The posix_trace_getnext_event() and posix_trace_timedgetnext_event() functions shall fail if:

EINTR
The operation was interrupted by a signal, and so the call had no effect.

The posix_trace_trygetnext_event() function shall fail if:

EINVAL
The trace stream identifier argument trid does not correspond to an active trace stream.

The posix_trace_timedgetnext_event() function shall fail if:

EINVAL
There is no trace event immediately available from the trace stream, and the timeout argument is
invalid.

ETIMEDOUT
No trace event was available from the trace stream before the specified timeout timeout expired.

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 2

POSIX_TRACE_GETNEXT_EVENT(3P) POSIX Programmer’s Manual POSIX_TRACE_GETNEXT_EVENT(3P)

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
posix_trace_close(), posix_trace_create()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <trace.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

POSIX_TRACE_OPEN(3P) POSIX Programmer’s Manual POSIX_TRACE_OPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_open, posix_trace_rewind — trace log management (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_open(int file_desc, trace_id_t *trid);
int posix_trace_rewind(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_close().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_SET_FILTER(3P) POSIX Programmer’s Manual POSIX_TRACE_SET_FILTER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_set_filter — set filter of an initialized trace stream (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_set_filter(trace_id_t trid,
const trace_event_set_t *set, int how);

DESCRIPTION
Refer to posix_trace_get_filter().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_SHUTDOWN(3P) POSIX Programmer’s Manual POSIX_TRACE_SHUTDOWN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_shutdown — trace stream shutdown from a process (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_shutdown(trace_id_t trid);

DESCRIPTION
Refer to posix_trace_create().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_START(3P) POSIX Programmer’s Manual POSIX_TRACE_START(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_start, posix_trace_stop — trace start and stop (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_start(trace_id_t trid);
int posix_trace_stop (trace_id_t trid);

DESCRIPTION
The posix_trace_start() and posix_trace_stop() functions, respectively, shall start and stop the trace stream
identified by the argument trid .

The effect of calling the posix_trace_start() function shall be recorded in the trace stream as the
POSIX_TRACE_START system trace event and the status of the trace stream shall become
POSIX_TRACE_RUNNING. If the trace stream is in progress when this function is called, the
POSIX_TRACE_START system trace event shall not be recorded and the trace stream shall continue to
run. If the trace stream is full, the POSIX_TRACE_START system trace event shall not be recorded and the
status of the trace stream shall not be changed.

The effect of calling the posix_trace_stop() function shall be recorded in the trace stream as the
POSIX_TRACE_STOP system trace event and the status of the trace stream shall become
POSIX_TRACE_SUSPENDED. If the trace stream is suspended when this function is called, the
POSIX_TRACE_STOP system trace event shall not be recorded and the trace stream shall remain sus-
pended. If the trace stream is full, the POSIX_TRACE_STOP system trace event shall not be recorded and
the status of the trace stream shall not be changed.

RETURN VALUE
Upon successful completion, these functions shall return a value of zero. Otherwise, they shall return the
corresponding error number.

ERRORS
These functions shall fail if:

EINVAL
The value of the argument trid does not correspond to an active trace stream and thus no trace
stream was started or stopped.

EINTR
The operation was interrupted by a signal and thus the trace stream was not necessarily started or
stopped.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The posix_trace_start() and posix_trace_stop() functions may be removed in a future version.

SEE ALSO
posix_trace_create()

The Base Definitions volume of POSIX.1-2017, <trace.h>

IEEE/The Open Group 2017 1

POSIX_TRACE_START(3P) POSIX Programmer’s Manual POSIX_TRACE_START(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TRACE_TIMEDGETNEXT_EVENT(3P)POSIX Programmer’s ManualPOSIX_TRACE_TIMEDGETNEXT_EVENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_timedgetnext_event — retrieve a trace event (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_timedgetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable,
const struct timespec *restrict abstime);

DESCRIPTION
Refer to posix_trace_getnext_event().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_TRID_EVENTID_OPEN(3P)POSIX Programmer’s ManualPOSIX_TRACE_TRID_EVENTID_OPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_trid_eventid_open — open a trace event type identifier (TRACING)

SYNOPSIS
#include <trace.h>

int posix_trace_trid_eventid_open(trace_id_t trid,
const char *restrict event_name,
trace_event_id_t *restrict event);

DESCRIPTION
Refer to posix_trace_eventid_equal().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TRACE_TRYGETNEXT_EVENT(3P)POSIX Programmer’s ManualPOSIX_TRACE_TRYGETNEXT_EVENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_trace_trygetnext_event — retrieve a trace event (TRACING)

SYNOPSIS
#include <sys/types.h>
#include <trace.h>

int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

DESCRIPTION
Refer to posix_trace_getnext_event().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

POSIX_TYPED_MEM_GET_INFO(3P) POSIX Programmer’s Manual POSIX_TYPED_MEM_GET_INFO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_typed_mem_get_info — query typed memory information (ADVANCED REALTIME)

SYNOPSIS
#include <sys/mman.h>

int posix_typed_mem_get_info(int fildes,
struct posix_typed_mem_info *info);

DESCRIPTION
The posix_typed_mem_get_info() function shall return, in the posix_tmi_length field of the
posix_typed_mem_info structure pointed to by info, the maximum length which may be successfully allo-
cated by the typed memory object designated by fildes. This maximum length shall take into account the
flag POSIX_TYPED_MEM_ALLOCATE or POSIX_TYPED_MEM_ALLOCATE_CONTIG specified
when the typed memory object represented by fildes was opened. The maximum length is dynamic; there-
fore, the value returned is valid only while the current mapping of the corresponding typed memory pool
remains unchanged.

If fildes represents a typed memory object opened with neither the POSIX_TYPED_MEM_ALLOCATE
flag nor the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag specified, the returned value of
info->posix_tmi_length is unspecified.

The posix_typed_mem_get_info() function may return additional implementation-defined information in
other fields of the posix_typed_mem_info structure pointed to by info.

If the memory object specified by fildes is not a typed memory object, then the behavior of this function is
undefined.

RETURN VALUE
Upon successful completion, the posix_typed_mem_get_info() function shall return zero; otherwise, the
corresponding error status value shall be returned.

ERRORS
The posix_typed_mem_get_info() function shall fail if:

EBADF
The fildes argument is not a valid open file descriptor.

ENODEV
The fildes argument is not connected to a memory object supported by this function.

This function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
An application that needs to allocate a block of typed memory with length dependent upon the amount of
memory currently available must either query the typed memory object to obtain the amount available, or
repeatedly invoke mmap() attempting to guess an appropriate length. While the latter method is existing
practice with malloc(), it is awkward and imprecise. The posix_typed_mem_get_info() function allows an
application to immediately determine available memory. This is particularly important for typed memory
objects that may in some cases be scarce resources. Note that when a typed memory pool is a shared re-
source, some form of mutual-exclusion or synchronization may be required while typed memory is being

IEEE/The Open Group 2017 1

POSIX_TYPED_MEM_GET_INFO(3P) POSIX Programmer’s Manual POSIX_TYPED_MEM_GET_INFO(3P)

queried and allocated to prevent race conditions.

The existing fstat() function is not suitable for this purpose. We realize that implementations may wish to
provide other attributes of typed memory objects (for example, alignment requirements, page size, and so
on). The fstat() function returns a structure which is not extensible and, furthermore, contains substantial
information that is inappropriate for typed memory objects.

FUTURE DIRECTIONS
None.

SEE ALSO
fstat(), mmap(), posix_typed_mem_open()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

POSIX_TYPED_MEM_OPEN(3P) POSIX Programmer’s Manual POSIX_TYPED_MEM_OPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
posix_typed_mem_open — open a typed memory object (ADVANCED REALTIME)

SYNOPSIS
#include <sys/mman.h>

int posix_typed_mem_open(const char *name, int oflag, int tflag);

DESCRIPTION
The posix_typed_mem_open() function shall establish a connection between the typed memory object spec-
ified by the string pointed to by name and a file descriptor. It shall create an open file description that refers
to the typed memory object and a file descriptor that refers to that open file description. The file descriptor
shall be allocated as described in Section 2.14, File Descriptor Allocation and can be used by other func-
tions to refer to that typed memory object. It is unspecified whether the name appears in the file system and
is visible to other functions that take pathnames as arguments. The name argument conforms to the con-
struction rules for a pathname, except that the interpretation of <slash> characters other than the leading
<slash> character in name is implementation-defined, and that the length limits for the name argument are
implementation-defined and need not be the same as the pathname limits {PATH_MAX} and
{NAME_MAX}. If name begins with the <slash> character, then processes calling
posix_typed_mem_open() with the same value of name shall refer to the same typed memory object. If
name does not begin with the <slash> character, the effect is implementation-defined.

Each typed memory object supported in a system shall be identified by a name which specifies not only its
associated typed memory pool, but also the path or port by which it is accessed. That is, the same typed
memory pool accessed via several different ports shall have sev eral different corresponding names. The
binding between names and typed memory objects is established in an implementation-defined manner. Un-
like shared memory objects, there is no way within POSIX.1-2008 for a program to create a typed memory
object.

The value of tflag shall determine how the typed memory object behaves when subsequently mapped by
calls to mmap(). At most, one of the following flags defined in <sys/mman.h> may be specified:

POSIX_TYPED_MEM_ALLOCATE
Allocate on mmap().

POSIX_TYPED_MEM_ALLOCATE_CONTIG
Allocate contiguously on mmap().

POSIX_TYPED_MEM_MAP_ALLOCATABLE
Map on mmap(), without affecting allocatability.

If tflag has the flag POSIX_TYPED_MEM_ALLOCATE specified, any subsequent call to mmap() using
the returned file descriptor shall result in allocation and mapping of typed memory from the specified typed
memory pool. The allocated memory may be a contiguous previously unallocated area of the typed memory
pool or several non-contiguous previously unallocated areas (mapped to a contiguous portion of the process
address space). If tflag has the flag POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subse-
quent call to mmap() using the returned file descriptor shall result in allocation and mapping of a single
contiguous previously unallocated area of the typed memory pool (also mapped to a contiguous portion of
the process address space). If tflag has none of the flags POSIX_TYPED_MEM_ALLOCATE or
POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the re-
turned file descriptor shall map an application-chosen area from the specified typed memory pool such that
this mapped area becomes unavailable for allocation until unmapped by all processes. If tflag has the flag
POSIX_TYPED_MEM_MAP_ALLOCATABLE specified, any subsequent call to mmap() using the re-
turned file descriptor shall map an application-chosen area from the specified typed memory pool without
an effect on the availability of that area for allocation; that is, mapping such an object leaves each byte of

IEEE/The Open Group 2017 1

POSIX_TYPED_MEM_OPEN(3P) POSIX Programmer’s Manual POSIX_TYPED_MEM_OPEN(3P)

the mapped area unallocated if it was unallocated prior to the mapping or allocated if it was allocated prior
to the mapping. Appropriate privileges to specify the POSIX_TYPED_MEM_MAP_ALLOCATABLE flag
are implementation-defined.

If successful, posix_typed_mem_open() shall return a file descriptor for the typed memory object. The open
file description is new, and therefore the file descriptor shall not share it with any other processes. It is un-
specified whether the file offset is set. The FD_CLOEXEC file descriptor flag associated with the new file
descriptor shall be cleared.

The behavior of msync(), ftruncate(), and all file operations other than mmap(), posix_mem_offset(),
posix_typed_mem_get_info(), fstat(), dup(), dup2(), and close(), is unspecified when passed a file descriptor
connected to a typed memory object by this function.

The file status flags of the open file description shall be set according to the value of oflag. Applications
shall specify exactly one of the three access mode values described below and defined in the <fcntl.h>

header, as the value of oflag.

O_RDONLY Open for read access only.

O_WRONLY Open for write access only.

O_RDWR Open for read or write access.

RETURN VALUE
Upon successful completion, the posix_typed_mem_open() function shall return a non-negative integer rep-
resenting the file descriptor. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The posix_typed_mem_open() function shall fail if:

EACCES
The typed memory object exists and the permissions specified by oflag are denied.

EINTR
The posix_typed_mem_open() operation was interrupted by a signal.

EINVAL
The flags specified in tflag are invalid (more than one of POSIX_TYPED_MEM_ALLOCATE,
POSIX_TYPED_MEM_ALLOCATE_CONTIG, or POSIX_TYPED_MEM_MAP_ALLOCAT-
ABLE is specified).

EMFILE
All file descriptors available to the process are currently open.

ENFILE
Too many file descriptors are currently open in the system.

ENOENT
The named typed memory object does not exist.

EPERM
The caller lacks appropriate privileges to specify the POSIX_TYPED_MEM_MAP_ALLOCAT-
ABLE flag in the tflag argument.

The posix_typed_mem_open() function may fail if:

ENAMETOOLONG
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems that do not support
the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI systems, or has a pathname compo-
nent that is longer than {_POSIX_NAME_MAX} on systems that do not support the XSI option
or longer than {_XOPEN_NAME_MAX} on XSI systems.

The following sections are informative.

IEEE/The Open Group 2017 2

POSIX_TYPED_MEM_OPEN(3P) POSIX Programmer’s Manual POSIX_TYPED_MEM_OPEN(3P)

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14, File Descriptor Allocation, close(), dup(), exec , fcntl(), fstat(), ftruncate(), mmap(),
msync(), posix_mem_offset(), posix_typed_mem_get_info(), umask()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

POW(3P) POSIX Programmer’s Manual POW(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pow, powf, powl — power function

SYNOPSIS
#include <math.h>

double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the value of x raised to the power y, x
y
. If x is negative, the application shall

ensure that y is an integer value.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of x raised to the power y.

For finite values of x < 0, and finite non-integer values of y, a domain error shall occur and either a NaN (if
representable), or an implementation-defined value shall be returned.

If the correct value would cause overflow, a range error shall occur and pow(), powf(), and powl() shall re-
turn ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively, with the same sign as the correct
value of the function.

If the correct value would cause underflow, and is not representable, a range error may occur, and pow(),
powf(), and powl() shall return 0.0, or (if IEC 60559 Floating-Point is not supported) an implementation-de-
fined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

For y < 0, if x is zero, a pole error may occur and pow(), powf(), and powl() shall return ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL, respectively. On systems that support the IEC 60559 Floating-Point
option, if x is ±0, a pole error shall occur and pow(), powf(), and powl() shall return ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL, respectively if y is an odd integer, or HUGE_VAL, HUGE_VALF,
and HUGE_VALL, respectively if y is not an odd integer.

If x or y is a NaN, a NaN shall be returned (unless specified elsewhere in this description).

For any value of y (including NaN), if x is +1, 1.0 shall be returned.

For any value of x (including NaN), if y is ±0, 1.0 shall be returned.

For any odd integer value of y > 0, if x is ±0, ±0 shall be returned.

For y > 0 and not an odd integer, if x is ±0, +0 shall be returned.

If x is −1, and y is ±Inf, 1.0 shall be returned.

For |x| < 1, if y is −Inf, +Inf shall be returned.

For |x| > 1, if y is −Inf, +0 shall be returned.

For |x| < 1, if y is +Inf, +0 shall be returned.

For |x| > 1, if y is +Inf, +Inf shall be returned.

IEEE/The Open Group 2017 1

POW(3P) POSIX Programmer’s Manual POW(3P)

For y an odd integer < 0, if x is −Inf, −0 shall be returned.

For y < 0 and not an odd integer, if x is −Inf, +0 shall be returned.

For y an odd integer > 0, if x is −Inf, −Inf shall be returned.

For y > 0 and not an odd integer, if x is −Inf, +Inf shall be returned.

For y < 0, if x is +Inf, +0 shall be returned.

For y > 0, if x is +Inf, +Inf shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The value of x is negative and y is a finite non-integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The value of x is zero and y is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Pole Error The value of x is zero and y is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), feclearexcept(), fetestexcept(), isnan()

IEEE/The Open Group 2017 2

POW(3P) POSIX Programmer’s Manual POW(3P)

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PREAD(3P) POSIX Programmer’s Manual PREAD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pread — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

DESCRIPTION
Refer to read().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PRINTF(3P) POSIX Programmer’s Manual PRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
printf — print formatted output

SYNOPSIS
#include <stdio.h>

int printf(const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PSELECT(3P) POSIX Programmer’s Manual PSELECT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pselect, select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

int pselect(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

int select(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

DESCRIPTION
The pselect() function shall examine the file descriptor sets whose addresses are passed in the readfds,
writefds, and errorfds parameters to see whether some of their descriptors are ready for reading, are ready
for writing, or have an exceptional condition pending, respectively.

The select() function shall be equivalent to the pselect() function, except as follows:

* For the select() function, the timeout period is given in seconds and microseconds in an argument of
type struct timeval, whereas for the pselect() function the timeout period is given in seconds and
nanoseconds in an argument of type struct timespec.

* The select() function has no sigmask argument; it shall behave as pselect() does when sigmask is a null
pointer.

* Upon successful completion, the select() function may modify the object pointed to by the timeout ar-
gument.

The pselect() and select() functions shall support regular files, terminal and pseudo-terminal devices,
STREAMS-based files, FIFOs, pipes, and sockets. The behavior of pselect() and select() on file descriptors
that refer to other types of file is unspecified.

The nfds argument specifies the range of descriptors to be tested. The first nfds descriptors shall be checked
in each set; that is, the descriptors from zero through nfds−1 in the descriptor sets shall be examined.

If the readfds argument is not a null pointer, it points to an object of type fd_set that on input specifies the
file descriptors to be checked for being ready to read, and on output indicates which file descriptors are
ready to read.

If the writefds argument is not a null pointer, it points to an object of type fd_set that on input specifies the
file descriptors to be checked for being ready to write, and on output indicates which file descriptors are
ready to write.

If the errorfds argument is not a null pointer, it points to an object of type fd_set that on input specifies the
file descriptors to be checked for error conditions pending, and on output indicates which file descriptors
have error conditions pending.

Upon successful completion, the pselect() or select() function shall modify the objects pointed to by the
readfds, writefds, and errorfds arguments to indicate which file descriptors are ready for reading, ready for
writing, or have an error condition pending, respectively, and shall return the total number of ready descrip-
tors in all the output sets. For each file descriptor less than nfds, the corresponding bit shall be set upon

IEEE/The Open Group 2017 1

PSELECT(3P) POSIX Programmer’s Manual PSELECT(3P)

successful completion if it was set on input and the associated condition is true for that file descriptor.

If none of the selected descriptors are ready for the requested operation, the pselect() or select() function
shall block until at least one of the requested operations becomes ready, until the timeout occurs, or until in-
terrupted by a signal. The timeout parameter controls how long the pselect() or select() function shall take
before timing out. If the timeout parameter is not a null pointer, it specifies a maximum interval to wait for
the selection to complete. If the specified time interval expires without any requested operation becoming
ready, the function shall return. If the timeout parameter is a null pointer, then the call to pselect() or se-

lect() shall block indefinitely until at least one descriptor meets the specified criteria. To effect a poll, the
timeout parameter should not be a null pointer, and should point to a zero-valued timespec structure.

The use of a timeout does not affect any pending timers set up by alarm() or setitimer().

Implementations may place limitations on the maximum timeout interval supported. All implementations
shall support a maximum timeout interval of at least 31 days. If the timeout argument specifies a timeout in-
terval greater than the implementation-defined maximum value, the maximum value shall be used as the ac-
tual timeout value. Implementations may also place limitations on the granularity of timeout intervals. If the
requested timeout interval requires a finer granularity than the implementation supports, the actual timeout
interval shall be rounded up to the next supported value.

If sigmask is not a null pointer, then the pselect() function shall replace the signal mask of the caller by the
set of signals pointed to by sigmask before examining the descriptors, and shall restore the signal mask of
the calling thread before returning.

A descriptor shall be considered ready for reading when a call to an input function with O_NONBLOCK
clear would not block, whether or not the function would transfer data successfully. (The function might re-
turn data, an end-of-file indication, or an error other than one indicating that it is blocked, and in each of
these cases the descriptor shall be considered ready for reading.)

A descriptor shall be considered ready for writing when a call to an output function with O_NONBLOCK
clear would not block, whether or not the function would transfer data successfully.

If a socket has a pending error, it shall be considered to have an exceptional condition pending. Otherwise,
what constitutes an exceptional condition is file type-specific. For a file descriptor for use with a socket, it is
protocol-specific except as noted below. For other file types it is implementation-defined. If the operation is
meaningless for a particular file type, pselect() or select() shall indicate that the descriptor is ready for read
or write operations, and shall indicate that the descriptor has no exceptional condition pending.

If a descriptor refers to a socket, the implied input function is the recvmsg() function with parameters re-
questing normal and ancillary data, such that the presence of either type shall cause the socket to be marked
as readable. The presence of out-of-band data shall be checked if the socket option SO_OOBINLINE has
been enabled, as out-of-band data is enqueued with normal data. If the socket is currently listening, then it
shall be marked as readable if an incoming connection request has been received, and a call to the accept()
function shall complete without blocking.

If a descriptor refers to a socket, the implied output function is the sendmsg() function supplying an amount
of normal data equal to the current value of the SO_SNDLOWA T option for the socket. If a non-blocking
call to the connect() function has been made for a socket, and the connection attempt has either succeeded
or failed leaving a pending error, the socket shall be marked as writable.

A socket shall be considered to have an exceptional condition pending if a receive operation with O_NON-
BLOCK clear for the open file description and with the MSG_OOB flag set would return out-of-band data
without blocking. (It is protocol-specific whether the MSG_OOB flag would be used to read out-of-band
data.) A socket shall also be considered to have an exceptional condition pending if an out-of-band data
mark is present in the receive queue. Other circumstances under which a socket may be considered to have
an exceptional condition pending are protocol-specific and implementation-defined.

If the readfds, writefds, and errorfds arguments are all null pointers and the timeout argument is not a null
pointer, the pselect() or select() function shall block for the time specified, or until interrupted by a signal.
If the readfds, writefds, and errorfds arguments are all null pointers and the timeout argument is a null
pointer, the pselect() or select() function shall block until interrupted by a signal.

IEEE/The Open Group 2017 2

PSELECT(3P) POSIX Programmer’s Manual PSELECT(3P)

File descriptors associated with regular files shall always select true for ready to read, ready to write, and
error conditions.

On failure, the objects pointed to by the readfds, writefds, and errorfds arguments shall not be modified. If
the timeout interval expires without the specified condition being true for any of the specified file descrip-
tors, the objects pointed to by the readfds, writefds, and errorfds arguments shall have all bits set to 0.

File descriptor masks of type fd_set can be initialized and tested with FD_CLR(), FD_ISSET(), FD_SET(),
and FD_ZERO(). It is unspecified whether each of these is a macro or a function. If a macro definition is
suppressed in order to access an actual function, or a program defines an external identifier with any of
these names, the behavior is undefined.

FD_CLR(fd, fdsetp) shall remove the file descriptor fd from the set pointed to by fdsetp. If fd is not a
member of this set, there shall be no effect on the set, nor will an error be returned.

FD_ISSET(fd, fdsetp) shall evaluate to non-zero if the file descriptor fd is a member of the set pointed to by
fdsetp, and shall evaluate to zero otherwise.

FD_SET(fd, fdsetp) shall add the file descriptor fd to the set pointed to by fdsetp. If the file descriptor fd is
already in this set, there shall be no effect on the set, nor will an error be returned.

FD_ZERO(fdsetp) shall initialize the descriptor set pointed to by fdsetp to the null set. No error is returned
if the set is not empty at the time FD_ZERO() is invoked.

The behavior of these macros is undefined if the fd argument is less than 0 or greater than or equal to
FD_SETSIZE, or if fd is not a valid file descriptor, or if any of the arguments are expressions with side-ef-
fects.

If a thread gets canceled during a pselect() call, the signal mask in effect when executing the registered
cleanup functions is either the original signal mask or the signal mask installed as part of the pselect() call.

RETURN VALUE
Upon successful completion, the pselect() and select() functions shall return the total number of bits set in
the bit masks. Otherwise, −1 shall be returned, and errno shall be set to indicate the error.

FD_CLR(), FD_SET(), and FD_ZERO() do not return a value. FD_ISSET() shall return a non-zero value if
the bit for the file descriptor fd is set in the file descriptor set pointed to by fdset, and 0 otherwise.

ERRORS
Under the following conditions, pselect() and select() shall fail and set errno to:

EBADF
One or more of the file descriptor sets specified a file descriptor that is not a valid open file de-
scriptor.

EINTR
The function was interrupted while blocked waiting for any of the selected descriptors to become
ready and before the timeout interval expired.

If SA_RESTART has been set for the interrupting signal, it is implementation-defined
whether the function restarts or returns with [EINTR].

EINVAL
An invalid timeout interval was specified.

EINVAL
The nfds argument is less than 0 or greater than FD_SETSIZE.

EINVAL
One of the specified file descriptors refers to a STREAM or multiplexer that is linked (directly or
indirectly) downstream from a multiplexer.

The following sections are informative.

IEEE/The Open Group 2017 3

PSELECT(3P) POSIX Programmer’s Manual PSELECT(3P)

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
In earlier versions of the Single UNIX Specification, the select() function was defined in the <sys/time.h>

header. This is now changed to <sys/select.h>. The rationale for this change was as follows: the introduc-
tion of the pselect() function included the <sys/select.h> header and the <sys/select.h> header defines all
the related definitions for the pselect() and select() functions. Backwards-compatibility to existing XSI im-
plementations is handled by allowing <sys/time.h> to include <sys/select.h>.

Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers can install an
additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_pselect(int nfds, fd_set *readfds, fd_set *writefds,
fd_set errorfds, const struct timespec *timeout,
const sigset_t *sigmask)

{
sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);
pthread_cleanup_push(cleanup, &oldmask);
result = pselect(nfds, readfds, writefds, errorfds, timeout, sigmask);
pthread_cleanup_pop(0);
return result;

}

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), alarm(), connect(), fcntl(), getitimer(), poll(), read(), recvmsg(), sendmsg(), write()

The Base Definitions volume of POSIX.1-2017, <sys_select.h>, <sys_time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

PSIGINFO(3P) POSIX Programmer’s Manual PSIGINFO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
psiginfo, psignal — write signal information to standard error

SYNOPSIS
#include <signal.h>

void psiginfo(const siginfo_t *pinfo, const char *message);
void psignal(int signum, const char *message);

DESCRIPTION
The psiginfo() and psignal() functions shall write a language-dependent message associated with a signal
number to the standard error stream as follows:

* First, if message is not a null pointer and is not the empty string, the string pointed to by the message

argument shall be written, followed by a <colon> and a <space>.

* Then the signal description string associated with signum or with the signal indicated by pinfo shall be
written, followed by a <newline>.

For psiginfo(), the application shall ensure that the argument pinfo references a valid siginfo_t structure.
For psignal(), if signum is not a valid signal number, the behavior is implementation-defined.

The psiginfo() and psignal() functions shall not change the orientation of the standard error stream.

The psiginfo() and psignal() functions shall mark for update the last data modification and last file status
change timestamps of the file associated with the standard error stream at some time between their success-
ful completion and exit(), abort(), or the completion of fflush() or fclose() on stderr.

The psiginfo() and psignal() functions shall not change the setting of errno if successful.

On error, the psiginfo() and psignal() functions shall set the error indicator for the stream to which stderr

points, and shall set errno to indicate the error.

Since no value is returned, an application wishing to check for error situations should set errno to 0, then
call psiginfo() or psignal(), then check errno.

RETURN VALUE
These functions shall not return a value.

ERRORS
Refer to fputc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
As an alternative to setting errno to zero before the call and checking if it is non-zero afterwards, applica-
tions can use ferror() to detect whether psiginfo() or psignal() encountered an error.

An application wishing to use this method to check for error situations should call clearerr(stderr) before
calling psiginfo() or psignal(), then if ferror(stderr) returns non-zero, the value of errno indicates which
error occurred.

RATIONALE
System V historically has psignal() and psiginfo() in <siginfo.h>. Howev er, the <siginfo.h> header is not
specified in the Base Definitions volume of POSIX.1-2017, and the type siginfo_t is defined in <signal.h>.

IEEE/The Open Group 2017 1

PSIGINFO(3P) POSIX Programmer’s Manual PSIGINFO(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
fputc(), perror(), strsignal()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATFORK(3P) POSIX Programmer’s Manual PTHREAD_ATFORK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_atfork — register fork handlers

SYNOPSIS
#include <pthread.h>

int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

DESCRIPTION
The pthread_atfork() function shall declare fork handlers to be called before and after fork(), in the context
of the thread that called fork(). The prepare fork handler shall be called before fork() processing com-
mences. The parent fork handle shall be called after fork() processing completes in the parent process. The
child fork handler shall be called after fork() processing completes in the child process. If no handling is de-
sired at one or more of these three points, the corresponding fork handler address(es) may be set to NULL.

If a fork() call in a multi-threaded process leads to a child fork handler calling any function that is not
async-signal-safe, the behavior is undefined.

The order of calls to pthread_atfork() is significant. The parent and child fork handlers shall be called in
the order in which they were established by calls to pthread_atfork(). The prepare fork handlers shall be
called in the opposite order.

RETURN VALUE
Upon successful completion, pthread_atfork() shall return a value of zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_atfork() function shall fail if:

ENOMEM
Insufficient table space exists to record the fork handler addresses.

The pthread_atfork() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The original usage pattern envisaged for pthread_atfork() was for the prepare fork handler to lock mutexes
and other locks, and for the parent and child handlers to unlock them. However, since all of the relevant un-
locking functions, except sem_post(), are not async-signal-safe, this usage results in undefined behavior in
the child process unless the only such unlocking function it calls is sem_post().

RATIONALE
There are at least two serious problems with the semantics of fork() in a multi-threaded program. One prob-
lem has to do with state (for example, memory) covered by mutexes. Consider the case where one thread
has a mutex locked and the state covered by that mutex is inconsistent while another thread calls fork(). In
the child, the mutex is in the locked state (locked by a nonexistent thread and thus can never be unlocked).
Having the child simply reinitialize the mutex is unsatisfactory since this approach does not resolve the
question about how to correct or otherwise deal with the inconsistent state in the child.

It is suggested that programs that use fork() call an exec function very soon afterwards in the child process,
thus resetting all states. In the meantime, only a short list of async-signal-safe library routines are promised
to be available.

Unfortunately, this solution does not address the needs of multi-threaded libraries. Application programs

IEEE/The Open Group 2017 1

PTHREAD_ATFORK(3P) POSIX Programmer’s Manual PTHREAD_ATFORK(3P)

may not be aware that a multi-threaded library is in use, and they feel free to call any number of library rou-
tines between the fork() and exec calls, just as they always have. Indeed, they may be extant single-threaded
programs and cannot, therefore, be expected to obey new restrictions imposed by the threads library.

On the other hand, the multi-threaded library needs a way to protect its internal state during fork() in case it
is re-entered later in the child process. The problem arises especially in multi-threaded I/O libraries, which
are almost sure to be invoked between the fork() and exec calls to effect I/O redirection. The solution may
require locking mutex variables during fork(), or it may entail simply resetting the state in the child after the
fork() processing completes.

The pthread_atfork() function was intended to provide multi-threaded libraries with a means to protect
themselves from innocent application programs that call fork(), and to provide multi-threaded application
programs with a standard mechanism for protecting themselves from fork() calls in a library routine or the
application itself.

The expected usage was that the prepare handler would acquire all mutex locks and the other two fork han-
dlers would release them.

For example, an application could have supplied a prepare routine that acquires the necessary mutexes the
library maintains and supplied child and parent routines that release those mutexes, thus ensuring that the
child would have got a consistent snapshot of the state of the library (and that no mutexes would have been
left stranded). This is good in theory, but in reality not practical. Each and every mutex and lock in the
process must be located and locked. Every component of a program including third-party components must
participate and they must agree who is responsible for which mutex or lock. This is especially problematic
for mutexes and locks in dynamically allocated memory. All mutexes and locks internal to the implementa-
tion must be locked, too. This possibly delays the thread calling fork() for a long time or even indefinitely
since uses of these synchronization objects may not be under control of the application. A final problem to
mention here is the problem of locking streams. At least the streams under control of the system (like stdin,
stdout, stderr) must be protected by locking the stream with flockfile(). But the application itself could
have done that, possibly in the same thread calling fork(). In this case, the process will deadlock.

Alternatively, some libraries might have been able to supply just a child routine that reinitializes the mu-
texes in the library and all associated states to some known value (for example, what it was when the image
was originally executed). This approach is not possible, though, because implementations are allowed to
fail *_init() and *_destroy() calls for mutexes and locks if the mutex or lock is still locked. In this case, the
child routine is not able to reinitialize the mutexes and locks.

When fork() is called, only the calling thread is duplicated in the child process. Synchronization variables
remain in the same state in the child as they were in the parent at the time fork() was called. Thus, for ex-
ample, mutex locks may be held by threads that no longer exist in the child process, and any associated
states may be inconsistent. The intention was that the parent process could have avoided this by explicit
code that acquires and releases locks critical to the child via pthread_atfork(). In addition, any critical
threads would have needed to be recreated and reinitialized to the proper state in the child (also via
pthread_atfork()).

A higher-level package may acquire locks on its own data structures before invoking lower-level packages.
Under this scenario, the order specified for fork handler calls allows a simple rule of initialization for avoid-
ing package deadlock: a package initializes all packages on which it depends before it calls the pthread_at-

fork() function for itself.

As explained, there is no suitable solution for functionality which requires non-atomic operations to be pro-
tected through mutexes and locks. This is why the POSIX.1 standard since the 1996 release requires that
the child process after fork() in a multi-threaded process only calls async-signal-safe interfaces.

FUTURE DIRECTIONS
The pthread_atfork() function may be formally deprecated (for example, by shading it OB) in a future ver-
sion of this standard.

IEEE/The Open Group 2017 2

PTHREAD_ATFORK(3P) POSIX Programmer’s Manual PTHREAD_ATFORK(3P)

SEE ALSO
atexit(), exec , fork()

The Base Definitions volume of POSIX.1-2017, <pthread.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_ATTR_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_ATTR_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_destroy, pthread_attr_init — destroy and initialize the thread attributes object

SYNOPSIS
#include <pthread.h>

int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_init(pthread_attr_t *attr);

DESCRIPTION
The pthread_attr_destroy() function shall destroy a thread attributes object. An implementation may cause
pthread_attr_destroy() to set attr to an implementation-defined invalid value. A destroyed attr attributes ob-
ject can be reinitialized using pthread_attr_init(); the results of otherwise referencing the object after it has
been destroyed are undefined.

The pthread_attr_init() function shall initialize a thread attributes object attr with the default value for all
of the individual attributes used by a given implementation.

The resulting attributes object (possibly modified by setting individual attribute values) when used by
pthread_create() defines the attributes of the thread created. A single attributes object can be used in multi-
ple simultaneous calls to pthread_create(). Results are undefined if pthread_attr_init() is called specifying
an already initialized attr attributes object.

The behavior is undefined if the value specified by the attr argument to pthread_attr_destroy() does not re-
fer to an initialized thread attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_destroy() and pthread_attr_init() shall return a value of 0; other-
wise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_init() function shall fail if:

ENOMEM
Insufficient memory exists to initialize the thread attributes object.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to support
probable future standardization in these areas without requiring that the function itself be changed.

Attributes objects provide clean isolation of the configurable aspects of threads. For example, ‘‘stack size’’
is an important attribute of a thread, but it cannot be expressed portably. When porting a threaded program,
stack sizes often need to be adjusted. The use of attributes objects can help by allowing the changes to be
isolated in a single place, rather than being spread across every instance of thread creation.

Attributes objects can be used to set up ‘‘classes’ of threads with similar attributes; for example, ‘‘threads
with large stacks and high priority’’ or ‘‘threads with minimal stacks’’. These classes can be defined in a
single place and then referenced wherever threads need to be created. Changes to ‘‘class’’ decisions become
straightforward, and detailed analysis of each pthread_create() call is not required.

IEEE/The Open Group 2017 1

PTHREAD_ATTR_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_ATTR_DESTROY(3P)

The attributes objects are defined as opaque types as an aid to extensibility. If these objects had been speci-
fied as structures, adding new attributes would force recompilation of all multi-threaded programs when the
attributes objects are extended; this might not be possible if different program components were supplied
by different vendors.

Additionally, opaque attributes objects present opportunities for improving performance. Argument validity
can be checked once when attributes are set, rather than each time a thread is created. Implementations of-
ten need to cache kernel objects that are expensive to create. Opaque attributes objects provide an efficient
mechanism to detect when cached objects become invalid due to attribute changes.

Since assignment is not necessarily defined on a given opaque type, implementation-defined default values
cannot be defined in a portable way. The solution to this problem is to allow attributes objects to be initial-
ized dynamically by attributes object initialization functions, so that default values can be supplied auto-
matically by the implementation.

The following proposal was provided as a suggested alternative to the supplied attributes:

1. Maintain the style of passing a parameter formed by the bitwise-inclusive OR of flags to the initializa-
tion routines (pthread_create(), pthread_mutex_init(), pthread_cond_init()). The parameter containing
the flags should be an opaque type for extensibility. If no flags are set in the parameter, then the objects
are created with default characteristics. An implementation may specify implementation-defined flag
values and associated behavior.

2. If further specialization of mutexes and condition variables is necessary, implementations may specify
additional procedures that operate on the pthread_mutex_t and pthread_cond_t objects (instead of
on attributes objects).

The difficulties with this solution are:

1. A bitmask is not opaque if bits have to be set into bitvector attributes objects using explicitly-coded
bitwise-inclusive OR operations. If the set of options exceeds an int, application programmers need to
know the location of each bit. If bits are set or read by encapsulation (that is, get and set functions),
then the bitmask is merely an implementation of attributes objects as currently defined and should not
be exposed to the programmer.

2. Many attributes are not Boolean or very small integral values. For example, scheduling policy may be
placed in 3-bit or 4-bit, but priority requires 5-bit or more, thereby taking up at least 8 bits out of a
possible 16 bits on machines with 16-bit integers. Because of this, the bitmask can only reasonably
control whether particular attributes are set or not, and it cannot serve as the repository of the value it-
self. The value needs to be specified as a function parameter (which is non-extensible), or by setting a
structure field (which is non-opaque), or by get and set functions (making the bitmask a redundant ad-
dition to the attributes objects).

Stack size is defined as an optional attribute because the very notion of a stack is inherently machine-de-
pendent. Some implementations may not be able to change the size of the stack, for example, and others
may not need to because stack pages may be discontiguous and can be allocated and released on demand.

The attribute mechanism has been designed in large measure for extensibility. Future extensions to the attri-
bute mechanism or to any attributes object defined in this volume of POSIX.1-2017 has to be done with
care so as not to affect binary-compatibility.

Attributes objects, even if allocated by means of dynamic allocation functions such as malloc(), may have
their size fixed at compile time. This means, for example, a pthread_create() in an implementation with ex-
tensions to pthread_attr_t cannot look beyond the area that the binary application assumes is valid. This
suggests that implementations should maintain a size field in the attributes object, as well as possibly ver-
sion information, if extensions in different directions (possibly by different vendors) are to be accommo-
dated.

If an implementation detects that the value specified by the attr argument to pthread_attr_destroy() does
not refer to an initialized thread attributes object, it is recommended that the function should fail and report
an [EINVAL] error.

IEEE/The Open Group 2017 2

PTHREAD_ATTR_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_ATTR_DESTROY(3P)

If an implementation detects that the value specified by the attr argument to pthread_attr_init() refers to an
already initialized thread attributes object, it is recommended that the function should fail and report an
[EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_getstacksize(), pthread_attr_getdetachstate(), pthread_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_ATTR_GETDETACHSTATE(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETDETACHSTATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_getdetachstate, pthread_attr_setdetachstate — get and set the detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getdetachstate(const pthread_attr_t *attr,
int *detachstate);

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

DESCRIPTION
The detachstate attribute controls whether the thread is created in a detached state. If the thread is created
detached, then use of the ID of the newly created thread by the pthread_detach() or pthread_join() function
is an error.

The pthread_attr_getdetachstate() and pthread_attr_setdetachstate() functions, respectively, shall get and
set the detachstate attribute in the attr object.

For pthread_attr_getdetachstate(), detachstate shall be set to either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE.

For pthread_attr_setdetachstate(), the application shall set detachstate to either PTHREAD_CREATE_DE-
TA CHED or PTHREAD_CREATE_JOINABLE.

A value of PTHREAD_CREATE_DETACHED shall cause all threads created with attr to be in the de-
tached state, whereas using a value of PTHREAD_CREATE_JOINABLE shall cause all threads created
with attr to be in the joinable state. The default value of the detachstate attribute shall be PTHREAD_CRE-
ATE_JOINABLE.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getdetachstate() or
pthread_attr_setdetachstate() does not refer to an initialized thread attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_getdetachstate() and pthread_attr_setdetachstate() shall return a
value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getdetachstate() function stores the value of the detachstate attribute in detachstate if
successful.

ERRORS
The pthread_attr_setdetachstate() function shall fail if:

EINVAL
The value of detachstate was not valid

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
Retrieving the detachstate Attribute

This example shows how to obtain the detachstate attribute of a thread attribute object.

#include <pthread.h>

pthread_attr_t thread_attr;
int detachstate;
int rc;

IEEE/The Open Group 2017 1

PTHREAD_ATTR_GETDETACHSTATE(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETDETACHSTATE(3P)

/* code initializing thread_attr */
...

rc = pthread_attr_getdetachstate (&thread_attr, &detachstate);
if (rc!=0) {

/* handle error */
...

}
else {

/* legal values for detachstate are:
* PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE
*/
...

}

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_attr_getdetachstate()
or pthread_attr_setdetachstate() does not refer to an initialized thread attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getstacksize(), pthread_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATTR_GETGUARDSIZE(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETGUARDSIZE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_getguardsize, pthread_attr_setguardsize — get and set the thread guardsize attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
size_t *restrict guardsize);

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

DESCRIPTION
The pthread_attr_getguardsize() function shall get the guardsize attribute in the attr object. This attribute
shall be returned in the guardsize parameter.

The pthread_attr_setguardsize() function shall set the guardsize attribute in the attr object. The new value
of this attribute shall be obtained from the guardsize parameter. If guardsize is zero, a guard area shall not
be provided for threads created with attr. If guardsize is greater than zero, a guard area of at least size
guardsize bytes shall be provided for each thread created with attr.

The guardsize attribute controls the size of the guard area for the created thread’s stack. The guardsize attri-
bute provides protection against overflow of the stack pointer. If a thread’s stack is created with guard pro-
tection, the implementation allocates extra memory at the overflow end of the stack as a buffer against stack
overflow of the stack pointer. If an application overflows into this buffer an error shall result (possibly in a
SIGSEGV signal being delivered to the thread).

A conforming implementation may round up the value contained in guardsize to a multiple of the config-
urable system variable {PAGESIZE} (see <sys/mman.h>). If an implementation rounds up the value of
guardsize to a multiple of {PAGESIZE}, a call to pthread_attr_getguardsize() specifying attr shall store in
the guardsize parameter the guard size specified by the previous pthread_attr_setguardsize() function call.

The default value of the guardsize attribute is implementation-defined.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread stacks),
the guardsize attribute shall be ignored and no protection shall be provided by the implementation. It is the
responsibility of the application to manage stack overflow along with stack allocation and management in
this case.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getguardsize() or
pthread_attr_setguardsize() does not refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getguardsize() and pthread_attr_setguardsize() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall fail if:

EINVAL
The parameter guardsize is invalid.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
Retrieving the guardsize Attribute

This example shows how to obtain the guardsize attribute of a thread attribute object.

IEEE/The Open Group 2017 1

PTHREAD_ATTR_GETGUARDSIZE(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETGUARDSIZE(3P)

#include <pthread.h>

pthread_attr_t thread_attr;
size_t guardsize;
int rc;

/* code initializing thread_attr */
...

rc = pthread_attr_getguardsize (&thread_attr, &guardsize);
if (rc != 0) {

/* handle error */
...

}
else {

if (guardsize > 0) {
/* a guard area of at least guardsize bytes is provided */
...
}
else {
/* no guard area provided */
...
}

}

APPLICATION USAGE
None.

RATIONALE
The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An application that creates a
large number of threads, and which knows its threads never overflow their stack, can save system re-
sources by turning off guard areas.

2. When threads allocate large data structures on the stack, large guard areas may be needed to detect
stack overflow.

The default size of the guard area is left implementation-defined since on systems supporting very large
page sizes, the overhead might be substantial if at least one guard page is required by default.

If an implementation detects that the value specified by the attr argument to pthread_attr_getguardsize() or
pthread_attr_setguardsize() does not refer to an initialized thread attributes object, it is recommended that
the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <pthread.h>, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATTR_GETINHERITSCHED(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETINHERITSCHED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_getinheritsched, pthread_attr_setinheritsched — get and set the inheritsched attribute (REAL-
TIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

DESCRIPTION
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions, respectively, shall get and
set the inheritsched attribute in the attr argument.

When the attributes objects are used by pthread_create(), the inheritsched attribute determines how the
other scheduling attributes of the created thread shall be set.

The supported values of inheritsched shall be:

PTHREAD_INHERIT_SCHED
Specifies that the thread scheduling attributes shall be inherited from the creating thread, and the
scheduling attributes in this attr argument shall be ignored.

PTHREAD_EXPLICIT_SCHED
Specifies that the thread scheduling attributes shall be set to the corresponding values from this at-
tributes object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are defined in the
<pthread.h> header.

The following thread scheduling attributes defined by POSIX.1-2008 are affected by the inheritsched attri-
bute: scheduling policy (schedpolicy), scheduling parameters (schedparam), and scheduling contention
scope (contentionscope).

The behavior is undefined if the value specified by the attr argument to pthread_attr_getinheritsched() or
pthread_attr_setinheritsched() does not refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setinheritsched() function shall fail if:

ENOTSUP
An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setinheritsched() function may fail if:

EINVAL
The value of inheritsched is not valid.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

PTHREAD_ATTR_GETINHERITSCHED(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETINHERITSCHED(3P)

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using pthread_cre-

ate(). Using these routines does not affect the current running thread.

See Section 2.9.4, Thread Scheduling for further details on thread scheduling attributes and their default
settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_attr_getinheritsched()
or pthread_attr_setinheritsched() does not refer to an initialized thread attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getschedpolicy(), pthread_attr_getsched-

param(), pthread_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATTR_GETSCHEDPARAM(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETSCHEDPARAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_getschedparam, pthread_attr_setschedparam — get and set the schedparam attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getschedparam(const pthread_attr_t *restrict attr,
struct sched_param *restrict param);

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

DESCRIPTION
The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions, respectively, shall get and
set the scheduling parameter attributes in the attr argument. The contents of the param structure are defined
in the <sched.h> header. For the SCHED_FIFO and SCHED_RR policies, the only required member of
param is sched_priority.

For the SCHED_SPORADIC policy, the required members of the param structure are sched_priority,
sched_ss_low_priority, sched_ss_repl_period , sched_ss_init_budget, and sched_ss_max_repl. The speci-
fied sched_ss_repl_period must be greater than or equal to the specified sched_ss_init_budget for the func-
tion to succeed; if it is not, then the function shall fail. The value of sched_ss_max_repl shall be within the
inclusive range [1,{SS_REPL_MAX}] for the function to succeed; if not, the function shall fail. It is un-
specified whether the sched_ss_repl_period and sched_ss_init_budget values are stored as provided by this
function or are rounded to align with the resolution of the clock being used.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getschedparam() or
pthread_attr_setschedparam() does not refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getschedparam() and pthread_attr_setschedparam() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setschedparam() function shall fail if:

ENOTSUP
An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setschedparam() function may fail if:

EINVAL
The value of param is not valid.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using pthread_cre-

ate(). Using these routines does not affect the current running thread.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_attr_getschedparam()
or pthread_attr_setschedparam() does not refer to an initialized thread attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

IEEE/The Open Group 2017 1

PTHREAD_ATTR_GETSCHEDPARAM(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETSCHEDPARAM(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(), pthread_attr_getsched-

policy(), pthread_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATTR_GETSCHEDPOLICY(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETSCHEDPOLICY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_getschedpolicy, pthread_attr_setschedpolicy — get and set the schedpolicy attribute (REAL-
TIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

DESCRIPTION
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, shall get and
set the schedpolicy attribute in the attr argument.

The supported values of policy shall include SCHED_FIFO, SCHED_RR, and SCHED_OTHER, which
are defined in the <sched.h> header. When threads executing with the scheduling policy SCHED_FIFO,
SCHED_RR, or SCHED_SPORADIC are waiting on a mutex, they shall acquire the mutex in priority order
when the mutex is unlocked.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getschedpolicy() or
pthread_attr_setschedpolicy() does not refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setschedpolicy() function shall fail if:

ENOTSUP
An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setschedpolicy() function may fail if:

EINVAL
The value of policy is not valid.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using pthread_cre-

ate(). Using these routines does not affect the current running thread.

See Section 2.9.4, Thread Scheduling for further details on thread scheduling attributes and their default
settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_attr_getschedpolicy()
or pthread_attr_setschedpolicy() does not refer to an initialized thread attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_ATTR_GETSCHEDPOLICY(3P)POSIX Programmer’s ManualPTHREAD_ATTR_GETSCHEDPOLICY(3P)

SEE ALSO
pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(), pthread_attr_getsched-

param(), pthread_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATTR_GETSCOPE(3P) POSIX Programmer’s Manual PTHREAD_ATTR_GETSCOPE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_getscope, pthread_attr_setscope — get and set the contentionscope attribute (REALTIME
THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope);

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

DESCRIPTION
The pthread_attr_getscope() and pthread_attr_setscope() functions, respectively, shall get and set the con-

tentionscope attribute in the attr object.

The contentionscope attribute may have the values PTHREAD_SCOPE_SYSTEM, signifying system
scheduling contention scope, or PTHREAD_SCOPE_PROCESS, signifying process scheduling contention
scope. The symbols PTHREAD_SCOPE_SYSTEM and PTHREAD_SCOPE_PROCESS are defined in the
<pthread.h> header.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getscope() or
pthread_attr_setscope() does not refer to an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_attr_getscope() and pthread_attr_setscope() functions shall return zero; other-
wise, an error number shall be returned to indicate the error.

ERRORS
The pthread_attr_setscope() function shall fail if:

ENOTSUP
An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setscope() function may fail if:

EINVAL
The value of contentionscope is not valid.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using pthread_cre-

ate(). Using these routines does not affect the current running thread.

See Section 2.9.4, Thread Scheduling for further details on thread scheduling attributes and their default
settings.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_attr_getscope() or
pthread_attr_setscope() does not refer to an initialized thread attributes object, it is recommended that the
function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_ATTR_GETSCOPE(3P) POSIX Programmer’s Manual PTHREAD_ATTR_GETSCOPE(3P)

SEE ALSO
pthread_attr_destroy(), pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(),
pthread_attr_getschedparam(), pthread_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATTR_GETSTACK(3P) POSIX Programmer’s Manual PTHREAD_ATTR_GETSTACK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_getstack, pthread_attr_setstack — get and set stack attributes

SYNOPSIS
#include <pthread.h>

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, size_t *restrict stacksize);

int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
size_t stacksize);

DESCRIPTION
The pthread_attr_getstack() and pthread_attr_setstack() functions, respectively, shall get and set the thread
creation stack attributes stackaddr and stacksize in the attr object.

The stack attributes specify the area of storage to be used for the created thread’s stack. The base (lowest
addressable byte) of the storage shall be stackaddr, and the size of the storage shall be stacksize bytes. The
stacksize shall be at least {PTHREAD_STACK_MIN}. The pthread_attr_setstack() function may fail with
[EINVAL] if stackaddr does not meet implementation-defined alignment requirements. All pages within
the stack described by stackaddr and stacksize shall be both readable and writable by the thread.

If the pthread_attr_getstack() function is called before the stackaddr attribute has been set, the behavior is
unspecified.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getstack() or
pthread_attr_setstack() does not refer to an initialized thread attributes object.

RETURN VALUE
Upon successful completion, these functions shall return a value of 0; otherwise, an error number shall be
returned to indicate the error.

The pthread_attr_getstack() function shall store the stack attribute values in stackaddr and stacksize if suc-
cessful.

ERRORS
The pthread_attr_setstack() function shall fail if:

EINVAL
The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds an implementation-de-
fined limit.

The pthread_attr_setstack() function may fail if:

EINVAL
The value of stackaddr does not have proper alignment to be used as a stack, or ((char *)stack-

addr + stacksize) lacks proper alignment.

EACCES
The stack page(s) described by stackaddr and stacksize are not both readable and writable by the
thread.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

PTHREAD_ATTR_GETSTACK(3P) POSIX Programmer’s Manual PTHREAD_ATTR_GETSTACK(3P)

APPLICATION USAGE
These functions are appropriate for use by applications in an environment where the stack for a thread must
be placed in some particular region of memory.

While it might seem that an application could detect stack overflow by providing a protected page outside
the specified stack region, this cannot be done portably. Implementations are free to place the thread’s ini-
tial stack pointer anywhere within the specified region to accommodate the machine’s stack pointer behav-
ior and allocation requirements. Furthermore, on some architectures, such as the IA-64, ‘‘overflow’’ might
mean that two separate stack pointers allocated within the region will overlap somewhere in the middle of
the region.

After a successful call to pthread_attr_setstack(), the storage area specified by the stackaddr parameter is
under the control of the implementation, as described in Section 2.9.8, Use of Application-Managed Thread

Stacks.

The specification of the stackaddr attribute presents several ambiguities that make portable use of these
functions impossible. For example, the standard allows implementations to impose arbitrary alignment re-
quirements on stackaddr. Applications cannot assume that a buffer obtained from malloc() is suitably
aligned. Note that although the stacksize value passed to pthread_attr_setstack() must satisfy alignment re-
quirements, the same is not true for pthread_attr_setstacksize() where the implementation must increase the
specified size if necessary to achieve the proper alignment.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_attr_getstack() or
pthread_attr_setstack() does not refer to an initialized thread attributes object, it is recommended that the
function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getdetachstate(), pthread_attr_getstacksize(), pthread_create()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATTR_GETSTACKSIZE(3P) POSIX Programmer’s Manual PTHREAD_ATTR_GETSTACKSIZE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_getstacksize, pthread_attr_setstacksize — get and set the stacksize attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
size_t *restrict stacksize);

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

DESCRIPTION
The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions, respectively, shall get and set the
thread creation stacksize attribute in the attr object.

The stacksize attribute shall define the minimum stack size (in bytes) allocated for the created threads stack.

The behavior is undefined if the value specified by the attr argument to pthread_attr_getstacksize() or
pthread_attr_setstacksize() does not refer to an initialized thread attributes object.

RETURN VALUE
Upon successful completion, pthread_attr_getstacksize() and pthread_attr_setstacksize() shall return a
value of 0; otherwise, an error number shall be returned to indicate the error.

The pthread_attr_getstacksize() function stores the stacksize attribute value in stacksize if successful.

ERRORS
The pthread_attr_setstacksize() function shall fail if:

EINVAL
The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds a system-imposed
limit.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_attr_getstacksize() or
pthread_attr_setstacksize() does not refer to an initialized thread attributes object, it is recommended that
the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_attr_getdetachstate(), pthread_create()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 1

PTHREAD_ATTR_GETSTACKSIZE(3P) POSIX Programmer’s Manual PTHREAD_ATTR_GETSTACKSIZE(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_ATTR_INIT(3P) POSIX Programmer’s Manual PTHREAD_ATTR_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_init — initialize the thread attributes object

SYNOPSIS
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

DESCRIPTION
Refer to pthread_attr_destroy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ATTR_SETDETACHSTATE(3P)POSIX Programmer’s ManualPTHREAD_ATTR_SETDETACHSTATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_setdetachstate — set the detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

DESCRIPTION
Refer to pthread_attr_getdetachstate().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ATTR_SETGUARDSIZE(3P) POSIX Programmer’s Manual PTHREAD_ATTR_SETGUARDSIZE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_setguardsize — set the thread guardsize attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

DESCRIPTION
Refer to pthread_attr_getguardsize().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ATTR_SETINHERITSCHED(3P)POSIX Programmer’s ManualPTHREAD_ATTR_SETINHERITSCHED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_setinheritsched — set the inheritsched attribute (REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

DESCRIPTION
Refer to pthread_attr_getinheritsched().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ATTR_SETSCHEDPARAM(3P)POSIX Programmer’s ManualPTHREAD_ATTR_SETSCHEDPARAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_setschedparam — set the schedparam attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

DESCRIPTION
Refer to pthread_attr_getschedparam().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ATTR_SETSCHEDPOLICY(3P)POSIX Programmer’s ManualPTHREAD_ATTR_SETSCHEDPOLICY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_setschedpolicy — set the schedpolicy attribute (REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

DESCRIPTION
Refer to pthread_attr_getschedpolicy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ATTR_SETSCOPE(3P) POSIX Programmer’s Manual PTHREAD_ATTR_SETSCOPE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_setscope — set the contentionscope attribute (REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

DESCRIPTION
Refer to pthread_attr_getscope().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ATTR_SETSTACK(3P) POSIX Programmer’s Manual PTHREAD_ATTR_SETSTACK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_setstack — set the stack attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
size_t stacksize);

DESCRIPTION
Refer to pthread_attr_getstack().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ATTR_SETSTACKSIZE(3P) POSIX Programmer’s Manual PTHREAD_ATTR_SETSTACKSIZE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_attr_setstacksize — set the stacksize attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

DESCRIPTION
Refer to pthread_attr_getstacksize().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_BARRIER_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_BARRIER_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_barrier_destroy, pthread_barrier_init — destroy and initialize a barrier object

SYNOPSIS
#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr, unsigned count);

DESCRIPTION
The pthread_barrier_destroy() function shall destroy the barrier referenced by barrier and release any re-
sources used by the barrier. The effect of subsequent use of the barrier is undefined until the barrier is reini-
tialized by another call to pthread_barrier_init(). An implementation may use this function to set barrier

to an invalid value. The results are undefined if pthread_barrier_destroy() is called when any thread is
blocked on the barrier, or if this function is called with an uninitialized barrier.

The pthread_barrier_init() function shall allocate any resources required to use the barrier referenced by
barrier and shall initialize the barrier with attributes referenced by attr. If attr is NULL, the default barrier
attributes shall be used; the effect is the same as passing the address of a default barrier attributes object.
The results are undefined if pthread_barrier_init() is called when any thread is blocked on the barrier (that
is, has not returned from the pthread_barrier_wait() call). The results are undefined if a barrier is used
without first being initialized. The results are undefined if pthread_barrier_init() is called specifying an al-
ready initialized barrier.

The count argument specifies the number of threads that must call pthread_barrier_wait() before any of
them successfully return from the call. The value specified by count must be greater than zero.

If the pthread_barrier_init() function fails, the barrier shall not be initialized and the contents of barrier are
undefined.

See Section 2.9.9, Synchronization Object Copies and Alternative Mappings for further requirements.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_barrier_init() function shall fail if:

EAGAIN
The system lacks the necessary resources to initialize another barrier.

EINVAL
The value specified by count is equal to zero.

ENOMEM
Insufficient memory exists to initialize the barrier.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

IEEE/The Open Group 2017 1

PTHREAD_BARRIER_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_BARRIER_DESTROY(3P)

RATIONALE
If an implementation detects that the value specified by the barrier argument to pthread_barrier_destroy()
does not refer to an initialized barrier object, it is recommended that the function should fail and report an
[EINVAL] error.

If an implementation detects that the value specified by the attr argument to pthread_barrier_init() does not
refer to an initialized barrier attributes object, it is recommended that the function should fail and report an
[EINVAL] error.

If an implementation detects that the value specified by the barrier argument to pthread_barrier_destroy()
or pthread_barrier_init() refers to a barrier that is in use (for example, in a pthread_barrier_wait() call) by
another thread, or detects that the value specified by the barrier argument to pthread_barrier_init() refers
to an already initialized barrier object, it is recommended that the function should fail and report an
[EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_wait()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_BARRIER_WAIT(3P) POSIX Programmer’s Manual PTHREAD_BARRIER_WAIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_barrier_wait — synchronize at a barrier

SYNOPSIS
#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

DESCRIPTION
The pthread_barrier_wait() function shall synchronize participating threads at the barrier referenced by
barrier. The calling thread shall block until the required number of threads have called pthread_bar-

rier_wait() specifying the barrier.

When the required number of threads have called pthread_barrier_wait() specifying the barrier, the con-
stant PTHREAD_BARRIER_SERIAL_THREAD shall be returned to one unspecified thread and zero shall
be returned to each of the remaining threads. At this point, the barrier shall be reset to the state it had as a
result of the most recent pthread_barrier_init() function that referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h> and its value shall be
distinct from any other value returned by pthread_barrier_wait().

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler the thread shall
resume waiting at the barrier if the barrier wait has not completed (that is, if the required number of threads
have not arrived at the barrier during the execution of the signal handler); otherwise, the thread shall con-
tinue as normal from the completed barrier wait. Until the thread in the signal handler returns from it, it is
unspecified whether other threads may proceed past the barrier once they hav e all reached it.

A thread that has blocked on a barrier shall not prevent any unblocked thread that is eligible to use the same
processing resources from eventually making forward progress in its execution. Eligibility for processing
resources shall be determined by the scheduling policy.

RETURN VALUE
Upon successful completion, the pthread_barrier_wait() function shall return PTHREAD_BARRIER_SE-
RIAL_THREAD for a single (arbitrary) thread synchronized at the barrier and zero for each of the other
threads. Otherwise, an error number shall be returned to indicate the error.

ERRORS
This function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

RATIONALE
If an implementation detects that the value specified by the barrier argument to pthread_barrier_wait()
does not refer to an initialized barrier object, it is recommended that the function should fail and report an
[EINVAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_BARRIER_WAIT(3P) POSIX Programmer’s Manual PTHREAD_BARRIER_WAIT(3P)

SEE ALSO
pthread_barrier_destroy()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, Section 4.12, Memory

Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_BARRIERATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_BARRIERATTR_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_barrierattr_destroy, pthread_barrierattr_init — destroy and initialize the barrier attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);
int pthread_barrierattr_init(pthread_barrierattr_t *attr);

DESCRIPTION
The pthread_barrierattr_destroy() function shall destroy a barrier attributes object. A destroyed attr at-
tributes object can be reinitialized using pthread_barrierattr_init(); the results of otherwise referencing the
object after it has been destroyed are undefined. An implementation may cause pthread_barrierattr_de-

stroy() to set the object referenced by attr to an invalid value.

The pthread_barrierattr_init() function shall initialize a barrier attributes object attr with the default value
for all of the attributes defined by the implementation.

If pthread_barrierattr_init() is called specifying an already initialized attr attributes object, the results are
undefined.

After a barrier attributes object has been used to initialize one or more barriers, any function affecting the
attributes object (including destruction) shall not affect any previously initialized barrier.

The behavior is undefined if the value specified by the attr argument to pthread_barrierattr_destroy() does
not refer to an initialized barrier attributes object.

RETURN VALUE
If successful, the pthread_barrierattr_destroy() and pthread_barrierattr_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_barrierattr_init() function shall fail if:

ENOMEM
Insufficient memory exists to initialize the barrier attributes object.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_barrierattr_destroy()
does not refer to an initialized barrier attributes object, it is recommended that the function should fail and
report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrierattr_getpshared()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

IEEE/The Open Group 2017 1

PTHREAD_BARRIERATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_BARRIERATTR_DESTROY(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_BARRIERATTR_GETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_BARRIERATTR_GETPSHARED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_barrierattr_getpshared, pthread_barrierattr_setpshared — get and set the process-shared attribute of
the barrier attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_getpshared(const pthread_barrierattr_t
*restrict attr, int *restrict pshared);

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
int pshared);

DESCRIPTION
The pthread_barrierattr_getpshared() function shall obtain the value of the process-shared attribute from
the attributes object referenced by attr. The pthread_barrierattr_setpshared() function shall set the
process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be operated
upon by any thread that has access to the memory where the barrier is allocated. See Section 2.9.9, Syn-

chronization Object Copies and Alternative Mappings for further requirements. The default value of the at-
tribute shall be PTHREAD_PROCESS_PRIVATE. Both constants PTHREAD_PROCESS_SHARED and
PTHREAD_PROCESS_PRIVATE are defined in <pthread.h>.

Additional attributes, their default values, and the names of the associated functions to get and set those at-
tribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to pthread_barrierattr_getpshared() or
pthread_barrierattr_setpshared() does not refer to an initialized barrier attributes object.

RETURN VALUE
If successful, the pthread_barrierattr_getpshared() function shall return zero and store the value of the
process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_barrierattr_setpshared() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_barrierattr_setpshared() function may fail if:

EINVAL
The new value specified for the process-shared attribute is not one of the legal values
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions are part of the
Thread Process-Shared Synchronization option and need not be provided on all implementations.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_barrierattr_getp-

shared() or pthread_barrierattr_setpshared() does not refer to an initialized barrier attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

IEEE/The Open Group 2017 1

PTHREAD_BARRIERATTR_GETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_BARRIERATTR_GETPSHARED(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_barrier_destroy(), pthread_barrierattr_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_BARRIERATTR_INIT(3P) POSIX Programmer’s Manual PTHREAD_BARRIERATTR_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_barrierattr_init — initialize the barrier attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_init(pthread_barrierattr_t *attr);

DESCRIPTION
Refer to pthread_barrierattr_destroy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_BARRIERATTR_SETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_BARRIERATTR_SETPSHARED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_barrierattr_setpshared — set the process-shared attribute of the barrier attributes object

SYNOPSIS
#include <pthread.h>

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_barrierattr_getpshared().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_CANCEL(3P) POSIX Programmer’s Manual PTHREAD_CANCEL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_cancel — cancel execution of a thread

SYNOPSIS
#include <pthread.h>

int pthread_cancel(pthread_t thread);

DESCRIPTION
The pthread_cancel() function shall request that thread be canceled. The target thread’s cancelability state
and type determines when the cancellation takes effect. When the cancellation is acted on, the cancellation
cleanup handlers for thread shall be called. When the last cancellation cleanup handler returns, the thread-
specific data destructor functions shall be called for thread . When the last destructor function returns,
thread shall be terminated.

The cancellation processing in the target thread shall run asynchronously with respect to the calling thread
returning from pthread_cancel().

RETURN VALUE
If successful, the pthread_cancel() function shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_cancel() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Tw o alternative functions were considered for sending the cancellation notification to a thread. One would
be to define a new SIGCANCEL signal that had the cancellation semantics when delivered; the other was to
define the new pthread_cancel() function, which would trigger the cancellation semantics.

The advantage of a new signal was that so much of the delivery criteria were identical to that used when
trying to deliver a signal that making cancellation notification a signal was seen as consistent. Indeed, many
implementations implement cancellation using a special signal. On the other hand, there would be no signal
functions that could be used with this signal except pthread_kill(), and the behavior of the delivered cancel-
lation signal would be unlike any previously existing defined signal.

The benefits of a special function include the recognition that this signal would be defined because of the
similar delivery criteria and that this is the only common behavior between a cancellation request and a sig-
nal. In addition, the cancellation delivery mechanism does not have to be implemented as a signal. There
are also strong, if not stronger, parallels with language exception mechanisms than with signals that are po-
tentially obscured if the delivery mechanism is visibly closer to signals.

In the end, it was considered that as there were so many exceptions to the use of the new signal with exist-
ing signals functions it would be misleading. A special function has resolved this problem. This function
was carefully defined so that an implementation wishing to provide the cancellation functions on top of sig-
nals could do so. The special function also means that implementations are not obliged to implement can-
cellation with signals.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended that the func-
tion should fail and report an [ESRCH] error.

IEEE/The Open Group 2017 1

PTHREAD_CANCEL(3P) POSIX Programmer’s Manual PTHREAD_CANCEL(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit(), pthread_cond_timedwait(), pthread_join(), pthread_setcancelstate()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_CLEANUP_POP(3P) POSIX Programmer’s Manual PTHREAD_CLEANUP_POP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_cleanup_pop, pthread_cleanup_push — establish cancellation handlers

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_pop(int execute);
void pthread_cleanup_push(void (*routine)(void*), void *arg);

DESCRIPTION
The pthread_cleanup_pop() function shall remove the routine at the top of the calling thread’s cancellation
cleanup stack and optionally invoke it (if execute is non-zero).

The pthread_cleanup_push() function shall push the specified cancellation cleanup handler routine onto the
calling thread’s cancellation cleanup stack. The cancellation cleanup handler shall be popped from the can-
cellation cleanup stack and invoked with the argument arg when:

* The thread exits (that is, calls pthread_exit()).

* The thread acts upon a cancellation request.

* The thread calls pthread_cleanup_pop() with a non-zero execute argument.

It is unspecified whether pthread_cleanup_push() and pthread_cleanup_pop() are macros or functions. If a
macro definition is suppressed in order to access an actual function, or a program defines an external identi-
fier with any of these names, the behavior is undefined. The application shall ensure that they appear as
statements, and in pairs within the same lexical scope (that is, the pthread_cleanup_push() macro may be
thought to expand to a token list whose first token is ’{’ with pthread_cleanup_pop() expanding to a token
list whose last token is the corresponding ’}’).

The effect of calling longjmp() or siglongjmp() is undefined if there have been any calls to
pthread_cleanup_push() or pthread_cleanup_pop() made without the matching call since the jump buffer
was filled. The effect of calling longjmp() or siglongjmp() from inside a cancellation cleanup handler is also
undefined unless the jump buffer was also filled in the cancellation cleanup handler.

The effect of the use of return, break, continue, and goto to prematurely leave a code block described by
a pair of pthread_cleanup_push() and pthread_cleanup_pop() functions calls is undefined.

RETURN VALUE
The pthread_cleanup_push() and pthread_cleanup_pop() functions shall not return a value.

ERRORS
No errors are defined.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
The following is an example using thread primitives to implement a cancelable, writers-priority read-write
lock:

typedef struct {
pthread_mutex_t lock;
pthread_cond_t rcond,

wcond;
int lock_count; /* < 0 .. Held by writer. */

/* > 0 .. Held by lock_count readers. */

IEEE/The Open Group 2017 1

PTHREAD_CLEANUP_POP(3P) POSIX Programmer’s Manual PTHREAD_CLEANUP_POP(3P)

/* = 0 .. Held by nobody. */
int waiting_writers; /* Count of waiting writers. */

} rwlock;

void
waiting_reader_cleanup(void *arg)
{

rwlock *l;

l = (rwlock *) arg;
pthread_mutex_unlock(&l->lock);

}

void
lock_for_read(rwlock *l)
{

pthread_mutex_lock(&l->lock);
pthread_cleanup_push(waiting_reader_cleanup, l);
while ((l->lock_count < 0) || (l->waiting_writers != 0))

pthread_cond_wait(&l->rcond, &l->lock);
l->lock_count++;
/*
* Note the pthread_cleanup_pop executes
* waiting_reader_cleanup.
*/
pthread_cleanup_pop(1);

}

void
release_read_lock(rwlock *l)
{

pthread_mutex_lock(&l->lock);
if (--l->lock_count == 0)

pthread_cond_signal(&l->wcond);
pthread_mutex_unlock(&l->lock);

}

void
waiting_writer_cleanup(void *arg)
{

rwlock *l;

l = (rwlock *) arg;
if ((--l->waiting_writers == 0) && (l->lock_count >= 0)) {

/*
* This only happens if we have been canceled. If the
* lock is not held by a writer, there may be readers who
* were blocked because waiting_writers was positive; they
* can now be unblocked.
*/
pthread_cond_broadcast(&l->rcond);

}
pthread_mutex_unlock(&l->lock);

}

void
lock_for_write(rwlock *l)
{

pthread_mutex_lock(&l->lock);

IEEE/The Open Group 2017 2

PTHREAD_CLEANUP_POP(3P) POSIX Programmer’s Manual PTHREAD_CLEANUP_POP(3P)

l->waiting_writers++;
pthread_cleanup_push(waiting_writer_cleanup, l);
while (l->lock_count != 0)

pthread_cond_wait(&l->wcond, &l->lock);
l->lock_count = -1;
/*
* Note the pthread_cleanup_pop executes
* waiting_writer_cleanup.
*/
pthread_cleanup_pop(1);

}

void
release_write_lock(rwlock *l)
{

pthread_mutex_lock(&l->lock);
l->lock_count = 0;
if (l->waiting_writers == 0)

pthread_cond_broadcast(&l->rcond);
else

pthread_cond_signal(&l->wcond);
pthread_mutex_unlock(&l->lock);

}

/*
* This function is called to initialize the read/write lock.
*/
void
initialize_rwlock(rwlock *l)
{

pthread_mutex_init(&l->lock, pthread_mutexattr_default);
pthread_cond_init(&l->wcond, pthread_condattr_default);
pthread_cond_init(&l->rcond, pthread_condattr_default);
l->lock_count = 0;
l->waiting_writers = 0;

}

reader_thread()
{

lock_for_read(&lock);
pthread_cleanup_push(release_read_lock, &lock);
/*
* Thread has read lock.
*/
pthread_cleanup_pop(1);

}

writer_thread()
{

lock_for_write(&lock);
pthread_cleanup_push(release_write_lock, &lock);
/*
* Thread has write lock.
*/

pthread_cleanup_pop(1);
}

IEEE/The Open Group 2017 3

PTHREAD_CLEANUP_POP(3P) POSIX Programmer’s Manual PTHREAD_CLEANUP_POP(3P)

APPLICATION USAGE
The two routines that push and pop cancellation cleanup handlers, pthread_cleanup_push() and
pthread_cleanup_pop(), can be thought of as left and right-parentheses. They always need to be matched.

RATIONALE
The restriction that the two routines that push and pop cancellation cleanup handlers,
pthread_cleanup_push() and pthread_cleanup_pop(), have to appear in the same lexical scope allows for
efficient macro or compiler implementations and efficient storage management. A sample implementation
of these routines as macros might look like this:

#define pthread_cleanup_push(rtn,arg) { \
struct _pthread_handler_rec __cleanup_handler, **__head; \
__cleanup_handler.rtn = rtn; \
__cleanup_handler.arg = arg; \
(void) pthread_getspecific(_pthread_handler_key, &__head); \
__cleanup_handler.next = *__head; \
*__head = &__cleanup_handler;

#define pthread_cleanup_pop(ex) \
*__head = __cleanup_handler.next; \
if (ex) (*__cleanup_handler.rtn)(__cleanup_handler.arg); \

}

A more ambitious implementation of these routines might do even better by allowing the compiler to note
that the cancellation cleanup handler is a constant and can be expanded inline.

This volume of POSIX.1-2017 currently leaves unspecified the effect of calling longjmp() from a signal
handler executing in a POSIX System Interfaces function. If an implementation wants to allow this and
give the programmer reasonable behavior, the longjmp() function has to call all cancellation cleanup han-
dlers that have been pushed but not popped since the time setjmp() was called.

Consider a multi-threaded function called by a thread that uses signals. If a signal were delivered to a signal
handler during the operation of qsort() and that handler were to call longjmp() (which, in turn, did not call
the cancellation cleanup handlers) the helper threads created by the qsort() function would not be canceled.
Instead, they would continue to execute and write into the argument array even though the array might have
been popped off the stack.

Note that the specified cleanup handling mechanism is especially tied to the C language and, while the re-
quirement for a uniform mechanism for expressing cleanup is language-independent, the mechanism used
in other languages may be quite different. In addition, this mechanism is really only necessary due to the
lack of a real exception mechanism in the C language, which would be the ideal solution.

There is no notion of a cancellation cleanup-safe function. If an application has no cancellation points in its
signal handlers, blocks any signal whose handler may have cancellation points while calling async-unsafe
functions, or disables cancellation while calling async-unsafe functions, all functions may be safely called
from cancellation cleanup routines.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cancel(), pthread_setcancelstate()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 4

PTHREAD_CLEANUP_POP(3P) POSIX Programmer’s Manual PTHREAD_CLEANUP_POP(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

PTHREAD_COND_BROADCAST(3P) POSIX Programmer’s Manual PTHREAD_COND_BROADCAST(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_cond_broadcast, pthread_cond_signal — broadcast or signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION
These functions shall unblock threads blocked on a condition variable.

The pthread_cond_broadcast() function shall unblock all threads currently blocked on the specified condi-
tion variable cond .

The pthread_cond_signal() function shall unblock at least one of the threads that are blocked on the speci-
fied condition variable cond (if any threads are blocked on cond).

If more than one thread is blocked on a condition variable, the scheduling policy shall determine the order
in which threads are unblocked. When each thread unblocked as a result of a pthread_cond_broadcast() or
pthread_cond_signal() returns from its call to pthread_cond_wait() or pthread_cond_timedwait(), the
thread shall own the mutex with which it called pthread_cond_wait() or pthread_cond_timedwait(). The
thread(s) that are unblocked shall contend for the mutex according to the scheduling policy (if applicable),
and as if each had called pthread_mutex_lock().

The pthread_cond_broadcast() or pthread_cond_signal() functions may be called by a thread whether or
not it currently owns the mutex that threads calling pthread_cond_wait() or pthread_cond_timedwait() have
associated with the condition variable during their waits; however, if predictable scheduling behavior is re-
quired, then that mutex shall be locked by the thread calling pthread_cond_broadcast() or
pthread_cond_signal().

The pthread_cond_broadcast() and pthread_cond_signal() functions shall have no effect if there are no
threads currently blocked on cond .

The behavior is undefined if the value specified by the cond argument to pthread_cond_broadcast() or
pthread_cond_signal() does not refer to an initialized condition variable.

RETURN VALUE
If successful, the pthread_cond_broadcast() and pthread_cond_signal() functions shall return zero; other-
wise, an error number shall be returned to indicate the error.

ERRORS
These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The pthread_cond_broadcast() function is used whenever the shared-variable state has been changed in a
way that more than one thread can proceed with its task. Consider a single producer/multiple consumer
problem, where the producer can insert multiple items on a list that is accessed one item at a time by the
consumers. By calling the pthread_cond_broadcast() function, the producer would notify all consumers
that might be waiting, and thereby the application would receive more throughput on a multi-processor. In
addition, pthread_cond_broadcast() makes it easier to implement a read-write lock. The
pthread_cond_broadcast() function is needed in order to wake up all waiting readers when a writer releases
its lock. Finally, the two-phase commit algorithm can use this broadcast function to notify all clients of an

IEEE/The Open Group 2017 1

PTHREAD_COND_BROADCAST(3P) POSIX Programmer’s Manual PTHREAD_COND_BROADCAST(3P)

impending transaction commit.

It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked asynchronously.
Even if it were safe, there would still be a race between the test of the Boolean pthread_cond_wait() that
could not be efficiently eliminated.

Mutexes and condition variables are thus not suitable for releasing a waiting thread by signaling from code
running in a signal handler.

RATIONALE
If an implementation detects that the value specified by the cond argument to pthread_cond_broadcast() or
pthread_cond_signal() does not refer to an initialized condition variable, it is recommended that the func-
tion should fail and report an [EINVAL] error.

Multiple Awakenings by Condition Signal
On a multi-processor, it may be impossible for an implementation of pthread_cond_signal() to avoid the
unblocking of more than one thread blocked on a condition variable. For example, consider the following
partial implementation of pthread_cond_wait() and pthread_cond_signal(), executed by two threads in the
order given. One thread is trying to wait on the condition variable, another is concurrently executing
pthread_cond_signal(), while a third thread is already waiting.

pthread_cond_wait(mutex, cond):
value = cond->value; /* 1 */
pthread_mutex_unlock(mutex); /* 2 */
pthread_mutex_lock(cond->mutex); /* 10 */
if (value == cond->value) { /* 11 */

me->next_cond = cond->waiter;
cond->waiter = me;
pthread_mutex_unlock(cond->mutex);
unable_to_run(me);

} else
pthread_mutex_unlock(cond->mutex); /* 12 */

pthread_mutex_lock(mutex); /* 13 */

pthread_cond_signal(cond):
pthread_mutex_lock(cond->mutex); /* 3 */
cond->value++; /* 4 */
if (cond->waiter) { /* 5 */

sleeper = cond->waiter; /* 6 */
cond->waiter = sleeper->next_cond; /* 7 */
able_to_run(sleeper); /* 8 */

}
pthread_mutex_unlock(cond->mutex); /* 9 */

The effect is that more than one thread can return from its call to pthread_cond_wait() or
pthread_cond_timedwait() as a result of one call to pthread_cond_signal(). This effect is called ‘‘spurious
wakeup’’. Note that the situation is self-correcting in that the number of threads that are so awakened is fi-
nite; for example, the next thread to call pthread_cond_wait() after the sequence of events above blocks.

While this problem could be resolved, the loss of efficiency for a fringe condition that occurs only rarely is
unacceptable, especially given that one has to check the predicate associated with a condition variable any-
way. Correcting this problem would unnecessarily reduce the degree of concurrency in this basic building
block for all higher-level synchronization operations.

An added benefit of allowing spurious wakeups is that applications are forced to code a predicate-testing-
loop around the condition wait. This also makes the application tolerate superfluous condition broadcasts
or signals on the same condition variable that may be coded in some other part of the application. The re-
sulting applications are thus more robust. Therefore, POSIX.1-2008 explicitly documents that spurious

IEEE/The Open Group 2017 2

PTHREAD_COND_BROADCAST(3P) POSIX Programmer’s Manual PTHREAD_COND_BROADCAST(3P)

wakeups may occur.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_cond_timedwait()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_COND_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_COND_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_cond_destroy, pthread_cond_init — destroy and initialize condition variables

SYNOPSIS
#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

DESCRIPTION
The pthread_cond_destroy() function shall destroy the given condition variable specified by cond; the ob-
ject becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy() to set the ob-
ject referenced by cond to an invalid value. A destroyed condition variable object can be reinitialized using
pthread_cond_init(); the results of otherwise referencing the object after it has been destroyed are unde-
fined.

It shall be safe to destroy an initialized condition variable upon which no threads are currently blocked. At-
tempting to destroy a condition variable upon which other threads are currently blocked results in undefined
behavior.

The pthread_cond_init() function shall initialize the condition variable referenced by cond with attributes
referenced by attr. If attr is NULL, the default condition variable attributes shall be used; the effect is the
same as passing the address of a default condition variable attributes object. Upon successful initialization,
the state of the condition variable shall become initialized.

See Section 2.9.9, Synchronization Object Copies and Alternative Mappings for further requirements.

Attempting to initialize an already initialized condition variable results in undefined behavior.

In cases where default condition variable attributes are appropriate, the macro PTHREAD_COND_INI-
TIALIZER can be used to initialize condition variables. The effect shall be equivalent to dynamic initializa-
tion by a call to pthread_cond_init() with parameter attr specified as NULL, except that no error checks are
performed.

The behavior is undefined if the value specified by the cond argument to pthread_cond_destroy() does not
refer to an initialized condition variable.

The behavior is undefined if the value specified by the attr argument to pthread_cond_init() does not refer
to an initialized condition variable attributes object.

RETURN VALUE
If successful, the pthread_cond_destroy() and pthread_cond_init() functions shall return zero; otherwise, an
error number shall be returned to indicate the error.

ERRORS
The pthread_cond_init() function shall fail if:

EAGAIN
The system lacked the necessary resources (other than memory) to initialize another condition
variable.

ENOMEM
Insufficient memory exists to initialize the condition variable.

These functions shall not return an error code of [EINTR].

The following sections are informative.

IEEE/The Open Group 2017 1

PTHREAD_COND_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_COND_DESTROY(3P)

EXAMPLES
A condition variable can be destroyed immediately after all the threads that are blocked on it are awakened.
For example, consider the following code:

struct list {
pthread_mutex_t lm;
...

}

struct elt {
key k;
int busy;
pthread_cond_t notbusy;
...

}

/* Find a list element and reserve it. */
struct elt *
list_find(struct list *lp, key k)
{

struct elt *ep;

pthread_mutex_lock(&lp->lm);
while ((ep = find_elt(l, k) != NULL) && ep->busy)

pthread_cond_wait(&ep->notbusy, &lp->lm);
if (ep != NULL)

ep->busy = 1;
pthread_mutex_unlock(&lp->lm);
return(ep);

}

delete_elt(struct list *lp, struct elt *ep)
{

pthread_mutex_lock(&lp->lm);
assert(ep->busy);
... remove ep from list ...
ep->busy = 0; /* Paranoid. */

(A) pthread_cond_broadcast(&ep->notbusy);
pthread_mutex_unlock(&lp->lm);

(B) pthread_cond_destroy(&ep->notbusy);
free(ep);

}

In this example, the condition variable and its list element may be freed (line B) immediately after all
threads waiting for it are awakened (line A), since the mutex and the code ensure that no other thread can
touch the element to be deleted.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the cond argument to pthread_cond_destroy() does
not refer to an initialized condition variable, it is recommended that the function should fail and report an
[EINVAL] error.

If an implementation detects that the value specified by the cond argument to pthread_cond_destroy() or
pthread_cond_init() refers to a condition variable that is in use (for example, in a pthread_cond_wait() call)
by another thread, or detects that the value specified by the cond argument to pthread_cond_init() refers to

IEEE/The Open Group 2017 2

PTHREAD_COND_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_COND_DESTROY(3P)

an already initialized condition variable, it is recommended that the function should fail and report an
[EBUSY] error.

If an implementation detects that the value specified by the attr argument to pthread_cond_init() does not
refer to an initialized condition variable attributes object, it is recommended that the function should fail
and report an [EINVAL] error.

See also pthread_mutex_destroy().

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast(), pthread_cond_timedwait(), pthread_mutex_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_COND_SIGNAL(3P) POSIX Programmer’s Manual PTHREAD_COND_SIGNAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_cond_signal — signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION
Refer to pthread_cond_broadcast().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_COND_TIMEDWAIT(3P) POSIX Programmer’s Manual PTHREAD_COND_TIMEDWAIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_cond_timedwait, pthread_cond_wait — wait on a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

DESCRIPTION
The pthread_cond_timedwait() and pthread_cond_wait() functions shall block on a condition variable. The
application shall ensure that these functions are called with mutex locked by the calling thread; otherwise,
an error (for PTHREAD_MUTEX_ERRORCHECK and robust mutexes) or undefined behavior (for other
mutexes) results.

These functions atomically release mutex and cause the calling thread to block on the condition variable
cond; atomically here means ‘‘atomically with respect to access by another thread to the mutex and then the
condition variable’’. That is, if another thread is able to acquire the mutex after the about-to-block thread
has released it, then a subsequent call to pthread_cond_broadcast() or pthread_cond_signal() in that thread
shall behave as if it were issued after the about-to-block thread has blocked.

Upon successful return, the mutex shall have been locked and shall be owned by the calling thread. If mutex

is a robust mutex where an owner terminated while holding the lock and the state is recoverable, the mutex
shall be acquired even though the function returns an error code.

When using condition variables there is always a Boolean predicate involving shared variables associated
with each condition wait that is true if the thread should proceed. Spurious wakeups from the
pthread_cond_timedwait() or pthread_cond_wait() functions may occur. Since the return from
pthread_cond_timedwait() or pthread_cond_wait() does not imply anything about the value of this predi-
cate, the predicate should be re-evaluated upon such return.

When a thread waits on a condition variable, having specified a particular mutex to either the
pthread_cond_timedwait() or the pthread_cond_wait() operation, a dynamic binding is formed between that
mutex and condition variable that remains in effect as long as at least one thread is blocked on the condition
variable. During this time, the effect of an attempt by any thread to wait on that condition variable using a
different mutex is undefined. Once all waiting threads have been unblocked (as by the
pthread_cond_broadcast() operation), the next wait operation on that condition variable shall form a new
dynamic binding with the mutex specified by that wait operation. Even though the dynamic binding be-
tween condition variable and mutex may be removed or replaced between the time a thread is unblocked
from a wait on the condition variable and the time that it returns to the caller or begins cancellation cleanup,
the unblocked thread shall always re-acquire the mutex specified in the condition wait operation call from
which it is returning.

A condition wait (whether timed or not) is a cancellation point. When the cancelability type of a thread is
set to PTHREAD_CANCEL_DEFERRED, a side-effect of acting upon a cancellation request while in a
condition wait is that the mutex is (in effect) re-acquired before calling the first cancellation cleanup han-
dler. The effect is as if the thread were unblocked, allowed to execute up to the point of returning from the
call to pthread_cond_timedwait() or pthread_cond_wait(), but at that point notices the cancellation request
and instead of returning to the caller of pthread_cond_timedwait() or pthread_cond_wait(), starts the thread
cancellation activities, which includes calling cancellation cleanup handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to

IEEE/The Open Group 2017 1

PTHREAD_COND_TIMEDWAIT(3P) POSIX Programmer’s Manual PTHREAD_COND_TIMEDWAIT(3P)

pthread_cond_timedwait() or pthread_cond_wait() shall not consume any condition signal that may be di-
rected concurrently at the condition variable if there are other threads blocked on the condition variable.

The pthread_cond_timedwait() function shall be equivalent to pthread_cond_wait(), except that an error is
returned if the absolute time specified by abstime passes (that is, system time equals or exceeds abstime)
before the condition cond is signaled or broadcasted, or if the absolute time specified by abstime has al-
ready been passed at the time of the call. When such timeouts occur, pthread_cond_timedwait() shall none-
theless release and re-acquire the mutex referenced by mutex, and may consume a condition signal directed
concurrently at the condition variable.

The condition variable shall have a clock attribute which specifies the clock that shall be used to measure
the time specified by the abstime argument. The pthread_cond_timedwait() function is also a cancellation
point.

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal handler the
thread resumes waiting for the condition variable as if it was not interrupted, or it shall return zero due to
spurious wakeup.

The behavior is undefined if the value specified by the cond or mutex argument to these functions does not
refer to an initialized condition variable or an initialized mutex object, respectively.

RETURN VALUE
Except for [ETIMEDOUT], [ENOTRECOVERABLE], and [EOWNERDEAD], all these error checks
shall act as if they were performed immediately at the beginning of processing for the function and shall
cause an error return, in effect, prior to modifying the state of the mutex specified by mutex or the condition
variable specified by cond .

Upon successful completion, a value of zero shall be returned; otherwise, an error number shall be returned
to indicate the error.

ERRORS
These functions shall fail if:

ENOTRECOVERABLE
The state protected by the mutex is not recoverable.

EOWNERDEAD
The mutex is a robust mutex and the process containing the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling thread and it is up
to the new owner to make the state consistent.

EPERM
The mutex type is PTHREAD_MUTEX_ERRORCHECK or the mutex is a robust mutex, and the
current thread does not own the mutex.

The pthread_cond_timedwait() function shall fail if:

ETIMEDOUT
The time specified by abstime to pthread_cond_timedwait() has passed.

EINVAL
The abstime argument specified a nanosecond value less than zero or greater than or equal to 1000
million.

These functions may fail if:

EOWNERDEAD
The mutex is a robust mutex and the previous owning thread terminated while holding the mutex
lock. The mutex lock shall be acquired by the calling thread and it is up to the new owner to make
the state consistent.

These functions shall not return an error code of [EINTR].

The following sections are informative.

IEEE/The Open Group 2017 2

PTHREAD_COND_TIMEDWAIT(3P) POSIX Programmer’s Manual PTHREAD_COND_TIMEDWAIT(3P)

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for use with robust
mutexes, since a valid return for a thread acquiring a mutex which is protecting a currently inconsistent
state is [EOWNERDEAD]. Applications that do not check the error returns, due to ruling out the possibil-
ity of such errors arising, should not use robust mutexes. If an application is supposed to work with normal
and robust mutexes, it should check all return values for error conditions and if necessary take appropriate
action.

RATIONALE
If an implementation detects that the value specified by the cond argument to pthread_cond_timedwait() or
pthread_cond_wait() does not refer to an initialized condition variable, or detects that the value specified by
the mutex argument to pthread_cond_timedwait() or pthread_cond_wait() does not refer to an initialized
mutex object, it is recommended that the function should fail and report an [EINVAL] error.

Condition Wait Semantics
It is important to note that when pthread_cond_wait() and pthread_cond_timedwait() return without error,
the associated predicate may still be false. Similarly, when pthread_cond_timedwait() returns with the
timeout error, the associated predicate may be true due to an unavoidable race between the expiration of the
timeout and the predicate state change.

The application needs to recheck the predicate on any return because it cannot be sure there is another
thread waiting on the thread to handle the signal, and if there is not then the signal is lost. The burden is on
the application to check the predicate.

Some implementations, particularly on a multi-processor, may sometimes cause multiple threads to wake
up when the condition variable is signaled simultaneously on different processors.

In general, whenever a condition wait returns, the thread has to re-evaluate the predicate associated with the
condition wait to determine whether it can safely proceed, should wait again, or should declare a timeout. A
return from the wait does not imply that the associated predicate is either true or false.

It is thus recommended that a condition wait be enclosed in the equivalent of a ‘‘while loop’’ that checks
the predicate.

Timed Wait Semantics
An absolute time measure was chosen for specifying the timeout parameter for two reasons. First, a relative
time measure can be easily implemented on top of a function that specifies absolute time, but there is a race
condition associated with specifying an absolute timeout on top of a function that specifies relative time-
outs. For example, assume that clock_gettime() returns the current time and cond_relative_timed_wait()
uses relative timeouts:

clock_gettime(CLOCK_REALTIME, &now)
reltime = sleep_til_this_absolute_time -now;
cond_relative_timed_wait(c, m, &reltime);

If the thread is preempted between the first statement and the last statement, the thread blocks for too long.
Blocking, however, is irrelevant if an absolute timeout is used. An absolute timeout also need not be recom-
puted if it is used multiple times in a loop, such as that enclosing a condition wait.

For cases when the system clock is advanced discontinuously by an operator, it is expected that implemen-
tations process any timed wait expiring at an intervening time as if that time had actually occurred.

Cancellation and Condition Wait
A condition wait, whether timed or not, is a cancellation point. That is, the functions pthread_cond_wait()
or pthread_cond_timedwait() are points where a pending (or concurrent) cancellation request is noticed.
The reason for this is that an indefinite wait is possible at these points—whatever event is being waited for,
ev en if the program is totally correct, might never occur; for example, some input data being awaited might

IEEE/The Open Group 2017 3

PTHREAD_COND_TIMEDWAIT(3P) POSIX Programmer’s Manual PTHREAD_COND_TIMEDWAIT(3P)

never be sent. By making condition wait a cancellation point, the thread can be canceled and perform its
cancellation cleanup handler even though it may be stuck in some indefinite wait.

A side-effect of acting on a cancellation request while a thread is blocked on a condition variable is to re-
acquire the mutex before calling any of the cancellation cleanup handlers. This is done in order to ensure
that the cancellation cleanup handler is executed in the same state as the critical code that lies both before
and after the call to the condition wait function. This rule is also required when interfacing to POSIX
threads from languages, such as Ada or C++, which may choose to map cancellation onto a language ex-
ception; this rule ensures that each exception handler guarding a critical section can always safely depend
upon the fact that the associated mutex has already been locked regardless of exactly where within the criti-
cal section the exception was raised. Without this rule, there would not be a uniform rule that exception
handlers could follow reg arding the lock, and so coding would become very cumbersome.

Therefore, since some statement has to be made regarding the state of the lock when a cancellation is deliv-
ered during a wait, a definition has been chosen that makes application coding most convenient and error
free.

When acting on a cancellation request while a thread is blocked on a condition variable, the implementation
is required to ensure that the thread does not consume any condition signals directed at that condition vari-
able if there are any other threads waiting on that condition variable. This rule is specified in order to avoid
deadlock conditions that could occur if these two independent requests (one acting on a thread and the other
acting on the condition variable) were not processed independently.

Performance of Mutexes and Condition Variables
Mutexes are expected to be locked only for a few instructions. This practice is almost automatically en-
forced by the desire of programmers to avoid long serial regions of execution (which would reduce total ef-
fective parallelism).

When using mutexes and condition variables, one tries to ensure that the usual case is to lock the mutex, ac-
cess shared data, and unlock the mutex. Waiting on a condition variable should be a relatively rare situation.
For example, when implementing a read-write lock, code that acquires a read-lock typically needs only to
increment the count of readers (under mutual-exclusion) and return. The calling thread would actually wait
on the condition variable only when there is already an active writer. So the efficiency of a synchronization
operation is bounded by the cost of mutex lock/unlock and not by condition wait. Note that in the usual
case there is no context switch.

This is not to say that the efficiency of condition waiting is unimportant. Since there needs to be at least one
context switch per Ada rendezvous, the efficiency of waiting on a condition variable is important. The cost
of waiting on a condition variable should be little more than the minimal cost for a context switch plus the
time to unlock and lock the mutex.

Features of Mutexes and Condition Variables
It had been suggested that the mutex acquisition and release be decoupled from condition wait. This was re-
jected because it is the combined nature of the operation that, in fact, facilitates realtime implementations.
Those implementations can atomically move a high-priority thread between the condition variable and the
mutex in a manner that is transparent to the caller. This can prevent extra context switches and provide
more deterministic acquisition of a mutex when the waiting thread is signaled. Thus, fairness and priority
issues can be dealt with directly by the scheduling discipline. Furthermore, the current condition wait oper-
ation matches existing practice.

Scheduling Behavior of Mutexes and Condition Variables
Synchronization primitives that attempt to interfere with scheduling policy by specifying an ordering rule
are considered undesirable. Threads waiting on mutexes and condition variables are selected to proceed in
an order dependent upon the scheduling policy rather than in some fixed order (for example, FIFO or prior-
ity). Thus, the scheduling policy determines which thread(s) are awakened and allowed to proceed.

Timed Condition Wait
The pthread_cond_timedwait() function allows an application to give up waiting for a particular condition
after a given amount of time. An example of its use follows:

IEEE/The Open Group 2017 4

PTHREAD_COND_TIMEDWAIT(3P) POSIX Programmer’s Manual PTHREAD_COND_TIMEDWAIT(3P)

(void) pthread_mutex_lock(&t.mn);
t.waiters++;
clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_sec += 5;
rc = 0;
while (! mypredicate(&t) && rc == 0)

rc = pthread_cond_timedwait(&t.cond, &t.mn, &ts);
t.waiters--;
if (rc == 0 || mypredicate(&t))

setmystate(&t);
(void) pthread_mutex_unlock(&t.mn);

By making the timeout parameter absolute, it does not need to be recomputed each time the program
checks its blocking predicate. If the timeout was relative, it would have to be recomputed before each call.
This would be especially difficult since such code would need to take into account the possibility of extra
wakeups that result from extra broadcasts or signals on the condition variable that occur before either the
predicate is true or the timeout is due.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

PTHREAD_CONDATTR_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_CONDATTR_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_condattr_destroy, pthread_condattr_init — destroy and initialize the condition variable attributes
object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t *attr);
int pthread_condattr_init(pthread_condattr_t *attr);

DESCRIPTION
The pthread_condattr_destroy() function shall destroy a condition variable attributes object; the object be-
comes, in effect, uninitialized. An implementation may cause pthread_condattr_destroy() to set the object
referenced by attr to an invalid value. A destroyed attr attributes object can be reinitialized using
pthread_condattr_init(); the results of otherwise referencing the object after it has been destroyed are unde-
fined.

The pthread_condattr_init() function shall initialize a condition variable attributes object attr with the de-
fault value for all of the attributes defined by the implementation.

Results are undefined if pthread_condattr_init() is called specifying an already initialized attr attributes ob-
ject.

After a condition variable attributes object has been used to initialize one or more condition variables, any
function affecting the attributes object (including destruction) shall not affect any previously initialized con-
dition variables.

This volume of POSIX.1-2017 requires two attributes, the clock attribute and the process-shared attribute.

Additional attributes, their default values, and the names of the associated functions to get and set those at-
tribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to pthread_condattr_destroy() does
not refer to an initialized condition variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_destroy() and pthread_condattr_init() functions shall return zero; other-
wise, an error number shall be returned to indicate the error.

ERRORS
The pthread_condattr_init() function shall fail if:

ENOMEM
Insufficient memory exists to initialize the condition variable attributes object.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A process-shared attribute has been defined for condition variables for the same reason it has been defined
for mutexes.

If an implementation detects that the value specified by the attr argument to pthread_condattr_destroy()
does not refer to an initialized condition variable attributes object, it is recommended that the function

IEEE/The Open Group 2017 1

PTHREAD_CONDATTR_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_CONDATTR_DESTROY(3P)

should fail and report an [EINVAL] error.

See also pthread_attr_destroy() and pthread_mutex_destroy().

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_destroy(), pthread_cond_destroy(), pthread_condattr_getpshared(), pthread_create(),
pthread_mutex_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_CONDATTR_GETCLOCK(3P)POSIX Programmer’s ManualPTHREAD_CONDATTR_GETCLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_condattr_getclock, pthread_condattr_setclock — get and set the clock selection condition variable
attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,
clockid_t *restrict clock_id);

int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id);

DESCRIPTION
The pthread_condattr_getclock() function shall obtain the value of the clock attribute from the attributes
object referenced by attr.

The pthread_condattr_setclock() function shall set the clock attribute in an initialized attributes object refer-
enced by attr. If pthread_condattr_setclock() is called with a clock_id argument that refers to a CPU-time
clock, the call shall fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of
pthread_cond_timedwait(). The default value of the clock attribute shall refer to the system clock.

The behavior is undefined if the value specified by the attr argument to pthread_condattr_getclock() or
pthread_condattr_setclock() does not refer to an initialized condition variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_getclock() function shall return zero and store the value of the clock at-
tribute of attr into the object referenced by the clock_id argument. Otherwise, an error number shall be re-
turned to indicate the error.

If successful, the pthread_condattr_setclock() function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_condattr_setclock() function may fail if:

EINVAL
The value specified by clock_id does not refer to a known clock, or is a CPU-time clock.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_condattr_getclock() or
pthread_condattr_setclock() does not refer to an initialized condition variable attributes object, it is recom-
mended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_CONDATTR_GETCLOCK(3P)POSIX Programmer’s ManualPTHREAD_CONDATTR_GETCLOCK(3P)

SEE ALSO
pthread_cond_destroy(), pthread_cond_timedwait(), pthread_condattr_destroy(), pthread_con-

dattr_getpshared(), pthread_create(), pthread_mutex_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_CONDATTR_GETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_CONDATTR_GETPSHARED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_condattr_getpshared, pthread_condattr_setpshared — get and set the process-shared condition vari-
able attributes

SYNOPSIS
#include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t *restrict attr,
int *restrict pshared);

int pthread_condattr_setpshared(pthread_condattr_t *attr,
int pshared);

DESCRIPTION
The pthread_condattr_getpshared() function shall obtain the value of the process-shared attribute from the
attributes object referenced by attr.

The pthread_condattr_setpshared() function shall set the process-shared attribute in an initialized attributes
object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition variable to
be operated upon by any thread that has access to the memory where the condition variable is allocated,
ev en if the condition variable is allocated in memory that is shared by multiple processes. See Section 2.9.9,
Synchronization Object Copies and Alternative Mappings for further requirements. The default value of the
attribute is PTHREAD_PROCESS_PRIVATE.

The behavior is undefined if the value specified by the attr argument to pthread_condattr_getpshared() or
pthread_condattr_setpshared() does not refer to an initialized condition variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_setpshared() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

If successful, the pthread_condattr_getpshared() function shall return zero and store the value of the
process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_condattr_setpshared() function may fail if:

EINVAL
The new value specified for the attribute is outside the range of legal values for that attribute.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_condattr_getpshared()
or pthread_condattr_setpshared() does not refer to an initialized condition variable attributes object, it is
recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_CONDATTR_GETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_CONDATTR_GETPSHARED(3P)

SEE ALSO
pthread_create(), pthread_cond_destroy(), pthread_condattr_destroy(), pthread_mutex_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_CONDATTR_INIT(3P) POSIX Programmer’s Manual PTHREAD_CONDATTR_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_condattr_init — initialize the condition variable attributes object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr);

DESCRIPTION
Refer to pthread_condattr_destroy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_CONDATTR_SETCLOCK(3P)POSIX Programmer’s ManualPTHREAD_CONDATTR_SETCLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_condattr_setclock — set the clock selection condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id);

DESCRIPTION
Refer to pthread_condattr_getclock().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_CONDATTR_SETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_CONDATTR_SETPSHARED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_condattr_setpshared — set the process-shared condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_condattr_getpshared().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_CREATE(3P) POSIX Programmer’s Manual PTHREAD_CREATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_create — thread creation

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

DESCRIPTION
The pthread_create() function shall create a new thread, with attributes specified by attr, within a process.
If attr is NULL, the default attributes shall be used. If the attributes specified by attr are modified later, the
thread’s attributes shall not be affected. Upon successful completion, pthread_create() shall store the ID of
the created thread in the location referenced by thread .

The thread is created executing start_routine with arg as its sole argument. If the start_routine returns, the
effect shall be as if there was an implicit call to pthread_exit() using the return value of start_routine as the
exit status. Note that the thread in which main() was originally invoked differs from this. When it returns
from main(), the effect shall be as if there was an implicit call to exit() using the return value of main() as
the exit status.

The signal state of the new thread shall be initialized as follows:

* The signal mask shall be inherited from the creating thread.

* The set of signals pending for the new thread shall be empty.

The thread-local current locale and the alternate stack shall not be inherited.

The floating-point environment shall be inherited from the creating thread.

If pthread_create() fails, no new thread is created and the contents of the location referenced by thread are
undefined.

If _POSIX_THREAD_CPUTIME is defined, the new thread shall have a CPU-time clock accessible, and
the initial value of this clock shall be set to zero.

The behavior is undefined if the value specified by the attr argument to pthread_create() does not refer to
an initialized thread attributes object.

RETURN VALUE
If successful, the pthread_create() function shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_create() function shall fail if:

EAGAIN
The system lacked the necessary resources to create another thread, or the system-imposed limit
on the total number of threads in a process {PTHREAD_THREADS_MAX} would be exceeded.

EPERM
The caller does not have appropriate privileges to set the required scheduling parameters or sched-
uling policy.

The pthread_create() function shall not return an error code of [EINTR].

The following sections are informative.

IEEE/The Open Group 2017 1

PTHREAD_CREATE(3P) POSIX Programmer’s Manual PTHREAD_CREATE(3P)

EXAMPLES
None.

APPLICATION USAGE
There is no requirement on the implementation that the ID of the created thread be available before the
newly created thread starts executing. The calling thread can obtain the ID of the created thread through the
thread argument of the pthread_create() function, and the newly created thread can obtain its ID by a call
to pthread_self().

RATIONALE
A suggested alternative to pthread_create() would be to define two separate operations: create and start.
Some applications would find such behavior more natural. Ada, in particular, separates the ‘‘creation’’ of a
task from its ‘‘activation’’.

Splitting the operation was rejected by the standard developers for many reasons:

* The number of calls required to start a thread would increase from one to two and thus place an addi-
tional burden on applications that do not require the additional synchronization. The second call, how-
ev er, could be avoided by the additional complication of a start-up state attribute.

* An extra state would be introduced: ‘‘created but not started’’. This would require the standard to spec-
ify the behavior of the thread operations when the target has not yet started executing.

* For those applications that require such behavior, it is possible to simulate the two separate steps with
the facilities that are currently provided. The start_routine() can synchronize by waiting on a condition
variable that is signaled by the start operation.

An Ada implementor can choose to create the thread at either of two points in the Ada program: when the
task object is created, or when the task is activated (generally at a ‘‘begin’’). If the first approach is adopted,
the start_routine() needs to wait on a condition variable to receive the order to begin ‘‘activation’’. The sec-
ond approach requires no such condition variable or extra synchronization. In either approach, a separate
Ada task control block would need to be created when the task object is created to hold rendezvous queues,
and so on.

An extension of the preceding model would be to allow the state of the thread to be modified between the
create and start. This would allow the thread attributes object to be eliminated. This has been rejected be-
cause:

* All state in the thread attributes object has to be able to be set for the thread. This would require the
definition of functions to modify thread attributes. There would be no reduction in the number of func-
tion calls required to set up the thread. In fact, for an application that creates all threads using identical
attributes, the number of function calls required to set up the threads would be dramatically increased.
Use of a thread attributes object permits the application to make one set of attribute setting function
calls. Otherwise, the set of attribute setting function calls needs to be made for each thread creation.

* Depending on the implementation architecture, functions to set thread state would require kernel calls,
or for other implementation reasons would not be able to be implemented as macros, thereby increas-
ing the cost of thread creation.

* The ability for applications to segregate threads by class would be lost.

Another suggested alternative uses a model similar to that for process creation, such as ‘‘thread fork’’. The
fork semantics would provide more flexibility and the ‘‘create’’ function can be implemented simply by do-
ing a thread fork followed immediately by a call to the desired ‘‘start routine’’ for the thread. This alterna-
tive has these problems:

* For many implementations, the entire stack of the calling thread would need to be duplicated, since in
many architectures there is no way to determine the size of the calling frame.

* Efficiency is reduced since at least some part of the stack has to be copied, even though in most cases
the thread never needs the copied context, since it merely calls the desired start routine.

If an implementation detects that the value specified by the attr argument to pthread_create() does not refer

IEEE/The Open Group 2017 2

PTHREAD_CREATE(3P) POSIX Programmer’s Manual PTHREAD_CREATE(3P)

to an initialized thread attributes object, it is recommended that the function should fail and report an [EIN-
VAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
fork(), pthread_exit(), pthread_join()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_DETACH(3P) POSIX Programmer’s Manual PTHREAD_DETACH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_detach — detach a thread

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t thread);

DESCRIPTION
The pthread_detach() function shall indicate to the implementation that storage for the thread thread can be
reclaimed when that thread terminates. If thread has not terminated, pthread_detach() shall not cause it to
terminate.

The behavior is undefined if the value specified by the thread argument to pthread_detach() does not refer
to a joinable thread.

RETURN VALUE
If the call succeeds, pthread_detach() shall return 0; otherwise, an error number shall be returned to indi-
cate the error.

ERRORS
The pthread_detach() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_join() or pthread_detach() functions should eventually be called for every thread that is cre-
ated so that storage associated with the thread may be reclaimed.

It has been suggested that a ‘‘detach’’ function is not necessary; the detachstate thread creation attribute is
sufficient, since a thread need never be dynamically detached. However, need arises in at least two cases:

1. In a cancellation handler for a pthread_join() it is nearly essential to have a pthread_detach() function
in order to detach the thread on which pthread_join() was waiting. Without it, it would be necessary to
have the handler do another pthread_join() to attempt to detach the thread, which would both delay the
cancellation processing for an unbounded period and introduce a new call to pthread_join(), which
might itself need a cancellation handler. A dynamic detach is nearly essential in this case.

2. In order to detach the ‘‘initial thread’’ (as may be desirable in processes that set up server threads).

If an implementation detects that the value specified by the thread argument to pthread_detach() does not
refer to a joinable thread, it is recommended that the function should fail and report an [EINVAL] error.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended that the func-
tion should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_join()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

IEEE/The Open Group 2017 1

PTHREAD_DETACH(3P) POSIX Programmer’s Manual PTHREAD_DETACH(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_EQUAL(3P) POSIX Programmer’s Manual PTHREAD_EQUAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_equal — compare thread IDs

SYNOPSIS
#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

DESCRIPTION
This function shall compare the thread IDs t1 and t2.

RETURN VALUE
The pthread_equal() function shall return a non-zero value if t1 and t2 are equal; otherwise, zero shall be
returned.

If either t1 or t2 are not valid thread IDs, the behavior is undefined.

ERRORS
No errors are defined.

The pthread_equal() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Implementations may choose to define a thread ID as a structure. This allows additional flexibility and ro-
bustness over using an int. For example, a thread ID could include a sequence number that allows detec-
tion of ‘‘dangling IDs’’ (copies of a thread ID that has been detached). Since the C language does not sup-
port comparison on structure types, the pthread_equal() function is provided to compare thread IDs.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_self()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_EXIT(3P) POSIX Programmer’s Manual PTHREAD_EXIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_exit — thread termination

SYNOPSIS
#include <pthread.h>

void pthread_exit(void *value_ptr);

DESCRIPTION
The pthread_exit() function shall terminate the calling thread and make the value value_ptr available to any
successful join with the terminating thread. Any cancellation cleanup handlers that have been pushed and
not yet popped shall be popped in the reverse order that they were pushed and then executed. After all can-
cellation cleanup handlers have been executed, if the thread has any thread-specific data, appropriate de-
structor functions shall be called in an unspecified order. Thread termination does not release any applica-
tion visible process resources, including, but not limited to, mutexes and file descriptors, nor does it per-
form any process-level cleanup actions, including, but not limited to, calling any atexit() routines that may
exist.

An implicit call to pthread_exit() is made when a thread other than the thread in which main() was first in-
voked returns from the start routine that was used to create it. The function’s return value shall serve as the
thread’s exit status.

The behavior of pthread_exit() is undefined if called from a cancellation cleanup handler or destructor func-
tion that was invoked as a result of either an implicit or explicit call to pthread_exit().

After a thread has terminated, the result of access to local (auto) variables of the thread is undefined. Thus,
references to local variables of the exiting thread should not be used for the pthread_exit() value_ptr param-
eter value.

The process shall exit with an exit status of 0 after the last thread has been terminated. The behavior shall
be as if the implementation called exit() with a zero argument at thread termination time.

RETURN VALUE
The pthread_exit() function cannot return to its caller.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The normal mechanism by which a thread terminates is to return from the routine that was specified in the
pthread_create() call that started it. The pthread_exit() function provides the capability for a thread to ter-
minate without requiring a return from the start routine of that thread, thereby providing a function analo-
gous to exit().

Regardless of the method of thread termination, any cancellation cleanup handlers that have been pushed
and not yet popped are executed, and the destructors for any existing thread-specific data are executed. This
volume of POSIX.1-2017 requires that cancellation cleanup handlers be popped and called in order. After
all cancellation cleanup handlers have been executed, thread-specific data destructors are called, in an un-
specified order, for each item of thread-specific data that exists in the thread. This ordering is necessary be-
cause cancellation cleanup handlers may rely on thread-specific data.

IEEE/The Open Group 2017 1

PTHREAD_EXIT(3P) POSIX Programmer’s Manual PTHREAD_EXIT(3P)

As the meaning of the status is determined by the application (except when the thread has been canceled, in
which case it is PTHREAD_CANCELED), the implementation has no idea what an illegal status value is,
which is why no address error checking is done.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), pthread_create(), pthread_join()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_GETCONCURRENCY(3P) POSIX Programmer’s Manual PTHREAD_GETCONCURRENCY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_getconcurrency, pthread_setconcurrency — get and set the level of concurrency

SYNOPSIS
#include <pthread.h>

int pthread_getconcurrency(void);
int pthread_setconcurrency(int new_level);

DESCRIPTION
Unbound threads in a process may or may not be required to be simultaneously active. By default, the
threads implementation ensures that a sufficient number of threads are active so that the process can con-
tinue to make progress. While this conserves system resources, it may not produce the most effective lev el
of concurrency.

The pthread_setconcurrency() function allows an application to inform the threads implementation of its
desired concurrency lev el, new_level. The actual level of concurrency provided by the implementation as a
result of this function call is unspecified.

If new_level is zero, it causes the implementation to maintain the concurrency lev el at its discretion as if
pthread_setconcurrency() had never been called.

The pthread_getconcurrency() function shall return the value set by a previous call to the pthread_setcon-

currency() function. If the pthread_setconcurrency() function was not previously called, this function shall
return zero to indicate that the implementation is maintaining the concurrency lev el.

A call to pthread_setconcurrency() shall inform the implementation of its desired concurrency lev el. The
implementation shall use this as a hint, not a requirement.

If an implementation does not support multiplexing of user threads on top of several kernel-scheduled enti-
ties, the pthread_setconcurrency() and pthread_getconcurrency() functions are provided for source code
compatibility but they shall have no effect when called. To maintain the function semantics, the new_level

parameter is saved when pthread_setconcurrency() is called so that a subsequent call to pthread_getconcur-

rency() shall return the same value.

RETURN VALUE
If successful, the pthread_setconcurrency() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

The pthread_getconcurrency() function shall always return the concurrency lev el set by a previous call to
pthread_setconcurrency(). If the pthread_setconcurrency() function has never been called, pthread_getcon-

currency() shall return zero.

ERRORS
The pthread_setconcurrency() function shall fail if:

EINVAL
The value specified by new_level is negative.

EAGAIN
The value specified by new_level would cause a system resource to be exceeded.

The pthread_setconcurrency() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

PTHREAD_GETCONCURRENCY(3P) POSIX Programmer’s Manual PTHREAD_GETCONCURRENCY(3P)

APPLICATION USAGE
Application developers should note that an implementation can always ignore any calls to pthread_setcon-

currency() and return a constant for pthread_getconcurrency(). For this reason, it is not recommended that
portable applications use this function.

RATIONALE
None.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_GETCPUCLOCKID(3P) POSIX Programmer’s Manual PTHREAD_GETCPUCLOCKID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_getcpuclockid — access a thread CPU-time clock (ADVANCED REALTIME THREADS)

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id, clockid_t *clock_id);

DESCRIPTION
The pthread_getcpuclockid() function shall return in clock_id the clock ID of the CPU-time clock of the
thread specified by thread_id , if the thread specified by thread_id exists.

RETURN VALUE
Upon successful completion, pthread_getcpuclockid() shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The pthread_getcpuclockid() function is part of the Thread CPU-Time Clocks option and need not be pro-
vided on all implementations.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended that the func-
tion should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getcpuclockid(), clock_getres(), timer_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_GETSCHEDPARAM(3P) POSIX Programmer’s Manual PTHREAD_GETSCHEDPARAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_getschedparam, pthread_setschedparam — dynamic thread scheduling parameters access (REAL-
TIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_getschedparam(pthread_t thread, int *restrict policy,
struct sched_param *restrict param);

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param);

DESCRIPTION
The pthread_getschedparam() and pthread_setschedparam() functions shall, respectively, get and set the
scheduling policy and parameters of individual threads within a multi-threaded process to be retrieved and
set. For SCHED_FIFO and SCHED_RR, the only required member of the sched_param structure is the
priority sched_priority. For SCHED_OTHER, the affected scheduling parameters are implementation-de-
fined.

The pthread_getschedparam() function shall retrieve the scheduling policy and scheduling parameters for
the thread whose thread ID is given by thread and shall store those values in policy and param, respec-
tively. The priority value returned from pthread_getschedparam() shall be the value specified by the most
recent pthread_setschedparam(), pthread_setschedprio(), or pthread_create() call affecting the target
thread. It shall not reflect any temporary adjustments to its priority as a result of any priority inheritance or
ceiling functions. The pthread_setschedparam() function shall set the scheduling policy and associated
scheduling parameters for the thread whose thread ID is given by thread to the policy and associated pa-
rameters provided in policy and param, respectively.

The policy parameter may have the value SCHED_OTHER, SCHED_FIFO, or SCHED_RR. The schedul-
ing parameters for the SCHED_OTHER policy are implementation-defined. The SCHED_FIFO and
SCHED_RR policies shall have a single scheduling parameter, priority.

If _POSIX_THREAD_SPORADIC_SERVER is defined, then the policy argument may have the value
SCHED_SPORADIC, with the exception for the pthread_setschedparam() function that if the scheduling
policy was not SCHED_SPORADIC at the time of the call, it is implementation-defined whether the func-
tion is supported; in other words, the implementation need not allow the application to dynamically change
the scheduling policy to SCHED_SPORADIC. The sporadic server scheduling policy has the associated pa-
rameters sched_ss_low_priority, sched_ss_repl_period , sched_ss_init_budget, sched_priority, and
sched_ss_max_repl. The specified sched_ss_repl_period shall be greater than or equal to the specified
sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail. The value of
sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the function to succeed;
if not, the function shall fail. It is unspecified whether the sched_ss_repl_period and sched_ss_init_budget

values are stored as provided by this function or are rounded to align with the resolution of the clock being
used.

If the pthread_setschedparam() function fails, the scheduling parameters shall not be changed for the target
thread.

RETURN VALUE
If successful, the pthread_getschedparam() and pthread_setschedparam() functions shall return zero; other-
wise, an error number shall be returned to indicate the error.

ERRORS
The pthread_setschedparam() function shall fail if:

IEEE/The Open Group 2017 1

PTHREAD_GETSCHEDPARAM(3P) POSIX Programmer’s Manual PTHREAD_GETSCHEDPARAM(3P)

ENOTSUP
An attempt was made to set the policy or scheduling parameters to an unsupported value.

ENOTSUP
An attempt was made to dynamically change the scheduling policy to SCHED_SPORADIC, and
the implementation does not support this change.

The pthread_setschedparam() function may fail if:

EINVAL
The value specified by policy or one of the scheduling parameters associated with the scheduling
policy policy is invalid.

EPERM
The caller does not have appropriate privileges to set either the scheduling parameters or the
scheduling policy of the specified thread.

EPERM
The implementation does not allow the application to modify one of the parameters to the value
specified.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended that the func-
tion should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_setschedprio(), sched_getparam(), sched_getscheduler()

The Base Definitions volume of POSIX.1-2017, <pthread.h>, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_GETSPECIFIC(3P) POSIX Programmer’s Manual PTHREAD_GETSPECIFIC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_getspecific, pthread_setspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

void *pthread_getspecific(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *value);

DESCRIPTION
The pthread_getspecific() function shall return the value currently bound to the specified key on behalf of
the calling thread.

The pthread_setspecific() function shall associate a thread-specific value with a key obtained via a previous
call to pthread_key_create(). Different threads may bind different values to the same key. These values are
typically pointers to blocks of dynamically allocated memory that have been reserved for use by the calling
thread.

The effect of calling pthread_getspecific() or pthread_setspecific() with a key value not obtained from
pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

Both pthread_getspecific() and pthread_setspecific() may be called from a thread-specific data destructor
function. A call to pthread_getspecific() for the thread-specific data key being destroyed shall return the
value NULL, unless the value is changed (after the destructor starts) by a call to pthread_setspecific().
Calling pthread_setspecific() from a thread-specific data destructor routine may result either in lost storage
(after at least PTHREAD_DESTRUCTOR_ITERATIONS attempts at destruction) or in an infinite loop.

Both functions may be implemented as macros.

RETURN VALUE
The pthread_getspecific() function shall return the thread-specific data value associated with the given key.
If no thread-specific data value is associated with key, then the value NULL shall be returned.

If successful, the pthread_setspecific() function shall return zero; otherwise, an error number shall be re-
turned to indicate the error.

ERRORS
No errors are returned from pthread_getspecific().

The pthread_setspecific() function shall fail if:

ENOMEM
Insufficient memory exists to associate the non-NULL value with the key.

The pthread_setspecific() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Performance and ease-of-use of pthread_getspecific() are critical for functions that rely on maintaining state
in thread-specific data. Since no errors are required to be detected by it, and since the only error that could
be detected is the use of an invalid key, the function to pthread_getspecific() has been designed to favor
speed and simplicity over error reporting.

If an implementation detects that the value specified by the key argument to pthread_setspecific() does not

IEEE/The Open Group 2017 1

PTHREAD_GETSPECIFIC(3P) POSIX Programmer’s Manual PTHREAD_GETSPECIFIC(3P)

refer to a a key value obtained from pthread_key_create() or refers to a key that has been deleted with
pthread_key_delete(), it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_JOIN(3P) POSIX Programmer’s Manual PTHREAD_JOIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_join — wait for thread termination

SYNOPSIS
#include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

DESCRIPTION
The pthread_join() function shall suspend execution of the calling thread until the target thread terminates,
unless the target thread has already terminated. On return from a successful pthread_join() call with a non-
NULL value_ptr argument, the value passed to pthread_exit() by the terminating thread shall be made
available in the location referenced by value_ptr. When a pthread_join() returns successfully, the target
thread has been terminated. The results of multiple simultaneous calls to pthread_join() specifying the
same target thread are undefined. If the thread calling pthread_join() is canceled, then the target thread shall
not be detached.

It is unspecified whether a thread that has exited but remains unjoined counts against
{PTHREAD_THREADS_MAX}.

The behavior is undefined if the value specified by the thread argument to pthread_join() does not refer to a
joinable thread.

The behavior is undefined if the value specified by the thread argument to pthread_join() refers to the call-
ing thread.

RETURN VALUE
If successful, the pthread_join() function shall return zero; otherwise, an error number shall be returned to
indicate the error.

ERRORS
The pthread_join() function may fail if:

EDEADLK
A deadlock was detected.

The pthread_join() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
An example of thread creation and deletion follows:

typedef struct {
int *ar;
long n;

} subarray;

void *
incer(void *arg)
{

long i;

for (i = 0; i < ((subarray *)arg)->n; i++)
((subarray *)arg)->ar[i]++;

}

int main(void)

IEEE/The Open Group 2017 1

PTHREAD_JOIN(3P) POSIX Programmer’s Manual PTHREAD_JOIN(3P)

{
int ar[1000000];
pthread_t th1, th2;
subarray sb1, sb2;

sb1.ar = &ar[0];
sb1.n = 500000;
(void) pthread_create(&th1, NULL, incer, &sb1);

sb2.ar = &ar[500000];
sb2.n = 500000;
(void) pthread_create(&th2, NULL, incer, &sb2);

(void) pthread_join(th1, NULL);
(void) pthread_join(th2, NULL);
return 0;

}

APPLICATION USAGE
None.

RATIONALE
The pthread_join() function is a convenience that has proven useful in multi-threaded applications. It is true
that a programmer could simulate this function if it were not provided by passing extra state as part of the
argument to the start_routine(). The terminating thread would set a flag to indicate termination and broad-
cast a condition that is part of that state; a joining thread would wait on that condition variable. While such
a technique would allow a thread to wait on more complex conditions (for example, waiting for multiple
threads to terminate), waiting on individual thread termination is considered widely useful. Also, including
the pthread_join() function in no way precludes a programmer from coding such complex waits. Thus,
while not a primitive, including pthread_join() in this volume of POSIX.1-2017 was considered valuable.

The pthread_join() function provides a simple mechanism allowing an application to wait for a thread to
terminate. After the thread terminates, the application may then choose to clean up resources that were used
by the thread. For instance, after pthread_join() returns, any application-provided stack storage could be re-
claimed.

The pthread_join() or pthread_detach() function should eventually be called for every thread that is created
with the detachstate attribute set to PTHREAD_CREATE_JOINABLE so that storage associated with the
thread may be reclaimed.

The interaction between pthread_join() and cancellation is well-defined for the following reasons:

* The pthread_join() function, like all other non-async-cancel-safe functions, can only be called with de-
ferred cancelability type.

* Cancellation cannot occur in the disabled cancelability state.

Thus, only the default cancelability state need be considered. As specified, either the pthread_join() call is
canceled, or it succeeds, but not both. The difference is obvious to the application, since either a cancella-
tion handler is run or pthread_join() returns. There are no race conditions since pthread_join() was called in
the deferred cancelability state.

If an implementation detects that the value specified by the thread argument to pthread_join() does not re-
fer to a joinable thread, it is recommended that the function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the thread argument to pthread_join() refers to the
calling thread, it is recommended that the function should fail and report an [EDEADLK] error.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended that the func-
tion should fail and report an [ESRCH] error.

IEEE/The Open Group 2017 2

PTHREAD_JOIN(3P) POSIX Programmer’s Manual PTHREAD_JOIN(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), wait()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_KEY_CREATE(3P) POSIX Programmer’s Manual PTHREAD_KEY_CREATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_key_create — thread-specific data key creation

SYNOPSIS
#include <pthread.h>

int pthread_key_create(pthread_key_t *key, void (*destructor)(void*));

DESCRIPTION
The pthread_key_create() function shall create a thread-specific data key visible to all threads in the
process. Key values provided by pthread_key_create() are opaque objects used to locate thread-specific
data. Although the same key value may be used by different threads, the values bound to the key by
pthread_setspecific() are maintained on a per-thread basis and persist for the life of the calling thread.

Upon key creation, the value NULL shall be associated with the new key in all active threads. Upon thread
creation, the value NULL shall be associated with all defined keys in the new thread.

An optional destructor function may be associated with each key value. At thread exit, if a key value has a
non-NULL destructor pointer, and the thread has a non-NULL value associated with that key, the value of
the key is set to NULL, and then the function pointed to is called with the previously associated value as its
sole argument. The order of destructor calls is unspecified if more than one destructor exists for a thread
when it exits.

If, after all the destructors have been called for all non-NULL values with associated destructors, there are
still some non-NULL values with associated destructors, then the process is repeated. If, after at least
{PTHREAD_DESTRUCTOR_ITERATIONS} iterations of destructor calls for outstanding non-NULL val-
ues, there are still some non-NULL values with associated destructors, implementations may stop calling
destructors, or they may continue calling destructors until no non-NULL values with associated destructors
exist, even though this might result in an infinite loop.

RETURN VALUE
If successful, the pthread_key_create() function shall store the newly created key value at *key and shall re-
turn zero. Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_key_create() function shall fail if:

EAGAIN
The system lacked the necessary resources to create another thread-specific data key, or the sys-
tem-imposed limit on the total number of keys per process {PTHREAD_KEYS_MAX} has been
exceeded.

ENOMEM
Insufficient memory exists to create the key.

The pthread_key_create() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
The following example demonstrates a function that initializes a thread-specific data key when it is first
called, and associates a thread-specific object with each calling thread, initializing this object when neces-
sary.

static pthread_key_t key;
static pthread_once_t key_once = PTHREAD_ONCE_INIT;

IEEE/The Open Group 2017 1

PTHREAD_KEY_CREATE(3P) POSIX Programmer’s Manual PTHREAD_KEY_CREATE(3P)

static void
make_key()
{

(void) pthread_key_create(&key, NULL);
}

func()
{

void *ptr;

(void) pthread_once(&key_once, make_key);
if ((ptr = pthread_getspecific(key)) == NULL) {

ptr = malloc(OBJECT_SIZE);
...
(void) pthread_setspecific(key, ptr);

}
...

}

Note that the key has to be initialized before pthread_getspecific() or pthread_setspecific() can be used. The
pthread_key_create() call could either be explicitly made in a module initialization routine, or it can be
done implicitly by the first call to a module as in this example. Any attempt to use the key before it is ini-
tialized is a programming error, making the code below incorrect.

static pthread_key_t key;

func()
{

void *ptr;

/* KEY NOT INITIALIZED!!! THIS WILL NOT WORK!!! */
if ((ptr = pthread_getspecific(key)) == NULL &&

pthread_setspecific(key, NULL) != 0) {
pthread_key_create(&key, NULL);
...

}
}

APPLICATION USAGE
None.

RATIONALE
Destructor Functions

Normally, the value bound to a key on behalf of a particular thread is a pointer to storage allocated dynami-
cally on behalf of the calling thread. The destructor functions specified with pthread_key_create() are in-
tended to be used to free this storage when the thread exits. Thread cancellation cleanup handlers cannot be
used for this purpose because thread-specific data may persist outside the lexical scope in which the cancel-
lation cleanup handlers operate.

If the value associated with a key needs to be updated during the lifetime of the thread, it may be necessary
to release the storage associated with the old value before the new value is bound. Although the
pthread_setspecific() function could do this automatically, this feature is not needed often enough to justify
the added complexity. Instead, the programmer is responsible for freeing the stale storage:

pthread_getspecific(key, &old);
new = allocate();
destructor(old);

IEEE/The Open Group 2017 2

PTHREAD_KEY_CREATE(3P) POSIX Programmer’s Manual PTHREAD_KEY_CREATE(3P)

pthread_setspecific(key, new);

Note: The above example could leak storage if run with asynchronous cancellation enabled. No such
problems occur in the default cancellation state if no cancellation points occur between the get
and set.

There is no notion of a destructor-safe function. If an application does not call pthread_exit() from a signal
handler, or if it blocks any signal whose handler may call pthread_exit() while calling async-unsafe func-
tions, all functions may be safely called from destructors.

Non-Idempotent Data Key Creation
There were requests to make pthread_key_create() idempotent with respect to a given key address parame-
ter. This would allow applications to call pthread_key_create() multiple times for a given key address and
be guaranteed that only one key would be created. Doing so would require the key value to be previously
initialized (possibly at compile time) to a known null value and would require that implicit mutual-exclu-
sion be performed based on the address and contents of the key parameter in order to guarantee that exactly
one key would be created.

Unfortunately, the implicit mutual-exclusion would not be limited to only pthread_key_create(). On many
implementations, implicit mutual-exclusion would also have to be performed by pthread_getspecific() and
pthread_setspecific() in order to guard against using incompletely stored or not-yet-visible key values. This
could significantly increase the cost of important operations, particularly pthread_getspecific().

Thus, this proposal was rejected. The pthread_key_create() function performs no implicit synchronization.
It is the responsibility of the programmer to ensure that it is called exactly once per key before use of the
key. Sev eral straightforward mechanisms can already be used to accomplish this, including calling explicit
module initialization functions, using mutexes, and using pthread_once(). This places no significant burden
on the programmer, introduces no possibly confusing ad hoc implicit synchronization mechanism, and po-
tentially allows commonly used thread-specific data operations to be more efficient.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_getspecific(), pthread_key_delete()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_KEY_DELETE(3P) POSIX Programmer’s Manual PTHREAD_KEY_DELETE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_key_delete — thread-specific data key deletion

SYNOPSIS
#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

DESCRIPTION
The pthread_key_delete() function shall delete a thread-specific data key previously returned by
pthread_key_create(). The thread-specific data values associated with key need not be NULL at the time
pthread_key_delete() is called. It is the responsibility of the application to free any application storage or
perform any cleanup actions for data structures related to the deleted key or associated thread-specific data
in any threads; this cleanup can be done either before or after pthread_key_delete() is called. Any attempt to
use key following the call to pthread_key_delete() results in undefined behavior.

The pthread_key_delete() function shall be callable from within destructor functions. No destructor func-
tions shall be invoked by pthread_key_delete(). Any destructor function that may have been associated
with key shall no longer be called upon thread exit.

RETURN VALUE
If successful, the pthread_key_delete() function shall return zero; otherwise, an error number shall be re-
turned to indicate the error.

ERRORS
The pthread_key_delete() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A thread-specific data key deletion function has been included in order to allow the resources associated
with an unused thread-specific data key to be freed. Unused thread-specific data keys can arise, among
other scenarios, when a dynamically loaded module that allocated a key is unloaded.

Conforming applications are responsible for performing any cleanup actions needed for data structures as-
sociated with the key to be deleted, including data referenced by thread-specific data values. No such
cleanup is done by pthread_key_delete(). In particular, destructor functions are not called. There are sev-
eral reasons for this division of responsibility:

1. The associated destructor functions used to free thread-specific data at thread exit time are only guar-
anteed to work correctly when called in the thread that allocated the thread-specific data. (Destructors
themselves may utilize thread-specific data.) Thus, they cannot be used to free thread-specific data in
other threads at key deletion time. Attempting to have them called by other threads at key deletion
time would require other threads to be asynchronously interrupted. But since interrupted threads could
be in an arbitrary state, including holding locks necessary for the destructor to run, this approach
would fail. In general, there is no safe mechanism whereby an implementation could free thread-spe-
cific data at key deletion time.

2. Even if there were a means of safely freeing thread-specific data associated with keys to be deleted,
doing so would require that implementations be able to enumerate the threads with non-NULL data
and potentially keep them from creating more thread-specific data while the key deletion is occurring.
This special case could cause extra synchronization in the normal case, which would otherwise be

IEEE/The Open Group 2017 1

PTHREAD_KEY_DELETE(3P) POSIX Programmer’s Manual PTHREAD_KEY_DELETE(3P)

unnecessary.

For an application to know that it is safe to delete a key, it has to know that all the threads that might poten-
tially ever use the key do not attempt to use it again. For example, it could know this if all the client threads
have called a cleanup procedure declaring that they are through with the module that is being shut down,
perhaps by setting a reference count to zero.

If an implementation detects that the value specified by the key argument to pthread_key_delete() does not
refer to a a key value obtained from pthread_key_create() or refers to a key that has been deleted with
pthread_key_delete(), it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_KILL(3P) POSIX Programmer’s Manual PTHREAD_KILL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_kill — send a signal to a thread

SYNOPSIS
#include <signal.h>

int pthread_kill(pthread_t thread, int sig);

DESCRIPTION
The pthread_kill() function shall request that a signal be delivered to the specified thread.

As in kill(), if sig is zero, error checking shall be performed but no signal shall actually be sent.

RETURN VALUE
Upon successful completion, the function shall return a value of zero. Otherwise, the function shall return
an error number. If the pthread_kill() function fails, no signal shall be sent.

ERRORS
The pthread_kill() function shall fail if:

EINVAL
The value of the sig argument is an invalid or unsupported signal number.

The pthread_kill() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The pthread_kill() function provides a mechanism for asynchronously directing a signal at a thread in the
calling process. This could be used, for example, by one thread to affect broadcast delivery of a signal to a
set of threads.

Note that pthread_kill() only causes the signal to be handled in the context of the given thread; the signal
action (termination or stopping) affects the process as a whole.

RATIONALE
If an implementation detects use of a thread ID after the end of its lifetime, it is recommended that the func-
tion should fail and report an [ESRCH] error.

Existing implementations vary on the result of a pthread_kill() with a thread ID indicating an inactive
thread (a terminated thread that has not been detached or joined). Some indicate success on such a call,
while others give an error of [ESRCH]. Since the definition of thread lifetime in this volume of
POSIX.1-2017 covers inactive threads, the [ESRCH] error as described is inappropriate in this case. In par-
ticular, this means that an application cannot have one thread check for termination of another with
pthread_kill().

FUTURE DIRECTIONS
A future version of this standard may require that pthread_kill() not fail with [ESRCH] in the case of send-
ing signals to an inactive thread (a terminated thread not yet detached or joined), even though no signal will
be delivered because the thread is no longer running.

SEE ALSO
kill(), pthread_self(), raise()

The Base Definitions volume of POSIX.1-2017, <signal.h>

IEEE/The Open Group 2017 1

PTHREAD_KILL(3P) POSIX Programmer’s Manual PTHREAD_KILL(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_MUTEX_CONSISTENT(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_CONSISTENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutex_consistent — mark state protected by robust mutex as consistent

SYNOPSIS
#include <pthread.h>

int pthread_mutex_consistent(pthread_mutex_t *mutex);

DESCRIPTION
If mutex is a robust mutex in an inconsistent state, the pthread_mutex_consistent() function can be used to
mark the state protected by the mutex referenced by mutex as consistent again.

If an owner of a robust mutex terminates while holding the mutex, the mutex becomes inconsistent and the
next thread that acquires the mutex lock shall be notified of the state by the return value [EOWN-
ERDEAD]. In this case, the mutex does not become normally usable again until the state is marked consis-
tent.

If the thread which acquired the mutex lock with the return value [EOWNERDEAD] terminates before
calling either pthread_mutex_consistent() or pthread_mutex_unlock(), the next thread that acquires the mu-
tex lock shall be notified about the state of the mutex by the return value [EOWNERDEAD].

The behavior is undefined if the value specified by the mutex argument to pthread_mutex_consistent() does
not refer to an initialized mutex.

RETURN VALUE
Upon successful completion, the pthread_mutex_consistent() function shall return zero. Otherwise, an error
value shall be returned to indicate the error.

ERRORS
The pthread_mutex_consistent() function shall fail if:

EINVAL
The mutex object referenced by mutex is not robust or does not protect an inconsistent state.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The pthread_mutex_consistent() function is only responsible for notifying the implementation that the state
protected by the mutex has been recovered and that normal operations with the mutex can be resumed. It is
the responsibility of the application to recover the state so it can be reused. If the application is not able to
perform the recovery, it can notify the implementation that the situation is unrecoverable by a call to
pthread_mutex_unlock() without a prior call to pthread_mutex_consistent(), in which case subsequent
threads that attempt to lock the mutex will fail to acquire the lock and be returned [ENOTRECOVER-
ABLE].

RATIONALE
If an implementation detects that the value specified by the mutex argument to pthread_mutex_consistent()
does not refer to an initialized mutex, it is recommended that the function should fail and report an [EIN-
VAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_MUTEX_CONSISTENT(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_CONSISTENT(3P)

SEE ALSO
pthread_mutex_lock(), pthread_mutexattr_getrobust()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_MUTEX_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutex_destroy, pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
The pthread_mutex_destroy() function shall destroy the mutex object referenced by mutex; the mutex ob-
ject becomes, in effect, uninitialized. An implementation may cause pthread_mutex_destroy() to set the ob-
ject referenced by mutex to an invalid value.

A destroyed mutex object can be reinitialized using pthread_mutex_init(); the results of otherwise referenc-
ing the object after it has been destroyed are undefined.

It shall be safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked mutex, or a
mutex that another thread is attempting to lock, or a mutex that is being used in a pthread_cond_timed-

wait() or pthread_cond_wait() call by another thread, results in undefined behavior.

The pthread_mutex_init() function shall initialize the mutex referenced by mutex with attributes specified
by attr. If attr is NULL, the default mutex attributes are used; the effect shall be the same as passing the
address of a default mutex attributes object. Upon successful initialization, the state of the mutex becomes
initialized and unlocked.

See Section 2.9.9, Synchronization Object Copies and Alternative Mappings for further requirements.

Attempting to initialize an already initialized mutex results in undefined behavior.

In cases where default mutex attributes are appropriate, the macro PTHREAD_MUTEX_INITIALIZER
can be used to initialize mutexes. The effect shall be equivalent to dynamic initialization by a call to
pthread_mutex_init() with parameter attr specified as NULL, except that no error checks are performed.

The behavior is undefined if the value specified by the mutex argument to pthread_mutex_destroy() does
not refer to an initialized mutex.

The behavior is undefined if the value specified by the attr argument to pthread_mutex_init() does not refer
to an initialized mutex attributes object.

RETURN VALUE
If successful, the pthread_mutex_destroy() and pthread_mutex_init() functions shall return zero; otherwise,
an error number shall be returned to indicate the error.

ERRORS
The pthread_mutex_init() function shall fail if:

EAGAIN
The system lacked the necessary resources (other than memory) to initialize another mutex.

ENOMEM
Insufficient memory exists to initialize the mutex.

EPERM
The caller does not have the privilege to perform the operation.

The pthread_mutex_init() function may fail if:

IEEE/The Open Group 2017 1

PTHREAD_MUTEX_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_DESTROY(3P)

EINVAL
The attributes object referenced by attr has the robust mutex attribute set without the process-
shared attribute being set.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the mutex argument to pthread_mutex_destroy()
does not refer to an initialized mutex, it is recommended that the function should fail and report an [EIN-
VAL] error.

If an implementation detects that the value specified by the mutex argument to pthread_mutex_destroy() or
pthread_mutex_init() refers to a locked mutex or a mutex that is referenced (for example, while being used
in a pthread_cond_timedwait() or pthread_cond_wait()) by another thread, or detects that the value speci-
fied by the mutex argument to pthread_mutex_init() refers to an already initialized mutex, it is recom-
mended that the function should fail and report an [EBUSY] error.

If an implementation detects that the value specified by the attr argument to pthread_mutex_init() does not
refer to an initialized mutex attributes object, it is recommended that the function should fail and report an
[EINVAL] error.

Alternate Implementations Possible
This volume of POSIX.1-2017 supports several alternative implementations of mutexes. An implementa-
tion may store the lock directly in the object of type pthread_mutex_t. Alternatively, an implementation
may store the lock in the heap and merely store a pointer, handle, or unique ID in the mutex object. Either
implementation has advantages or may be required on certain hardware configurations. So that portable
code can be written that is invariant to this choice, this volume of POSIX.1-2017 does not define assign-
ment or equality for this type, and it uses the term ‘‘initialize’’ to reinforce the (more restrictive) notion that
the lock may actually reside in the mutex object itself.

Note that this precludes an over-specification of the type of the mutex or condition variable and motivates
the opaqueness of the type.

An implementation is permitted, but not required, to have pthread_mutex_destroy() store an illegal value
into the mutex. This may help detect erroneous programs that try to lock (or otherwise reference) a mutex
that has already been destroyed.

Tradeoff Between Error Checks and Performance Supported
Many error conditions that can occur are not required to be detected by the implementation in order to let
implementations trade off performance versus degree of error checking according to the needs of their spe-
cific applications and execution environment. As a general rule, conditions caused by the system (such as
insufficient memory) are required to be detected, but conditions caused by an erroneously coded application
(such as failing to provide adequate synchronization to prevent a mutex from being deleted while in use)
are specified to result in undefined behavior.

A wide range of implementations is thus made possible. For example, an implementation intended for ap-
plication debugging may implement all of the error checks, but an implementation running a single, prov-
ably correct application under very tight performance constraints in an embedded computer might imple-
ment minimal checks. An implementation might even be provided in two versions, similar to the options
that compilers provide: a full-checking, but slower version; and a limited-checking, but faster version. To
forbid this optionality would be a disservice to users.

By carefully limiting the use of ‘‘undefined behavior’’ only to things that an erroneous (badly coded) appli-
cation might do, and by defining that resource-not-available errors are mandatory, this volume of

IEEE/The Open Group 2017 2

PTHREAD_MUTEX_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_DESTROY(3P)

POSIX.1-2017 ensures that a fully-conforming application is portable across the full range of implementa-
tions, while not forcing all implementations to add overhead to check for numerous things that a correct
program never does. When the behavior is undefined, no error number is specified to be returned on imple-
mentations that do detect the condition. This is because undefined behavior means anything can happen,
which includes returning with any value (which might happen to be a valid, but different, error number).
However, since the error number might be useful to application developers when diagnosing problems dur-
ing application development, a recommendation is made in rationale that implementors should return a par-
ticular error number if their implementation does detect the condition.

Why No Limits are Defined
Defining symbols for the maximum number of mutexes and condition variables was considered but rejected
because the number of these objects may change dynamically. Furthermore, many implementations place
these objects into application memory; thus, there is no explicit maximum.

Static Initializers for Mutexes and Condition Variables
Providing for static initialization of statically allocated synchronization objects allows modules with private
static synchronization variables to avoid runtime initialization tests and overhead. Furthermore, it simplifies
the coding of self-initializing modules. Such modules are common in C libraries, where for various reasons
the design calls for self-initialization instead of requiring an explicit module initialization function to be
called. An example use of static initialization follows.

Without static initialization, a self-initializing routine foo() might look as follows:

static pthread_once_t foo_once = PTHREAD_ONCE_INIT;
static pthread_mutex_t foo_mutex;

void foo_init()
{

pthread_mutex_init(&foo_mutex, NULL);
}

void foo()
{

pthread_once(&foo_once, foo_init);
pthread_mutex_lock(&foo_mutex);
/* Do work. */
pthread_mutex_unlock(&foo_mutex);

}

With static initialization, the same routine could be coded as follows:

static pthread_mutex_t foo_mutex = PTHREAD_MUTEX_INITIALIZER;

void foo()
{

pthread_mutex_lock(&foo_mutex);
/* Do work. */
pthread_mutex_unlock(&foo_mutex);

}

Note that the static initialization both eliminates the need for the initialization test inside pthread_once()
and the fetch of &foo_mutex to learn the address to be passed to pthread_mutex_lock() or pthread_mu-

tex_unlock().

Thus, the C code written to initialize static objects is simpler on all systems and is also faster on a large
class of systems; those where the (entire) synchronization object can be stored in application memory.

Yet the locking performance question is likely to be raised for machines that require mutexes to be

IEEE/The Open Group 2017 3

PTHREAD_MUTEX_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_DESTROY(3P)

allocated out of special memory. Such machines actually have to hav e mutexes and possibly condition vari-
ables contain pointers to the actual hardware locks. For static initialization to work on such machines,
pthread_mutex_lock() also has to test whether or not the pointer to the actual lock has been allocated. If it
has not, pthread_mutex_lock() has to initialize it before use. The reservation of such resources can be made
when the program is loaded, and hence return codes have not been added to mutex locking and condition
variable waiting to indicate failure to complete initialization.

This runtime test in pthread_mutex_lock() would at first seem to be extra work; an extra test is required to
see whether the pointer has been initialized. On most machines this would actually be implemented as a
fetch of the pointer, testing the pointer against zero, and then using the pointer if it has already been initial-
ized. While the test might seem to add extra work, the extra effort of testing a register is usually negligible
since no extra memory references are actually done. As more and more machines provide caches, the real
expenses are memory references, not instructions executed.

Alternatively, depending on the machine architecture, there are often ways to eliminate all overhead in the
most important case: on the lock operations that occur after the lock has been initialized. This can be done
by shifting more overhead to the less frequent operation: initialization. Since out-of-line mutex allocation
also means that an address has to be dereferenced to find the actual lock, one technique that is widely appli-
cable is to have static initialization store a bogus value for that address; in particular, an address that causes
a machine fault to occur. When such a fault occurs upon the first attempt to lock such a mutex, validity
checks can be done, and then the correct address for the actual lock can be filled in. Subsequent lock opera-
tions incur no extra overhead since they do not ‘‘fault’’. This is merely one technique that can be used to
support static initialization, while not adversely affecting the performance of lock acquisition. No doubt
there are other techniques that are highly machine-dependent.

The locking overhead for machines doing out-of-line mutex allocation is thus similar for modules being im-
plicitly initialized, where it is improved for those doing mutex allocation entirely inline. The inline case is
thus made much faster, and the out-of-line case is not significantly worse.

Besides the issue of locking performance for such machines, a concern is raised that it is possible that
threads would serialize contending for initialization locks when attempting to finish initializing statically al-
located mutexes. (Such finishing would typically involve taking an internal lock, allocating a structure, stor-
ing a pointer to the structure in the mutex, and releasing the internal lock.) First, many implementations
would reduce such serialization by hashing on the mutex address. Second, such serialization can only occur
a bounded number of times. In particular, it can happen at most as many times as there are statically allo-
cated synchronization objects. Dynamically allocated objects would still be initialized via pthread_mu-

tex_init() or pthread_cond_init().

Finally, if none of the above optimization techniques for out-of-line allocation yields sufficient performance
for an application on some implementation, the application can avoid static initialization altogether by ex-
plicitly initializing all synchronization objects with the corresponding pthread_*_init() functions, which
are supported by all implementations. An implementation can also document the tradeoffs and advise
which initialization technique is more efficient for that particular implementation.

Destroying Mutexes
A mutex can be destroyed immediately after it is unlocked. However, since attempting to destroy a locked
mutex, or a mutex that another thread is attempting to lock, or a mutex that is being used in a
pthread_cond_timedwait() or pthread_cond_wait() call by another thread, results in undefined behavior,
care must be taken to ensure that no other thread may be referencing the mutex.

Robust Mutexes
Implementations are required to provide robust mutexes for mutexes with the process-shared attribute set to
PTHREAD_PROCESS_SHARED. Implementations are allowed, but not required, to provide robust mu-
texes when the process-shared attribute is set to PTHREAD_PROCESS_PRIVATE.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 4

PTHREAD_MUTEX_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_DESTROY(3P)

SEE ALSO
pthread_mutex_getprioceiling(), pthread_mutexattr_getrobust(), pthread_mutex_lock(), pthread_mu-

tex_timedlock(), pthread_mutexattr_getpshared()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

PTHREAD_MUTEX_GETPRIOCEILING(3P)POSIX Programmer’s ManualPTHREAD_MUTEX_GETPRIOCEILING(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutex_getprioceiling, pthread_mutex_setprioceiling — get and set the priority ceiling of a mutex
(REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

DESCRIPTION
The pthread_mutex_getprioceiling() function shall return the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling() function shall attempt to lock the mutex as if by a call to pthread_mu-

tex_lock(), except that the process of locking the mutex need not adhere to the priority protect protocol. On
acquiring the mutex it shall change the mutex’s priority ceiling and then release the mutex as if by a call to
pthread_mutex_unlock(). When the change is successful, the previous value of the priority ceiling shall be
returned in old_ceiling.

If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling shall not be changed.

RETURN VALUE
If successful, the pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions shall return
zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall fail if:

EINVAL
The protocol attribute of mutex is PTHREAD_PRIO_NONE.

EPERM
The implementation requires appropriate privileges to perform the operation and the caller does
not have appropriate privileges.

The pthread_mutex_setprioceiling() function shall fail if:

EAGAIN
The mutex could not be acquired because the maximum number of recursive locks for mutex has
been exceeded.

EDEADLK
The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current thread already owns the
mutex.

EINVAL
The mutex was created with the protocol attribute having the value PTHREAD_PRIO_PROTECT
and the calling thread’s priority is higher than the mutex’s current priority ceiling, and the imple-
mentation adheres to the priority protect protocol in the process of locking the mutex.

ENOTRECOVERABLE
The mutex is a robust mutex and the state protected by the mutex is not recoverable.

EOWNERDEAD
The mutex is a robust mutex and the process containing the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling thread and it is up
to the new owner to make the state consistent (see pthread_mutex_lock()).

IEEE/The Open Group 2017 1

PTHREAD_MUTEX_GETPRIOCEILING(3P)POSIX Programmer’s ManualPTHREAD_MUTEX_GETPRIOCEILING(3P)

The pthread_mutex_setprioceiling() function may fail if:

EDEADLK
A deadlock condition was detected.

EINVAL
The priority requested by prioceiling is out of range.

EOWNERDEAD
The mutex is a robust mutex and the previous owning thread terminated while holding the mutex
lock. The mutex lock shall be acquired by the calling thread and it is up to the new owner to make
the state consistent (see pthread_mutex_lock()).

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy(), pthread_mutex_lock(), pthread_mutex_timedlock()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_MUTEX_INIT(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
Refer to pthread_mutex_destroy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_MUTEX_LOCK(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_LOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION
The mutex object referenced by mutex shall be locked by a call to pthread_mutex_lock() that returns zero or
[EOWNERDEAD]. If the mutex is already locked by another thread, the calling thread shall block until
the mutex becomes available. This operation shall return with the mutex object referenced by mutex in the
locked state with the calling thread as its owner. If a thread attempts to relock a mutex that it has already
locked, pthread_mutex_lock() shall behave as described in the Relock column of the following table. If a
thread attempts to unlock a mutex that it has not locked or a mutex which is unlocked, pthread_mutex_un-

lock() shall behave as described in the Unlock When Not Owner column of the following table.

center box tab(!); cB | cB | cB | cB l | l | l | l. Mutex Type!Robustness!Relock!Unlock When Not Owner _
NORMAL!non-robust!deadlock!undefined behavior _ NORMAL!robust!deadlock!error returned _ ER-
RORCHECK!either!error returned!error returned _ RECURSIVE!either!recursive!error returned !!(see be-
low) _ DEFAULT!non-robust!undefined!undefined behavior† !!behavior† _ DEFAULT!robust!undefined!er-
ror returned !!behavior†

† If the mutex type is PTHREAD_MUTEX_DEFAULT , the behavior of pthread_mutex_lock() may
correspond to one of the three other standard mutex types as described in the table above. If it does
not correspond to one of those three, the behavior is undefined for the cases marked †.

Where the table indicates recursive behavior, the mutex shall maintain the concept of a lock count. When a
thread successfully acquires a mutex for the first time, the lock count shall be set to one. Every time a
thread relocks this mutex, the lock count shall be incremented by one. Each time the thread unlocks the mu-
tex, the lock count shall be decremented by one. When the lock count reaches zero, the mutex shall become
available for other threads to acquire.

The pthread_mutex_trylock() function shall be equivalent to pthread_mutex_lock(), except that if the mutex
object referenced by mutex is currently locked (by any thread, including the current thread), the call shall
return immediately. If the mutex type is PTHREAD_MUTEX_RECURSIVE and the mutex is currently
owned by the calling thread, the mutex lock count shall be incremented by one and the pthread_mutex_try-

lock() function shall immediately return success.

The pthread_mutex_unlock() function shall release the mutex object referenced by mutex. The manner in
which a mutex is released is dependent upon the mutex’s type attribute. If there are threads blocked on the
mutex object referenced by mutex when pthread_mutex_unlock() is called, resulting in the mutex becoming
available, the scheduling policy shall determine which thread shall acquire the mutex.

(In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex shall become available when the
count reaches zero and the calling thread no longer has any locks on this mutex.)

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the thread shall
resume waiting for the mutex as if it was not interrupted.

If mutex is a robust mutex and the process containing the owning thread terminated while holding the mu-
tex lock, a call to pthread_mutex_lock() shall return the error value [EOWNERDEAD]. If mutex is a ro-
bust mutex and the owning thread terminated while holding the mutex lock, a call to pthread_mutex_lock()
may return the error value [EOWNERDEAD] ev en if the process in which the owning thread resides has
not terminated. In these cases, the mutex is locked by the thread but the state it protects is marked as

IEEE/The Open Group 2017 1

PTHREAD_MUTEX_LOCK(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_LOCK(3P)

inconsistent. The application should ensure that the state is made consistent for reuse and when that is com-
plete call pthread_mutex_consistent(). If the application is unable to recover the state, it should unlock the
mutex without a prior call to pthread_mutex_consistent(), after which the mutex is marked permanently un-
usable.

If mutex does not refer to an initialized mutex object, the behavior of pthread_mutex_lock(), pthread_mu-

tex_trylock(), and pthread_mutex_unlock() is undefined.

RETURN VALUE
If successful, the pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions
shall return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutex_lock() and pthread_mutex_trylock() functions shall fail if:

EAGAIN
The mutex could not be acquired because the maximum number of recursive locks for mutex has
been exceeded.

EINVAL
The mutex was created with the protocol attribute having the value PTHREAD_PRIO_PROTECT
and the calling thread’s priority is higher than the mutex’s current priority ceiling.

ENOTRECOVERABLE
The state protected by the mutex is not recoverable.

EOWNERDEAD
The mutex is a robust mutex and the process containing the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling thread and it is up
to the new owner to make the state consistent.

The pthread_mutex_lock() function shall fail if:

EDEADLK
The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current thread already owns the
mutex.

The pthread_mutex_trylock() function shall fail if:

EBUSY
The mutex could not be acquired because it was already locked.

The pthread_mutex_unlock() function shall fail if:

EPERM
The mutex type is PTHREAD_MUTEX_ERRORCHECK or PTHREAD_MUTEX_RECURSIVE,
or the mutex is a robust mutex, and the current thread does not own the mutex.

The pthread_mutex_lock() and pthread_mutex_trylock() functions may fail if:

EOWNERDEAD
The mutex is a robust mutex and the previous owning thread terminated while holding the mutex
lock. The mutex lock shall be acquired by the calling thread and it is up to the new owner to make
the state consistent.

The pthread_mutex_lock() function may fail if:

EDEADLK
A deadlock condition was detected.

These functions shall not return an error code of [EINTR].

The following sections are informative.

IEEE/The Open Group 2017 2

PTHREAD_MUTEX_LOCK(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_LOCK(3P)

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for use with robust
mutexes, since a valid return for a thread acquiring a mutex which is protecting a currently inconsistent
state is [EOWNERDEAD]. Applications that do not check the error returns, due to ruling out the possibil-
ity of such errors arising, should not use robust mutexes. If an application is supposed to work with normal
and robust mutexes it should check all return values for error conditions and if necessary take appropriate
action.

RATIONALE
Mutex objects are intended to serve as a low-level primitive from which other thread synchronization func-
tions can be built. As such, the implementation of mutexes should be as efficient as possible, and this has
ramifications on the features available at the interface.

The mutex functions and the particular default settings of the mutex attributes have been motivated by the
desire to not preclude fast, inlined implementations of mutex locking and unlocking.

Since most attributes only need to be checked when a thread is going to be blocked, the use of attributes
does not slow the (common) mutex-locking case.

Likewise, while being able to extract the thread ID of the owner of a mutex might be desirable, it would re-
quire storing the current thread ID when each mutex is locked, and this could incur unacceptable levels of
overhead. Similar arguments apply to a mutex_tryunlock operation.

For further rationale on the extended mutex types, see the Rationale (Informative) volume of
POSIX.1-2017, Threads Extensions.

If an implementation detects that the value specified by the mutex argument does not refer to an initialized
mutex object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_consistent(), pthread_mutex_destroy(), pthread_mutex_timedlock(), pthread_mutex-

attr_getrobust()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_MUTEX_SETPRIOCEILING(3P)POSIX Programmer’s ManualPTHREAD_MUTEX_SETPRIOCEILING(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutex_setprioceiling — change the priority ceiling of a mutex (REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

DESCRIPTION
Refer to pthread_mutex_getprioceiling().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_MUTEX_TIMEDLOCK(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_TIMEDLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutex_timedlock — lock a mutex

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_mutex_timedlock() function shall lock the mutex object referenced by mutex. If the mutex is
already locked, the calling thread shall block until the mutex becomes available as in the pthread_mu-

tex_lock() function. If the mutex cannot be locked without waiting for another thread to unlock the mutex,
this wait shall be terminated when the specified timeout expires.

The timeout shall expire when the absolute time specified by abstime passes, as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abstime), or if the absolute
time specified by abstime has already been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall be the
resolution of the clock on which it is based. The timespec data type is defined in the <time.h> header.

Under no circumstance shall the function fail with a timeout if the mutex can be locked immediately. The
validity of the abstime parameter need not be checked if the mutex can be locked immediately.

As a consequence of the priority inheritance rules (for mutexes initialized with the PRIO_INHERIT proto-
col), if a timed mutex wait is terminated because its timeout expires, the priority of the owner of the mutex
shall be adjusted as necessary to reflect the fact that this thread is no longer among the threads waiting for
the mutex.

If mutex is a robust mutex and the process containing the owning thread terminated while holding the mu-
tex lock, a call to pthread_mutex_timedlock() shall return the error value [EOWNERDEAD]. If mutex is a
robust mutex and the owning thread terminated while holding the mutex lock, a call to pthread_mu-

tex_timedlock() may return the error value [EOWNERDEAD] ev en if the process in which the owning
thread resides has not terminated. In these cases, the mutex is locked by the thread but the state it protects is
marked as inconsistent. The application should ensure that the state is made consistent for reuse and when
that is complete call pthread_mutex_consistent(). If the application is unable to recover the state, it should
unlock the mutex without a prior call to pthread_mutex_consistent(), after which the mutex is marked per-
manently unusable.

If mutex does not refer to an initialized mutex object, the behavior is undefined.

RETURN VALUE
If successful, the pthread_mutex_timedlock() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_mutex_timedlock() function shall fail if:

EAGAIN
The mutex could not be acquired because the maximum number of recursive locks for mutex has
been exceeded.

EDEADLK
The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current thread already owns the
mutex.

IEEE/The Open Group 2017 1

PTHREAD_MUTEX_TIMEDLOCK(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_TIMEDLOCK(3P)

EINVAL
The mutex was created with the protocol attribute having the value PTHREAD_PRIO_PROTECT
and the calling thread’s priority is higher than the mutex’ current priority ceiling.

EINVAL
The process or thread would have blocked, and the abstime parameter specified a nanoseconds
field value less than zero or greater than or equal to 1 000 million.

ENOTRECOVERABLE
The state protected by the mutex is not recoverable.

EOWNERDEAD
The mutex is a robust mutex and the process containing the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling thread and it is up
to the new owner to make the state consistent.

ETIMEDOUT
The mutex could not be locked before the specified timeout expired.

The pthread_mutex_timedlock() function may fail if:

EDEADLK
A deadlock condition was detected.

EOWNERDEAD
The mutex is a robust mutex and the previous owning thread terminated while holding the mutex
lock. The mutex lock shall be acquired by the calling thread and it is up to the new owner to make
the state consistent.

This function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for use with robust
mutexes, since a valid return for a thread acquiring a mutex which is protecting a currently inconsistent
state is [EOWNERDEAD]. Applications that do not check the error returns, due to ruling out the possibil-
ity of such errors arising, should not use robust mutexes. If an application is supposed to work with normal
and robust mutexes, it should check all return values for error conditions and if necessary take appropriate
action.

RATIONALE
Refer to pthread_mutex_lock().

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_destroy(), pthread_mutex_lock(), time()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <pthread.h>,
<time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 2

PTHREAD_MUTEX_TIMEDLOCK(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_TIMEDLOCK(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_MUTEX_TRYLOCK(3P) POSIX Programmer’s Manual PTHREAD_MUTEX_TRYLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

DESCRIPTION
Refer to pthread_mutex_lock().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_destroy, pthread_mutexattr_init — destroy and initialize the mutex attributes object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
int pthread_mutexattr_init(pthread_mutexattr_t *attr);

DESCRIPTION
The pthread_mutexattr_destroy() function shall destroy a mutex attributes object; the object becomes, in ef-
fect, uninitialized. An implementation may cause pthread_mutexattr_destroy() to set the object referenced
by attr to an invalid value.

A destroyed attr attributes object can be reinitialized using pthread_mutexattr_init(); the results of other-
wise referencing the object after it has been destroyed are undefined.

The pthread_mutexattr_init() function shall initialize a mutex attributes object attr with the default value
for all of the attributes defined by the implementation.

Results are undefined if pthread_mutexattr_init() is called specifying an already initialized attr attributes
object.

After a mutex attributes object has been used to initialize one or more mutexes, any function affecting the
attributes object (including destruction) shall not affect any previously initialized mutexes.

The behavior is undefined if the value specified by the attr argument to pthread_mutexattr_destroy() does
not refer to an initialized mutex attributes object.

RETURN VALUE
Upon successful completion, pthread_mutexattr_destroy() and pthread_mutexattr_init() shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_init() function shall fail if:

ENOMEM
Insufficient memory exists to initialize the mutex attributes object.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_mutexattr_destroy()
does not refer to an initialized mutex attributes object, it is recommended that the function should fail and
report an [EINVAL] error.

See pthread_attr_destroy() for a general explanation of attributes. Attributes objects allow implementa-
tions to experiment with useful extensions and permit extension of this volume of POSIX.1-2017 without
changing the existing functions. Thus, they provide for future extensibility of this volume of POSIX.1-2017
and reduce the temptation to standardize prematurely on semantics that are not yet widely implemented or
understood.

Examples of possible additional mutex attributes that have been discussed are spin_only, limited_spin,

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_DESTROY(3P)

no_spin, recursive, and metered . (To explain what the latter attributes might mean: recursive mutexes
would allow for multiple re-locking by the current owner; metered mutexes would transparently keep
records of queue length, wait time, and so on.) Since there is not yet wide agreement on the usefulness of
these resulting from shared implementation and usage experience, they are not yet specified in this volume
of POSIX.1-2017. Mutex attributes objects, however, make it possible to test out these concepts for possi-
ble standardization at a later time.

Mutex Attributes and Performance
Care has been taken to ensure that the default values of the mutex attributes have been defined such that
mutexes initialized with the defaults have simple enough semantics so that the locking and unlocking can
be done with the equivalent of a test-and-set instruction (plus possibly a few other basic instructions).

There is at least one implementation method that can be used to reduce the cost of testing at lock-time if a
mutex has non-default attributes. One such method that an implementation can employ (and this can be
made fully transparent to fully conforming POSIX applications) is to secretly pre-lock any mutexes that are
initialized to non-default attributes. Any later attempt to lock such a mutex causes the implementation to
branch to the ‘‘slow path’’ as if the mutex were unavailable; then, on the slow path, the implementation can
do the ‘‘real work’’ to lock a non-default mutex. The underlying unlock operation is more complicated
since the implementation never really wants to release the pre-lock on this kind of mutex. This illustrates
that, depending on the hardware, there may be certain optimizations that can be used so that whatever mu-
tex attributes are considered ‘‘most frequently used’’ can be processed most efficiently.

Process Shared Memory and Synchronization
The existence of memory mapping functions in this volume of POSIX.1-2017 leads to the possibility that
an application may allocate the synchronization objects from this section in memory that is accessed by
multiple processes (and therefore, by threads of multiple processes).

In order to permit such usage, while at the same time keeping the usual case (that is, usage within a single
process) efficient, a process-shared option has been defined.

If an implementation supports the _POSIX_THREAD_PROCESS_SHARED option, then the process-

shared attribute can be used to indicate that mutexes or condition variables may be accessed by threads of
multiple processes.

The default setting of PTHREAD_PROCESS_PRIVATE has been chosen for the process-shared attribute
so that the most efficient forms of these synchronization objects are created by default.

Synchronization variables that are initialized with the PTHREAD_PROCESS_PRIVATE process-shared

attribute may only be operated on by threads in the process that initialized them. Synchronization variables
that are initialized with the PTHREAD_PROCESS_SHARED process-shared attribute may be operated on
by any thread in any process that has access to it. In particular, these processes may exist beyond the life-
time of the initializing process. For example, the following code implements a simple counting semaphore
in a mapped file that may be used by many processes.

/* sem.h */
struct semaphore {

pthread_mutex_t lock;
pthread_cond_t nonzero;
unsigned count;

};
typedef struct semaphore semaphore_t;

semaphore_t *semaphore_create(char *semaphore_name);
semaphore_t *semaphore_open(char *semaphore_name);
void semaphore_post(semaphore_t *semap);
void semaphore_wait(semaphore_t *semap);
void semaphore_close(semaphore_t *semap);

/* sem.c */

IEEE/The Open Group 2017 2

PTHREAD_MUTEXATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_DESTROY(3P)

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <pthread.h>
#include "sem.h"

semaphore_t *
semaphore_create(char *semaphore_name)
{
int fd;

semaphore_t *semap;
pthread_mutexattr_t psharedm;
pthread_condattr_t psharedc;

fd = open(semaphore_name, O_RDWR | O_CREAT | O_EXCL, 0666);
if (fd < 0)

return (NULL);
(void) ftruncate(fd, sizeof(semaphore_t));
(void) pthread_mutexattr_init(&psharedm);
(void) pthread_mutexattr_setpshared(&psharedm,

PTHREAD_PROCESS_SHARED);
(void) pthread_condattr_init(&psharedc);
(void) pthread_condattr_setpshared(&psharedc,

PTHREAD_PROCESS_SHARED);
semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

close (fd);
(void) pthread_mutex_init(&semap->lock, &psharedm);
(void) pthread_cond_init(&semap->nonzero, &psharedc);
semap->count = 0;
return (semap);

}

semaphore_t *
semaphore_open(char *semaphore_name)
{

int fd;
semaphore_t *semap;

fd = open(semaphore_name, O_RDWR, 0666);
if (fd < 0)

return (NULL);
semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

close (fd);
return (semap);

}

void
semaphore_post(semaphore_t *semap)
{

pthread_mutex_lock(&semap->lock);
if (semap->count == 0)

pthread_cond_signal(&semapx->nonzero);

IEEE/The Open Group 2017 3

PTHREAD_MUTEXATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_DESTROY(3P)

semap->count++;
pthread_mutex_unlock(&semap->lock);

}

void
semaphore_wait(semaphore_t *semap)
{

pthread_mutex_lock(&semap->lock);
while (semap->count == 0)

pthread_cond_wait(&semap->nonzero, &semap->lock);
semap->count--;
pthread_mutex_unlock(&semap->lock);

}

void
semaphore_close(semaphore_t *semap)
{

munmap((void *) semap, sizeof(semaphore_t));
}

The following code is for three separate processes that create, post, and wait on a semaphore in the file
/tmp/semaphore. Once the file is created, the post and wait programs increment and decrement the count-
ing semaphore (waiting and waking as required) even though they did not initialize the semaphore.

/* create.c */
#include "pthread.h"
#include "sem.h"

int
main()
{

semaphore_t *semap;

semap = semaphore_create("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_close(semap);
return (0);

}

/* post */
#include "pthread.h"
#include "sem.h"

int
main()
{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_post(semap);
semaphore_close(semap);
return (0);

}

/* wait */
#include "pthread.h"

IEEE/The Open Group 2017 4

PTHREAD_MUTEXATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_DESTROY(3P)

#include "sem.h"

int
main()
{

semaphore_t *semap;

semap = semaphore_open("/tmp/semaphore");
if (semap == NULL)

exit(1);
semaphore_wait(semap);
semaphore_close(semap);
return (0);

}

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

PTHREAD_MUTEXATTR_GETPRIOCEILING(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETPRIOCEILING(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling — get and set the prioceiling attribute
of the mutex attributes object (REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t
*restrict attr, int *restrict prioceiling);

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

DESCRIPTION
The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions, respectively,
shall get and set the priority ceiling attribute of a mutex attributes object pointed to by attr which was previ-
ously created by the function pthread_mutexattr_init().

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of prioceiling are
within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the minimum priority
level at which the critical section guarded by the mutex is executed. In order to avoid priority inversion, the
priority ceiling of the mutex shall be set to a priority higher than or equal to the highest priority of all the
threads that may lock that mutex. The values of prioceiling are within the maximum range of priorities de-
fined under the SCHED_FIFO scheduling policy.

The behavior is undefined if the value specified by the attr argument to pthread_mutexattr_getprioceiling()
or pthread_mutexattr_setprioceiling() does not refer to an initialized mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceil-

ing() functions shall return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions may fail if:

EINVAL
The value specified by prioceiling is invalid.

EPERM
The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_mutexattr_getprioceil-

ing() or pthread_mutexattr_setprioceiling() does not refer to an initialized mutex attributes object, it is rec-
ommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_GETPRIOCEILING(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETPRIOCEILING(3P)

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_MUTEXATTR_GETPROT OCOL(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETPROT OCOL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol — get and set the protocol attribute of the
mutex attributes object (REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t
*restrict attr, int *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

DESCRIPTION
The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions, respectively, shall get
and set the protocol attribute of a mutex attributes object pointed to by attr which was previously created by
the function pthread_mutexattr_init().

The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of protocol may
be one of:

PTHREAD_PRIO_INHERIT
PTHREAD_PRIO_NONE
PTHREAD_PRIO_PROTECT

which are defined in the <pthread.h> header. The default value of the attribute shall be
PTHREAD_PRIO_NONE.

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority and sched-
uling shall not be affected by its mutex ownership.

When a thread is blocking higher priority threads because of owning one or more robust mutexes with the
PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of its priority or the priority
of the highest priority thread waiting on any of the robust mutexes owned by this thread and initialized with
this protocol.

When a thread is blocking higher priority threads because of owning one or more non-robust mutexes with
the PTHREAD_PRIO_INHERIT protocol attribute, it shall execute at the higher of its priority or the prior-
ity of the highest priority thread waiting on any of the non-robust mutexes owned by this thread and initial-
ized with this protocol.

When a thread owns one or more robust mutexes initialized with the PTHREAD_PRIO_PROTECT proto-
col, it shall execute at the higher of its priority or the highest of the priority ceilings of all the robust mu-
texes owned by this thread and initialized with this attribute, regardless of whether other threads are
blocked on any of these robust mutexes or not.

When a thread owns one or more non-robust mutexes initialized with the PTHREAD_PRIO_PROTECT
protocol, it shall execute at the higher of its priority or the highest of the priority ceilings of all the non-ro-
bust mutexes owned by this thread and initialized with this attribute, regardless of whether other threads are
blocked on any of these non-robust mutexes or not.

While a thread is holding a mutex which has been initialized with the PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT protocol attributes, it shall not be subject to being moved to the tail of the
scheduling queue at its priority in the event that its original priority is changed, such as by a call to
sched_setparam(). Likewise, when a thread unlocks a mutex that has been initialized with the
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attributes, it shall not be subject to
being moved to the tail of the scheduling queue at its priority in the event that its original priority is
changed.

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_GETPROT OCOL(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETPROT OCOL(3P)

If a thread simultaneously owns several mutexes initialized with different protocols, it shall execute at the
highest of the priorities that it would have obtained by each of these protocols.

When a thread makes a call to pthread_mutex_lock(), the mutex was initialized with the protocol attribute
having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked because the mutex is
owned by another thread, that owner thread shall inherit the priority level of the calling thread as long as it
continues to own the mutex. The implementation shall update its execution priority to the maximum of its
assigned priority and all its inherited priorities. Furthermore, if this owner thread itself becomes blocked on
another mutex with the protocol attribute having the value PTHREAD_PRIO_INHERIT, the same priority
inheritance effect shall be propagated to this other owner thread, in a recursive manner.

The behavior is undefined if the value specified by the attr argument to pthread_mutexattr_getprotocol() or
pthread_mutexattr_setprotocol() does not refer to an initialized mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol()
functions shall return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_setprotocol() function shall fail if:

ENOTSUP
The value specified by protocol is an unsupported value.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions may fail if:

EINVAL
The value specified by protocol is invalid.

EPERM
The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_mutexattr_getproto-

col() or pthread_mutexattr_setprotocol() does not refer to an initialized mutex attributes object, it is recom-
mended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 2

PTHREAD_MUTEXATTR_GETPROT OCOL(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETPROT OCOL(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_MUTEXATTR_GETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETPSHARED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_getpshared, pthread_mutexattr_setpshared — get and set the process-shared attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t
*restrict attr, int *restrict pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

DESCRIPTION
The pthread_mutexattr_getpshared() function shall obtain the value of the process-shared attribute from
the attributes object referenced by attr.

The pthread_mutexattr_setpshared() function shall set the process-shared attribute in an initialized at-
tributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be operated
upon by any thread that has access to the memory where the mutex is allocated, even if the mutex is allo-
cated in memory that is shared by multiple processes. See Section 2.9.9, Synchronization Object Copies

and Alternative Mappings for further requirements. The default value of the attribute shall be
PTHREAD_PROCESS_PRIVATE.

The behavior is undefined if the value specified by the attr argument to pthread_mutexattr_getpshared() or
pthread_mutexattr_setpshared() does not refer to an initialized mutex attributes object.

RETURN VALUE
Upon successful completion, pthread_mutexattr_setpshared() shall return zero; otherwise, an error number
shall be returned to indicate the error.

Upon successful completion, pthread_mutexattr_getpshared() shall return zero and store the value of the
process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_setpshared() function may fail if:

EINVAL
The new value specified for the attribute is outside the range of legal values for that attribute.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_mutexattr_getp-

shared() or pthread_mutexattr_setpshared() does not refer to an initialized mutex attributes object, it is rec-
ommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_GETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETPSHARED(3P)

SEE ALSO
pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), pthread_mutexattr_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_MUTEXATTR_GETROBUST(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETROBUST(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_getrobust, pthread_mutexattr_setrobust — get and set the mutex robust attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *restrict
attr, int *restrict robust);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robust);

DESCRIPTION
The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions, respectively, shall get and
set the mutex robust attribute. This attribute is set in the robust parameter. Valid values for robust include:

PTHREAD_MUTEX_STALLED
No special actions are taken if the owner of the mutex is terminated while holding the mutex lock.
This can lead to deadlocks if no other thread can unlock the mutex.
This is the default value.

PTHREAD_MUTEX_ROBUST
If the process containing the owning thread of a robust mutex terminates while holding the mutex
lock, the next thread that acquires the mutex shall be notified about the termination by the return
value [EOWNERDEAD] from the locking function. If the owning thread of a robust mutex termi-
nates while holding the mutex lock, the next thread that attempts to acquire the mutex may be noti-
fied about the termination by the return value [EOWNERDEAD]. The notified thread can then at-
tempt to make the state protected by the mutex consistent again, and if successful can mark the mu-
tex state as consistent by calling pthread_mutex_consistent(). After a subsequent successful call to
pthread_mutex_unlock(), the mutex lock shall be released and can be used normally by other
threads. If the mutex is unlocked without a call to pthread_mutex_consistent(), it shall be in a per-
manently unusable state and all attempts to lock the mutex shall fail with the error [ENOTRECOV-
ERABLE]. The only permissible operation on such a mutex is pthread_mutex_destroy().

The behavior is undefined if the value specified by the attr argument to pthread_mutexattr_getrobust() or
pthread_mutexattr_setrobust() does not refer to an initialized mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_getrobust() function shall return zero and store the
value of the robust attribute of attr into the object referenced by the robust parameter. Otherwise, an error
value shall be returned to indicate the error. If successful, the pthread_mutexattr_setrobust() function shall
return zero; otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_setrobust() function shall fail if:

EINVAL
The value of robust is invalid.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The actions required to make the state protected by the mutex consistent again are solely dependent on the
application. If it is not possible to make the state of a mutex consistent, robust mutexes can be used to

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_GETROBUST(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETROBUST(3P)

notify this situation by calling pthread_mutex_unlock() without a prior call to pthread_mutex_consistent().

If the state is declared inconsistent by calling pthread_mutex_unlock() without a prior call to pthread_mu-

tex_consistent(), a possible approach could be to destroy the mutex and then reinitialize it. However, it
should be noted that this is possible only in certain situations where the state protected by the mutex has to
be reinitialized and coordination achieved with other threads blocked on the mutex, because otherwise a
call to a locking function with a reference to a mutex object invalidated by a call to pthread_mutex_de-

stroy() results in undefined behavior.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_mutexattr_getrobust()
or pthread_mutexattr_setrobust() does not refer to an initialized mutex attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_consistent(), pthread_mutex_destroy(), pthread_mutex_lock()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_MUTEXATTR_GETTYPE(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETTYPE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_gettype, pthread_mutexattr_settype — get and set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr,
int *restrict type);

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

DESCRIPTION
The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions, respectively, shall get and set
the mutex type attribute. This attribute is set in the type parameter to these functions. The default value of
the type attribute is PTHREAD_MUTEX_DEFAULT .

The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types include:

PTHREAD_MUTEX_NORMAL PTHREAD_MUTEX_ERRORCHECK PTHREAD_MU-
TEX_RECURSIVE PTHREAD_MUTEX_DEFAULT

The mutex type affects the behavior of calls which lock and unlock the mutex. See pthread_mutex_lock()
for details. An implementation may map PTHREAD_MUTEX_DEFAULT to one of the other mutex types.

The behavior is undefined if the value specified by the attr argument to pthread_mutexattr_gettype() or
pthread_mutexattr_settype() does not refer to an initialized mutex attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_gettype() function shall return zero and store the value
of the type attribute of attr into the object referenced by the type parameter. Otherwise, an error shall be re-
turned to indicate the error.

If successful, the pthread_mutexattr_settype() function shall return zero; otherwise, an error number shall
be returned to indicate the error.

ERRORS
The pthread_mutexattr_settype() function shall fail if:

EINVAL
The value type is invalid.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with condition
variables because the implicit unlock performed for a pthread_cond_timedwait() or pthread_cond_wait()
may not actually release the mutex (if it had been locked multiple times). If this happens, no other thread
can satisfy the condition of the predicate.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_mutexattr_gettype() or
pthread_mutexattr_settype() does not refer to an initialized mutex attributes object, it is recommended that
the function should fail and report an [EINVAL] error.

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_GETTYPE(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_GETTYPE(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_timedwait(), pthread_mutex_lock()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_MUTEXATTR_INIT(3P) POSIX Programmer’s Manual PTHREAD_MUTEXATTR_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_init — initialize the mutex attributes object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

DESCRIPTION
Refer to pthread_mutexattr_destroy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_SETPRIOCEILING(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_SETPRIOCEILING(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_setprioceiling — set the prioceiling attribute of the mutex attributes object (REAL-
TIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

DESCRIPTION
Refer to pthread_mutexattr_getprioceiling().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_SETPROT OCOL(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_SETPROT OCOL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_setprotocol — set the protocol attribute of the mutex attributes object (REALTIME
THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

DESCRIPTION
Refer to pthread_mutexattr_getprotocol().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_SETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_SETPSHARED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_setpshared — set the process-shared attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_mutexattr_getpshared().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_SETROBUST(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_SETROBUST(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_setrobust — get and set the mutex robust attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robust);

DESCRIPTION
Refer to pthread_mutexattr_getrobust().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_MUTEXATTR_SETTYPE(3P)POSIX Programmer’s ManualPTHREAD_MUTEXATTR_SETTYPE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_mutexattr_settype — set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

DESCRIPTION
Refer to pthread_mutexattr_gettype().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_ONCE(3P) POSIX Programmer’s Manual PTHREAD_ONCE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_once — dynamic package initialization

SYNOPSIS
#include <pthread.h>

int pthread_once(pthread_once_t *once_control,
void (*init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

DESCRIPTION
The first call to pthread_once() by any thread in a process, with a given once_control, shall call the
init_routine with no arguments. Subsequent calls of pthread_once() with the same once_control shall not
call the init_routine. On return from pthread_once(), init_routine shall have completed. The once_control

parameter shall determine whether the associated initialization routine has been called.

The pthread_once() function is not a cancellation point. However, if init_routine is a cancellation point and
is canceled, the effect on once_control shall be as if pthread_once() was never called.

If the call to init_routine is terminated by a call to longjmp(), _longjmp(), or siglongjmp(), the behavior is
undefined.

The constant PTHREAD_ONCE_INIT is defined in the <pthread.h> header.

The behavior of pthread_once() is undefined if once_control has automatic storage duration or is not initial-
ized by PTHREAD_ONCE_INIT.

RETURN VALUE
Upon successful completion, pthread_once() shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_once() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If init_routine recursively calls pthread_once() with the same once_control, the recursive call will not call
the specified init_routine, and thus the specified init_routine will not complete, and thus the recursive call
to pthread_once() will not return. Use of longjmp(), _longjmp(), or siglongjmp() within an init_routine to
jump to a point outside of init_routine prevents init_routine from returning.

RATIONALE
Some C libraries are designed for dynamic initialization. That is, the global initialization for the library is
performed when the first procedure in the library is called. In a single-threaded program, this is normally
implemented using a static variable whose value is checked on entry to a routine, as follows:

static int random_is_initialized = 0;
extern void initialize_random(void);

int random_function()
{

if (random_is_initialized == 0) {
initialize_random();

IEEE/The Open Group 2017 1

PTHREAD_ONCE(3P) POSIX Programmer’s Manual PTHREAD_ONCE(3P)

random_is_initialized = 1;
}
... /* Operations performed after initialization. */

}

To keep the same structure in a multi-threaded program, a new primitive is needed. Otherwise, library ini-
tialization has to be accomplished by an explicit call to a library-exported initialization function prior to any
use of the library.

For dynamic library initialization in a multi-threaded process, if an initialization flag is used the flag needs
to be protected against modification by multiple threads simultaneously calling into the library. This can be
done by using a mutex (initialized by assigning PTHREAD_MUTEX_INITIALIZER). However, the better
solution is to use pthread_once() which is designed for exactly this purpose, as follows:

#include <pthread.h>
static pthread_once_t random_is_initialized = PTHREAD_ONCE_INIT;
extern void initialize_random(void);

int random_function()
{

(void) pthread_once(&random_is_initialized, initialize_random);
... /* Operations performed after initialization. */

}

If an implementation detects that the value specified by the once_control argument to pthread_once() does
not refer to a pthread_once_t object initialized by PTHREAD_ONCE_INIT, it is recommended that the
function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCK_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_RWLOCK_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlock_destroy, pthread_rwlock_init — destroy and initialize a read-write lock object

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

const pthread_rwlockattr_t *restrict attr);
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

DESCRIPTION
The pthread_rwlock_destroy() function shall destroy the read-write lock object referenced by rwlock and
release any resources used by the lock. The effect of subsequent use of the lock is undefined until the lock
is reinitialized by another call to pthread_rwlock_init(). An implementation may cause pthread_rwlock_de-

stroy() to set the object referenced by rwlock to an invalid value. Results are undefined if
pthread_rwlock_destroy() is called when any thread holds rwlock. Attempting to destroy an uninitialized
read-write lock results in undefined behavior.

The pthread_rwlock_init() function shall allocate any resources required to use the read-write lock refer-
enced by rwlock and initializes the lock to an unlocked state with attributes referenced by attr. If attr is
NULL, the default read-write lock attributes shall be used; the effect is the same as passing the address of a
default read-write lock attributes object. Once initialized, the lock can be used any number of times without
being reinitialized. Results are undefined if pthread_rwlock_init() is called specifying an already initialized
read-write lock. Results are undefined if a read-write lock is used without first being initialized.

If the pthread_rwlock_init() function fails, rwlock shall not be initialized and the contents of rwlock are un-
defined.

See Section 2.9.9, Synchronization Object Copies and Alternative Mappings for further requirements.

In cases where default read-write lock attributes are appropriate, the macro PTHREAD_RWLOCK_INI-
TIALIZER can be used to initialize read-write locks. The effect shall be equivalent to dynamic initialization
by a call to pthread_rwlock_init() with the attr parameter specified as NULL, except that no error checks
are performed.

The behavior is undefined if the value specified by the attr argument to pthread_rwlock_init() does not refer
to an initialized read-write lock attributes object.

RETURN VALUE
If successful, the pthread_rwlock_destroy() and pthread_rwlock_init() functions shall return zero; other-
wise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_init() function shall fail if:

EAGAIN
The system lacked the necessary resources (other than memory) to initialize another read-write
lock.

ENOMEM
Insufficient memory exists to initialize the read-write lock.

EPERM
The caller does not have the privilege to perform the operation.

These functions shall not return an error code of [EINTR].

The following sections are informative.

IEEE/The Open Group 2017 1

PTHREAD_RWLOCK_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_RWLOCK_DESTROY(3P)

EXAMPLES
None.

APPLICATION USAGE
Applications using these and related read-write lock functions may be subject to priority inversion, as dis-
cussed in the Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion.

RATIONALE
If an implementation detects that the value specified by the rwlock argument to pthread_rwlock_destroy()
does not refer to an initialized read-write lock object, it is recommended that the function should fail and
report an [EINVAL] error.

If an implementation detects that the value specified by the attr argument to pthread_rwlock_init() does not
refer to an initialized read-write lock attributes object, it is recommended that the function should fail and
report an [EINVAL] error.

If an implementation detects that the value specified by the rwlock argument to pthread_rwlock_destroy()
or pthread_rwlock_init() refers to a locked read-write lock object, or detects that the value specified by the
rwlock argument to pthread_rwlock_init() refers to an already initialized read-write lock object, it is recom-
mended that the function should fail and report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCK_RDLOCK(3P) POSIX Programmer’s Manual PTHREAD_RWLOCK_RDLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlock_rdlock, pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_rdlock() function shall apply a read lock to the read-write lock referenced by rwlock.
The calling thread acquires the read lock if a writer does not hold the lock and there are no writers blocked
on the lock.

If the Thread Execution Scheduling option is supported, and the threads involved in the lock are executing
with the scheduling policies SCHED_FIFO or SCHED_RR, the calling thread shall not acquire the lock if a
writer holds the lock or if writers of higher or equal priority are blocked on the lock; otherwise, the calling
thread shall acquire the lock.

If the Thread Execution Scheduling option is supported, and the threads involved in the lock are executing
with the SCHED_SPORADIC scheduling policy, the calling thread shall not acquire the lock if a writer
holds the lock or if writers of higher or equal priority are blocked on the lock; otherwise, the calling thread
shall acquire the lock.

If the Thread Execution Scheduling option is not supported, it is implementation-defined whether the call-
ing thread acquires the lock when a writer does not hold the lock and there are writers blocked on the lock.
If a writer holds the lock, the calling thread shall not acquire the read lock. If the read lock is not acquired,
the calling thread shall block until it can acquire the lock. The calling thread may deadlock if at the time the
call is made it holds a write lock.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock() function n times). If so, the application shall ensure that the thread performs
matching unlocks (that is, it calls the pthread_rwlock_unlock() function n times).

The maximum number of simultaneous read locks that an implementation guarantees can be applied to a
read-write lock shall be implementation-defined. The pthread_rwlock_rdlock() function may fail if this
maximum would be exceeded.

The pthread_rwlock_tryrdlock() function shall apply a read lock as in the pthread_rwlock_rdlock() func-
tion, with the exception that the function shall fail if the equivalent pthread_rwlock_rdlock() call would
have blocked the calling thread. In no case shall the pthread_rwlock_tryrdlock() function ever block; it al-
ways either acquires the lock or fails and returns immediately.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the signal han-
dler the thread resumes waiting for the read-write lock for reading as if it was not interrupted.

RETURN VALUE
If successful, the pthread_rwlock_rdlock() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

The pthread_rwlock_tryrdlock() function shall return zero if the lock for reading on the read-write lock ob-
ject referenced by rwlock is acquired. Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_tryrdlock() function shall fail if:

IEEE/The Open Group 2017 1

PTHREAD_RWLOCK_RDLOCK(3P) POSIX Programmer’s Manual PTHREAD_RWLOCK_RDLOCK(3P)

EBUSY
The read-write lock could not be acquired for reading because a writer holds the lock or a writer
with the appropriate priority was blocked on it.

The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions may fail if:

EAGAIN
The read lock could not be acquired because the maximum number of read locks for rwlock has
been exceeded.

The pthread_rwlock_rdlock() function may fail if:

EDEADLK
A deadlock condition was detected or the current thread already owns the read-write lock for writ-
ing.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

RATIONALE
If an implementation detects that the value specified by the rwlock argument to pthread_rwlock_rdlock() or
pthread_rwlock_tryrdlock() does not refer to an initialized read-write lock object, it is recommended that
the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, Section 4.12, Memory

Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCK_TIMEDRDLOCK(3P)POSIX Programmer’s ManualPTHREAD_RWLOCK_TIMEDRDLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlock_timedrdlock — lock a read-write lock for reading

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_rwlock_timedrdlock() function shall apply a read lock to the read-write lock referenced by
rwlock as in the pthread_rwlock_rdlock() function. However, if the lock cannot be acquired without waiting
for other threads to unlock the lock, this wait shall be terminated when the specified timeout expires. The
timeout shall expire when the absolute time specified by abstime passes, as measured by the clock on which
timeouts are based (that is, when the value of that clock equals or exceeds abstime), or if the absolute time
specified by abstime has already been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall be the
resolution of the CLOCK_REALTIME clock. The timespec data type is defined in the <time.h> header.
Under no circumstances shall the function fail with a timeout if the lock can be acquired immediately. The
validity of the abstime parameter need not be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-write lock
via a call to pthread_rwlock_timedrdlock(), upon return from the signal handler the thread shall resume
waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds a write lock on rwlock. The results
are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_timedrdlock() function shall return zero if the lock for reading on the read-write lock
object referenced by rwlock is acquired. Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_timedrdlock() function shall fail if:

ETIMEDOUT
The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function may fail if:

EAGAIN
The read lock could not be acquired because the maximum number of read locks for lock would
be exceeded.

EDEADLK
A deadlock condition was detected or the calling thread already holds a write lock on rwlock.

EINVAL
The abstime nanosecond value is less than zero or greater than or equal to 1 000 million.

This function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

PTHREAD_RWLOCK_TIMEDRDLOCK(3P)POSIX Programmer’s ManualPTHREAD_RWLOCK_TIMEDRDLOCK(3P)

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

RATIONALE
If an implementation detects that the value specified by the rwlock argument to pthread_rwlock_timedrd-

lock() does not refer to an initialized read-write lock object, it is recommended that the function should fail
and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, Section 4.12, Memory

Synchronization, <pthread.h>, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCK_TIMEDWRLOCK(3P)POSIX Programmer’s ManualPTHREAD_RWLOCK_TIMEDWRLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlock_timedwrlock — lock a read-write lock for writing

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_rwlock_timedwrlock() function shall apply a write lock to the read-write lock referenced by
rwlock as in the pthread_rwlock_wrlock() function. However, if the lock cannot be acquired without wait-
ing for other threads to unlock the lock, this wait shall be terminated when the specified timeout expires.
The timeout shall expire when the absolute time specified by abstime passes, as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abstime), or if the absolute
time specified by abstime has already been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall be the
resolution of the CLOCK_REALTIME clock. The timespec data type is defined in the <time.h> header.
Under no circumstances shall the function fail with a timeout if the lock can be acquired immediately. The
validity of the abstime parameter need not be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-write lock
via a call to pthread_rwlock_timedwrlock(), upon return from the signal handler the thread shall resume
waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds the read-write lock. The results are
undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_timedwrlock() function shall return zero if the lock for writing on the read-write lock
object referenced by rwlock is acquired. Otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_timedwrlock() function shall fail if:

ETIMEDOUT
The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedwrlock() function may fail if:

EDEADLK
A deadlock condition was detected or the calling thread already holds the rwlock.

EINVAL
The abstime nanosecond value is less than zero or greater than or equal to 1 000 million.

This function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

IEEE/The Open Group 2017 1

PTHREAD_RWLOCK_TIMEDWRLOCK(3P)POSIX Programmer’s ManualPTHREAD_RWLOCK_TIMEDWRLOCK(3P)

RATIONALE
If an implementation detects that the value specified by the rwlock argument to pthread_rwlock_timedwr-

lock() does not refer to an initialized read-write lock object, it is recommended that the function should fail
and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, Section 4.12, Memory

Synchronization, <pthread.h>, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCK_TRYRDLOCK(3P)POSIX Programmer’s ManualPTHREAD_RWLOCK_TRYRDLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_rdlock().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_RWLOCK_TRYWRLOCK(3P)POSIX Programmer’s ManualPTHREAD_RWLOCK_TRYWRLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlock_trywrlock, pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_trywrlock() function shall apply a write lock like the pthread_rwlock_wrlock() func-
tion, with the exception that the function shall fail if any thread currently holds rwlock (for reading or writ-
ing).

The pthread_rwlock_wrlock() function shall apply a write lock to the read-write lock referenced by rwlock.
The calling thread shall acquire the write lock if no thread (reader or writer) holds the read-write lock
rwlock. Otherwise, if another thread holds the read-write lock rwlock, the calling thread shall block until it
can acquire the lock. If a deadlock condition occurs or the calling thread already owns the read-write lock
for writing or reading, the call shall either deadlock or return [EDEADLK].

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the signal han-
dler the thread resumes waiting for the read-write lock for writing as if it was not interrupted.

RETURN VALUE
The pthread_rwlock_trywrlock() function shall return zero if the lock for writing on the read-write lock ob-
ject referenced by rwlock is acquired. Otherwise, an error number shall be returned to indicate the error.

If successful, the pthread_rwlock_wrlock() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_rwlock_trywrlock() function shall fail if:

EBUSY
The read-write lock could not be acquired for writing because it was already locked for reading or
writing.

The pthread_rwlock_wrlock() function may fail if:

EDEADLK
A deadlock condition was detected or the current thread already owns the read-write lock for writ-
ing or reading.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

RATIONALE
If an implementation detects that the value specified by the rwlock argument to pthread_rwlock_trywrlock()
or pthread_rwlock_wrlock() does not refer to an initialized read-write lock object, it is recommended that
the function should fail and report an [EINVAL] error.

IEEE/The Open Group 2017 1

PTHREAD_RWLOCK_TRYWRLOCK(3P)POSIX Programmer’s ManualPTHREAD_RWLOCK_TRYWRLOCK(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_unlock()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, Section 4.12, Memory

Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCK_UNLOCK(3P) POSIX Programmer’s Manual PTHREAD_RWLOCK_UNLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlock_unlock — unlock a read-write lock object

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_unlock() function shall release a lock held on the read-write lock object referenced by
rwlock. Results are undefined if the read-write lock rwlock is not held by the calling thread.

If this function is called to release a read lock from the read-write lock object and there are other read locks
currently held on this read-write lock object, the read-write lock object remains in the read locked state. If
this function releases the last read lock for this read-write lock object, the read-write lock object shall be
put in the unlocked state with no owners.

If this function is called to release a write lock for this read-write lock object, the read-write lock object
shall be put in the unlocked state.

If there are threads blocked on the lock when it becomes available, the scheduling policy shall determine
which thread(s) shall acquire the lock. If the Thread Execution Scheduling option is supported, when
threads executing with the scheduling policies SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC are
waiting on the lock, they shall acquire the lock in priority order when the lock becomes available. For equal
priority threads, write locks shall take precedence over read locks. If the Thread Execution Scheduling op-
tion is not supported, it is implementation-defined whether write locks take precedence over read locks.

Results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
If successful, the pthread_rwlock_unlock() function shall return zero; otherwise, an error number shall be
returned to indicate the error.

ERRORS
The pthread_rwlock_unlock() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the rwlock argument to pthread_rwlock_unlock()
does not refer to an initialized read-write lock object, it is recommended that the function should fail and
report an [EINVAL] error.

If an implementation detects that the value specified by the rwlock argument to pthread_rwlock_unlock()
refers to a read-write lock object for which the current thread does not hold a lock, it is recommended that
the function should fail and report an [EPERM] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_trywrlock()

IEEE/The Open Group 2017 1

PTHREAD_RWLOCK_UNLOCK(3P) POSIX Programmer’s Manual PTHREAD_RWLOCK_UNLOCK(3P)

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCK_WRLOCK(3P) POSIX Programmer’s Manual PTHREAD_RWLOCK_WRLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlock_wrlock — lock a read-write lock object for writing

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
Refer to pthread_rwlock_trywrlock().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_RWLOCKATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_RWLOCKATTR_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlockattr_destroy, pthread_rwlockattr_init — destroy and initialize the read-write lock attributes
object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION
The pthread_rwlockattr_destroy() function shall destroy a read-write lock attributes object. A destroyed
attr attributes object can be reinitialized using pthread_rwlockattr_init(); the results of otherwise referenc-
ing the object after it has been destroyed are undefined. An implementation may cause pthread_rwlock-

attr_destroy() to set the object referenced by attr to an invalid value.

The pthread_rwlockattr_init() function shall initialize a read-write lock attributes object attr with the de-
fault value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init() is called specifying an already initialized attr attributes
object.

After a read-write lock attributes object has been used to initialize one or more read-write locks, any func-
tion affecting the attributes object (including destruction) shall not affect any previously initialized read-
write locks.

The behavior is undefined if the value specified by the attr argument to pthread_rwlockattr_destroy() does
not refer to an initialized read-write lock attributes object.

RETURN VALUE
If successful, the pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_init() function shall fail if:

ENOMEM
Insufficient memory exists to initialize the read-write lock attributes object.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to pthread_rwlockattr_destroy()
does not refer to an initialized read-write lock attributes object, it is recommended that the function should
fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockattr_getpshared()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

IEEE/The Open Group 2017 1

PTHREAD_RWLOCKATTR_DESTROY(3P)POSIX Programmer’s ManualPTHREAD_RWLOCKATTR_DESTROY(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCKATTR_GETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_RWLOCKATTR_GETPSHARED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared — get and set the process-shared attribute
of the read-write lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t
*restrict attr, int *restrict pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

DESCRIPTION
The pthread_rwlockattr_getpshared() function shall obtain the value of the process-shared attribute from
the initialized attributes object referenced by attr. The pthread_rwlockattr_setpshared() function shall set
the process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute shall be set to PTHREAD_PROCESS_SHARED to permit a read-write lock
to be operated upon by any thread that has access to the memory where the read-write lock is allocated,
ev en if the read-write lock is allocated in memory that is shared by multiple processes. See Section 2.9.9,
Synchronization Object Copies and Alternative Mappings for further requirements. The default value of the
process-shared attribute shall be PTHREAD_PROCESS_PRIVATE.

Additional attributes, their default values, and the names of the associated functions to get and set those at-
tribute values are implementation-defined.

The behavior is undefined if the value specified by the attr argument to pthread_rwlockattr_getpshared() or
pthread_rwlockattr_setpshared() does not refer to an initialized read-write lock attributes object.

RETURN VALUE
Upon successful completion, the pthread_rwlockattr_getpshared() function shall return zero and store the
value of the process-shared attribute of attr into the object referenced by the pshared parameter. Other-
wise, an error number shall be returned to indicate the error.

If successful, the pthread_rwlockattr_setpshared() function shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The pthread_rwlockattr_setpshared() function may fail if:

EINVAL
The new value specified for the attribute is outside the range of legal values for that attribute.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_RWLOCKATTR_GETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_RWLOCKATTR_GETPSHARED(3P)

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlockattr_destroy()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_RWLOCKATTR_INIT(3P) POSIX Programmer’s Manual PTHREAD_RWLOCKATTR_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlockattr_init — initialize the read-write lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

DESCRIPTION
Refer to pthread_rwlockattr_destroy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_RWLOCKATTR_SETPSHARED(3P)POSIX Programmer’s ManualPTHREAD_RWLOCKATTR_SETPSHARED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_rwlockattr_setpshared — set the process-shared attribute of the read-write lock attributes object

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

DESCRIPTION
Refer to pthread_rwlockattr_getpshared().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_SELF(3P) POSIX Programmer’s Manual PTHREAD_SELF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_self — get the calling thread ID

SYNOPSIS
#include <pthread.h>

pthread_t pthread_self(void);

DESCRIPTION
The pthread_self() function shall return the thread ID of the calling thread.

RETURN VALUE
The pthread_self() function shall always be successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_self() function provides a capability similar to the getpid() function for processes and the ratio-
nale is the same: the creation call does not provide the thread ID to the created thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_equal()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_SETCANCELSTATE(3P) POSIX Programmer’s Manual PTHREAD_SETCANCELSTATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);

DESCRIPTION
The pthread_setcancelstate() function shall atomically both set the calling thread’s cancelability state to the
indicated state and return the previous cancelability state at the location referenced by oldstate. Leg al val-
ues for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function shall atomically both set the calling thread’s cancelability type to the
indicated type and return the previous cancelability type at the location referenced by oldtype. Leg al values
for type are PTHREAD_CANCEL_DEFERRED and PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which main() was first
invoked, shall be PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel() function shall create a cancellation point in the calling thread. The pthread_test-

cancel() function shall have no effect if cancelability is disabled.

RETURN VALUE
If successful, the pthread_setcancelstate() and pthread_setcanceltype() functions shall return zero; other-
wise, an error number shall be returned to indicate the error.

ERRORS
The pthread_setcancelstate() function may fail if:

EINVAL
The specified state is not PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype() function may fail if:

EINVAL
The specified type is not PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYN-
CHRONOUS.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
In order to write a signal handler for an asynchronous signal which can run safely in a cancellable thread,
pthread_setcancelstate() must be used to disable cancellation for the duration of any calls that the signal
handler makes which are cancellation points. However, the standard does not permit strictly conforming ap-
plications to call pthread_setcancelstate() from a signal handler since it is not currently required to be
async-signal-safe. On implementations where pthread_setcancelstate() is not async-signal-safe, alternatives
are to ensure either that the corresponding signals are blocked during execution of functions that are not
async-cancel-safe or that cancellation is disabled during times when those signals could be delivered. Im-
plementations are strongly encouraged to make pthread_setcancelstate() async-signal-safe.

IEEE/The Open Group 2017 1

PTHREAD_SETCANCELSTATE(3P) POSIX Programmer’s Manual PTHREAD_SETCANCELSTATE(3P)

RATIONALE
The pthread_setcancelstate() and pthread_setcanceltype() functions control the points at which a thread
may be asynchronously canceled. For cancellation control to be usable in modular fashion, some rules need
to be followed.

An object can be considered to be a generalization of a procedure. It is a set of procedures and global vari-
ables written as a unit and called by clients not known by the object. Objects may depend on other objects.

First, cancelability should only be disabled on entry to an object, never explicitly enabled. On exit from an
object, the cancelability state should always be restored to its value on entry to the object.

This follows from a modularity argument: if the client of an object (or the client of an object that uses that
object) has disabled cancelability, it is because the client does not want to be concerned about cleaning up if
the thread is canceled while executing some sequence of actions. If an object is called in such a state and it
enables cancelability and a cancellation request is pending for that thread, then the thread is canceled, con-
trary to the wish of the client that disabled.

Second, the cancelability type may be explicitly set to either deferred or asynchronous upon entry to an ob-
ject. But as with the cancelability state, on exit from an object the cancelability type should always be re-
stored to its value on entry to the object.

Finally, only functions that are cancel-safe may be called from a thread that is asynchronously cancelable.

FUTURE DIRECTIONS
The pthread_setcancelstate() function may be added to the table of async-signal-safe functions in Section

2.4.3, Signal Actions.

SEE ALSO
pthread_cancel()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_SETCONCURRENCY(3P) POSIX Programmer’s Manual PTHREAD_SETCONCURRENCY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_setconcurrency — set the level of concurrency

SYNOPSIS
#include <pthread.h>

int pthread_setconcurrency(int new_level);

DESCRIPTION
Refer to pthread_getconcurrency().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_SETSCHEDPARAM(3P) POSIX Programmer’s Manual PTHREAD_SETSCHEDPARAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_setschedparam — dynamic thread scheduling parameters access (REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param);

DESCRIPTION
Refer to pthread_getschedparam().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_SETSCHEDPRIO(3P) POSIX Programmer’s Manual PTHREAD_SETSCHEDPRIO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_setschedprio — dynamic thread scheduling parameters access (REALTIME THREADS)

SYNOPSIS
#include <pthread.h>

int pthread_setschedprio(pthread_t thread, int prio);

DESCRIPTION
The pthread_setschedprio() function shall set the scheduling priority for the thread whose thread ID is
given by thread to the value given by prio. See Scheduling Policies for a description on how this function
call affects the ordering of the thread in the thread list for its new priority.

If the pthread_setschedprio() function fails, the scheduling priority of the target thread shall not be
changed.

RETURN VALUE
If successful, the pthread_setschedprio() function shall return zero; otherwise, an error number shall be re-
turned to indicate the error.

ERRORS
The pthread_setschedprio() function may fail if:

EINVAL
The value of prio is invalid for the scheduling policy of the specified thread.

EPERM
The caller does not have appropriate privileges to set the scheduling priority of the specified
thread.

The pthread_setschedprio() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The pthread_setschedprio() function provides a way for an application to temporarily raise its priority and
then lower it again, without having the undesired side-effect of yielding to other threads of the same prior-
ity. This is necessary if the application is to implement its own strategies for bounding priority inversion,
such as priority inheritance or priority ceilings. This capability is especially important if the implementation
does not support the Thread Priority Protection or Thread Priority Inheritance options, but even if those op-
tions are supported it is needed if the application is to bound priority inheritance for other resources, such
as semaphores.

The standard developers considered that while it might be preferable conceptually to solve this problem by
modifying the specification of pthread_setschedparam(), it was too late to make such a change, as there
may be implementations that would need to be changed. Therefore, this new function was introduced.

If an implementation detects use of a thread ID after the end of its lifetime, it is recommended that the func-
tion should fail and report an [ESRCH] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

PTHREAD_SETSCHEDPRIO(3P) POSIX Programmer’s Manual PTHREAD_SETSCHEDPRIO(3P)

SEE ALSO
Scheduling Policies, pthread_getschedparam()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_SETSPECIFIC(3P) POSIX Programmer’s Manual PTHREAD_SETSPECIFIC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_setspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *value);

DESCRIPTION
Refer to pthread_getspecific().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTHREAD_SIGMASK(3P) POSIX Programmer’s Manual PTHREAD_SIGMASK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_sigmask, sigprocmask — examine and change blocked signals

SYNOPSIS
#include <signal.h>

int pthread_sigmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

int sigprocmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

DESCRIPTION
The pthread_sigmask() function shall examine or change (or both) the calling thread’s signal mask, regard-
less of the number of threads in the process. The function shall be equivalent to sigprocmask(), without the
restriction that the call be made in a single-threaded process.

In a single-threaded process, the sigprocmask() function shall examine or change (or both) the signal mask
of the calling thread.

If the argument set is not a null pointer, it points to a set of signals to be used to change the currently
blocked set.

The argument how indicates the way in which the set is changed, and the application shall ensure it consists
of one of the following values:

SIG_BLOCK The resulting set shall be the union of the current set and the signal set pointed to by set.

SIG_SETMASK
The resulting set shall be the signal set pointed to by set.

SIG_UNBLOCK
The resulting set shall be the intersection of the current set and the complement of the signal
set pointed to by set.

If the argument oset is not a null pointer, the previous mask shall be stored in the location pointed to by
oset. If set is a null pointer, the value of the argument how is not significant and the thread’s signal mask
shall be unchanged; thus the call can be used to enquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of those signals shall
be delivered before the call to sigprocmask() returns.

It is not possible to block those signals which cannot be ignored. This shall be enforced by the system
without causing an error to be indicated.

If any of the SIGFPE, SIGILL, SIGSEGV, or SIGBUS signals are generated while they are blocked, the re-
sult is undefined, unless the signal was generated by the action of another process, or by one of the func-
tions kill(), pthread_kill(), raise(), or sigqueue().

If sigprocmask() fails, the thread’s signal mask shall not be changed.

The use of the sigprocmask() function is unspecified in a multi-threaded process.

RETURN VALUE
Upon successful completion pthread_sigmask() shall return 0; otherwise, it shall return the corresponding
error number.

Upon successful completion, sigprocmask() shall return 0; otherwise, −1 shall be returned, errno shall be
set to indicate the error, and the signal mask of the process shall be unchanged.

IEEE/The Open Group 2017 1

PTHREAD_SIGMASK(3P) POSIX Programmer’s Manual PTHREAD_SIGMASK(3P)

ERRORS
The pthread_sigmask() and sigprocmask() functions shall fail if:

EINVAL
The value of the how argument is not equal to one of the defined values.

The pthread_sigmask() function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
Signaling in a Multi-Threaded Process

This example shows the use of pthread_sigmask() in order to deal with signals in a multi-threaded process.
It provides a fairly general framework that could be easily adapted/extended.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
...

static sigset_t signal_mask; /* signals to block */

int main (int argc, char *argv[])
{

pthread_t sig_thr_id; /* signal handler thread ID */
int rc; /* return code */

sigemptyset (&signal_mask);
sigaddset (&signal_mask, SIGINT);
sigaddset (&signal_mask, SIGTERM);
rc = pthread_sigmask (SIG_BLOCK, &signal_mask, NULL);
if (rc != 0) {

/* handle error */
...

}
/* any newly created threads inherit the signal mask */

rc = pthread_create (&sig_thr_id, NULL, signal_thread, NULL);
if (rc != 0) {

/* handle error */
...

}

/* APPLICATION CODE */
...

}

void *signal_thread (void *arg)
{

int sig_caught; /* signal caught */
int rc; /* returned code */

rc = sigwait (&signal_mask, &sig_caught);
if (rc != 0) {

/* handle error */
}
switch (sig_caught)

IEEE/The Open Group 2017 2

PTHREAD_SIGMASK(3P) POSIX Programmer’s Manual PTHREAD_SIGMASK(3P)

{
case SIGINT: /* process SIGINT */

...
break;

case SIGTERM: /* process SIGTERM */
...
break;

default: /* should normally not happen */
fprintf (stderr, "\nUnexpected signal %d\n", sig_caught);
break;

}
}

APPLICATION USAGE
None.

RATIONALE
When a thread’s signal mask is changed in a signal-catching function that is installed by sigaction(), the
restoration of the signal mask on return from the signal-catching function overrides that change (see sigac-

tion()). If the signal-catching function was installed with signal(), it is unspecified whether this occurs.

See kill() for a discussion of the requirement on delivery of signals.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , kill(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(), sigpend-

ing(), sigqueue(), sigsuspend()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

PTHREAD_SPIN_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_SPIN_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_spin_destroy, pthread_spin_init — destroy or initialize a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);
int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

DESCRIPTION
The pthread_spin_destroy() function shall destroy the spin lock referenced by lock and release any re-
sources used by the lock. The effect of subsequent use of the lock is undefined until the lock is reinitialized
by another call to pthread_spin_init(). The results are undefined if pthread_spin_destroy() is called when a
thread holds the lock, or if this function is called with an uninitialized thread spin lock.

The pthread_spin_init() function shall allocate any resources required to use the spin lock referenced by
lock and initialize the lock to an unlocked state.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_SHARED, the implementation shall permit the spin lock to be operated upon by
any thread that has access to the memory where the spin lock is allocated, even if it is allocated in memory
that is shared by multiple processes.

See Section 2.9.9, Synchronization Object Copies and Alternative Mappings for further requirements.

The results are undefined if pthread_spin_init() is called specifying an already initialized spin lock. The re-
sults are undefined if a spin lock is used without first being initialized.

If the pthread_spin_init() function fails, the lock is not initialized and the contents of lock are undefined.

Only the object referenced by lock may be used for performing synchronization.

The result of referring to copies of that object in calls to pthread_spin_destroy(), pthread_spin_lock(),
pthread_spin_trylock(), or pthread_spin_unlock() is undefined.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_spin_init() function shall fail if:

EAGAIN
The system lacks the necessary resources to initialize another spin lock.

ENOMEM
Insufficient memory exists to initialize the lock.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the lock argument to pthread_spin_destroy() does
not refer to an initialized spin lock object, it is recommended that the function should fail and report an

IEEE/The Open Group 2017 1

PTHREAD_SPIN_DESTROY(3P) POSIX Programmer’s Manual PTHREAD_SPIN_DESTROY(3P)

[EINVAL] error.

If an implementation detects that the value specified by the lock argument to pthread_spin_destroy() or
pthread_spin_init() refers to a locked spin lock object, or detects that the value specified by the lock argu-
ment to pthread_spin_init() refers to an already initialized spin lock object, it is recommended that the
function should fail and report an [EBUSY] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_lock(), pthread_spin_unlock()

The Base Definitions volume of POSIX.1-2017, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_SPIN_LOCK(3P) POSIX Programmer’s Manual PTHREAD_SPIN_LOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_spin_lock, pthread_spin_trylock — lock a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);

DESCRIPTION
The pthread_spin_lock() function shall lock the spin lock referenced by lock. The calling thread shall ac-
quire the lock if it is not held by another thread. Otherwise, the thread shall spin (that is, shall not return
from the pthread_spin_lock() call) until the lock becomes available. The results are undefined if the calling
thread holds the lock at the time the call is made. The pthread_spin_trylock() function shall lock the spin
lock referenced by lock if it is not held by any thread. Otherwise, the function shall fail.

The results are undefined if any of these functions is called with an uninitialized spin lock.

RETURN VALUE
Upon successful completion, these functions shall return zero; otherwise, an error number shall be returned
to indicate the error.

ERRORS
The pthread_spin_lock() function may fail if:

EDEADLK
A deadlock condition was detected.

The pthread_spin_trylock() function shall fail if:

EBUSY
A thread currently holds the lock.

These functions shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

RATIONALE
If an implementation detects that the value specified by the lock argument to pthread_spin_lock() or
pthread_spin_trylock() does not refer to an initialized spin lock object, it is recommended that the function
should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the lock argument to pthread_spin_lock() refers to a
spin lock object for which the calling thread already holds the lock, it is recommended that the function
should fail and report an [EDEADLK] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_destroy(), pthread_spin_unlock()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, Section 4.12, Memory

Synchronization, <pthread.h>

IEEE/The Open Group 2017 1

PTHREAD_SPIN_LOCK(3P) POSIX Programmer’s Manual PTHREAD_SPIN_LOCK(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_SPIN_UNLOCK(3P) POSIX Programmer’s Manual PTHREAD_SPIN_UNLOCK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_spin_unlock — unlock a spin lock object

SYNOPSIS
#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

DESCRIPTION
The pthread_spin_unlock() function shall release the spin lock referenced by lock which was locked via the
pthread_spin_lock() or pthread_spin_trylock() functions.

The results are undefined if the lock is not held by the calling thread.

If there are threads spinning on the lock when pthread_spin_unlock() is called, the lock becomes available
and an unspecified spinning thread shall acquire the lock.

The results are undefined if this function is called with an uninitialized thread spin lock.

RETURN VALUE
Upon successful completion, the pthread_spin_unlock() function shall return zero; otherwise, an error num-
ber shall be returned to indicate the error.

ERRORS
This function shall not return an error code of [EINTR].

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the lock argument to pthread_spin_unlock() does
not refer to an initialized spin lock object, it is recommended that the function should fail and report an
[EINVAL] error.

If an implementation detects that the value specified by the lock argument to pthread_spin_unlock() refers
to a spin lock object for which the current thread does not hold the lock, it is recommended that the func-
tion should fail and report an [EPERM] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_spin_destroy(), pthread_spin_lock()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <pthread.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

PTHREAD_SPIN_UNLOCK(3P) POSIX Programmer’s Manual PTHREAD_SPIN_UNLOCK(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PTHREAD_TESTCANCEL(3P) POSIX Programmer’s Manual PTHREAD_TESTCANCEL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

void pthread_testcancel(void);

DESCRIPTION
Refer to pthread_setcancelstate().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PTSNAME(3P) POSIX Programmer’s Manual PTSNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ptsname — get name of the slave pseudo-terminal device

SYNOPSIS
#include <stdlib.h>

char *ptsname(int fildes);

DESCRIPTION
The ptsname() function shall return the name of the slave pseudo-terminal device associated with a master
pseudo-terminal device. The fildes argument is a file descriptor that refers to the master device. The pt-

sname() function shall return a pointer to a string containing the pathname of the corresponding slave de-
vice.

The ptsname() function need not be thread-safe.

RETURN VALUE
Upon successful completion, ptsname() shall return a pointer to a string which is the name of the pseudo-
terminal slave device. Upon failure, ptsname() shall return a null pointer and may set errno. This could oc-
cur if fildes is an invalid file descriptor or if the slave device name does not exist in the file system.

The application shall not modify the string returned. The returned pointer might be invalidated or the string
content might be overwritten by a subsequent call to ptsname(). The returned pointer and the string content
might also be invalidated if the calling thread is terminated.

ERRORS
The ptsname() function may fail if:

EBADF
The fildes argument is not a valid file descriptor.

ENOTTY
The file associated with the fildes argument is not a master pseudo-terminal device.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See the RATIONALE section for posix_openpt().

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), posix_openpt(), ttyname(), unlockpt()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

PTSNAME(3P) POSIX Programmer’s Manual PTSNAME(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PUTC(3P) POSIX Programmer’s Manual PUTC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
putc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int putc(int c, FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The putc() function shall be equivalent to fputc(), except that if it is implemented as a macro it may evaluate
stream more than once, so the argument should never be an expression with side-effects.

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, putc() may treat a stream argument with side-effects incorrectly.
In particular, putc(c,*f++) does not necessarily work correctly. Therefore, use of this function is not recom-
mended in such situations; fputc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fputc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PUTC_UNLOCKED(3P) POSIX Programmer’s Manual PUTC_UNLOCKED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
putc_unlocked — stdio with explicit client locking

SYNOPSIS
#include <stdio.h>

int putc_unlocked(int c, FILE *stream);

DESCRIPTION
Refer to getc_unlocked().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PUTCHAR(3P) POSIX Programmer’s Manual PUTCHAR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
putchar — put a byte on a stdout stream

SYNOPSIS
#include <stdio.h>

int putchar(int c);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The function call putchar(c) shall be equivalent to putc(c,stdout).

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, putc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PUTCHAR_UNLOCKED(3P) POSIX Programmer’s Manual PUTCHAR_UNLOCKED(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
putchar_unlocked — stdio with explicit client locking

SYNOPSIS
#include <stdio.h>

int putchar_unlocked(int c);

DESCRIPTION
Refer to getc_unlocked().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PUTENV(3P) POSIX Programmer’s Manual PUTENV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
putenv — change or add a value to an environment

SYNOPSIS
#include <stdlib.h>

int putenv(char *string);

DESCRIPTION
The putenv() function shall use the string argument to set environment variable values. The string argument
should point to a string of the form "name=value". The putenv() function shall make the value of the envi-
ronment variable name equal to value by altering an existing variable or creating a new one. In either case,
the string pointed to by string shall become part of the environment, so altering the string shall change the
environment.

The putenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, putenv() shall return 0; otherwise, it shall return a non-zero value and set er-

rno to indicate the error.

ERRORS
The putenv() function may fail if:

ENOMEM
Insufficient memory was available.

The following sections are informative.

EXAMPLES
Changing the Value of an Environment Variable

The following example changes the value of the HOME environment variable to the value /usr/home.

#include <stdlib.h>
...
static char *var = "HOME=/usr/home";
int ret;

ret = putenv(var);

APPLICATION USAGE
The putenv() function manipulates the environment pointed to by environ, and can be used in conjunction
with getenv().

See exec() for restrictions on changing the environment in multi-threaded applications.

This routine may use malloc() to enlarge the environment.

A potential error is to call putenv() with an automatic variable as the argument, then return from the calling
function while string is still part of the environment.

Although the space used by string is no longer used once a new string which defines name is passed to
putenv(), if any thread in the application has used getenv() to retrieve a pointer to this variable, it should not
be freed by calling free(). If the changed environment variable is one known by the system (such as the lo-
cale environment variables) the application should never free the buffer used by earlier calls to putenv() for
the same variable.

The setenv() function is preferred over this function. One reason is that putenv() is optional and therefore
less portable. Another is that using putenv() can slow down environment searches, as explained in the

IEEE/The Open Group 2017 1

PUTENV(3P) POSIX Programmer’s Manual PUTENV(3P)

RATIONALE section for getenv().

RATIONALE
Refer to the RATIONALE section in setenv().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , free(), getenv(), malloc(), setenv()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PUTMSG(3P) POSIX Programmer’s Manual PUTMSG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
putmsg, putpmsg — send a message on a STREAM (STREAMS)

SYNOPSIS
#include <stropts.h>

int putmsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags);

int putpmsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags);

DESCRIPTION
The putmsg() function shall create a message from a process buffer(s) and send the message to a
STREAMS file. The message may contain either a data part, a control part, or both. The data and control
parts are distinguished by placement in separate buffers, as described below. The semantics of each part are
defined by the STREAMS module that receives the message.

The putpmsg() function is equivalent to putmsg(), except that the process can send messages in different
priority bands. Except where noted, all requirements on putmsg() also pertain to putpmsg().

The fildes argument specifies a file descriptor referencing an open STREAM. The ctlptr and dataptr argu-
ments each point to a strbuf structure.

The ctlptr argument points to the structure describing the control part, if any, to be included in the message.
The buf member in the strbuf structure points to the buffer where the control information resides, and the
len member indicates the number of bytes to be sent. The maxlen member is not used by putmsg(). In a
similar manner, the argument dataptr specifies the data, if any, to be included in the message. The flags ar-
gument indicates what type of message should be sent and is described further below.

To send the data part of a message, the application shall ensure that dataptr is not a null pointer and the len

member of dataptr is 0 or greater. To send the control part of a message, the application shall ensure that
the corresponding values are set for ctlptr. No data (control) part shall be sent if either dataptr(ctlptr) is a
null pointer or the len member of dataptr(ctlptr) is set to −1.

For putmsg(), if a control part is specified and flags is set to RS_HIPRI, a high priority message shall be
sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg() shall fail and set errno to [EIN-
VAL]. If flags is set to 0, a normal message (priority band equal to 0) shall be sent. If a control part and
data part are not specified and flags is set to 0, no message shall be sent and 0 shall be returned.

For putpmsg(), the flags are different. The flags argument is a bitmask with the following mutually-exclu-
sive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg() shall fail and set errno to
[EINVAL]. If a control part is specified and flags is set to MSG_HIPRI and band is set to 0, a high-prior-
ity message shall be sent. If flags is set to MSG_HIPRI and either no control part is specified or band is set
to a non-zero value, putpmsg() shall fail and set errno to [EINVAL]. If flags is set to MSG_BAND, then a
message shall be sent in the priority band specified by band . If a control part and data part are not specified
and flags is set to MSG_BAND, no message shall be sent and 0 shall be returned.

The putmsg() function shall block if the STREAM write queue is full due to internal flow control condi-
tions, with the following exceptions:

* For high-priority messages, putmsg() shall not block on this condition and continues processing the
message.

* For other messages, putmsg() shall not block but shall fail when the write queue is full and O_NON-
BLOCK is set.

The putmsg() function shall also block, unless prevented by lack of internal resources, while waiting for the
availability of message blocks in the STREAM, regardless of priority or whether O_NONBLOCK has been

IEEE/The Open Group 2017 1

PUTMSG(3P) POSIX Programmer’s Manual PUTMSG(3P)

specified. No partial message shall be sent.

RETURN VALUE
Upon successful completion, putmsg() and putpmsg() shall return 0; otherwise, they shall return −1 and set
errno to indicate the error.

ERRORS
The putmsg() and putpmsg() functions shall fail if:

EAGAIN
A non-priority message was specified, the O_NONBLOCK flag is set, and the STREAM write
queue is full due to internal flow control conditions; or buffers could not be allocated for the mes-
sage that was to be created.

EBADF
fildes is not a valid file descriptor open for writing.

EINTR
A signal was caught during putmsg().

EINVAL
An undefined value is specified in flags, or flags is set to RS_HIPRI or MSG_HIPRI and no con-
trol part is supplied, or the STREAM or multiplexer referenced by fildes is linked (directly or indi-
rectly) downstream from a multiplexer, or flags is set to MSG_HIPRI and band is non-zero (for
putpmsg() only).

ENOSR
Buffers could not be allocated for the message that was to be created due to insufficient
STREAMS memory resources.

ENOSTR
A STREAM is not associated with fildes.

ENXIO
A hangup condition was generated downstream for the specified STREAM.

EPIPE or EIO
The fildes argument refers to a STREAMS-based pipe and the other end of the pipe is closed. A
SIGPIPE signal is generated for the calling thread.

ERANGE
The size of the data part of the message does not fall within the range specified by the maximum
and minimum packet sizes of the topmost STREAM module. This value is also returned if the
control part of the message is larger than the maximum configured size of the control part of a
message, or if the data part of a message is larger than the maximum configured size of the data
part of a message.

In addition, putmsg() and putpmsg() shall fail if the STREAM head had processed an asynchronous error
before the call. In this case, the value of errno does not reflect the result of putmsg() or putpmsg(), but re-
flects the prior error.

The following sections are informative.

EXAMPLES
Sending a High-Priority Message

The value of fd is assumed to refer to an open STREAMS file. This call to putmsg() does the following:

1. Creates a high-priority message with a control part and a data part, using the buffers pointed to by ctrl-

buf and databuf , respectively.

2. Sends the message to the STREAMS file identified by fd .

#include <stropts.h>

IEEE/The Open Group 2017 2

PUTMSG(3P) POSIX Programmer’s Manual PUTMSG(3P)

#include <string.h>
...
int fd;
char *ctrlbuf = "This is the control part";
char *databuf = "This is the data part";
struct strbuf ctrl;
struct strbuf data;
int ret;

ctrl.buf = ctrlbuf;
ctrl.len = strlen(ctrlbuf);

data.buf = databuf;
data.len = strlen(databuf);

ret = putmsg(fd, &ctrl, &data, MSG_HIPRI);

Using putpmsg()
This example has the same effect as the previous example. In this example, however, the putpmsg() func-
tion creates and sends the message to the STREAMS file.

#include <stropts.h>
#include <string.h>
...
int fd;
char *ctrlbuf = "This is the control part";
char *databuf = "This is the data part";
struct strbuf ctrl;
struct strbuf data;
int ret;

ctrl.buf = ctrlbuf;
ctrl.len = strlen(ctrlbuf);

data.buf = databuf;
data.len = strlen(databuf);

ret = putpmsg(fd, &ctrl, &data, 0, MSG_HIPRI);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
The putmsg() and putpmsg() functions may be removed in a future version.

SEE ALSO
Section 2.6, STREAMS, getmsg(), poll(), read(), write()

The Base Definitions volume of POSIX.1-2017, <stropts.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 3

PUTMSG(3P) POSIX Programmer’s Manual PUTMSG(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

PUTS(3P) POSIX Programmer’s Manual PUTS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
puts — put a string on standard output

SYNOPSIS
#include <stdio.h>

int puts(const char *s);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The puts() function shall write the string pointed to by s, followed by a <newline>, to the standard output
stream stdout. The terminating null byte shall not be written.

The last data modification and last file status change timestamps of the file shall be marked for update be-
tween the successful execution of puts() and the next successful completion of a call to fflush() or fclose()
on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, puts() shall return a non-negative number. Otherwise, it shall return EOF, shall
set an error indicator for the stream, and errno shall be set to indicate the error.

ERRORS
Refer to fputc().

The following sections are informative.

EXAMPLES
Printing to Standard Output

The following example gets the current time, converts it to a string using localtime() and asctime(), and
prints it to standard output using puts(). It then prints the number of minutes to an event for which it is
waiting.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
printf("The time is ");
puts(asctime(localtime(&now)));
printf("There are %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
The puts() function appends a <newline>, while fputs() does not.

This volume of POSIX.1-2017 requires that successful completion simply return a non-negative integer.
There are at least three known different implementation conventions for this requirement:

* Return a constant value.

IEEE/The Open Group 2017 1

PUTS(3P) POSIX Programmer’s Manual PUTS(3P)

* Return the last character written.

* Return the number of bytes written. Note that this implementation convention cannot be adhered to for
strings longer than {INT_MAX} bytes as the value would not be representable in the return type of the
function. For backwards compatibility, implementations can return the number of bytes for strings of
up to {INT_MAX} bytes, and return {INT_MAX} for all longer strings.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), fputs(), putc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

PUTUTXLINE(3P) POSIX Programmer’s Manual PUTUTXLINE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pututxline — put an entry into the user accounting database

SYNOPSIS
#include <utmpx.h>

struct utmpx *pututxline(const struct utmpx *utmpx);

DESCRIPTION
Refer to endutxent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PUTWC(3P) POSIX Programmer’s Manual PUTWC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
putwc — put a wide character on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t putwc(wchar_t wc, FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The putwc() function shall be equivalent to fputwc(), except that if it is implemented as a macro it may eval-
uate stream more than once, so the argument should never be an expression with side-effects.

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since it may be implemented as a macro, putwc() may treat a stream argument with side-effects incorrectly.
In particular, putwc(wc,*f++) need not work correctly. Therefore, use of this function is not recommended;
fputwc() should be used instead.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fputwc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PUTWCHAR(3P) POSIX Programmer’s Manual PUTWCHAR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
putwchar — put a wide character on a stdout stream

SYNOPSIS
#include <wchar.h>

wint_t putwchar(wchar_t wc);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The function call putwchar(wc) shall be equivalent to putwc(wc,stdout).

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fputwc(), putwc()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

PWRITE(3P) POSIX Programmer’s Manual PWRITE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pwrite — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

DESCRIPTION
Refer to write().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

QSORT(3P) POSIX Programmer’s Manual QSORT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
qsort — sort a table of data

SYNOPSIS
#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *));

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The qsort() function shall sort an array of nel objects, the initial element of which is pointed to by base.
The size of each object, in bytes, is specified by the width argument. If the nel argument has the value zero,
the comparison function pointed to by compar shall not be called and no rearrangement shall take place.

The application shall ensure that the comparison function pointed to by compar does not alter the contents
of the array. The implementation may reorder elements of the array between calls to the comparison func-
tion, but shall not alter the contents of any individual element.

When the same objects (consisting of width bytes, irrespective of their current positions in the array) are
passed more than once to the comparison function, the results shall be consistent with one another. That is,
they shall define a total ordering on the array.

The contents of the array shall be sorted in ascending order according to a comparison function. The com-

par argument is a pointer to the comparison function, which is called with two arguments that point to the
elements being compared. The application shall ensure that the function returns an integer less than, equal
to, or greater than 0, if the first argument is considered respectively less than, equal to, or greater than the
second. If two members compare as equal, their order in the sorted array is unspecified.

RETURN VALUE
The qsort() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in the elements
in addition to the values being compared.

RATIONALE
The requirement that each argument (hereafter referred to as p) to the comparison function is a pointer to
elements of the array implies that for every call, for each argument separately, all of the following expres-
sions are non-zero:

((char *)p - (char *)base) % width == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nel * width

IEEE/The Open Group 2017 1

QSORT(3P) POSIX Programmer’s Manual QSORT(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

RAISE(3P) POSIX Programmer’s Manual RAISE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
raise — send a signal to the executing process

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The raise() function shall send the signal sig to the executing thread or process. If a signal handler is
called, the raise() function shall not return until after the signal handler does.

The effect of the raise() function shall be equivalent to calling:

pthread_kill(pthread_self(), sig);

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, a non-zero value shall be returned and errno

shall be set to indicate the error.

ERRORS
The raise() function shall fail if:

EINVAL
The value of the sig argument is an invalid signal number.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘thread’’ is an extension to the ISO C standard.

FUTURE DIRECTIONS
None.

SEE ALSO
kill(), sigaction()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

RAISE(3P) POSIX Programmer’s Manual RAISE(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

RAND(3P) POSIX Programmer’s Manual RAND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
rand, rand_r, srand — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

int rand(void);
int rand_r(unsigned *seed);
void srand(unsigned seed);

DESCRIPTION
For rand() and srand(): The functionality described on this reference page is aligned with the ISO C stan-
dard. Any conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-2017 defers to the ISO C standard.

The rand() function shall compute a sequence of pseudo-random integers in the range [0,{RAND_MAX}]
with a period of at least 2

32
.

The rand() function need not be thread-safe.

The rand_r() function shall compute a sequence of pseudo-random integers in the range
[0,{RAND_MAX}]. (The value of the {RAND_MAX} macro shall be at least 32 767.)

If rand_r() is called with the same initial value for the object pointed to by seed and that object is not modi-
fied between successive returns and calls to rand_r(), the same sequence shall be generated.

The srand() function uses the argument as a seed for a new sequence of pseudo-random numbers to be re-
turned by subsequent calls to rand(). If srand() is then called with the same seed value, the sequence of
pseudo-random numbers shall be repeated. If rand() is called before any calls to srand() are made, the same
sequence shall be generated as when srand() is first called with a seed value of 1.

The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls rand() or
srand().

RETURN VALUE
The rand() function shall return the next pseudo-random number in the sequence.

The rand_r() function shall return a pseudo-random integer.

The srand() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Generating a Pseudo-Random Number Sequence

The following example demonstrates how to generate a sequence of pseudo-random numbers.

#include <stdio.h>
#include <stdlib.h>
...

long count, i;
char *keystr;
int elementlen, len;
char c;

...

IEEE/The Open Group 2017 1

RAND(3P) POSIX Programmer’s Manual RAND(3P)

/* Initial random number generator. */
srand(1);

/* Create keys using only lowercase characters */
len = 0;
for (i=0; i<count; i++) {

while (len < elementlen) {
c = (char) (rand() % 128);
if (islower(c))

keystr[len++] = c;
}

keystr[len] = '\0';
printf("%s Element%0*ld\n", keystr, elementlen, i);
len = 0;

}

Generating the Same Sequence on Different Machines
The following code defines a pair of functions that could be incorporated into applications wishing to en-
sure that the same sequence of numbers is generated across different machines.

static unsigned long next = 1;
int myrand(void) /* RAND_MAX assumed to be 32767. */
{

next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768);

}

void mysrand(unsigned seed)
{

next = seed;
}

APPLICATION USAGE
The drand48() and random() functions provide much more elaborate pseudo-random number generators.

The limitations on the amount of state that can be carried between one function call and another mean the
rand_r() function can never be implemented in a way which satisfies all of the requirements on a pseudo-
random number generator.

These functions should be avoided whenever non-trivial requirements (including safety) have to be fulfilled.

RATIONALE
The ISO C standard rand() and srand() functions allow per-process pseudo-random streams shared by all
threads. Those two functions need not change, but there has to be mutual-exclusion that prevents interfer-
ence between two threads concurrently accessing the random number generator.

With regard to rand(), there are two different behaviors that may be wanted in a multi-threaded program:

1. A single per-process sequence of pseudo-random numbers that is shared by all threads that call rand()

2. A different sequence of pseudo-random numbers for each thread that calls rand()

This is provided by the modified thread-safe function based on whether the seed value is global to the entire
process or local to each thread.

This does not address the known deficiencies of the rand() function implementations, which have been ap-
proached by maintaining more state. In effect, this specifies new thread-safe forms of a deficient function.

FUTURE DIRECTIONS
The rand_r() function may be removed in a future version.

IEEE/The Open Group 2017 2

RAND(3P) POSIX Programmer’s Manual RAND(3P)

SEE ALSO
drand48(), initstate()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

RANDOM(3P) POSIX Programmer’s Manual RANDOM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
random — generate pseudo-random number

SYNOPSIS
#include <stdlib.h>

long random(void);

DESCRIPTION
Refer to initstate().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

READ(3P) POSIX Programmer’s Manual READ(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pread, read — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);
ssize_t read(int fildes, void *buf, size_t nbyte);

DESCRIPTION
The read() function shall attempt to read nbyte bytes from the file associated with the open file descriptor,
fildes, into the buffer pointed to by buf . The behavior of multiple concurrent reads on the same pipe,
FIFO, or terminal device is unspecified.

Before any action described below is taken, and if nbyte is zero, the read() function may detect and return
errors as described below. In the absence of errors, or if error detection is not performed, the read() function
shall return zero and have no other results.

On files that support seeking (for example, a regular file), the read() shall start at a position in the file given
by the file offset associated with fildes. The file offset shall be incremented by the number of bytes actu-
ally read.

Files that do not support seeking—for example, terminals—always read from the current position. The
value of a file offset associated with such a file is undefined.

No data transfer shall occur past the current end-of-file. If the starting position is at or after the end-of-file,
0 shall be returned. If the file refers to a device special file, the result of subsequent read() requests is im-
plementation-defined.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined.

When attempting to read from an empty pipe or FIFO:

* If no process has the pipe open for writing, read() shall return 0 to indicate end-of-file.

* If some process has the pipe open for writing and O_NONBLOCK is set, read() shall return −1 and set
errno to [EAGAIN].

* If some process has the pipe open for writing and O_NONBLOCK is clear, read() shall block the call-
ing thread until some data is written or the pipe is closed by all processes that had the pipe open for
writing.

When attempting to read a file (other than a pipe or FIFO) that supports non-blocking reads and has no data
currently available:

* If O_NONBLOCK is set, read() shall return −1 and set errno to [EAGAIN].

* If O_NONBLOCK is clear, read() shall block the calling thread until some data becomes available.

* The use of the O_NONBLOCK flag has no effect if there is some data available.

The read() function reads data previously written to a file. If any portion of a regular file prior to the end-of-
file has not been written, read() shall return bytes with value 0. For example, lseek() allows the file offset to
be set beyond the end of existing data in the file. If data is later written at this point, subsequent reads in the
gap between the previous end of data and the newly written data shall return bytes with value 0 until data is
written into the gap.

Upon successful completion, where nbyte is greater than 0, read() shall mark for update the last data access
timestamp of the file, and shall return the number of bytes read. This number shall never be greater than
nbyte. The value returned may be less than nbyte if the number of bytes left in the file is less than nbyte, if
the read() request was interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer

IEEE/The Open Group 2017 1

READ(3P) POSIX Programmer’s Manual READ(3P)

than nbyte bytes immediately available for reading. For example, a read() from a file associated with a ter-
minal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it shall return −1 with errno set to [EINTR].

If a read() is interrupted by a signal after it has successfully read some data, it shall return the number of
bytes read.

For regular files, no data transfer shall occur past the offset maximum established in the open file descrip-
tion associated with fildes.

If fildes refers to a socket, read() shall be equivalent to recv() with no flags set.

If the O_DSYNC and O_RSYNC bits have been set, read I/O operations on the file descriptor shall com-
plete as defined by synchronized I/O data integrity completion. If the O_SYNC and O_RSYNC bits have
been set, read I/O operations on the file descriptor shall complete as defined by synchronized I/O file integ-
rity completion.

If fildes refers to a shared memory object, the result of the read() function is unspecified.

If fildes refers to a typed memory object, the result of the read() function is unspecified.

A read() from a STREAMS file can read data in three different modes: byte-stream mode, message-nondis-

card mode, and message-discard mode. The default shall be byte-stream mode. This can be changed using
the I_SRDOPT ioctl() request, and can be tested with I_GRDOPT ioctl(). In byte-stream mode, read()
shall retrieve data from the STREAM until as many bytes as were requested are transferred, or until there is
no more data to be retrieved. Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() shall retrieve data until as many bytes as were requested
are transferred, or until a message boundary is reached. If read() does not retrieve all the data in a message,
the remaining data shall be left on the STREAM, and can be retrieved by the next read() call. Message-dis-
card mode also retrieves data until as many bytes as were requested are transferred, or a message boundary
is reached. However, unread data remaining in a message after the read() returns shall be discarded, and
shall not be available for a subsequent read(), getmsg(), or getpmsg() call.

How read() handles zero-byte STREAMS messages is determined by the current read mode setting. In
byte-stream mode, read() shall accept data until it has read nbyte bytes, or until there is no more data to
read, or until a zero-byte message block is encountered. The read() function shall then return the number of
bytes read, and place the zero-byte message back on the STREAM to be retrieved by the next read(),
getmsg(), or getpmsg(). In message-nondiscard mode or message-discard mode, a zero-byte message shall
return 0 and the message shall be removed from the STREAM. When a zero-byte message is read as the
first message on a STREAM, the message shall be removed from the STREAM and 0 shall be returned, re-
gardless of the read mode.

A read() from a STREAMS file shall return the data in the message at the front of the STREAM head read
queue, regardless of the priority band of the message.

By default, STREAMs are in control-normal mode, in which a read() from a STREAMS file can only
process messages that contain a data part but do not contain a control part. The read() shall fail if a message
containing a control part is encountered at the STREAM head. This default action can be changed by plac-
ing the STREAM in either control-data mode or control-discard mode with the I_SRDOPT ioctl() com-
mand. In control-data mode, read() shall convert any control part to data and pass it to the application be-
fore passing any data part originally present in the same message. In control-discard mode, read() shall dis-
card message control parts but return to the process any data part in the message.

In addition, read() shall fail if the STREAM head had processed an asynchronous error before the call. In
this case, the value of errno shall not reflect the result of read(), but reflect the prior error. If a hangup oc-
curs on the STREAM being read, read() shall continue to operate normally until the STREAM head read
queue is empty. Thereafter, it shall return 0.

The pread() function shall be equivalent to read(), except that it shall read from a given position in the file
without changing the file offset. The first three arguments to pread() are the same as read() with the addi-
tion of a fourth argument offset for the desired position inside the file. An attempt to perform a pread() on a

IEEE/The Open Group 2017 2

READ(3P) POSIX Programmer’s Manual READ(3P)

file that is incapable of seeking shall result in an error.

RETURN VALUE
Upon successful completion, these functions shall return a non-negative integer indicating the number of
bytes actually read. Otherwise, the functions shall return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

EAGAIN
The file is neither a pipe, nor a FIFO, nor a socket, the O_NONBLOCK flag is set for the file de-
scriptor, and the thread would be delayed in the read operation.

EBADF
The fildes argument is not a valid file descriptor open for reading.

EBADMSG
The file is a STREAM file that is set to control-normal mode and the message waiting to be read
includes a control part.

EINTR
The read operation was terminated due to the receipt of a signal, and no data was transferred.

EINVAL
The STREAM or multiplexer referenced by fildes is linked (directly or indirectly) downstream
from a multiplexer.

EIO The process is a member of a background process group attempting to read from its controlling
terminal, and either the calling thread is blocking SIGTTIN or the process is ignoring SIGTTIN or
the process group of the process is orphaned. This error may also be generated for implementa-
tion-defined reasons.

EISDIR
The fildes argument refers to a directory and the implementation does not allow the directory to be
read using read() or pread(). The readdir() function should be used instead.

EOVERFLOW
The file is a regular file, nbyte is greater than 0, the starting position is before the end-of-file, and
the starting position is greater than or equal to the offset maximum established in the open file de-
scription associated with fildes.

The pread() function shall fail if:

EINVAL
The file is a regular file or block special file, and the offset argument is negative. The file offset
shall remain unchanged.

ESPIPE
The file is incapable of seeking.

The read() function shall fail if:

EAGAIN
The file is a pipe or FIFO, the O_NONBLOCK flag is set for the file descriptor, and the thread
would be delayed in the read operation.

EAGAIN or EWOULDBLOCK
The file is a socket, the O_NONBLOCK flag is set for the file descriptor, and the thread would be
delayed in the read operation.

ECONNRESET
A read was attempted on a socket and the connection was forcibly closed by its peer.

IEEE/The Open Group 2017 3

READ(3P) POSIX Programmer’s Manual READ(3P)

ENOTCONN
A read was attempted on a socket that is not connected.

ETIMEDOUT
A read was attempted on a socket and a transmission timeout occurred.

These functions may fail if:

EIO A physical I/O error has occurred.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

The following sections are informative.

EXAMPLES
Reading Data into a Buffer

The following example reads data from the file associated with the file descriptor fd into the buffer pointed
to by buf .

#include <sys/types.h>
#include <unistd.h>
...
char buf[20];
size_t nbytes;
ssize_t bytes_read;
int fd;
...
nbytes = sizeof(buf);
bytes_read = read(fd, buf, nbytes);
...

APPLICATION USAGE
None.

RATIONALE
This volume of POSIX.1-2017 does not specify the value of the file offset after an error is returned; there
are too many cases. For programming errors, such as [EBADF], the concept is meaningless since no file is
involved. For errors that are detected immediately, such as [EAGAIN], clearly the offset should not change.
After an interrupt or hardware error, howev er, an updated value would be very useful and is the behavior of
many implementations.

Note that a read() of zero bytes does not modify the last data access timestamp. A read() that requests more
than zero bytes, but returns zero, is required to modify the last data access timestamp.

Implementations are allowed, but not required, to perform error checking for read() requests of zero bytes.

Input and Output
The use of I/O with large byte counts has always presented problems. Ideas such as lread() and lwrite()
(using and returning longs) were considered at one time. The current solution is to use abstract types on the
ISO C standard function to read() and write(). The abstract types can be declared so that existing functions
work, but can also be declared so that larger types can be represented in future implementations. It is pre-
sumed that whatever constraints limit the maximum range of size_t also limit portable I/O requests to the
same range. This volume of POSIX.1-2017 also limits the range further by requiring that the byte count be

IEEE/The Open Group 2017 4

READ(3P) POSIX Programmer’s Manual READ(3P)

limited so that a signed return value remains meaningful. Since the return type is also a (signed) abstract
type, the byte count can be defined by the implementation to be larger than an int can hold.

The standard developers considered adding atomicity requirements to a pipe or FIFO, but recognized that
due to the nature of pipes and FIFOs there could be no guarantee of atomicity of reads of {PIPE_BUF} or
any other size that would be an aid to applications portability.

This volume of POSIX.1-2017 requires that no action be taken for read() or write() when nbyte is zero.
This is not intended to take precedence over detection of errors (such as invalid buffer pointers or file de-
scriptors). This is consistent with the rest of this volume of POSIX.1-2017, but the phrasing here could be
misread to require detection of the zero case before any other errors. A value of zero is to be considered a
correct value, for which the semantics are a no-op.

I/O is intended to be atomic to ordinary files and pipes and FIFOs. Atomic means that all the bytes from a
single operation that started out together end up together, without interleaving from other I/O operations. It
is a known attribute of terminals that this is not honored, and terminals are explicitly (and implicitly perma-
nently) excepted, making the behavior unspecified. The behavior for other device types is also left unspeci-
fied, but the wording is intended to imply that future standards might choose to specify atomicity (or not).

There were recommendations to add format parameters to read() and write() in order to handle networked
transfers among heterogeneous file system and base hardware types. Such a facility may be required for
support by the OSI presentation of layer services. However, it was determined that this should correspond
with similar C-language facilities, and that is beyond the scope of this volume of POSIX.1-2017. The con-
cept was suggested to the developers of the ISO C standard for their consideration as a possible area for fu-
ture work.

In 4.3 BSD, a read() or write() that is interrupted by a signal before transferring any data does not by de-
fault return an [EINTR] error, but is restarted. In 4.2 BSD, 4.3 BSD, and the Eighth Edition, there is an ad-
ditional function, select(), whose purpose is to pause until specified activity (data to read, space to write,
and so on) is detected on specified file descriptors. It is common in applications written for those systems
for select() to be used before read() in situations (such as keyboard input) where interruption of I/O due to a
signal is desired.

The issue of which files or file types are interruptible is considered an implementation design issue. This is
often affected primarily by hardware and reliability issues.

There are no references to actions taken following an ‘‘unrecoverable error’’. It is considered beyond the
scope of this volume of POSIX.1-2017 to describe what happens in the case of hardware errors.

Earlier versions of this standard allowed two very different behaviors with regard to the handling of inter-
rupts. In order to minimize the resulting confusion, it was decided that POSIX.1-2008 should support only
one of these behaviors. Historical practice on AT&T-derived systems was to have read() and write() return
−1 and set errno to [EINTR] when interrupted after some, but not all, of the data requested had been trans-
ferred. However, the US Department of Commerce FIPS 151-1 and FIPS 151-2 require the historical BSD
behavior, in which read() and write() return the number of bytes actually transferred before the interrupt. If
−1 is returned when any data is transferred, it is difficult to recover from the error on a seekable device and
impossible on a non-seekable device. Most new implementations support this behavior. The behavior re-
quired by POSIX.1-2008 is to return the number of bytes transferred.

POSIX.1-2008 does not specify when an implementation that buffers read()s actually moves the data into
the user-supplied buffer, so an implementation may choose to do this at the latest possible moment. There-
fore, an interrupt arriving earlier may not cause read() to return a partial byte count, but rather to return −1
and set errno to [EINTR].

Consideration was also given to combining the two previous options, and setting errno to [EINTR] while
returning a short count. However, not only is there no existing practice that implements this, it is also con-
tradictory to the idea that when errno is set, the function responsible shall return −1.

This volume of POSIX.1-2017 intentionally does not specify any pread() errors related to pipes, FIFOs,
and sockets other than [ESPIPE].

IEEE/The Open Group 2017 5

READ(3P) POSIX Programmer’s Manual READ(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), ioctl(), lseek(), open(), pipe(), readv()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <stropts.h>,
<sys_uio.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 6

READDIR(3P) POSIX Programmer’s Manual READDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
readdir, readdir_r — read a directory

SYNOPSIS
#include <dirent.h>

struct dirent *readdir(DIR *dirp);
int readdir_r(DIR *restrict dirp, struct dirent *restrict entry,

struct dirent **restrict result);

DESCRIPTION
The type DIR, which is defined in the <dirent.h> header, represents a directory stream, which is an ordered
sequence of all the directory entries in a particular directory. Directory entries represent files; files may be
removed from a directory or added to a directory asynchronously to the operation of readdir().

The readdir() function shall return a pointer to a structure representing the directory entry at the current po-
sition in the directory stream specified by the argument dirp, and position the directory stream at the next
entry. It shall return a null pointer upon reaching the end of the directory stream. The structure dirent de-
fined in the <dirent.h> header describes a directory entry. The value of the structure’s d_ino member shall
be set to the file serial number of the file named by the d_name member. If the d_name member names a
symbolic link, the value of the d_ino member shall be set to the file serial number of the symbolic link it-
self.

The readdir() function shall not return directory entries containing empty names. If entries for dot or dot-
dot exist, one entry shall be returned for dot and one entry shall be returned for dot-dot; otherwise, they
shall not be returned.

The application shall not modify the structure to which the return value of readdir() points, nor any storage
areas pointed to by pointers within the structure. The returned pointer, and pointers within the structure,
might be invalidated or the structure or the storage areas might be overwritten by a subsequent call to read-

dir() on the same directory stream. They shall not be affected by a call to readdir() on a different directory
stream. The returned pointer, and pointers within the structure, might also be invalidated if the calling
thread is terminated.

If a file is removed from or added to the directory after the most recent call to opendir() or re winddir(),
whether a subsequent call to readdir() returns an entry for that file is unspecified.

The readdir() function may buffer several directory entries per actual read operation; readdir() shall mark
for update the last data access timestamp of the directory each time the directory is actually read.

After a call to fork(), either the parent or child (but not both) may continue processing the directory stream
using readdir(), re winddir(), or seekdir(). If both the parent and child processes use these functions, the re-
sult is undefined.

The readdir() function need not be thread-safe.

Applications wishing to check for error situations should set errno to 0 before calling readdir(). If errno is
set to non-zero on return, an error occurred.

The readdir_r() function shall initialize the dirent structure referenced by entry to represent the directory
entry at the current position in the directory stream referred to by dirp, store a pointer to this structure at the
location referenced by result, and position the directory stream at the next entry.

The storage pointed to by entry shall be large enough for a dirent with an array of char d_name members
containing at least {NAME_MAX}+1 elements.

Upon successful return, the pointer returned at *result shall have the same value as the argument entry.
Upon reaching the end of the directory stream, this pointer shall have the value NULL.

IEEE/The Open Group 2017 1

READDIR(3P) POSIX Programmer’s Manual READDIR(3P)

The readdir_r() function shall not return directory entries containing empty names.

If a file is removed from or added to the directory after the most recent call to opendir() or re winddir(),
whether a subsequent call to readdir_r() returns an entry for that file is unspecified.

The readdir_r() function may buffer several directory entries per actual read operation; readdir_r() shall
mark for update the last data access timestamp of the directory each time the directory is actually read.

RETURN VALUE
Upon successful completion, readdir() shall return a pointer to an object of type struct dirent. When an
error is encountered, a null pointer shall be returned and errno shall be set to indicate the error. When the
end of the directory is encountered, a null pointer shall be returned and errno is not changed.

If successful, the readdir_r() function shall return zero; otherwise, an error number shall be returned to in-
dicate the error.

ERRORS
These functions shall fail if:

EOVERFLOW
One of the values in the structure to be returned cannot be represented correctly.

These functions may fail if:

EBADF
The dirp argument does not refer to an open directory stream.

ENOENT
The current position of the directory stream is invalid.

The following sections are informative.

EXAMPLES
The following sample program searches the current directory for each of the arguments supplied on the
command line.

#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

static void lookup(const char *arg)
{

DIR *dirp;
struct dirent *dp;

if ((dirp = opendir(".")) == NULL) {
perror("couldn't open '.'");
return;

}

do {
errno = 0;
if ((dp = readdir(dirp)) != NULL) {

if (strcmp(dp->d_name, arg) != 0)
continue;

(void) printf("found %s\n", arg);
(void) closedir(dirp);

return;

}
} while (dp != NULL);

IEEE/The Open Group 2017 2

READDIR(3P) POSIX Programmer’s Manual READDIR(3P)

if (errno != 0)
perror("error reading directory");

else
(void) printf("failed to find %s\n", arg);

(void) closedir(dirp);
return;

}

int main(int argc, char *argv[])
{

int i;
for (i = 1; i < argc; i++)

lookup(argv[i]);
return (0);

}

APPLICATION USAGE
The readdir() function should be used in conjunction with opendir(), closedir(), and re winddir() to examine
the contents of the directory.

The readdir_r() function is thread-safe and shall return values in a user-supplied buffer instead of possibly
using a static data area that may be overwritten by each call.

RATIONALE
The returned value of readdir() merely represents a directory entry. No equivalence should be inferred.

Historical implementations of readdir() obtain multiple directory entries on a single read operation, which
permits subsequent readdir() operations to operate from the buffered information. Any wording that re-
quired each successful readdir() operation to mark the directory last data access timestamp for update
would disallow such historical performance-oriented implementations.

When returning a directory entry for the root of a mounted file system, some historical implementations of
readdir() returned the file serial number of the underlying mount point, rather than of the root of the
mounted file system. This behavior is considered to be a bug, since the underlying file serial number has no
significance to applications.

Since readdir() returns NULL when it detects an error and when the end of the directory is encountered, an
application that needs to tell the difference must set errno to zero before the call and check it if NULL is re-
turned. Since the function must not change errno in the second case and must set it to a non-zero value in
the first case, a zero errno after a call returning NULL indicates end-of-directory; otherwise, an error.

Routines to deal with this problem more directly were proposed:

int derror (dirp)
DIR *dirp;

void clearderr (dirp)
DIR *dirp;

The first would indicate whether an error had occurred, and the second would clear the error indication. The
simpler method involving errno was adopted instead by requiring that readdir() not change errno when
end-of-directory is encountered.

An error or signal indicating that a directory has changed while open was considered but rejected.

The thread-safe version of the directory reading function returns values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call. Either the {NAME_MAX} compile-
time constant or the corresponding pathconf() option can be used to determine the maximum sizes of re-
turned pathnames.

IEEE/The Open Group 2017 3

READDIR(3P) POSIX Programmer’s Manual READDIR(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), dirfd(), exec , fdopendir(), fstatat(), re winddir(), symlink()

The Base Definitions volume of POSIX.1-2017, <dirent.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

READLINK(3P) POSIX Programmer’s Manual READLINK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
readlink, readlinkat — read the contents of a symbolic link

SYNOPSIS
#include <unistd.h>

ssize_t readlink(const char *restrict path, char *restrict buf,
size_t bufsize);

#include <fcntl.h>

ssize_t readlinkat(int fd, const char *restrict path,
char *restrict buf, size_t bufsize);

DESCRIPTION
The readlink() function shall place the contents of the symbolic link referred to by path in the buffer buf

which has size bufsize. If the number of bytes in the symbolic link is less than bufsize, the contents of the
remainder of buf are unspecified. If the buf argument is not large enough to contain the link content, the first
bufsize bytes shall be placed in buf .

If the value of bufsize is greater than {SSIZE_MAX}, the result is implementation-defined.

Upon successful completion, readlink() shall mark for update the last data access timestamp of the sym-
bolic link.

The readlinkat() function shall be equivalent to the readlink() function except in the case where path speci-
fies a relative path. In this case the symbolic link whose content is read is relative to the directory associated
with the file descriptor fd instead of the current working directory. If the access mode of the open file de-
scription associated with the file descriptor is not O_SEARCH, the function shall check whether directory
searches are permitted using the current permissions of the directory underlying the file descriptor. If the
access mode is O_SEARCH, the function shall not perform the check.

If readlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used and the behavior shall be identical to a call to readlink().

RETURN VALUE
Upon successful completion, these functions shall return the count of bytes placed in the buffer. Otherwise,
these functions shall return a value of −1, leave the buffer unchanged, and set errno to indicate the error.

ERRORS
These functions shall fail if:

EACCES
Search permission is denied for a component of the path prefix of path.

EINVAL
The path argument names a file that is not a symbolic link.

EIO An I/O error occurred while reading from the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

IEEE/The Open Group 2017 1

READLINK(3P) POSIX Programmer’s Manual READLINK(3P)

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

The readlinkat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Reading the Name of a Symbolic Link

The following example shows how to read the name of a symbolic link named /modules/pass1.

#include <unistd.h>

char buf[1024];
ssize_t len;
...
if ((len = readlink("/modules/pass1", buf, sizeof(buf)-1)) != -1)

buf[len] = '\0';

APPLICATION USAGE
Conforming applications should not assume that the returned contents of the symbolic link are null-termi-
nated.

RATIONALE
The type associated with bufsiz is a size_t in order to be consistent with both the ISO C standard and the
definition of read(). The behavior specified for readlink() when bufsiz is zero represents historical practice.
For this case, the standard developers considered a change whereby readlink() would return the number of
non-null bytes contained in the symbolic link with the buffer buf remaining unchanged; however, since the
stat structure member st_size value can be used to determine the size of buffer necessary to contain the
contents of the symbolic link as returned by readlink(), this proposal was rejected, and the historical prac-
tice retained.

The purpose of the readlinkat() function is to read the content of symbolic links in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to a call to readlink(), resulting in unspecified behavior. By opening a file descriptor for
the target directory and using the readlinkat() function it can be guaranteed that the symbolic link read is

IEEE/The Open Group 2017 2

READLINK(3P) POSIX Programmer’s Manual READLINK(3P)

located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
fstatat(), symlink()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

READV(3P) POSIX Programmer’s Manual READV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
readv — read a vector

SYNOPSIS
#include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The readv() function shall be equivalent to read(), except as described below. The readv() function shall
place the input data into the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], . . .,
iov[iovcnt−1]. The iovcnt argument is valid if greater than 0 and less than or equal to {IOV_MAX}.

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
The readv() function shall always fill an area completely before proceeding to the next.

Upon successful completion, readv() shall mark for update the last data access timestamp of the file.

RETURN VALUE
Refer to read().

ERRORS
Refer to read().

In addition, the readv() function shall fail if:

EINVAL
The sum of the iov_len values in the iov array overflowed an ssize_t.

The readv() function may fail if:

EINVAL
The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

The following sections are informative.

EXAMPLES
Reading Data into an Array

The following example reads data from the file associated with the file descriptor fd into the buffers speci-
fied by members of the iov array.

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
...
ssize_t bytes_read;
int fd;
char buf0[20];
char buf1[30];
char buf2[40];
int iovcnt;
struct iovec iov[3];

iov[0].iov_base = buf0;
iov[0].iov_len = sizeof(buf0);
iov[1].iov_base = buf1;
iov[1].iov_len = sizeof(buf1);

IEEE/The Open Group 2017 1

READV(3P) POSIX Programmer’s Manual READV(3P)

iov[2].iov_base = buf2;
iov[2].iov_len = sizeof(buf2);
...
iovcnt = sizeof(iov) / sizeof(struct iovec);

bytes_read = readv(fd, iov, iovcnt);
...

APPLICATION USAGE
None.

RATIONALE
Refer to read().

FUTURE DIRECTIONS
None.

SEE ALSO
read(), writev()

The Base Definitions volume of POSIX.1-2017, <sys_uio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

REALLOC(3P) POSIX Programmer’s Manual REALLOC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
realloc — memory reallocator

SYNOPSIS
#include <stdlib.h>

void *realloc(void *ptr, size_t size);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The realloc() function shall deallocate the old object pointed to by ptr and return a pointer to a new object
that has the size specified by size. The contents of the new object shall be the same as that of the old object
prior to deallocation, up to the lesser of the new and old sizes. Any bytes in the new object beyond the size
of the old object have indeterminate values. If the size of the space requested is zero, the behavior shall be
implementation-defined: either a null pointer is returned, or the behavior shall be as if the size were some
non-zero value, except that the behavior is undefined if the returned pointer is used to access an object. If
the space cannot be allocated, the object shall remain unchanged.

If ptr is a null pointer, realloc() shall be equivalent to malloc() for the specified size.

If ptr does not match a pointer returned earlier by calloc(), malloc(), or realloc() or if the space has previ-
ously been deallocated by a call to free() or realloc(), the behavior is undefined.

The order and contiguity of storage allocated by successive calls to realloc() is unspecified. The pointer re-
turned if the allocation succeeds shall be suitably aligned so that it may be assigned to a pointer to any type
of object and then used to access such an object in the space allocated (until the space is explicitly freed or
reallocated). Each such allocation shall yield a pointer to an object disjoint from any other object. The
pointer returned shall point to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, a null pointer shall be returned.

RETURN VALUE
Upon successful completion, realloc() shall return a pointer to the (possibly moved) allocated space. If size

is 0, either:

* A null pointer shall be returned and, if ptr is not a null pointer, errno shall be set to an implementa-
tion-defined value.

* A pointer to the allocated space shall be returned, and the memory object pointed to by ptr shall be
freed. The application shall ensure that the pointer is not used to access an object.

If there is not enough available memory, realloc() shall return a null pointer and set errno to [ENOMEM].
If realloc() returns a null pointer and errno has been set to [ENOMEM], the memory referenced by ptr

shall not be changed.

ERRORS
The realloc() function shall fail if:

ENOMEM
Insufficient memory is available.

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

REALLOC(3P) POSIX Programmer’s Manual REALLOC(3P)

APPLICATION USAGE
The description of realloc() has been modified from previous versions of this standard to align with the
ISO/IEC 9899: 1999 standard. Previous versions explicitly permitted a call to realloc(p, 0) to free the space

pointed to by p and return a null pointer. While this behavior could be interpreted as permitted by this ver-
sion of the standard, the C language committee have indicated that this interpretation is incorrect. Applica-
tions should assume that if realloc() returns a null pointer, the space pointed to by p has not been freed.
Since this could lead to double-frees, implementations should also set errno if a null pointer actually indi-
cates a failure, and applications should only free the space if errno was changed.

RATIONALE
None.

FUTURE DIRECTIONS
This standard defers to the ISO C standard. While that standard currently has language that might permit
realloc(p, 0), where p is not a null pointer, to free p while still returning a null pointer, the committee re-
sponsible for that standard is considering clarifying the language to explicitly prohibit that alternative.

SEE ALSO
calloc(), free(), malloc()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

REALPATH(3P) POSIX Programmer’s Manual REALPATH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
realpath — resolve a pathname

SYNOPSIS
#include <stdlib.h>

char *realpath(const char *restrict file_name,
char *restrict resolved_name);

DESCRIPTION
The realpath() function shall derive, from the pathname pointed to by file_name, an absolute pathname that
resolves to the same directory entry, whose resolution does not involve ’.’, ’..’, or symbolic links. If
resolved_name is a null pointer, the generated pathname shall be stored as a null-terminated string in a buf-
fer allocated as if by a call to malloc(). Otherwise, if {PATH_MAX} is defined as a constant in the <lim-

its.h> header, then the generated pathname shall be stored as a null-terminated string, up to a maximum of
{PATH_MAX} bytes, in the buffer pointed to by resolved_name.

If resolved_name is not a null pointer and {PATH_MAX} is not defined as a constant in the <limits.h>

header, the behavior is undefined.

RETURN VALUE
Upon successful completion, realpath() shall return a pointer to the buffer containing the resolved name.
Otherwise, realpath() shall return a null pointer and set errno to indicate the error.

If the resolved_name argument is a null pointer, the pointer returned by realpath() can be passed to free().

If the resolved_name argument is not a null pointer and the realpath() function fails, the contents of the buf-
fer pointed to by resolved_name are undefined.

ERRORS
The realpath() function shall fail if:

EACCES
Search permission was denied for a component of the path prefix of file_name.

EINVAL
The file_name argument is a null pointer.

EIO An error occurred while reading from the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the file_name argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of file_name does not name an existing file or file_name points to an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the file_name argument contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname component names an existing
file that is neither a directory nor a symbolic link to a directory.

The realpath() function may fail if:

EACCES
The file_name argument does not begin with a <slash> and none of the symbolic links (if any)
processed during pathname resolution of file_name had contents that began with a <slash>, and

IEEE/The Open Group 2017 1

REALPATH(3P) POSIX Programmer’s Manual REALPATH(3P)

either search permission was denied for the current directory or read or search permission was de-
nied for a directory above the current directory in the file hierarchy.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the
file_name argument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ENOMEM
Insufficient storage space is available.

The following sections are informative.

EXAMPLES
Generating an Absolute Pathname

The following example generates an absolute pathname for the file identified by the symlinkpath argument.
The generated pathname is stored in the buffer pointed to by actualpath.

#include <stdlib.h>
...
char *symlinkpath = "/tmp/symlink/file";
char *actualpath;

actualpath = realpath(symlinkpath, NULL);
if (actualpath != NULL)
{

... use actualpath ...

free(actualpath);
}
else
{

... handle error ...
}

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory when it is
no longer required by a call to free(). For realpath(), this is the return value.

RATIONALE
Since realpath() has no length argument, if {PATH_MAX} is not defined as a constant in <limits.h>, appli-
cations have no way of determining how large a buffer they need to allocate for it to be safe to pass to real-

path(). A {PATH_MAX} value obtained from a prior pathconf() call is out-of-date by the time realpath() is
called. Hence the only reliable way to use realpath() when {PATH_MAX} is not defined in <limits.h> is to
pass a null pointer for resolved_name so that realpath() will allocate a buffer of the necessary size.

FUTURE DIRECTIONS
None.

SEE ALSO
fpathconf(), free(), getcwd(), sysconf()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 2

REALPATH(3P) POSIX Programmer’s Manual REALPATH(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

RECV(3P) POSIX Programmer’s Manual RECV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
recv — receive a message from a connected socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recv(int socket, void *buffer, size_t length, int flags);

DESCRIPTION
The recv() function shall receive a message from a connection-mode or connectionless-mode socket. It is
normally used with connected sockets because it does not permit the application to retrieve the source ad-
dress of received data.

The recv() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to a buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by logically
OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread and the next recv()
or similar function shall still return this data.

MSG_OOB Requests out-of-band data. The significance and semantics of out-of-band data
are protocol-specific.

MSG_WAITALL
On SOCK_STREAM sockets this requests that the function block until the full
amount of data can be returned. The function may return the smaller amount of
data if the socket is a message-based socket, if a signal is caught, if the connec-
tion is terminated, if MSG_PEEK was specified, or if an error is pending for the
socket.

The recv() function shall return the length of the message written to the buffer pointed to by the buffer argu-
ment. For message-based sockets, such as SOCK_DGRAM and SOCK_SEQPACKET, the entire message
shall be read in a single operation. If a message is too long to fit in the supplied buffer, and MSG_PEEK is
not set in the flags argument, the excess bytes shall be discarded. For stream-based sockets, such as
SOCK_STREAM, message boundaries shall be ignored. In this case, data shall be returned to the user as
soon as it becomes available, and no data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file descriptor,
recv() shall block until a message arrives. If no messages are available at the socket and O_NONBLOCK is
set on the socket’s file descriptor, recv() shall fail and set errno to [EAGAIN] or [EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recv() shall return the length of the message in bytes. If no messages are avail-
able to be received and the peer has performed an orderly shutdown, recv() shall return 0. Otherwise, −1
shall be returned and errno set to indicate the error.

ERRORS
The recv() function shall fail if:

IEEE/The Open Group 2017 1

RECV(3P) POSIX Programmer’s Manual RECV(3P)

EAGAIN or EWOULDBLOCK
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting to be received; or
MSG_OOB is set and no out-of-band data is available and either the socket’s file descriptor is
marked O_NONBLOCK or the socket does not support blocking to await out-of-band data.

EBADF
The socket argument is not a valid file descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EINTR
The recv() function was interrupted by a signal that was caught, before any data was available.

EINVAL
The MSG_OOB flag is set and no out-of-band data is available.

ENOTCONN
A receive is attempted on a connection-mode socket that is not connected.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The specified flags are not supported for this socket type or protocol.

ETIMEDOUT
The connection timed out during connection establishment, or due to a transmission timeout on ac-
tive connection.

The recv() function may fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The recv() function is equivalent to recvfrom() with null pointer address and address_len arguments, and to
read() if the socket argument refers to a socket and the flags argument is 0.

The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), read(), recvmsg(), recvfrom(), send(), sendmsg(), sendto(), shutdown(), socket(),
write()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 2

RECV(3P) POSIX Programmer’s Manual RECV(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

RECVFROM(3P) POSIX Programmer’s Manual RECVFROM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
recvfrom — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvfrom(int socket, void *restrict buffer, size_t length,
int flags, struct sockaddr *restrict address,
socklen_t *restrict address_len);

DESCRIPTION
The recvfrom() function shall receive a message from a connection-mode or connectionless-mode socket. It
is normally used with connectionless-mode sockets because it permits the application to retrieve the source
address of received data.

The recvfrom() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by logically
OR’ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread and the next
recvfrom() or similar function shall still return this data.

MSG_OOB Requests out-of-band data. The significance and semantics of out-of-band
data are protocol-specific.

MSG_WAITALL
On SOCK_STREAM sockets this requests that the function block until the
full amount of data can be returned. The function may return the smaller
amount of data if the socket is a message-based socket, if a signal is caught, if
the connection is terminated, if MSG_PEEK was specified, or if an error is
pending for the socket.

address A null pointer, or points to a sockaddr structure in which the sending address is to be stored.
The length and format of the address depend on the address family of the socket.

address_len Either a null pointer, if address is a null pointer, or a pointer to a socklen_t object which on
input specifies the length of the supplied sockaddr structure, and on output specifies the
length of the stored address.

The recvfrom() function shall return the length of the message written to the buffer pointed to by the buffer

argument. For message-based sockets, such as SOCK_RAW, SOCK_DGRAM, and SOCK_SEQPACKET,
the entire message shall be read in a single operation. If a message is too long to fit in the supplied buffer,
and MSG_PEEK is not set in the flags argument, the excess bytes shall be discarded. For stream-based
sockets, such as SOCK_STREAM, message boundaries shall be ignored. In this case, data shall be returned
to the user as soon as it becomes available, and no data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first message.

Not all protocols provide the source address for messages. If the address argument is not a null pointer and
the protocol provides the source address of messages, the source address of the received message shall be
stored in the sockaddr structure pointed to by the address argument, and the length of this address shall be
stored in the object pointed to by the address_len argument.

IEEE/The Open Group 2017 1

RECVFROM(3P) POSIX Programmer’s Manual RECVFROM(3P)

If the actual length of the address is greater than the length of the supplied sockaddr structure, the stored
address shall be truncated.

If the address argument is not a null pointer and the protocol does not provide the source address of mes-
sages, the value stored in the object pointed to by address is unspecified.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file descriptor,
recvfrom() shall block until a message arrives. If no messages are available at the socket and O_NON-
BLOCK is set on the socket’s file descriptor, recvfrom() shall fail and set errno to [EAGAIN] or
[EWOULDBLOCK].

RETURN VALUE
Upon successful completion, recvfrom() shall return the length of the message in bytes. If no messages are
available to be received and the peer has performed an orderly shutdown, recvfrom() shall return 0. Other-
wise, the function shall return −1 and set errno to indicate the error.

ERRORS
The recvfrom() function shall fail if:

EAGAIN or EWOULDBLOCK
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting to be received; or
MSG_OOB is set and no out-of-band data is available and either the socket’s file descriptor is
marked O_NONBLOCK or the socket does not support blocking to await out-of-band data.

EBADF
The socket argument is not a valid file descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EINTR
A signal interrupted recvfrom() before any data was available.

EINVAL
The MSG_OOB flag is set and no out-of-band data is available.

ENOTCONN
A receive is attempted on a connection-mode socket that is not connected.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The specified flags are not supported for this socket type.

ETIMEDOUT
The connection timed out during connection establishment, or due to a transmission timeout on ac-
tive connection.

The recvfrom() function may fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 2

RECVFROM(3P) POSIX Programmer’s Manual RECVFROM(3P)

APPLICATION USAGE
The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), read(), recv(), recvmsg(), send(), sendmsg(), sendto(), shutdown(), socket(), write()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

RECVMSG(3P) POSIX Programmer’s Manual RECVMSG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
recvmsg — receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t recvmsg(int socket, struct msghdr *message, int flags);

DESCRIPTION
The recvmsg() function shall receive a message from a connection-mode or connectionless-mode socket. It
is normally used with connectionless-mode sockets because it permits the application to retrieve the source
address of received data.

The recvmsg() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the buffer to store the source address and the
buffers for the incoming message. The length and format of the address depend on the ad-
dress family of the socket. The msg_flags member is ignored on input, but may contain
meaningful values on output.

flags Specifies the type of message reception. Values of this argument are formed by logically
OR’ing zero or more of the following values:

MSG_OOB Requests out-of-band data. The significance and semantics of out-of-band
data are protocol-specific.

MSG_PEEK Peeks at the incoming message.

MSG_WAITALL
On SOCK_STREAM sockets this requests that the function block until the
full amount of data can be returned. The function may return the smaller
amount of data if the socket is a message-based socket, if a signal is caught, if
the connection is terminated, if MSG_PEEK was specified, or if an error is
pending for the socket.

The recvmsg() function shall receive messages from unconnected or connected sockets and shall return the
length of the message.

The recvmsg() function shall return the total length of the message. For message-based sockets, such as
SOCK_DGRAM and SOCK_SEQPACKET, the entire message shall be read in a single operation. If a
message is too long to fit in the supplied buffers, and MSG_PEEK is not set in the flags argument, the ex-
cess bytes shall be discarded, and MSG_TRUNC shall be set in the msg_flags member of the msghdr
structure. For stream-based sockets, such as SOCK_STREAM, message boundaries shall be ignored. In this
case, data shall be returned to the user as soon as it becomes available, and no data shall be discarded.

If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file descriptor,
recvmsg() shall block until a message arrives. If no messages are available at the socket and O_NON-
BLOCK is set on the socket’s file descriptor, the recvmsg() function shall fail and set errno to [EAGAIN]
or [EWOULDBLOCK].

In the msghdr structure, the msg_name member may be a null pointer if the source address is not required.
Otherwise, if the socket is unconnected, the msg_name member points to a sockaddr structure in which the
source address is to be stored, and the msg_namelen member on input specifies the length of the supplied
sockaddr structure and on output specifies the length of the stored address. If the actual length of the ad-
dress is greater than the length of the supplied sockaddr structure, the stored address shall be truncated. If

IEEE/The Open Group 2017 1

RECVMSG(3P) POSIX Programmer’s Manual RECVMSG(3P)

the socket is connected, the msg_name and msg_namelen members shall be ignored. The msg_iov and
msg_iovlen fields are used to specify where the received data shall be stored. The msg_iov member points
to an array of iovec structures; the msg_iovlen member shall be set to the dimension of this array. In each
iovec structure, the iov_base field specifies a storage area and the iov_len field gives its size in bytes. Each
storage area indicated by msg_iov is filled with received data in turn until all of the received data is stored
or all of the areas have been filled.

Upon successful completion, the msg_flags member of the message header shall be the bitwise-inclusive
OR of all of the following flags that indicate conditions detected for the received message:

MSG_EOR End-of-record was received (if supported by the protocol).

MSG_OOB Out-of-band data was received.

MSG_TRUNC
Normal data was truncated.

MSG_CTRUNC
Control data was truncated.

RETURN VALUE
Upon successful completion, recvmsg() shall return the length of the message in bytes. If no messages are
available to be received and the peer has performed an orderly shutdown, recvmsg() shall return 0. Other-
wise, −1 shall be returned and errno set to indicate the error.

ERRORS
The recvmsg() function shall fail if:

EAGAIN or EWOULDBLOCK
The socket’s file descriptor is marked O_NONBLOCK and no data is waiting to be received; or
MSG_OOB is set and no out-of-band data is available and either the socket’s file descriptor is
marked O_NONBLOCK or the socket does not support blocking to await out-of-band data.

EBADF
The socket argument is not a valid open file descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EINTR
This function was interrupted by a signal before any data was available.

EINVAL
The sum of the iov_len values overflows a ssize_t, or the MSG_OOB flag is set and no out-of-
band data is available.

EMSGSIZE
The msg_iovlen member of the msghdr structure pointed to by message is less than or equal to 0,
or is greater than {IOV_MAX}.

ENOTCONN
A receive is attempted on a connection-mode socket that is not connected.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The specified flags are not supported for this socket type.

ETIMEDOUT
The connection timed out during connection establishment, or due to a transmission timeout on ac-
tive connection.

The recvmsg() function may fail if:

IEEE/The Open Group 2017 2

RECVMSG(3P) POSIX Programmer’s Manual RECVMSG(3P)

EIO An I/O error occurred while reading from or writing to the file system.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when data is available to be received.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll(), pselect(), recv(), recvfrom(), send(), sendmsg(), sendto(), shutdown(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

REGCOMP(3P) POSIX Programmer’s Manual REGCOMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
regcomp, regerror, regexec, regfree — regular expression matching

SYNOPSIS
#include <regex.h>

int regcomp(regex_t *restrict preg, const char *restrict pattern,
int cflags);

size_t regerror(int errcode, const regex_t *restrict preg,
char *restrict errbuf, size_t errbuf_size);

int regexec(const regex_t *restrict preg, const char *restrict string,
size_t nmatch, regmatch_t pmatch[restrict], int eflags);

void regfree(regex_t *preg);

DESCRIPTION
These functions interpret basic and extended regular expressions as described in the Base Definitions vol-
ume of POSIX.1-2017, Chapter 9, Regular Expressions.

The regex_t structure is defined in <reg ex.h> and contains at least the following member:

center box tab(!); cB | cB | cB lw(1.25i)B | lw(1.25i)I | lw(2.5i). Member Type!Member Name!Description
_ size_t!re_nsub!T{ Number of parenthesized subexpressions. T}

The regmatch_t structure is defined in <reg ex.h> and contains at least the following members:

center box tab(!); cB | cB | cB lw(1.25i)B | lw(1.25i)I | lw(2.5i). Member Type!Member Name!Description
_ regoff_t!rm_so!T{ Byte offset from start of string to start of substring. T} regoff_t!rm_eo!T{ Byte offset
from start of string of the first character after the end of substring. T}

The regcomp() function shall compile the regular expression contained in the string pointed to by the pat-

tern argument and place the results in the structure pointed to by preg. The cflags argument is the bitwise-
inclusive OR of zero or more of the following flags, which are defined in the <reg ex.h> header:

REG_EXTENDED
Use Extended Regular Expressions.

REG_ICASE Ignore case in match (see the Base Definitions volume of POSIX.1-2017, Chapter 9, Reg-

ular Expressions).

REG_NOSUB Report only success/fail in regexec().

REG_NEWLINE
Change the handling of <newline> characters, as described in the text.

The default regular expression type for pattern is a Basic Regular Expression. The application can specify
Extended Regular Expressions using the REG_EXTENDED cflags flag.

If the REG_NOSUB flag was not set in cflags, then regcomp() shall set re_nsub to the number of parenthe-
sized subexpressions (delimited by "\(\)" in basic regular expressions or "()" in extended regular expres-
sions) found in pattern.

The regexec() function compares the null-terminated string specified by string with the compiled regular
expression preg initialized by a previous call to regcomp(). If it finds a match, regexec() shall return 0; oth-
erwise, it shall return non-zero indicating either no match or an error. The eflags argument is the bitwise-in-
clusive OR of zero or more of the following flags, which are defined in the <reg ex.h> header:

REG_NOTBOL
The first character of the string pointed to by string is not the beginning of the line. There-
fore, the <circumflex> character (’^’), when taken as a special character, shall not match
the beginning of string.

IEEE/The Open Group 2017 1

REGCOMP(3P) POSIX Programmer’s Manual REGCOMP(3P)

REG_NOTEOL The last character of the string pointed to by string is not the end of the line. Therefore,
the <dollar-sign> (’$’), when taken as a special character, shall not match the end of
string.

If nmatch is 0 or REG_NOSUB was set in the cflags argument to regcomp(), then regexec() shall ignore the
pmatch argument. Otherwise, the application shall ensure that the pmatch argument points to an array with
at least nmatch elements, and regexec() shall fill in the elements of that array with offsets of the substrings
of string that correspond to the parenthesized subexpressions of pattern: pmatch[i].rm_so shall be the byte
offset of the beginning and pmatch[i].rm_eo shall be one greater than the byte offset of the end of substring
i. (Subexpression i begins at the ith matched open parenthesis, counting from 1.) Offsets in pmatch[0]
identify the substring that corresponds to the entire regular expression. Unused elements of pmatch up to
pmatch[nmatch−1] shall be filled with −1. If there are more than nmatch subexpressions in pattern (pat-

tern itself counts as a subexpression), then regexec() shall still do the match, but shall record only the first
nmatch substrings.

When matching a basic or extended regular expression, any giv en parenthesized subexpression of pattern

might participate in the match of several different substrings of string, or it might not match any substring
ev en though the pattern as a whole did match. The following rules shall be used to determine which sub-
strings to report in pmatch when matching regular expressions:

1. If subexpression i in a regular expression is not contained within another subexpression, and it partici-
pated in the match several times, then the byte offsets in pmatch[i] shall delimit the last such match.

2. If subexpression i is not contained within another subexpression, and it did not participate in an other-
wise successful match, the byte offsets in pmatch[i] shall be −1. A subexpression does not participate
in the match when:

’*’ or "\{\}" appears immediately after the subexpression in a basic regular expression, or ’*’, ’?’, or
"{ }" appears immediately after the subexpression in an extended regular expression, and the subex-
pression did not match (matched 0 times)

or:

’|’ is used in an extended regular expression to select this subexpression or another, and the
other subexpression matched.

3. If subexpression i is contained within another subexpression j, and i is not contained within any other
subexpression that is contained within j, and a match of subexpression j is reported in pmatch[j],
then the match or non-match of subexpression i reported in pmatch[i] shall be as described in 1. and 2.
above, but within the substring reported in pmatch[j] rather than the whole string. The offsets in
pmatch[i] are still relative to the start of string.

4. If subexpression i is contained in subexpression j, and the byte offsets in pmatch[j] are −1, then the
pointers in pmatch[i] shall also be −1.

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] shall be the byte
offset of the character or null terminator immediately following the zero-length string.

If, when regexec() is called, the locale is different from when the regular expression was compiled, the re-
sult is undefined.

If REG_NEWLINE is not set in cflags, then a <newline> in pattern or string shall be treated as an ordinary
character. If REG_NEWLINE is set, then <newline> shall be treated as an ordinary character except as fol-
lows:

1. A <newline> in string shall not be matched by a <period> outside a bracket expression or by any form
of a non-matching list (see the Base Definitions volume of POSIX.1-2017, Chapter 9, Regular Expres-

sions).

2. A <circumflex> (’^’) in pattern, when used to specify expression anchoring (see the Base Definitions
volume of POSIX.1-2017, Section 9.3.8, BRE Expression Anchoring), shall match the zero-length
string immediately after a <newline> in string, reg ardless of the setting of REG_NOTBOL.

IEEE/The Open Group 2017 2

REGCOMP(3P) POSIX Programmer’s Manual REGCOMP(3P)

3. A <dollar-sign> (’$’) in pattern, when used to specify expression anchoring, shall match the zero-
length string immediately before a <newline> in string, reg ardless of the setting of REG_NOTEOL.

The regfree() function frees any memory allocated by regcomp() associated with preg.

The following constants are defined as the minimum set of error return values, although other errors listed
as implementation extensions in <reg ex.h> are possible:

REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than two numbers, first
larger than second.

REG_BADPAT Invalid regular expression.

REG_BADRPT ’?’, ’*’, or ’+’ not preceded by valid regular expression.

REG_EBRACE "\{\}" imbalance.

REG_EBRACK
"[]" imbalance.

REG_ECOLLATE
Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE
Trailing <backslash> character in pattern.

REG_EPAREN "\(\)" or "()" imbalance.

REG_ERANGE
Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_ESUBREG
Number in "\digit" invalid or in error.

REG_NOMATCH
regexec() failed to match.

If more than one error occurs in processing a function call, any one of the possible constants may be re-
turned, as the order of detection is unspecified.

The regerror() function provides a mapping from error codes returned by regcomp() and regexec() to un-
specified printable strings. It generates a string corresponding to the value of the errcode argument, which
the application shall ensure is the last non-zero value returned by regcomp() or regexec() with the given
value of preg. If errcode is not such a value, the content of the generated string is unspecified.

If preg is a null pointer, but errcode is a value returned by a previous call to regexec() or regcomp(), the
regerror() still generates an error string corresponding to the value of errcode, but it might not be as de-
tailed under some implementations.

If the errbuf_size argument is not 0, regerror() shall place the generated string into the buffer of size er-

rbuf_size bytes pointed to by errbuf . If the string (including the terminating null) cannot fit in the buffer,
regerror() shall truncate the string and null-terminate the result.

If errbuf_size is 0, regerror() shall ignore the errbuf argument, and return the size of the buffer needed to
hold the generated string.

If the preg argument to regexec() or regfree() is not a compiled regular expression returned by regcomp(),
the result is undefined. A preg is no longer treated as a compiled regular expression after it is given to
regfree().

RETURN VALUE
Upon successful completion, the regcomp() function shall return 0. Otherwise, it shall return an integer
value indicating an error as described in <reg ex.h>, and the content of preg is undefined. If a code is re-
turned, the interpretation shall be as given in <reg ex.h>.

IEEE/The Open Group 2017 3

REGCOMP(3P) POSIX Programmer’s Manual REGCOMP(3P)

If regcomp() detects an invalid RE, it may return REG_BADPAT , or it may return one of the error codes
that more precisely describes the error.

Upon successful completion, the regexec() function shall return 0. Otherwise, it shall return REG_NO-
MATCH to indicate no match.

Upon successful completion, the regerror() function shall return the number of bytes needed to hold the en-
tire generated string, including the null termination. If the return value is greater than errbuf_size, the string
returned in the buffer pointed to by errbuf has been truncated.

The regfree() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
#include <regex.h>

/*
* Match string against the extended regular expression in
* pattern, treating errors as no match.
*
* Return 1 for match, 0 for no match.
*/

int
match(const char *string, char *pattern)
{

int status;
regex_t re;

if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
return(0); /* Report error. */

}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {

return(0); /* Report error. */
}
return(1);

}

The following demonstrates how the REG_NOTBOL flag could be used with regexec() to find all sub-
strings in a line that match a pattern supplied by a user. (For simplicity of the example, very little error
checking is done.)

(void) regcomp (&re, pattern, 0);
/* This call to regexec() finds the first match on the line. */
error = regexec (&re, &buffer[0], 1, &pm, 0);
while (error == 0) { /* While matches found. */

/* Substring found between pm.rm_so and pm.rm_eo. */
/* This call to regexec() finds the next match. */
error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);

}

APPLICATION USAGE
An application could use:

IEEE/The Open Group 2017 4

REGCOMP(3P) POSIX Programmer’s Manual REGCOMP(3P)

regerror(code,preg,(char *)NULL,(size_t)0)

to find out how big a buffer is needed for the generated string, malloc() a buffer to hold the string, and then
call regerror() again to get the string. Alternatively, it could allocate a fixed, static buffer that is big enough
to hold most strings, and then use malloc() to allocate a larger buffer if it finds that this is too small.

To match a pattern as described in the Shell and Utilities volume of POSIX.1-2017, Section 2.13, Pattern

Matching Notation, use the fnmatch() function.

RATIONALE
The regexec() function must fill in all nmatch elements of pmatch, where nmatch and pmatch are supplied
by the application, even if some elements of pmatch do not correspond to subexpressions in pattern. The
application developer should note that there is probably no reason for using a value of nmatch that is larger
than preg−>re_nsub+1.

The REG_NEWLINE flag supports a use of RE matching that is needed in some applications like text edi-
tors. In such applications, the user supplies an RE asking the application to find a line that matches the
given expression. An anchor in such an RE anchors at the beginning or end of any line. Such an application
can pass a sequence of <newline>-separated lines to regexec() as a single long string and specify
REG_NEWLINE to regcomp() to get the desired behavior. The application must ensure that there are no
explicit <newline> characters in pattern if it wants to ensure that any match occurs entirely within a single
line.

The REG_NEWLINE flag affects the behavior of regexec(), but it is in the cflags parameter to regcomp() to
allow flexibility of implementation. Some implementations will want to generate the same compiled RE in
regcomp() regardless of the setting of REG_NEWLINE and have regexec() handle anchors differently based
on the setting of the flag. Other implementations will generate different compiled REs based on the
REG_NEWLINE.

The REG_ICASE flag supports the operations taken by the grep −i option and the historical implementa-
tions of ex and vi. Including this flag will make it easier for application code to be written that does the
same thing as these utilities.

The substrings reported in pmatch[] are defined using offsets from the start of the string rather than point-
ers. This allows type-safe access to both constant and non-constant strings.

The type regoff_t is used for the elements of pmatch[] to ensure that the application can represent large ar-
rays in memory (important for an application conforming to the Shell and Utilities volume of
POSIX.1-2017).

The 1992 edition of this standard required regoff_t to be at least as wide as off_t, to facilitate future exten-
sions in which the string to be searched is taken from a file. However, these future extensions have not ap-
peared. The requirement rules out popular implementations with 32-bit regoff_t and 64-bit off_t, so it has
been removed.

The standard developers rejected the inclusion of a regsub() function that would be used to do substitutions
for a matched RE. While such a routine would be useful to some applications, its utility would be much
more limited than the matching function described here. Both RE parsing and substitution are possible to
implement without support other than that required by the ISO C standard, but matching is much more
complex than substituting. The only difficult part of substitution, given the information supplied by
regexec(), is finding the next character in a string when there can be multi-byte characters. That is a much
larger issue, and one that needs a more general solution.

The errno variable has not been used for error returns to avoid filling the errno name space for this feature.

The interface is defined so that the matched substrings rm_sp and rm_ep are in a separate regmatch_t
structure instead of in regex_t. This allows a single compiled RE to be used simultaneously in several con-
texts; in main() and a signal handler, perhaps, or in multiple threads of lightweight processes. (The preg ar-
gument to regexec() is declared with type const, so the implementation is not permitted to use the structure
to store intermediate results.) It also allows an application to request an arbitrary number of substrings from
an RE. The number of subexpressions in the RE is reported in re_nsub in preg. With this change to
regexec(), consideration was given to dropping the REG_NOSUB flag since the user can now specify this

IEEE/The Open Group 2017 5

REGCOMP(3P) POSIX Programmer’s Manual REGCOMP(3P)

with a zero nmatch argument to regexec(). However, keeping REG_NOSUB allows an implementation to
use a different (perhaps more efficient) algorithm if it knows in regcomp() that no subexpressions need be
reported. The implementation is only required to fill in pmatch if nmatch is not zero and if REG_NOSUB
is not specified. Note that the size_t type, as defined in the ISO C standard, is unsigned, so the description
of regexec() does not need to address negative values of nmatch.

REG_NOTBOL was added to allow an application to do repeated searches for the same pattern in a line. If
the pattern contains a <circumflex> character that should match the beginning of a line, then the pattern
should only match when matched against the beginning of the line. Without the REG_NOTBOL flag, the
application could rewrite the expression for subsequent matches, but in the general case this would require
parsing the expression. The need for REG_NOTEOL is not as clear; it was added for symmetry.

The addition of the regerror() function addresses the historical need for conforming application programs to
have access to error information more than ‘‘Function failed to compile/match your RE for unknown rea-
sons’’.

This interface provides for two different methods of dealing with error conditions. The specific error codes
(REG_EBRACE, for example), defined in <reg ex.h>, allow an application to recover from an error if it is
so able. Many applications, especially those that use patterns supplied by a user, will not try to deal with
specific error cases, but will just use regerror() to obtain a human-readable error message to present to the
user.

The regerror() function uses a scheme similar to confstr() to deal with the problem of allocating memory to
hold the generated string. The scheme used by strerror() in the ISO C standard was considered unaccept-
able since it creates difficulties for multi-threaded applications.

The preg argument is provided to regerror() to allow an implementation to generate a more descriptive
message than would be possible with errcode alone. An implementation might, for example, save the char-
acter offset of the offending character of the pattern in a field of preg, and then include that in the generated
message string. The implementation may also ignore preg.

A REG_FILENAME flag was considered, but omitted. This flag caused regexec() to match patterns as de-
scribed in the Shell and Utilities volume of POSIX.1-2017, Section 2.13, Pattern Matching Notation in-
stead of REs. This service is now provided by the fnmatch() function.

Notice that there is a difference in philosophy between the ISO POSIX-2: 1993 standard and POSIX.1-2008
in how to handle a ‘‘bad’’ regular expression. The ISO POSIX-2: 1993 standard says that many bad con-
structs ‘‘produce undefined results’’, or that ‘‘the interpretation is undefined’’. POSIX.1-2008, however,
says that the interpretation of such REs is unspecified. The term ‘‘undefined’’ means that the action by the
application is an error, of similar severity to passing a bad pointer to a function.

The regcomp() and regexec() functions are required to accept any null-terminated string as the pattern argu-
ment. If the meaning of the string is ‘‘undefined’’, the behavior of the function is ‘‘unspecified’’.
POSIX.1-2008 does not specify how the functions will interpret the pattern; they might return error codes,
or they might do pattern matching in some completely unexpected way, but they should not do something
like abort the process.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob()

The Base Definitions volume of POSIX.1-2017, Chapter 9, Regular Expressions, <regex.h>,
<sys_types.h>

The Shell and Utilities volume of POSIX.1-2017, Section 2.13, Pattern Matching Notation

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 6

REGCOMP(3P) POSIX Programmer’s Manual REGCOMP(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 7

REMAINDER(3P) POSIX Programmer’s Manual REMAINDER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
remainder, remainderf, remainderl — remainder function

SYNOPSIS
#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall return the floating-point remainder r=x−ny when y is non-zero. The value n is the in-
tegral value nearest the exact value x/y. When | n−x/y |=½, the value n is chosen to be even.

The behavior of remainder() shall be independent of the rounding mode.

RETURN VALUE
Upon successful completion, these functions shall return the floating-point remainder r=x−ny when y is
non-zero.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is implementation-de-
fined whether a domain error occurs or zero is returned.

If x or y is NaN, a NaN shall be returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The x argument is ±Inf, or the y argument is ±0 and the other argument is non-NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Domain Error
The y argument is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

IEEE/The Open Group 2017 1

REMAINDER(3P) POSIX Programmer’s Manual REMAINDER(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), div(), feclearexcept(), fetestexcept(), ldiv()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

REMOVE(3P) POSIX Programmer’s Manual REMOVE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
remove — remove a file

SYNOPSIS
#include <stdio.h>

int remove(const char *path);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The remove() function shall cause the file named by the pathname pointed to by path to be no longer acces-
sible by that name. A subsequent attempt to open that file using that name shall fail, unless it is created
anew.

If path does not name a directory, remove(path) shall be equivalent to unlink(path).

If path names a directory, remove(path) shall be equivalent to rmdir(path).

RETURN VALUE
Refer to rmdir() or unlink().

ERRORS
Refer to rmdir() or unlink().

The following sections are informative.

EXAMPLES
Removing Access to a File

The following example shows how to remove access to a file named /home/cnd/old_mods.

#include <stdio.h>

int status;
...
status = remove("/home/cnd/old_mods");

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
rmdir(), unlink()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 1

REMOVE(3P) POSIX Programmer’s Manual REMOVE(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

REMQUE(3P) POSIX Programmer’s Manual REMQUE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
remque — remove an element from a queue

SYNOPSIS
#include <search.h>

void remque(void *element);

DESCRIPTION
Refer to insque().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

REMQUO(3P) POSIX Programmer’s Manual REMQUO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
remquo, remquof, remquol — remainder functions

SYNOPSIS
#include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The remquo(), remquof(), and remquol() functions shall compute the same remainder as the remainder(),
remainderf(), and remainderl() functions, respectively. In the object pointed to by quo, they store a value
whose sign is the sign of x/y and whose magnitude is congruent modulo 2n to the magnitude of the integral
quotient of x/y, where n is an implementation-defined integer greater than or equal to 3. If y is zero, the
value stored in the object pointed to by quo is unspecified.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
These functions shall return x REM y.

On systems that do not support the IEC 60559 Floating-Point option, if y is zero, it is implementation-de-
fined whether a domain error occurs or zero is returned.

If x or y is NaN, a NaN shall be returned.

If x is ±Inf or y is zero and the other argument is non-NaN, a domain error shall occur, and a NaN shall be
returned.

ERRORS
These functions shall fail if:

Domain Error
The x argument is ±Inf, or the y argument is ±0 and the other argument is non-NaN.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Domain Error
The y argument is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

IEEE/The Open Group 2017 1

REMQUO(3P) POSIX Programmer’s Manual REMQUO(3P)

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions are intended for implementing argument reductions which can exploit a few low-order bits
of the quotient. Note that x may be so large in magnitude relative to y that an exact representation of the
quotient is not practical.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), remainder()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

RENAME(3P) POSIX Programmer’s Manual RENAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
rename, renameat — rename file

SYNOPSIS
#include <stdio.h>

int rename(const char *old, const char *new);

#include <fcntl.h>

int renameat(int oldfd, const char *old, int newfd,
const char *new);

DESCRIPTION
For rename(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The rename() function shall change the name of a file. The old argument points to the pathname of the file
to be renamed. The new argument points to the new pathname of the file. If the new argument does not re-
solve to an existing directory entry for a file of type directory and the new argument contains at least one
non-<slash> character and ends with one or more trailing <slash> characters after all symbolic links have
been processed, rename() shall fail.

If either the old or new argument names a symbolic link, rename() shall operate on the symbolic link itself,
and shall not resolve the last component of the argument. If the old argument and the new argument resolve
to either the same existing directory entry or different directory entries for the same existing file, rename()
shall return successfully and perform no other action.

If the old argument points to the pathname of a file that is not a directory, the new argument shall not point
to the pathname of a directory. If the link named by the new argument exists, it shall be removed and old re-
named to new. In this case, a link named new shall remain visible to other threads throughout the renaming
operation and refer either to the file referred to by new or old before the operation began. Write access per-
mission is required for both the directory containing old and the directory containing new.

If the old argument points to the pathname of a directory, the new argument shall not point to the pathname
of a file that is not a directory. If the directory named by the new argument exists, it shall be removed and
old renamed to new. In this case, a link named new shall exist throughout the renaming operation and shall
refer either to the directory referred to by new or old before the operation began. If new names an existing
directory, it shall be required to be an empty directory.

If either pathname argument refers to a path whose final component is either dot or dot-dot, rename() shall
fail.

If the old argument points to a pathname of a symbolic link, the symbolic link shall be renamed. If the new

argument points to a pathname of a symbolic link, the symbolic link shall be removed.

The old pathname shall not name an ancestor directory of the new pathname. Write access permission is re-
quired for the directory containing old and the directory containing new. If the old argument points to the
pathname of a directory, write access permission may be required for the directory named by old , and, if it
exists, the directory named by new.

If the link named by the new argument exists and the file’s link count becomes 0 when it is removed and no
process has the file open, the space occupied by the file shall be freed and the file shall no longer be acces-
sible. If one or more processes have the file open when the last link is removed, the link shall be removed
before rename() returns, but the removal of the file contents shall be postponed until all references to the
file are closed.

IEEE/The Open Group 2017 1

RENAME(3P) POSIX Programmer’s Manual RENAME(3P)

Upon successful completion, rename() shall mark for update the last data modification and last file status
change timestamps of the parent directory of each file.

If the rename() function fails for any reason other than [EIO], any file named by new shall be unaffected.

The renameat() function shall be equivalent to the rename() function except in the case where either old or
new specifies a relative path. If old is a relative path, the file to be renamed is located relative to the direc-
tory associated with the file descriptor oldfd instead of the current working directory. If new is a relative
path, the same happens only relative to the directory associated with newfd . If the access mode of the open
file description associated with the file descriptor is not O_SEARCH, the function shall check whether di-
rectory searches are permitted using the current permissions of the directory underlying the file descriptor.
If the access mode is O_SEARCH, the function shall not perform the check.

If renameat() is passed the special value AT_FDCWD in the oldfd or newfd parameter, the current working
directory shall be used in the determination of the file for the respective path parameter.

RETURN VALUE
Upon successful completion, the rename() function shall return 0. Otherwise, it shall return −1, errno shall
be set to indicate the error, and neither the file named by old nor the file named by new shall be changed or
created.

Upon successful completion, the renameat() function shall return 0. Otherwise, it shall return −1 and set er-

rno to indicate the error.

ERRORS
The rename() and renameat() functions shall fail if:

EACCES
A component of either path prefix denies search permission; or one of the directories containing
old or new denies write permissions; or, write permission is required and is denied for a directory
pointed to by the old or new arguments.

EBUSY
The directory named by old or new is currently in use by the system or another process, and the
implementation considers this an error.

[EEXIST] or [ENOTEMPTY]
The link named by new is a directory that is not an empty directory.

EINVAL The old pathname names an ancestor directory of the new pathname, or either pathname ar-
gument contains a final component that is dot or dot-dot.

EIO A physical I/O error has occurred.

EISDIR The new argument points to a directory and the old argument points to a file that is not a di-
rectory.

ELOOP A loop exists in symbolic links encountered during resolution of the path argument.

EMLINK The file named by old is a directory, and the link count of the parent directory of new would
exceed {LINK_MAX}.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT The link named by old does not name an existing file, a component of the path prefix of new

does not exist, or either old or new points to an empty string.

ENOSPC The directory that would contain new cannot be extended.

ENOTDIR A component of either path prefix names an existing file that is neither a directory nor a
symbolic link to a directory; or the old argument names a directory and the new argument
names a non-directory file; or the old argument contains at least one non-<slash> character
and ends with one or more trailing <slash> characters and the last pathname component
names an existing file that is neither a directory nor a symbolic link to a directory; or the old

IEEE/The Open Group 2017 2

RENAME(3P) POSIX Programmer’s Manual RENAME(3P)

argument names an existing non-directory file and the new argument names a nonexistent
file, contains at least one non-<slash> character, and ends with one or more trailing <slash>
characters; or the new argument names an existing non-directory file, contains at least one
non-<slash> character, and ends with one or more trailing <slash> characters.

EPERM or EACCES
The S_ISVTX flag is set on the directory containing the file referred to by old and the
process does not satisfy the criteria specified in the Base Definitions volume of
POSIX.1-2017, Section 4.3, Directory Protection with respect to old; or new refers to an ex-
isting file, the S_ISVTX flag is set on the directory containing this file, and the process does
not satisfy the criteria specified in the Base Definitions volume of POSIX.1-2017, Section

4.3, Directory Protection with respect to this file.

EROFS The requested operation requires writing in a directory on a read-only file system.

EXDEV The links named by new and old are on different file systems and the implementation does
not support links between file systems.

In addition, the renameat() function shall fail if:

EACCES
The access mode of the open file description associated with oldfd or newfd is not O_SEARCH
and the permissions of the directory underlying oldfd or newfd , respectively, do not permit direc-
tory searches.

EBADF
The old argument does not specify an absolute path and the oldfd argument is neither AT_FD-
CWD nor a valid file descriptor open for reading or searching, or the new argument does not spec-
ify an absolute path and the newfd argument is neither AT_FDCWD nor a valid file descriptor
open for reading or searching.

ENOTDIR
The old or new argument is not an absolute path and oldfd or newfd , respectively, is a file descrip-
tor associated with a non-directory file.

The rename() and renameat() functions may fail if:

EBUSY
The file named by the old or new arguments is a named STREAM.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

ETXTBSY
The file named by new exists and is the last directory entry to a pure procedure (shared text) file
that is being executed.

The following sections are informative.

EXAMPLES
Renaming a File

The following example shows how to rename a file named /home/cnd/mod1 to /home/cnd/mod2.

#include <stdio.h>

int status;
...

IEEE/The Open Group 2017 3

RENAME(3P) POSIX Programmer’s Manual RENAME(3P)

status = rename("/home/cnd/mod1", "/home/cnd/mod2");

APPLICATION USAGE
Some implementations mark for update the last file status change timestamp of renamed files and some do
not. Applications which make use of the last file status change timestamp may behave differently with re-
spect to renamed files unless they are designed to allow for either behavior.

RATIONALE
This rename() function is equivalent for regular files to that defined by the ISO C standard. Its inclusion
here expands that definition to include actions on directories and specifies behavior when the new parame-
ter names a file that already exists. That specification requires that the action of the function be atomic.

One of the reasons for introducing this function was to have a means of renaming directories while permit-
ting implementations to prohibit the use of link() and unlink() with directories, thus constraining links to di-
rectories to those made by mkdir().

The specification that if old and new refer to the same file is intended to guarantee that:

rename("x", "x");

does not remove the file.

Renaming dot or dot-dot is prohibited in order to prevent cyclical file system paths.

See also the descriptions of [ENOTEMPTY] and [ENAMETOOLONG] in rmdir() and [EBUSY] in un-

link(). For a discussion of [EXDEV], see link().

The purpose of the renameat() function is to rename files in directories other than the current working di-
rectory without exposure to race conditions. Any part of the path of a file could be changed in parallel to a
call to rename(), resulting in unspecified behavior. By opening file descriptors for the source and target di-
rectories and using the renameat() function it can be guaranteed that that renamed file is located correctly
and the resulting file is in the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
link(), rmdir(), symlink(), unlink()

The Base Definitions volume of POSIX.1-2017, Section 4.3, Directory Protection, <fcntl.h>, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

REWIND(3P) POSIX Programmer’s Manual REWIND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
rewind — reset the file position indicator in a stream

SYNOPSIS
#include <stdio.h>

void rewind(FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The call:

rewind(stream)

shall be equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that re wind() shall also clear the error indicator.

Since re wind() does not return a value, an application wishing to detect errors should clear errno, then call
re wind(), and if errno is non-zero, assume an error has occurred.

RETURN VALUE
The re wind() function shall not return a value.

ERRORS
Refer to fseek() with the exception of [EINVAL] which does not apply.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fseek()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

REWIND(3P) POSIX Programmer’s Manual REWIND(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

REWINDDIR(3P) POSIX Programmer’s Manual REWINDDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
rewinddir — reset the position of a directory stream to the beginning of a directory

SYNOPSIS
#include <dirent.h>

void rewinddir(DIR *dirp);

DESCRIPTION
The re winddir() function shall reset the position of the directory stream to which dirp refers to the begin-
ning of the directory. It shall also cause the directory stream to refer to the current state of the correspond-
ing directory, as a call to opendir() would have done. If dirp does not refer to a directory stream, the effect
is undefined.

After a call to the fork() function, either the parent or child (but not both) may continue processing the di-
rectory stream using readdir(), re winddir(), or seekdir(). If both the parent and child processes use these
functions, the result is undefined.

RETURN VALUE
The re winddir() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The re winddir() function should be used in conjunction with opendir(), readdir(), and closedir() to examine
the contents of the directory. This method is recommended for portability.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), fdopendir(), readdir()

The Base Definitions volume of POSIX.1-2017, <dirent.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

RINT(3P) POSIX Programmer’s Manual RINT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
rint, rintf, rintl — round-to-nearest integral value

SYNOPSIS
#include <math.h>

double rint(double x);
float rintf(float x);
long double rintl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall return the integral value (represented as a double) nearest x in the direction of the
current rounding mode. The current rounding mode is implementation-defined.

If the current rounding mode rounds toward negative infinity, then rint() shall be equivalent to floor(). If
the current rounding mode rounds toward positive infinity, then rint() shall be equivalent to ceil(). If the
current rounding mode rounds towards zero, then rint() shall be equivalent to trunc(). If the current round-
ing mode rounds towards nearest, then rint() differs from round() in that halfway cases are rounded to even
rather than away from zero.

These functions differ from the nearbyint(), nearbyintf(), and nearbyintl() functions only in that they may
raise the inexact floating-point exception if the result differs in value from the argument.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the integer (represented as a double precision
number) nearest x in the direction of the current rounding mode. The result shall have the same sign as x.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The return value
should be tested before assigning it to an integer type to avoid the undefined results of an integer overflow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

RINT(3P) POSIX Programmer’s Manual RINT(3P)

SEE ALSO
abs(), ceil(), feclearexcept(), fetestexcept(), floor(), isnan(), nearbyint()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

RMDIR(3P) POSIX Programmer’s Manual RMDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
rmdir — remove a directory

SYNOPSIS
#include <unistd.h>

int rmdir(const char *path);

DESCRIPTION
The rmdir() function shall remove a directory whose name is given by path. The directory shall be re-
moved only if it is an empty directory.

If the directory is the root directory or the current working directory of any process, it is unspecified
whether the function succeeds, or whether it shall fail and set errno to [EBUSY].

If path names a symbolic link, then rmdir() shall fail and set errno to [ENOTDIR].

If the path argument refers to a path whose final component is either dot or dot-dot, rmdir() shall fail.

If the directory’s link count becomes 0 and no process has the directory open, the space occupied by the di-
rectory shall be freed and the directory shall no longer be accessible. If one or more processes have the di-
rectory open when the last link is removed, the dot and dot-dot entries, if present, shall be removed before
rmdir() returns and no new entries may be created in the directory, but the directory shall not be removed
until all references to the directory are closed.

If the directory is not an empty directory, rmdir() shall fail and set errno to [EEXIST] or [ENOTEMPTY].

Upon successful completion, rmdir() shall mark for update the last data modification and last file status
change timestamps of the parent directory.

RETURN VALUE
Upon successful completion, the function rmdir() shall return 0. Otherwise, −1 shall be returned, and errno

set to indicate the error. If −1 is returned, the named directory shall not be changed.

ERRORS
The rmdir() function shall fail if:

EACCES
Search permission is denied on a component of the path prefix, or write permission is denied on
the parent directory of the directory to be removed.

EBUSY
The directory to be removed is currently in use by the system or some process and the implemen-
tation considers this to be an error.

[EEXIST] or [ENOTEMPTY]
The path argument names a directory that is not an empty directory, or there are hard links
to the directory other than dot or a single entry in dot-dot.

EINVAL The path argument contains a last component that is dot.

EIO A physical I/O error has occurred.

ELOOP A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT A component of path does not name an existing file, or the path argument names a nonexis-
tent directory or points to an empty string.

IEEE/The Open Group 2017 1

RMDIR(3P) POSIX Programmer’s Manual RMDIR(3P)

ENOTDIR A component of path names an existing file that is neither a directory nor a symbolic link to
a directory.

[EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by the path argu-
ment and the process does not satisfy the criteria specified in the Base Definitions volume of
POSIX.1-2017, Section 4.3, Directory Protection.

EROFS The directory entry to be removed resides on a read-only file system.

The rmdir() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Removing a Directory

The following example shows how to remove a directory named /home/cnd/mod1.

#include <unistd.h>

int status;
...
status = rmdir("/home/cnd/mod1");

APPLICATION USAGE
None.

RATIONALE
The rmdir() and rename() functions originated in 4.2 BSD, and they used [ENOTEMPTY] for the condi-
tion when the directory to be removed does not exist or new already exists. When the 1984 /usr/group stan-
dard was published, it contained [EEXIST] instead. When these functions were adopted into System V, the
1984 /usr/group standard was used as a reference. Therefore, several existing applications and implementa-
tions support/use both forms, and no agreement could be reached on either value. All implementations are
required to supply both [EEXIST] and [ENOTEMPTY] in <errno.h> with distinct values, so that applica-
tions can use both values in C-language case statements.

The meaning of deleting pathname/dot is unclear, because the name of the file (directory) in the parent di-
rectory to be removed is not clear, particularly in the presence of multiple links to a directory.

The POSIX.1-1990 standard was silent with regard to the behavior of rmdir() when there are multiple hard
links to the directory being removed. The requirement to set errno to [EEXIST] or [ENOTEMPTY] clari-
fies the behavior in this case.

If the current working directory of the process is being removed, that should be an allowed error.

Virtually all existing implementations detect [ENOTEMPTY] or the case of dot-dot. The text in Section

2.3, Error Numbers about returning any one of the possible errors permits that behavior to continue. The
[ELOOP] error may be returned if more than {SYMLOOP_MAX} symbolic links are encountered during
resolution of the path argument.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 2

RMDIR(3P) POSIX Programmer’s Manual RMDIR(3P)

SEE ALSO
Section 2.3, Error Numbers, mkdir(), remove(), rename(), unlink()

The Base Definitions volume of POSIX.1-2017, Section 4.3, Directory Protection, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

ROUND(3P) POSIX Programmer’s Manual ROUND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
round, roundf, roundl — round to the nearest integer value in a floating-point format

SYNOPSIS
#include <math.h>

double round(double x);
float roundf(float x);
long double roundl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall round their argument to the nearest integer value in floating-point format, rounding
halfway cases away from zero, regardless of the current rounding direction.

RETURN VALUE
Upon successful completion, these functions shall return the rounded integer value. The result shall have
the same sign as x.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The return value
should be tested before assigning it to an integer type to avoid the undefined results of an integer overflow.

These functions may raise the inexact floating-point exception if the result differs in value from the argu-
ment.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

ROUND(3P) POSIX Programmer’s Manual ROUND(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SCALBLN(3P) POSIX Programmer’s Manual SCALBLN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl — compute exponent using FLT_RADIX

SYNOPSIS
#include <math.h>

double scalbln(double x, long n);
float scalblnf(float x, long n);
long double scalblnl(long double x, long n);
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute x * FLT_RADIXn efficiently, not normally by computing FLT_RADIXn ex-
plicitly.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return x * FLT_RADIXn.

If the result would cause overflow, a range error shall occur and these functions shall return ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL (according to the sign of x) as appropriate for the return type of the
function.

If the correct value would cause underflow, and is not representable, a range error may occur, and scalbln(),
scalblnf(), scalblnl(), scalbn(), scalbnf(), and scalbnl() shall return 0.0, or (if IEC 60559 Floating-Point is
not supported) an implementation-defined value no greater in magnitude than DBL_MIN, FLT_MIN,
LDBL_MIN, DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If n is 0, x shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value shall be returned.

ERRORS
These functions shall fail if:

Range Error The result overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

IEEE/The Open Group 2017 1

SCALBLN(3P) POSIX Programmer’s Manual SCALBLN(3P)

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
These functions are named so as to avoid conflicting with the historical definition of the scalb() function
from the Single UNIX Specification. The difference is that the scalb() function has a second argument of
double instead of int. The scalb() function is not part of the ISO C standard. The three functions whose
second type is long are provided because the factor required to scale from the smallest positive floating-
point value to the largest finite one, on many implementations, is too large to represent in the minimum-
width int format.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SCANDIR(3P) POSIX Programmer’s Manual SCANDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
scandir — scan a directory

SYNOPSIS
#include <dirent.h>

int scandir(const char *dir, struct dirent ***namelist,
int (*sel)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
Refer to alphasort().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SCANF(3P) POSIX Programmer’s Manual SCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
scanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf(const char *restrict format, ...);

DESCRIPTION
Refer to fscanf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SCHED_GET_PRIORITY_MAX(3P) POSIX Programmer’s Manual SCHED_GET_PRIORITY_MAX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sched_get_priority_max, sched_get_priority_min — get priority limits (REALTIME)

SYNOPSIS
#include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

DESCRIPTION
The sched_get_priority_max() and sched_get_priority_min() functions shall return the appropriate maxi-
mum or minimum, respectively, for the scheduling policy specified by policy.

The value of policy shall be one of the scheduling policy values defined in <sched.h>.

RETURN VALUE
If successful, the sched_get_priority_max() and sched_get_priority_min() functions shall return the appro-
priate maximum or minimum values, respectively. If unsuccessful, they shall return a value of −1 and set
errno to indicate the error.

ERRORS
The sched_get_priority_max() and sched_get_priority_min() functions shall fail if:

EINVAL
The value of the policy parameter does not represent a defined scheduling policy.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_getscheduler(), sched_rr_get_interval(), sched_setsched-

uler()

The Base Definitions volume of POSIX.1-2017, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SCHED_GETPARAM(3P) POSIX Programmer’s Manual SCHED_GETPARAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sched_getparam — get scheduling parameters (REALTIME)

SYNOPSIS
#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *param);

DESCRIPTION
The sched_getparam() function shall return the scheduling parameters of a process specified by pid in the
sched_param structure pointed to by param.

If a process specified by pid exists, and if the calling process has permission, the scheduling parameters for
the process whose process ID is equal to pid shall be returned.

If pid is zero, the scheduling parameters for the calling process shall be returned. The behavior of the
sched_getparam() function is unspecified if the value of pid is negative.

RETURN VALUE
Upon successful completion, the sched_getparam() function shall return zero. If the call to sched_get-

param() is unsuccessful, the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sched_getparam() function shall fail if:

EPERM
The requesting process does not have permission to obtain the scheduling parameters of the speci-
fied process.

ESRCH
No process can be found corresponding to that specified by pid .

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getscheduler(), sched_setparam(), sched_setscheduler()

The Base Definitions volume of POSIX.1-2017, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

SCHED_GETPARAM(3P) POSIX Programmer’s Manual SCHED_GETPARAM(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SCHED_GETSCHEDULER(3P) POSIX Programmer’s Manual SCHED_GETSCHEDULER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sched_getscheduler — get scheduling policy (REALTIME)

SYNOPSIS
#include <sched.h>

int sched_getscheduler(pid_t pid);

DESCRIPTION
The sched_getscheduler() function shall return the scheduling policy of the process specified by pid . If the
value of pid is negative, the behavior of the sched_getscheduler() function is unspecified.

The values that can be returned by sched_getscheduler() are defined in the <sched.h> header.

If a process specified by pid exists, and if the calling process has permission, the scheduling policy shall be
returned for the process whose process ID is equal to pid .

If pid is zero, the scheduling policy shall be returned for the calling process.

RETURN VALUE
Upon successful completion, the sched_getscheduler() function shall return the scheduling policy of the
specified process. If unsuccessful, the function shall return −1 and set errno to indicate the error.

ERRORS
The sched_getscheduler() function shall fail if:

EPERM
The requesting process does not have permission to determine the scheduling policy of the speci-
fied process.

ESRCH
No process can be found corresponding to that specified by pid .

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_setscheduler()

The Base Definitions volume of POSIX.1-2017, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 1

SCHED_GETSCHEDULER(3P) POSIX Programmer’s Manual SCHED_GETSCHEDULER(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SCHED_RR_GET_INTERVAL(3P) POSIX Programmer’s Manual SCHED_RR_GET_INTERVAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sched_rr_get_interval — get execution time limits (REALTIME)

SYNOPSIS
#include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *interval);

DESCRIPTION
The sched_rr_get_interval() function shall update the timespec structure referenced by the interval argu-
ment to contain the current execution time limit (that is, time quantum) for the process specified by pid . If
pid is zero, the current execution time limit for the calling process shall be returned.

RETURN VALUE
If successful, the sched_rr_get_interval() function shall return zero. Otherwise, it shall return a value of −1
and set errno to indicate the error.

ERRORS
The sched_rr_get_interval() function shall fail if:

ESRCH
No process can be found corresponding to that specified by pid .

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_get_priority_max(), sched_getscheduler(), sched_setparam(), sched_setsched-

uler()

The Base Definitions volume of POSIX.1-2017, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SCHED_SETPARAM(3P) POSIX Programmer’s Manual SCHED_SETPARAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sched_setparam — set scheduling parameters (REALTIME)

SYNOPSIS
#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

DESCRIPTION
The sched_setparam() function shall set the scheduling parameters of the process specified by pid to the
values specified by the sched_param structure pointed to by param. The value of the sched_priority

member in the sched_param structure shall be any integer within the inclusive priority range for the cur-
rent scheduling policy of the process specified by pid . Higher numerical values for the priority represent
higher priorities. If the value of pid is negative, the behavior of the sched_setparam() function is unspeci-
fied.

If a process specified by pid exists, and if the calling process has permission, the scheduling parameters
shall be set for the process whose process ID is equal to pid .

If pid is zero, the scheduling parameters shall be set for the calling process.

The conditions under which one process has permission to change the scheduling parameters of another
process are implementation-defined.

Implementations may require the requesting process to have appropriate privileges to set its own scheduling
parameters or those of another process.

See Scheduling Policies for a description on how this function affects the scheduling of the threads within
the target process.

If the current scheduling policy for the target process is not SCHED_FIFO, SCHED_RR, or SCHED_SPO-
RADIC, the result is implementation-defined; this case includes the SCHED_OTHER policy.

The specified sched_ss_repl_period shall be greater than or equal to the specified sched_ss_init_budget for
the function to succeed; if it is not, then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the function
to succeed; if not, the function shall fail. It is unspecified whether the sched_ss_repl_period and
sched_ss_init_budget values are stored as provided by this function or are rounded to align with the resolu-
tion of the clock being used.

This function is not atomic with respect to other threads in the process. Threads may continue to execute
while this function call is in the process of changing the scheduling policy for the underlying kernel-sched-
uled entities used by the process contention scope threads.

RETURN VALUE
If successful, the sched_setparam() function shall return zero.

If the call to sched_setparam() is unsuccessful, the priority shall remain unchanged, and the function shall
return a value of −1 and set errno to indicate the error.

ERRORS
The sched_setparam() function shall fail if:

EINVAL
One or more of the requested scheduling parameters is outside the range defined for the scheduling
policy of the specified pid .

IEEE/The Open Group 2017 1

SCHED_SETPARAM(3P) POSIX Programmer’s Manual SCHED_SETPARAM(3P)

EPERM
The requesting process does not have permission to set the scheduling parameters for the specified
process, or does not have appropriate privileges to invoke sched_setparam().

ESRCH
No process can be found corresponding to that specified by pid .

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies, sched_getparam(), sched_getscheduler(), sched_setscheduler()

The Base Definitions volume of POSIX.1-2017, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SCHED_SETSCHEDULER(3P) POSIX Programmer’s Manual SCHED_SETSCHEDULER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sched_setscheduler — set scheduling policy and parameters (REALTIME)

SYNOPSIS
#include <sched.h>

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

DESCRIPTION
The sched_setscheduler() function shall set the scheduling policy and scheduling parameters of the process
specified by pid to policy and the parameters specified in the sched_param structure pointed to by param,
respectively. The value of the sched_priority member in the sched_param structure shall be any integer
within the inclusive priority range for the scheduling policy specified by policy. If the value of pid is nega-
tive, the behavior of the sched_setscheduler() function is unspecified.

The possible values for the policy parameter are defined in the <sched.h> header.

If a process specified by pid exists, and if the calling process has permission, the scheduling policy and
scheduling parameters shall be set for the process whose process ID is equal to pid .

If pid is zero, the scheduling policy and scheduling parameters shall be set for the calling process.

The conditions under which one process has appropriate privileges to change the scheduling parameters of
another process are implementation-defined.

Implementations may require that the requesting process have permission to set its own scheduling parame-
ters or those of another process. Additionally, implementation-defined restrictions may apply as to the ap-
propriate privileges required to set the scheduling policy of the process, or the scheduling policy of another
process, to a particular value.

The sched_setscheduler() function shall be considered successful if it succeeds in setting the scheduling
policy and scheduling parameters of the process specified by pid to the values specified by policy and the
structure pointed to by param, respectively.

See Scheduling Policies for a description on how this function affects the scheduling of the threads within
the target process.

If the current scheduling policy for the target process is not SCHED_FIFO, SCHED_RR, or SCHED_SPO-
RADIC, the result is implementation-defined; this case includes the SCHED_OTHER policy.

The specified sched_ss_repl_period shall be greater than or equal to the specified sched_ss_init_budget for
the function to succeed; if it is not, then the function shall fail.

The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the function
to succeed; if not, the function shall fail. It is unspecified whether the sched_ss_repl_period and
sched_ss_init_budget values are stored as provided by this function or are rounded to align with the resolu-
tion of the clock being used.

This function is not atomic with respect to other threads in the process. Threads may continue to execute
while this function call is in the process of changing the scheduling policy and associated scheduling pa-
rameters for the underlying kernel-scheduled entities used by the process contention scope threads.

RETURN VALUE
Upon successful completion, the function shall return the former scheduling policy of the specified process.
If the sched_setscheduler() function fails to complete successfully, the policy and scheduling parameters
shall remain unchanged, and the function shall return a value of −1 and set errno to indicate the error.

IEEE/The Open Group 2017 1

SCHED_SETSCHEDULER(3P) POSIX Programmer’s Manual SCHED_SETSCHEDULER(3P)

ERRORS
The sched_setscheduler() function shall fail if:

EINVAL
The value of the policy parameter is invalid, or one or more of the parameters contained in param

is outside the valid range for the specified scheduling policy.

EPERM
The requesting process does not have permission to set either or both of the scheduling parameters
or the scheduling policy of the specified process.

ESRCH
No process can be found corresponding to that specified by pid .

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Scheduling Policies, sched_getparam(), sched_getscheduler(), sched_setparam()

The Base Definitions volume of POSIX.1-2017, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SCHED_YIELD(3P) POSIX Programmer’s Manual SCHED_YIELD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sched_yield — yield the processor

SYNOPSIS
#include <sched.h>

int sched_yield(void);

DESCRIPTION
The sched_yield() function shall force the running thread to relinquish the processor until it again becomes
the head of its thread list. It takes no arguments.

RETURN VALUE
The sched_yield() function shall return 0 if it completes successfully; otherwise, it shall return a value of −1
and set errno to indicate the error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The conceptual model for scheduling semantics in POSIX.1-2008 defines a set of thread lists. This set of
thread lists is always present regardless of the scheduling options supported by the system. On a system
where the Process Scheduling option is not supported, portable applications should not make any assump-
tions regarding whether threads from other processes will be on the same thread list.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <sched.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SEED48(3P) POSIX Programmer’s Manual SEED48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
seed48 — seed a uniformly distributed pseudo-random non-negative long integer generator

SYNOPSIS
#include <stdlib.h>

unsigned short *seed48(unsigned short seed16v[3]);

DESCRIPTION
Refer to drand48().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SEEKDIR(3P) POSIX Programmer’s Manual SEEKDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
seekdir — set the position of a directory stream

SYNOPSIS
#include <dirent.h>

void seekdir(DIR *dirp, long loc);

DESCRIPTION
The seekdir() function shall set the position of the next readdir() operation on the directory stream specified
by dirp to the position specified by loc. The value of loc should have been returned from an earlier call to
telldir() using the same directory stream. The new position reverts to the one associated with the directory
stream when telldir() was performed.

If the value of loc was not obtained from an earlier call to telldir(), or if a call to re winddir() occurred be-
tween the call to telldir() and the call to seekdir(), the results of subsequent calls to readdir() are unspeci-
fied.

RETURN VALUE
The seekdir() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The original standard developers perceived that there were restrictions on the use of the seekdir() and
telldir() functions related to implementation details, and for that reason these functions need not be sup-
ported on all POSIX-conforming systems. They are required on implementations supporting the XSI op-
tion.

One of the perceived problems of implementation is that returning to a given point in a directory is quite
difficult to describe formally, in spite of its intuitive appeal, when systems that use B-trees, hashing func-
tions, or other similar mechanisms to order their directories are considered. The definition of seekdir() and
telldir() does not specify whether, when using these interfaces, a given directory entry will be seen at all, or
more than once.

On systems not supporting these functions, their capability can sometimes be accomplished by saving a
filename found by readdir() and later using re winddir() and a loop on readdir() to relocate the position
from which the filename was saved.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), readdir(), telldir()

The Base Definitions volume of POSIX.1-2017, <dirent.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 1

SEEKDIR(3P) POSIX Programmer’s Manual SEEKDIR(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SELECT(3P) POSIX Programmer’s Manual SELECT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
select — synchronous I/O multiplexing

SYNOPSIS
#include <sys/select.h>

int select(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

DESCRIPTION
Refer to pselect().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SEM_CLOSE(3P) POSIX Programmer’s Manual SEM_CLOSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_close — close a named semaphore

SYNOPSIS
#include <semaphore.h>

int sem_close(sem_t *sem);

DESCRIPTION
The sem_close() function shall indicate that the calling process is finished using the named semaphore indi-
cated by sem. The effects of calling sem_close() for an unnamed semaphore (one created by sem_init()) are
undefined. The sem_close() function shall deallocate (that is, make available for reuse by a subsequent
sem_open() by this process) any system resources allocated by the system for use by this process for this
semaphore. The effect of subsequent use of the semaphore indicated by sem by this process is undefined. If
any threads in the calling process are currently blocked on the semaphore, the behavior is undefined. If the
semaphore has not been removed with a successful call to sem_unlink(), then sem_close() has no effect on
the state of the semaphore. If the sem_unlink() function has been successfully invoked for name after the
most recent call to sem_open() with O_CREAT for this semaphore, then when all processes that have
opened the semaphore close it, the semaphore is no longer accessible.

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned
and errno set to indicate the error.

ERRORS
The sem_close() function may fail if:

EINVAL
The sem argument is not a valid semaphore descriptor.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open(), sem_unlink()

The Base Definitions volume of POSIX.1-2017, <semaphore.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

SEM_CLOSE(3P) POSIX Programmer’s Manual SEM_CLOSE(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SEM_DESTROY(3P) POSIX Programmer’s Manual SEM_DESTROY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_destroy — destroy an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_destroy(sem_t *sem);

DESCRIPTION
The sem_destroy() function shall destroy the unnamed semaphore indicated by sem. Only a semaphore that
was created using sem_init() may be destroyed using sem_destroy(); the effect of calling sem_destroy() with
a named semaphore is undefined. The effect of subsequent use of the semaphore sem is undefined until sem

is reinitialized by another call to sem_init().

It is safe to destroy an initialized semaphore upon which no threads are currently blocked. The effect of de-
stroying a semaphore upon which other threads are currently blocked is undefined.

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned
and errno set to indicate the error.

ERRORS
The sem_destroy() function may fail if:

EINVAL
The sem argument is not a valid semaphore.

EBUSY
There are currently processes blocked on the semaphore.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open()

The Base Definitions volume of POSIX.1-2017, <semaphore.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SEM_GETVALUE(3P) POSIX Programmer’s Manual SEM_GETVALUE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_getvalue — get the value of a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

DESCRIPTION
The sem_getvalue() function shall update the location referenced by the sval argument to have the value of
the semaphore referenced by sem without affecting the state of the semaphore. The updated value repre-
sents an actual semaphore value that occurred at some unspecified time during the call, but it need not be
the actual value of the semaphore when it is returned to the calling process.

If sem is locked, then the object to which sval points shall either be set to zero or to a negative number
whose absolute value represents the number of processes waiting for the semaphore at some unspecified
time during the call.

RETURN VALUE
Upon successful completion, the sem_getvalue() function shall return a value of zero. Otherwise, it shall re-
turn a value of −1 and set errno to indicate the error.

ERRORS
The sem_getvalue() function may fail if:

EINVAL
The sem argument does not refer to a valid semaphore.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_post(), sem_timedwait(), sem_trywait()

The Base Definitions volume of POSIX.1-2017, <semaphore.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SEM_INIT(3P) POSIX Programmer’s Manual SEM_INIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_init — initialize an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned value);

DESCRIPTION
The sem_init() function shall initialize the unnamed semaphore referred to by sem. The value of the initial-
ized semaphore shall be value. Following a successful call to sem_init(), the semaphore may be used in
subsequent calls to sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and sem_destroy(). This sem-
aphore shall remain usable until the semaphore is destroyed.

If the pshared argument has a non-zero value, then the semaphore is shared between processes; in this case,
any process that can access the semaphore sem can use sem for performing sem_wait(), sem_timedwait(),
sem_trywait(), sem_post(), and sem_destroy() operations.

If the pshared argument is zero, then the semaphore is shared between threads of the process; any thread in
this process can use sem for performing sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and
sem_destroy() operations.

See Section 2.9.9, Synchronization Object Copies and Alternative Mappings for further requirements.

Attempting to initialize an already initialized semaphore results in undefined behavior.

RETURN VALUE
Upon successful completion, the sem_init() function shall initialize the semaphore in sem and return 0. Oth-
erwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sem_init() function shall fail if:

EINVAL
The value argument exceeds {SEM_VALUE_MAX}.

ENOSPC
A resource required to initialize the semaphore has been exhausted, or the limit on semaphores
({SEM_NSEMS_MAX}) has been reached.

EPERM
The process lacks appropriate privileges to initialize the semaphore.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sem_destroy(), sem_post(), sem_timedwait(), sem_trywait()

The Base Definitions volume of POSIX.1-2017, <semaphore.h>

IEEE/The Open Group 2017 1

SEM_INIT(3P) POSIX Programmer’s Manual SEM_INIT(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SEM_OPEN(3P) POSIX Programmer’s Manual SEM_OPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_open — initialize and open a named semaphore

SYNOPSIS
#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, ...);

DESCRIPTION
The sem_open() function shall establish a connection between a named semaphore and a process. Follow-
ing a call to sem_open() with semaphore name name, the process may reference the semaphore associated
with name using the address returned from the call. This semaphore may be used in subsequent calls to
sem_wait(), sem_timedwait(), sem_trywait(), sem_post(), and sem_close(). The semaphore remains usable
by this process until the semaphore is closed by a successful call to sem_close(), _exit(), or one of the exec

functions.

The oflag argument controls whether the semaphore is created or merely accessed by the call to
sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is set and the
semaphore already exists, then O_CREAT has no effect, except as noted under O_EXCL. Oth-
erwise, sem_open() creates a named semaphore. The O_CREAT flag requires a third and a
fourth argument: mode, which is of type mode_t, and value, which is of type unsigned. The
semaphore is created with an initial value of value. Valid initial values for semaphores are less
than or equal to {SEM_VALUE_MAX}.

The user ID of the semaphore shall be set to the effective user ID of the process. The group ID
of the semaphore shall be set to the effective group ID of the process; however, if the name ar-
gument is visible in the file system, the group ID may be set to the group ID of the containing
directory. The permission bits of the semaphore are set to the value of the mode argument ex-
cept those set in the file mode creation mask of the process. When bits in mode other than the
file permission bits are specified, the effect is unspecified.

After the semaphore named name has been created by sem_open() with the O_CREAT flag,
other processes can connect to the semaphore by calling sem_open() with the same value of
name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name exists. The check
for the existence of the semaphore and the creation of the semaphore if it does not exist are
atomic with respect to other processes executing sem_open() with O_EXCL and O_CREAT
set. If O_EXCL is set and O_CREAT is not set, the effect is undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the effect is
unspecified.

The name argument points to a string naming a semaphore object. It is unspecified whether the name ap-
pears in the file system and is visible to functions that take pathnames as arguments. The name argument
conforms to the construction rules for a pathname, except that the interpretation of <slash> characters other
than the leading <slash> character in name is implementation-defined, and that the length limits for the
name argument are implementation-defined and need not be the same as the pathname limits
{PATH_MAX} and {NAME_MAX}. If name begins with the <slash> character, then processes calling
sem_open() with the same value of name shall refer to the same semaphore object, as long as that name has
not been removed. If name does not begin with the <slash> character, the effect is implementation-defined.

If a process makes multiple successful calls to sem_open() with the same value for name, the same sema-
phore address shall be returned for each such successful call, provided that there have been no calls to
sem_unlink() for this semaphore, and at least one previous successful sem_open() call for this semaphore

IEEE/The Open Group 2017 1

SEM_OPEN(3P) POSIX Programmer’s Manual SEM_OPEN(3P)

has not been matched with a sem_close() call.

References to copies of the semaphore produce undefined results.

RETURN VALUE
Upon successful completion, the sem_open() function shall return the address of the semaphore. Otherwise,
it shall return a value of SEM_FAILED and set errno to indicate the error. The symbol SEM_FAILED is
defined in the <semaphore.h> header. No successful return from sem_open() shall return the value
SEM_FAILED.

ERRORS
If any of the following conditions occur, the sem_open() function shall return SEM_FAILED and set errno

to the corresponding value:

EACCES
The named semaphore exists and the permissions specified by oflag are denied, or the named sem-
aphore does not exist and permission to create the named semaphore is denied.

EEXIST
O_CREAT and O_EXCL are set and the named semaphore already exists.

EINTR
The sem_open() operation was interrupted by a signal.

EINVAL
The sem_open() operation is not supported for the given name, or O_CREAT was specified in
oflag and value was greater than {SEM_VALUE_MAX}.

EMFILE
Too many semaphore descriptors or file descriptors are currently in use by this process.

ENFILE
Too many semaphores are currently open in the system.

ENOENT
O_CREAT is not set and the named semaphore does not exist.

ENOMEM
There is insufficient memory for the creation of the new named semaphore.

ENOSPC
There is insufficient space on a storage device for the creation of the new named semaphore.

If any of the following conditions occur, the sem_open() function may return SEM_FAILED and set errno

to the corresponding value:

ENAMETOOLONG
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems that do not support
the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI systems, or has a pathname compo-
nent that is longer than {_POSIX_NAME_MAX} on systems that do not support the XSI option
or longer than {_XOPEN_NAME_MAX} on XSI systems.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Early drafts required an error return value of −1 with the type sem_t * for the sem_open() function, which
is not guaranteed to be portable across implementations. The revised text provides the symbolic error code
SEM_FAILED to eliminate the type conflict.

IEEE/The Open Group 2017 2

SEM_OPEN(3P) POSIX Programmer’s Manual SEM_OPEN(3P)

FUTURE DIRECTIONS
A future version might require the sem_open() and sem_unlink() functions to have semantics similar to nor-
mal file system operations.

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_post(), sem_timedwait(), sem_trywait(), sem_unlink()

The Base Definitions volume of POSIX.1-2017, <semaphore.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

SEM_POST(3P) POSIX Programmer’s Manual SEM_POST(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_post — unlock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_post(sem_t *sem);

DESCRIPTION
The sem_post() function shall unlock the semaphore referenced by sem by performing a semaphore unlock
operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were blocked waiting for
the semaphore to become unlocked; the semaphore value is simply incremented.

If the value of the semaphore resulting from this operation is zero, then one of the threads blocked waiting
for the semaphore shall be allowed to return successfully from its call to sem_wait(). If the Process Sched-
uling option is supported, the thread to be unblocked shall be chosen in a manner appropriate to the sched-
uling policies and parameters in effect for the blocked threads. In the case of the schedulers SCHED_FIFO
and SCHED_RR, the highest priority waiting thread shall be unblocked, and if there is more than one high-
est priority thread blocked waiting for the semaphore, then the highest priority thread that has been waiting
the longest shall be unblocked. If the Process Scheduling option is not defined, the choice of a thread to un-
block is unspecified.

If the Process Sporadic Server option is supported, and the scheduling policy is SCHED_SPORADIC, the
semantics are as per SCHED_FIFO above.

The sem_post() function shall be async-signal-safe and may be invoked from a signal-catching function.

RETURN VALUE
If successful, the sem_post() function shall return zero; otherwise, the function shall return −1 and set errno

to indicate the error.

ERRORS
The sem_post() function may fail if:

EINVAL
The sem argument does not refer to a valid semaphore.

The following sections are informative.

EXAMPLES
See sem_timedwait().

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_timedwait(), sem_trywait()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <semaphore.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

SEM_POST(3P) POSIX Programmer’s Manual SEM_POST(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SEM_TIMEDWAIT(3P) POSIX Programmer’s Manual SEM_TIMEDWAIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_timedwait — lock a semaphore

SYNOPSIS
#include <semaphore.h>
#include <time.h>

int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abstime);

DESCRIPTION
The sem_timedwait() function shall lock the semaphore referenced by sem as in the sem_wait() function.
However, if the semaphore cannot be locked without waiting for another process or thread to unlock the
semaphore by performing a sem_post() function, this wait shall be terminated when the specified timeout
expires.

The timeout shall expire when the absolute time specified by abstime passes, as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abstime), or if the absolute
time specified by abstime has already been passed at the time of the call.

The timeout shall be based on the CLOCK_REALTIME clock. The resolution of the timeout shall be the
resolution of the clock on which it is based. The timespec data type is defined as a structure in the
<time.h> header.

Under no circumstance shall the function fail with a timeout if the semaphore can be locked immediately.
The validity of the abstime need not be checked if the semaphore can be locked immediately.

RETURN VALUE
The sem_timedwait() function shall return zero if the calling process successfully performed the semaphore
lock operation on the semaphore designated by sem. If the call was unsuccessful, the state of the sema-
phore shall be unchanged, and the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sem_timedwait() function shall fail if:

EINVAL
The process or thread would have blocked, and the abstime parameter specified a nanoseconds
field value less than zero or greater than or equal to 1 000 million.

ETIMEDOUT
The semaphore could not be locked before the specified timeout expired.

The sem_timedwait() function may fail if:

EDEADLK
A deadlock condition was detected.

EINTR
A signal interrupted this function.

EINVAL
The sem argument does not refer to a valid semaphore.

The following sections are informative.

EXAMPLES
The program shown below operates on an unnamed semaphore. The program expects two command-line
arguments. The first argument specifies a seconds value that is used to set an alarm timer to generate a
SIGALRM signal. This handler performs a sem_post(3) to increment the semaphore that is being waited on
in main() using sem_timedwait(). The second command-line argument specifies the length of the timeout,

IEEE/The Open Group 2017 1

SEM_TIMEDWAIT(3P) POSIX Programmer’s Manual SEM_TIMEDWAIT(3P)

in seconds, for sem_timedwait().

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include <time.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>

sem_t sem;

static void
handler(int sig)
{

int sav_errno = errno;
static const char info_msg[] = "sem_post() from handler\n";
write(STDOUT_FILENO, info_msg, sizeof info_msg - 1);
if (sem_post(&sem) == -1) {

static const char err_msg[] = "sem_post() failed\n";
write(STDERR_FILENO, err_msg, sizeof err_msg - 1);
_exit(EXIT_FAILURE);

}
errno = sav_errno;

}

int
main(int argc, char *argv[])
{

struct sigaction sa;
struct timespec ts;
int s;

if (argc != 3) {
fprintf(stderr, "Usage: %s <alarm-secs> <wait-secs>\n",

argv[0]);
exit(EXIT_FAILURE);

}

if (sem_init(&sem, 0, 0) == -1) {
perror("sem_init");
exit(EXIT_FAILURE);

}

/* Establish SIGALRM handler; set alarm timer using argv[1] */

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGALRM, &sa, NULL) == -1) {

perror("sigaction");
exit(EXIT_FAILURE);

}

alarm(atoi(argv[1]));

/* Calculate relative interval as current time plus
number of seconds given argv[2] */

IEEE/The Open Group 2017 2

SEM_TIMEDWAIT(3P) POSIX Programmer’s Manual SEM_TIMEDWAIT(3P)

if (clock_gettime(CLOCK_REALTIME, &ts) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);

}
ts.tv_sec += atoi(argv[2]);

printf("main() about to call sem_timedwait()\n");
while ((s = sem_timedwait(&sem, &ts)) == -1 && errno == EINTR)

continue; /* Restart if interrupted by handler */

/* Check what happened */

if (s == -1) {
if (errno == ETIMEDOUT)

printf("sem_timedwait() timed out\n");
else

perror("sem_timedwait");
} else

printf("sem_timedwait() succeeded\n");

exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE);
}

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sem_post(), sem_trywait(), semctl(), semget(), semop(), time()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, <semaphore.h>,
<time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

SEM_TRYWAIT(3P) POSIX Programmer’s Manual SEM_TRYWAIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_trywait, sem_wait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_trywait(sem_t *sem);
int sem_wait(sem_t *sem);

DESCRIPTION
The sem_trywait() function shall lock the semaphore referenced by sem only if the semaphore is currently
not locked; that is, if the semaphore value is currently positive. Otherwise, it shall not lock the semaphore.

The sem_wait() function shall lock the semaphore referenced by sem by performing a semaphore lock oper-
ation on that semaphore. If the semaphore value is currently zero, then the calling thread shall not return
from the call to sem_wait() until it either locks the semaphore or the call is interrupted by a signal.

Upon successful return, the state of the semaphore shall be locked and shall remain locked until the
sem_post() function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

RETURN VALUE
The sem_trywait() and sem_wait() functions shall return zero if the calling process successfully performed
the semaphore lock operation on the semaphore designated by sem. If the call was unsuccessful, the state
of the semaphore shall be unchanged, and the function shall return a value of −1 and set errno to indicate
the error.

ERRORS
The sem_trywait() function shall fail if:

EAGAIN
The semaphore was already locked, so it cannot be immediately locked by the sem_trywait() oper-
ation.

The sem_trywait() and sem_wait() functions may fail if:

EDEADLK
A deadlock condition was detected.

EINTR
A signal interrupted this function.

EINVAL
The sem argument does not refer to a valid semaphore.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in the Base Definitions
volume of POSIX.1-2017, Section 3.291, Priority Inversion.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

SEM_TRYWAIT(3P) POSIX Programmer’s Manual SEM_TRYWAIT(3P)

SEE ALSO
semctl(), semget(), semop(), sem_post(), sem_timedwait()

The Base Definitions volume of POSIX.1-2017, Section 3.291, Priority Inversion, Section 4.12, Memory

Synchronization, <semaphore.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SEM_UNLINK(3P) POSIX Programmer’s Manual SEM_UNLINK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_unlink — remove a named semaphore

SYNOPSIS
#include <semaphore.h>

int sem_unlink(const char *name);

DESCRIPTION
The sem_unlink() function shall remove the semaphore named by the string name. If the semaphore named
by name is currently referenced by other processes, then sem_unlink() shall have no effect on the state of
the semaphore. If one or more processes have the semaphore open when sem_unlink() is called, destruction
of the semaphore is postponed until all references to the semaphore have been destroyed by calls to
sem_close(), _exit(), or exec. Calls to sem_open() to recreate or reconnect to the semaphore refer to a new
semaphore after sem_unlink() is called. The sem_unlink() call shall not block until all references have been
destroyed; it shall return immediately.

RETURN VALUE
Upon successful completion, the sem_unlink() function shall return a value of 0. Otherwise, the semaphore
shall not be changed and the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sem_unlink() function shall fail if:

EACCES
Permission is denied to unlink the named semaphore.

ENOENT
The named semaphore does not exist.

The sem_unlink() function may fail if:

ENAMETOOLONG
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems that do not support
the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI systems, or has a pathname compo-
nent that is longer than {_POSIX_NAME_MAX} on systems that do not support the XSI option
or longer than {_XOPEN_NAME_MAX} on XSI systems. A call to sem_unlink() with a name

argument that contains the same semaphore name as was previously used in a successful
sem_open() call shall not give an [ENAMETOOLONG] error.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
A future version might require the sem_open() and sem_unlink() functions to have semantics similar to nor-
mal file system operations.

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_open()

The Base Definitions volume of POSIX.1-2017, <semaphore.h>

IEEE/The Open Group 2017 1

SEM_UNLINK(3P) POSIX Programmer’s Manual SEM_UNLINK(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SEM_WAIT(3P) POSIX Programmer’s Manual SEM_WAIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sem_wait — lock a semaphore

SYNOPSIS
#include <semaphore.h>

int sem_wait(sem_t *sem);

DESCRIPTION
Refer to sem_trywait().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SEMCTL(3P) POSIX Programmer’s Manual SEMCTL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
semctl — XSI semaphore control operations

SYNOPSIS
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

DESCRIPTION
The semctl() function operates on XSI semaphores (see the Base Definitions volume of POSIX.1-2017,
Section 4.17 , Semaphore). It is unspecified whether this function interoperates with the realtime interpro-
cess communication facilities defined in Section 2.8, Realtime.

The semctl() function provides a variety of semaphore control operations as specified by cmd . The fourth
argument is optional and depends upon the operation requested. If required, it is of type union semun,
which the application shall explicitly declare:

union semun {
int val;
struct semid_ds *buf;
unsigned short *array;

} arg;

Each operation shall be performed atomically.

The following semaphore control operations as specified by cmd are executed with respect to the sema-
phore specified by semid and semnum. The level of permission required for each operation is shown with
each command; see Section 2.7 , XSI Interprocess Communication. The symbolic names for the values of
cmd are defined in the <sys/sem.h> header:

GETVAL Return the value of semval; see <sys/sem.h>. Requires read permission.

SETVAL Set the value of semval to arg.val, where arg is the value of the fourth argument to semctl().
When this command is successfully executed, the semadj value corresponding to the speci-
fied semaphore in all processes is cleared. Also, the sem_ctime timestamp shall be set to the
current time, as described in Section 2.7.1, IPC General Description. Requires alter permis-
sion; see Section 2.7 , XSI Interprocess Communication.

GETPID Return the value of sempid . Requires read permission.

GETNCNT Return the value of semncnt. Requires read permission.

GETZCNT Return the value of semzcnt. Requires read permission.

The following values of cmd operate on each semval in the set of semaphores:

GETALL Return the value of semval for each semaphore in the semaphore set and place into the array
pointed to by arg.array, where arg is the fourth argument to semctl(). Requires read permis-
sion.

SETALL Set the value of semval for each semaphore in the semaphore set according to the array
pointed to by arg.array, where arg is the fourth argument to semctl(). When this command
is successfully executed, the semadj values corresponding to each specified semaphore in all
processes are cleared. Also, the sem_ctime timestamp shall be set to the current time, as de-
scribed in Section 2.7.1, IPC General Description. Requires alter permission.

The following values of cmd are also available:

IEEE/The Open Group 2017 1

SEMCTL(3P) POSIX Programmer’s Manual SEMCTL(3P)

IPC_STAT Place the current value of each member of the semid_ds data structure associated with
semid into the structure pointed to by arg.buf , where arg is the fourth argument to semctl().
The contents of this structure are defined in <sys/sem.h>. Requires read permission.

IPC_SET Set the value of the following members of the semid_ds data structure associated with semid

to the corresponding value found in the structure pointed to by arg.buf , where arg is the
fourth argument to semctl():

sem_perm.uid
sem_perm.gid
sem_perm.mode

The mode bits specified in Section 2.7.1, IPC General Description are copied into the corre-
sponding bits of the sem_perm.mode associated with semid . The stored values of any other
bits are unspecified. The sem_ctime timestamp shall be set to the current time, as described
in Section 2.7.1, IPC General Description.

This command can only be executed by a process that has an effective user ID equal to ei-
ther that of a process with appropriate privileges or to the value of sem_perm.cuid or
sem_perm.uid in the semid_ds data structure associated with semid .

IPC_RMID Remove the semaphore identifier specified by semid from the system and destroy the set of
semaphores and semid_ds data structure associated with it. This command can only be exe-
cuted by a process that has an effective user ID equal to either that of a process with appro-
priate privileges or to the value of sem_perm.cuid or sem_perm.uid in the semid_ds data
structure associated with semid .

RETURN VALUE
If successful, the value returned by semctl() depends on cmd as follows:

GETVAL The value of semval.

GETPID The value of sempid .

GETNCNT The value of semncnt.

GETZCNT The value of semzcnt.

All others 0.

Otherwise, semctl() shall return −1 and set errno to indicate the error.

ERRORS
The semctl() function shall fail if:

EACCES
Operation permission is denied to the calling process; see Section 2.7 , XSI Interprocess Communi-

cation.

EINVAL
The value of semid is not a valid semaphore identifier, or the value of semnum is less than 0 or
greater than or equal to sem_nsems, or the value of cmd is not a valid command.

EPERM
The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling
process is not equal to that of a process with appropriate privileges and it is not equal to the value
of sem_perm.cuid or sem_perm.uid in the data structure associated with semid .

ERANGE
The argument cmd is equal to SETVAL or SETALL and the value to which semval is to be set is
greater than the system-imposed maximum.

The following sections are informative.

IEEE/The Open Group 2017 2

SEMCTL(3P) POSIX Programmer’s Manual SEMCTL(3P)

EXAMPLES
Refer to semop().

APPLICATION USAGE
The fourth parameter in the SYNOPSIS section is now specified as "..." in order to avoid a clash with the
ISO C standard when referring to the union semun (as defined in Issue 3) and for backwards-compatibility.

The POSIX Realtime Extension defines alternative interfaces for interprocess communication. Application
developers who need to use IPC should design their applications so that modules using the IPC routines de-
scribed in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alternative inter-
faces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, semget(), semop(), sem_close(),
sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_trywait(), sem_unlink()

The Base Definitions volume of POSIX.1-2017, Section 4.17 , Semaphore, <sys_sem.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

SEMGET(3P) POSIX Programmer’s Manual SEMGET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
semget — get set of XSI semaphores

SYNOPSIS
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

DESCRIPTION
The semget() function operates on XSI semaphores (see the Base Definitions volume of POSIX.1-2017,
Section 4.17 , Semaphore). It is unspecified whether this function interoperates with the realtime interpro-
cess communication facilities defined in Section 2.8, Realtime.

The semget() function shall return the semaphore identifier associated with key.

A semaphore identifier with its associated semid_ds data structure and its associated set of nsems sema-
phores (see <sys/sem.h>) is created for key if one of the following is true:

* The argument key is equal to IPC_PRIVATE.

* The argument key does not already have a semaphore identifier associated with it and (semflg

&IPC_CREAT) is non-zero.

Upon creation, the semid_ds data structure associated with the new semaphore identifier is initialized as
follows:

* In the operation permissions structure sem_perm.cuid , sem_perm.uid , sem_perm.cgid , and
sem_perm.gid shall be set to the effective user ID and effective group ID, respectively, of the calling
process.

* The low-order 9 bits of sem_perm.mode shall be set to the low-order 9 bits of semflg.

* The variable sem_nsems shall be set to the value of nsems.

* The variable sem_otime shall be set to 0 and sem_ctime shall be set to the current time, as described in
Section 2.7.1, IPC General Description.

* The data structure associated with each semaphore in the set need not be initialized. The semctl() func-
tion with the command SETVAL or SETALL can be used to initialize each semaphore.

RETURN VALUE
Upon successful completion, semget() shall return a non-negative integer, namely a semaphore identifier;
otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The semget() function shall fail if:

EACCES
A semaphore identifier exists for key, but operation permission as specified by the low-order 9 bits
of semflg would not be granted; see Section 2.7 , XSI Interprocess Communication.

EEXIST
A semaphore identifier exists for the argument key but ((semflg &IPC_CREAT) &&(semflg

&IPC_EXCL)) is non-zero.

EINVAL
The value of nsems is either less than or equal to 0 or greater than the system-imposed limit, or a
semaphore identifier exists for the argument key, but the number of semaphores in the set associ-
ated with it is less than nsems and nsems is not equal to 0.

IEEE/The Open Group 2017 1

SEMGET(3P) POSIX Programmer’s Manual SEMGET(3P)

ENOENT
A semaphore identifier does not exist for the argument key and (semflg &IPC_CREAT) is equal to
0.

ENOSPC
A semaphore identifier is to be created but the system-imposed limit on the maximum number of
allowed semaphores system-wide would be exceeded.

The following sections are informative.

EXAMPLES
Refer to semop().

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication. Application
developers who need to use IPC should design their applications so that modules using the IPC routines de-
scribed in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alternative inter-
faces.

RATIONALE
None.

FUTURE DIRECTIONS
A future version may require that the value of the semval, sempid , semncnt, and semzcnt members of all
semaphores in a semaphore set be initialized to zero when a call to semget() creates a semaphore set. Many
semaphore implementations already do this and it greatly simplifies what an application must do to initial-
ize a semaphore set.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, ftok(), semctl(), semop(),
sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_trywait(),
sem_unlink()

The Base Definitions volume of POSIX.1-2017, Section 4.17 , Semaphore, <sys_sem.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SEMOP(3P) POSIX Programmer’s Manual SEMOP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
semop — XSI semaphore operations

SYNOPSIS
#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

DESCRIPTION
The semop() function operates on XSI semaphores (see the Base Definitions volume of POSIX.1-2017,
Section 4.17 , Semaphore). It is unspecified whether this function interoperates with the realtime interpro-
cess communication facilities defined in Section 2.8, Realtime.

The semop() function shall perform atomically a user-defined array of semaphore operations in array order
on the set of semaphores associated with the semaphore identifier specified by the argument semid .

The argument sops is a pointer to a user-defined array of semaphore operation structures. The implementa-
tion shall not modify elements of this array unless the application uses implementation-defined extensions.

The argument nsops is the number of such structures in the array.

Each structure, sembuf, includes the following members:

center box tab(!); cB | cB | cB lw(1.25i)B | lw(1.25i)I | lw(2.5i). Member Type!Member Name!Description
_ unsigned short!sem_num!Semaphore number. short!sem_op!Semaphore operation. short!sem_flg!Oper-
ation flags.

Each semaphore operation specified by sem_op is performed on the corresponding semaphore specified by
semid and sem_num.

The variable sem_op specifies one of three semaphore operations:

1. If sem_op is a negative integer and the calling process has alter permission, one of the following shall
occur:

* If semval(see <sys/sem.h>) is greater than or equal to the absolute value of sem_op, the absolute
value of sem_op is subtracted from semval. Also, if (sem_flg &SEM_UNDO) is non-zero, the
absolute value of sem_op shall be added to the semadj value of the calling process for the speci-
fied semaphore.

* If semval is less than the absolute value of sem_op and (sem_flg &IPC_NOWAIT) is non-zero,
semop() shall return immediately.

* If semval is less than the absolute value of sem_op and (sem_flg &IPC_NOWAIT) is 0, semop()
shall increment the semncnt associated with the specified semaphore and suspend execution of
the calling thread until one of the following conditions occurs:

-- The value of semval becomes greater than or equal to the absolute value of sem_op. When
this occurs, the value of semncnt associated with the specified semaphore shall be decre-
mented, the absolute value of sem_op shall be subtracted from semval and, if (sem_flg

&SEM_UNDO) is non-zero, the absolute value of sem_op shall be added to the semadj

value of the calling process for the specified semaphore.

-- The semid for which the calling thread is awaiting action is removed from the system. When
this occurs, errno shall be set to [EIDRM] and −1 shall be returned.

-- The calling thread receives a signal that is to be caught. When this occurs, the value of sem-

ncnt associated with the specified semaphore shall be decremented, and the calling thread
shall resume execution in the manner prescribed in sigaction().

IEEE/The Open Group 2017 1

SEMOP(3P) POSIX Programmer’s Manual SEMOP(3P)

2. If sem_op is a positive integer and the calling process has alter permission, the value of sem_op shall
be added to semval and, if (sem_flg &SEM_UNDO) is non-zero, the value of sem_op shall be sub-
tracted from the semadj value of the calling process for the specified semaphore.

3. If sem_op is 0 and the calling process has read permission, one of the following shall occur:

* If semval is 0, semop() shall return immediately.

* If semval is non-zero and (sem_flg &IPC_NOWAIT) is non-zero, semop() shall return immedi-
ately.

* If semval is non-zero and (sem_flg &IPC_NOWAIT) is 0, semop() shall increment the semzcnt

associated with the specified semaphore and suspend execution of the calling thread until one of
the following occurs:

-- The value of semval becomes 0, at which time the value of semzcnt associated with the spec-
ified semaphore shall be decremented.

-- The semid for which the calling thread is awaiting action is removed from the system. When
this occurs, errno shall be set to [EIDRM] and −1 shall be returned.

-- The calling thread receives a signal that is to be caught. When this occurs, the value of
semzcnt associated with the specified semaphore shall be decremented, and the calling
thread shall resume execution in the manner prescribed in sigaction().

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to by
sops shall be set to the process ID of the calling process. Also, the sem_otime timestamp shall be set to the
current time, as described in Section 2.7.1, IPC General Description.

RETURN VALUE
Upon successful completion, semop() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The semop() function shall fail if:

E2BIG The value of nsops is greater than the system-imposed maximum.

EACCES
Operation permission is denied to the calling process; see Section 2.7 , XSI Interprocess Communi-

cation.

EAGAIN
The operation would result in suspension of the calling process but (sem_flg &IPC_NOWAIT) is
non-zero.

EFBIG
The value of sem_num is greater than or equal to the number of semaphores in the set associated
with semid .

EIDRM
The semaphore identifier semid is removed from the system.

EINTR
The semop() function was interrupted by a signal.

EINVAL
The value of semid is not a valid semaphore identifier, or the number of individual semaphores for
which the calling process requests a SEM_UNDO would exceed the system-imposed limit.

ENOSPC
The limit on the number of individual processes requesting a SEM_UNDO would be exceeded.

ERANGE
An operation would cause a semval to overflow the system-imposed limit, or an operation would
cause a semadj value to overflow the system-imposed limit.

IEEE/The Open Group 2017 2

SEMOP(3P) POSIX Programmer’s Manual SEMOP(3P)

The following sections are informative.

EXAMPLES
Setting Values in Semaphores

The following example sets the values of the two semaphores associated with the semid identifier to the val-
ues contained in the sb array.

#include <sys/sem.h>
...
int semid;
struct sembuf sb[2];
int nsops = 2;
int result;

/* Code to initialize semid. */
...

/* Adjust value of semaphore in the semaphore array semid. */
sb[0].sem_num = 0;
sb[0].sem_op = -1;
sb[0].sem_flg = SEM_UNDO | IPC_NOWAIT;
sb[1].sem_num = 1;
sb[1].sem_op = 1;
sb[1].sem_flg = 0;

result = semop(semid, sb, nsops);

Creating a Semaphore Identifier
The following example gets a unique semaphore key using the ftok() function, then gets a semaphore ID as-
sociated with that key using the semget() function (the first call also tests to make sure the semaphore ex-
ists). If the semaphore does not exist, the program creates it, as shown by the second call to semget(). In
creating the semaphore for the queuing process, the program attempts to create one semaphore with
read/write permission for all. It also uses the IPC_EXCL flag, which forces semget() to fail if the sema-
phore already exists.

After creating the semaphore, the program uses calls to semctl() and semop() to initialize it to the values in
the sbuf array. The number of processes that can execute concurrently without queuing is initially set to 2.
The final call to semget() creates a semaphore identifier that can be used later in the program.

Processes that obtain semid without creating it check that sem_otime is non-zero, to ensure that the creating
process has completed the semop() initialization.

The final call to semop() acquires the semaphore and waits until it is free; the SEM_UNDO option releases
the semaphore when the process exits, waiting until there are less than two processes running concurrently.

#include <stdio.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <errno.h>
#include <stdlib.h>
...
key_t semkey;
int semid;
struct sembuf sbuf;
union semun {

int val;
struct semid_ds *buf;

IEEE/The Open Group 2017 3

SEMOP(3P) POSIX Programmer’s Manual SEMOP(3P)

unsigned short *array;
} arg;
struct semid_ds ds;
...
/* Get unique key for semaphore. */
if ((semkey = ftok("/tmp", 'a')) == (key_t) -1) {

perror("IPC error: ftok"); exit(1);
}

/* Get semaphore ID associated with this key. */
if ((semid = semget(semkey, 0, 0)) == -1) {

/* Semaphore does not exist - Create. */
if ((semid = semget(semkey, 1, IPC_CREAT | IPC_EXCL | S_IRUSR |

S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)) != -1)
{

/* Initialize the semaphore. */
arg.val = 0;
sbuf.sem_num = 0;
sbuf.sem_op = 2; /* This is the number of runs without queuing. */
sbuf.sem_flg = 0;
if (semctl(semid, 0, SETVAL, arg) == -1

|| semop(semid, &sbuf, 1) == -1) {
perror("IPC error: semop"); exit(1);

}
}
else if (errno == EEXIST) {

if ((semid = semget(semkey, 0, 0)) == -1) {
perror("IPC error 1: semget"); exit(1);

}
goto check_init;

}
else {

perror("IPC error 2: semget"); exit(1);
}

}
else
{

/* Check that semid has completed initialization. */
/* An application can use a retry loop at this point rather than

exiting. */
check_init:
arg.buf = &ds;
if (semctl(semid, 0, IPC_STAT , arg) < 0) {

perror("IPC error 3: semctl"); exit(1);
}
if (ds.sem_otime == 0) {

perror("IPC error 4: semctl"); exit(1);
}

}
...
sbuf.sem_num = 0;
sbuf.sem_op = -1;
sbuf.sem_flg = SEM_UNDO;
if (semop(semid, &sbuf, 1) == -1) {

perror("IPC Error: semop"); exit(1);

IEEE/The Open Group 2017 4

SEMOP(3P) POSIX Programmer’s Manual SEMOP(3P)

}

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication. Application
developers who need to use IPC should design their applications so that modules using the IPC routines de-
scribed in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alternative inter-
faces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, exec , exit(), fork(), semctl(),
semget(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(), sem_try-

wait(), sem_unlink()

The Base Definitions volume of POSIX.1-2017, Section 4.17 , Semaphore, <sys_ipc.h>, <sys_sem.h>,
<sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

SEND(3P) POSIX Programmer’s Manual SEND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
send — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t send(int socket, const void *buffer, size_t length, int flags);

DESCRIPTION
The send() function shall initiate transmission of a message from the specified socket to its peer. The send()
function shall send a message only when the socket is connected. If the socket is a connectionless-mode
socket, the message shall be sent to the pre-specified peer address.

The send() function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer containing the message to send.

length Specifies the length of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are formed by logically
OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-band communica-
tions. The significance and semantics of out-of-band data are protocol-spe-
cific.

MSG_NOSIGNAL
Requests not to send the SIGPIPE signal if an attempt to send is made on a
stream-oriented socket that is no longer connected. The [EPIPE] error
shall still be returned.

The length of the message to be sent is specified by the length argument. If the message is too long to pass
through the underlying protocol, send() shall fail and no data shall be transmitted.

Successful completion of a call to send() does not guarantee delivery of the message. A return value of −1
indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted, and the socket file de-
scriptor does not have O_NONBLOCK set, send() shall block until space is available. If space is not avail-
able at the sending socket to hold the message to be transmitted, and the socket file descriptor does have
O_NONBLOCK set, send() shall fail. The select() and poll() functions can be used to determine when it is
possible to send more data.

The socket in use may require the process to have appropriate privileges to use the send() function.

RETURN VALUE
Upon successful completion, send() shall return the number of bytes sent. Otherwise, −1 shall be returned
and errno set to indicate the error.

ERRORS
The send() function shall fail if:

EAGAIN or EWOULDBLOCK
The socket’s file descriptor is marked O_NONBLOCK and the requested operation would block.

IEEE/The Open Group 2017 1

SEND(3P) POSIX Programmer’s Manual SEND(3P)

EBADF
The socket argument is not a valid file descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EDESTADDRREQ
The socket is not connection-mode and no peer address is set.

EINTR
A signal interrupted send() before any data was transmitted.

EMSGSIZE
The message is too large to be sent all at once, as the socket requires.

ENOTCONN
The socket is not connected.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The socket argument is associated with a socket that does not support one or more of the values set
in flags.

EPIPE The socket is shut down for writing, or the socket is connection-mode and is no longer connected.
In the latter case, and if the socket is of type SOCK_STREAM or SOCK_SEQPACKET and the
MSG_NOSIGNAL flag is not set, the SIGPIPE signal is generated to the calling thread.

The send() function may fail if:

EACCES
The calling process does not have appropriate privileges.

EIO An I/O error occurred while reading from or writing to the file system.

ENETDOWN
The local network interface used to reach the destination is down.

ENETUNREACH
No route to the network is present.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the socket argument refers to a connection-mode socket, the send() function is equivalent to sendto()
(with any value for the dest_addr and dest_len arguments, as they are ignored in this case). If the socket ar-
gument refers to a socket and the flags argument is 0, the send() function is equivalent to write().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), sendmsg(), sendto(), setsock-

opt(), shutdown(), socket(), write()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

IEEE/The Open Group 2017 2

SEND(3P) POSIX Programmer’s Manual SEND(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

SENDMSG(3P) POSIX Programmer’s Manual SENDMSG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sendmsg — send a message on a socket using a message structure

SYNOPSIS
#include <sys/socket.h>

ssize_t sendmsg(int socket, const struct msghdr *message, int flags);

DESCRIPTION
The sendmsg() function shall send a message through a connection-mode or connectionless-mode socket. If
the socket is a connectionless-mode socket, the message shall be sent to the address specified by msghdr if
no pre-specified peer address has been set. If a peer address has been pre-specified, either the message shall
be sent to the address specified in msghdr (overriding the pre-specified peer address), or the function shall
return −1 and set errno to [EISCONN]. If the socket is connection-mode, the destination address in ms-
ghdr shall be ignored.

The sendmsg() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the destination address and the buffers for the
outgoing message. The length and format of the address depend on the address family of the
socket. The msg_flags member is ignored.

flags Specifies the type of message transmission. The application may specify 0 or the following
flag:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-bound data. The sig-
nificance and semantics of out-of-band data are protocol-specific.

MSG_NOSIGNAL
Requests not to send the SIGPIPE signal if an attempt to send is made on a
stream-oriented socket that is no longer connected. The [EPIPE] error
shall still be returned.

The msg_iov and msg_iovlen fields of message specify zero or more buffers containing the data to be sent.
msg_iov points to an array of iovec structures; msg_iovlen shall be set to the dimension of this array. In
each iovec structure, the iov_base field specifies a storage area and the iov_len field gives its size in bytes.
Some of these sizes can be zero. The data from each storage area indicated by msg_iov is sent in turn.

Successful completion of a call to sendmsg() does not guarantee delivery of the message. A return value of
−1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the socket file de-
scriptor does not have O_NONBLOCK set, the sendmsg() function shall block until space is available. If
space is not available at the sending socket to hold the message to be transmitted and the socket file descrip-
tor does have O_NONBLOCK set, the sendmsg() function shall fail.

If the socket protocol supports broadcast and the specified address is a broadcast address for the socket pro-
tocol, sendmsg() shall fail if the SO_BROADCAST option is not set for the socket.

The socket in use may require the process to have appropriate privileges to use the sendmsg() function.

RETURN VALUE
Upon successful completion, sendmsg() shall return the number of bytes sent. Otherwise, −1 shall be re-
turned and errno set to indicate the error.

IEEE/The Open Group 2017 1

SENDMSG(3P) POSIX Programmer’s Manual SENDMSG(3P)

ERRORS
The sendmsg() function shall fail if:

EAGAIN or EWOULDBLOCK
The socket’s file descriptor is marked O_NONBLOCK and the requested operation would block.

EAFNOSUPPORT
Addresses in the specified address family cannot be used with this socket.

EBADF
The socket argument is not a valid file descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EINTR
A signal interrupted sendmsg() before any data was transmitted.

EINVAL
The sum of the iov_len values overflows an ssize_t.

EMSGSIZE
The message is too large to be sent all at once (as the socket requires), or the msg_iovlen member
of the msghdr structure pointed to by message is less than or equal to 0 or is greater than
{IOV_MAX}.

ENOTCONN
The socket is connection-mode but is not connected.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The socket argument is associated with a socket that does not support one or more of the values set
in flags.

EPIPE The socket is shut down for writing, or the socket is connection-mode and is no longer connected.
In the latter case, and if the socket is of type SOCK_STREAM or SOCK_SEQPACKET and the
MSG_NOSIGNAL flag is not set, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendmsg() shall fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the pathname in the socket ad-
dress.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of the pathname does not name an existing file or the path name is an empty string.

ENOTDIR
A component of the path prefix of the pathname in the socket address names an existing file that is
neither a directory nor a symbolic link to a directory, or the pathname in the socket address con-
tains at least one non-<slash> character and ends with one or more trailing <slash> characters and
the last pathname component names an existing file that is neither a directory nor a symbolic link
to a directory.

The sendmsg() function may fail if:

EACCES
Search permission is denied for a component of the path prefix; or write access to the named
socket is denied.

IEEE/The Open Group 2017 2

SENDMSG(3P) POSIX Programmer’s Manual SENDMSG(3P)

EDESTADDRREQ
The socket is not connection-mode and does not have its peer address set, and no destination ad-
dress was specified.

EHOSTUNREACH
The destination host cannot be reached (probably because the host is down or a remote router can-
not reach it).

EIO An I/O error occurred while reading from or writing to the file system.

EISCONN
A destination address was specified and the socket is already connected.

ENETDOWN
The local network interface used to reach the destination is down.

ENETUNREACH
No route to the network is present.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

If the address family of the socket is AF_UNIX, then sendmsg() may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path-
name in the socket address.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
Done.

APPLICATION USAGE
The select() and poll() functions can be used to determine when it is possible to send more data.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), send(), sendto(), setsockopt(), shut-

down(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

SENDTO(3P) POSIX Programmer’s Manual SENDTO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sendto — send a message on a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t sendto(int socket, const void *message, size_t length,
int flags, const struct sockaddr *dest_addr,
socklen_t dest_len);

DESCRIPTION
The sendto() function shall send a message through a connection-mode or connectionless-mode socket.

If the socket is a connectionless-mode socket, the message shall be sent to the address specified by
dest_addr if no pre-specified peer address has been set. If a peer address has been pre-specified, either the
message shall be sent to the address specified by dest_addr (overriding the pre-specified peer address), or
the function shall return −1 and set errno to [EISCONN].

If the socket is connection-mode, dest_addr shall be ignored.

The sendto() function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a buffer containing the message to be sent.

length Specifies the size of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are formed by logically
OR’ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Sends out-of-band data on sockets that support out-of-band data. The sig-
nificance and semantics of out-of-band data are protocol-specific.

MSG_NOSIGNAL
Requests not to send the SIGPIPE signal if an attempt to send is made on a
stream-oriented socket that is no longer connected. The [EPIPE] error
shall still be returned.

dest_addr Points to a sockaddr structure containing the destination address. The length and format of
the address depend on the address family of the socket.

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr argument.

If the socket protocol supports broadcast and the specified address is a broadcast address for the socket pro-
tocol, sendto() shall fail if the SO_BROADCAST option is not set for the socket.

The dest_addr argument specifies the address of the target.

The length argument specifies the length of the message.

Successful completion of a call to sendto() does not guarantee delivery of the message. A return value of −1
indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the socket file de-
scriptor does not have O_NONBLOCK set, sendto() shall block until space is available. If space is not
available at the sending socket to hold the message to be transmitted and the socket file descriptor does
have O_NONBLOCK set, sendto() shall fail.

The socket in use may require the process to have appropriate privileges to use the sendto() function.

IEEE/The Open Group 2017 1

SENDTO(3P) POSIX Programmer’s Manual SENDTO(3P)

RETURN VALUE
Upon successful completion, sendto() shall return the number of bytes sent. Otherwise, −1 shall be returned
and errno set to indicate the error.

ERRORS
The sendto() function shall fail if:

EAFNOSUPPORT
Addresses in the specified address family cannot be used with this socket.

EAGAIN or EWOULDBLOCK
The socket’s file descriptor is marked O_NONBLOCK and the requested operation would block.

EBADF
The socket argument is not a valid file descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EINTR
A signal interrupted sendto() before any data was transmitted.

EMSGSIZE
The message is too large to be sent all at once, as the socket requires.

ENOTCONN
The socket is connection-mode but is not connected.

ENOTSOCK
The socket argument does not refer to a socket.

EOPNOTSUPP
The socket argument is associated with a socket that does not support one or more of the values set
in flags.

EPIPE The socket is shut down for writing, or the socket is connection-mode and is no longer connected.
In the latter case, and if the socket is of type SOCK_STREAM or SOCK_SEQPACKET and the
MSG_NOSIGNAL flag is not set, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendto() shall fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the pathname in the socket ad-
dress.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of the pathname does not name an existing file or the pathname is an empty string.

ENOTDIR
A component of the path prefix of the pathname in the socket address names an existing file that is
neither a directory nor a symbolic link to a directory, or the pathname in the socket address con-
tains at least one non-<slash> character and ends with one or more trailing <slash> characters and
the last pathname component names an existing file that is neither a directory nor a symbolic link
to a directory.

The sendto() function may fail if:

EACCES
Search permission is denied for a component of the path prefix; or write access to the named
socket is denied.

IEEE/The Open Group 2017 2

SENDTO(3P) POSIX Programmer’s Manual SENDTO(3P)

EDESTADDRREQ
The socket is not connection-mode and does not have its peer address set, and no destination ad-
dress was specified.

EHOSTUNREACH
The destination host cannot be reached (probably because the host is down or a remote router can-
not reach it).

EINVAL
The dest_len argument is not a valid length for the address family.

EIO An I/O error occurred while reading from or writing to the file system.

EISCONN
A destination address was specified and the socket is already connected.

ENETDOWN
The local network interface used to reach the destination is down.

ENETUNREACH
No route to the network is present.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

If the address family of the socket is AF_UNIX, then sendto() may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path-
name in the socket address.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The select() and poll() functions can be used to determine when it is possible to send more data.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), poll(), pselect(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), setsockopt(), shut-

down(), socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 3

SENDTO(3P) POSIX Programmer’s Manual SENDTO(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

SETBUF(3P) POSIX Programmer’s Manual SETBUF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf(FILE *restrict stream, char *restrict buf);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

Except that it returns no value, the function call:

setbuf(stream, buf)

shall be equivalent to:

setvbuf(stream, buf, _IOFBF, BUFSIZ)

if buf is not a null pointer, or to:

setvbuf(stream, buf, _IONBF, BUFSIZ)

if buf is a null pointer.

RETURN VALUE
The setbuf() function shall not return a value.

ERRORS
Although the setvbuf() interface may set errno in defined ways, the value of errno after a call to setbuf() is
unspecified.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block, and then
failing to close the stream in the same block.

With setbuf(), allocating a buffer of BUFSIZ bytes does not necessarily imply that all of BUFSIZ bytes are
used for the buffer area.

Since errno is not required to be unchanged on success, in order to correctly detect and possibly recover
from errors, applications should use setvbuf() instead of setbuf().

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

SETBUF(3P) POSIX Programmer’s Manual SETBUF(3P)

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), setvbuf()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETEGID(3P) POSIX Programmer’s Manual SETEGID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setegid — set the effective group ID

SYNOPSIS
#include <unistd.h>

int setegid(gid_t gid);

DESCRIPTION
If gid is equal to the real group ID or the saved set-group-ID, or if the process has appropriate privileges,
setegid() shall set the effective group ID of the calling process to gid; the real group ID, saved set-group-
ID, and any supplementary group IDs shall remain unchanged.

The setegid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The setegid() function shall fail if:

EINVAL
The value of the gid argument is invalid and is not supported by the implementation.

EPERM
The process does not have appropriate privileges and gid does not match the real group ID or the
saved set-group-ID.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), seteuid(), setgid(), setregid(), setreuid(), setuid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETENV(3P) POSIX Programmer’s Manual SETENV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setenv — add or change environment variable

SYNOPSIS
#include <stdlib.h>

int setenv(const char *envname, const char *envval, int overwrite);

DESCRIPTION
The setenv() function shall update or add a variable in the environment of the calling process. The envname

argument points to a string containing the name of an environment variable to be added or altered. The en-
vironment variable shall be set to the value to which envval points. The function shall fail if envname points
to a string which contains an ’=’ character. If the environment variable named by envname already exists
and the value of overwrite is non-zero, the function shall return success and the environment shall be up-
dated. If the environment variable named by envname already exists and the value of overwrite is zero, the
function shall return success and the environment shall remain unchanged.

The setenv() function shall update the list of pointers to which environ points.

The strings described by envname and envval are copied by this function.

The setenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to indicate
the error, and the environment shall be unchanged.

ERRORS
The setenv() function shall fail if:

EINVAL
The envname argument points to an empty string or points to a string containing an ’=’ character.

ENOMEM
Insufficient memory was available to add a variable or its value to the environment.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
See exec() for restrictions on changing the environment in multi-threaded applications.

RATIONALE
Unanticipated results may occur if setenv() changes the external variable environ. In particular, if the op-
tional envp argument to main() is present, it is not changed, and thus may point to an obsolete copy of the
environment (as may any other copy of environ). However, other than the aforementioned restriction, the
standard developers intended that the traditional method of walking through the environment by way of the
environ pointer must be supported.

It was decided that setenv() should be required by this version because it addresses a piece of missing func-
tionality, and does not impose a significant burden on the implementor.

There was considerable debate as to whether the System V putenv() function or the BSD setenv() function
should be required as a mandatory function. The setenv() function was chosen because it permitted the im-
plementation of the unsetenv() function to delete environmental variables, without specifying an additional
interface. The putenv() function is available as part of the XSI option.

The standard developers considered requiring that setenv() indicate an error when a call to it would result in

IEEE/The Open Group 2017 1

SETENV(3P) POSIX Programmer’s Manual SETENV(3P)

exceeding {ARG_MAX}. The requirement was rejected since the condition might be temporary, with the
application eventually reducing the environment size. The ultimate success or failure depends on the size at
the time of a call to exec, which returns an indication of this error condition.

See also the RATIONALE section in getenv().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getenv(), putenv(), unsetenv()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETEUID(3P) POSIX Programmer’s Manual SETEUID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
seteuid — set effective user ID

SYNOPSIS
#include <unistd.h>

int seteuid(uid_t uid);

DESCRIPTION
If uid is equal to the real user ID or the saved set-user-ID, or if the process has appropriate privileges, se-

teuid() shall set the effective user ID of the calling process to uid; the real user ID and saved set-user-ID
shall remain unchanged.

The seteuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The seteuid() function shall fail if:

EINVAL
The value of the uid argument is invalid and is not supported by the implementation.

EPERM
The process does not have appropriate privileges and uid does not match the real user ID or the
saved set-user-ID.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), setgid(), setregid(), setreuid(), setuid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETGID(3P) POSIX Programmer’s Manual SETGID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setgid — set-group-ID

SYNOPSIS
#include <unistd.h>

int setgid(gid_t gid);

DESCRIPTION
If the process has appropriate privileges, setgid() shall set the real group ID, effective group ID, and the
saved set-group-ID of the calling process to gid .

If the process does not have appropriate privileges, but gid is equal to the real group ID or the saved set-
group-ID, setgid() shall set the effective group ID to gid; the real group ID and saved set-group-ID shall re-
main unchanged.

The setgid() function shall not affect the supplementary group list in any way.

Any supplementary group IDs of the calling process shall remain unchanged.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 shall be returned and errno set to indicate the er-
ror.

ERRORS
The setgid() function shall fail if:

EINVAL
The value of the gid argument is invalid and is not supported by the implementation.

EPERM
The process does not have appropriate privileges and gid does not match the real group ID or the
saved set-group-ID.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setuid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setregid(), setreuid(), setuid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

SETGID(3P) POSIX Programmer’s Manual SETGID(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETGRENT(3P) POSIX Programmer’s Manual SETGRENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setgrent — reset the group database to the first entry

SYNOPSIS
#include <grp.h>

void setgrent(void);

DESCRIPTION
Refer to endgrent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETHOSTENT(3P) POSIX Programmer’s Manual SETHOSTENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sethostent — network host database functions

SYNOPSIS
#include <netdb.h>

void sethostent(int stayopen);

DESCRIPTION
Refer to endhostent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETITIMER(3P) POSIX Programmer’s Manual SETITIMER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setitimer — set the value of an interval timer

SYNOPSIS
#include <sys/time.h>

int setitimer(int which, const struct itimerval *restrict value,
struct itimerval *restrict ovalue);

DESCRIPTION
Refer to getitimer().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETJMP(3P) POSIX Programmer’s Manual SETJMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setjmp — set jump point for a non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

A call to setjmp() shall save the calling environment in its env argument for later use by longjmp().

It is unspecified whether setjmp() is a macro or a function. If a macro definition is suppressed in order to ac-
cess an actual function, or a program defines an external identifier with the name setjmp, the behavior is un-
defined.

An application shall ensure that an invocation of setjmp() appears in one of the following contexts only:

* The entire controlling expression of a selection or iteration statement

* One operand of a relational or equality operator with the other operand an integral constant expression,
with the resulting expression being the entire controlling expression of a selection or iteration state-
ment

* The operand of a unary ’!’ operator with the resulting expression being the entire controlling expres-
sion of a selection or iteration

* The entire expression of an expression statement (possibly cast to void)

If the invocation appears in any other context, the behavior is undefined.

RETURN VALUE
If the return is from a direct invocation, setjmp() shall return 0. If the return is from a call to longjmp(),
setjmp() shall return a non-zero value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
In general, sigsetjmp() is more useful in dealing with errors and interrupts encountered in a low-level sub-
routine of a program.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), sigsetjmp()

The Base Definitions volume of POSIX.1-2017, <setjmp.h>

IEEE/The Open Group 2017 1

SETJMP(3P) POSIX Programmer’s Manual SETJMP(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETKEY(3P) POSIX Programmer’s Manual SETKEY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setkey — set encoding key (CRYPT)

SYNOPSIS
#include <stdlib.h>

void setkey(const char *key);

DESCRIPTION
The setkey() function provides access to an implementation-defined encoding algorithm. The argument of
setkey() is an array of length 64 bytes containing only the bytes with numerical value of 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key which is
used by the algorithm. This is the key that shall be used with the algorithm to encode a string block passed
to encrypt().

The setkey() function shall not change the setting of errno if successful. An application wishing to check
for error situations should set errno to 0 before calling setkey(). If errno is non-zero on return, an error has
occurred.

The setkey() function need not be thread-safe.

RETURN VALUE
No values are returned.

ERRORS
The setkey() function shall fail if:

ENOSYS
The functionality is not supported on this implementation.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Decoding need not be implemented in all environments. This is related to government restrictions in some
countries on encryption and decryption routines. Historical practice has been to ship a different version of
the encryption library without the decryption feature in the routines supplied. Thus the exported version of
encrypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
A future version of the standard may mark this interface as obsolete or remove it altogether.

SEE ALSO
crypt(), encrypt()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

SETKEY(3P) POSIX Programmer’s Manual SETKEY(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETLOCALE(3P) POSIX Programmer’s Manual SETLOCALE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setlocale — set program locale

SYNOPSIS
#include <locale.h>

char *setlocale(int category, const char *locale);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The setlocale() function selects the appropriate piece of the global locale, as specified by the category and
locale arguments, and can be used to change or query the entire global locale or portions thereof. The value
LC_ALL for category names the entire global locale; other values for category name only a part of the
global locale:

LC_COLLATE
Affects the behavior of regular expressions and the collation functions.

LC_CTYPE Affects the behavior of regular expressions, character classification, character conversion
functions, and wide-character functions.

LC_MESSAGES
Affects the affirmative and negative response expressions returned by nl_langinfo() and the
way message catalogs are located. It may also affect the behavior of functions that return or
write message strings.

LC_MONETARY
Affects the behavior of functions that handle monetary values.

LC_NUMERIC
Affects the behavior of functions that handle numeric values.

LC_TIME Affects the behavior of the time conversion functions.

The locale argument is a pointer to a character string containing the required setting of category. The con-
tents of this string are implementation-defined. In addition, the following preset values of locale are defined
for all settings of category:

"POSIX" Specifies the minimal environment for C-language translation called the POSIX locale. The
POSIX locale is the default global locale at entry to main().

"C" Equivalent to "POSIX".

" " Specifies an implementation-defined native environment. The determination of the name of
the new locale for the specified category depends on the value of the associated environment
variables, LC_* and LANG; see the Base Definitions volume of POSIX.1-2017, Chapter 7 ,
Locale and Chapter 8, Environment Variables.

A null pointer
Directs setlocale() to query the current global locale setting and return the name of the locale
if category is not LC_ALL, or a string which encodes the locale name(s) for all of the indi-
vidual categories if category is LC_ALL.

Setting all of the categories of the global locale is similar to successively setting each individual category of
the global locale, except that all error checking is done before any actions are performed. To set all the cate-
gories of the global locale, setlocale() can be invoked as:

IEEE/The Open Group 2017 1

SETLOCALE(3P) POSIX Programmer’s Manual SETLOCALE(3P)

setlocale(LC_ALL, "");

In this case, setlocale() shall first verify that the values of all the environment variables it needs according
to the precedence rules (described in the Base Definitions volume of POSIX.1-2017, Chapter 8, Environ-

ment Variables) indicate supported locales. If the value of any of these environment variable searches yields
a locale that is not supported (and non-null), setlocale() shall return a null pointer and the global locale
shall not be changed. If all environment variables name supported locales, setlocale() shall proceed as if it
had been called for each category, using the appropriate value from the associated environment variable or
from the implementation-defined default if there is no such value.

The global locale established using setlocale() shall only be used in threads for which no current locale has
been set using uselocale() or whose current locale has been set to the global locale using uselo-

cale(LC_GLOBAL_LOCALE).

The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls setlo-

cale().

The setlocale() function need not be thread-safe.

RETURN VALUE
Upon successful completion, setlocale() shall return the string associated with the specified category for the
new locale. Otherwise, setlocale() shall return a null pointer and the global locale shall not be changed.

A null pointer for locale shall cause setlocale() to return a pointer to the string associated with the specified
category for the current global locale. The global locale shall not be changed.

The string returned by setlocale() is such that a subsequent call with that string and its associated category

shall restore that part of the global locale. The application shall not modify the string returned. The re-
turned string pointer might be invalidated or the string content might be overwritten by a subsequent call to
setlocale(). The returned pointer might also be invalidated if the calling thread is terminated.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The following code illustrates how a program can initialize the international environment for one language,
while selectively modifying the global locale such that regular expressions and string operations can be ap-
plied to text recorded in a different language:

setlocale(LC_ALL, "De");
setlocale(LC_COLLATE, "Fr@dict");

Internationalized programs can initiate language operation according to environment variable settings (see
the Base Definitions volume of POSIX.1-2017, Section 8.2, Internationalization Variables) by calling set-

locale() as follows:

setlocale(LC_ALL, "");

Changing the setting of LC_MESSAGES has no effect on catalogs that have already been opened by calls to
catopen().

In order to make use of different locale settings while multiple threads are running, applications should use
uselocale() in preference to setlocale().

IEEE/The Open Group 2017 2

SETLOCALE(3P) POSIX Programmer’s Manual SETLOCALE(3P)

RATIONALE
References to the international environment or locale in the following text relate to the global locale for the
process. This can be overridden for individual threads using uselocale().

The ISO C standard defines a collection of functions to support internationalization. One of the most sig-
nificant aspects of these functions is a facility to set and query the international environment. The interna-
tional environment is a repository of information that affects the behavior of certain functionality, namely:

1. Character handling

2. Collating

3. Date/time formatting

4. Numeric editing

5. Monetary formatting

6. Messaging

The setlocale() function provides the application developer with the ability to set all or portions, called cat-

egories, of the international environment. These categories correspond to the areas of functionality men-
tioned above. The syntax for setlocale() is as follows:

char *setlocale(int category, const char *locale);

where category is the name of one of following categories, namely:

LC_COLLATE LC_CTYPE LC_MESSAGES LC_MONETARY LC_NUMERIC LC_TIME

In addition, a special value called LC_ALL directs setlocale() to set all categories.

There are two primary uses of setlocale():

1. Querying the international environment to find out what it is set to

2. Setting the international environment, or locale, to a specific value

The behavior of setlocale() in these two areas is described below. Since it is difficult to describe the behav-
ior in words, examples are used to illustrate the behavior of specific uses.

To query the international environment, setlocale() is invoked with a specific category and the null pointer
as the locale. The null pointer is a special directive to setlocale() that tells it to query rather than set the in-
ternational environment. The following syntax is used to query the name of the international environment:

setlocale({LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, \
LC_NUMERIC, LC_TIME},(char *) NULL);

The setlocale() function shall return the string corresponding to the current international environment. This
value may be used by a subsequent call to setlocale() to reset the international environment to this value.
However, it should be noted that the return value from setlocale() may be a pointer to a static area within
the function and is not guaranteed to remain unchanged (that is, it may be modified by a subsequent call to
setlocale()). Therefore, if the purpose of calling setlocale() is to save the value of the current international
environment so it can be changed and reset later, the return value should be copied to an array of char in
the calling program.

There are three ways to set the international environment with setlocale():

setlocale(category, string)
This usage sets a specific category in the international environment to a specific value correspond-
ing to the value of the string. A specific example is provided below:

IEEE/The Open Group 2017 3

SETLOCALE(3P) POSIX Programmer’s Manual SETLOCALE(3P)

setlocale(LC_ALL, "fr_FR.ISO-8859-1");

In this example, all categories of the international environment are set to the locale corresponding to
the string "fr_FR.ISO-8859-1", or to the French language as spoken in France using the
ISO/IEC 8859-1: 1998 standard codeset.

If the string does not correspond to a valid locale, setlocale() shall return a null pointer and the inter-
national environment is not changed. Otherwise, setlocale() shall return the name of the locale just
set.

setlocale(category, "C")
The ISO C standard states that one locale must exist on all conforming implementations. The name
of the locale is C and corresponds to a minimal international environment needed to support the C
programming language.

setlocale(category, "")
This sets a specific category to an implementation-defined default. This corresponds to the value of
the environment variables.

FUTURE DIRECTIONS
None.

SEE ALSO
catopen(), exec , fprintf(), fscanf(), isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), is-

lower(), isprint(), ispunct(), isspace(), isupper(), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswc-

type(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(),
isxdigit(), localeconv(), mblen(), mbstowcs(), mbtowc(), newlocale(), nl_langinfo(), perror(), psig-

info(), strcoll(), strerror(), strfmon(), strsignal(), strtod(), strxfrm(), tolower(), toupper(), towlower(),
towupper(), uselocale(), wcscoll(), wcstod(), wcstombs(), wcsxfrm(), wctomb()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, Chapter 8, Environment Variables,
<langinfo.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

SETLOGMASK(3P) POSIX Programmer’s Manual SETLOGMASK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setlogmask — set the log priority mask

SYNOPSIS
#include <syslog.h>

int setlogmask(int maskpri);

DESCRIPTION
Refer to closelog().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETNETENT(3P) POSIX Programmer’s Manual SETNETENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setnetent — network database function

SYNOPSIS
#include <netdb.h>

void setnetent(int stayopen);

DESCRIPTION
Refer to endnetent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETPGID(3P) POSIX Programmer’s Manual SETPGID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setpgid — set process group ID for job control

SYNOPSIS
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION
The setpgid() function shall either join an existing process group or create a new process group within the
session of the calling process.

The process group ID of a session leader shall not change.

Upon successful completion, the process group ID of the process with a process ID that matches pid shall
be set to pgid .

As a special case, if pid is 0, the process ID of the calling process shall be used. Also, if pgid is 0, the
process ID of the indicated process shall be used.

RETURN VALUE
Upon successful completion, setpgid() shall return 0; otherwise, −1 shall be returned and errno shall be set
to indicate the error.

ERRORS
The setpgid() function shall fail if:

EACCES
The value of the pid argument matches the process ID of a child process of the calling process and
the child process has successfully executed one of the exec functions.

EINVAL
The value of the pgid argument is less than 0, or is not a value supported by the implementation.

EPERM
The process indicated by the pid argument is a session leader.

EPERM
The value of the pid argument matches the process ID of a child process of the calling process and
the child process is not in the same session as the calling process.

EPERM
The value of the pgid argument is valid but does not match the process ID of the process indicated
by the pid argument and there is no process with a process group ID that matches the value of the
pgid argument in the same session as the calling process.

ESRCH
The value of the pid argument does not match the process ID of the calling process or of a child
process of the calling process.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The setpgid() function shall group processes together for the purpose of signaling, placement in foreground
or background, and other job control actions.

IEEE/The Open Group 2017 1

SETPGID(3P) POSIX Programmer’s Manual SETPGID(3P)

The setpgid() function is similar to the setpgrp() function of 4.2 BSD, except that 4.2 BSD allowed the
specified new process group to assume any value. This presents certain security problems and is more flexi-
ble than necessary to support job control.

To provide tighter security, setpgid() only allows the calling process to join a process group already in use
inside its session or create a new process group whose process group ID was equal to its process ID.

When a job control shell spawns a new job, the processes in the job must be placed into a new process
group via setpgid(). There are two timing constraints involved in this action:

1. The new process must be placed in the new process group before the appropriate program is launched
via one of the exec functions.

2. The new process must be placed in the new process group before the shell can correctly send signals to
the new process group.

To address these constraints, the following actions are performed. The new processes call setpgid() to alter
their own process groups after fork() but before exec. This satisfies the first constraint. Under 4.3 BSD, the
second constraint is satisfied by the synchronization property of vfork(); that is, the shell is suspended until
the child has completed the exec, thus ensuring that the child has completed the setpgid(). A new version
of fork() with this same synchronization property was considered, but it was decided instead to merely al-
low the parent shell process to adjust the process group of its child processes via setpgid(). Both timing
constraints are now satisfied by having both the parent shell and the child attempt to adjust the process
group of the child process; it does not matter which succeeds first.

Since it would be confusing to an application to have its process group change after it began executing (that
is, after exec), and because the child process would already have adjusted its process group before this, the
[EACCES] error was added to disallow this.

One non-obvious use of setpgid() is to allow a job control shell to return itself to its original process group
(the one in effect when the job control shell was executed). A job control shell does this before returning
control back to its parent when it is terminating or suspending itself as a way of restoring its job control
‘‘state’’ back to what its parent would expect. (Note that the original process group of the job control shell
typically matches the process group of its parent, but this is not necessarily always the case.)

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getpgrp(), setsid(), tcsetpgrp()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETPGRP(3P) POSIX Programmer’s Manual SETPGRP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setpgrp — set the process group ID

SYNOPSIS
#include <unistd.h>

pid_t setpgrp(void);

DESCRIPTION
If the calling process is not already a session leader, setpgrp() sets the process group ID of the calling
process to the process ID of the calling process. If setpgrp() creates a new session, then the new session has
no controlling terminal.

The setpgrp() function has no effect when the calling process is a session leader.

RETURN VALUE
Upon completion, setpgrp() shall return the process group ID.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
It is unspecified whether this function behaves as setpgid(0,0) or setsid() unless the process is already a ses-
sion leader. Therefore, applications are encouraged to use setpgid() or setsid() as appropriate.

RATIONALE
None.

FUTURE DIRECTIONS
The setpgrp() function may be removed in a future version.

SEE ALSO
exec , fork(), getpid(), getsid(), kill(), setpgid(), setsid()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETPRIORITY(3P) POSIX Programmer’s Manual SETPRIORITY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setpriority — set the nice value

SYNOPSIS
#include <sys/resource.h>

int setpriority(int which, id_t who, int nice);

DESCRIPTION
Refer to getpriority().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETPROT OENT(3P) POSIX Programmer’s Manual SETPROT OENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setprotoent — network protocol database functions

SYNOPSIS
#include <netdb.h>

void setprotoent(int stayopen);

DESCRIPTION
Refer to endprotoent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETPWENT(3P) POSIX Programmer’s Manual SETPWENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setpwent — user database function

SYNOPSIS
#include <pwd.h>

void setpwent(void);

DESCRIPTION
Refer to endpwent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETREGID(3P) POSIX Programmer’s Manual SETREGID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setregid — set real and effective group IDs

SYNOPSIS
#include <unistd.h>

int setregid(gid_t rgid, gid_t egid);

DESCRIPTION
The setregid() function shall set the real and effective group IDs of the calling process.

If rgid is −1, the real group ID shall not be changed; if egid is −1, the effective group ID shall not be
changed.

The real and effective group IDs may be set to different values in the same call.

Only a process with appropriate privileges can set the real group ID and the effective group ID to any valid
value.

A non-privileged process can set either the real group ID to the saved set-group-ID from one of the exec

family of functions, or the effective group ID to the saved set-group-ID or the real group ID.

If the real group ID is being set (rgid is not −1), or the effective group ID is being set to a value not equal to
the real group ID, then the saved set-group-ID of the current process shall be set equal to the new effective
group ID.

Any supplementary group IDs of the calling process remain unchanged.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error, and neither of the group IDs are changed.

ERRORS
The setregid() function shall fail if:

EINVAL
The value of the rgid or egid argument is invalid or out-of-range.

EPERM
The process does not have appropriate privileges and a change other than changing the real group
ID to the saved set-group-ID, or changing the effective group ID to the real group ID or the saved
set-group-ID, was requested.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If a non-privileged set-group-ID process sets its effective group ID to its real group ID, it can only set its ef-
fective group ID back to the previous value if rgid was −1 in the setregid() call, since the saved-group-ID is
not changed in that case. If rgid was equal to the real group ID in the setregid() call, then the saved set-
group-ID will also have been changed to the real user ID.

RATIONALE
Earlier versions of this standard did not specify whether the saved set-group-ID was affected by setregid()
calls. This version specifies common existing practice that constitutes an important security feature. The
ability to set both the effective group ID and saved set-group-ID to be the same as the real group ID means
that any security weakness in code that is executed after that point cannot result in malicious code being ex-
ecuted with the previous effective group ID. Privileged applications could already do this using just

IEEE/The Open Group 2017 1

SETREGID(3P) POSIX Programmer’s Manual SETREGID(3P)

setgid(), but for non-privileged applications the only standard method available is to use this feature of se-

tregid().

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setreuid(), setuid()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETREUID(3P) POSIX Programmer’s Manual SETREUID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setreuid — set real and effective user IDs

SYNOPSIS
#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

DESCRIPTION
The setreuid() function shall set the real and effective user IDs of the current process to the values specified
by the ruid and euid arguments. If ruid or euid is −1, the corresponding effective or real user ID of the cur-
rent process shall be left unchanged.

A process with appropriate privileges can set either ID to any value. An unprivileged process can only set
the effective user ID if the euid argument is equal to either the real, effective, or sav ed user ID of the
process.

If the real user ID is being set (ruid is not −1), or the effective user ID is being set to a value not equal to
the real user ID, then the saved set-user-ID of the current process shall be set equal to the new effective user
ID.

It is unspecified whether a process without appropriate privileges is permitted to change the real user ID to
match the current effective user ID or saved set-user-ID of the process.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The setreuid() function shall fail if:

EINVAL
The value of the ruid or euid argument is invalid or out-of-range.

EPERM
The current process does not have appropriate privileges, and either an attempt was made to
change the effective user ID to a value other than the real user ID or the saved set-user-ID or an at-
tempt was made to change the real user ID to a value not permitted by the implementation.

The following sections are informative.

EXAMPLES
Setting the Effective User ID to the Real User ID

The following example sets the effective user ID of the calling process to the real user ID, so that files cre-
ated later will be owned by the current user. It also sets the saved set-user-ID to the real user ID, so any fu-
ture attempt to set the effective user ID back to its previous value will fail.

#include <unistd.h>
#include <sys/types.h>
...
setreuid(getuid(), getuid());
...

APPLICATION USAGE
None.

IEEE/The Open Group 2017 1

SETREUID(3P) POSIX Programmer’s Manual SETREUID(3P)

RATIONALE
Earlier versions of this standard did not specify whether the saved set-user-ID was affected by setreuid()
calls. This version specifies common existing practice that constitutes an important security feature. The
ability to set both the effective user ID and saved set-user-ID to be the same as the real user ID means that
any security weakness in code that is executed after that point cannot result in malicious code being exe-
cuted with the previous effective user ID. Privileged applications could already do this using just setuid(),
but for non-privileged applications the only standard method available is to use this feature of setreuid().

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setuid()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETRLIMIT(3P) POSIX Programmer’s Manual SETRLIMIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setrlimit — control maximum resource consumption

SYNOPSIS
#include <sys/resource.h>

int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
Refer to getrlimit().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETSERVENT(3P) POSIX Programmer’s Manual SETSERVENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setservent — network services database functions

SYNOPSIS
#include <netdb.h>

void setservent(int stayopen);

DESCRIPTION
Refer to endservent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETSID(3P) POSIX Programmer’s Manual SETSID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setsid — create session and set process group ID

SYNOPSIS
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
The setsid() function shall create a new session, if the calling process is not a process group leader. Upon
return the calling process shall be the session leader of this new session, shall be the process group leader of
a new process group, and shall have no controlling terminal. The process group ID of the calling process
shall be set equal to the process ID of the calling process. The calling process shall be the only process in
the new process group and the only process in the new session.

RETURN VALUE
Upon successful completion, setsid() shall return the value of the new process group ID of the calling
process. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The setsid() function shall fail if:

EPERM
The calling process is already a process group leader, or the process group ID of a process other
than the calling process matches the process ID of the calling process.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The setsid() function is similar to the setpgrp() function of System V. System V, without job control,
groups processes into process groups and creates new process groups via setpgrp(); only one process group
may be part of a login session.

Job control allows multiple process groups within a login session. In order to limit job control actions so
that they can only affect processes in the same login session, this volume of POSIX.1-2017 adds the con-
cept of a session that is created via setsid(). The setsid() function also creates the initial process group con-
tained in the session. Additional process groups can be created via the setpgid() function. A System V
process group would correspond to a POSIX System Interfaces session containing a single POSIX process
group. Note that this function requires that the calling process not be a process group leader. The usual way
to ensure this is true is to create a new process with fork() and have it call setsid(). The fork() function
guarantees that the process ID of the new process does not match any existing process group ID.

FUTURE DIRECTIONS
None.

SEE ALSO
getsid(), setpgid(), setpgrp()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

SETSID(3P) POSIX Programmer’s Manual SETSID(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETSOCKOPT(3P) POSIX Programmer’s Manual SETSOCKOPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setsockopt — set the socket options

SYNOPSIS
#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,
const void *option_value, socklen_t option_len);

DESCRIPTION
The setsockopt() function shall set the option specified by the option_name argument, at the protocol level
specified by the level argument, to the value pointed to by the option_value argument for the socket associ-
ated with the file descriptor specified by the socket argument.

The level argument specifies the protocol level at which the option resides. To set options at the socket
level, specify the level argument as SOL_SOCKET. To set options at other levels, supply the appropriate
level identifier for the protocol controlling the option. For example, to indicate that an option is interpreted
by the TCP (Transport Control Protocol), set level to IPPROT O_TCP as defined in the <netinet/in.h>

header.

The option_name argument specifies a single option to set. It can be one of the socket-level options defined
in <sys_socket.h> and described in Section 2.10.16, Use of Options. If option_name is equal to SO_RCV-
TIMEO or SO_SNDTIMEO and the implementation supports setting the option, it is unspecified whether
the struct timeval pointed to by option_value is stored as provided by this function or is rounded up to
align with the resolution of the clock being used. If setsockopt() is called with option_name equal to
SO_ACCEPTCONN, SO_ERROR, or SO_TYPE, the behavior is unspecified.

RETURN VALUE
Upon successful completion, setsockopt() shall return 0. Otherwise, −1 shall be returned and errno set to in-
dicate the error.

ERRORS
The setsockopt() function shall fail if:

EBADF
The socket argument is not a valid file descriptor.

EDOM
The send and receive timeout values are too big to fit into the timeout fields in the socket structure.

EINVAL
The specified option is invalid at the specified socket level or the socket has been shut down.

EISCONN
The socket is already connected, and a specified option cannot be set while the socket is con-
nected.

ENOPROT OOPT
The option is not supported by the protocol.

ENOTSOCK
The socket argument does not refer to a socket.

The setsockopt() function may fail if:

ENOMEM
There was insufficient memory available for the operation to complete.

IEEE/The Open Group 2017 1

SETSOCKOPT(3P) POSIX Programmer’s Manual SETSOCKOPT(3P)

ENOBUFS
Insufficient resources are available in the system to complete the call.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The setsockopt() function provides an application program with the means to control socket behavior. An
application program can use setsockopt() to allocate buffer space, control timeouts, or permit socket data
broadcasts. The <sys/socket.h> header defines the socket-level options available to setsockopt().

Options may exist at multiple protocol levels. The SO_ options are always present at the uppermost socket
level.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10, Sockets, bind(), endprotoent(), getsockopt(), socket()

The Base Definitions volume of POSIX.1-2017, <netinet_in.h>, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SETSTATE(3P) POSIX Programmer’s Manual SETSTATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setstate — switch pseudo-random number generator state arrays

SYNOPSIS
#include <stdlib.h>

char *setstate(char *state);

DESCRIPTION
Refer to initstate().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETUID(3P) POSIX Programmer’s Manual SETUID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setuid — set user ID

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);

DESCRIPTION
If the process has appropriate privileges, setuid() shall set the real user ID, effective user ID, and the saved
set-user-ID of the calling process to uid .

If the process does not have appropriate privileges, but uid is equal to the real user ID or the saved set-user-
ID, setuid() shall set the effective user ID to uid; the real user ID and saved set-user-ID shall remain un-
changed.

The setuid() function shall not affect the supplementary group list in any way.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The setuid() function shall fail, return −1, and set errno to the corresponding value if one or more of the
following are true:

EINVAL
The value of the uid argument is invalid and not supported by the implementation.

EPERM
The process does not have appropriate privileges and uid does not match the real user ID or the
saved set-user-ID.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The various behaviors of the setuid() and setgid() functions when called by non-privileged processes reflect
the behavior of different historical implementations. For portability, it is recommended that new non-privi-
leged applications use the seteuid() and setegid() functions instead.

The saved set-user-ID capability allows a program to regain the effective user ID established at the last exec

call. Similarly, the saved set-group-ID capability allows a program to regain the effective group ID estab-
lished at the last exec call. These capabilities are derived from System V. Without them, a program might
have to run as superuser in order to perform the same functions, because superuser can write on the user’s
files. This is a problem because such a program can write on any user’s files, and so must be carefully writ-
ten to emulate the permissions of the calling process properly. In System V, these capabilities have tradi-
tionally been implemented only via the setuid() and setgid() functions for non-privileged processes. The
fact that the behavior of those functions was different for privileged processes made them difficult to use.
The POSIX.1-1990 standard defined the setuid() function to behave differently for privileged and unprivi-
leged users. When the caller had appropriate privileges, the function set the real user ID, effective user ID,
and saved set-user ID of the calling process on implementations that supported it. When the caller did not
have appropriate privileges, the function set only the effective user ID, subject to permission checks. The

IEEE/The Open Group 2017 1

SETUID(3P) POSIX Programmer’s Manual SETUID(3P)

former use is generally needed for utilities like login and su, which are not conforming applications and
thus outside the scope of POSIX.1-2008. These utilities wish to change the user ID irrevocably to a new
value, generally that of an unprivileged user. The latter use is needed for conforming applications that are
installed with the set-user-ID bit and need to perform operations using the real user ID.

POSIX.1-2008 augments the latter functionality with a mandatory feature named _POSIX_SAVED_IDS.
This feature permits a set-user-ID application to switch its effective user ID back and forth between the val-
ues of its exec-time real user ID and effective user ID. Unfortunately, the POSIX.1-1990 standard did not
permit a conforming application using this feature to work properly when it happened to be executed with
(implementation-defined) appropriate privileges. Furthermore, the application did not even hav e a means to
tell whether it had this privilege. Since the saved set-user-ID feature is quite desirable for applications, as
evidenced by the fact that NIST required it in FIPS 151-2, it has been mandated by POSIX.1-2008. How-
ev er, there are implementors who have been reluctant to support it given the limitation described above.

The 4.3BSD system handles the problem by supporting separate functions: setuid() (which always sets both
the real and effective user IDs, like setuid() in POSIX.1-2008 for privileged users), and seteuid() (which al-
ways sets just the effective user ID, like setuid() in POSIX.1-2008 for non-privileged users). This separa-
tion of functionality into distinct functions seems desirable. 4.3BSD does not support the saved set-user-ID
feature. It supports similar functionality of switching the effective user ID back and forth via setreuid(),
which permits reversing the real and effective user IDs. This model seems less desirable than the saved set-
user-ID because the real user ID changes as a side-effect. The current 4.4BSD includes saved effective IDs
and uses them for seteuid() and setegid() as described above. The setreuid() and setregid() functions will be
deprecated or removed.

The solution here is:

* Require that all implementations support the functionality of the saved set-user-ID, which is set by the
exec functions and by privileged calls to setuid().

* Add the seteuid() and setegid() functions as portable alternatives to setuid() and setgid() for non-privi-
leged and privileged processes.

Historical systems have provided two mechanisms for a set-user-ID process to change its effective user ID
to be the same as its real user ID in such a way that it could return to the original effective user ID: the use
of the setuid() function in the presence of a saved set-user-ID, or the use of the BSD setreuid() function,
which was able to swap the real and effective user IDs. The changes included in POSIX.1-2008 provide a
new mechanism using seteuid() in conjunction with a saved set-user-ID. Thus, all implementations with the
new seteuid() mechanism will have a sav ed set-user-ID for each process, and most of the behavior con-
trolled by _POSIX_SAVED_IDS has been changed to agree with the case where the option was defined.
The kill() function is an exception. Implementors of the new seteuid() mechanism will generally be required
to maintain compatibility with the older mechanisms previously supported by their systems. However, com-
patibility with this use of setreuid() and with the _POSIX_SAVED_IDS behavior of kill() is unfortunately
complicated. If an implementation with a saved set-user-ID allows a process to use setreuid() to swap its
real and effective user IDs, but were to leave the saved set-user-ID unmodified, the process would then have
an effective user ID equal to the original real user ID, and both real and saved set-user-ID would be equal to
the original effective user ID. In that state, the real user would be unable to kill the process, even though the
effective user ID of the process matches that of the real user, if the kill() behavior of _POSIX_SAVED_IDS
was used. This is obviously not acceptable. The alternative choice, which is used in at least one implemen-
tation, is to change the saved set-user-ID to the effective user ID during most calls to setreuid(). The stan-
dard developers considered that alternative to be less correct than the retention of the old behavior of kill()
in such systems. Current conforming applications shall accommodate either behavior from kill(), and there
appears to be no strong reason for kill() to check the saved set-user-ID rather than the effective user ID.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

IEEE/The Open Group 2017 2

SETUID(3P) POSIX Programmer’s Manual SETUID(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

SETUTXENT(3P) POSIX Programmer’s Manual SETUTXENT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setutxent — reset the user accounting database to the first entry

SYNOPSIS
#include <utmpx.h>

void setutxent(void);

DESCRIPTION
Refer to endutxent().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SETVBUF(3P) POSIX Programmer’s Manual SETVBUF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
setvbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

int setvbuf(FILE *restrict stream, char *restrict buf, int type,
size_t size);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The setvbuf() function may be used after the stream pointed to by stream is associated with an open file but
before any other operation (other than an unsuccessful call to setvbuf()) is performed on the stream. The ar-
gument type determines how stream shall be buffered, as follows:

* {_IOFBF} shall cause input/output to be fully buffered.

* {_IOLBF} shall cause input/output to be line buffered.

* {_IONBF} shall cause input/output to be unbuffered.

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by setvbuf() and
the argument size specifies the size of the array; otherwise, size may determine the size of a buffer allocated
by the setvbuf() function. The contents of the array at any time are unspecified.

For information about streams, see Section 2.5, Standard I/O Streams.

RETURN VALUE
Upon successful completion, setvbuf() shall return 0. Otherwise, it shall return a non-zero value if an invalid
value is given for type or if the request cannot be honored, and may set errno to indicate the error.

ERRORS
The setvbuf() function may fail if:

EBADF
The file descriptor underlying stream is not valid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block, and then
failing to close the stream in the same block.

With setvbuf(), allocating a buffer of size bytes does not necessarily imply that all of size bytes are used for
the buffer area.

Applications should note that many implementations only provide line buffering on input from terminal de-
vices.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

SETVBUF(3P) POSIX Programmer’s Manual SETVBUF(3P)

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), setbuf()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SHM_OPEN(3P) POSIX Programmer’s Manual SHM_OPEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
shm_open — open a shared memory object (REALTIME)

SYNOPSIS
#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

DESCRIPTION
The shm_open() function shall establish a connection between a shared memory object and a file descriptor.
It shall create an open file description that refers to the shared memory object and a file descriptor that
refers to that open file description. The file descriptor shall be allocated as described in Section 2.14, File

Descriptor Allocation, and can be used by other functions to refer to that shared memory object. The name

argument points to a string naming a shared memory object. It is unspecified whether the name appears in
the file system and is visible to other functions that take pathnames as arguments. The name argument con-
forms to the construction rules for a pathname, except that the interpretation of <slash> characters other
than the leading <slash> character in name is implementation-defined, and that the length limits for the
name argument are implementation-defined and need not be the same as the pathname limits
{PATH_MAX} and {NAME_MAX}. If name begins with the <slash> character, then processes calling
shm_open() with the same value of name refer to the same shared memory object, as long as that name has
not been removed. If name does not begin with the <slash> character, the effect is implementation-defined.

If successful, shm_open() shall return a file descriptor for the shared memory object. The open file descrip-
tion is new, and therefore the file descriptor does not share it with any other processes. It is unspecified
whether the file offset is set. The FD_CLOEXEC file descriptor flag associated with the new file descriptor
is set.

The file status flags and file access modes of the open file description are according to the value of oflag.
The oflag argument is the bitwise-inclusive OR of the following flags defined in the <fcntl.h> header. Ap-
plications specify exactly one of the first two values (access modes) below in the value of oflag:

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT If the shared memory object exists, this flag has no effect, except as noted under O_EXCL
below. Otherwise, the shared memory object is created. The user ID of the shared memory
object shall be set to the effective user ID of the process. The group ID of the shared mem-
ory object shall be set to the effective group ID of the process; however, if the name argu-
ment is visible in the file system, the group ID may be set to the group ID of the containing
directory. The permission bits of the shared memory object shall be set to the value of the
mode argument except those set in the file mode creation mask of the process. When bits in
mode other than the file permission bits are set, the effect is unspecified. The mode argument
does not affect whether the shared memory object is opened for reading, for writing, or for
both. The shared memory object has a size of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared memory object exists. The
check for the existence of the shared memory object and the creation of the object if it does
not exist is atomic with respect to other processes executing shm_open() naming the same
shared memory object with O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT
is not set, the result is undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the object shall
be truncated to zero length and the mode and owner shall be unchanged by this function call.
The result of using O_TRUNC with O_RDONLY is undefined.

IEEE/The Open Group 2017 1

SHM_OPEN(3P) POSIX Programmer’s Manual SHM_OPEN(3P)

When a shared memory object is created, the state of the shared memory object, including all data associ-
ated with the shared memory object, persists until the shared memory object is unlinked and all other refer-
ences are gone. It is unspecified whether the name and shared memory object state remain valid after a sys-
tem reboot.

RETURN VALUE
Upon successful completion, the shm_open() function shall return a non-negative integer representing the
file descriptor. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The shm_open() function shall fail if:

EACCES
The shared memory object exists and the permissions specified by oflag are denied, or the shared
memory object does not exist and permission to create the shared memory object is denied, or
O_TRUNC is specified and write permission is denied.

EEXIST
O_CREAT and O_EXCL are set and the named shared memory object already exists.

EINTR
The shm_open() operation was interrupted by a signal.

EINVAL
The shm_open() operation is not supported for the given name.

EMFILE
All file descriptors available to the process are currently open.

ENFILE
Too many shared memory objects are currently open in the system.

ENOENT
O_CREAT is not set and the named shared memory object does not exist.

ENOSPC
There is insufficient space for the creation of the new shared memory object.

The shm_open() function may fail if:

ENAMETOOLONG
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems that do not support
the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI systems, or has a pathname compo-
nent that is longer than {_POSIX_NAME_MAX} on systems that do not support the XSI option
or longer than {_XOPEN_NAME_MAX} on XSI systems.

The following sections are informative.

EXAMPLES
Creating and Mapping a Shared Memory Object

The following code segment demonstrates the use of shm_open() to create a shared memory object which is
then sized using ftruncate() before being mapped into the process address space using mmap():

#include <unistd.h>
#include <sys/mman.h>
...

#define MAX_LEN 10000
struct region { /* Defines "structure" of shared memory */

int len;
char buf[MAX_LEN];

};

IEEE/The Open Group 2017 2

SHM_OPEN(3P) POSIX Programmer’s Manual SHM_OPEN(3P)

struct region *rptr;
int fd;

/* Create shared memory object and set its size */

fd = shm_open("/myregion", O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
if (fd == -1)

/* Handle error */;

if (ftruncate(fd, sizeof(struct region)) == -1)
/* Handle error */;

/* Map shared memory object */

rptr = mmap(NULL, sizeof(struct region),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

if (rptr == MAP_FAILED)
/* Handle error */;

/* Now we can refer to mapped region using fields of rptr;
for example, rptr->len */

...

APPLICATION USAGE
None.

RATIONALE
When the Memory Mapped Files option is supported, the normal open() call is used to obtain a descriptor
to a file to be mapped according to existing practice with mmap(). When the Shared Memory Objects op-
tion is supported, the shm_open() function shall obtain a descriptor to the shared memory object to be
mapped.

There is ample precedent for having a file descriptor represent several types of objects. In the
POSIX.1-1990 standard, a file descriptor can represent a file, a pipe, a FIFO, a tty, or a directory. Many im-
plementations simply have an operations vector, which is indexed by the file descriptor type and does very
different operations. Note that in some cases the file descriptor passed to generic operations on file descrip-
tors is returned by open() or creat() and in some cases returned by alternate functions, such as pipe(). The
latter technique is used by shm_open().

Note that such shared memory objects can actually be implemented as mapped files. In both cases, the size
can be set after the open using ftruncate(). The shm_open() function itself does not create a shared object
of a specified size because this would duplicate an extant function that set the size of an object referenced
by a file descriptor.

On implementations where memory objects are implemented using the existing file system, the shm_open()
function may be implemented using a macro that invokes open(), and the shm_unlink() function may be im-
plemented using a macro that invokes unlink().

For implementations without a permanent file system, the definition of the name of the memory objects is
allowed not to survive a system reboot. Note that this allows systems with a permanent file system to imple-
ment memory objects as data structures internal to the implementation as well.

On implementations that choose to implement memory objects using memory directly, a shm_open() fol-
lowed by an ftruncate() and close() can be used to preallocate a shared memory area and to set the size of
that preallocation. This may be necessary for systems without virtual memory hardware support in order to
ensure that the memory is contiguous.

The set of valid open flags to shm_open() was restricted to O_RDONLY, O_RDWR, O_CREAT, and
O_TRUNC because these could be easily implemented on most memory mapping systems. This volume of
POSIX.1-2017 is silent on the results if the implementation cannot supply the requested file access because
of implementation-defined reasons, including hardware ones.

The error conditions [EACCES] and [ENOTSUP] are provided to inform the application that the

IEEE/The Open Group 2017 3

SHM_OPEN(3P) POSIX Programmer’s Manual SHM_OPEN(3P)

implementation cannot complete a request.

[EACCES] indicates for implementation-defined reasons, probably hardware-related, that the implementa-
tion cannot comply with a requested mode because it conflicts with another requested mode. An example
might be that an application desires to open a memory object two times, mapping different areas with dif-
ferent access modes. If the implementation cannot map a single area into a process space in two places,
which would be required if different access modes were required for the two areas, then the implementation
may inform the application at the time of the second open.

[ENOTSUP] indicates for implementation-defined reasons, probably hardware-related, that the implemen-
tation cannot comply with a requested mode at all. An example would be that the hardware of the imple-
mentation cannot support write-only shared memory areas.

On all implementations, it may be desirable to restrict the location of the memory objects to specific file
systems for performance (such as a RAM disk) or implementation-defined reasons (shared memory sup-
ported directly only on certain file systems). The shm_open() function may be used to enforce these restric-
tions. There are a number of methods available to the application to determine an appropriate name of the
file or the location of an appropriate directory. One way is from the environment via getenv(). Another
would be from a configuration file.

This volume of POSIX.1-2017 specifies that memory objects have initial contents of zero when created.
This is consistent with current behavior for both files and newly allocated memory. For those implementa-
tions that use physical memory, it would be possible that such implementations could simply use available
memory and give it to the process uninitialized. This, however, is not consistent with standard behavior for
the uninitialized data area, the stack, and of course, files. Finally, it is highly desirable to set the allocated
memory to zero for security reasons. Thus, initializing memory objects to zero is required.

FUTURE DIRECTIONS
A future version might require the shm_open() and shm_unlink() functions to have semantics similar to nor-
mal file system operations.

SEE ALSO
Section 2.14, File Descriptor Allocation, close(), dup(), exec , fcntl(), mmap(), shmat(), shmctl(),
shmdt(), shm_unlink(), umask()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

SHM_UNLINK(3P) POSIX Programmer’s Manual SHM_UNLINK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
shm_unlink — remove a shared memory object (REALTIME)

SYNOPSIS
#include <sys/mman.h>

int shm_unlink(const char *name);

DESCRIPTION
The shm_unlink() function shall remove the name of the shared memory object named by the string pointed
to by name.

If one or more references to the shared memory object exist when the object is unlinked, the name shall be
removed before shm_unlink() returns, but the removal of the memory object contents shall be postponed
until all open and map references to the shared memory object have been removed.

Even if the object continues to exist after the last shm_unlink(), reuse of the name shall subsequently cause
shm_open() to behave as if no shared memory object of this name exists (that is, shm_open() will fail if
O_CREAT is not set, or will create a new shared memory object if O_CREAT is set).

RETURN VALUE
Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be returned
and errno set to indicate the error. If −1 is returned, the named shared memory object shall not be changed
by this function call.

ERRORS
The shm_unlink() function shall fail if:

EACCES
Permission is denied to unlink the named shared memory object.

ENOENT
The named shared memory object does not exist.

The shm_unlink() function may fail if:

ENAMETOOLONG
The length of the name argument exceeds {_POSIX_PATH_MAX} on systems that do not support
the XSI option or exceeds {_XOPEN_PATH_MAX} on XSI systems, or has a pathname compo-
nent that is longer than {_POSIX_NAME_MAX} on systems that do not support the XSI option
or longer than {_XOPEN_NAME_MAX} on XSI systems. A call to shm_unlink() with a name

argument that contains the same shared memory object name as was previously used in a success-
ful shm_open() call shall not give an [ENAMETOOLONG] error.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Names of memory objects that were allocated with open() are deleted with unlink() in the usual fashion.
Names of memory objects that were allocated with shm_open() are deleted with shm_unlink(). Note that
the actual memory object is not destroyed until the last close and unmap on it have occurred if it was al-
ready in use.

RATIONALE
None.

IEEE/The Open Group 2017 1

SHM_UNLINK(3P) POSIX Programmer’s Manual SHM_UNLINK(3P)

FUTURE DIRECTIONS
A future version might require the shm_open() and shm_unlink() functions to have semantics similar to nor-
mal file system operations.

SEE ALSO
close(), mmap(), munmap(), shmat(), shmctl(), shmdt(), shm_open()

The Base Definitions volume of POSIX.1-2017, <sys_mman.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SHMAT(3P) POSIX Programmer’s Manual SHMAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
shmat — XSI shared memory attach operation

SYNOPSIS
#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

DESCRIPTION
The shmat() function operates on XSI shared memory (see the Base Definitions volume of POSIX.1-2017,
Section 3.346, Shared Memory Object). It is unspecified whether this function interoperates with the real-
time interprocess communication facilities defined in Section 2.8, Realtime.

The shmat() function attaches the shared memory segment associated with the shared memory identifier
specified by shmid to the address space of the calling process. The segment is attached at the address speci-
fied by one of the following criteria:

* If shmaddr is a null pointer, the segment is attached at the first available address as selected by the sys-
tem.

* If shmaddr is not a null pointer and (shmflg &SHM_RND) is non-zero, the segment is attached at the
address given by (shmaddr −((uintptr_t)shmaddr %SHMLBA)). The character ’%’ is the C-language
remainder operator.

* If shmaddr is not a null pointer and (shmflg &SHM_RND) is 0, the segment is attached at the address
given by shmaddr.

* The segment is attached for reading if (shmflg &SHM_RDONLY) is non-zero and the calling process
has read permission; otherwise, if it is 0 and the calling process has read and write permission, the seg-
ment is attached for reading and writing.

RETURN VALUE
Upon successful completion, shmat() shall increment the value of shm_nattch in the data structure associ-
ated with the shared memory ID of the attached shared memory segment and return the segment’s start ad-
dress. Also, the shm_atime timestamp shall be set to the current time, as described in Section 2.7.1, IPC

General Description.

Otherwise, the shared memory segment shall not be attached, shmat() shall return (void *)−1, and errno

shall be set to indicate the error.

ERRORS
The shmat() function shall fail if:

EACCES
Operation permission is denied to the calling process; see Section 2.7 , XSI Interprocess Communi-

cation.

EINVAL
The value of shmid is not a valid shared memory identifier, the shmaddr is not a null pointer, and
the value of (shmaddr −((uintptr_t)shmaddr %SHMLBA)) is an illegal address for attaching
shared memory; or the shmaddr is not a null pointer, (shmflg &SHM_RND) is 0, and the value of
shmaddr is an illegal address for attaching shared memory.

EMFILE
The number of shared memory segments attached to the calling process would exceed the system-
imposed limit.

IEEE/The Open Group 2017 1

SHMAT(3P) POSIX Programmer’s Manual SHMAT(3P)

ENOMEM
The available data space is not large enough to accommodate the shared memory segment.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication. Application
developers who need to use IPC should design their applications so that modules using the IPC routines de-
scribed in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alternative inter-
faces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, exec , exit(), fork(), shmctl(),
shmdt(), shmget(), shm_open(), shm_unlink()

The Base Definitions volume of POSIX.1-2017, Section 3.346, Shared Memory Object, <sys_shm.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SHMCTL(3P) POSIX Programmer’s Manual SHMCTL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
shmctl — XSI shared memory control operations

SYNOPSIS
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION
The shmctl() function operates on XSI shared memory (see the Base Definitions volume of POSIX.1-2017,
Section 3.346, Shared Memory Object). It is unspecified whether this function interoperates with the real-
time interprocess communication facilities defined in Section 2.8, Realtime.

The shmctl() function provides a variety of shared memory control operations as specified by cmd . The
following values for cmd are available:

IPC_STAT Place the current value of each member of the shmid_ds data structure associated with
shmid into the structure pointed to by buf . The contents of the structure are defined in
<sys/shm.h>.

IPC_SET Set the value of the following members of the shmid_ds data structure associated with
shmid to the corresponding value found in the structure pointed to by buf :

shm_perm.uid
shm_perm.gid
shm_perm.mode Low-order nine bits.

Also, the shm_ctime timestamp shall be set to the current time, as described in Section 2.7.1,
IPC General Description.

IPC_SET can only be executed by a process that has an effective user ID equal to either that
of a process with appropriate privileges or to the value of shm_perm.cuid or shm_perm.uid

in the shmid_ds data structure associated with shmid .

IPC_RMID Remove the shared memory identifier specified by shmid from the system and destroy the
shared memory segment and shmid_ds data structure associated with it. IPC_RMID can
only be executed by a process that has an effective user ID equal to either that of a process
with appropriate privileges or to the value of shm_perm.cuid or shm_perm.uid in the
shmid_ds data structure associated with shmid .

RETURN VALUE
Upon successful completion, shmctl() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The shmctl() function shall fail if:

EACCES
The argument cmd is equal to IPC_STAT and the calling process does not have read permission;
see Section 2.7 , XSI Interprocess Communication.

EINVAL
The value of shmid is not a valid shared memory identifier, or the value of cmd is not a valid com-
mand.

IEEE/The Open Group 2017 1

SHMCTL(3P) POSIX Programmer’s Manual SHMCTL(3P)

EPERM
The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling
process is not equal to that of a process with appropriate privileges and it is not equal to the value
of shm_perm.cuid or shm_perm.uid in the data structure associated with shmid .

The shmctl() function may fail if:

EOVERFLOW
The cmd argument is IPC_STAT and the gid or uid value is too large to be stored in the structure
pointed to by the buf argument.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication. Application
developers who need to use IPC should design their applications so that modules using the IPC routines de-
scribed in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alternative inter-
faces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, shmat(), shmdt(), shmget(),
shm_open(), shm_unlink()

The Base Definitions volume of POSIX.1-2017, Section 3.346, Shared Memory Object, <sys_shm.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SHMDT(3P) POSIX Programmer’s Manual SHMDT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
shmdt — XSI shared memory detach operation

SYNOPSIS
#include <sys/shm.h>

int shmdt(const void *shmaddr);

DESCRIPTION
The shmdt() function operates on XSI shared memory (see the Base Definitions volume of POSIX.1-2017,
Section 3.346, Shared Memory Object). It is unspecified whether this function interoperates with the real-
time interprocess communication facilities defined in Section 2.8, Realtime.

The shmdt() function detaches the shared memory segment located at the address specified by shmaddr

from the address space of the calling process.

RETURN VALUE
Upon successful completion, shmdt() shall decrement the value of shm_nattch in the data structure associ-
ated with the shared memory ID of the attached shared memory segment and return 0. Also, the shm_dtime

timestamp shall be set to the current time, as described in Section 2.7.1, IPC General Description.

Otherwise, the shared memory segment shall not be detached, shmdt() shall return −1, and errno shall be
set to indicate the error.

ERRORS
The shmdt() function shall fail if:

EINVAL
The value of shmaddr is not the data segment start address of a shared memory segment.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication. Application
developers who need to use IPC should design their applications so that modules using the IPC routines de-
scribed in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alternative inter-
faces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, exec , exit(), fork(), shmat(), shm-

ctl(), shmget(), shm_open(), shm_unlink()

The Base Definitions volume of POSIX.1-2017, Section 3.346, Shared Memory Object, <sys_shm.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

SHMDT(3P) POSIX Programmer’s Manual SHMDT(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SHMGET(3P) POSIX Programmer’s Manual SHMGET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
shmget — get an XSI shared memory segment

SYNOPSIS
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

DESCRIPTION
The shmget() function operates on XSI shared memory (see the Base Definitions volume of POSIX.1-2017,
Section 3.346, Shared Memory Object). It is unspecified whether this function interoperates with the real-
time interprocess communication facilities defined in Section 2.8, Realtime.

The shmget() function shall return the shared memory identifier associated with key.

A shared memory identifier, associated data structure, and shared memory segment of at least size bytes
(see <sys/shm.h>) are created for key if one of the following is true:

* The argument key is equal to IPC_PRIVATE.

* The argument key does not already have a shared memory identifier associated with it and (shmflg

&IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new shared memory identifier shall be initialized as
follows:

* The values of shm_perm.cuid , shm_perm.uid , shm_perm.cgid , and shm_perm.gid are set to the effec-
tive user ID and effective group ID, respectively, of the calling process.

* The low-order nine bits of shm_perm.mode are set to the low-order nine bits of shmflg.

* The value of shm_segsz is set to the value of size.

* The values of shm_lpid , shm_nattch, shm_atime, and shm_dtime are set to 0.

* The value of shm_ctime is set to the current time, as described in Section 2.7.1, IPC General Descrip-

tion.

When the shared memory segment is created, it shall be initialized with all zero values.

RETURN VALUE
Upon successful completion, shmget() shall return a non-negative integer, namely a shared memory identi-
fier; otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The shmget() function shall fail if:

EACCES
A shared memory identifier exists for key but operation permission as specified by the low-order
nine bits of shmflg would not be granted; see Section 2.7 , XSI Interprocess Communication.

EEXIST
A shared memory identifier exists for the argument key but (shmflg &IPC_CREAT) &&(shmflg

&IPC_EXCL) is non-zero.

EINVAL
A shared memory segment is to be created and the value of size is less than the system-imposed
minimum or greater than the system-imposed maximum.

EINVAL
No shared memory segment is to be created and a shared memory segment exists for key but the
size of the segment associated with it is less than size.

IEEE/The Open Group 2017 1

SHMGET(3P) POSIX Programmer’s Manual SHMGET(3P)

ENOENT
A shared memory identifier does not exist for the argument key and (shmflg &IPC_CREAT) is 0.

ENOMEM
A shared memory identifier and associated shared memory segment are to be created, but the
amount of available physical memory is not sufficient to fill the request.

ENOSPC
A shared memory identifier is to be created, but the system-imposed limit on the maximum num-
ber of allowed shared memory identifiers system-wide would be exceeded.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication. Application
developers who need to use IPC should design their applications so that modules using the IPC routines de-
scribed in Section 2.7 , XSI Interprocess Communication can be easily modified to use the alternative inter-
faces.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.7 , XSI Interprocess Communication, Section 2.8, Realtime, ftok(), shmat(), shmctl(), shmdt(),
shm_open(), shm_unlink()

The Base Definitions volume of POSIX.1-2017, Section 3.346, Shared Memory Object, <sys_shm.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SHUTDOWN(3P) POSIX Programmer’s Manual SHUTDOWN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
shutdown — shut down socket send and receive operations

SYNOPSIS
#include <sys/socket.h>

int shutdown(int socket, int how);

DESCRIPTION
The shutdown() function shall cause all or part of a full-duplex connection on the socket associated with the
file descriptor socket to be shut down.

The shutdown() function takes the following arguments:

socket Specifies the file descriptor of the socket.

how Specifies the type of shutdown. The values are as follows:

SHUT_RD Disables further receive operations.

SHUT_WR Disables further send operations.

SHUT_RDWR
Disables further send and receive operations.

The shutdown() function disables subsequent send and/or receive operations on a socket, depending on the
value of the how argument.

RETURN VALUE
Upon successful completion, shutdown() shall return 0; otherwise, −1 shall be returned and errno set to in-
dicate the error.

ERRORS
The shutdown() function shall fail if:

EBADF
The socket argument is not a valid file descriptor.

EINVAL
The how argument is invalid.

ENOTCONN
The socket is not connected.

ENOTSOCK
The socket argument does not refer to a socket.

The shutdown() function may fail if:

ENOBUFS
Insufficient resources were available in the system to perform the operation.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 1

SHUTDOWN(3P) POSIX Programmer’s Manual SHUTDOWN(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
getsockopt(), pselect(), read(), recv(), recvfrom(), recvmsg(), send(), sendto(), setsockopt(), socket(),
write()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGACTION(3P) POSIX Programmer’s Manual SIGACTION(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigaction — examine and change a signal action

SYNOPSIS
#include <signal.h>

int sigaction(int sig, const struct sigaction *restrict act,
struct sigaction *restrict oact);

DESCRIPTION
The sigaction() function allows the calling process to examine and/or specify the action to be associated
with a specific signal. The argument sig specifies the signal; acceptable values are defined in <signal.h>.

The structure sigaction, used to describe an action to be taken, is defined in the <signal.h> header to in-
clude at least the following members:

center box tab(!); cB | cB | cB lw(1.5i)B | lw(1.25i)I | lw(2.5i). Member Type!Member Name!Description _
void(*) (int)!sa_handler!T{ Pointer to a signal-catching function or one of the macros SIG_IGN or
SIG_DFL. T} sigset_t!sa_mask!T{ Additional set of signals to be blocked during execution of signal-
catching function. T} int!sa_flags!T{ Special flags to affect behavior of signal. T} T{ void(*) (int,

siginfo_t *, void *) T}!sa_sigaction!Pointer to a signal-catching function.

The storage occupied by sa_handler and sa_sigaction may overlap, and a conforming application shall not
use both simultaneously.

If the argument act is not a null pointer, it points to a structure specifying the action to be associated with
the specified signal. If the argument oact is not a null pointer, the action previously associated with the sig-
nal is stored in the location pointed to by the argument oact. If the argument act is a null pointer, signal
handling is unchanged; thus, the call can be used to enquire about the current handling of a given signal.
The SIGKILL and SIGSTOP signals shall not be added to the signal mask using this mechanism; this re-
striction shall be enforced by the system without causing an error to be indicated.

If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the sa_han-

dler field identifies the action to be associated with the specified signal. If the SA_SIGINFO flag is set in
the sa_flags field, the sa_sigaction field specifies a signal-catching function.

The sa_flags field can be used to modify the behavior of the specified signal.

The following flags, defined in the <signal.h> header, can be set in sa_flags:

SA_NOCLDSTOP
Do not generate SIGCHLD when children stop or stopped children continue.

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags, and the imple-
mentation supports the SIGCHLD signal, then a SIGCHLD signal shall be generated for
the calling process whenever any of its child processes stop and a SIGCHLD signal may
be generated for the calling process whenever any of its stopped child processes are con-
tinued. If sig is SIGCHLD and the SA_NOCLDSTOP flag is set in sa_flags, then the im-
plementation shall not generate a SIGCHLD signal in this way.

SA_ONSTACK If set and an alternate signal stack has been declared with sigaltstack(), the signal shall be
delivered to the calling process on that stack. Otherwise, the signal shall be delivered on
the current stack.

SA_RESETHAND
If set, the disposition of the signal shall be reset to SIG_DFL and the SA_SIGINFO flag
shall be cleared on entry to the signal handler.

IEEE/The Open Group 2017 1

SIGACTION(3P) POSIX Programmer’s Manual SIGACTION(3P)

Note: SIGILL and SIGTRAP cannot be automatically reset when delivered; the sys-
tem silently enforces this restriction.

Otherwise, the disposition of the signal shall not be modified on entry to the signal han-
dler.

In addition, if this flag is set, sigaction() may behave as if the SA_NODEFER flag were
also set.

SA_RESTART This flag affects the behavior of interruptible functions; that is, those specified to fail with
errno set to [EINTR]. If set, and a function specified as interruptible is interrupted by
this signal, the function shall restart and shall not fail with [EINTR] unless otherwise
specified. If an interruptible function which uses a timeout is restarted, the duration of the
timeout following the restart is set to an unspecified value that does not exceed the origi-
nal timeout value. If the flag is not set, interruptible functions interrupted by this signal
shall fail with errno set to [EINTR].

SA_SIGINFO If cleared and the signal is caught, the signal-catching function shall be entered as:

void func(int signo);

where signo is the only argument to the signal-catching function. In this case, the applica-
tion shall use the sa_handler member to describe the signal-catching function and the ap-
plication shall not modify the sa_sigaction member.

If SA_SIGINFO is set and the signal is caught, the signal-catching function shall be en-
tered as:

void func(int signo, siginfo_t *info, void *context);

where two additional arguments are passed to the signal-catching function. The second ar-
gument shall point to an object of type siginfo_t explaining the reason why the signal was
generated; the third argument can be cast to a pointer to an object of type ucontext_t to
refer to the receiving thread’s context that was interrupted when the signal was delivered.
In this case, the application shall use the sa_sigaction member to describe the signal-
catching function and the application shall not modify the sa_handler member.

The si_signo member contains the system-generated signal number.

The si_errno member may contain implementation-defined additional error information;
if non-zero, it contains an error number identifying the condition that caused the signal to
be generated.

The si_code member contains a code identifying the cause of the signal, as described in
Section 2.4.3, Signal Actions.

SA_NOCLDWAIT
If sig does not equal SIGCHLD, the behavior is unspecified. Otherwise, the behavior of
the SA_NOCLDWAIT flag is as specified in Consequences of Process Termination.

SA_NODEFER If set and sig is caught, sig shall not be added to the thread’s signal mask on entry to the
signal handler unless it is included in sa_mask. Otherwise, sig shall always be added to
the thread’s signal mask on entry to the signal handler.

When a signal is caught by a signal-catching function installed by sigaction(), a new signal mask is calcu-
lated and installed for the duration of the signal-catching function (or until a call to either sigprocmask() or
sigsuspend() is made). This mask is formed by taking the union of the current signal mask and the value of
the sa_mask for the signal being delivered, and unless SA_NODEFER or SA_RESETHAND is set, then in-
cluding the signal being delivered. If and when the user’s signal handler returns normally, the original sig-
nal mask is restored.

IEEE/The Open Group 2017 2

SIGACTION(3P) POSIX Programmer’s Manual SIGACTION(3P)

Once an action is installed for a specific signal, it shall remain installed until another action is explicitly re-
quested (by another call to sigaction()), until the SA_RESETHAND flag causes resetting of the handler, or
until one of the exec functions is called.

If the previous action for sig had been established by signal(), the values of the fields returned in the struc-
ture pointed to by oact are unspecified, and in particular oact->sa_handler is not necessarily the same
value passed to signal(). However, if a pointer to the same structure or a copy thereof is passed to a subse-
quent call to sigaction() via the act argument, handling of the signal shall be as if the original call to sig-

nal() were repeated.

If sigaction() fails, no new signal handler is installed.

It is unspecified whether an attempt to set the action for a signal that cannot be caught or ignored to
SIG_DFL is ignored or causes an error to be returned with errno set to [EINVAL].

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig when it is al-
ready pending is implementation-defined; the signal-catching function shall be invoked with a single argu-
ment. If SA_SIGINFO is set in sa_flags, then subsequent occurrences of sig generated by sigqueue() or as
a result of any signal-generating function that supports the specification of an application-defined value
(when sig is already pending) shall be queued in FIFO order until delivered or accepted; the signal-catching
function shall be invoked with three arguments. The application specified value is passed to the signal-
catching function as the si_value member of the siginfo_t structure.

The result of the use of sigaction() and a sigwait() function concurrently within a process on the same sig-
nal is unspecified.

RETURN VALUE
Upon successful completion, sigaction() shall return 0; otherwise, −1 shall be returned, errno shall be set to
indicate the error, and no new signal-catching function shall be installed.

ERRORS
The sigaction() function shall fail if:

EINVAL
The sig argument is not a valid signal number or an attempt is made to catch a signal that cannot
be caught or ignore a signal that cannot be ignored.

The sigaction() function may fail if:

EINVAL
An attempt was made to set the action to SIG_DFL for a signal that cannot be caught or ignored
(or both).

In addition, on systems that do not support the XSI option, the sigaction() function may fail if the SA_SIG-
INFO flag is set in the sa_flags field of the sigaction structure for a signal not in the range SIGRTMIN to
SIGRTMAX.

The following sections are informative.

EXAMPLES
Establishing a Signal Handler

The following example demonstrates the use of sigaction() to establish a handler for the SIGINT signal.

#include <signal.h>

static void handler(int signum)
{

/* Take appropriate actions for signal delivery */
}

int main()
{

IEEE/The Open Group 2017 3

SIGACTION(3P) POSIX Programmer’s Manual SIGACTION(3P)

struct sigaction sa;

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART; /* Restart functions if

interrupted by handler */
if (sigaction(SIGINT, &sa, NULL) == -1)

/* Handle error */;

/* Further code */
}

APPLICATION USAGE
The sigaction() function supersedes the signal() function, and should be used in preference. In particular,
sigaction() and signal() should not be used in the same process to control the same signal. The behavior of
async-signal-safe functions, as defined in their respective DESCRIPTION sections, is as specified by this
volume of POSIX.1-2017, regardless of invocation from a signal-catching function. This is the only in-
tended meaning of the statement that async-signal-safe functions may be used in signal-catching functions
without restrictions. Applications must still consider all effects of such functions on such things as data
structures, files, and process state. In particular, application developers need to consider the restrictions on
interactions when interrupting sleep() and interactions among multiple handles for a file description. The
fact that any specific function is listed as async-signal-safe does not necessarily mean that invocation of that
function from a signal-catching function is recommended.

In order to prevent errors arising from interrupting non-async-signal-safe function calls, applications should
protect calls to these functions either by blocking the appropriate signals or through the use of some pro-
grammatic semaphore (see semget(), sem_init(), sem_open(), and so on). Note in particular that even the
‘‘safe’’ functions may modify errno; the signal-catching function, if not executing as an independent
thread, should save and restore its value in order to avoid the possibility that delivery of a signal in between
an error return from a function that sets errno and the subsequent examination of errno could result in the
signal-catching function changing the value of errno. Naturally, the same principles apply to the async-sig-
nal-safety of application routines and asynchronous data access. Note that longjmp() and siglongjmp() are
not in the list of async-signal-safe functions. This is because the code executing after longjmp() and sig-

longjmp() can call any unsafe functions with the same danger as calling those unsafe functions directly
from the signal handler. Applications that use longjmp() and siglongjmp() from within signal handlers re-
quire rigorous protection in order to be portable. Many of the other functions that are excluded from the list
are traditionally implemented using either malloc() or free() functions or the standard I/O library, both of
which traditionally use data structures in a non-async-signal-safe manner. Since any combination of differ-
ent functions using a common data structure can cause async-signal-safety problems, this volume of
POSIX.1-2017 does not define the behavior when any unsafe function is called in a signal handler that in-
terrupts an unsafe function.

Usually, the signal is executed on the stack that was in effect before the signal was delivered. An alternate
stack may be specified to receive a subset of the signals being caught.

When the signal handler returns, the receiving thread resumes execution at the point it was interrupted un-
less the signal handler makes other arrangements. If longjmp() or _longjmp() is used to leave the signal
handler, then the signal mask must be explicitly restored.

This volume of POSIX.1-2017 defines the third argument of a signal handling function when SA_SIGINFO
is set as a void * instead of a ucontext_t *, but without requiring type checking. New applications should
explicitly cast the third argument of the signal handling function to ucontext_t *.

The BSD optional four argument signal handling function is not supported by this volume of
POSIX.1-2017. The BSD declaration would be:

void handler(int sig, int code, struct sigcontext *scp,
char *addr);

IEEE/The Open Group 2017 4

SIGACTION(3P) POSIX Programmer’s Manual SIGACTION(3P)

where sig is the signal number, code is additional information on certain signals, scp is a pointer to the sig-
context structure, and addr is additional address information. Much the same information is available in the
objects pointed to by the second argument of the signal handler specified when SA_SIGINFO is set.

Since the sigaction() function is allowed but not required to set SA_NODEFER when the application sets
the SA_RESETHAND flag, applications which depend on the SA_RESETHAND functionality for the
newly installed signal handler must always explicitly set SA_NODEFER when they set SA_RESETHAND
in order to be portable.

See also the rationale for Realtime Signal Generation and Delivery in the Rationale (Informative) volume of
POSIX.1-2017, Section B.2.4.2, Signal Generation and Delivery.

RATIONALE
Although this volume of POSIX.1-2017 requires that signals that cannot be ignored shall not be added to
the signal mask when a signal-catching function is entered, there is no explicit requirement that subsequent
calls to sigaction() reflect this in the information returned in the oact argument. In other words, if SIGKILL
is included in the sa_mask field of act, it is unspecified whether or not a subsequent call to sigaction() re-
turns with SIGKILL included in the sa_mask field of oact.

The SA_NOCLDSTOP flag, when supplied in the act->sa_flags parameter, allows overloading SIGCHLD
with the System V semantics that each SIGCLD signal indicates a single terminated child. Most conform-
ing applications that catch SIGCHLD are expected to install signal-catching functions that repeatedly call
the waitpid() function with the WNOHANG flag set, acting on each child for which status is returned, until
waitpid() returns zero. If stopped children are not of interest, the use of the SA_NOCLDSTOP flag can pre-
vent the overhead from invoking the signal-catching routine when they stop.

Some historical implementations also define other mechanisms for stopping processes, such as the ptrace()
function. These implementations usually do not generate a SIGCHLD signal when processes stop due to
this mechanism; however, that is beyond the scope of this volume of POSIX.1-2017.

This volume of POSIX.1-2017 requires that calls to sigaction() that supply a NULL act argument succeed,
ev en in the case of signals that cannot be caught or ignored (that is, SIGKILL or SIGSTOP). The System V
signal() and BSD sigvec() functions return [EINVAL] in these cases and, in this respect, their behavior
varies from sigaction().

This volume of POSIX.1-2017 requires that sigaction() properly save and restore a signal action set up by
the ISO C standard signal() function. However, there is no guarantee that the reverse is true, nor could there
be given the greater amount of information conveyed by the sigaction structure. Because of this, applica-
tions should avoid using both functions for the same signal in the same process. Since this cannot always be
avoided in case of general-purpose library routines, they should always be implemented with sigaction().

It was intended that the signal() function should be implementable as a library routine using sigaction().

The POSIX Realtime Extension extends the sigaction() function as specified by the POSIX.1-1990 stan-
dard to allow the application to request on a per-signal basis via an additional signal action flag that the ex-
tra parameters, including the application-defined signal value, if any, be passed to the signal-catching func-
tion.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, exec , _Exit(), kill(), _longjmp(), longjmp(), pthread_sigmask(), raise(),
semget(), sem_init(), sem_open(), sigaddset(), sigaltstack(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), signal(), sigsuspend(), wait(), waitid()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 5

SIGACTION(3P) POSIX Programmer’s Manual SIGACTION(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 6

SIGADDSET(3P) POSIX Programmer’s Manual SIGADDSET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigaddset — add a signal to a signal set

SYNOPSIS
#include <signal.h>

int sigaddset(sigset_t *set, int signo);

DESCRIPTION
The sigaddset() function adds the individual signal specified by the signo to the signal set pointed to by set.

Applications shall call either sigemptyset() or sigfillset() at least once for each object of type sigset_t prior
to any other use of that object. If such an object is not initialized in this way, but is nonetheless supplied as
an argument to any of pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigismember(), sigpending(),
sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigaddset() shall return 0; otherwise, it shall return −1 and set errno to indi-
cate the error.

ERRORS
The sigaddset() function may fail if:

EINVAL
The value of the signo argument is an invalid or unsupported signal number.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, pthread_sigmask(), sigaction(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), sigpending(), sigsuspend()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGALTSTACK(3P) POSIX Programmer’s Manual SIGALTSTACK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigaltstack — set and get signal alternate stack context

SYNOPSIS
#include <signal.h>

int sigaltstack(const stack_t *restrict ss, stack_t *restrict oss);

DESCRIPTION
The sigaltstack() function allows a process to define and examine the state of an alternate stack for signal
handlers for the current thread. Signals that have been explicitly declared to execute on the alternate stack
shall be delivered on the alternate stack.

If ss is not a null pointer, it points to a stack_t structure that specifies the alternate signal stack that shall
take effect upon return from sigaltstack(). The ss_flags member specifies the new stack state. If it is set to
SS_DISABLE, the stack is disabled and ss_sp and ss_size are ignored. Otherwise, the stack shall be en-
abled, and the ss_sp and ss_size members specify the new address and size of the stack.

The range of addresses starting at ss_sp up to but not including ss_sp+ss_size is available to the implemen-
tation for use as the stack. This function makes no assumptions regarding which end is the stack base and in
which direction the stack grows as items are pushed.

If oss is not a null pointer, upon successful completion it shall point to a stack_t structure that specifies the
alternate signal stack that was in effect prior to the call to sigaltstack(). The ss_sp and ss_size members
specify the address and size of that stack. The ss_flags member specifies the stack’s state, and may contain
one of the following values:

SS_ONSTACK
The process is currently executing on the alternate signal stack. Attempts to modify the al-
ternate signal stack while the process is executing on it fail. This flag shall not be modified
by processes.

SS_DISABLE
The alternate signal stack is currently disabled.

The value SIGSTKSZ is a system default specifying the number of bytes that would be used to cover the
usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ is defined to be the
minimum stack size for a signal handler. In computing an alternate stack size, a program should add that
amount to its stack requirements to allow for the system implementation overhead. The constants SS_ON-
STACK, SS_DISABLE, SIGSTKSZ, and MINSIGSTKSZ are defined in <signal.h>.

After a successful call to one of the exec functions, there are no alternate signal stacks in the new process
image.

In some implementations, a signal (whether or not indicated to execute on the alternate stack) shall always
execute on the alternate stack if it is delivered while another signal is being caught using the alternate stack.

Use of this function by library threads that are not bound to kernel-scheduled entities results in undefined
behavior.

RETURN VALUE
Upon successful completion, sigaltstack() shall return 0; otherwise, it shall return −1 and set errno to indi-
cate the error.

ERRORS
The sigaltstack() function shall fail if:

IEEE/The Open Group 2017 1

SIGALTSTACK(3P) POSIX Programmer’s Manual SIGALTSTACK(3P)

EINVAL
The ss argument is not a null pointer, and the ss_flags member pointed to by ss contains flags
other than SS_DISABLE.

ENOMEM
The size of the alternate stack area is less than MINSIGSTKSZ.

EPERM
An attempt was made to modify an active stack.

The following sections are informative.

EXAMPLES
Allocating Memory for an Alternate Stack

The following example illustrates a method for allocating memory for an alternate stack.

#include <signal.h>
...
if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)

/* Error return. */
sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk,(stack_t *)0) < 0)

perror("sigaltstack");

APPLICATION USAGE
On some implementations, stack space is automatically extended as needed. On those implementations, au-
tomatic extension is typically not available for an alternate stack. If the stack overflows, the behavior is un-
defined.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, exec , sigaction(), sigsetjmp()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGDELSET(3P) POSIX Programmer’s Manual SIGDELSET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigdelset — delete a signal from a signal set

SYNOPSIS
#include <signal.h>

int sigdelset(sigset_t *set, int signo);

DESCRIPTION
The sigdelset() function deletes the individual signal specified by signo from the signal set pointed to by
set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type sigset_t
prior to any other use of that object. If such an object is not initialized in this way, but is nonetheless sup-
plied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigismember(), sig-

pending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigdelset() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The sigdelset() function may fail if:

EINVAL
The signo argument is not a valid signal number, or is an unsupported signal number.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, pthread_sigmask(), sigaction(), sigaddset(), sigemptyset(), sigfillset(),
sigismember(), sigpending(), sigsuspend()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGEMPTYSET(3P) POSIX Programmer’s Manual SIGEMPTYSET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigemptyset — initialize and empty a signal set

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

DESCRIPTION
The sigemptyset() function initializes the signal set pointed to by set, such that all signals defined in
POSIX.1-2008 are excluded.

RETURN VALUE
Upon successful completion, sigemptyset() shall return 0; otherwise, it shall return −1 and set errno to indi-
cate the error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The implementation of the sigemptyset() (or sigfillset()) function could quite trivially clear (or set) all the
bits in the signal set. Alternatively, it would be reasonable to initialize part of the structure, such as a ver-
sion field, to permit binary-compatibility between releases where the size of the set varies. For such rea-
sons, either sigemptyset() or sigfillset() must be called prior to any other use of the signal set, even if such
use is read-only (for example, as an argument to sigpending()). This function is not intended for dynamic
allocation.

The sigfillset() and sigemptyset() functions require that the resulting signal set include (or exclude) all the
signals defined in this volume of POSIX.1-2017. Although it is outside the scope of this volume of
POSIX.1-2017 to place this requirement on signals that are implemented as extensions, it is recommended
that implementation-defined signals also be affected by these functions. However, there may be a good rea-
son for a particular signal not to be affected. For example, blocking or ignoring an implementation-defined
signal may have undesirable side-effects, whereas the default action for that signal is harmless. In such a
case, it would be preferable for such a signal to be excluded from the signal set returned by sigfillset().

In early proposals there was no distinction between invalid and unsupported signals (the names of optional
signals that were not supported by an implementation were not defined by that implementation). The [EIN-
VAL] error was thus specified as a required error for invalid signals. With that distinction, it is not neces-
sary to require implementations of these functions to determine whether an optional signal is actually sup-
ported, as that could have a significant performance impact for little value. The error could have been re-
quired for invalid signals and optional for unsupported signals, but this seemed unnecessarily complex.
Thus, the error is optional in both cases.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigfillset(), sigis-

member(), sigpending(), sigsuspend()

IEEE/The Open Group 2017 1

SIGEMPTYSET(3P) POSIX Programmer’s Manual SIGEMPTYSET(3P)

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGFILLSET(3P) POSIX Programmer’s Manual SIGFILLSET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigfillset — initialize and fill a signal set

SYNOPSIS
#include <signal.h>

int sigfillset(sigset_t *set);

DESCRIPTION
The sigfillset() function shall initialize the signal set pointed to by set, such that all signals defined in this
volume of POSIX.1-2017 are included.

RETURN VALUE
Upon successful completion, sigfillset() shall return 0; otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to sigemptyset().

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigismember(), sigpending(), sigsuspend()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGHOLD(3P) POSIX Programmer’s Manual SIGHOLD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sighold, sigignore, sigpause, sigrelse, sigset — signal management

SYNOPSIS
#include <signal.h>

int sighold(int sig);
int sigignore(int sig);
int sigpause(int sig);
int sigrelse(int sig);
void (*sigset(int sig, void (*disp)(int)))(int);

DESCRIPTION
Use of any of these functions is unspecified in a multi-threaded process.

The sighold(), sigignore(), sigpause(), sigrelse(), and sigset() functions provide simplified signal manage-
ment.

The sigset() function shall modify signal dispositions. The sig argument specifies the signal, which may be
any signal except SIGKILL and SIGSTOP. The disp argument specifies the signal’s disposition, which may
be SIG_DFL, SIG_IGN, or the address of a signal handler. If sigset() is used, and disp is the address of a
signal handler, the system shall add sig to the signal mask of the calling process before executing the signal
handler; when the signal handler returns, the system shall restore the signal mask of the calling process to
its state prior to the delivery of the signal. In addition, if sigset() is used, and disp is equal to SIG_HOLD,
sig shall be added to the signal mask of the calling process and sig’s disposition shall remain unchanged. If
sigset() is used, and disp is not equal to SIG_HOLD, sig shall be removed from the signal mask of the call-
ing process.

The sighold() function shall add sig to the signal mask of the calling process.

The sigrelse() function shall remove sig from the signal mask of the calling process.

The sigignore() function shall set the disposition of sig to SIG_IGN.

The sigpause() function shall remove sig from the signal mask of the calling process and suspend the call-
ing process until a signal is received. The sigpause() function shall restore the signal mask of the process to
its original state before returning.

If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes shall not
be transformed into zombie processes when they terminate. If the calling process subsequently waits for its
children, and the process has no unwaited-for children that were transformed into zombie processes, it shall
block until all of its children terminate, and wait(), waitid(), and waitpid() shall fail and set errno to
[ECHILD].

RETURN VALUE
Upon successful completion, sigset() shall return SIG_HOLD if the signal had been blocked and the sig-
nal’s previous disposition if it had not been blocked. Otherwise, SIG_ERR shall be returned and errno set
to indicate the error.

The sigpause() function shall suspend execution of the thread until a signal is received, whereupon it shall
return −1 and set errno to [EINTR].

For all other functions, upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned
and errno set to indicate the error.

ERRORS
These functions shall fail if:

IEEE/The Open Group 2017 1

SIGHOLD(3P) POSIX Programmer’s Manual SIGHOLD(3P)

EINVAL
The sig argument is an illegal signal number.

The sigset() and sigignore() functions shall fail if:

EINVAL
An attempt is made to catch a signal that cannot be caught, or to ignore a signal that cannot be ig-
nored.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The sigaction() function provides a more comprehensive and reliable mechanism for controlling signals;
new applications should use the sigaction() function instead of the obsolescent sigset() function.

The sighold() function, in conjunction with sigrelse() or sigpause(), may be used to establish critical re-
gions of code that require the delivery of a signal to be temporarily deferred. For broader portability, the
pthread_sigmask() or sigprocmask() functions should be used instead of the obsolescent sighold() and si-

grelse() functions.

For broader portability, the sigsuspend() function should be used instead of the obsolescent sigpause() func-
tion.

RATIONALE
Each of these historic functions has a direct analog in the other functions which are required to be per-
thread and thread-safe (aside from sigprocmask(), which is replaced by pthread_sigmask()). The sigset()
function can be implemented as a simple wrapper for sigaction(). The sighold() function is equivalent to
sigprocmask() or pthread_sigmask() with SIG_BLOCK set. The sigignore() function is equivalent to sigac-

tion() with SIG_IGN set. The sigpause() function is equivalent to sigsuspend(). The sigrelse() function is
equivalent to sigprocmask() or pthread_sigmask() with SIG_UNBLOCK set.

FUTURE DIRECTIONS
These functions may be removed in a future version.

SEE ALSO
Section 2.4, Signal Concepts, exec , pause(), pthread_sigmask(), sigaction(), signal(), sigsuspend(),
wait(), waitid()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGINTERRUPT(3P) POSIX Programmer’s Manual SIGINTERRUPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
siginterrupt — allow signals to interrupt functions

SYNOPSIS
#include <signal.h>

int siginterrupt(int sig, int flag);

DESCRIPTION
The siginterrupt() function shall change the restart behavior when a function is interrupted by the specified
signal. The function siginterrupt(sig, flag) has an effect as if implemented as:

int siginterrupt(int sig, int flag) {
int ret;
struct sigaction act;

(void) sigaction(sig, NULL, &act);
if (flag)

act.sa_flags &= ~SA_RESTART;
else

act.sa_flags |= SA_RESTART;
ret = sigaction(sig, &act, NULL);
return ret;

}

RETURN VALUE
Upon successful completion, siginterrupt() shall return 0; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
The siginterrupt() function shall fail if:

EINVAL
The sig argument is not a valid signal number.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The siginterrupt() function supports programs written to historical system interfaces. Applications should
use the sigaction() with the SA_RESTART flag instead of the obsolescent siginterrupt() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, sigaction()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

SIGINTERRUPT(3P) POSIX Programmer’s Manual SIGINTERRUPT(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGISMEMBER(3P) POSIX Programmer’s Manual SIGISMEMBER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigismember — test for a signal in a signal set

SYNOPSIS
#include <signal.h>

int sigismember(const sigset_t *set, int signo);

DESCRIPTION
The sigismember() function shall test whether the signal specified by signo is a member of the set pointed
to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type sigset_t
prior to any other use of that object. If such an object is not initialized in this way, but is nonetheless sup-
plied as an argument to any of pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigismember(), sig-

pending(), sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or sigwaitinfo(), the results are undefined.

RETURN VALUE
Upon successful completion, sigismember() shall return 1 if the specified signal is a member of the speci-
fied set, or 0 if it is not. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sigismember() function may fail if:

EINVAL
The signo argument is not a valid signal number, or is an unsupported signal number.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigfillset(),
sigemptyset(), sigpending(), sigsuspend()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGLONGJMP(3P) POSIX Programmer’s Manual SIGLONGJMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
siglongjmp — non-local goto with signal handling

SYNOPSIS
#include <setjmp.h>

void siglongjmp(sigjmp_buf env, int val);

DESCRIPTION
The siglongjmp() function shall be equivalent to the longjmp() function, except as follows:

* References to setjmp() shall be equivalent to sigsetjmp().

* The siglongjmp() function shall restore the saved signal mask if and only if the env argument was ini-
tialized by a call to sigsetjmp() with a non-zero savemask argument.

RETURN VALUE
After siglongjmp() is completed, program execution shall continue as if the corresponding invocation of
sigsetjmp() had just returned the value specified by val. The siglongjmp() function shall not cause
sigsetjmp() to return 0; if val is 0, sigsetjmp() shall return the value 1.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp() or longjmp() and sigsetjmp() or siglongjmp() is only significant for pro-
grams which use sigaction(), sigprocmask(), or sigsuspend().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), pthread_sigmask(), setjmp(), sigsetjmp(), sigsuspend()

The Base Definitions volume of POSIX.1-2017, <setjmp.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGNAL(3P) POSIX Programmer’s Manual SIGNAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
signal — signal management

SYNOPSIS
#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The signal() function chooses one of three ways in which receipt of the signal number sig is to be subse-
quently handled. If the value of func is SIG_DFL, default handling for that signal shall occur. If the value
of func is SIG_IGN, the signal shall be ignored. Otherwise, the application shall ensure that func points to
a function to be called when that signal occurs. An invocation of such a function because of a signal, or (re-
cursively) of any further functions called by that invocation (other than functions in the standard library), is
called a ‘‘signal handler’’.

When a signal occurs, and func points to a function, it is implementation-defined whether the equivalent of
a:

signal(sig, SIG_DFL);

is executed or the implementation prevents some implementation-defined set of signals (at least including
sig) from occurring until the current signal handling has completed. (If the value of sig is SIGILL, the im-
plementation may alternatively define that no action is taken.) Next the equivalent of:

(*func)(sig);

is executed. If and when the function returns, if the value of sig was SIGFPE, SIGILL, or SIGSEGV or any
other implementation-defined value corresponding to a computational exception, the behavior is undefined.
Otherwise, the program shall resume execution at the point it was interrupted. The ISO C standard places a
restriction on applications relating to the use of raise() from signal handlers. This restriction does not apply
to POSIX applications, as POSIX.1-2008 requires raise() to be async-signal-safe (see Section 2.4.3, Signal

Actions).

If the process is multi-threaded, or if the process is single-threaded and a signal handler is executed other
than as the result of:

* The process calling abort(), raise(), kill(), pthread_kill(), or sigqueue() to generate a signal that is not
blocked

* A pending signal being unblocked and being delivered before the call that unblocked it returns

the behavior is undefined if the signal handler refers to any object other than errno with static storage dura-
tion other than by assigning a value to an object declared as volatile sig_atomic_t, or if the signal handler
calls any function defined in this standard other than one of the functions listed in Section 2.4, Signal Con-

cepts.

At program start-up, the equivalent of:

signal(sig, SIG_IGN);

IEEE/The Open Group 2017 1

SIGNAL(3P) POSIX Programmer’s Manual SIGNAL(3P)

is executed for some signals, and the equivalent of:

signal(sig, SIG_DFL);

is executed for all other signals (see exec).

The signal() function shall not change the setting of errno if successful.

RETURN VALUE
If the request can be honored, signal() shall return the value of func for the most recent call to signal() for
the specified signal sig. Otherwise, SIG_ERR shall be returned and a positive value shall be stored in er-

rno.

ERRORS
The signal() function shall fail if:

EINVAL
The sig argument is not a valid signal number or an attempt is made to catch a signal that cannot
be caught or ignore a signal that cannot be ignored.

The signal() function may fail if:

EINVAL
An attempt was made to set the action to SIG_DFL for a signal that cannot be caught or ignored
(or both).

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The sigaction() function provides a more comprehensive and reliable mechanism for controlling signals;
new applications should use sigaction() rather than signal().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, exec , pause(), raise(), sigaction(), sigsuspend(), waitid()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGNBIT(3P) POSIX Programmer’s Manual SIGNBIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
signbit — test sign

SYNOPSIS
#include <math.h>

int signbit(real-floating x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The signbit() macro shall determine whether the sign of its argument value is negative. NaNs, zeros, and in-
finities have a sign bit.

RETURN VALUE
The signbit() macro shall return a non-zero value if and only if the sign of its argument value is negative.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpclassify(), isfinite(), isinf(), isnan(), isnormal()

The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGNGAM(3P) POSIX Programmer’s Manual SIGNGAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
signgam — log gamma function

SYNOPSIS
#include <math.h>

extern int signgam;

DESCRIPTION
Refer to lgamma().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGPAUSE(3P) POSIX Programmer’s Manual SIGPAUSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigpause — remove a signal from the signal mask and suspend the thread

SYNOPSIS
#include <signal.h>

int sigpause(int sig);

DESCRIPTION
Refer to sighold().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGPENDING(3P) POSIX Programmer’s Manual SIGPENDING(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigpending — examine pending signals

SYNOPSIS
#include <signal.h>

int sigpending(sigset_t *set);

DESCRIPTION
The sigpending() function shall store, in the location referenced by the set argument, the set of signals that
are blocked from delivery to the calling thread and that are pending on the process or the calling thread.

RETURN VALUE
Upon successful completion, sigpending() shall return 0; otherwise, −1 shall be returned and errno set to
indicate the error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , pthread_sigmask(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGPROCMASK(3P) POSIX Programmer’s Manual SIGPROCMASK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigprocmask — examine and change blocked signals

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

DESCRIPTION
Refer to pthread_sigmask().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGQUEUE(3P) POSIX Programmer’s Manual SIGQUEUE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigqueue — queue a signal to a process

SYNOPSIS
#include <signal.h>

int sigqueue(pid_t pid, int signo, union sigval value);

DESCRIPTION
The sigqueue() function shall cause the signal specified by signo to be sent with the value specified by
value to the process specified by pid . If signo is zero (the null signal), error checking is performed but no
signal is actually sent. The null signal can be used to check the validity of pid .

The conditions required for a process to have permission to queue a signal to another process are the same
as for the kill() function.

The sigqueue() function shall return immediately. If SA_SIGINFO is set for signo and if the resources were
available to queue the signal, the signal shall be queued and sent to the receiving process. If SA_SIGINFO
is not set for signo, then signo shall be sent at least once to the receiving process; it is unspecified whether
value shall be sent to the receiving process as a result of this call.

If the value of pid causes signo to be generated for the sending process, and if signo is not blocked for the
calling thread and if no other thread has signo unblocked or is waiting in a sigwait() function for signo, ei-
ther signo or at least the pending, unblocked signal shall be delivered to the calling thread before the
sigqueue() function returns. Should any multiple pending signals in the range SIGRTMIN to SIGRTMAX
be selected for delivery, it shall be the lowest numbered one. The selection order between realtime and
non-realtime signals, or between multiple pending non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, the specified signal shall have been queued, and the sigqueue() function shall
return a value of zero. Otherwise, the function shall return a value of −1 and set errno to indicate the error.

ERRORS
The sigqueue() function shall fail if:

EAGAIN
No resources are available to queue the signal. The process has already queued
{SIGQUEUE_MAX} signals that are still pending at the receiver(s), or a system-wide resource
limit has been exceeded.

EINVAL
The value of the signo argument is an invalid or unsupported signal number.

EPERM
The process does not have appropriate privileges to send the signal to the receiving process.

ESRCH
The process pid does not exist.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The sigqueue() function allows an application to queue a realtime signal to itself or to another process,
specifying the application-defined value. This is common practice in realtime applications on existing

IEEE/The Open Group 2017 1

SIGQUEUE(3P) POSIX Programmer’s Manual SIGQUEUE(3P)

realtime systems. It was felt that specifying another function in the sig. . . name space already carved out
for signals was preferable to extending the interface to kill().

Such a function became necessary when the put/get event function of the message queues was removed. It
should be noted that the sigqueue() function implies reduced performance in a security-conscious imple-
mentation as the access permissions between the sender and receiver hav e to be checked on each send when
the pid is resolved into a target process. Such access checks were necessary only at message queue open in
the previous interface.

The standard developers required that sigqueue() have the same semantics with respect to the null signal as
kill(), and that the same permission checking be used. But because of the difficulty of implementing the
‘‘broadcast’’ semantic of kill() (for example, to process groups) and the interaction with resource allocation,
this semantic was not adopted. The sigqueue() function queues a signal to a single process specified by the
pid argument.

The sigqueue() function can fail if the system has insufficient resources to queue the signal. An explicit
limit on the number of queued signals that a process could send was introduced. While the limit is ‘‘per-
sender’’, this volume of POSIX.1-2017 does not specify that the resources be part of the state of the sender.
This would require either that the sender be maintained after exit until all signals that it had sent to other
processes were handled or that all such signals that had not yet been acted upon be removed from the
queue(s) of the receivers. This volume of POSIX.1-2017 does not preclude this behavior, but an implemen-
tation that allocated queuing resources from a system-wide pool (with per-sender limits) and that leaves
queued signals pending after the sender exits is also permitted.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.8.1, Realtime Signals

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGRELSE(3P) POSIX Programmer’s Manual SIGRELSE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigrelse, sigset — signal management

SYNOPSIS
#include <signal.h>

int sigrelse(int sig);
void (*sigset(int sig, void (*disp)(int)))(int);

DESCRIPTION
Refer to sighold().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIGSETJMP(3P) POSIX Programmer’s Manual SIGSETJMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigsetjmp — set jump point for a non-local goto

SYNOPSIS
#include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

DESCRIPTION
The sigsetjmp() function shall be equivalent to the setjmp() function, except as follows:

* References to setjmp() are equivalent to sigsetjmp().

* References to longjmp() are equivalent to siglongjmp().

* If the value of the savemask argument is not 0, sigsetjmp() shall also save the current signal mask of
the calling thread as part of the calling environment.

RETURN VALUE
If the return is from a successful direct invocation, sigsetjmp() shall return 0. If the return is from a call to
siglongjmp(), sigsetjmp() shall return a non-zero value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp()/longjmp() and sigsetjmp()/siglongjmp() is only significant for programs
which use sigaction(), sigprocmask(), or sigsuspend().

Note that since this function is defined in terms of setjmp(), if savemask is zero, it is unspecified whether
the signal mask is saved.

RATIONALE
The ISO C standard specifies various restrictions on the usage of the setjmp() macro in order to permit im-
plementors to recognize the name in the compiler and not implement an actual function. These same re-
strictions apply to the sigsetjmp() macro.

There are processors that cannot easily support these calls, but this was not considered a sufficient reason to
exclude them.

4.2 BSD, 4.3 BSD, and XSI-conformant systems provide functions named _setjmp() and _longjmp() that,
together with setjmp() and longjmp(), provide the same functionality as sigsetjmp() and siglongjmp(). On
those systems, setjmp() and longjmp() save and restore signal masks, while _setjmp() and _longjmp() do
not. On System V Release 3 and in corresponding issues of the SVID, setjmp() and longjmp() are explicitly
defined not to save and restore signal masks. In order to permit existing practice in both cases, the relation
of setjmp() and longjmp() to signal masks is not specified, and a new set of functions is defined instead.

The longjmp() and siglongjmp() functions operate as in the previous issue provided the matching setjmp()
or sigsetjmp() has been performed in the same thread. Non-local jumps into contexts saved by other threads
would be at best a questionable practice and were not considered worthy of standardization.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

SIGSETJMP(3P) POSIX Programmer’s Manual SIGSETJMP(3P)

SEE ALSO
pthread_sigmask(), siglongjmp(), signal(), sigsuspend()

The Base Definitions volume of POSIX.1-2017, <setjmp.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGSUSPEND(3P) POSIX Programmer’s Manual SIGSUSPEND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigsuspend — wait for a signal

SYNOPSIS
#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

DESCRIPTION
The sigsuspend() function shall replace the current signal mask of the calling thread with the set of signals
pointed to by sigmask and then suspend the thread until delivery of a signal whose action is either to exe-
cute a signal-catching function or to terminate the process. This shall not cause any other signals that may
have been pending on the process to become pending on the thread.

If the action is to terminate the process then sigsuspend() shall never return. If the action is to execute a sig-
nal-catching function, then sigsuspend() shall return after the signal-catching function returns, with the sig-
nal mask restored to the set that existed prior to the sigsuspend() call.

It is not possible to block signals that cannot be ignored. This is enforced by the system without causing an
error to be indicated.

RETURN VALUE
Since sigsuspend() suspends thread execution indefinitely, there is no successful completion return value. If
a return occurs, −1 shall be returned and errno set to indicate the error.

ERRORS
The sigsuspend() function shall fail if:

EINTR
A signal is caught by the calling process and control is returned from the signal-catching function.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Normally, at the beginning of a critical code section, a specified set of signals is blocked using the sigproc-

mask() function. When the thread has completed the critical section and needs to wait for the previously
blocked signal(s), it pauses by calling sigsuspend() with the mask that was returned by the sigprocmask()
call.

RATIONALE
Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers can install an
additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_sigsuspend(const sigset_t *mask)
{

sigset_t oldmask;
int result;
pthread_sigmask(SIG_SETMASK, NULL, &oldmask);

IEEE/The Open Group 2017 1

SIGSUSPEND(3P) POSIX Programmer’s Manual SIGSUSPEND(3P)

pthread_cleanup_push(cleanup, &oldmask);
result = sigsuspend(sigmask);
pthread_cleanup_pop(0);
return result;

}

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, pause(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset()

The Base Definitions volume of POSIX.1-2017, <signal.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGTIMEDWAIT(3P) POSIX Programmer’s Manual SIGTIMEDWAIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigtimedwait, sigwaitinfo — wait for queued signals

SYNOPSIS
#include <signal.h>

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *restrict info,
const struct timespec *restrict timeout);

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *restrict info);

DESCRIPTION
The sigtimedwait() function shall be equivalent to sigwaitinfo() except that if none of the signals specified
by set are pending, sigtimedwait() shall wait for the time interval specified in the timespec structure refer-
enced by timeout. If the timespec structure pointed to by timeout is zero-valued and if none of the signals
specified by set are pending, then sigtimedwait() shall return immediately with an error. If timeout is the
null pointer, the behavior is unspecified. If the Monotonic Clock option is supported, the CLOCK_MONO-
TONIC clock shall be used to measure the time interval specified by the timeout argument.

The sigwaitinfo() function selects the pending signal from the set specified by set. Should any of multiple
pending signals in the range SIGRTMIN to SIGRTMAX be selected, it shall be the lowest numbered one.
The selection order between realtime and non-realtime signals, or between multiple pending non-realtime
signals, is unspecified. If no signal in set is pending at the time of the call, the calling thread shall be sus-
pended until one or more signals in set become pending or until it is interrupted by an unblocked, caught
signal.

The sigwaitinfo() function shall be equivalent to the sigwait() function, except that the return value and the
error reporting method are different (see RETURN VALUE), and that if the info argument is non-NULL,
the selected signal number shall be stored in the si_signo member, and the cause of the signal shall be
stored in the si_code member. If any value is queued to the selected signal, the first such queued value shall
be dequeued and, if the info argument is non-NULL, the value shall be stored in the si_value member of
info. The system resource used to queue the signal shall be released and returned to the system for other
use. If no value is queued, the content of the si_value member is undefined. If no further signals are queued
for the selected signal, the pending indication for that signal shall be reset.

RETURN VALUE
Upon successful completion (that is, one of the signals specified by set is pending or is generated) sigwait-

info() and sigtimedwait() shall return the selected signal number. Otherwise, the function shall return a
value of −1 and set errno to indicate the error.

ERRORS
The sigtimedwait() function shall fail if:

EAGAIN
No signal specified by set was generated within the specified timeout period.

The sigtimedwait() and sigwaitinfo() functions may fail if:

EINTR
The wait was interrupted by an unblocked, caught signal. It shall be documented in system docu-
mentation whether this error causes these functions to fail.

The sigtimedwait() function may also fail if:

IEEE/The Open Group 2017 1

SIGTIMEDWAIT(3P) POSIX Programmer’s Manual SIGTIMEDWAIT(3P)

EINVAL
The timeout argument specified a tv_nsec value less than zero or greater than or equal to 1 000
million.

An implementation should only check for this error if no signal is pending in set and it is necessary to wait.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The sigtimedwait() function times out and returns an [EAGAIN] error. Application developers should note
that this is inconsistent with other functions such as pthread_cond_timedwait() that return [ETIMED-
OUT].

Note that in order to ensure that generated signals are queued and signal values passed to sigqueue() are
available in si_value, applications which use sigwaitinfo() or sigtimedwait() need to set the SA_SIGINFO
flag for each signal in the set (see Section 2.4, Signal Concepts). This means setting each signal to be han-
dled by a three-argument signal-catching function, even if the handler will never be called. It is not possi-
ble (portably) to set a signal handler to SIG_DFL while setting the SA_SIGINFO flag, because assigning to
the sa_handler member of struct sigaction instead of the sa_sigaction member would result in undefined
behavior, and SIG_DFL need not be assignment-compatible with sa_sigaction. Even if an assignment of
SIG_DFL to sa_sigaction is accepted by the compiler, the implementation need not treat this value as spe-
cial—it could just be taken as the address of a signal-catching function.

RATIONALE
Existing programming practice on realtime systems uses the ability to pause waiting for a selected set of
ev ents and handle the first event that occurs in-line instead of in a signal-handling function. This allows ap-
plications to be written in an event-directed style similar to a state machine. This style of programming is
useful for largescale transaction processing in which the overall throughput of an application and the ability
to clearly track states are more important than the ability to minimize the response time of individual event
handling.

It is possible to construct a signal-waiting macro function out of the realtime signal function mechanism de-
fined in this volume of POSIX.1-2017. However, such a macro has to include the definition of a generalized
handler for all signals to be waited on. A significant portion of the overhead of handler processing can be
avoided if the signal-waiting function is provided by the kernel. This volume of POSIX.1-2017 therefore
provides two signal-waiting functions—one that waits indefinitely and one with a timeout—as part of the
overall realtime signal function specification.

The specification of a function with a timeout allows an application to be written that can be broken out of a
wait after a set period of time if no event has occurred. It was argued that setting a timer event before the
wait and recognizing the timer event in the wait would also implement the same functionality, but at a lower
performance level. Because of the performance degradation associated with the user-level specification of a
timer event and the subsequent cancellation of that timer event after the wait completes for a valid event,
and the complexity associated with handling potential race conditions associated with the user-level
method, the separate function has been included.

Note that the semantics of the sigwaitinfo() function are nearly identical to that of the sigwait() function de-
fined by this volume of POSIX.1-2017. The only difference is that sigwaitinfo() returns the queued signal
value in the value argument. The return of the queued value is required so that applications can differentiate
between multiple events queued to the same signal number.

The two distinct functions are being maintained because some implementations may choose to implement
the POSIX Threads Extension functions and not implement the queued signals extensions. Note, though,
that sigwaitinfo() does not return the queued value if the value argument is NULL, so the POSIX Threads
Extension sigwait() function can be implemented as a macro on sigwaitinfo().

The sigtimedwait() function was separated from the sigwaitinfo() function to address concerns regarding
the overloading of the timeout pointer to indicate indefinite wait (no timeout), timed wait, and immediate

IEEE/The Open Group 2017 2

SIGTIMEDWAIT(3P) POSIX Programmer’s Manual SIGTIMEDWAIT(3P)

return, and concerns regarding consistency with other functions where the conditional and timed waits were
separate functions from the pure blocking function. The semantics of sigtimedwait() are specified such that
sigwaitinfo() could be implemented as a macro with a null pointer for timeout.

The sigwait functions provide a synchronous mechanism for threads to wait for asynchronously-generated
signals. One important question was how many threads that are suspended in a call to a sigwait() function
for a signal should return from the call when the signal is sent. Four choices were considered:

1. Return an error for multiple simultaneous calls to sigwait functions for the same signal.

2. One or more threads return.

3. All waiting threads return.

4. Exactly one thread returns.

Prohibiting multiple calls to sigwait() for the same signal was felt to be overly restrictive. The ‘‘one or
more’’ behavior made implementation of conforming packages easy at the expense of forcing POSIX
threads clients to protect against multiple simultaneous calls to sigwait() in application code in order to
achieve predictable behavior. There was concern that the ‘‘all waiting threads’’ behavior would result in
‘‘signal broadcast storms’’, consuming excessive CPU resources by replicating the signals in the general
case. Furthermore, no convincing examples could be presented that delivery to all was either simpler or
more powerful than delivery to one.

Thus, the consensus was that exactly one thread that was suspended in a call to a sigwait function for a sig-
nal should return when that signal occurs. This is not an onerous restriction as:

* A multi-way signal wait can be built from the single-way wait.

* Signals should only be handled by application-level code, as library routines cannot guess what the ap-
plication wants to do with signals generated for the entire process.

* Applications can thus arrange for a single thread to wait for any giv en signal and call any needed rou-
tines upon its arrival.

In an application that is using signals for interprocess communication, signal processing is typically done in
one place. Alternatively, if the signal is being caught so that process cleanup can be done, the signal handler
thread can call separate process cleanup routines for each portion of the application. Since the application
main line started each portion of the application, it is at the right abstraction level to tell each portion of the
application to clean up.

Certainly, there exist programming styles where it is logical to consider waiting for a single signal in multi-
ple threads. A simple sigwait_multiple() routine can be constructed to achieve this goal. A possible imple-
mentation would be to have each sigwait_multiple() caller registered as having expressed interest in a set of
signals. The caller then waits on a thread-specific condition variable. A single server thread calls a sig-

wait() function on the union of all registered signals. When the sigwait() function returns, the appropriate
state is set and condition variables are broadcast. New sigwait_multiple() callers may cause the pending sig-

wait() call to be canceled and reissued in order to update the set of signals being waited for.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, Section 2.8.1, Realtime Signals, pause(), pthread_sigmask(), sigaction(),
sigpending(), sigsuspend(), sigwait()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 3

SIGTIMEDWAIT(3P) POSIX Programmer’s Manual SIGTIMEDWAIT(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

SIGWAIT(3P) POSIX Programmer’s Manual SIGWAIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigwait — wait for queued signals

SYNOPSIS
#include <signal.h>

int sigwait(const sigset_t *restrict set, int *restrict sig);

DESCRIPTION
The sigwait() function shall select a pending signal from set, atomically clear it from the system’s set of
pending signals, and return that signal number in the location referenced by sig. If prior to the call to sig-

wait() there are multiple pending instances of a single signal number, it is implementation-defined whether
upon successful return there are any remaining pending signals for that signal number. If the implementa-
tion supports queued signals and there are multiple signals queued for the signal number selected, the first
such queued signal shall cause a return from sigwait() and the remainder shall remain queued. If no signal
in set is pending at the time of the call, the thread shall be suspended until one or more becomes pending.
The signals defined by set shall have been blocked at the time of the call to sigwait(); otherwise, the behav-
ior is undefined. The effect of sigwait() on the signal actions for the signals in set is unspecified.

If more than one thread is using sigwait() to wait for the same signal, no more than one of these threads
shall return from sigwait() with the signal number. If more than a single thread is blocked in sigwait() for a
signal when that signal is generated for the process, it is unspecified which of the waiting threads returns
from sigwait(). If the signal is generated for a specific thread, as by pthread_kill(), only that thread shall re-
turn.

Should any of the multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it shall be
the lowest numbered one. The selection order between realtime and non-realtime signals, or between multi-
ple pending non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, sigwait() shall store the signal number of the received signal at the location
referenced by sig and return zero. Otherwise, an error number shall be returned to indicate the error.

ERRORS
The sigwait() function may fail if:

EINVAL
The set argument contains an invalid or unsupported signal number.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
To provide a convenient way for a thread to wait for a signal, this volume of POSIX.1-2017 provides the
sigwait() function. For most cases where a thread has to wait for a signal, the sigwait() function should be
quite convenient, efficient, and adequate.

However, requests were made for a lower-level primitive than sigwait() and for semaphores that could be
used by threads. After some consideration, threads were allowed to use semaphores and sem_post() was de-
fined to be async-signal-safe.

In summary, when it is necessary for code run in response to an asynchronous signal to notify a thread, sig-

wait() should be used to handle the signal. Alternatively, if the implementation provides semaphores, they

IEEE/The Open Group 2017 1

SIGWAIT(3P) POSIX Programmer’s Manual SIGWAIT(3P)

also can be used, either following sigwait() or from within a signal handling routine previously registered
with sigaction().

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4, Signal Concepts, Section 2.8.1, Realtime Signals, pause(), pthread_sigmask(), sigaction(),
sigpending(), sigsuspend(), sigtimedwait()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SIGWAITINFO(3P) POSIX Programmer’s Manual SIGWAITINFO(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sigwaitinfo — wait for queued signals

SYNOPSIS
#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set, siginfo_t *restrict info);

DESCRIPTION
Refer to sigtimedwait().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SIN(3P) POSIX Programmer’s Manual SIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sin, sinf, sinl — sine function

SYNOPSIS
#include <math.h>

double sin(double x);
float sinf(float x);
long double sinl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the sine of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the sine of x.

If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, sin(), sinf(), and sinl() shall return an implementation-defined value no greater in mag-
nitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

If x is ±Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The x argument is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

These functions may fail if:

Range Error The value of x is subnormal

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
Taking the Sine of a 45-Degree Angle

#include <math.h>
...

IEEE/The Open Group 2017 1

SIN(3P) POSIX Programmer’s Manual SIN(3P)

double radians = 45.0 * M_PI / 180;
double result;
...
result = sin(radians);

APPLICATION USAGE
These functions may lose accuracy when their argument is near a multiple of π or is far from 0.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asin(), feclearexcept(), fetestexcept(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SINH(3P) POSIX Programmer’s Manual SINH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sinh, sinhf, sinhl — hyperbolic sine functions

SYNOPSIS
#include <math.h>

double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the hyperbolic sine of their argument x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic sine of x.

If the result would cause an overflow, a range error shall occur and ±HUGE_VAL, ±HUGE_VALF, and
±HUGE_VALL (with the same sign as x) shall be returned as appropriate for the type of the function.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, sinh(), sinhf(), and sinhl() shall return an implementation-defined value no greater in
magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions shall fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Range Error The value x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

SINH(3P) POSIX Programmer’s Manual SINH(3P)

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asinh(), cosh(), feclearexcept(), fetestexcept(), isnan(), tanh()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SINL(3P) POSIX Programmer’s Manual SINL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sinl — sine function

SYNOPSIS
#include <math.h>

long double sinl(long double x);

DESCRIPTION
Refer to sin().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SLEEP(3P) POSIX Programmer’s Manual SLEEP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sleep — suspend execution for an interval of time

SYNOPSIS
#include <unistd.h>

unsigned sleep(unsigned seconds);

DESCRIPTION
The sleep() function shall cause the calling thread to be suspended from execution until either the number
of realtime seconds specified by the argument seconds has elapsed or a signal is delivered to the calling
thread and its action is to invoke a signal-catching function or to terminate the process. The suspension time
may be longer than requested due to the scheduling of other activity by the system.

In single-threaded programs, sleep() may make use of SIGALRM. In multi-threaded programs, sleep() shall
not make use of SIGALRM and the remainder of this DESCRIPTION does not apply.

If a SIGALRM signal is generated for the calling process during execution of sleep() and if the SIGALRM
signal is being ignored or blocked from delivery, it is unspecified whether sleep() returns when the
SIGALRM signal is scheduled. If the signal is being blocked, it is also unspecified whether it remains
pending after sleep() returns or it is discarded.

If a SIGALRM signal is generated for the calling process during execution of sleep(), except as a result of a
prior call to alarm(), and if the SIGALRM signal is not being ignored or blocked from delivery, it is un-
specified whether that signal has any effect other than causing sleep() to return.

If a signal-catching function interrupts sleep() and examines or changes either the time a SIGALRM is
scheduled to be generated, the action associated with the SIGALRM signal, or whether the SIGALRM sig-
nal is blocked from delivery, the results are unspecified.

If a signal-catching function interrupts sleep() and calls siglongjmp() or longjmp() to restore an environ-
ment saved prior to the sleep() call, the action associated with the SIGALRM signal and the time at which a
SIGALRM signal is scheduled to be generated are unspecified. It is also unspecified whether the
SIGALRM signal is blocked, unless the signal mask of the process is restored as part of the environment.

Interactions between sleep() and setitimer() are unspecified.

RETURN VALUE
If sleep() returns because the requested time has elapsed, the value returned shall be 0. If sleep() returns due
to delivery of a signal, the return value shall be the ‘‘unslept’’ amount (the requested time minus the time
actually slept) in seconds.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
There are two general approaches to the implementation of the sleep() function. One is to use the alarm()
function to schedule a SIGALRM signal and then suspend the calling thread waiting for that signal. The
other is to implement an independent facility. This volume of POSIX.1-2017 permits either approach in sin-
gle-threaded programs, but the simple alarm/suspend implementation is not appropriate for multi-threaded
programs.

IEEE/The Open Group 2017 1

SLEEP(3P) POSIX Programmer’s Manual SLEEP(3P)

In order to comply with the requirement that no primitive shall change a process attribute unless explicitly
described by this volume of POSIX.1-2017, an implementation using SIGALRM must carefully take into
account any SIGALRM signal scheduled by previous alarm() calls, the action previously established for
SIGALRM, and whether SIGALRM was blocked. If a SIGALRM has been scheduled before the sleep()
would ordinarily complete, the sleep() must be shortened to that time and a SIGALRM generated (possibly
simulated by direct invocation of the signal-catching function) before sleep() returns. If a SIGALRM has
been scheduled after the sleep() would ordinarily complete, it must be rescheduled for the same time before
sleep() returns. The action and blocking for SIGALRM must be saved and restored.

Historical implementations often implement the SIGALRM-based version using alarm() and pause(). One
such implementation is prone to infinite hangups, as described in pause(). Another such implementation
uses the C-language setjmp() and longjmp() functions to avoid that window. That implementation intro-
duces a different problem: when the SIGALRM signal interrupts a signal-catching function installed by the
user to catch a different signal, the longjmp() aborts that signal-catching function. An implementation based
on sigprocmask(), alarm(), and sigsuspend() can avoid these problems.

Despite all reasonable care, there are several very subtle, but detectable and unavoidable, differences be-
tween the two types of implementations. These are the cases mentioned in this volume of POSIX.1-2017
where some other activity relating to SIGALRM takes place, and the results are stated to be unspecified.
All of these cases are sufficiently unusual as not to be of concern to most applications.

See also the discussion of the term realtime in alarm().

Since sleep() can be implemented using alarm(), the discussion about alarms occurring early under alarm()
applies to sleep() as well.

Application developers should note that the type of the argument seconds and the return value of sleep() is
unsigned. That means that a Strictly Conforming POSIX System Interfaces Application cannot pass a
value greater than the minimum guaranteed value for {UINT_MAX}, which the ISO C standard sets as
65 535, and any application passing a larger value is restricting its portability. A different type was consid-
ered, but historical implementations, including those with a 16-bit int type, consistently use either un-
signed or int.

Scheduling delays may cause the process to return from the sleep() function significantly after the requested
time. In such cases, the return value should be set to zero, since the formula (requested time minus the time
actually spent) yields a negative number and sleep() returns an unsigned.

FUTURE DIRECTIONS
A future version of this standard may require that sleep() does not make use of SIGALRM in all programs,
not just multi-threaded programs.

SEE ALSO
alarm(), getitimer(), nanosleep(), pause(), sigaction(), sigsetjmp()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SNPRINTF(3P) POSIX Programmer’s Manual SNPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
snprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int snprintf(char *restrict s, size_t n,
const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SOCKATMARK(3P) POSIX Programmer’s Manual SOCKATMARK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sockatmark — determine whether a socket is at the out-of-band mark

SYNOPSIS
#include <sys/socket.h>

int sockatmark(int s);

DESCRIPTION
The sockatmark() function shall determine whether the socket specified by the descriptor s is at the out-of-
band data mark (see Section 2.10.12, Socket Out-of-Band Data State). If the protocol for the socket sup-
ports out-of-band data by marking the stream with an out-of-band data mark, the sockatmark() function
shall return 1 when all data preceding the mark has been read and the out-of-band data mark is the first ele-
ment in the receive queue. The sockatmark() function shall not remove the mark from the stream.

RETURN VALUE
Upon successful completion, the sockatmark() function shall return a value indicating whether the socket is
at an out-of-band data mark. If the protocol has marked the data stream and all data preceding the mark has
been read, the return value shall be 1; if there is no mark, or if data precedes the mark in the receive queue,
the sockatmark() function shall return 0. Otherwise, it shall return a value of −1 and set errno to indicate
the error.

ERRORS
The sockatmark() function shall fail if:

EBADF
The s argument is not a valid file descriptor.

ENOTTY
The file associated with the s argument is not a socket.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The use of this function between receive operations allows an application to determine which received data
precedes the out-of-band data and which follows the out-of-band data.

There is an inherent race condition in the use of this function. On an empty receive queue, the current read
of the location might well be at the ‘‘mark’’, but the system has no way of knowing that the next data seg-
ment that will arrive from the network will carry the mark, and sockatmark() will return false, and the next
read operation will silently consume the mark.

Hence, this function can only be used reliably when the application already knows that the out-of-band data
has been seen by the system or that it is known that there is data waiting to be read at the socket (via SIG-
URG or select()). See Section 2.10.11, Socket Receive Queue, Section 2.10.12, Socket Out-of-Band Data

State, Section 2.10.14, Signals, and pselect() for details.

RATIONALE
The sockatmark() function replaces the historical SIOCATMARK command to ioctl() which implemented
the same functionality on many implementations. Using a wrapper function follows the adopted conven-
tions to avoid specifying commands to the ioctl() function, other than those now included to support XSI
STREAMS. The sockatmark() function could be implemented as follows:

#include <sys/ioctl.h>

IEEE/The Open Group 2017 1

SOCKATMARK(3P) POSIX Programmer’s Manual SOCKATMARK(3P)

int sockatmark(int s)
{

int val;
if (ioctl(s,SIOCATMARK,&val)==-1)

return(-1);
return(val);

}

The use of [ENOTTY] to indicate an incorrect descriptor type matches the historical behavior of SIOCAT-
MARK.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.10.12, Socket Out-of-Band Data State, pselect(), recv(), recvmsg()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SOCKET(3P) POSIX Programmer’s Manual SOCKET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
The socket() function shall create an unbound socket in a communications domain, and return a file descrip-
tor that can be used in later function calls that operate on sockets. The file descriptor shall be allocated as
described in Section 2.14, File Descriptor Allocation.

The socket() function takes the following arguments:

domain Specifies the communications domain in which a socket is to be created.

type Specifies the type of socket to be created.

protocol Specifies a particular protocol to be used with the socket. Specifying a protocol of 0 causes
socket() to use an unspecified default protocol appropriate for the requested socket type.

The domain argument specifies the address family used in the communications domain. The address fami-
lies supported by the system are implementation-defined.

Symbolic constants that can be used for the domain argument are defined in the <sys/socket.h> header.

The type argument specifies the socket type, which determines the semantics of communication over the
socket. The following socket types are defined; implementations may specify additional socket types:

SOCK_STREAM
Provides sequenced, reliable, bidirectional, connection-mode byte streams, and may provide
a transmission mechanism for out-of-band data.

SOCK_DGRAM
Provides datagrams, which are connectionless-mode, unreliable messages of fixed maximum
length.

SOCK_SEQPACKET
Provides sequenced, reliable, bidirectional, connection-mode transmission paths for records.
A record can be sent using one or more output operations and received using one or more in-
put operations, but a single operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it shall specify a protocol that is supported by the address family. If
the protocol argument is zero, the default protocol for this address family and type shall be used. The pro-
tocols supported by the system are implementation-defined.

The process may need to have appropriate privileges to use the socket() function or to create some sockets.

RETURN VALUE
Upon successful completion, socket() shall return a non-negative integer, the socket file descriptor. Other-
wise, a value of −1 shall be returned and errno set to indicate the error.

ERRORS
The socket() function shall fail if:

EAFNOSUPPORT
The implementation does not support the specified address family.

IEEE/The Open Group 2017 1

SOCKET(3P) POSIX Programmer’s Manual SOCKET(3P)

EMFILE
All file descriptors available to the process are currently open.

ENFILE
No more file descriptors are available for the system.

EPROT ONOSUPPORT
The protocol is not supported by the address family, or the protocol is not supported by the imple-
mentation.

EPROT OTYPE
The socket type is not supported by the protocol.

The socket() function may fail if:

EACCES
The process does not have appropriate privileges.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family supports.
The documentation for specific protocols specifies which socket types each protocol supports.

The application can determine whether an address family is supported by trying to create a socket with do-

main set to the protocol in question.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14, File Descriptor Allocation, accept(), bind(), connect(), getsockname(), getsockopt(), lis-

ten(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), setsockopt(), shutdown(), socketpair()

The Base Definitions volume of POSIX.1-2017, <netinet_in.h>, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SOCKETPAIR(3P) POSIX Programmer’s Manual SOCKETPAIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
socketpair — create a pair of connected sockets

SYNOPSIS
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol,
int socket_vector[2]);

DESCRIPTION
The socketpair() function shall create an unbound pair of connected sockets in a specified domain, of a
specified type, under the protocol optionally specified by the protocol argument. The two sockets shall be
identical. The file descriptors used in referencing the created sockets shall be returned in socket_vector[0]
and socket_vector[1]. The file descriptors shall be allocated as described in Section 2.14, File Descriptor

Allocation.

The socketpair() function takes the following arguments:

domain Specifies the communications domain in which the sockets are to be created.

type Specifies the type of sockets to be created.

protocol Specifies a particular protocol to be used with the sockets. Specifying a protocol of 0 causes
socketpair() to use an unspecified default protocol appropriate for the requested socket type.

socket_vector Specifies a 2-integer array to hold the file descriptors of the created socket pair.

The type argument specifies the socket type, which determines the semantics of communications over the
socket. The following socket types are defined; implementations may specify additional socket types:

SOCK_STREAM
Provides sequenced, reliable, bidirectional, connection-mode byte streams, and may pro-
vide a transmission mechanism for out-of-band data.

SOCK_DGRAM
Provides datagrams, which are connectionless-mode, unreliable messages of fixed maxi-
mum length.

SOCK_SEQPACKET
Provides sequenced, reliable, bidirectional, connection-mode transmission paths for
records. A record can be sent using one or more output operations and received using one
or more input operations, but a single operation never transfers part of more than one
record. Record boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it shall specify a protocol that is supported by the address family. If
the protocol argument is zero, the default protocol for this address family and type shall be used. The pro-
tocols supported by the system are implementation-defined.

The process may need to have appropriate privileges to use the socketpair() function or to create some
sockets.

RETURN VALUE
Upon successful completion, this function shall return 0; otherwise, −1 shall be returned and errno set to
indicate the error, no file descriptors shall be allocated, and the contents of socket_vector shall be left un-
modified.

ERRORS
The socketpair() function shall fail if:

IEEE/The Open Group 2017 1

SOCKETPAIR(3P) POSIX Programmer’s Manual SOCKETPAIR(3P)

EAFNOSUPPORT
The implementation does not support the specified address family.

EMFILE
All, or all but one, of the file descriptors available to the process are currently open.

ENFILE
No more file descriptors are available for the system.

EOPNOTSUPP
The specified protocol does not permit creation of socket pairs.

EPROT ONOSUPPORT
The protocol is not supported by the address family, or the protocol is not supported by the imple-
mentation.

EPROT OTYPE
The socket type is not supported by the protocol.

The socketpair() function may fail if:

EACCES
The process does not have appropriate privileges.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOMEM
Insufficient memory was available to fulfill the request.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The documentation for specific address families specifies which protocols each address family supports.
The documentation for specific protocols specifies which socket types each protocol supports.

The socketpair() function is used primarily with UNIX domain sockets and need not be supported for other
domains.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.14, File Descriptor Allocation, socket()

The Base Definitions volume of POSIX.1-2017, <sys_socket.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SPRINTF(3P) POSIX Programmer’s Manual SPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int sprintf(char *restrict s, const char *restrict format, ...);

DESCRIPTION
Refer to fprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SQRT(3P) POSIX Programmer’s Manual SQRT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux. delim $$

NAME
sqrt, sqrtf, sqrtl — square root function

SYNOPSIS
#include <math.h>

double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the square root of their argument x, $sqrt {x}$.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the square root of x.

For finite values of x < −0, a domain error shall occur, and either a NaN (if supported), or an implementa-
tion-defined value shall be returned.

If x is NaN, a NaN shall be returned.

If x is ±0 or +Inf, x shall be returned.

If x is −Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The finite value of x is < −0, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
Taking the Square Root of 9.0

#include <math.h>
...
double x = 9.0;
double result;
...
result = sqrt(x);

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

IEEE/The Open Group 2017 1

SQRT(3P) POSIX Programmer’s Manual SQRT(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SRAND(3P) POSIX Programmer’s Manual SRAND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
srand — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

void srand(unsigned seed);

DESCRIPTION
Refer to rand().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SRAND48(3P) POSIX Programmer’s Manual SRAND48(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
srand48 — seed the uniformly distributed double-precision pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

void srand48(long seedval);

DESCRIPTION
Refer to drand48().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SRANDOM(3P) POSIX Programmer’s Manual SRANDOM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
srandom — seed pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

void srandom(unsigned seed);

DESCRIPTION
Refer to initstate().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SSCANF(3P) POSIX Programmer’s Manual SSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int sscanf(const char *restrict s, const char *restrict format, ...);

DESCRIPTION
Refer to fscanf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STAT(3P) POSIX Programmer’s Manual STAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
stat — get file status

SYNOPSIS
#include <sys/stat.h>

int stat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION
Refer to fstatat().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STATVFS(3P) POSIX Programmer’s Manual STATVFS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
statvfs — get file system information

SYNOPSIS
#include <sys/statvfs.h>

int statvfs(const char *restrict path, struct statvfs *restrict buf);

DESCRIPTION
Refer to fstatvfs().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STDIN(3P) POSIX Programmer’s Manual STDIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
stderr, stdin, stdout — standard I/O streams

SYNOPSIS
#include <stdio.h>

extern FILE *stderr, *stdin, *stdout;

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type FILE.
The fopen() function shall create certain descriptive data for a stream and return a pointer to designate the
stream in all further transactions. Normally, there are three open streams with constant pointers declared in
the <stdio.h> header and associated with the standard open files.

At program start-up, three streams shall be predefined and need not be opened explicitly: standard input

(for reading conventional input), standard output (for writing conventional output), and standard error (for
writing diagnostic output). When opened, the standard error stream is not fully buffered; the standard input
and standard output streams are fully buffered if and only if the stream can be determined not to refer to an
interactive device.

The following symbolic values in <unistd.h> define the file descriptors that shall be associated with the C-
language stdin, stdout, and stderr when the application is started:

STDIN_FILENO
Standard input value, stdin. Its value is 0.

STDOUT_FILENO
Standard output value, stdout. Its value is 1.

STDERR_FILENO
Standard error value, stderr. Its value is 2.

The stderr stream is expected to be open for reading and writing.

RETURN VALUE
None.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), feof(), ferror(), fileno(), fopen(), fprintf(), fread(), fscanf(), fseek(), getc(), gets(),
popen(), putc(), puts(), read(), setbuf(), setvbuf(), tmpfile(), ungetc(), vfprintf()

IEEE/The Open Group 2017 1

STDIN(3P) POSIX Programmer’s Manual STDIN(3P)

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STPCPY(3P) POSIX Programmer’s Manual STPCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
stpcpy — copy a string and return a pointer to the end of the result

SYNOPSIS
#include <string.h>

char *stpcpy(char *restrict s1, const char *restrict s2);

DESCRIPTION
Refer to strcpy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STPNCPY(3P) POSIX Programmer’s Manual STPNCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
stpncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
#include <string.h>

char *stpncpy(char *restrict s1, const char *restrict s2, size_t size);

DESCRIPTION
Refer to strncpy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRCASECMP(3P) POSIX Programmer’s Manual STRCASECMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strcasecmp, strcasecmp_l, strncasecmp, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
#include <strings.h>

int strcasecmp(const char *s1, const char *s2);
int strcasecmp_l(const char *s1, const char *s2,

locale_t locale);
int strncasecmp(const char *s1, const char *s2, size_t n);
int strncasecmp_l(const char *s1, const char *s2,

size_t n, locale_t locale);

DESCRIPTION
The strcasecmp() and strcasecmp_l() functions shall compare, while ignoring differences in case, the string
pointed to by s1 to the string pointed to by s2. The strncasecmp() and strncasecmp_l() functions shall
compare, while ignoring differences in case, not more than n bytes from the string pointed to by s1 to the
string pointed to by s2.

The strcasecmp() and strncasecmp() functions use the current locale to determine the case of the characters.

The strcasecmp_l() and strncasecmp_l() functions use the locale represented by locale to determine the
case of the characters.

When the LC_CTYPE category of the locale being used is from the POSIX locale, these functions shall be-
have as if the strings had been converted to lowercase and then a byte comparison performed. Otherwise,
the results are unspecified.

The behavior is undefined if the locale argument to strcasecmp_l() or strncasecmp_l() is the special locale
object LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon completion, strcasecmp() and strcasecmp_l() shall return an integer greater than, equal to, or less than
0, if the string pointed to by s1 is, ignoring case, greater than, equal to, or less than the string pointed to by
s2, respectively.

Upon successful completion, strncasecmp() and strncasecmp_l() shall return an integer greater than, equal
to, or less than 0, if the possibly null-terminated array pointed to by s1 is, ignoring case, greater than, equal
to, or less than the possibly null-terminated array pointed to by s2, respectively.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp()

IEEE/The Open Group 2017 1

STRCASECMP(3P) POSIX Programmer’s Manual STRCASECMP(3P)

The Base Definitions volume of POSIX.1-2017, <strings.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRCAT(3P) POSIX Programmer’s Manual STRCAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strcat — concatenate two strings

SYNOPSIS
#include <string.h>

char *strcat(char *restrict s1, const char *restrict s2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strcat() function shall append a copy of the string pointed to by s2 (including the terminating NUL
character) to the end of the string pointed to by s1. The initial byte of s2 overwrites the NUL character at
the end of s1. If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The strcat() function shall return s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
This version is aligned with the ISO C standard; this does not affect compatibility with XPG3 applications.
Reliable error detection by this function was never guaranteed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncat()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRCHR(3P) POSIX Programmer’s Manual STRCHR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strchr(const char *s, int c);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strchr() function shall locate the first occurrence of c (converted to a char) in the string pointed to by s.
The terminating NUL character is considered to be part of the string.

RETURN VALUE
Upon completion, strchr() shall return a pointer to the byte, or a null pointer if the byte was not found.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strrchr()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRCMP(3P) POSIX Programmer’s Manual STRCMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strcmp — compare two strings

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strcmp() function shall compare the string pointed to by s1 to the string pointed to by s2.

The sign of a non-zero return value shall be determined by the sign of the difference between the values of
the first pair of bytes (both interpreted as type unsigned char) that differ in the strings being compared.

RETURN VALUE
Upon completion, strcmp() shall return an integer greater than, equal to, or less than 0, if the string pointed
to by s1 is greater than, equal to, or less than the string pointed to by s2, respectively.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Checking a Password Entry

The following example compares the information read from standard input to the value of the name of the
user entry. If the strcmp() function returns 0 (indicating a match), a further check will be made to see if the
user entered the proper old password. The crypt() function shall encrypt the old password entered by the
user, using the value of the encrypted password in the passwd structure as the salt. If this value matches the
value of the encrypted passwd in the structure, the entered password oldpasswd is the correct user’s pass-
word. Finally, the program encrypts the new password so that it can store the information in the passwd
structure.

#include <string.h>
#include <unistd.h>
#include <stdio.h>
...
int valid_change;
struct passwd *p;
char user[100];
char oldpasswd[100];
char newpasswd[100];
char savepasswd[100];
...
if (strcmp(p->pw_name, user) == 0) {

if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd;
valid_change = 1;

}

IEEE/The Open Group 2017 1

STRCMP(3P) POSIX Programmer’s Manual STRCMP(3P)

else {
fprintf(stderr, "Old password is not valid\n");

}
}
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncmp()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRCOLL(3P) POSIX Programmer’s Manual STRCOLL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strcoll, strcoll_l — string comparison using collating information

SYNOPSIS
#include <string.h>

int strcoll(const char *s1, const char *s2);
int strcoll_l(const char *s1, const char *s2,

locale_t locale);

DESCRIPTION
For strcoll(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The strcoll() and strcoll_l() functions shall compare the string pointed to by s1 to the string pointed to by
s2, both interpreted as appropriate to the LC_COLLATE category of the current locale, or of the locale rep-
resented by locale, respectively.

The strcoll() and strcoll_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error situations
should set errno to 0, then call strcoll(), or strcoll_l() then check errno.

The behavior is undefined if the locale argument to strcoll_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon successful completion, strcoll() shall return an integer greater than, equal to, or less than 0, according
to whether the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2 when
both are interpreted as appropriate to the current locale. On error, strcoll() may set errno, but no return
value is reserved to indicate an error.

Upon successful completion, strcoll_l() shall return an integer greater than, equal to, or less than 0, accord-
ing to whether the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2

when both are interpreted as appropriate to the locale represented by locale. On error, strcoll_l() may set
errno, but no return value is reserved to indicate an error.

ERRORS
These functions may fail if:

EINVAL
The s1 or s2 arguments contain characters outside the domain of the collating sequence.

The following sections are informative.

EXAMPLES
Comparing Nodes

The following example uses an application-defined function, node_compare(), to compare two nodes based
on an alphabetical ordering of the string field.

#include <string.h>
...
struct node { /* These are stored in the table. */

char *string;
int length;

};

IEEE/The Open Group 2017 1

STRCOLL(3P) POSIX Programmer’s Manual STRCOLL(3P)

...
int node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1)->string,
((const struct node *)node2)->string);

}
...

APPLICATION USAGE
The strxfrm() and strcmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort(), strcmp(), strxfrm()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRCPY(3P) POSIX Programmer’s Manual STRCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
stpcpy, strcpy — copy a string and return a pointer to the end of the result

SYNOPSIS
#include <string.h>

char *stpcpy(char *restrict s1, const char *restrict s2);
char *strcpy(char *restrict s1, const char *restrict s2);

DESCRIPTION
For strcpy(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The stpcpy() and strcpy() functions shall copy the string pointed to by s2 (including the terminating NUL
character) into the array pointed to by s1.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The stpcpy() function shall return a pointer to the terminating NUL character copied into the s1 buffer.

The strcpy() function shall return s1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Construction of a Multi-Part Message in a Single Buffer

#include <string.h>
#include <stdio.h>

int
main (void)
{

char buffer [10];
char *name = buffer;

name = stpcpy (stpcpy (stpcpy (name, "ice"),"-"), "cream");
puts (buffer);
return 0;

}

Initializing a String
The following example copies the string "----------" into the permstring variable.

#include <string.h>
...
static char permstring[11];
...
strcpy(permstring, "----------");
...

IEEE/The Open Group 2017 1

STRCPY(3P) POSIX Programmer’s Manual STRCPY(3P)

Storing a Key and Data
The following example allocates space for a key using malloc() then uses strcpy() to place the key there.
Then it allocates space for data using malloc(), and uses strcpy() to place data there. (The user-defined func-
tion dbfree() frees memory previously allocated to an array of type struct element *.)

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
...
/* Structure used to read data and store it. */
struct element {

char *key;
char *data;

};

struct element *tbl, *curtbl;
char *key, *data;
int count;
...
void dbfree(struct element *, int);
...
if ((curtbl->key = malloc(strlen(key) + 1)) == NULL) {

perror("malloc"); dbfree(tbl, count); return NULL;
}
strcpy(curtbl->key, key);

if ((curtbl->data = malloc(strlen(data) + 1)) == NULL) {
perror("malloc"); free(curtbl->key); dbfree(tbl, count); return NULL;

}
strcpy(curtbl->data, data);
...

APPLICATION USAGE
Character movement is performed differently in different implementations. Thus, overlapping moves may
yield surprises.

This version is aligned with the ISO C standard; this does not affect compatibility with XPG3 applications.
Reliable error detection by this function was never guaranteed.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), wcscpy()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 2

STRCPY(3P) POSIX Programmer’s Manual STRCPY(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

STRCSPN(3P) POSIX Programmer’s Manual STRCSPN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strcspn — get the length of a complementary substring

SYNOPSIS
#include <string.h>

size_t strcspn(const char *s1, const char *s2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strcspn() function shall compute the length (in bytes) of the maximum initial segment of the string
pointed to by s1 which consists entirely of bytes not from the string pointed to by s2.

RETURN VALUE
The strcspn() function shall return the length of the computed segment of the string pointed to by s1; no re-
turn value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strspn()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRDUP(3P) POSIX Programmer’s Manual STRDUP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strdup, strndup — duplicate a specific number of bytes from a string

SYNOPSIS
#include <string.h>

char *strdup(const char *s);
char *strndup(const char *s, size_t size);

DESCRIPTION
The strdup() function shall return a pointer to a new string, which is a duplicate of the string pointed to by
s. The returned pointer can be passed to free(). A null pointer is returned if the new string cannot be cre-
ated.

The strndup() function shall be equivalent to the strdup() function, duplicating the provided s in a new
block of memory allocated as if by using malloc(), with the exception being that strndup() copies at most
size plus one bytes into the newly allocated memory, terminating the new string with a NUL character. If
the length of s is larger than size, only size bytes shall be duplicated. If size is larger than the length of s, all
bytes in s shall be copied into the new memory buffer, including the terminating NUL character. The newly
created string shall always be properly terminated.

RETURN VALUE
The strdup() function shall return a pointer to a new string on success. Otherwise, it shall return a null
pointer and set errno to indicate the error.

Upon successful completion, the strndup() function shall return a pointer to the newly allocated memory
containing the duplicated string. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
These functions shall fail if:

ENOMEM
Storage space available is insufficient.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory when it is
no longer required by a call to free(). For strdup() and strndup(), this is the return value.

Implementations are free to malloc() a buffer containing either (size + 1) bytes or (strnlen(s, size) + 1)
bytes. Applications should not assume that strndup() will allocate (size + 1) bytes when strlen(s) is smaller
than size.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), wcsdup()

The Base Definitions volume of POSIX.1-2017, <string.h>

IEEE/The Open Group 2017 1

STRDUP(3P) POSIX Programmer’s Manual STRDUP(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRERROR(3P) POSIX Programmer’s Manual STRERROR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strerror, strerror_l, strerror_r — get error message string

SYNOPSIS
#include <string.h>

char *strerror(int errnum);
char *strerror_l(int errnum, locale_t locale);
int strerror_r(int errnum, char *strerrbuf, size_t buflen);

DESCRIPTION
For strerror(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The strerror() function shall map the error number in errnum to a locale-dependent error message string
and shall return a pointer to it. Typically, the values for errnum come from errno, but strerror() shall map
any value of type int to a message.

The application shall not modify the string returned. The returned string pointer might be invalidated or the
string content might be overwritten by a subsequent call to strerror(), or by a subsequent call to strerror_l()
in the same thread. The returned pointer and the string content might also be invalidated if the calling
thread is terminated.

The string may be overwritten by a subsequent call to strerror_l() in the same thread.

The contents of the error message strings returned by strerror() should be determined by the setting of the
LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls strerror().

The strerror() and strerror_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error of strerror(), an application wishing to check for error
situations should set errno to 0, then call strerror(), then check errno. Similarly, since strerror_l() is re-
quired to return a string for some errors, an application wishing to check for all error situations should set
errno to 0, then call strerror_l(), then check errno.

The strerror() function need not be thread-safe.

The strerror_l() function shall map the error number in errnum to a locale-dependent error message string
in the locale represented by locale and shall return a pointer to it.

The strerror_r() function shall map the error number in errnum to a locale-dependent error message string
and shall return the string in the buffer pointed to by strerrbuf , with length buflen.

If the value of errnum is a valid error number, the message string shall indicate what error occurred; if the
value of errnum is zero, the message string shall either be an empty string or indicate that no error oc-
curred; otherwise, if these functions complete successfully, the message string shall indicate that an un-
known error occurred.

The behavior is undefined if the locale argument to strerror_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon completion, whether successful or not, strerror() shall return a pointer to the generated message
string. On error errno may be set, but no return value is reserved to indicate an error.

Upon successful completion, strerror_l() shall return a pointer to the generated message string. If errnum is
not a valid error number, errno may be set to [EINVAL], but a pointer to a message string shall still be

IEEE/The Open Group 2017 1

STRERROR(3P) POSIX Programmer’s Manual STRERROR(3P)

returned. If any other error occurs, errno shall be set to indicate the error and a null pointer shall be re-
turned.

Upon successful completion, strerror_r() shall return 0. Otherwise, an error number shall be returned to in-
dicate the error.

ERRORS
These functions may fail if:

EINVAL
The value of errnum is neither a valid error number nor zero.

The strerror_r() function may fail if:

ERANGE
Insufficient storage was supplied via strerrbuf and buflen to contain the generated message string.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Historically in some implementations, calls to perror() would overwrite the string that the pointer returned
by strerror() points to. Such implementations did not conform to the ISO C standard; however, application
developers should be aware of this behavior if they wish their applications to be portable to such implemen-
tations.

RATIONALE
The strerror_l() function is required to be thread-safe, thereby eliminating the need for an equivalent to the
strerror_r() function.

Earlier versions of this standard did not explicitly require that the error message strings returned by str-

error() and strerror_r() provide any information about the error. This version of the standard requires a
meaningful message for any successful completion.

Since no return value is reserved to indicate a strerror() error, but all calls (whether successful or not) must
return a pointer to a message string, on error strerror() can return a pointer to an empty string or a pointer to
a meaningful string that can be printed.

Note that the [EINVAL] error condition is a may fail error. If an inv alid error number is supplied as the
value of errnum, applications should be prepared to handle any of the following:

1. Error (with no meaningful message): errno is set to [EINVAL], the return value is a pointer to an
empty string.

2. Successful completion: errno is unchanged and the return value points to a string like "unknown-
error" or "errornumberxxx" (where xxx is the value of errnum).

3. Combination of #1 and #2: errno is set to [EINVAL] and the return value points to a string like "un-
knownerror" or "errornumberxxx" (where xxx is the value of errnum). Since applications frequently
use the return value of strerror() as an argument to functions like fprintf() (without checking the return
value) and since applications have no way to parse an error message string to determine whether er-

rnum represents a valid error number, implementations are encouraged to implement #3. Similarly, im-
plementations are encouraged to have strerror_r() return [EINVAL] and put a string like "unknown-
error" or "errornumberxxx" in the buffer pointed to by strerrbuf when the value of errnum is not a
valid error number.

Some applications rely on being able to set errno to 0 before calling a function with no reserved value to in-
dicate an error, then call strerror(errno) afterwards to detect whether an error occurred (because errno

changed) or to indicate success (because errno remained zero). This usage pattern requires that strerror(0)
succeed with useful results. Previous versions of the standard did not specify the behavior when errnum is
zero.

IEEE/The Open Group 2017 2

STRERROR(3P) POSIX Programmer’s Manual STRERROR(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
perror()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

STRFMON(3P) POSIX Programmer’s Manual STRFMON(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strfmon, strfmon_l — convert monetary value to a string

SYNOPSIS
#include <monetary.h>

ssize_t strfmon(char *restrict s, size_t maxsize,
const char *restrict format, ...);

ssize_t strfmon_l(char *restrict s, size_t maxsize,
locale_t locale, const char *restrict format, ...);

DESCRIPTION
The strfmon() function shall place characters into the array pointed to by s as controlled by the string
pointed to by format. No more than maxsize bytes are placed into the array.

The format is a character string, beginning and ending in its initial state, if any, that contains two types of
objects: plain characters, which are simply copied to the output stream, and conversion specifications, each
of which shall result in the fetching of zero or more arguments which are converted and formatted. The re-
sults are undefined if there are insufficient arguments for the format. If the format is exhausted while argu-
ments remain, the excess arguments are simply ignored.

The application shall ensure that a conversion specification consists of the following sequence:

* A ’%’ character

* Optional flags

* Optional field width

* Optional left precision

* Optional right precision

* A required conversion specifier character that determines the conversion to be performed

The strfmon_l() function shall be equivalent to the strfmon() function, except that the locale data used is
from the locale represented by locale.

Flags
One or more of the following optional flags can be specified to control the conversion:

=f An ’=’ followed by a single character f which is used as the numeric fill character. In order to
work with precision or width counts, the fill character shall be a single byte character; if not, the
behavior is undefined. The default numeric fill character is the <space>. This flag does not affect
field width filling which always uses the <space>. This flag is ignored unless a left precision (see
below) is specified.

ˆ Do not format the currency amount with grouping characters. The default is to insert the grouping
characters if defined for the current locale.

+ or (Specify the style of representing positive and negative currency amounts. Only one of ’+’ or ’(’
may be specified. If ’+’ is specified, the locale’s equivalent of ’+’ and ’−’ are used (for example,
in many locales, the empty string if positive and ’−’ if negative). If ’(’ is specified, negative
amounts are enclosed within parentheses. If neither flag is specified, the ’+’ style is used.

! Suppress the currency symbol from the output conversion.

− Specify the alignment. If this flag is present the result of the conversion is left-justified (padded to
the right) rather than right-justified. This flag shall be ignored unless a field width (see below) is
specified.

IEEE/The Open Group 2017 1

STRFMON(3P) POSIX Programmer’s Manual STRFMON(3P)

Field Width
w A decimal digit string w specifying a minimum field width in bytes in which the result of the con-

version is right-justified (or left-justified if the flag ’−’ is specified). The default is 0.

Left Precision
#n A ’#’ followed by a decimal digit string n specifying a maximum number of digits expected to be

formatted to the left of the radix character. This option can be used to keep the formatted output
from multiple calls to the strfmon() function aligned in the same columns. It can also be used to
fill unused positions with a special character as in "$***123.45". This option causes an amount
to be formatted as if it has the number of digits specified by n. If more than n digit positions are
required, this conversion specification is ignored. Digit positions in excess of those actually re-
quired are filled with the numeric fill character (see the =f flag above).

If grouping has not been suppressed with the ’^’ flag, and it is defined for the current locale,
grouping separators are inserted before the fill characters (if any) are added. Grouping separators
are not applied to fill characters even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in the formatted output
such as currency or sign symbols are padded as necessary with <space> characters to make their
positive and negative formats an equal length.

Right Precision
.p A <period> followed by a decimal digit string p specifying the number of digits after the radix

character. If the value of the right precision p is 0, no radix character appears. If a right precision
is not included, a default specified by the current locale is used. The amount being formatted is
rounded to the specified number of digits prior to formatting.

Conversion Specifier Characters
The conversion specifier characters and their meanings are:

i The double argument is formatted according to the locale’s international currency format (for ex-
ample, in the US: USD 1,234.56). If the argument is ±Inf or NaN, the result of the conversion is
unspecified.

n The double argument is formatted according to the locale’s national currency format (for exam-
ple, in the US: $1,234.56). If the argument is ±Inf or NaN, the result of the conversion is unspeci-
fied.

% Convert to a ’%’; no argument is converted. The entire conversion specification shall be %%.

Locale Information
The LC_MONETARY category of the current locale affects the behavior of this function including the mon-
etary radix character (which may be different from the numeric radix character affected by the LC_NU-

MERIC category), the grouping separator, the currency symbols, and formats. The international currency
symbol should be conformant with the ISO 4217: 2001 standard.

If the value of maxsize is greater than {SSIZE_MAX}, the result is implementation-defined.

The behavior is undefined if the locale argument to strfmon_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than maxsize, these
functions shall return the number of bytes placed into the array pointed to by s, not including the terminat-
ing NUL character. Otherwise, −1 shall be returned, the contents of the array are unspecified, and errno

shall be set to indicate the error.

ERRORS
These functions shall fail if:

E2BIG Conversion stopped due to lack of space in the buffer.

The following sections are informative.

IEEE/The Open Group 2017 2

STRFMON(3P) POSIX Programmer’s Manual STRFMON(3P)

EXAMPLES
Given a locale for the US and the values 123.45, −123.45, and 3456.781, the following output might be pro-
duced. Square brackets ("[]") are used in this example to delimit the output.

%n [$123.45] Default formatting
[-$123.45]
[$3,456.78]

%11n [$123.45] Right align within an 11-character field
[-$123.45]
[$3,456.78]

%#5n [$ 123.45] Aligned columns for values up to 99 999
[-$ 123.45]
[$ 3,456.78]

%=*#5n [$***123.45] Specify a fill character
[-$***123.45]
[$*3,456.78]

%=0#5n [$000123.45] Fill characters do not use grouping
[-$000123.45] even if the fill character is a digit
[$03,456.78]

%^#5n [$ 123.45] Disable the grouping separator
[-$ 123.45]
[$ 3456.78]

%^#5.0n [$ 123] Round off to whole units
[-$ 123]
[$ 3457]

%^#5.4n [$ 123.4500] Increase the precision
[-$ 123.4500]
[$ 3456.7810]

%(#5n [$ 123.45] Use an alternative pos/neg style
[($ 123.45)]
[$ 3,456.78]

%!(#5n [123.45] Disable the currency symbol
[(123.45)]
[3,456.78]

%-14#5.4n [$ 123.4500] Left-justify the output
[-$ 123.4500]
[$ 3,456.7810]

%14#5.4n [$ 123.4500] Corresponding right-justified output
[-$ 123.4500]
[$ 3,456.7810]

See also the EXAMPLES section in fprintf().

APPLICATION USAGE
None.

RATIONALE
None.

IEEE/The Open Group 2017 3

STRFMON(3P) POSIX Programmer’s Manual STRFMON(3P)

FUTURE DIRECTIONS
Lowercase conversion characters are reserved for future standards use and uppercase for implementation-
defined use.

SEE ALSO
fprintf(), localeconv()

The Base Definitions volume of POSIX.1-2017, <monetary.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

STRFTIME(3P) POSIX Programmer’s Manual STRFTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strftime, strftime_l — convert date and time to a string

SYNOPSIS
#include <time.h>

size_t strftime(char *restrict s, size_t maxsize,
const char *restrict format, const struct tm *restrict timeptr);

size_t strftime_l(char *restrict s, size_t maxsize,
const char *restrict format, const struct tm *restrict timeptr,
locale_t locale);

DESCRIPTION
For strftime(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The strftime() function shall place bytes into the array pointed to by s as controlled by the string pointed to
by format. The format is a character string, beginning and ending in its initial shift state, if any. The for-
mat string consists of zero or more conversion specifications and ordinary characters.

Each conversion specification is introduced by the ’%’ character after which the following appear in se-
quence:

* An optional flag:

0 The zero character (’0’), which specifies that the character used as the padding character is ’0’,

+ The <plus-sign> character (’+’), which specifies that the character used as the padding charac-
ter is ’0’, and that if and only if the field being produced consumes more than four bytes to rep-
resent a year (for %F, %G, or %Y) or more than two bytes to represent the year divided by
100 (for %C) then a leading <plus-sign> character shall be included if the year being pro-
cessed is greater than or equal to zero or a leading <hyphen-minus> character (’−’) shall be in-
cluded if the year is less than zero.

The default padding character is unspecified.

* An optional minimum field width. If the converted value, including any leading ’+’ or ’−’ sign, has
fewer bytes than the minimum field width and the padding character is not the NUL character, the out-
put shall be padded on the left (after any leading ’+’ or ’−’ sign) with the padding character.

* An optional E or O modifier.

* A terminating conversion specifier character that indicates the type of conversion to be applied.

The results are unspecified if more than one flag character is specified, a flag character is specified without
a minimum field width; a minimum field width is specified without a flag character; a modifier is specified
with a flag or with a minimum field width; or if a minimum field width is specified for any conversion spec-
ifier other than C, F, G, or Y.

All ordinary characters (including the terminating NUL character) are copied unchanged into the array. If
copying takes place between objects that overlap, the behavior is undefined. No more than maxsize bytes
are placed into the array. Each conversion specifier is replaced by appropriate characters as described in the
following list. The appropriate characters are determined using the LC_TIME category of the current locale
and by the values of zero or more members of the broken-down time structure pointed to by timeptr, as
specified in brackets in the description. If any of the specified values are outside the normal range, the char-
acters stored are unspecified.

The strftime_l() function shall be equivalent to the strftime() function, except that the locale data used is

IEEE/The Open Group 2017 1

STRFTIME(3P) POSIX Programmer’s Manual STRFTIME(3P)

from the locale represented by locale.

Local timezone information is used as though strftime() called tzset().

The following conversion specifiers shall be supported:

a Replaced by the locale’s abbreviated weekday name. [tm_wday]

A Replaced by the locale’s full weekday name. [tm_wday]

b Replaced by the locale’s abbreviated month name. [tm_mon]

B Replaced by the locale’s full month name. [tm_mon]

c Replaced by the locale’s appropriate date and time representation. (See the Base Definitions vol-
ume of POSIX.1-2017, <time.h>.)

C Replaced by the year divided by 100 and truncated to an integer, as a decimal number. [tm_year]

If a minimum field width is not specified, the number of characters placed into the array pointed
to by s will be the number of digits in the year divided by 100 or two, whichever is greater. If a
minimum field width is specified, the number of characters placed into the array pointed to by s

will be the number of digits in the year divided by 100 or the minimum field width, whichever is
greater.

d Replaced by the day of the month as a decimal number [01,31]. [tm_mday]

D Equivalent to %m/%d/%y. [tm_mon, tm_mday, tm_year]

e Replaced by the day of the month as a decimal number [1,31]; a single digit is preceded by a
space. [tm_mday]

F Equivalent to %+4Y-%m-%d if no flag and no minimum field width are specified. [tm_year,
tm_mon, tm_mday]

If a minimum field width of x is specified, the year shall be output as if by the Y specifier (de-
scribed below) with whatever flag was given and a minimum field width of x−6. If x is less than
6, the behavior shall be as if x equalled 6.

If the minimum field width is specified to be 10, and the year is four digits long, then the output
string produced will match the ISO 8601: 2004 standard subclause 4.1.2.2 complete representa-
tion, extended format date representation of a specific day. If a + flag is specified, a minimum
field width of x is specified, and x−7 bytes are sufficient to hold the digits of the year (not includ-
ing any needed sign character), then the output will match the ISO 8601: 2004 standard subclause
4.1.2.4 complete representation, expanded format date representation of a specific day.

g Replaced by the last 2 digits of the week-based year (see below) as a decimal number [00,99].
[tm_year, tm_wday, tm_yday]

G Replaced by the week-based year (see below) as a decimal number (for example, 1977).
[tm_year, tm_wday, tm_yday]

If a minimum field width is specified, the number of characters placed into the array pointed to by
s will be the number of digits and leading sign characters (if any) in the year, or the minimum
field width, whichever is greater.

h Equivalent to %b. [tm_mon]

H Replaced by the hour (24-hour clock) as a decimal number [00,23]. [tm_hour]

I Replaced by the hour (12-hour clock) as a decimal number [01,12]. [tm_hour]

j Replaced by the day of the year as a decimal number [001,366]. [tm_yday]

m Replaced by the month as a decimal number [01,12]. [tm_mon]

M Replaced by the minute as a decimal number [00,59]. [tm_min]

IEEE/The Open Group 2017 2

STRFTIME(3P) POSIX Programmer’s Manual STRFTIME(3P)

n Replaced by a <newline>.

p Replaced by the locale’s equivalent of either a.m. or p.m. [tm_hour]

r Replaced by the time in a.m. and p.m. notation; in the POSIX locale this shall be equivalent to
%I:%M:%S %p. [tm_hour, tm_min, tm_sec]

R Replaced by the time in 24-hour notation (%H:%M). [tm_hour, tm_min]

S Replaced by the second as a decimal number [00,60]. [tm_sec]

t Replaced by a <tab>.

T Replaced by the time (%H:%M:%S). [tm_hour, tm_min, tm_sec]

u Replaced by the weekday as a decimal number [1,7], with 1 representing Monday. [tm_wday]

U Replaced by the week number of the year as a decimal number [00,53]. The first Sunday of Janu-
ary is the first day of week 1; days in the new year before this are in week 0. [tm_year, tm_wday,
tm_yday]

V Replaced by the week number of the year (Monday as the first day of the week) as a decimal
number [01,53]. If the week containing 1 January has four or more days in the new year, then it is
considered week 1. Otherwise, it is the last week of the previous year, and the next week is week
1. Both January 4th and the first Thursday of January are always in week 1. [tm_year, tm_wday,
tm_yday]

w Replaced by the weekday as a decimal number [0,6], with 0 representing Sunday. [tm_wday]

W Replaced by the week number of the year as a decimal number [00,53]. The first Monday of Jan-
uary is the first day of week 1; days in the new year before this are in week 0. [tm_year,
tm_wday, tm_yday]

x Replaced by the locale’s appropriate date representation. (See the Base Definitions volume of
POSIX.1-2017, <time.h>.)

X Replaced by the locale’s appropriate time representation. (See the Base Definitions volume of
POSIX.1-2017, <time.h>.)

y Replaced by the last two digits of the year as a decimal number [00,99]. [tm_year]

Y Replaced by the year as a decimal number (for example, 1997). [tm_year]

If a minimum field width is specified, the number of characters placed into the array pointed to by
s will be the number of digits and leading sign characters (if any) in the year, or the minimum
field width, whichever is greater.

z Replaced by the offset from UTC in the ISO 8601: 2004 standard format (+hhmm or −hhmm),
or by no characters if no timezone is determinable. For example, "-0430" means 4 hours 30 min-
utes behind UTC (west of Greenwich). If tm_isdst is zero, the standard time offset is used. If
tm_isdst is greater than zero, the daylight savings time offset is used. If tm_isdst is negative, no
characters are returned. [tm_isdst]

Z Replaced by the timezone name or abbreviation, or by no bytes if no timezone information exists.
[tm_isdst]

% Replaced by %.

If a conversion specification does not correspond to any of the above, the behavior is undefined.

If a struct tm broken-down time structure is created by localtime() or localtime_r(), or modified by mk-

time(), and the value of TZ is subsequently modified, the results of the %Z and %z strftime() conversion
specifiers are undefined, when strftime() is called with such a broken-down time structure.

If a struct tm broken-down time structure is created or modified by gmtime() or gmtime_r(), it is unspeci-
fied whether the result of the %Z and %z conversion specifiers shall refer to UTC or the current local time-
zone, when strftime() is called with such a broken-down time structure.

IEEE/The Open Group 2017 3

STRFTIME(3P) POSIX Programmer’s Manual STRFTIME(3P)

Modified Conversion Specifiers
Some conversion specifiers can be modified by the E or O modifier characters to indicate that an alternative
format or specification should be used rather than the one normally used by the unmodified conversion
specifier. If the alternative format or specification does not exist for the current locale (see ERA in the Base
Definitions volume of POSIX.1-2017, Section 7.3.5, LC_TIME), the behavior shall be as if the unmodified
conversion specification were used.

%Ec Replaced by the locale’s alternative appropriate date and time representation.

%EC Replaced by the name of the base year (period) in the locale’s alternative representation.

%Ex Replaced by the locale’s alternative date representation.

%EX Replaced by the locale’s alternative time representation.

%Ey Replaced by the offset from %EC (year only) in the locale’s alternative representation.

%EY Replaced by the full alternative year representation.

%Od Replaced by the day of the month, using the locale’s alternative numeric symbols, filled as
needed with leading zeros if there is any alternative symbol for zero; otherwise, with leading
<space> characters.

%Oe Replaced by the day of the month, using the locale’s alternative numeric symbols, filled as
needed with leading <space> characters.

%OH Replaced by the hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI Replaced by the hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om Replaced by the month using the locale’s alternative numeric symbols.

%OM Replaced by the minutes using the locale’s alternative numeric symbols.

%OS Replaced by the seconds using the locale’s alternative numeric symbols.

%Ou Replaced by the weekday as a number in the locale’s alternative representation (Monday=1).

%OU Replaced by the week number of the year (Sunday as the first day of the week, rules correspond-
ing to %U) using the locale’s alternative numeric symbols.

%OV Replaced by the week number of the year (Monday as the first day of the week, rules correspond-
ing to %V) using the locale’s alternative numeric symbols.

%Ow Replaced by the number of the weekday (Sunday=0) using the locale’s alternative numeric sym-
bols.

%OW Replaced by the week number of the year (Monday as the first day of the week) using the locale’s
alternative numeric symbols.

%Oy Replaced by the year (offset from %C) using the locale’s alternative numeric symbols.

%g, %G, and %V give values according to the ISO 8601: 2004 standard week-based year. In this system,
weeks begin on a Monday and week 1 of the year is the week that includes January 4th, which is also the
week that includes the first Thursday of the year, and is also the first week that contains at least four days in
the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week
of the preceding year; thus, for Saturday 2nd January 1999, %G is replaced by 1998 and %V is replaced
by 53. If December 29th, 30th, or 31st is a Monday, it and any following days are part of week 1 of the fol-
lowing year. Thus, for Tuesday 30th December 1997, %G is replaced by 1998 and %V is replaced by 01.

If a conversion specifier is not one of the above, the behavior is undefined.

The behavior is undefined if the locale argument to strftime_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than maxsize, these
functions shall return the number of bytes placed into the array pointed to by s, not including the

IEEE/The Open Group 2017 4

STRFTIME(3P) POSIX Programmer’s Manual STRFTIME(3P)

terminating NUL character. Otherwise, 0 shall be returned and the contents of the array are unspecified.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Getting a Localized Date String

The following example first sets the locale to the user’s default. The locale information will be used in the
nl_langinfo() and strftime() functions. The nl_langinfo() function returns the localized date string which
specifies how the date is laid out. The strftime() function takes this information and, using the tm structure
for values, places the date and time information into datestring.

#include <time.h>
#include <locale.h>
#include <langinfo.h>
...
struct tm *tm;
char datestring[256];
...
setlocale (LC_ALL, "");
...
strftime (datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);
...

APPLICATION USAGE
The range of values for %S is [00,60] rather than [00,59] to allow for the occasional leap second.

Some of the conversion specifications are duplicates of others. They are included for compatibility with
nl_cxtime() and nl_ascxtime(), which were published in Issue 2.

The %C, %F, %G, and %Y format specifiers in strftime() always print full values, but the strptime() %C,
%F, and %Y format specifiers only scan two digits (assumed to be the first two digits of a four-digit year)
for %C and four digits (assumed to be the entire (four-digit) year) for %F and %Y. This mimics the be-
havior of printf() and scanf(); that is:

printf("%2d", x = 1000);

prints "1000", but:

scanf(%2d", &x);

when given "1000" as input will only store 10 in x). Applications using extended ranges of years must be
sure that the number of digits specified for scanning years with strptime() matches the number of digits that
will actually be present in the input stream. Historic implementations of the %Y conversion specification
(with no flags and no minimum field width) produced different output formats. Some always produced at
least four digits (with 0 fill for years from 0 through 999) while others only produced the number of digits
present in the year (with no fill and no padding). These two forms can be produced with the ’0’ flag and a
minimum field width options using the conversions specifications %04Y and %01Y, respectively.

In the past, the C and POSIX standards specified that %F produced an ISO 8601: 2004 standard date for-
mat, but didn’t specify which one. For years in the range [0001,9999], POSIX.1-2008 requires that the out-
put produced match the ISO 8601: 2004 standard complete representation extended format (YYYY-MM-
DD) and for years outside of this range produce output that matches the ISO 8601: 2004 standard expanded
representation extended format (<+/-><Underline>Y</Underline>YYYY-MM-DD). To fully meet
ISO 8601: 2004 standard requirements, the producer and consumer must agree on a date format that has a

IEEE/The Open Group 2017 5

STRFTIME(3P) POSIX Programmer’s Manual STRFTIME(3P)

specific number of bytes reserved to hold the characters used to represent the years that is sufficiently large
to hold all values that will be shared. For example, the %+13F conversion specification will produce output
matching the format "<+/->YYYYYY-MM-DD" (a leading ’+’ or ’−’ sign; a six-digit, 0-filled year; a ’−’;
a two-digit, leading 0-filled month; another ’−’; and the two-digit, leading 0-filled day within the month).

Note that if the year being printed is greater than 9999, the resulting string from the unadorned %F conver-
sion specifications will not conform to the ISO 8601: 2004 standard extended format, complete representa-
tion for a date and will instead be an extended format, expanded representation (presumably without the re-
quired agreement between the date’s producer and consumer).

In the C or POSIX locale, the E and O modifiers are ignored and the replacement strings for the following
specifiers are:

%a The first three characters of %A.

%A One of Sunday, Monday, . . ., Saturday.

%b The first three characters of %B.

%B One of January, February, . . ., December.

%c Equivalent to %a %b %e %T %Y.

%p One of AM or PM.

%r Equivalent to %I:%M:%S %p.

%x Equivalent to %m/%d/%y.

%X Equivalent to %T.

%Z Implementation-defined.

RATIONALE
The %Y conversion specification to strftime() was frequently assumed to be a four-digit year, but the ISO C
standard does not specify that %Y is restricted to any subset of allowed values from the tm_year field. Sim-
ilarly, the %C conversion specification was assumed to be a two-digit field and the first part of the output
from the %F conversion specification was assumed to be a four-digit field. With tm_year being a signed 32
or more-bit int and with many current implementations supporting 64-bit time_t types in one or more pro-
gramming environments, these assumptions are clearly wrong.

POSIX.1-2008 now allows the format specifications %0xC, %0xF, %0xG, and %0xY (where ’x’ is a
string of decimal digits used to specify printing and scanning of a string of x decimal digits) with leading
zero fill characters. Allowing applications to set the field width enables them to agree on the number of dig-
its to be printed and scanned in the ISO 8601: 2004 standard expanded representation of a year (for %F,
%G, and %Y) or all but the last two digits of the year (for %C). This is based on a feature in some ver-
sions of GNU libc’s strftime(). The GNU version allows specifying space, zero, or no-fill characters in strf-

time() format strings, but does not allow any flags to be specified in strptime() format strings. These imple-
mentations also allow these flags to be specified for any numeric field. POSIX.1-2008 only requires the
zero fill flag (’0’) and only requires that it be recognized when processing %C, %F, %G, and %Y specifi-
cations when a minimum field width is also specified. The ’0’ flag is the only flag needed to produce and
scan the ISO 8601: 2004 standard year fields using the extended format forms. POSIX.1-2008 also allows
applications to specify the same flag and field width specifiers to be used in both strftime() and strptime()
format strings for symmetry. Systems may provide other flag characters and may accept flags in conjunc-
tion with conversion specifiers other than %C, %F, %G, and %Y; but portable applications cannot depend
on such extensions.

POSIX.1-2008 now also allows the format specifications %+xC, %+xF, %+xG, and %+xY (where ’x’ is
a string of decimal digits used to specify printing and scanning of a string of ’x’ decimal digits) with lead-
ing zero fill characters and a leading ’+’ sign character if the year being converted is more than four digits
or a minimum field width is specified that allows room for more than four digits for the year. This allows
date providers and consumers to agree on a specific number of digits to represent a year as required by the
ISO 8601: 2004 standard expanded representation formats. The expanded representation formats all require

IEEE/The Open Group 2017 6

STRFTIME(3P) POSIX Programmer’s Manual STRFTIME(3P)

the year to begin with a leading ’+’ or ’−’ sign. (All of these specifiers can also provide a leading ’−’ sign
for negative years. Since negative years and the year 0 don’t fit well with the Gregorian or Julian calendars,
the normal ranges of dates start with year 1. The ISO C standard allows tm_year to assume values corre-
sponding to years before year 1, but the use of such years provided unspecified results.)

Some earlier version of this standard specified that applications wanting to use strptime() to scan dates and
times printed by strftime() should provide non-digit characters between fields to separate years from
months and days. It also supported %F to print and scan the ISO 8601: 2004 standard extended format,
complete representation date for years 1 through 9999 (i.e., YYYY-MM-DD). However, many applications
were written to print (using strftime()) and scan (using strptime()) dates written using the basic format com-
plete representation (four-digit years) and truncated representation (two-digit years) specified by the
ISO 8601: 2004 standard representation of dates and times which do not have any separation characters be-
tween fields. The ISO 8601: 2004 standard also specifies basic format expanded representation where the
creator and consumer of these fields agree beforehand to represent years as leading zero-filled strings of an
agreed length of more than four digits to represent a year (again with no separation characters when year,
month, and day are all displayed). Applications producing and consuming expanded representations are en-
couraged to use the ’+’ flag and an appropriate maximum field width to scan the year including the leading
sign. Note that even without the ’+’ flag, years less than zero may be represented with a leading <hyphen-
minus> for %F, %G, and %Y conversion specifications. Using negative years results in unspecified be-
havior.

If a format specification %+xF with the field width x greater than 11 is specified and the width is large
enough to display the full year, the output string produced will match the ISO 8601: 2004 standard sub-
clause 4.1.2.4 expanded representation, extended format date representation for a specific day. (For years in
the range [1,99 999], %+12F is sufficient for an agreed five-digit year with a leading sign using the
ISO 8601: 2004 standard expanded representation, extended format for a specific day "<+/->YYYYY-
MM-DD".) Note also that years less than 0 may produce a leading <hyphen-minus> character (’−’) when
using %Y or %C whether or not the ’0’ or ’+’ flags are used.

The difference between the ’0’ flag and the ’+’ flag is whether the leading ’+’ character will be provided for
years >9999 as required for the ISO 8601: 2004 standard extended representation format containing a year.
For example:

box center tab(!); cB | cB | cB | cB cB | cB | cB | cB l | lf5 | l | l. !!strftime()!strptime() Year!Conversion
Specification!Output!Scan Back _ 1970!%Y!1970!1970 _ 1970!%+4Y!1970!1970 _ 27!%Y!27 or 0027!27
_ 270!%Y!270 or 0270!270 _ 270!%+4Y!0270!270 _ 17!%C%y!0017!17 _ 270!%C%y!0270!270 _
12345!%Y!12345!1234* _ 12345!%+4Y!+12345!123* _ 12345!%05Y!12345!12345 _ 270!%+5Y or
%+3C%y!+0270!270 _ 12345!%+5Y or %+3C%y!+12345!1234* _ 12345!%06Y or
%04C%y!012345!12345 _ 12345!%+6Y or %+4C%y!+12345!12345 _ 123456!%08Y or
%06C%y!00123456!123456 _ 123456!%+8Y or %+6C%y!+0123456!123456

In the cases above marked with a * in the strptime() scan back field, the implied or specified number of
characters scanned by strptime() was less than the number of characters output by strftime() using the same
format; so the remaining digits of the year were dropped when the output date produced by strftime() was
scanned back in by strptime().

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock(), ctime(), difftime(), getdate(), gmtime(), localtime(), mktime(), strptime(), time(),
tzset(), uselocale(), utime()

The Base Definitions volume of POSIX.1-2017, Section 7.3.5, LC_TIME, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 7

STRFTIME(3P) POSIX Programmer’s Manual STRFTIME(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 8

STRLEN(3P) POSIX Programmer’s Manual STRLEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strlen, strnlen — get length of fixed size string

SYNOPSIS
#include <string.h>

size_t strlen(const char *s);
size_t strnlen(const char *s, size_t maxlen);

DESCRIPTION
For strlen(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The strlen() function shall compute the number of bytes in the string to which s points, not including the
terminating NUL character.

The strnlen() function shall compute the smaller of the number of bytes in the array to which s points, not
including any terminating NUL character, or the value of the maxlen argument. The strnlen() function shall
never examine more than maxlen bytes of the array pointed to by s.

RETURN VALUE
The strlen() function shall return the length of s; no return value shall be reserved to indicate an error.

The strnlen() function shall return the number of bytes preceding the first null byte in the array to which s

points, if s contains a null byte within the first maxlen bytes; otherwise, it shall return maxlen.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Getting String Lengths

The following example sets the maximum length of key and data by using strlen() to get the lengths of
those strings.

#include <string.h>
...
struct element {

char *key;
char *data;

};
...
char *key, *data;
int len;

*keylength = *datalength = 0;
...
if ((len = strlen(key)) > *keylength)

*keylength = len;
if ((len = strlen(data)) > *datalength)

*datalength = len;
...

IEEE/The Open Group 2017 1

STRLEN(3P) POSIX Programmer’s Manual STRLEN(3P)

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcslen()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRNCASECMP(3P) POSIX Programmer’s Manual STRNCASECMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strncasecmp, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
#include <strings.h>

int strncasecmp(const char *s1, const char *s2, size_t n);
int strncasecmp_l(const char *s1, const char *s2,

size_t n, locale_t locale);

DESCRIPTION
Refer to strcasecmp().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRNCAT(3P) POSIX Programmer’s Manual STRNCAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strncat — concatenate a string with part of another

SYNOPSIS
#include <string.h>

char *strncat(char *restrict s1, const char *restrict s2, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strncat() function shall append not more than n bytes (a NUL character and bytes that follow it are not
appended) from the array pointed to by s2 to the end of the string pointed to by s1. The initial byte of s2

overwrites the NUL character at the end of s1. A terminating NUL character is always appended to the re-
sult. If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The strncat() function shall return s1; no return value shall be reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcat()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRNCMP(3P) POSIX Programmer’s Manual STRNCMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strncmp — compare part of two strings

SYNOPSIS
#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strncmp() function shall compare not more than n bytes (bytes that follow a NUL character are not
compared) from the array pointed to by s1 to the array pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the values of the
first pair of bytes (both interpreted as type unsigned char) that differ in the strings being compared.

RETURN VALUE
Upon successful completion, strncmp() shall return an integer greater than, equal to, or less than 0, if the
possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly null-termi-
nated array pointed to by s2 respectively.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRNCPY(3P) POSIX Programmer’s Manual STRNCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
stpncpy, strncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
#include <string.h>

char *stpncpy(char *restrict s1, const char *restrict s2, size_t n);
char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

DESCRIPTION
For strncpy(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The stpncpy() and strncpy() functions shall copy not more than n bytes (bytes that follow a NUL character
are not copied) from the array pointed to by s2 to the array pointed to by s1.

If the array pointed to by s2 is a string that is shorter than n bytes, NUL characters shall be appended to the
copy in the array pointed to by s1, until n bytes in all are written.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
If a NUL character is written to the destination, the stpncpy() function shall return the address of the first
such NUL character. Otherwise, it shall return &s1[n].

The strncpy() function shall return s1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications must provide the space in s1 for the n bytes to be transferred, as well as ensure that the s2 and
s1 arrays do not overlap.

Character movement is performed differently in different implementations. Thus, overlapping moves may
yield surprises.

If there is no NUL character byte in the first n bytes of the array pointed to by s2, the result is not null-ter-
minated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), wcsncpy()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

STRNCPY(3P) POSIX Programmer’s Manual STRNCPY(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRNDUP(3P) POSIX Programmer’s Manual STRNDUP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strndup — duplicate a specific number of bytes from a string

SYNOPSIS
#include <string.h>

char *strndup(const char *s, size_t size);

DESCRIPTION
Refer to strdup().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRNLEN(3P) POSIX Programmer’s Manual STRNLEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strnlen — get length of fixed size string

SYNOPSIS
#include <string.h>

size_t strnlen(const char *s, size_t maxlen);

DESCRIPTION
Refer to strlen().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRPBRK(3P) POSIX Programmer’s Manual STRPBRK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strpbrk — scan a string for a byte

SYNOPSIS
#include <string.h>

char *strpbrk(const char *s1, const char *s2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strpbrk() function shall locate the first occurrence in the string pointed to by s1 of any byte from the
string pointed to by s2.

RETURN VALUE
Upon successful completion, strpbrk() shall return a pointer to the byte or a null pointer if no byte from s2

occurs in s1.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), strrchr()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRPTIME(3P) POSIX Programmer’s Manual STRPTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strptime — date and time conversion

SYNOPSIS
#include <time.h>

char *strptime(const char *restrict buf, const char *restrict format,
struct tm *restrict tm);

DESCRIPTION
The strptime() function shall convert the character string pointed to by buf to values which are stored in the
tm structure pointed to by tm, using the format specified by format.

The format is composed of zero or more directives. Each directive is composed of one of the following: one
or more white-space characters (as specified by isspace()); an ordinary character (neither ’%’ nor a white-
space character); or a conversion specification.

Each conversion specification is introduced by the ’%’ character after which the following appear in se-
quence:

* An optional flag, the zero character (’0’) or the <plus-sign> character (’+’), which is ignored.

* An optional field width. If a field width is specified, it shall be interpreted as a string of decimal digits
that will determine the maximum number of bytes converted for the conversion rather than the number
of bytes specified below in the description of the conversion specifiers.

* An optional E or O modifier.

* A terminating conversion specifier character that indicates the type of conversion to be applied.

The conversions are determined using the LC_TIME category of the current locale. The application shall
ensure that there is white-space or other non-alphanumeric characters between any two conversion specifi-
cations unless all of the adjacent conversion specifications convert a known, fixed number of characters. In
the following list, the maximum number of characters scanned (excluding the one matching the next direc-
tive) is as follows:

* If a maximum field width is specified, then that number

* Otherwise, the pattern "{x}" indicates that the maximum is x

* Otherwise, the pattern "[x,y]" indicates that the value shall fall within the range given (both bounds
being inclusive), and the maximum number of characters scanned shall be the maximum required to
represent any value in the range without leading zeros and without a leading <plus-sign>

The following conversion specifiers are supported.

The results are unspecified if a modifier is specified with a flag or with a minimum field width, or if a field
width is specified for any conversion specifier other than C or Y.

a The day of the week, using the locale’s weekday names; either the abbreviated or full name may
be specified.

A Equivalent to %a.

b The month, using the locale’s month names; either the abbreviated or full name may be specified.

B Equivalent to %b.

c Replaced by the locale’s appropriate date and time representation.

C All but the last two digits of the year {2}; leading zeros shall be permitted but shall not be re-
quired. A leading ’+’ or ’−’ character shall be permitted before any leading zeros but shall not be
required.

IEEE/The Open Group 2017 1

STRPTIME(3P) POSIX Programmer’s Manual STRPTIME(3P)

d The day of the month [01,31]; leading zeros shall be permitted but shall not be required.

D The date as %m/%d/%y.

e Equivalent to %d.

h Equivalent to %b.

H The hour (24-hour clock) [00,23]; leading zeros shall be permitted but shall not be required.

I The hour (12-hour clock) [01,12]; leading zeros shall be permitted but shall not be required.

j The day number of the year [001,366]; leading zeros shall be permitted but shall not be required.

m The month number [01,12]; leading zeros shall be permitted but shall not be required.

M The minute [00,59]; leading zeros shall be permitted but shall not be required.

n Any white space.

p The locale’s equivalent of a.m. or p.m.

r 12-hour clock time using the AM/PM notation if t_fmt_ampm is not an empty string in the
LC_TIME portion of the current locale; in the POSIX locale, this shall be equivalent to
%I:%M:%S %p.

R The time as %H:%M.

S The seconds [00,60]; leading zeros shall be permitted but shall not be required.

t Any white space.

T The time as %H:%M:%S.

U The week number of the year (Sunday as the first day of the week) as a decimal number [00,53];
leading zeros shall be permitted but shall not be required.

w The weekday as a decimal number [0,6], with 0 representing Sunday.

W The week number of the year (Monday as the first day of the week) as a decimal number [00,53];
leading zeros shall be permitted but shall not be required.

x The date, using the locale’s date format.

X The time, using the locale’s time format.

y The last two digits of the year. When format contains neither a C conversion specifier nor a Y
conversion specifier, values in the range [69,99] shall refer to years 1969 to 1999 inclusive and
values in the range [00,68] shall refer to years 2000 to 2068 inclusive; leading zeros shall be per-
mitted but shall not be required. A leading ’+’ or ’−’ character shall be permitted before any lead-
ing zeros but shall not be required.

Note: It is expected that in a future version of this standard the default century inferred
from a 2-digit year will change. (This would apply to all commands accepting a
2-digit year as input.)

Y The full year {4}; leading zeros shall be permitted but shall not be required. A leading ’+’ or ’−’
character shall be permitted before any leading zeros but shall not be required.

% Replaced by %.

Modified Conversion Specifiers
Some conversion specifiers can be modified by the E and O modifier characters to indicate that an alterna-
tive format or specification should be used rather than the one normally used by the unmodified conversion
specifier. If the alternative format or specification does not exist in the current locale, the behavior shall be
as if the unmodified conversion specification were used.

%Ec The locale’s alternative appropriate date and time representation.

%EC The name of the base year (period) in the locale’s alternative representation.

IEEE/The Open Group 2017 2

STRPTIME(3P) POSIX Programmer’s Manual STRPTIME(3P)

%Ex The locale’s alternative date representation.

%EX The locale’s alternative time representation.

%Ey The offset from %EC (year only) in the locale’s alternative representation.

%EY The full alternative year representation.

%Od The day of the month using the locale’s alternative numeric symbols; leading zeros shall be per-
mitted but shall not be required.

%Oe Equivalent to %Od.

%OH The hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI The hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om The month using the locale’s alternative numeric symbols.

%OM The minutes using the locale’s alternative numeric symbols.

%OS The seconds using the locale’s alternative numeric symbols.

%OU The week number of the year (Sunday as the first day of the week) using the locale’s alternative
numeric symbols.

%Ow The number of the weekday (Sunday=0) using the locale’s alternative numeric symbols.

%OW The week number of the year (Monday as the first day of the week) using the locale’s alternative
numeric symbols.

%Oy The year (offset from %C) using the locale’s alternative numeric symbols.

A conversion specification composed of white-space characters is executed by scanning input up to the first
character that is not white-space (which remains unscanned), or until no more characters can be scanned.

A conversion specification that is an ordinary character is executed by scanning the next character from the
buffer. If the character scanned from the buffer differs from the one comprising the directive, the directive
fails, and the differing and subsequent characters remain unscanned.

A series of conversion specifications composed of %n, %t, white-space characters, or any combination is
executed by scanning up to the first character that is not white space (which remains unscanned), or until no
more characters can be scanned.

Any other conversion specification is executed by scanning characters until a character matching the next
directive is scanned, or until no more characters can be scanned. These characters, except the one matching
the next directive, are then compared to the locale values associated with the conversion specifier. If a
match is found, values for the appropriate tm structure members are set to values corresponding to the lo-
cale information. Case is ignored when matching items in buf such as month or weekday names. If no
match is found, strptime() fails and no more characters are scanned.

RETURN VALUE
Upon successful completion, strptime() shall return a pointer to the character following the last character
parsed. Otherwise, a null pointer shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Convert a Date-Plus-Time String to Broken-Down Time and Then into Seconds

The following example demonstrates the use of strptime() to convert a string into broken-down time. The
broken-down time is then converted into seconds since the Epoch using mktime().

#include <time.h>
...

IEEE/The Open Group 2017 3

STRPTIME(3P) POSIX Programmer’s Manual STRPTIME(3P)

struct tm tm;
time_t t;

if (strptime("6 Dec 2001 12:33:45", "%d %b %Y %H:%M:%S", &tm) == NULL)
/* Handle error */;

printf("year: %d; month: %d; day: %d;\n",
tm.tm_year, tm.tm_mon, tm.tm_mday);

printf("hour: %d; minute: %d; second: %d\n",
tm.tm_hour, tm.tm_min, tm.tm_sec);

printf("week day: %d; year day: %d\n", tm.tm_wday, tm.tm_yday);

tm.tm_isdst = -1; /* Not set by strptime(); tells mktime()
to determine whether daylight saving time
is in effect */

t = mktime(&tm);
if (t == -1)

/* Handle error */;
printf("seconds since the Epoch: %ld\n", (long) t);"

APPLICATION USAGE
Several ‘‘equivalent to’’ formats and the special processing of white-space characters are provided in order
to ease the use of identical format strings for strftime() and strptime().

It should be noted that dates constructed by the strftime() function with the %Y or %C%y conversion
specifiers may have values larger than 9 999. If the strptime() function is used to read such values using
%C%y or %Y, the year values will be truncated to four digits. Applications should use %+w%y or
%+xY with w and x set large enough to contain the full value of any years that will be printed or scanned.

See also the APPLICATION USAGE section in strftime().

It is unspecified whether multiple calls to strptime() using the same tm structure will update the current
contents of the structure or overwrite all contents of the structure. Conforming applications should make a
single call to strptime() with a format and all data needed to completely specify the date and time being
converted.

RATIONALE
See the RATIONALE section for strftime().

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf(), fscanf(), strftime(), time()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

STRRCHR(3P) POSIX Programmer’s Manual STRRCHR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strrchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strrchr(const char *s, int c);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strrchr() function shall locate the last occurrence of c (converted to a char) in the string pointed to by
s. The terminating NUL character is considered to be part of the string.

RETURN VALUE
Upon successful completion, strrchr() shall return a pointer to the byte or a null pointer if c does not occur
in the string.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Finding the Base Name of a File

The following example uses strrchr() to get a pointer to the base name of a file. The strrchr() function
searches backwards through the name of the file to find the last ’/’ character in name. This pointer (plus
one) will point to the base name of the file.

#include <string.h>
...
const char *name;
char *basename;
...
basename = strrchr(name, '/') + 1;
...

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 1

STRRCHR(3P) POSIX Programmer’s Manual STRRCHR(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRSIGNAL(3P) POSIX Programmer’s Manual STRSIGNAL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strsignal — get name of signal

SYNOPSIS
#include <string.h>

char *strsignal(int signum);

DESCRIPTION
The strsignal() function shall map the signal number in signum to an implementation-defined string and
shall return a pointer to it. It shall use the same set of messages as the psignal() function.

The application shall not modify the string returned. The returned pointer might be invalidated or the string
content might be overwritten by a subsequent call to strsignal() or setlocale(). The returned pointer might
also be invalidated if the calling thread is terminated.

The contents of the message strings returned by strsignal() should be determined by the setting of the
LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this standard calls strsignal().

Since no return value is reserved to indicate an error, an application wishing to check for error situations
should set errno to 0, then call strsignal(), then check errno.

The strsignal() function need not be thread-safe.

RETURN VALUE
Upon successful completion, strsignal() shall return a pointer to a string. Otherwise, if signum is not a valid
signal number, the return value is unspecified.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If signum is not a valid signal number, some implementations return NULL, while for others the strsignal()
function returns a pointer to a string containing an unspecified message denoting an unknown signal.
POSIX.1-2008 leaves this return value unspecified.

FUTURE DIRECTIONS
None.

SEE ALSO
psiginfo(), setlocale()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

STRSIGNAL(3P) POSIX Programmer’s Manual STRSIGNAL(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRSPN(3P) POSIX Programmer’s Manual STRSPN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strspn — get length of a substring

SYNOPSIS
#include <string.h>

size_t strspn(const char *s1, const char *s2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strspn() function shall compute the length (in bytes) of the maximum initial segment of the string
pointed to by s1 which consists entirely of bytes from the string pointed to by s2.

RETURN VALUE
The strspn() function shall return the computed length; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcspn()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRSTR(3P) POSIX Programmer’s Manual STRSTR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strstr — find a substring

SYNOPSIS
#include <string.h>

char *strstr(const char *s1, const char *s2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The strstr() function shall locate the first occurrence in the string pointed to by s1 of the sequence of bytes
(excluding the terminating NUL character) in the string pointed to by s2.

RETURN VALUE
Upon successful completion, strstr() shall return a pointer to the located string or a null pointer if the string
is not found.

If s2 points to a string with zero length, the function shall return s1.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRTOD(3P) POSIX Programmer’s Manual STRTOD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strtod, strtof, strtold — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double strtod(const char *restrict nptr, char **restrict endptr);
float strtof(const char *restrict nptr, char **restrict endptr);
long double strtold(const char *restrict nptr, char **restrict endptr);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by nptr to double, float, and long
double representation, respectively. First, they decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as a floating-point constant or representing infinity or NaN

3. A final string of one or more unrecognized characters, including the terminating NUL character of the
input string

Then they shall attempt to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional ’+’ or ’−’ sign, then one of the following:

* A non-empty sequence of decimal digits optionally containing a radix character; then an optional ex-
ponent part consisting of the character ’e’ or the character ’E’, optionally followed by a ’+’ or ’−’
character, and then followed by one or more decimal digits

* A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix character;
then an optional binary exponent part consisting of the character ’p’ or the character ’P’, optionally
followed by a ’+’ or ’−’ character, and then followed by one or more decimal digits

* One of INF or INFINITY, ignoring case

* One of NAN or NAN(n-char-sequence
opt

), ignoring case in the NAN part, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first
non-white-space character, that is of the expected form. The subject sequence contains no characters if the
input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of characters start-
ing with the first digit or the decimal-point character (whichever occurs first) shall be interpreted as a float-
ing constant of the C language, except that the radix character shall be used in place of a period, and that if
neither an exponent part nor a radix character appears in a decimal floating-point number, or if a binary ex-
ponent part does not appear in a hexadecimal floating-point number, an exponent part of the appropriate
type with value zero is assumed to follow the last digit in the string. If the subject sequence begins with a
<hyphen-minus>, the sequence shall be interpreted as negated. A character sequence INF or INFINITY

IEEE/The Open Group 2017 1

STRTOD(3P) POSIX Programmer’s Manual STRTOD(3P)

shall be interpreted as an infinity, if representable in the return type, else as if it were a floating constant that
is too large for the range of the return type. A character sequence NAN or NAN(n-char-sequence

opt
) shall

be interpreted as a quiet NaN, if supported in the return type, else as if it were a subject sequence part that
does not have the expected form; the meaning of the n-char sequences is implementation-defined. A pointer
to the final string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value resulting from
the conversion is correctly rounded.

The radix character is defined in the current locale (category LC_NUMERIC). In the POSIX locale, or in a
locale where the radix character is not defined, the radix character shall default to a <period> (’.’).

In other than the C or POSIX locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check for error
situations should set errno to 0, then call strtod(), strtof(), or strtold(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value. If no conversion could be per-
formed, 0 shall be returned, and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL, ±HUGE_VALF, or
±HUGE_VALL shall be returned (according to the sign of the value), and errno shall be set to [ERANGE].

If the correct value would cause an underflow, a value whose magnitude is no greater than the smallest nor-
malized positive number in the return type shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

ERANGE
The value to be returned would cause overflow or underflow.

These functions may fail if:

EINVAL
No conversion could be performed.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, and the result is not
exactly representable, the result should be one of the two numbers in the appropriate internal format that are
adjacent to the hexadecimal floating source value, with the extra stipulation that the error should have a cor-
rect sign for the current rounding direction.

If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>) significant
digits, the result should be correctly rounded. If the subject sequence D has the decimal form and more than
DECIMAL_DIG significant digits, consider the two bounding, adjacent decimal strings L and U , both hav-
ing DECIMAL_DIG significant digits, such that the values of L, D, and U satisfy L <= D <= U . The result
should be one of the (equal or adjacent) values that would be obtained by correctly rounding L and U ac-
cording to the current rounding direction, with the extra stipulation that the error with respect to D should
have a correct sign for the current rounding direction.

The changes to strtod() introduced by the ISO/IEC 9899: 1999 standard can alter the behavior of well-
formed applications complying with the ISO/IEC 9899: 1990 standard and thus earlier versions of this stan-
dard. One such example would be:

IEEE/The Open Group 2017 2

STRTOD(3P) POSIX Programmer’s Manual STRTOD(3P)

int
what_kind_of_number (char *s)
{

char *endp;
double d;
long l;

d = strtod(s, &endp);
if (s != endp && *endp == ‘\0')

printf("It's a float with value %g\n", d);
else
{

l = strtol(s, &endp, 0);
if (s != endp && *endp == ‘\0')

printf("It's an integer with value %ld\n", 1);
else

return 1;
}
return 0;

}

If the function is called with:

what_kind_of_number ("0x10")

an ISO/IEC 9899: 1990 standard-compliant library will result in the function printing:

It's an integer with value 16

With the ISO/IEC 9899: 1999 standard, the result is:

It's a float with value 16

The change in behavior is due to the inclusion of floating-point numbers in hexadecimal notation without
requiring that either a decimal point or the binary exponent be present.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isspace(), localeconv(), setlocale(), strtol()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <float.h>, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

STRTOIMAX(3P) POSIX Programmer’s Manual STRTOIMAX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strtoimax, strtoumax — convert string to integer type

SYNOPSIS
#include <inttypes.h>

intmax_t strtoimax(const char *restrict nptr, char **restrict endptr,
int base);

uintmax_t strtoumax(const char *restrict nptr, char **restrict endptr,
int base);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall be equivalent to the strtol(), strtoll(), strtoul(), and strtoull() functions, except that the
initial portion of the string shall be converted to intmax_t and uintmax_t representation, respectively.

RETURN VALUE
These functions shall return the converted value, if any.

If no conversion could be performed, zero shall be returned and errno may be set to [EINVAL].

If the value of base is not supported, 0 shall be returned and errno shall be set to [EINVAL].

If the correct value is outside the range of representable values, {INTMAX_MAX}, {INTMAX_MIN}, or
{UINTMAX_MAX} shall be returned (according to the return type and sign of the value, if any), and errno

shall be set to [ERANGE].

ERRORS
These functions shall fail if:

EINVAL
The value of base is not supported.

ERANGE
The value to be returned is not representable.

These functions may fail if:

EINVAL
No conversion could be performed.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since the value of *endptr is unspecified if the value of base is not supported, applications should either en-
sure that base has a supported value (0 or between 2 and 36) before the call, or check for an [EINVAL] er-
ror before examining *endptr.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

STRTOIMAX(3P) POSIX Programmer’s Manual STRTOIMAX(3P)

SEE ALSO
strtol(), strtoul()

The Base Definitions volume of POSIX.1-2017, <inttypes.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRTOK(3P) POSIX Programmer’s Manual STRTOK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strtok, strtok_r — split string into tokens

SYNOPSIS
#include <string.h>

char *strtok(char *restrict s, const char *restrict sep);
char *strtok_r(char *restrict s, const char *restrict sep,

char **restrict state);

DESCRIPTION
For strtok(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

A sequence of calls to strtok() breaks the string pointed to by s into a sequence of tokens, each of which is
delimited by a byte from the string pointed to by sep. The first call in the sequence has s as its first argu-
ment, and is followed by calls with a null pointer as their first argument. The separator string pointed to by
sep may be different from call to call.

The first call in the sequence searches the string pointed to by s for the first byte that is not contained in the
current separator string pointed to by sep. If no such byte is found, then there are no tokens in the string
pointed to by s and strtok() shall return a null pointer. If such a byte is found, it is the start of the first token.

The strtok() function then searches from there for a byte that is contained in the current separator string. If
no such byte is found, the current token extends to the end of the string pointed to by s, and subsequent
searches for a token shall return a null pointer. If such a byte is found, it is overwritten by a NUL character,
which terminates the current token. The strtok() function saves a pointer to the following byte, from which
the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved
pointer and behaves as described above.

The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls strtok().

The strtok() function need not be thread-safe.

The strtok_r() function shall be equivalent to strtok(), except that strtok_r() shall be thread-safe and the ar-
gument state points to a user-provided pointer that allows strtok_r() to maintain state between calls which
scan the same string. The application shall ensure that the pointer pointed to by state is unique for each
string (s) being processed concurrently by strtok_r() calls. The application need not initialize the pointer
pointed to by state to any particular value. The implementation shall not update the pointer pointed to by
state to point (directly or indirectly) to resources, other than within the string s, that need to be freed or re-
leased by the caller.

RETURN VALUE
Upon successful completion, strtok() shall return a pointer to the first byte of a token. Otherwise, if there is
no token, strtok() shall return a null pointer.

The strtok_r() function shall return a pointer to the token found, or a null pointer when no token is found.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES

IEEE/The Open Group 2017 1

STRTOK(3P) POSIX Programmer’s Manual STRTOK(3P)

Searching for Word Separators
The following example searches for tokens separated by <space> characters.

#include <string.h>
...
char *token;
char line[] = "LINE TO BE SEPARATED";
char *search = " ";

/* Token will point to "LINE". */
token = strtok(line, search);

/* Token will point to "TO". */
token = strtok(NULL, search);

Find First two Fields in a Buffer
The following example uses strtok() to find two character strings (a key and data associated with that key)
separated by any combination of <space>, <tab>, or <newline> characters at the start of the array of charac-
ters pointed to by buffer.

#include <string.h>
...
char *buffer;
...
struct element {

char *key;
char *data;

} e;
...
// Load the buffer...
...
// Get the key and its data...
e.key = strtok(buffer, " \t\n");
e.data = strtok(NULL, " \t\n");
// Process the rest of the contents of the buffer...
...

APPLICATION USAGE
Note that if sep is the empty string, strtok() and strtok_r() return a pointer to the remainder of the string be-
ing tokenized.

The strtok_r() function is thread-safe and stores its state in a user-supplied buffer instead of possibly using
a static data area that may be overwritten by an unrelated call from another thread.

RATIONALE
The strtok() function searches for a separator string within a larger string. It returns a pointer to the last sub-
string between separator strings. This function uses static storage to keep track of the current string posi-
tion between calls. The new function, strtok_r(), takes an additional argument, state, to keep track of the
current position in the string.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <string.h>

IEEE/The Open Group 2017 2

STRTOK(3P) POSIX Programmer’s Manual STRTOK(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

STRTOL(3P) POSIX Programmer’s Manual STRTOL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strtol, strtoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long strtol(const char *restrict nptr, char **restrict endptr, int base);
long long strtoll(const char *restrict nptr, char **restrict endptr,

int base)

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by nptr to a type long and long long
representation, respectively. First, they decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the value of base

3. A final string of one or more unrecognized characters, including the terminating NUL character of the
input string.

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant, octal con-
stant, or hexadecimal constant, any of which may be preceded by a ’+’ or ’−’ sign. A decimal constant be-
gins with a non-zero digit, and consists of a sequence of decimal digits. An octal constant consists of the
prefix ’0’ optionally followed by a sequence of the digits ’0’ to ’7’ only. A hexadecimal constant consists of
the prefix 0x or 0X followed by a sequence of the decimal digits and letters ’a’ (or ’A’) to ’f ’ (or ’F’) with
values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence of letters
and digits representing an integer with the radix specified by base, optionally preceded by a ’+’ or ’−’ sign.
The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the values 10 to 35; only letters whose as-
cribed values are less than that of base are permitted. If the value of base is 16, the characters 0x or 0X may
optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first
non-white-space character that is of the expected form. The subject sequence shall contain no characters if
the input string is empty or consists entirely of white-space characters, or if the first non-white-space char-
acter is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of characters starting
with the first digit shall be interpreted as an integer constant. If the subject sequence has the expected form
and the value of base is between 2 and 36, it shall be used as the base for conversion, ascribing to each let-
ter its value as given above. If the subject sequence begins with a <hyphen-minus>, the value resulting from
the conversion shall be negated. A pointer to the final string shall be stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

In other than the C or POSIX locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the value
of nptr shall be stored in the object pointed to by endptr, provided that endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN}, and {LONG_MAX} or {LLONG_MAX} are returned on

IEEE/The Open Group 2017 1

STRTOL(3P) POSIX Programmer’s Manual STRTOL(3P)

error and are also valid returns on success, an application wishing to check for error situations should set
errno to 0, then call strtol() or strtoll(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no conversion could
be performed, 0 shall be returned and errno may be set to [EINVAL].

If the value of base is not supported, 0 shall be returned and errno shall be set to [EINVAL].

If the correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX},
{LLONG_MIN}, or {LLONG_MAX} shall be returned (according to the sign of the value), and errno set
to [ERANGE].

ERRORS
These functions shall fail if:

EINVAL
The value of base is not supported.

ERANGE
The value to be returned is not representable.

These functions may fail if:

EINVAL
No conversion could be performed.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since the value of *endptr is unspecified if the value of base is not supported, applications should either en-
sure that base has a supported value (0 or between 2 and 36) before the call, or check for an [EINVAL] er-
ror before examining *endptr.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isalpha(), strtod()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRTOLD(3P) POSIX Programmer’s Manual STRTOLD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strtold — convert a string to a double-precision number

SYNOPSIS
#include <stdlib.h>

long double strtold(const char *restrict nptr, char **restrict endptr);

DESCRIPTION
Refer to strtod().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRTOLL(3P) POSIX Programmer’s Manual STRTOLL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strtoll — convert a string to a long integer

SYNOPSIS
#include <stdlib.h>

long long strtoll(const char *restrict str, char **restrict endptr,
int base);

DESCRIPTION
Refer to strtol().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRTOUL(3P) POSIX Programmer’s Manual STRTOUL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strtoul, strtoull — convert a string to an unsigned long

SYNOPSIS
#include <stdlib.h>

unsigned long strtoul(const char *restrict str,
char **restrict endptr, int base);

unsigned long long strtoull(const char *restrict str,
char **restrict endptr, int base);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall convert the initial portion of the string pointed to by str to a type unsigned long and
unsigned long long representation, respectively. First, they decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the value of base

3. A final string of one or more unrecognized characters, including the terminating NUL character of the
input string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant, octal con-
stant, or hexadecimal constant, any of which may be preceded by a ’+’ or ’−’ sign. A decimal constant be-
gins with a non-zero digit, and consists of a sequence of decimal digits. An octal constant consists of the
prefix ’0’ optionally followed by a sequence of the digits ’0’ to ’7’ only. A hexadecimal constant consists of
the prefix 0x or 0X followed by a sequence of the decimal digits and letters ’a’ (or ’A’) to ’f ’ (or ’F’) with
values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence of letters
and digits representing an integer with the radix specified by base, optionally preceded by a ’+’ or ’−’ sign.
The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the values 10 to 35; only letters whose as-
cribed values are less than that of base are permitted. If the value of base is 16, the characters 0x or 0X may
optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first
non-white-space character that is of the expected form. The subject sequence shall contain no characters if
the input string is empty or consists entirely of white-space characters, or if the first non-white-space char-
acter is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of characters starting
with the first digit shall be interpreted as an integer constant. If the subject sequence has the expected form
and the value of base is between 2 and 36, it shall be used as the base for conversion, ascribing to each let-
ter its value as given above. If the subject sequence begins with a <hyphen-minus>, the value resulting from
the conversion shall be negated. A pointer to the final string shall be stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

In other than the C or POSIX locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be performed; the
value of str shall be stored in the object pointed to by endptr, provided that endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

IEEE/The Open Group 2017 1

STRTOUL(3P) POSIX Programmer’s Manual STRTOUL(3P)

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and are also valid returns on suc-
cess, an application wishing to check for error situations should set errno to 0, then call strtoul() or str-

toull(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no conversion could
be performed, 0 shall be returned and errno may be set to [EINVAL].

If the value of base is not supported, 0 shall be returned and errno shall be set to [EINVAL].

If the correct value is outside the range of representable values, {ULONG_MAX} or {ULLONG_MAX}
shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

EINVAL
The value of base is not supported.

ERANGE
The value to be returned is not representable.

These functions may fail if:

EINVAL
No conversion could be performed.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since the value of *endptr is unspecified if the value of base is not supported, applications should either en-
sure that base has a supported value (0 or between 2 and 36) before the call, or check for an [EINVAL] er-
ror before examining *endptr.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), isalpha(), strtod(), strtol()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

STRTOUMAX(3P) POSIX Programmer’s Manual STRTOUMAX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strtoumax — convert a string to an integer type

SYNOPSIS
#include <inttypes.h>

uintmax_t strtoumax(const char *restrict nptr, char **restrict endptr,
int base);

DESCRIPTION
Refer to strtoimax().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

STRXFRM(3P) POSIX Programmer’s Manual STRXFRM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
strxfrm, strxfrm_l — string transformation

SYNOPSIS
#include <string.h>

size_t strxfrm(char *restrict s1, const char *restrict s2, size_t n);
size_t strxfrm_l(char *restrict s1, const char *restrict s2,

size_t n, locale_t locale);

DESCRIPTION
For strxfrm(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The strxfrm() and strxfrm_l() functions shall transform the string pointed to by s2 and place the resulting
string into the array pointed to by s1. The transformation is such that if strcmp() is applied to two trans-
formed strings, it shall return a value greater than, equal to, or less than 0, corresponding to the result of str-

coll() or strcoll_l(), respectively, applied to the same two original strings with the same locale. No more
than n bytes are placed into the resulting array pointed to by s1, including the terminating NUL character. If
n is 0, s1 is permitted to be a null pointer. If copying takes place between objects that overlap, the behavior
is undefined.

The strxfrm() and strxfrm_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error situations
should set errno to 0, then call strxfrm() or strxfrm_l(), then check errno.

The behavior is undefined if the locale argument to strxfrm_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon successful completion, strxfrm() and strxfrm_l() shall return the length of the transformed string (not
including the terminating NUL character). If the value returned is n or more, the contents of the array
pointed to by s1 are unspecified.

On error, strxfrm() and strxfrm_l() may set errno but no return value is reserved to indicate an error.

ERRORS
These functions may fail if:

EINVAL
The string pointed to by the s2 argument contains characters outside the domain of the collating
sequence.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed strings can be ordered by strcmp() as appropriate
to collating sequence information in the current locale (category LC_COLLATE).

The fact that when n is 0 s1 is permitted to be a null pointer is useful to determine the size of the s1 array
prior to making the transformation.

RATIONALE
None.

IEEE/The Open Group 2017 1

STRXFRM(3P) POSIX Programmer’s Manual STRXFRM(3P)

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), strcoll()

The Base Definitions volume of POSIX.1-2017, <string.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

SWAB(3P) POSIX Programmer’s Manual SWAB(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
swab — swap bytes

SYNOPSIS
#include <unistd.h>

void swab(const void *restrict src, void *restrict dest,
ssize_t nbytes);

DESCRIPTION
The swab() function shall copy nbytes bytes, which are pointed to by src, to the object pointed to by dest,
exchanging adjacent bytes. The nbytes argument should be even. If nbytes is odd, swab() copies and ex-
changes nbytes−1 bytes and the disposition of the last byte is unspecified. If copying takes place between
objects that overlap, the behavior is undefined. If nbytes is negative, swab() does nothing.

RETURN VALUE
None.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SWPRINTF(3P) POSIX Programmer’s Manual SWPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
swprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SWSCANF(3P) POSIX Programmer’s Manual SWSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
swscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swscanf(const wchar_t *restrict ws,
const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwscanf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SYMLINK(3P) POSIX Programmer’s Manual SYMLINK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
symlink, symlinkat — make a symbolic link

SYNOPSIS
#include <unistd.h>

int symlink(const char *path1, const char *path2);

#include <fcntl.h>

int symlinkat(const char *path1, int fd, const char *path2);

DESCRIPTION
The symlink() function shall create a symbolic link called path2 that contains the string pointed to by path1

(path2 is the name of the symbolic link created, path1 is the string contained in the symbolic link).

The string pointed to by path1 shall be treated only as a string and shall not be validated as a pathname.

If the symlink() function fails for any reason other than [EIO], any file named by path2 shall be unaffected.

If path2 names a symbolic link, symlink() shall fail and set errno to [EEXIST].

The symbolic link’s user ID shall be set to the process’ effective user ID. The symbolic link’s group ID
shall be set to the group ID of the parent directory or to the effective group ID of the process. Implementa-
tions shall provide a way to initialize the symbolic link’s group ID to the group ID of the parent directory.
Implementations may, but need not, provide an implementation-defined way to initialize the symbolic link’s
group ID to the effective group ID of the calling process.

The values of the file mode bits for the created symbolic link are unspecified. All interfaces specified by
POSIX.1-2008 shall behave as if the contents of symbolic links can always be read, except that the value of
the file mode bits returned in the st_mode field of the stat structure is unspecified.

Upon successful completion, symlink() shall mark for update the last data access, last data modification,
and last file status change timestamps of the symbolic link. Also, the last data modification and last file sta-
tus change timestamps of the directory that contains the new entry shall be marked for update.

The symlinkat() function shall be equivalent to the symlink() function except in the case where path2 speci-
fies a relative path. In this case the symbolic link is created relative to the directory associated with the file
descriptor fd instead of the current working directory. If the access mode of the open file description asso-
ciated with the file descriptor is not O_SEARCH, the function shall check whether directory searches are
permitted using the current permissions of the directory underlying the file descriptor. If the access mode is
O_SEARCH, the function shall not perform the check.

If symlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used and the behavior shall be identical to a call to symlink().

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error.

ERRORS
These functions shall fail if:

EACCES
Write permission is denied in the directory where the symbolic link is being created, or search per-
mission is denied for a component of the path prefix of path2.

EEXIST
The path2 argument names an existing file.

IEEE/The Open Group 2017 1

SYMLINK(3P) POSIX Programmer’s Manual SYMLINK(3P)

EIO An I/O error occurs while reading from or writing to the file system.

ELOOP
A loop exists in symbolic links encountered during resolution of the path2 argument.

ENAMETOOLONG
The length of a component of the pathname specified by the path2 argument is longer than
{NAME_MAX} or the length of the path1 argument is longer than {SYMLINK_MAX}.

ENOENT
A component of the path prefix of path2 does not name an existing file or path2 is an empty
string.

ENOENT or ENOTDIR
The path2 argument contains at least one non-<slash> character and ends with one or more trail-
ing <slash> characters. If path2 without the trailing <slash> characters would name an existing
file, an [ENOENT] error shall not occur.

ENOSPC
The directory in which the entry for the new symbolic link is being placed cannot be extended be-
cause no space is left on the file system containing the directory, or the new symbolic link cannot
be created because no space is left on the file system which shall contain the link, or the file sys-
tem is out of file-allocation resources.

ENOTDIR
A component of the path prefix of path2 names an existing file that is neither a directory nor a
symbolic link to a directory.

EROFS
The new symbolic link would reside on a read-only file system.

The symlinkat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path2 argument does not specify an absolute path and the fd argument is neither AT_FD-
CWD nor a valid file descriptor open for reading or searching.

ENOTDIR
The path2 argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

These functions may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path2

argument.

ENAMETOOLONG
The length of the path2 argument exceeds {PATH_MAX} or pathname resolution of a symbolic
link in the path2 argument produced an intermediate result with a length that exceeds
{PATH_MAX}.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Like a hard link, a symbolic link allows a file to have multiple logical names. The presence of a hard link
guarantees the existence of a file, even after the original name has been removed. A symbolic link provides
no such assurance; in fact, the file named by the path1 argument need not exist when the link is created. A

IEEE/The Open Group 2017 2

SYMLINK(3P) POSIX Programmer’s Manual SYMLINK(3P)

symbolic link can cross file system boundaries.

Normal permission checks are made on each component of the symbolic link pathname during its resolu-
tion.

RATIONALE
The purpose of the symlinkat() function is to create symbolic links in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be changed in
parallel to a call to symlink(), resulting in unspecified behavior. By opening a file descriptor for the target
directory and using the symlinkat() function it can be guaranteed that the created symbolic link is located
relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), fstatat(), lchown(), link(), open(), readlink(), rename(), unlink()

The Base Definitions volume of POSIX.1-2017, <fcntl.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

SYNC(3P) POSIX Programmer’s Manual SYNC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sync — schedule file system updates

SYNOPSIS
#include <unistd.h>

void sync(void);

DESCRIPTION
The sync() function shall cause all information in memory that updates file systems to be scheduled for
writing out to all file systems.

The writing, although scheduled, is not necessarily complete upon return from sync().

RETURN VALUE
The sync() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fsync()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SYSCONF(3P) POSIX Programmer’s Manual SYSCONF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
sysconf — get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
The sysconf() function provides a method for the application to determine the current value of a config-
urable system limit or option (variable). The implementation shall support all of the variables listed in the
following table and may support others.

The name argument represents the system variable to be queried. The following table lists the minimal set
of system variables from <limits.h> or <unistd.h> that can be returned by sysconf(), and the symbolic con-
stants defined in <unistd.h> that are the corresponding values used for name.

box center tab(@); cB | cB lw(2.7i)1e | le. Variable@Value of Name _ {AIO_LIS-
TIO_MAX}@_SC_AIO_LISTIO_MAX {AIO_MAX}@_SC_AIO_MAX
{AIO_PRIO_DELTA_MAX}@_SC_AIO_PRIO_DELTA_MAX {ARG_MAX}@_SC_ARG_MAX
{ATEXIT_MAX}@_SC_ATEXIT_MAX {BC_BASE_MAX}@_SC_BC_BASE_MAX
{BC_DIM_MAX}@_SC_BC_DIM_MAX {BC_SCALE_MAX}@_SC_BC_SCALE_MAX
{BC_STRING_MAX}@_SC_BC_STRING_MAX {CHILD_MAX}@_SC_CHILD_MAX Clock
ticks/second@_SC_CLK_TCK {COLL_WEIGHTS_MAX}@_SC_COLL_WEIGHTS_MAX {DELAY-
TIMER_MAX}@_SC_DELAYTIMER_MAX {EXPR_NEST_MAX}@_SC_EXPR_NEST_MAX
{HOST_NAME_MAX}@_SC_HOST_NAME_MAX {IOV_MAX}@_SC_IOV_MAX
{LINE_MAX}@_SC_LINE_MAX {LOGIN_NAME_MAX}@_SC_LOGIN_NAME_MAX
{NGROUPS_MAX}@_SC_NGROUPS_MAX Initial size of getgrgid_r()
and@_SC_GETGR_R_SIZE_MAX getgrnam_r() data buffers Initial size of getpwuid_r()
and@_SC_GETPW_R_SIZE_MAX getpwnam_r() data buffers
{MQ_OPEN_MAX}@_SC_MQ_OPEN_MAX {MQ_PRIO_MAX}@_SC_MQ_PRIO_MAX
{OPEN_MAX}@_SC_OPEN_MAX {PAGE_SIZE}@_SC_PAGE_SIZE {PAGESIZE}@_SC_PAGESIZE
{PTHREAD_DESTRUCTOR_ITERATIONS}@_SC_THREAD_DESTRUCTOR_ITERATIONS
{PTHREAD_KEYS_MAX}@_SC_THREAD_KEYS_MAX
{PTHREAD_STACK_MIN}@_SC_THREAD_STACK_MIN
{PTHREAD_THREADS_MAX}@_SC_THREAD_THREADS_MAX
{RE_DUP_MAX}@_SC_RE_DUP_MAX {RTSIG_MAX}@_SC_RTSIG_MAX
{SEM_NSEMS_MAX}@_SC_SEM_NSEMS_MAX {SEM_VALUE_MAX}@_SC_SEM_VALUE_MAX
{SIGQUEUE_MAX}@_SC_SIGQUEUE_MAX {STREAM_MAX}@_SC_STREAM_MAX {SYM-
LOOP_MAX}@_SC_SYMLOOP_MAX {TIMER_MAX}@_SC_TIMER_MAX
{TTY_NAME_MAX}@_SC_TTY_NAME_MAX {TZNAME_MAX}@_SC_TZNAME_MAX
_POSIX_ADVISORY_INFO@_SC_ADVISORY_INFO _POSIX_BARRIERS@_SC_BARRIERS
_POSIX_ASYNCHRONOUS_IO@_SC_ASYNCHRONOUS_IO _POSIX_CLOCK_SELEC-
TION@_SC_CLOCK_SELECTION _POSIX_CPUTIME@_SC_CPUTIME
_POSIX_FSYNC@_SC_FSYNC _POSIX_IPV6@_SC_IPV6 _POSIX_JOB_CON-
TROL@_SC_JOB_CONTROL _POSIX_MAPPED_FILES@_SC_MAPPED_FILES _POSIX_MEM-
LOCK@_SC_MEMLOCK _POSIX_MEMLOCK_RANGE@_SC_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION@_SC_MEMORY_PROTECTION _POSIX_MESSAGE_PASS-
ING@_SC_MESSAGE_PASSING _POSIX_MONOTONIC_CLOCK@_SC_MONOTONIC_CLOCK
_POSIX_PRIORITIZED_IO@_SC_PRIORITIZED_IO _POSIX_PRIORITY_SCHEDULING@_SC_PRI-
ORITY_SCHEDULING _POSIX_RAW_SOCKETS@_SC_RAW_SOCKETS
_POSIX_READER_WRITER_LOCKS@_SC_READER_WRITER_LOCKS _POSIX_REALTIME_SIG-
NALS@_SC_REALTIME_SIGNALS _POSIX_REGEXP@_SC_REGEXP

IEEE/The Open Group 2017 1

SYSCONF(3P) POSIX Programmer’s Manual SYSCONF(3P)

_POSIX_SAVED_IDS@_SC_SAVED_IDS _POSIX_SEMAPHORES@_SC_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS@_SC_SHARED_MEMORY_OBJECTS
_POSIX_SHELL@_SC_SHELL _POSIX_SPAWN@_SC_SPAWN
_POSIX_SPIN_LOCKS@_SC_SPIN_LOCKS _POSIX_SPORADIC_SERVER@_SC_SPO-
RADIC_SERVER _POSIX_SS_REPL_MAX@_SC_SS_REPL_MAX _POSIX_SYNCHRO-
NIZED_IO@_SC_SYNCHRONIZED_IO _POSIX_THREAD_ATTR_STACK-
ADDR@_SC_THREAD_ATTR_STACKADDR _POSIX_THREAD_ATTR_STACK-
SIZE@_SC_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME@_SC_THREAD_CPUTIME _POSIX_THREAD_PRIO_IN-
HERIT@_SC_THREAD_PRIO_INHERIT _POSIX_THREAD_PRIO_PRO-
TECT@_SC_THREAD_PRIO_PROTECT _POSIX_THREAD_PRIORITY_SCHEDUL-
ING@_SC_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED@_SC_THREAD_PROCESS_SHARED
_POSIX_THREAD_ROBUST_PRIO_INHERIT@_SC_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT@_SC_THREAD_ROBUST_PRIO_PROTECT
_POSIX_THREAD_SAFE_FUNCTIONS@_SC_THREAD_SAFE_FUNCTIONS
_POSIX_THREAD_SPORADIC_SERVER@_SC_THREAD_SPORADIC_SERVER
_POSIX_THREADS@_SC_THREADS _POSIX_TIMEOUTS@_SC_TIMEOUTS

box center tab(@); cB | cB lw(2.85i)1e | le. Variable@Value of Name _
_POSIX_TIMERS@_SC_TIMERS _POSIX_TRACE@_SC_TRACE _POSIX_TRACE_EVENT_FIL-
TER@_SC_TRACE_EVENT_FILTER
_POSIX_TRACE_EVENT_NAME_MAX@_SC_TRACE_EVENT_NAME_MAX _POSIX_TRACE_IN-
HERIT@_SC_TRACE_INHERIT _POSIX_TRACE_LOG@_SC_TRACE_LOG
_POSIX_TRACE_NAME_MAX@_SC_TRACE_NAME_MAX
_POSIX_TRACE_SYS_MAX@_SC_TRACE_SYS_MAX
_POSIX_TRACE_USER_EVENT_MAX@_SC_TRACE_USER_EVENT_MAX
_POSIX_TYPED_MEMORY_OBJECTS@_SC_TYPED_MEMORY_OBJECTS _POSIX_VER-
SION@_SC_VERSION _POSIX_V7_ILP32_OFF32@_SC_V7_ILP32_OFF32
_POSIX_V7_ILP32_OFFBIG@_SC_V7_ILP32_OFFBIG
_POSIX_V7_LP64_OFF64@_SC_V7_LP64_OFF64 _POSIX_V7_LPBIG_OFFBIG@_SC_V7_LP-
BIG_OFFBIG _POSIX_V6_ILP32_OFF32@_SC_V6_ILP32_OFF32 _POSIX_V6_ILP32_OFF-
BIG@_SC_V6_ILP32_OFFBIG _POSIX_V6_LP64_OFF64@_SC_V6_LP64_OFF64 _POSIX_V6_LP-
BIG_OFFBIG@_SC_V6_LPBIG_OFFBIG _POSIX2_C_BIND@_SC_2_C_BIND
_POSIX2_C_DEV@_SC_2_C_DEV _POSIX2_CHAR_TERM@_SC_2_CHAR_TERM
_POSIX2_FORT_DEV@_SC_2_FORT_DEV _POSIX2_FORT_RUN@_SC_2_FORT_RUN
_POSIX2_LOCALEDEF@_SC_2_LOCALEDEF _POSIX2_PBS@_SC_2_PBS _POSIX2_PBS_AC-
COUNTING@_SC_2_PBS_ACCOUNTING _POSIX2_PBS_CHECKPOINT@_SC_2_PBS_CHECK-
POINT _POSIX2_PBS_LOCATE@_SC_2_PBS_LOCATE _POSIX2_PBS_MES-
SAGE@_SC_2_PBS_MESSAGE _POSIX2_PBS_TRACK@_SC_2_PBS_TRACK
_POSIX2_SW_DEV@_SC_2_SW_DEV _POSIX2_UPE@_SC_2_UPE _POSIX2_VER-
SION@_SC_2_VERSION _XOPEN_CRYPT@_SC_XOPEN_CRYPT
_XOPEN_ENH_I18N@_SC_XOPEN_ENH_I18N _XOPEN_REALTIME@_SC_XOPEN_REALTIME
_XOPEN_REALTIME_THREADS@_SC_XOPEN_REALTIME_THREADS
_XOPEN_SHM@_SC_XOPEN_SHM _XOPEN_STREAMS@_SC_XOPEN_STREAMS
_XOPEN_UNIX@_SC_XOPEN_UNIX _XOPEN_UUCP@_SC_XOPEN_UUCP _XOPEN_VER-
SION@_SC_XOPEN_VERSION

RETURN VALUE
If name is an invalid value, sysconf() shall return −1 and set errno to indicate the error. If the variable corre-
sponding to name is described in <limits.h> as a maximum or minimum value and the variable has no
limit, sysconf() shall return −1 without changing the value of errno. Note that indefinite limits do not imply
infinite limits; see <limits.h>.

Otherwise, sysconf() shall return the current variable value on the system. The value returned shall not be
more restrictive than the corresponding value described to the application when it was compiled with the

IEEE/The Open Group 2017 2

SYSCONF(3P) POSIX Programmer’s Manual SYSCONF(3P)

implementation’s <limits.h> or <unistd.h>. The value shall not change during the lifetime of the calling
process, except that sysconf(_SC_OPEN_MAX) may return different values before and after a call to setr-

limit() which changes the RLIMIT_NOFILE soft limit.

If the variable corresponding to name is dependent on an unsupported option, the results are unspecified.

ERRORS
The sysconf() function shall fail if:

EINVAL
The value of the name argument is invalid.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
As −1 is a permissible return value in a successful situation, an application wishing to check for error situa-
tions should set errno to 0, then call sysconf(), and, if it returns −1, check to see if errno is non-zero.

Application developers should check whether an option, such as _POSIX_TRACE, is supported prior to ob-
taining and using values for related variables, such as _POSIX_TRACE_NAME_MAX.

RATIONALE
This functionality was added in response to requirements of application developers and of system vendors
who deal with many international system configurations. It is closely related to pathconf() and fpathconf().

Although a conforming application can run on all systems by never demanding more resources than the
minimum values published in this volume of POSIX.1-2017, it is useful for that application to be able to
use the actual value for the quantity of a resource available on any giv en system. To do this, the application
makes use of the value of a symbolic constant in <limits.h> or <unistd.h>.

However, once compiled, the application must still be able to cope if the amount of resource available is in-
creased. To that end, an application may need a means of determining the quantity of a resource, or the
presence of an option, at execution time.

Tw o examples are offered:

1. Applications may wish to act differently on systems with or without job control. Applications vendors
who wish to distribute only a single binary package to all instances of a computer architecture would
be forced to assume job control is never available if it were to rely solely on the <unistd.h> value pub-
lished in this volume of POSIX.1-2017.

2. International applications vendors occasionally require knowledge of the number of clock ticks per
second. Without these facilities, they would be required to either distribute their applications partially
in source form or to have 50 Hz and 60 Hz versions for the various countries in which they operate.

It is the knowledge that many applications are actually distributed widely in executable form that leads to
this facility. If limited to the most restrictive values in the headers, such applications would have to be pre-
pared to accept the most limited environments offered by the smallest microcomputers. Although this is en-
tirely portable, there was a consensus that they should be able to take advantage of the facilities offered by
large systems, without the restrictions associated with source and object distributions.

During the discussions of this feature, it was pointed out that it is almost always possible for an application
to discern what a value might be at runtime by suitably testing the various functions themselves. And, in
any event, it could always be written to adequately deal with error returns from the various functions. In the
end, it was felt that this imposed an unreasonable level of complication and sophistication on the applica-
tion developer.

This runtime facility is not meant to provide ever-changing values that applications have to check multiple
times. The values are seen as changing no more frequently than once per system initialization, such as by a
system administrator or operator with an automatic configuration program. This volume of POSIX.1-2017
specifies that they shall not change within the lifetime of the process.

IEEE/The Open Group 2017 3

SYSCONF(3P) POSIX Programmer’s Manual SYSCONF(3P)

Some values apply to the system overall and others vary at the file system or directory level. The latter are
described in fpathconf().

Note that all values returned must be expressible as integers. String values were considered, but the addi-
tional flexibility of this approach was rejected due to its added complexity of implementation and use.

Some values, such as {PATH_MAX}, are sometimes so large that they must not be used to, say, allocate ar-
rays. The sysconf() function returns a negative value to show that this symbolic constant is not even defined
in this case.

Similar to pathconf(), this permits the implementation not to have a limit. When one resource is infinite, re-
turning an error indicating that some other resource limit has been reached is conforming behavior.

FUTURE DIRECTIONS
None.

SEE ALSO
confstr(), fpathconf()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <unistd.h>

The Shell and Utilities volume of POSIX.1-2017, getconf

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

SYSLOG(3P) POSIX Programmer’s Manual SYSLOG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
syslog — log a message

SYNOPSIS
#include <syslog.h>

void syslog(int priority, const char *message, ... /* argument */);

DESCRIPTION
Refer to closelog().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

SYSTEM(3P) POSIX Programmer’s Manual SYSTEM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
system — issue a command

SYNOPSIS
#include <stdlib.h>

int system(const char *command);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If command is a null pointer, the system() function shall determine whether the host environment has a
command processor. If command is not a null pointer, the system() function shall pass the string pointed to
by command to that command processor to be executed in an implementation-defined manner; this might
then cause the program calling system() to behave in a non-conforming manner or to terminate.

The system() function shall behave as if a child process were created using fork(), and the child process in-
voked the sh utility using execl() as follows:

execl(<shell path>, "sh", "-c", command, (char *)0);

where <shell path> is an unspecified pathname for the sh utility. It is unspecified whether the handlers reg-
istered with pthread_atfork() are called as part of the creation of the child process.

The system() function shall ignore the SIGINT and SIGQUIT signals, and shall block the SIGCHLD signal,
while waiting for the command to terminate. If this might cause the application to miss a signal that would
have killed it, then the application should examine the return value from system() and take whatever action
is appropriate to the application if the command terminated due to receipt of a signal.

The system() function shall not affect the termination status of any child of the calling processes other than
the process or processes it itself creates.

The system() function shall not return until the child process has terminated.

The system() function need not be thread-safe.

RETURN VALUE
If command is a null pointer, system() shall return non-zero to indicate that a command processor is avail-
able, or zero if none is available. The system() function shall always return non-zero when command is
NULL.

If command is not a null pointer, system() shall return the termination status of the command language in-
terpreter in the format specified by waitpid(). The termination status shall be as defined for the sh utility;
otherwise, the termination status is unspecified. If some error prevents the command language interpreter
from executing after the child process is created, the return value from system() shall be as if the command
language interpreter had terminated using exit(127) or _exit(127). If a child process cannot be created, or if
the termination status for the command language interpreter cannot be obtained, system() shall return −1
and set errno to indicate the error.

ERRORS
The system() function may set errno values as described by fork().

In addition, system() may fail if:

IEEE/The Open Group 2017 1

SYSTEM(3P) POSIX Programmer’s Manual SYSTEM(3P)

ECHILD
The status of the child process created by system() is no longer available.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the return value of system() is not −1, its value can be decoded through the use of the macros described in
<sys/wait.h>. For convenience, these macros are also provided in <stdlib.h>.

Note that, while system() must ignore SIGINT and SIGQUIT and block SIGCHLD while waiting for the
child to terminate, the handling of signals in the executed command is as specified by fork() and exec. For
example, if SIGINT is being caught or is set to SIG_DFL when system() is called, then the child is started
with SIGINT handling set to SIG_DFL.

Ignoring SIGINT and SIGQUIT in the parent process prevents coordination problems (two processes read-
ing from the same terminal, for example) when the executed command ignores or catches one of the sig-
nals. It is also usually the correct action when the user has given a command to the application to be exe-
cuted synchronously (as in the ’!’ command in many interactive applications). In either case, the signal
should be delivered only to the child process, not to the application itself. There is one situation where ig-
noring the signals might have less than the desired effect. This is when the application uses system() to per-
form some task invisible to the user. If the user typed the interrupt character ("^C", for example) while sys-

tem() is being used in this way, one would expect the application to be killed, but only the executed com-
mand is killed. Applications that use system() in this way should carefully check the return status from sys-

tem() to see if the executed command was successful, and should take appropriate action when the com-
mand fails.

Blocking SIGCHLD while waiting for the child to terminate prevents the application from catching the sig-
nal and obtaining status from system()’s child process before system() can get the status itself.

The context in which the utility is ultimately executed may differ from that in which system() was called.
For example, file descriptors that have the FD_CLOEXEC flag set are closed, and the process ID and parent
process ID are different. Also, if the executed utility changes its environment variables or its current work-
ing directory, that change is not reflected in the caller’s context.

There is no defined way for an application to find the specific path for the shell. However, confstr() can pro-
vide a value for PA TH that is guaranteed to find the sh utility.

Using the system() function in more than one thread in a process or when the SIGCHLD signal is being ma-
nipulated by more than one thread in a process may produce unexpected results.

RATIONALE
The system() function should not be used by programs that have set user (or group) ID privileges. The
fork() and exec family of functions (except execlp() and execvp()), should be used instead. This prevents
any unforeseen manipulation of the environment of the user that could cause execution of commands not
anticipated by the calling program.

There are three levels of specification for the system() function. The ISO C standard gives the most basic. It
requires that the function exists, and defines a way for an application to query whether a command lan-
guage interpreter exists. It says nothing about the command language or the environment in which the com-
mand is interpreted.

POSIX.1-2008 places additional restrictions on system(). It requires that if there is a command language
interpreter, the environment must be as specified by fork() and exec. This ensures, for example, that close-
on-exec works, that file locks are not inherited, and that the process ID is different. It also specifies the re-
turn value from system() when the command line can be run, thus giving the application some information
about the command’s completion status.

Finally, POSIX.1-2008 requires the command to be interpreted as in the shell command language defined in
the Shell and Utilities volume of POSIX.1-2017.

IEEE/The Open Group 2017 2

SYSTEM(3P) POSIX Programmer’s Manual SYSTEM(3P)

Note that, system(NULL) is required to return non-zero, indicating that there is a command language inter-
preter. At first glance, this would seem to conflict with the ISO C standard which allows system(NULL) to
return zero. There is no conflict, however. A system must have a command language interpreter, and is non-
conforming if none is present. It is therefore permissible for the system() function on such a system to im-
plement the behavior specified by the ISO C standard as long as it is understood that the implementation
does not conform to POSIX.1-2008 if system(NULL) returns zero.

It was explicitly decided that when command is NULL, system() should not be required to check to make
sure that the command language interpreter actually exists with the correct mode, that there are enough pro-
cesses to execute it, and so on. The call system(NULL) could, theoretically, check for such problems as too
many existing child processes, and return zero. However, it would be inappropriate to return zero due to
such a (presumably) transient condition. If some condition exists that is not under the control of this appli-
cation and that would cause any system() call to fail, that system has been rendered non-conforming.

Early drafts required, or allowed, system() to return with errno set to [EINTR] if it was interrupted with a
signal. This error return was removed, and a requirement that system() not return until the child has termi-
nated was added. This means that if a waitpid() call in system() exits with errno set to [EINTR], system()
must reissue the waitpid(). This change was made for two reasons:

1. There is no way for an application to clean up if system() returns [EINTR], short of calling wait(), and
that could have the undesirable effect of returning the status of children other than the one started by
system().

2. While it might require a change in some historical implementations, those implementations already
have to be changed because they use wait() instead of waitpid().

Note that if the application is catching SIGCHLD signals, it will receive such a signal before a successful
system() call returns.

To conform to POSIX.1-2008, system() must use waitpid(), or some similar function, instead of wait().

The following code sample illustrates how system() might be implemented on an implementation conform-
ing to POSIX.1-2008.

#include <signal.h>
int system(const char *cmd)
{

int stat;
pid_t pid;
struct sigaction sa, savintr, sav equit;
sigset_t saveblock;
if (cmd == NULL)

return(1);
sa.sa_handler = SIG_IGN;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sigemptyset(&savintr.sa_mask);
sigemptyset(&savequit.sa_mask);
sigaction(SIGINT, &sa, &savintr);
sigaction(SIGQUIT, &sa, &savequit);
sigaddset(&sa.sa_mask, SIGCHLD);
sigprocmask(SIG_BLOCK, &sa.sa_mask, &saveblock);
if ((pid = fork()) == 0) {

sigaction(SIGINT, &savintr, (struct sigaction *)0);
sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
execl("/bin/sh", "sh", "-c", cmd, (char *)0);
_exit(127);

IEEE/The Open Group 2017 3

SYSTEM(3P) POSIX Programmer’s Manual SYSTEM(3P)

}
if (pid == -1) {

stat = -1; /* errno comes from fork() */
} else {

while (waitpid(pid, &stat, 0) == -1) {
if (errno != EINTR){

stat = -1;
break;

}
}

}
sigaction(SIGINT, &savintr, (struct sigaction *)0);
sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
return(stat);

}

Note that, while a particular implementation of system() (such as the one above) can assume a particular
path for the shell, such a path is not necessarily valid on another system. The above example is not portable,
and is not intended to be.

Note also that the above example implementation is not thread-safe. Implementations can provide a thread-
safe system() function, but doing so involves complications such as how to restore the signal dispositions
for SIGINT and SIGQUIT correctly if there are overlapping calls, and how to deal with cancellation. The
example above would not restore the signal dispositions and would leak a process ID if cancelled. This
does not matter for a non-thread-safe implementation since canceling a non-thread-safe function results in
undefined behavior (see Section 2.9.5.2, Cancellation Points). To avoid leaking a process ID, a thread-safe
implementation would need to terminate the child process when acting on a cancellation.

One reviewer suggested that an implementation of system() might want to use an environment variable such
as SHELL to determine which command interpreter to use. The supposed implementation would use the de-
fault command interpreter if the one specified by the environment variable was not available. This would al-
low a user, when using an application that prompts for command lines to be processed using system(), to
specify a different command interpreter. Such an implementation is discouraged. If the alternate command
interpreter did not follow the command line syntax specified in the Shell and Utilities volume of
POSIX.1-2017, then changing SHELL would render system() non-conforming. This would affect applica-
tions that expected the specified behavior from system(), and since the Shell and Utilities volume of
POSIX.1-2017 does not mention that SHELL affects system(), the application would not know that it
needed to unset SHELL.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.9.5.2, Cancellation Points, exec , pipe(), pthread_atfork(), wait()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <signal.h>, <stdlib.h>, <sys_wait.h>

The Shell and Utilities volume of POSIX.1-2017, sh

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 4

SYSTEM(3P) POSIX Programmer’s Manual SYSTEM(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

TAN(3P) POSIX Programmer’s Manual TAN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tan, tanf, tanl — tangent function

SYNOPSIS
#include <math.h>

double tan(double x);
float tanf(float x);
long double tanl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the tangent of their argument x, measured in radians.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the tangent of x.

If the correct value would cause underflow, and is not representable, a range error may occur, and tan(),
tanf(), and tanl() shall return 0.0, or (if IEC 60559 Floating-Point is not supported) an implementation-de-
fined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, tan(), tanf(), and tanl() shall return an implementation-defined value no greater in mag-
nitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

If x is ±Inf, a domain error shall occur, and either a NaN (if supported), or an implementation-defined value
shall be returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value shall be returned.

If the correct value would cause overflow, a range error shall occur and tan(), tanf(), and tanl() shall return
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively, with the same sign as the correct value
of the function.

ERRORS
These functions shall fail if:

Domain Error
The value of x is ±Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Range Error The result overflows

IEEE/The Open Group 2017 1

TAN(3P) POSIX Programmer’s Manual TAN(3P)

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Range Error The result underflows, or the value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
Taking the Tangent of a 45-Degree Angle

#include <math.h>
...
double radians = 45.0 * M_PI / 180;
double result;
...
result = tan (radians);

APPLICATION USAGE
There are no known floating-point representations such that for a normal argument, tan(x) is either over-
flow or underflow.

These functions may lose accuracy when their argument is near a multiple of π/2 or is far from 0.0.

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan(), feclearexcept(), fetestexcept(), isnan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TANH(3P) POSIX Programmer’s Manual TANH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tanh, tanhf, tanhl — hyperbolic tangent functions

SYNOPSIS
#include <math.h>

double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute the hyperbolic tangent of their argument x.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the hyperbolic tangent of x.

If x is NaN, a NaN shall be returned.

If x is ±0, x shall be returned.

If x is ±Inf, ±1 shall be returned.

If x is subnormal, a range error may occur
and x should be returned.

If x is not returned, tanh(), tanhf(), and tanhl() shall return an implementation-defined value no greater in
magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.

ERRORS
These functions may fail if:

Range Error The value of x is subnormal.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

TANH(3P) POSIX Programmer’s Manual TANH(3P)

SEE ALSO
atanh(), feclearexcept(), fetestexcept(), isnan(), tan()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TANL(3P) POSIX Programmer’s Manual TANL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tanl — tangent function

SYNOPSIS
#include <math.h>

long double tanl(long double x);

DESCRIPTION
Refer to tan().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TCDRAIN(3P) POSIX Programmer’s Manual TCDRAIN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcdrain — wait for transmission of output

SYNOPSIS
#include <termios.h>

int tcdrain(int fildes);

DESCRIPTION
The tcdrain() function shall block until all output written to the object referred to by fildes is transmitted.
The fildes argument is an open file descriptor associated with a terminal.

Any attempts to use tcdrain() from a process which is a member of a background process group on a fildes

associated with its controlling terminal, shall cause the process group to be sent a SIGTTOU signal. If the
calling thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU signals, the process shall
be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The tcdrain() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

EINTR
A signal interrupted tcdrain().

EIO The process group of the writing process is orphaned, the calling thread is not blocking SIGT-
TOU, and the process is not ignoring SIGTTOU.

ENOTTY
The file associated with fildes is not a terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcflush()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 1

TCDRAIN(3P) POSIX Programmer’s Manual TCDRAIN(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TCFLOW(3P) POSIX Programmer’s Manual TCFLOW(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcflow — suspend or restart the transmission or reception of data

SYNOPSIS
#include <termios.h>

int tcflow(int fildes, int action);

DESCRIPTION
The tcflow() function shall suspend or restart transmission or reception of data on the object referred to by
fildes, depending on the value of action. The fildes argument is an open file descriptor associated with a
terminal.

* If action is TCOOFF, output shall be suspended.

* If action is TCOON, suspended output shall be restarted.

* If action is TCIOFF and fildes refers to a terminal device, the system shall transmit a STOP character,
which is intended to cause the terminal device to stop transmitting data to the system. If fildes is asso-
ciated with a pseudo-terminal, the STOP character need not be transmitted.

* If action is TCION and fildes refers to a terminal device, the system shall transmit a START character,
which is intended to cause the terminal device to start transmitting data to the system. If fildes is asso-
ciated with a pseudo-terminal, the START character need not be transmitted.

The default on the opening of a terminal file is that neither its input nor its output are suspended.

Attempts to use tcflow() from a process which is a member of a background process group on a fildes asso-
ciated with its controlling terminal, shall cause the process group to be sent a SIGTTOU signal. If the call-
ing thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU signals, the process shall be
allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The tcflow() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

EINVAL
The action argument is not a supported value.

EIO The process group of the writing process is orphaned, the calling thread is not blocking SIGT-
TOU, and the process is not ignoring SIGTTOU.

ENOTTY
The file associated with fildes is not a terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

IEEE/The Open Group 2017 1

TCFLOW(3P) POSIX Programmer’s Manual TCFLOW(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcsendbreak()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TCFLUSH(3P) POSIX Programmer’s Manual TCFLUSH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcflush — flush non-transmitted output data, non-read input data, or both

SYNOPSIS
#include <termios.h>

int tcflush(int fildes, int queue_selector);

DESCRIPTION
Upon successful completion, tcflush() shall discard data written to the object referred to by fildes (an open
file descriptor associated with a terminal) but not transmitted, or data received but not read, depending on
the value of queue_selector:

* If queue_selector is TCIFLUSH, it shall flush data received but not read.

* If queue_selector is TCOFLUSH, it shall flush data written but not transmitted.

* If queue_selector is TCIOFLUSH, it shall flush both data received but not read and data written but
not transmitted.

Attempts to use tcflush() from a process which is a member of a background process group on a fildes asso-
ciated with its controlling terminal shall cause the process group to be sent a SIGTTOU signal. If the call-
ing thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU signals, the process shall be
allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The tcflush() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

EINVAL
The queue_selector argument is not a supported value.

EIO The process group of the writing process is orphaned, the calling thread is not blocking SIGT-
TOU, and the process is not ignoring SIGTTOU.

ENOTTY
The file associated with fildes is not a terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcdrain()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

IEEE/The Open Group 2017 1

TCFLUSH(3P) POSIX Programmer’s Manual TCFLUSH(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TCGETATTR(3P) POSIX Programmer’s Manual TCGETATTR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcgetattr — get the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

DESCRIPTION
The tcgetattr() function shall get the parameters associated with the terminal referred to by fildes and store
them in the termios structure referenced by termios_p. The fildes argument is an open file descriptor asso-
ciated with a terminal.

The termios_p argument is a pointer to a termios structure.

The tcgetattr() operation is allowed from any process.

If the terminal device supports different input and output baud rates, the baud rates stored in the termios
structure returned by tcgetattr() shall reflect the actual baud rates, even if they are equal. If differing baud
rates are not supported, the rate returned as the output baud rate shall be the actual baud rate. If the terminal
device does not support split baud rates, the input baud rate stored in the termios structure shall be the out-
put rate (as one of the symbolic values).

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The tcgetattr() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

ENOTTY
The file associated with fildes is not a terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Care must be taken when changing the terminal attributes. Applications should always do a tcgetattr(), save
the termios structure values returned, and then do a tcsetattr(), changing only the necessary fields. The ap-
plication should use the values saved from the tcgetattr() to reset the terminal state whenever it is done with
the terminal. This is necessary because terminal attributes apply to the underlying port and not to each in-
dividual open instance; that is, all processes that have used the terminal see the latest attribute changes.

A program that uses these functions should be written to catch all signals and take other appropriate actions
to ensure that when the program terminates, whether planned or not, the terminal device’s state is restored
to its original state.

Existing practice dealing with error returns when only part of a request can be honored is based on calls to
the ioctl() function. In historical BSD and System V implementations, the corresponding ioctl() returns zero
if the requested actions were semantically correct, even if some of the requested changes could not be
made. Many existing applications assume this behavior and would no longer work correctly if the return
value were changed from zero to −1 in this case.

IEEE/The Open Group 2017 1

TCGETATTR(3P) POSIX Programmer’s Manual TCGETATTR(3P)

Note that either specification has a problem. When zero is returned, it implies everything succeeded even if
some of the changes were not made. When −1 is returned, it implies everything failed even though some of
the changes were made.

Applications that need all of the requested changes made to work properly should follow tcsetattr() with a
call to tcgetattr() and compare the appropriate field values.

FUTURE DIRECTIONS
None.

SEE ALSO
tcsetattr()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TCGETPGRP(3P) POSIX Programmer’s Manual TCGETPGRP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcgetpgrp — get the foreground process group ID

SYNOPSIS
#include <unistd.h>

pid_t tcgetpgrp(int fildes);

DESCRIPTION
The tcgetpgrp() function shall return the value of the process group ID of the foreground process group as-
sociated with the terminal.

If there is no foreground process group, tcgetpgrp() shall return a value greater than 1 that does not match
the process group ID of any existing process group.

The tcgetpgrp() function is allowed from a process that is a member of a background process group; how-
ev er, the information may be subsequently changed by a process that is a member of a foreground process
group.

RETURN VALUE
Upon successful completion, tcgetpgrp() shall return the value of the process group ID of the foreground
process associated with the terminal. Otherwise, −1 shall be returned and errno set to indicate the error.

ERRORS
The tcgetpgrp() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

ENOTTY
The calling process does not have a controlling terminal, or the file is not the controlling terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setsid(), setpgid(), tcsetpgrp()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

TCGETPGRP(3P) POSIX Programmer’s Manual TCGETPGRP(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TCGETSID(3P) POSIX Programmer’s Manual TCGETSID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcgetsid — get the process group ID for the session leader for the controlling terminal

SYNOPSIS
#include <termios.h>

pid_t tcgetsid(int fildes);

DESCRIPTION
The tcgetsid() function shall obtain the process group ID of the session for which the terminal specified by
fildes is the controlling terminal.

RETURN VALUE
Upon successful completion, tcgetsid() shall return the process group ID of the session associated with the
terminal. Otherwise, a value of −1 shall be returned and errno set to indicate the error.

ERRORS
The tcgetsid() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

ENOTTY
The calling process does not have a controlling terminal, or the file is not the controlling terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TCSENDBREAK(3P) POSIX Programmer’s Manual TCSENDBREAK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcsendbreak — send a break for a specific duration

SYNOPSIS
#include <termios.h>

int tcsendbreak(int fildes, int duration);

DESCRIPTION
If the terminal is using asynchronous serial data transmission, tcsendbreak() shall cause transmission of a
continuous stream of zero-valued bits for a specific duration. If duration is 0, it shall cause transmission of
zero-valued bits for at least 0.25 seconds, and not more than 0.5 seconds. If duration is not 0, it shall send
zero-valued bits for an implementation-defined period of time.

The fildes argument is an open file descriptor associated with a terminal.

If the terminal is not using asynchronous serial data transmission, it is implementation-defined whether tc-

sendbreak() sends data to generate a break condition or returns without taking any action.

Attempts to use tcsendbreak() from a process which is a member of a background process group on a fildes

associated with its controlling terminal shall cause the process group to be sent a SIGTTOU signal. If the
calling thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU signals, the process shall
be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The tcsendbreak() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

EIO The process group of the writing process is orphaned, the calling thread is not blocking SIGT-
TOU, and the process is not ignoring SIGTTOU.

ENOTTY
The file associated with fildes is not a terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 1

TCSENDBREAK(3P) POSIX Programmer’s Manual TCSENDBREAK(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TCSETATTR(3P) POSIX Programmer’s Manual TCSETATTR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcsetattr — set the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcsetattr(int fildes, int optional_actions,
const struct termios *termios_p);

DESCRIPTION
The tcsetattr() function shall set the parameters associated with the terminal referred to by the open file de-
scriptor fildes (an open file descriptor associated with a terminal) from the termios structure referenced by
termios_p as follows:

* If optional_actions is TCSANOW, the change shall occur immediately.

* If optional_actions is TCSADRAIN, the change shall occur after all output written to fildes is trans-
mitted. This function should be used when changing parameters that affect output.

* If optional_actions is TCSAFLUSH, the change shall occur after all output written to fildes is trans-
mitted, and all input so far received but not read shall be discarded before the change is made.

If the output baud rate stored in the termios structure pointed to by termios_p is the zero baud rate, B0, the
modem control lines shall no longer be asserted. Normally, this shall disconnect the line.

If the input baud rate stored in the termios structure pointed to by termios_p is 0, the input baud rate given
to the hardware is the same as the output baud rate stored in the termios structure.

The tcsetattr() function shall return successfully if it was able to perform any of the requested actions, even
if some of the requested actions could not be performed. It shall set all the attributes that the implementa-
tion supports as requested and leave all the attributes not supported by the implementation unchanged. If no
part of the request can be honored, it shall return −1 and set errno to [EINVAL]. If the input and output
baud rates differ and are a combination that is not supported, neither baud rate shall be changed. A subse-
quent call to tcgetattr() shall return the actual state of the terminal device (reflecting both the changes made
and not made in the previous tcsetattr() call). The tcsetattr() function shall not change the values found in
the termios structure under any circumstances.

The effect of tcsetattr() is undefined if the value of the termios structure pointed to by termios_p was not
derived from the result of a call to tcgetattr() on fildes; an application should modify only fields and flags
defined by this volume of POSIX.1-2017 between the call to tcgetattr() and tcsetattr(), leaving all other
fields and flags unmodified.

No actions defined by this volume of POSIX.1-2017, other than a call to tcsetattr(), a close of the last file
descriptor in the system associated with this terminal device, or an open of the first file descriptor in the
system associated with this terminal device (using the O_TTY_INIT flag if it is non-zero and the device is
not a pseudo-terminal), shall cause any of the terminal attributes defined by this volume of POSIX.1-2017
to change.

If tcsetattr() is called from a process which is a member of a background process group on a fildes associ-
ated with its controlling terminal:

* If the calling thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU signals, the
operation completes normally and no signal is sent.

* Otherwise, a SIGTTOU signal shall be sent to the process group.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

IEEE/The Open Group 2017 1

TCSETATTR(3P) POSIX Programmer’s Manual TCSETATTR(3P)

ERRORS
The tcsetattr() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

EINTR
A signal interrupted tcsetattr().

EINVAL
The optional_actions argument is not a supported value, or an attempt was made to change an at-
tribute represented in the termios structure to an unsupported value.

EIO The process group of the writing process is orphaned, the calling thread is not blocking SIGT-
TOU, and the process is not ignoring SIGTTOU.

ENOTTY
The file associated with fildes is not a terminal.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If trying to change baud rates, applications should call tcsetattr() then call tcgetattr() in order to determine
what baud rates were actually selected.

In general, there are two reasons for an application to change the parameters associated with a terminal de-
vice:

1. The device already has working parameter settings but the application needs a different behavior, such
as non-canonical mode instead of canonical mode. The application sets (or clears) only a few flags or
c_cc[] values. Typically, the terminal device in this case is either the controlling terminal for the
process or a pseudo-terminal.

2. The device is a modem or similar piece of equipment connected by a serial line, and it was not open
before the application opened it. In this case, the application needs to initialize all of the parameter set-
tings ‘‘from scratch’’. However, since the termios structure may include both standard and non-stan-
dard parameters, the application cannot just initialize the whole structure in an arbitrary way (e.g., us-
ing memset()) as this may cause some of the non-standard parameters to be set incorrectly, resulting in
non-conforming behavior of the terminal device. Conversely, the application cannot just set the stan-
dard parameters, assuming that the non-standard parameters will already have suitable values, as the
device might previously have been used with non-conforming parameter settings (and some imple-
mentations retain the settings from one use to the next). The solution is to open the terminal device us-
ing the O_TTY_INIT flag to initialize the terminal device to have conforming parameter settings, ob-
tain those settings using tcgetattr(), and then set all of the standard parameters to the desired settings.

RATIONALE
The tcsetattr() function can be interrupted in the following situations:

* It is interrupted while waiting for output to drain.

* It is called from a process in a background process group and SIGTTOU is caught.

See also the RATIONALE section in tcgetattr().

FUTURE DIRECTIONS
Using an input baud rate of 0 to set the input rate equal to the output rate may not necessarily be supported
in a future version of this volume of POSIX.1-2017.

SEE ALSO
cfgetispeed(), tcgetattr()

The Base Definitions volume of POSIX.1-2017, Chapter 11, General Terminal Interface, <termios.h>

IEEE/The Open Group 2017 2

TCSETATTR(3P) POSIX Programmer’s Manual TCSETATTR(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

TCSETPGRP(3P) POSIX Programmer’s Manual TCSETPGRP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tcsetpgrp — set the foreground process group ID

SYNOPSIS
#include <unistd.h>

int tcsetpgrp(int fildes, pid_t pgid_id);

DESCRIPTION
If the process has a controlling terminal, tcsetpgrp() shall set the foreground process group ID associated
with the terminal to pgid_id . The application shall ensure that the file associated with fildes is the control-
ling terminal of the calling process and the controlling terminal is currently associated with the session of
the calling process. The application shall ensure that the value of pgid_id matches a process group ID of a
process in the same session as the calling process.

Attempts to use tcsetpgrp() from a process which is a member of a background process group on a fildes

associated with its controlling terminal shall cause the process group to be sent a SIGTTOU signal. If the
calling thread is blocking SIGTTOU signals or the process is ignoring SIGTTOU signals, the process shall
be allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to indicate
the error.

ERRORS
The tcsetpgrp() function shall fail if:

EBADF
The fildes argument is not a valid file descriptor.

EINVAL
This implementation does not support the value in the pgid_id argument.

EIO The process group of the writing process is orphaned, the calling thread is not blocking SIGT-
TOU, and the process is not ignoring SIGTTOU.

ENOTTY
The calling process does not have a controlling terminal, or the file is not the controlling terminal,
or the controlling terminal is no longer associated with the session of the calling process.

EPERM
The value of pgid_id is a value supported by the implementation, but does not match the process
group ID of a process in the same session as the calling process.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

TCSETPGRP(3P) POSIX Programmer’s Manual TCSETPGRP(3P)

SEE ALSO
tcgetpgrp()

The Base Definitions volume of POSIX.1-2017, <sys_types.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TDELETE(3P) POSIX Programmer’s Manual TDELETE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tdelete, tfind, tsearch, twalk — manage a binary search tree

SYNOPSIS
#include <search.h>

void *tdelete(const void *restrict key, void **restrict rootp,
int(*compar)(const void *, const void *));

void *tfind(const void *key, void *const *rootp,
int(*compar)(const void *, const void *));

void *tsearch(const void *key, void **rootp,
int (*compar)(const void *, const void *));

void twalk(const void *root,
void (*action)(const void *, VISIT, int));

DESCRIPTION
The tdelete(), tfind(), tsearch(), and twalk() functions manipulate binary search trees. Comparisons are
made with a user-supplied routine, the address of which is passed as the compar argument. This routine is
called with two arguments, which are the pointers to the elements being compared. The application shall
ensure that the user-supplied routine returns an integer less than, equal to, or greater than 0, according to
whether the first argument is to be considered less than, equal to, or greater than the second argument. The
comparison function need not compare every byte, so arbitrary data may be contained in the elements in ad-
dition to the values being compared.

The tsearch() function shall build and access the tree. The key argument is a pointer to an element to be ac-
cessed or stored. If there is a node in the tree whose element is equal to the value pointed to by key, a
pointer to this found node shall be returned. Otherwise, the value pointed to by key shall be inserted (that is,
a new node is created and the value of key is copied to this node), and a pointer to this node returned. Only
pointers are copied, so the application shall ensure that the calling routine stores the data. The rootp argu-
ment points to a variable that points to the root node of the tree. A null pointer value for the variable
pointed to by rootp denotes an empty tree; in this case, the variable shall be set to point to the node which
shall be at the root of the new tree.

Like tsearch(), tfind() shall search for a node in the tree, returning a pointer to it if found. However, if it is
not found, tfind() shall return a null pointer. The arguments for tfind() are the same as for tsearch().

The tdelete() function shall delete a node from a binary search tree. The arguments are the same as for
tsearch(). The variable pointed to by rootp shall be changed if the deleted node was the root of the tree. If
the deleted node was the root of the tree and had no children, the variable pointed to by rootp shall be set to
a null pointer. The tdelete() function shall return a pointer to the parent of the deleted node, or an unspeci-
fied non-null pointer if the deleted node was the root node, or a null pointer if the node is not found.

If tsearch() adds an element to a tree, or tdelete() successfully deletes an element from a tree, the concur-
rent use of that tree in another thread, or use of pointers produced by a previous call to tfind() or tsearch(),
produces undefined results.

The twalk() function shall traverse a binary search tree. The root argument is a pointer to the root node of
the tree to be traversed. (Any node in a tree may be used as the root for a walk below that node.) The argu-
ment action is the name of a routine to be invoked at each node. This routine is, in turn, called with three
arguments. The first argument shall be the address of the node being visited. The structure pointed to by
this argument is unspecified and shall not be modified by the application, but it shall be possible to cast a
pointer-to-node into a pointer-to-pointer-to-element to access the element stored in the node. The second
argument shall be a value from an enumeration data type:

IEEE/The Open Group 2017 1

TDELETE(3P) POSIX Programmer’s Manual TDELETE(3P)

typedef enum { preorder, postorder, endorder, leaf } VISIT;

(defined in <search.h>), depending on whether this is the first, second, or third time that the node is visited
(during a depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The third argument
shall be the level of the node in the tree, with the root being level 0.

If the calling function alters the pointer to the root, the result is undefined.

If the functions pointed to by action or compar (for any of these binary search functions) change the tree,
the results are undefined.

These functions are thread-safe only as long as multiple threads do not access the same tree.

RETURN VALUE
If the node is found, both tsearch() and tfind() shall return a pointer to it. If not, tfind() shall return a null
pointer, and tsearch() shall return a pointer to the inserted item.

A null pointer shall be returned by tsearch() if there is not enough space available to create a new node.

A null pointer shall be returned by tdelete(), tfind(), and tsearch() if rootp is a null pointer on entry.

The tdelete() function shall return a pointer to the parent of the deleted node, or an unspecified non-null
pointer if the deleted node was the root node, or a null pointer if the node is not found.

The twalk() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
The following code reads in strings and stores structures containing a pointer to each string and a count of
its length. It then walks the tree, printing out the stored strings and their lengths in alphabetical order.

#include <limits.h>
#include <search.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

struct element { /* Pointers to these are stored in the tree. */
int count;
char string[];

};

void *root = NULL; /* This points to the root. */

int main(void)
{

char str[_POSIX2_LINE_MAX+1];
int length = 0;
struct element *elementptr;
void *node;
void print_node(const void *, VISIT, int);
int node_compare(const void *, const void *),

delete_root(const void *, const void *);

while (fgets(str, sizeof(str), stdin)) {
/* Set element. */
length = strlen(str);
if (str[length-1] == '\n')

str[--length] = '\0';

IEEE/The Open Group 2017 2

TDELETE(3P) POSIX Programmer’s Manual TDELETE(3P)

elementptr = malloc(sizeof(struct element) + length + 1);
strcpy(elementptr->string, str);
elementptr->count = 1;
/* Put element into the tree. */
node = tsearch((void *)elementptr, &root, node_compare);
if (node == NULL) {

fprintf(stderr,
"tsearch: Not enough space available\n");

exit(EXIT_FAILURE);
}
else if (*(struct element **)node != elementptr) {

/* A node containing the element already exists */
(*(struct element **)node)->count++;
free(elementptr);

}
}
twalk(root, print_node);

/* Delete all nodes in the tree */
while (root != NULL) {

elementptr = *(struct element **)root;
printf("deleting node: string = %s, count = %d\n",

elementptr->string,
elementptr->count);

tdelete((void *)elementptr, &root, delete_root);
free(elementptr);

}

return 0;
}

/*
* This routine compares two nodes, based on an
* alphabetical ordering of the string field.
*/
int
node_compare(const void *node1, const void *node2)
{

return strcmp(((const struct element *) node1)->string,
((const struct element *) node2)->string);

}

/*
* This comparison routine can be used with tdelete()
* when explicitly deleting a root node, as no comparison
* is necessary.
*/
int
delete_root(const void *node1, const void *node2)
{

return 0;
}

/*
* This routine prints out a node, the second time
* twalk encounters it or if it is a leaf.
*/

IEEE/The Open Group 2017 3

TDELETE(3P) POSIX Programmer’s Manual TDELETE(3P)

void
print_node(const void *ptr, VISIT order, int level)
{

const struct element *p = *(const struct element **) ptr;

if (order == postorder || order == leaf) {
(void) printf("string = %s, count = %d\n",

p->string, p->count);
}

}

APPLICATION USAGE
The root argument to twalk() is one level of indirection less than the rootp arguments to tdelete() and
tsearch().

There are two nomenclatures used to refer to the order in which tree nodes are visited. The twalk() function
uses preorder, postorder, and endorder to refer respectively to visiting a node before any of its children,
after its left child and before its right, and after both its children. The alternative nomenclature uses pre-
order, inorder, and postorder to refer to the same visits, which could result in some confusion over the
meaning of postorder.

Since the return value of tdelete() is an unspecified non-null pointer in the case that the root of the tree has
been deleted, applications should only use the return value of tdelete() as indication of success or failure
and should not assume it can be dereferenced. Some implementations in this case will return a pointer to
the new root of the tree (or to an empty tree if the deleted root node was the only node in the tree); other
implementations return arbitrary non-null pointers.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch()

The Base Definitions volume of POSIX.1-2017, <search.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 4

TELLDIR(3P) POSIX Programmer’s Manual TELLDIR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
telldir — current location of a named directory stream

SYNOPSIS
#include <dirent.h>

long telldir(DIR *dirp);

DESCRIPTION
The telldir() function shall obtain the current location associated with the directory stream specified by
dirp.

If the most recent operation on the directory stream was a seekdir(), the directory position returned from the
telldir() shall be the same as that supplied as a loc argument for seekdir().

RETURN VALUE
Upon successful completion, telldir() shall return the current location of the specified directory stream.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopendir(), readdir(), seekdir()

The Base Definitions volume of POSIX.1-2017, <dirent.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TEMPNAM(3P) POSIX Programmer’s Manual TEMPNAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tempnam — create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tempnam(const char *dir, const char *pfx);

DESCRIPTION
The tempnam() function shall generate a pathname that may be used for a temporary file.

The tempnam() function allows the user to control the choice of a directory. The dir argument points to the
name of the directory in which the file is to be created. If dir is a null pointer or points to a string which is
not a name for an appropriate directory, the path prefix defined as P_tmpdir in the <stdio.h> header shall be
used. If that directory is not accessible, an implementation-defined directory may be used.

Many applications prefer their temporary files to have certain initial letter sequences in their names. The
pfx argument should be used for this. This argument may be a null pointer or point to a string of up to five
bytes to be used as the beginning of the filename.

Some implementations of tempnam() may use tmpnam() internally. On such implementations, if called
more than {TMP_MAX} times in a single process, the behavior is implementation-defined.

RETURN VALUE
Upon successful completion, tempnam() shall allocate space for a string, put the generated pathname in that
space, and return a pointer to it. The pointer shall be suitable for use in a subsequent call to free(). Other-
wise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The tempnam() function shall fail if:

ENOMEM
Insufficient storage space is available.

The following sections are informative.

EXAMPLES
Generating a Pathname

The following example generates a pathname for a temporary file in directory /tmp, with the prefix file.
After the pathname has been created, the call to free() deallocates the space used to store the pathname.

#include <stdio.h>
#include <stdlib.h>
...
const char *directory = "/tmp";
const char *fileprefix = "file";
char *file;

file = tempnam(directory, fileprefix);
free(file);

APPLICATION USAGE
This function only creates pathnames. It is the application’s responsibility to create and remove the files.
Between the time a pathname is created and the file is opened, it is possible for some other process to create
a file with the same name. Applications may find tmpfile() more useful.

Applications should use the tmpfile(), mkdtemp(), or mkstemp() functions instead of the obsolescent

IEEE/The Open Group 2017 1

TEMPNAM(3P) POSIX Programmer’s Manual TEMPNAM(3P)

tempnam() function.

RATIONALE
None.

FUTURE DIRECTIONS
The tempnam() function may be removed in a future version.

SEE ALSO
fopen(), free(), mkdtemp(), open(), tmpfile(), tmpnam(), unlink()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TFIND(3P) POSIX Programmer’s Manual TFIND(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tfind — search binary search tree

SYNOPSIS
#include <search.h>

void *tfind(const void *key, void *const *rootp,
int (*compar)(const void *, const void *));

DESCRIPTION
Refer to tdelete().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TGAMMA(3P) POSIX Programmer’s Manual TGAMMA(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux. delim $$

NAME
tgamma, tgammaf, tgammal — compute gamma() function

SYNOPSIS
#include <math.h>

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall compute $Γ (ˆ x)$ where $Γ (ˆ x)$ is defined as $int from 0 to inf e"ˆ" " "{ - t } t"ˆ"
" "{ x - 1 } dt$.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the gamma of x.

If x is a negative integer, a domain error may occur and either a NaN (if supported) or an implementation-
defined value shall be returned. On systems that support the IEC 60559 Floating-Point option, a domain er-
ror shall occur and a NaN shall be returned.

If x is ±0, tgamma(), tgammaf(), and tgammal() shall return ±HUGE_VAL, ±HUGE_VALF, and
±HUGE_VALL, respectively. On systems that support the IEC 60559 Floating-Point option, a pole error
shall occur; otherwise, a pole error may occur.

If the correct value would cause overflow, a range error shall occur and tgamma(), tgammaf(), and tgam-

mal() shall return ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL, respectively, with the same sign as
the correct value of the function.

If the correct value would cause underflow, and is not representable, a range error may occur, and
tgamma(), tgammaf(), and tgammal() shall return 0.0, or (if IEC 60559 Floating-Point is not supported) an
implementation-defined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, re-
spectively.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value shall be returned.

If x is subnormal and 1/x is representable, 1/x should be returned.

If x is NaN, a NaN shall be returned.

If x is +Inf, x shall be returned.

If x is −Inf, a domain error shall occur, and a NaN shall be returned.

ERRORS
These functions shall fail if:

Domain Error
The value of x is a negative integer, or x is −Inf.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

IEEE/The Open Group 2017 1

TGAMMA(3P) POSIX Programmer’s Manual TGAMMA(3P)

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

Range Error The value overflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

These functions may fail if:

Domain Error
The value of x is a negative integer.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

Range Error The result underflows.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
This function is named tgamma() in order to avoid conflicts with the historical gamma() and lgamma()
functions.

FUTURE DIRECTIONS
It is possible that the error response for a negative integer argument may be changed to a pole error and a
return value of ±Inf.

SEE ALSO
feclearexcept(), fetestexcept(), lgamma()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 2

TGAMMA(3P) POSIX Programmer’s Manual TGAMMA(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

TIME(3P) POSIX Programmer’s Manual TIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
time — get time

SYNOPSIS
#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The time() function shall return the value of time in seconds since the Epoch.

The tloc argument points to an area where the return value is also stored. If tloc is a null pointer, no value is
stored.

RETURN VALUE
Upon successful completion, time() shall return the value of time. Otherwise, (time_t)−1 shall be returned.

ERRORS
The time() function may fail if:

EOVERFLOW
The number of seconds since the Epoch will not fit in an object of type time_t.

The following sections are informative.

EXAMPLES
Getting the Current Time

The following example uses the time() function to calculate the time elapsed, in seconds, since the Epoch,
localtime() to convert that value to a broken-down time, and asctime() to convert the broken-down time val-
ues into a printable string.

#include <stdio.h>
#include <time.h>

int main(void)
{
time_t result;

result = time(NULL);
printf("%s%ju secs since the Epoch\n",

asctime(localtime(&result)),
(uintmax_t)result);

return(0);
}

This example writes the current time to stdout in a form like this:

Wed Jun 26 10:32:15 1996
835810335 secs since the Epoch

IEEE/The Open Group 2017 1

TIME(3P) POSIX Programmer’s Manual TIME(3P)

Timing an Event
The following example gets the current time, prints it out in the user’s format, and prints the number of
minutes to an event being timed.

#include <time.h>
#include <stdio.h>
...
time_t now;
int minutes_to_event;
...
time(&now);
minutes_to_event = ...;
printf("The time is ");
puts(asctime(localtime(&now)));
printf("There are %d minutes to the event.\n",

minutes_to_event);
...

APPLICATION USAGE
None.

RATIONALE
The time() function returns a value in seconds while clock_gettime() and gettimeofday() return a struct
timespec (seconds and nanoseconds) and struct timeval (seconds and microseconds), respectively, and are
therefore capable of returning more precise times. The times() function is also capable of more precision
than time() as it returns a value in clock ticks, although it returns the elapsed time since an arbitrary point
such as system boot time, not since the epoch.

Implementations in which time_t is a 32-bit signed integer (many historical implementations) fail in the
year 2038. POSIX.1-2008 does not address this problem. However, the use of the time_t type is mandated
in order to ease the eventual fix.

On some systems the time() function is implemented using a system call that does not return an error condi-
tion in addition to the return value. On these systems it is impossible to differentiate between valid and in-
valid return values and hence overflow conditions cannot be reliably detected.

The use of the <time.h> header instead of <sys/types.h> allows compatibility with the ISO C standard.

Many historical implementations (including Version 7) and the 1984 /usr/group standard use long instead
of time_t. This volume of POSIX.1-2017 uses the latter type in order to agree with the ISO C standard.

FUTURE DIRECTIONS
In a future version of this volume of POSIX.1-2017, time_t is likely to be required to be capable of repre-
senting times far in the future. Whether this will be mandated as a 64-bit type or a requirement that a spe-
cific date in the future be representable (for example, 10000 AD) is not yet determined. Systems purchased
after the approval of this volume of POSIX.1-2017 should be evaluated to determine whether their lifetime
will extend past 2038.

SEE ALSO
asctime(), clock(), clock_getres(), ctime(), difftime(), futimens(), gettimeofday(), gmtime(), local-

time(), mktime(), strftime(), strptime(), times(), utime()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 2

TIME(3P) POSIX Programmer’s Manual TIME(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

TIMER_CREATE(3P) POSIX Programmer’s Manual TIMER_CREATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
timer_create — create a per-process timer

SYNOPSIS
#include <signal.h>
#include <time.h>

int timer_create(clockid_t clockid, struct sigevent *restrict evp,
timer_t *restrict timerid);

DESCRIPTION
The timer_create() function shall create a per-process timer using the specified clock, clock_id , as the tim-
ing base. The timer_create() function shall return, in the location referenced by timerid , a timer ID of type
timer_t used to identify the timer in timer requests. This timer ID shall be unique within the calling process
until the timer is deleted. The particular clock, clock_id , is defined in <time.h>. The timer whose ID is re-
turned shall be in a disarmed state upon return from timer_create().

The evp argument, if non-NULL, points to a sigevent structure. This structure, allocated by the application,
defines the asynchronous notification to occur as specified in Section 2.4.1, Signal Generation and Delivery

when the timer expires. If the evp argument is NULL, the effect is as if the evp argument pointed to a
sigevent structure with the sigev_notify member having the value SIGEV_SIGNAL, the sigev_signo having
a default signal number, and the sigev_value member having the value of the timer ID.

Each implementation shall define a set of clocks that can be used as timing bases for per-process timers. All
implementations shall support a clock_id of CLOCK_REALTIME. If the Monotonic Clock option is sup-
ported, implementations shall support a clock_id of CLOCK_MONOTONIC.

Per-process timers shall not be inherited by a child process across a fork() and shall be disarmed and
deleted by an exec.

If _POSIX_CPUTIME is defined, implementations shall support clock_id values representing the CPU-
time clock of the calling process.

If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock_id values representing
the CPU-time clock of the calling thread.

It is implementation-defined whether a timer_create() function will succeed if the value defined by clock_id

corresponds to the CPU-time clock of a process or thread different from the process or thread invoking the
function.

If evp−>sigev_sigev_notify is SIGEV_THREAD and sev−>sigev_notify_attributes is not NULL, if the attri-
bute pointed to by sev−>sigev_notify_attributes has a thread stack address specified by a call to
pthread_attr_setstack(), the results are unspecified if the signal is generated more than once.

RETURN VALUE
If the call succeeds, timer_create() shall return zero and update the location referenced by timerid to a
timer_t, which can be passed to the per-process timer calls. If an error occurs, the function shall return a
value of −1 and set errno to indicate the error. The value of timerid is undefined if an error occurs.

ERRORS
The timer_create() function shall fail if:

EAGAIN
The system lacks sufficient signal queuing resources to honor the request.

EAGAIN
The calling process has already created all of the timers it is allowed by this implementation.

IEEE/The Open Group 2017 1

TIMER_CREATE(3P) POSIX Programmer’s Manual TIMER_CREATE(3P)

EINVAL
The specified clock ID is not defined.

ENOTSUP
The implementation does not support the creation of a timer attached to the CPU-time clock that is
specified by clock_id and associated with a process or thread different from the process or thread
invoking timer_create().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If a timer is created which has evp−>sigev_sigev_notify set to SIGEV_THREAD and the attribute pointed
to by evp−>sigev_notify_attributes has a thread stack address specified by a call to pthread_attr_setstack(),
the memory dedicated as a thread stack cannot be recovered. The reason for this is that the threads created
in response to a timer expiration are created detached, or in an unspecified way if the thread attribute’s de-

tachstate is PTHREAD_CREATE_JOINABLE. In neither case is it valid to call pthread_join(), which
makes it impossible to determine the lifetime of the created thread which thus means the stack memory
cannot be reused.

RATIONALE
Periodic Timer Overrun and Resource Allocation

The specified timer facilities may deliver realtime signals (that is, queued signals) on implementations that
support this option. Since realtime applications cannot afford to lose notifications of asynchronous events,
like timer expirations or asynchronous I/O completions, it must be possible to ensure that sufficient re-
sources exist to deliver the signal when the event occurs. In general, this is not a difficulty because there is a
one-to-one correspondence between a request and a subsequent signal generation. If the request cannot al-
locate the signal delivery resources, it can fail the call with an [EAGAIN] error.

Periodic timers are a special case. A single request can generate an unspecified number of signals. This is
not a problem if the requesting process can service the signals as fast as they are generated, thus making the
signal delivery resources available for delivery of subsequent periodic timer expiration signals. But, in gen-
eral, this cannot be assured—processing of periodic timer signals may ‘‘overrun’’; that is, subsequent peri-
odic timer expirations may occur before the currently pending signal has been delivered.

Also, for signals, according to the POSIX.1-1990 standard, if subsequent occurrences of a pending signal
are generated, it is implementation-defined whether a signal is delivered for each occurrence. This is not ad-
equate for some realtime applications. So a mechanism is required to allow applications to detect how many
timer expirations were delayed without requiring an indefinite amount of system resources to store the de-
layed expirations.

The specified facilities provide for an overrun count. The overrun count is defined as the number of extra
timer expirations that occurred between the time a timer expiration signal is generated and the time the sig-
nal is delivered. The signal-catching function, if it is concerned with overruns, can retrieve this count on en-
try. With this method, a periodic timer only needs one ‘‘signal queuing resource’’ that can be allocated at
the time of the timer_create() function call.

A function is defined to retrieve the overrun count so that an application need not allocate static storage to
contain the count, and an implementation need not update this storage asynchronously on timer expirations.
But, for some high-frequency periodic applications, the overhead of an additional system call on each timer
expiration may be prohibitive. The functions, as defined, permit an implementation to maintain the overrun
count in user space, associated with the timerid . The timer_getoverrun() function can then be implemented
as a macro that uses the timerid argument (which may just be a pointer to a user space structure containing
the counter) to locate the overrun count with no system call overhead. Other implementations, less con-
cerned with this class of applications, can avoid the asynchronous update of user space by maintaining the
count in a system structure at the cost of the extra system call to obtain it.

IEEE/The Open Group 2017 2

TIMER_CREATE(3P) POSIX Programmer’s Manual TIMER_CREATE(3P)

Timer Expiration Signal Parameters
The Realtime Signals Extension option supports an application-specific datum that is delivered to the ex-
tended signal handler. This value is explicitly specified by the application, along with the signal number to
be delivered, in a sigevent structure. The type of the application-defined value can be either an integer con-
stant or a pointer. This explicit specification of the value, as opposed to always sending the timer ID, was
selected based on existing practice.

It is common practice for realtime applications (on non-POSIX systems or realtime extended POSIX sys-
tems) to use the parameters of event handlers as the case label of a switch statement or as a pointer to an ap-
plication-defined data structure. Since timer_ids are dynamically allocated by the timer_create() function,
they can be used for neither of these functions without additional application overhead in the signal han-
dler; for example, to search an array of saved timer IDs to associate the ID with a constant or application
data structure.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_delete(), timer_getoverrun()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

TIMER_DELETE(3P) POSIX Programmer’s Manual TIMER_DELETE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
timer_delete — delete a per-process timer

SYNOPSIS
#include <time.h>

int timer_delete(timer_t timerid);

DESCRIPTION
The timer_delete() function deletes the specified timer, timerid , previously created by the timer_create()
function. If the timer is armed when timer_delete() is called, the behavior shall be as if the timer is automat-
ically disarmed before removal. The disposition of pending signals for the deleted timer is unspecified.

The behavior is undefined if the value specified by the timerid argument to timer_delete() does not corre-
spond to a timer ID returned by timer_create() but not yet deleted by timer_delete().

RETURN VALUE
If successful, the timer_delete() function shall return a value of zero. Otherwise, the function shall return a
value of −1 and set errno to indicate the error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the timerid argument to timer_delete() does not cor-
respond to a timer ID returned by timer_create() but not yet deleted by timer_delete(), it is recommended
that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
timer_create()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TIMER_GETOVERRUN(3P) POSIX Programmer’s Manual TIMER_GETOVERRUN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
timer_getoverrun, timer_gettime, timer_settime — per-process timers

SYNOPSIS
#include <time.h>

int timer_getoverrun(timer_t timerid);
int timer_gettime(timer_t timerid, struct itimerspec *value);
int timer_settime(timer_t timerid, int flags,

const struct itimerspec *restrict value,
struct itimerspec *restrict ovalue);

DESCRIPTION
The timer_gettime() function shall store the amount of time until the specified timer, timerid , expires and
the reload value of the timer into the space pointed to by the value argument. The it_value member of this
structure shall contain the amount of time before the timer expires, or zero if the timer is disarmed. This
value is returned as the interval until timer expiration, even if the timer was armed with absolute time. The
it_interval member of value shall contain the reload value last set by timer_settime().

The timer_settime() function shall set the time until the next expiration of the timer specified by timerid

from the it_value member of the value argument and arm the timer if the it_value member of value is non-
zero. If the specified timer was already armed when timer_settime() is called, this call shall reset the time
until next expiration to the value specified. If the it_value member of value is zero, the timer shall be dis-
armed. The effect of disarming or resetting a timer with pending expiration notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() shall behave as if the time
until next expiration is set to be equal to the interval specified by the it_value member of value. That is, the
timer shall expire in it_value nanoseconds from when the call is made. If the flag TIMER_ABSTIME is set
in the argument flags, timer_settime() shall behave as if the time until next expiration is set to be equal to
the difference between the absolute time specified by the it_value member of value and the current value of
the clock associated with timerid . That is, the timer shall expire when the clock reaches the value specified
by the it_value member of value. If the specified time has already passed, the function shall succeed and
the expiration notification shall be made.

The reload value of the timer shall be set to the value specified by the it_interval member of value. When a
timer is armed with a non-zero it_interval, a periodic (or repetitive) timer is specified.

Time values that are between two consecutive non-negative integer multiples of the resolution of the speci-
fied timer shall be rounded up to the larger multiple of the resolution. Quantization error shall not cause the
timer to expire earlier than the rounded time value.

If the argument ovalue is not NULL, the timer_settime() function shall store, in the location referenced by
ovalue, a value representing the previous amount of time before the timer would have expired, or zero if the
timer was disarmed, together with the previous timer reload value. Timers shall not expire before their
scheduled time.

Only a single signal shall be queued to the process for a given timer at any point in time. When a timer for
which a signal is still pending expires, no signal shall be queued, and a timer overrun shall occur. When a
timer expiration signal is delivered to or accepted by a process, the timer_getoverrun() function shall return
the timer expiration overrun count for the specified timer. The overrun count returned contains the number
of extra timer expirations that occurred between the time the signal was generated (queued) and when it
was delivered or accepted, up to but not including an implementation-defined maximum of {DELAY-
TIMER_MAX}. If the number of such extra expirations is greater than or equal to {DELAY-
TIMER_MAX}, then the overrun count shall be set to {DELAYTIMER_MAX}. The value returned by
timer_getoverrun() shall apply to the most recent expiration signal delivery or acceptance for the timer. If

IEEE/The Open Group 2017 1

TIMER_GETOVERRUN(3P) POSIX Programmer’s Manual TIMER_GETOVERRUN(3P)

no expiration signal has been delivered for the timer, the return value of timer_getoverrun() is unspecified.

The behavior is undefined if the value specified by the timerid argument to timer_getoverrun(), timer_get-

time(), or timer_settime() does not correspond to a timer ID returned by timer_create() but not yet deleted
by timer_delete().

RETURN VALUE
If the timer_getoverrun() function succeeds, it shall return the timer expiration overrun count as explained
above.

If the timer_gettime() or timer_settime() functions succeed, a value of 0 shall be returned.

If an error occurs for any of these functions, the value −1 shall be returned, and errno set to indicate the er-
ror.

ERRORS
The timer_settime() function shall fail if:

EINVAL
A value structure specified a nanosecond value less than zero or greater than or equal to 1 000 mil-
lion, and the it_value member of that structure did not specify zero seconds and nanoseconds.

The timer_settime() function may fail if:

EINVAL
The it_interval member of value is not zero and the timer was created with notification by creation
of a new thread (sigev_sigev_notify was SIGEV_THREAD) and a fixed stack address has been set
in the thread attribute pointed to by sigev_notify_attributes.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Using fixed stack addresses is problematic when timer expiration is signaled by the creation of a new
thread. Since it cannot be assumed that the thread created for one expiration is finished before the next expi-
ration of the timer, it could happen that two threads use the same memory as a stack at the same time. This
is invalid and produces undefined results.

RATIONALE
Practical clocks tick at a finite rate, with rates of 100 hertz and 1 000 hertz being common. The inverse of
this tick rate is the clock resolution, also called the clock granularity, which in either case is expressed as a
time duration, being 10 milliseconds and 1 millisecond respectively for these common rates. The granular-
ity of practical clocks implies that if one reads a given clock twice in rapid succession, one may get the
same time value twice; and that timers must wait for the next clock tick after the theoretical expiration time,
to ensure that a timer never returns too soon. Note also that the granularity of the clock may be significantly
coarser than the resolution of the data format used to set and get time and interval values. Also note that
some implementations may choose to adjust time and/or interval values to exactly match the ticks of the un-
derlying clock.

This volume of POSIX.1-2017 defines functions that allow an application to determine the implementation-
supported resolution for the clocks and requires an implementation to document the resolution supported
for timers and nanosleep() if they differ from the supported clock resolution. This is more of a procurement
issue than a runtime application issue.

If an implementation detects that the value specified by the timerid argument to timer_getoverrun(),
timer_gettime(), or timer_settime() does not correspond to a timer ID returned by timer_create() but not yet
deleted by timer_delete(), it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 2

TIMER_GETOVERRUN(3P) POSIX Programmer’s Manual TIMER_GETOVERRUN(3P)

SEE ALSO
clock_getres(), timer_create()

The Base Definitions volume of POSIX.1-2017, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

TIMES(3P) POSIX Programmer’s Manual TIMES(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
times — get process and waited-for child process times

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
The times() function shall fill the tms structure pointed to by buffer with time-accounting information. The
tms structure is defined in <sys/times.h>.

All times are measured in terms of the number of clock ticks used.

The times of a terminated child process shall be included in the tms_cutime and tms_cstime elements of the
parent when wait(), waitid(), or waitpid() returns the process ID of this terminated child. If a child process
has not waited for its children, their times shall not be included in its times.

* The tms_utime structure member is the CPU time charged for the execution of user instructions of the
calling process.

* The tms_stime structure member is the CPU time charged for execution by the system on behalf of the
calling process.

* The tms_cutime structure member is the sum of the tms_utime and tms_cutime times of the child pro-
cesses.

* The tms_cstime structure member is the sum of the tms_stime and tms_cstime times of the child pro-
cesses.

RETURN VALUE
Upon successful completion, times() shall return the elapsed real time, in clock ticks, since an arbitrary
point in the past (for example, system start-up time). This point does not change from one invocation of
times() within the process to another. The return value may overflow the possible range of type clock_t. If
times() fails, (clock_t)−1 shall be returned and errno set to indicate the error.

ERRORS
The times() function shall fail if:

EOVERFLOW
The return value would overflow the range of clock_t.

The following sections are informative.

EXAMPLES
Timing a Database Lookup

The following example defines two functions, start_clock() and end_clock(), that are used to time a lookup.
It also defines variables of type clock_t and tms to measure the duration of transactions. The start_clock()
function saves the beginning times given by the times() function. The end_clock() function gets the ending
times and prints the difference between the two times.

#include <sys/times.h>
#include <stdio.h>
...
void start_clock(void);
void end_clock(char *msg);
...

IEEE/The Open Group 2017 1

TIMES(3P) POSIX Programmer’s Manual TIMES(3P)

static clock_t st_time;
static clock_t en_time;
static struct tms st_cpu;
static struct tms en_cpu;
...
void
start_clock()
{

st_time = times(&st_cpu);
}

/* This example assumes that the result of each subtraction
is within the range of values that can be represented in
an integer type. */

void
end_clock(char *msg)
{

en_time = times(&en_cpu);

fputs(msg,stdout);
printf("Real Time: %jd, User Time %jd, System Time %jd\n",

(intmax_t)(en_time - st_time),
(intmax_t)(en_cpu.tms_utime - st_cpu.tms_utime),
(intmax_t)(en_cpu.tms_stime - st_cpu.tms_stime));

}

APPLICATION USAGE
Applications should use sysconf(_SC_CLK_TCK) to determine the number of clock ticks per second as it
may vary from system to system.

RATIONALE
The accuracy of the times reported is intentionally left unspecified to allow implementations flexibility in
design, from uniprocessor to multi-processor networks.

The inclusion of times of child processes is recursive, so that a parent process may collect the total times of
all of its descendants. But the times of a child are only added to those of its parent when its parent success-
fully waits on the child. Thus, it is not guaranteed that a parent process can always see the total times of all
its descendants; see also the discussion of the term ‘‘realtime’’ in alarm().

If the type clock_t is defined to be a signed 32-bit integer, it overflows in somewhat more than a year if
there are 60 clock ticks per second, or less than a year if there are 100. There are individual systems that
run continuously for longer than that. This volume of POSIX.1-2017 permits an implementation to make
the reference point for the returned value be the start-up time of the process, rather than system start-up
time.

The term ‘‘charge’’ in this context has nothing to do with billing for services. The operating system ac-
counts for time used in this way. That information must be correct, regardless of how that information is
used.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fork(), sysconf(), time(), wait(), waitid()

The Base Definitions volume of POSIX.1-2017, <sys_times.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,

IEEE/The Open Group 2017 2

TIMES(3P) POSIX Programmer’s Manual TIMES(3P)

Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

TIMEZONE(3P) POSIX Programmer’s Manual TIMEZONE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
timezone — difference from UTC and local standard time

SYNOPSIS
#include <time.h>

extern long timezone;

DESCRIPTION
Refer to tzset().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TMPFILE(3P) POSIX Programmer’s Manual TMPFILE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The tmpfile() function shall create a temporary file and open a corresponding stream. The file shall be auto-
matically deleted when all references to the file are closed. The file shall be opened as in fopen() for update
(wb+), except that implementations may restrict the permissions, either by clearing the file mode bits or set-
ting them to the value S_IRUSR | S_IWUSR.

In some implementations, a permanent file may be left behind if the process calling tmpfile() is killed while
it is processing a call to tmpfile().

An error message may be written to standard error if the stream cannot be opened.

RETURN VALUE
Upon successful completion, tmpfile() shall return a pointer to the stream of the file that is created. Other-
wise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The tmpfile() function shall fail if:

EINTR
A signal was caught during tmpfile().

EMFILE
All file descriptors available to the process are currently open.

EMFILE
{STREAM_MAX} streams are currently open in the calling process.

ENFILE
The maximum allowable number of files is currently open in the system.

ENOSPC
The directory or file system which would contain the new file cannot be expanded.

EOVERFLOW
The file is a regular file and the size of the file cannot be represented correctly in an object of type
off_t.

The tmpfile() function may fail if:

EMFILE
{FOPEN_MAX} streams are currently open in the calling process.

ENOMEM
Insufficient storage space is available.

The following sections are informative.

IEEE/The Open Group 2017 1

TMPFILE(3P) POSIX Programmer’s Manual TMPFILE(3P)

EXAMPLES
Creating a Temporary File

The following example creates a temporary file for update, and returns a pointer to a stream for the created
file in the fp variable.

#include <stdio.h>
...
FILE *fp;

fp = tmpfile ();

APPLICATION USAGE
It should be possible to open at least {TMP_MAX} temporary files during the lifetime of the program (this
limit may be shared with tmpnam()) and there should be no limit on the number simultaneously open other
than this limit and any limit on the number of open file descriptors or streams ({OPEN_MAX},
{FOPEN_MAX}, {STREAM_MAX}).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fopen(), mkdtemp(), tmpnam(), unlink()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TMPNAM(3P) POSIX Programmer’s Manual TMPNAM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tmpnam — create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam(char *s);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The tmpnam() function shall generate a string that is a valid pathname that does not name an existing file.
The function is potentially capable of generating {TMP_MAX} different strings, but any or all of them may
already be in use by existing files and thus not be suitable return values.

The tmpnam() function generates a different string each time it is called from the same process, up to
{TMP_MAX} times. If it is called more than {TMP_MAX} times, the behavior is implementation-defined.

The implementation shall behave as if no function defined in this volume of POSIX.1-2017, except temp-

nam(), calls tmpnam().

The tmpnam() function need not be thread-safe if called with a NULL parameter.

RETURN VALUE
Upon successful completion, tmpnam() shall return a pointer to a string. If no suitable string can be gener-
ated, the tmpnam() function shall return a null pointer.

If the argument s is a null pointer, tmpnam() shall leave its result in an internal static object and return a
pointer to that object. Subsequent calls to tmpnam() may modify the same object. If the argument s is not a
null pointer, it is presumed to point to an array of at least L_tmpnam chars; tmpnam() shall write its result
in that array and shall return the argument as its value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Generating a Pathname

The following example generates a unique pathname and stores it in the array pointed to by ptr.

#include <stdio.h>
...
char pathname[L_tmpnam+1];
char *ptr;

ptr = tmpnam(pathname);

APPLICATION USAGE
This function only creates pathnames. It is the application’s responsibility to create and remove the files.

Between the time a pathname is created and the file is opened, it is possible for some other process to create
a file with the same name. Applications may find tmpfile() more useful.

Applications should use the tmpfile(), mkstemp(), or mkdtemp() functions instead of the obsolescent tmp-

nam() function.

IEEE/The Open Group 2017 1

TMPNAM(3P) POSIX Programmer’s Manual TMPNAM(3P)

RATIONALE
None.

FUTURE DIRECTIONS
The tmpnam() function may be removed in a future version.

SEE ALSO
fopen(), open(), mkdtemp(), tempnam(), tmpfile(), unlink()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TOASCII(3P) POSIX Programmer’s Manual TOASCII(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
toascii — translate an integer to a 7-bit ASCII character

SYNOPSIS
#include <ctype.h>

int toascii(int c);

DESCRIPTION
The toascii() function shall convert its argument into a 7-bit ASCII character.

RETURN VALUE
The toascii() function shall return the value (c &0x7f).

ERRORS
No errors are returned.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The toascii() function cannot be used portably in a localized application.

RATIONALE
None.

FUTURE DIRECTIONS
The toascii() function may be removed in a future version.

SEE ALSO
isascii()

The Base Definitions volume of POSIX.1-2017, <ctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TOLOWER(3P) POSIX Programmer’s Manual TOLOWER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tolower, tolower_l — transliterate uppercase characters to lowercase

SYNOPSIS
#include <ctype.h>

int tolower(int c);
int tolower_l(int c, locale_t locale);

DESCRIPTION
For tolower(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The tolower() and tolower_l() functions have as a domain a type int, the value of which is representable as
an unsigned char or the value of EOF. If the argument has any other value, the behavior is undefined. If the
argument of tolower() or tolower_l() represents an uppercase letter, and there exists a corresponding lower-
case letter as defined by character type information in the current locale or in the locale represented by lo-

cale, respectively (category LC_CTYPE), the result shall be the corresponding lowercase letter. All other
arguments in the domain are returned unchanged.

The behavior is undefined if the locale argument to tolower_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon successful completion, the tolower() and tolower_l() functions shall return the lowercase letter corre-
sponding to the argument passed; otherwise, they shall return the argument unchanged.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

TOLOWER(3P) POSIX Programmer’s Manual TOLOWER(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TOUPPER(3P) POSIX Programmer’s Manual TOUPPER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
toupper, toupper_l — transliterate lowercase characters to uppercase

SYNOPSIS
#include <ctype.h>

int toupper(int c);
int toupper_l(int c, locale_t locale);

DESCRIPTION
For toupper(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The toupper() and toupper_l() functions have as a domain a type int, the value of which is representable as
an unsigned char or the value of EOF. If the argument has any other value, the behavior is undefined.

If the argument of toupper() or toupper_l() represents a lowercase letter, and there exists a corresponding
uppercase letter as defined by character type information in the current locale or in the locale represented
by locale, respectively (category LC_CTYPE), the result shall be the corresponding uppercase letter.

All other arguments in the domain are returned unchanged.

The behavior is undefined if the locale argument to toupper_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon successful completion, toupper() and toupper_l() shall return the uppercase letter corresponding to
the argument passed; otherwise, they shall return the argument unchanged.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <ctype.h>, <locale.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 1

TOUPPER(3P) POSIX Programmer’s Manual TOUPPER(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TOWCTRANS(3P) POSIX Programmer’s Manual TOWCTRANS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
towctrans, towctrans_l — wide-character transliteration

SYNOPSIS
#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);
wint_t towctrans_l(wint_t wc, wctrans_t desc,

locale_t locale);

DESCRIPTION
For towctrans(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The towctrans() and towctrans_l() functions shall transliterate the wide-character code wc using the map-
ping described by desc.

The current setting of the LC_CTYPE category in the current locale or in the locale represented by locale,
respectively, should be the same as during the call to wctrans() or wctrans_l() that returned the value desc.

If the value of desc is invalid (that is, not obtained by a call to wctrans() or desc is invalidated by a subse-
quent call to setlocale() that has affected category LC_CTYPE), the result is unspecified.

If the value of desc is invalid (that is, not obtained by a call to wctrans_l() with the same locale object lo-

cale) the result is unspecified.

An application wishing to check for error situations should set errno to 0 before calling towctrans() or
towctrans_l().

If errno is non-zero on return, an error has occurred.

The behavior is undefined if the locale argument to towctrans_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
If successful, the towctrans() and towctrans_l() functions shall return the mapped value of wc using the
mapping described by desc. Otherwise, they shall return wc unchanged.

ERRORS
These functions may fail if:

EINVAL
desc contains an invalid transliteration descriptor.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The strings "tolower" and "toupper" are reserved for the standard mapping names. In the table below, the
functions in the left column are equivalent to the functions in the right column.

towlower(wc) towctrans(wc, wctrans("tolower"))
towlower_l(wc, locale) towctrans_l(wc, wctrans("tolower"), locale)
towupper(wc) towctrans(wc, wctrans("toupper"))
towupper_l(wc, locale) towctrans_l(wc, wctrans("toupper"), locale)

IEEE/The Open Group 2017 1

TOWCTRANS(3P) POSIX Programmer’s Manual TOWCTRANS(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
towlower(), towupper(), wctrans()

The Base Definitions volume of POSIX.1-2017, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TOWLOWER(3P) POSIX Programmer’s Manual TOWLOWER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
towlower, towlower_l — transliterate uppercase wide-character code to lowercase

SYNOPSIS
#include <wctype.h>

wint_t towlower(wint_t wc);
wint_t towlower_l(wint_t wc, locale_t locale);

DESCRIPTION
For towlower(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The towlower() and towlower_l() functions have as a domain a type wint_t, the value of which the applica-
tion shall ensure is a character representable as a wchar_t, and a wide-character code corresponding to a
valid character in the locale used by the function or the value of WEOF. If the argument has any other
value, the behavior is undefined. If the argument of towlower() or towlower_l() represents an uppercase
wide-character code, and there exists a corresponding lowercase wide-character code as defined by charac-
ter type information in the current locale or in the locale represented by locale, respectively (category
LC_CTYPE), the result shall be the corresponding lowercase wide-character code. All other arguments in
the domain are returned unchanged.

The behavior is undefined if the locale argument to towlower_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon successful completion, the towlower() and towlower_l() functions shall return the lowercase letter
corresponding to the argument passed; otherwise, they shall return the argument unchanged.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

TOWLOWER(3P) POSIX Programmer’s Manual TOWLOWER(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TOWUPPER(3P) POSIX Programmer’s Manual TOWUPPER(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
towupper, towupper_l — transliterate lowercase wide-character code to uppercase

SYNOPSIS
#include <wctype.h>

wint_t towupper(wint_t wc);
wint_t towupper_l(wint_t wc, locale_t locale);

DESCRIPTION
For towupper(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The towupper() and towupper_l() functions have as a domain a type wint_t, the value of which the applica-
tion shall ensure is a character representable as a wchar_t, and a wide-character code corresponding to a
valid character in the locale used by the function or the value of WEOF. If the argument has any other
value, the behavior is undefined. If the argument of towupper() or towupper_l() represents a lowercase
wide-character code, and there exists a corresponding uppercase wide-character code as defined by charac-
ter type information in the current locale or in the locale represented by locale, respectively (category
LC_CTYPE), the result shall be the corresponding uppercase wide-character code. All other arguments in
the domain are returned unchanged.

The behavior is undefined if the locale argument to towupper_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon successful completion, the towupper() and towupper_l() functions shall return the uppercase letter
corresponding to the argument passed. Otherwise, they shall return the argument unchanged.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale(), uselocale()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <locale.h>, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

TOWUPPER(3P) POSIX Programmer’s Manual TOWUPPER(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TRUNC(3P) POSIX Programmer’s Manual TRUNC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
trunc, truncf, truncl — round to truncated integer value

SYNOPSIS
#include <math.h>

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall round their argument to the integer value, in floating format, nearest to but no larger
in magnitude than the argument.

RETURN VALUE
Upon successful completion, these functions shall return the truncated integer value.
The result shall have the same sign as x.

If x is NaN, a NaN shall be returned.

If x is ±0 or ±Inf, x shall be returned.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by these functions need not be expressible as an intmax_t. The return value
should be tested before assigning it to an integer type to avoid the undefined results of an integer overflow.

These functions may raise the inexact floating-point exception if the result differs in value from the argu-
ment.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

TRUNC(3P) POSIX Programmer’s Manual TRUNC(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TRUNCATE(3P) POSIX Programmer’s Manual TRUNCATE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
truncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int truncate(const char *path, off_t length);

DESCRIPTION
The truncate() function shall cause the regular file named by path to have a size which shall be equal to
length bytes.

If the file previously was larger than length, the extra data is discarded. If the file was previously shorter
than length, its size is increased, and the extended area appears as if it were zero-filled.

The application shall ensure that the process has write permission for the file.

If the request would cause the file size to exceed the soft file size limit for the process, the request shall fail
and the implementation shall generate the SIGXFSZ signal for the process.

The truncate() function shall not modify the file offset for any open file descriptions associated with the
file. Upon successful completion, truncate() shall mark for update the last data modification and last file
status change timestamps of the file, and the S_ISUID and S_ISGID bits of the file mode may be cleared.

RETURN VALUE
Upon successful completion, truncate() shall return 0. Otherwise, −1 shall be returned, and errno set to in-
dicate the error.

ERRORS
The truncate() function shall fail if:

EINTR
A signal was caught during execution.

EINVAL
The length argument was less than 0.

EFBIG or EINVAL
The length argument was greater than the maximum file size.

EIO An I/O error occurred while reading from or writing to a file system.

EACCES
A component of the path prefix denies search permission, or write permission is denied on the file.

EISDIR
The named file is a directory.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file

IEEE/The Open Group 2017 1

TRUNCATE(3P) POSIX Programmer’s Manual TRUNCATE(3P)

that is neither a directory nor a symbolic link to a directory.

EROFS
The named file resides on a read-only file system.

The truncate() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open()

The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TRUNCF(3P) POSIX Programmer’s Manual TRUNCF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
truncf, truncl — round to truncated integer value

SYNOPSIS
#include <math.h>

float truncf(float x);
long double truncl(long double x);

DESCRIPTION
Refer to trunc().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TSEARCH(3P) POSIX Programmer’s Manual TSEARCH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
tsearch — search a binary search tree

SYNOPSIS
#include <search.h>

void *tsearch(const void *key, void **rootp,
int (*compar)(const void *, const void *));

DESCRIPTION
Refer to tdelete().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TTYNAME(3P) POSIX Programmer’s Manual TTYNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ttyname, ttyname_r — find the pathname of a terminal

SYNOPSIS
#include <unistd.h>

char *ttyname(int fildes);
int ttyname_r(int fildes, char *name, size_t namesize);

DESCRIPTION
The ttyname() function shall return a pointer to a string containing a null-terminated pathname of the termi-
nal associated with file descriptor fildes. The application shall not modify the string returned. The returned
pointer might be invalidated or the string content might be overwritten by a subsequent call to ttyname().
The returned pointer and the string content might also be invalidated if the calling thread is terminated.

The ttyname() function need not be thread-safe.

The ttyname_r() function shall store the null-terminated pathname of the terminal associated with the file
descriptor fildes in the character array referenced by name. The array is namesize characters long and
should have space for the name and the terminating null character. The maximum length of the terminal
name shall be {TTY_NAME_MAX}.

RETURN VALUE
Upon successful completion, ttyname() shall return a pointer to a string. Otherwise, a null pointer shall be
returned and errno set to indicate the error.

If successful, the ttyname_r() function shall return zero. Otherwise, an error number shall be returned to in-
dicate the error.

ERRORS
The ttyname() function may fail if:

EBADF
The fildes argument is not a valid file descriptor.

ENOTTY
The file associated with the fildes argument is not a terminal.

The ttyname_r() function may fail if:

EBADF
The fildes argument is not a valid file descriptor.

ENOTTY
The file associated with the fildes argument is not a terminal.

ERANGE
The value of namesize is smaller than the length of the string to be returned including the terminat-
ing null character.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term ‘‘terminal’’ is used instead of the historical term ‘‘terminal device’’ in order to avoid a reference
to an undefined term.

IEEE/The Open Group 2017 1

TTYNAME(3P) POSIX Programmer’s Manual TTYNAME(3P)

The thread-safe version places the terminal name in a user-supplied buffer and returns a non-zero value if it
fails. The non-thread-safe version may return the name in a static data area that may be overwritten by each
call.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

TWALK(3P) POSIX Programmer’s Manual TWALK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
twalk — traverse a binary search tree

SYNOPSIS
#include <search.h>

void twalk(const void *root,
void (*action)(const void *, VISIT, int));

DESCRIPTION
Refer to tdelete().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

TZSET(3P) POSIX Programmer’s Manual TZSET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
daylight, timezone, tzname, tzset — set timezone conversion information

SYNOPSIS
#include <time.h>

extern int daylight;
extern long timezone;
extern char *tzname[2];
void tzset(void);

DESCRIPTION
The tzset() function shall use the value of the environment variable TZ to set time conversion information
used by ctime(), localtime(), mktime(), and strftime(). If TZ is absent from the environment, implementa-
tion-defined default timezone information shall be used.

The tzset() function shall set the external variable tzname as follows:

tzname[0] = "std";
tzname[1] = "dst";

where std and dst are as described in the Base Definitions volume of POSIX.1-2017, Chapter 8, Environ-

ment Variables.

The tzset() function also shall set the external variable daylight to 0 if Daylight Savings Time conversions
should never be applied for the timezone in use; otherwise, non-zero. The external variable timezone shall
be set to the difference, in seconds, between Coordinated Universal Time (UTC) and local standard time.

If a thread accesses tzname, daylight, or timezone directly while another thread is in a call to tzset(), or to
any function that is required or allowed to set timezone information as if by calling tzset(), the behavior is
undefined.

RETURN VALUE
The tzset() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
Example TZ variables and their timezone differences are given in the table below:

center box tab(!); cI | cI lw(1i) | lw(1i). TZ!timezone _ EST5EDT!5*60*60 GMT0!0*60*60
JST-9!−9*60*60 MET-1MEST!−1*60*60 MST7MDT!7*60*60 PST8PDT!8*60*60

APPLICATION USAGE
Since the ctime(), localtime(), mktime(), strftime(), and strftime_l() functions are required to set timezone
information as if by calling tzset(), there is no need for an explicit tzset() call before using these functions.
However, portable applications should call tzset() explicitly before using ctime_r() or localtime_r() because
setting timezone information is optional for those functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

TZSET(3P) POSIX Programmer’s Manual TZSET(3P)

SEE ALSO
ctime(), localtime(), mktime(), strftime()

The Base Definitions volume of POSIX.1-2017, Chapter 8, Environment Variables, <time.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

ULIMIT(3P) POSIX Programmer’s Manual ULIMIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ulimit — get and set process limits

SYNOPSIS
#include <ulimit.h>

long ulimit(int cmd, ...);

DESCRIPTION
The ulimit() function shall control process limits. The process limits that can be controlled by this function
include the maximum size of a single file that can be written (this is equivalent to using setrlimit() with
RLIMIT_FSIZE). The cmd values, defined in <ulimit.h>, include:

UL_GETFSIZE
Return the file size limit (RLIMIT_FSIZE) of the process. The limit shall be in units of
512-byte blocks and shall be inherited by child processes. Files of any size can be read. The
return value shall be the integer part of the soft file size limit divided by 512. If the result
cannot be represented as a long, the result is unspecified.

UL_SETFSIZE
Set the file size limit for output operations of the process to the value of the second argu-
ment, taken as a long, multiplied by 512. If the result would overflow an rlim_t, the actual
value set is unspecified. Any process may decrease its own limit, but only a process with ap-
propriate privileges may increase the limit. The return value shall be the integer part of the
new file size limit divided by 512.

The ulimit() function shall not change the setting of errno if successful.

As all return values are permissible in a successful situation, an application wishing to check for error situa-
tions should set errno to 0, then call ulimit(), and, if it returns −1, check to see if errno is non-zero.

RETURN VALUE
Upon successful completion, ulimit() shall return the value of the requested limit. Otherwise, −1 shall be re-
turned and errno set to indicate the error.

ERRORS
The ulimit() function shall fail and the limit shall be unchanged if:

EINVAL
The cmd argument is not valid.

EPERM
A process not having appropriate privileges attempts to increase its file size limit.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since the ulimit() function uses type long rather than rlim_t, this function is not sufficient for file sizes on
many current systems. Applications should use the getrlimit() or setrlimit() functions instead of the obso-
lescent ulimit() function.

RATIONALE
None.

FUTURE DIRECTIONS
The ulimit() function may be removed in a future version.

IEEE/The Open Group 2017 1

ULIMIT(3P) POSIX Programmer’s Manual ULIMIT(3P)

SEE ALSO
exec , getrlimit(), write()

The Base Definitions volume of POSIX.1-2017, <ulimit.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

UMASK(3P) POSIX Programmer’s Manual UMASK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
umask — set and get the file mode creation mask

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION
The umask() function shall set the file mode creation mask of the process to cmask and return the previous
value of the mask. Only the file permission bits of cmask (see <sys/stat.h>) are used; the meaning of the
other bits is implementation-defined.

The file mode creation mask of the process is used to turn off permission bits in the mode argument sup-
plied during calls to the following functions:

* open(), openat(), creat(), mkdir(), mkdirat(), mkfifo(), and mkfifoat()

* mknod(), mknodat()

* mq_open()

* sem_open()

Bit positions that are set in cmask are cleared in the mode of the created file.

RETURN VALUE
The file permission bits in the value returned by umask() shall be the previous value of the file mode cre-
ation mask. The state of any other bits in that value is unspecified, except that a subsequent call to umask()
with the returned value as cmask shall leave the state of the mask the same as its state before the first call,
including any unspecified use of those bits.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Unsigned argument and return types for umask() were proposed. The return type and the argument were
both changed to mode_t.

Historical implementations have made use of additional bits in cmask for their implementation-defined pur-
poses. The addition of the text that the meaning of other bits of the field is implementation-defined permits
these implementations to conform to this volume of POSIX.1-2017.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), exec , mkdir(), mkfifo(), mknod(), mq_open(), open(), sem_open()

The Base Definitions volume of POSIX.1-2017, <sys_stat.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

UMASK(3P) POSIX Programmer’s Manual UMASK(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

UNAME(3P) POSIX Programmer’s Manual UNAME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
uname — get the name of the current system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name);

DESCRIPTION
The uname() function shall store information identifying the current system in the structure pointed to by
name.

The uname() function uses the utsname structure defined in <sys/utsname.h>.

The uname() function shall return a string naming the current system in the character array sysname. Simi-
larly, nodename shall contain the name of this node within an implementation-defined communications net-
work. The arrays release and version shall further identify the operating system. The array machine shall
contain a name that identifies the hardware that the system is running on.

The format of each member is implementation-defined.

RETURN VALUE
Upon successful completion, a non-negative value shall be returned. Otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The inclusion of the nodename member in this structure does not imply that it is sufficient information for
interfacing to communications networks.

RATIONALE
The values of the structure members are not constrained to have any relation to the version of this volume
of POSIX.1-2017 implemented in the operating system. An application should instead depend on
_POSIX_VERSION and related constants defined in <unistd.h>.

This volume of POSIX.1-2017 does not define the sizes of the members of the structure and permits them
to be of different sizes, although most implementations define them all to be the same size: eight bytes plus
one byte for the string terminator. That size for nodename is not enough for use with many networks.

The uname() function originated in System III, System V, and related implementations, and it does not exist
in Version 7 or 4.3 BSD. The values it returns are set at system compile time in those historical implemen-
tations.

4.3 BSD has gethostname() and gethostid(), which return a symbolic name and a numeric value, respec-
tively. There are related sethostname() and sethostid() functions that are used to set the values the other two
functions return. The former functions are included in this specification, the latter are not.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <sys_utsname.h>

IEEE/The Open Group 2017 1

UNAME(3P) POSIX Programmer’s Manual UNAME(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

UNGETC(3P) POSIX Programmer’s Manual UNGETC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ungetc — push byte back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc(int c, FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The ungetc() function shall push the byte specified by c (converted to an unsigned char) back onto the in-
put stream pointed to by stream. The pushed-back bytes shall be returned by subsequent reads on that
stream in the reverse order of their pushing. A successful intervening call (with the stream pointed to by
stream) to a file-positioning function (fseek(), fseeko(), fsetpos(), or re wind()) or fflush() shall discard any
pushed-back bytes for the stream. The external storage corresponding to the stream shall be unchanged.

One byte of push-back shall be provided. If ungetc() is called too many times on the same stream without
an intervening read or file-positioning operation on that stream, the operation may fail.

If the value of c equals that of the macro EOF, the operation shall fail and the input stream shall be left un-
changed.

A successful call to ungetc() shall clear the end-of-file indicator for the stream. The value of the file-posi-
tion indicator for the stream after all pushed-back bytes have been read, or discarded by calling fseek(),
fseeko(), fsetpos(), or re wind() (but not fflush()), shall be the same as it was before the bytes were pushed
back. The file-position indicator is decremented by each successful call to ungetc(); if its value was 0 before
a call, its value is unspecified after the call.

RETURN VALUE
Upon successful completion, ungetc() shall return the byte pushed back after conversion. Otherwise, it shall
return EOF.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fseek(), getc(), fsetpos(), read(), re wind(), setbuf()

The Base Definitions volume of POSIX.1-2017, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

UNGETC(3P) POSIX Programmer’s Manual UNGETC(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

UNGETWC(3P) POSIX Programmer’s Manual UNGETWC(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
ungetwc — push wide-character code back into the input stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The ungetwc() function shall push the character corresponding to the wide-character code specified by wc

back onto the input stream pointed to by stream. The pushed-back characters shall be returned by subse-
quent reads on that stream in the reverse order of their pushing. A successful intervening call (with the
stream pointed to by stream) to a file-positioning function (fseek(), fseeko(), fsetpos(), or re wind()) or
fflush() shall discard any pushed-back characters for the stream. The external storage corresponding to the
stream is unchanged.

At least one character of push-back shall be provided. If ungetwc() is called too many times on the same
stream without an intervening read or file-positioning operation on that stream, the operation may fail.

If the value of wc equals that of the macro WEOF, the operation shall fail and the input stream shall be left
unchanged.

A successful call to ungetwc() shall clear the end-of-file indicator for the stream. The value of the file-posi-
tion indicator for the stream after all pushed-back characters have been read, or discarded by calling fseek(),
fseeko(), fsetpos(), or re wind() (but not fflush()), shall be the same as it was before the characters were
pushed back. The file-position indicator is decremented (by one or more) by each successful call to
ungetwc(); if its value was 0 before a call, its value is unspecified after the call.

RETURN VALUE
Upon successful completion, ungetwc() shall return the wide-character code corresponding to the pushed-
back character. Otherwise, it shall return WEOF.

ERRORS
The ungetwc() function may fail if:

EILSEQ
An invalid character sequence is detected, or a wide-character code does not correspond to a valid
character.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

UNGETWC(3P) POSIX Programmer’s Manual UNGETWC(3P)

SEE ALSO
Section 2.5, Standard I/O Streams, fseek(), fsetpos(), read(), re wind(), setbuf()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

UNLINK(3P) POSIX Programmer’s Manual UNLINK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
unlink, unlinkat — remove a directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);

#include <fcntl.h>

int unlinkat(int fd, const char *path, int flag);

DESCRIPTION
The unlink() function shall remove a link to a file. If path names a symbolic link, unlink() shall remove the
symbolic link named by path and shall not affect any file or directory named by the contents of the sym-
bolic link. Otherwise, unlink() shall remove the link named by the pathname pointed to by path and shall
decrement the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the file shall
be freed and the file shall no longer be accessible. If one or more processes have the file open when the last
link is removed, the link shall be removed before unlink() returns, but the removal of the file contents shall
be postponed until all references to the file are closed.

The path argument shall not name a directory unless the process has appropriate privileges and the imple-
mentation supports using unlink() on directories.

Upon successful completion, unlink() shall mark for update the last data modification and last file status
change timestamps of the parent directory. Also, if the file’s link count is not 0, the last file status change
timestamp of the file shall be marked for update.

The unlinkat() function shall be equivalent to the unlink() or rmdir() function except in the case where path

specifies a relative path. In this case the directory entry to be removed is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. If the access mode of the
open file description associated with the file descriptor is not O_SEARCH, the function shall check whether
directory searches are permitted using the current permissions of the directory underlying the file descrip-
tor. If the access mode is O_SEARCH, the function shall not perform the check.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fc-

ntl.h>:

AT_REMOVEDIR
Remove the directory entry specified by fd and path as a directory, not a normal file.

If unlinkat() is passed the special value AT_FDCWD in the fd parameter, the current working directory
shall be used and the behavior shall be identical to a call to unlink() or rmdir() respectively, depending on
whether or not the AT_REMOVEDIR bit is set in flag.

RETURN VALUE
Upon successful completion, these functions shall return 0. Otherwise, these functions shall return −1 and
set errno to indicate the error. If −1 is returned, the named file shall not be changed.

ERRORS
These functions shall fail and shall not unlink the file if:

EACCES
Search permission is denied for a component of the path prefix, or write permission is denied on
the directory containing the directory entry to be removed.

IEEE/The Open Group 2017 1

UNLINK(3P) POSIX Programmer’s Manual UNLINK(3P)

EBUSY
The file named by the path argument cannot be unlinked because it is being used by the system or
another process and the implementation considers this an error.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

EPERM
The file named by path is a directory, and either the calling process does not have appropriate
privileges, or the implementation prohibits using unlink() on directories.

EPERM or EACCES
The S_ISVTX flag is set on the directory containing the file referred to by the path argument and
the process does not satisfy the criteria specified in the Base Definitions volume of POSIX.1-2017,
Section 4.3, Directory Protection.

EROFS
The directory entry to be unlinked is part of a read-only file system.

The unlinkat() function shall fail if:

EACCES
The access mode of the open file description associated with fd is not O_SEARCH and the per-
missions of the directory underlying fd do not permit directory searches.

EBADF
The path argument does not specify an absolute path and the fd argument is neither AT_FDCWD
nor a valid file descriptor open for reading or searching.

ENOTDIR
The path argument is not an absolute path and fd is a file descriptor associated with a non-direc-
tory file.

EEXIST or ENOTEMPTY
The flag parameter has the AT_REMOVEDIR bit set and the path argument names a directory
that is not an empty directory, or there are hard links to the directory other than dot or a single en-
try in dot-dot.

ENOTDIR
The flag parameter has the AT_REMOVEDIR bit set and path does not name a directory.

These functions may fail and not unlink the file if:

EBUSY
The file named by path is a named STREAM.

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

IEEE/The Open Group 2017 2

UNLINK(3P) POSIX Programmer’s Manual UNLINK(3P)

ETXTBSY
The entry to be unlinked is the last directory entry to a pure procedure (shared text) file that is be-
ing executed.

The unlinkat() function may fail if:

EINVAL
The value of the flag argument is not valid.

The following sections are informative.

EXAMPLES
Removing a Link to a File

The following example shows how to remove a link to a file named /home/cnd/mod1 by removing the en-
try named /modules/pass1.

#include <unistd.h>

char *path = "/modules/pass1";
int status;
...
status = unlink(path);

Checking for an Error
The following example fragment creates a temporary password lock file named LOCKFILE, which is de-
fined as /etc/ptmp, and gets a file descriptor for it. If the file cannot be opened for writing, unlink() is used
to remove the link between the file descriptor and LOCKFILE.

#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>

#define LOCKFILE "/etc/ptmp"

int pfd; /* Integer for file descriptor returned by open call. */
FILE *fpfd; /* File pointer for use in putpwent(). */
...
/* Open password Lock file. If it exists, this is an error. */
if ((pfd = open(LOCKFILE, O_WRONLY| O_CREAT | O_EXCL, S_IRUSR

| S_IWUSR | S_IRGRP | S_IROTH)) == -1) {
fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
exit(1);

}

/* Lock file created; proceed with fdopen of lock file so that
putpwent() can be used.

*/
if ((fpfd = fdopen(pfd, "w")) == NULL) {

close(pfd);
unlink(LOCKFILE);
exit(1);

}

IEEE/The Open Group 2017 3

UNLINK(3P) POSIX Programmer’s Manual UNLINK(3P)

Replacing Files
The following example fragment uses unlink() to discard links to files, so that they can be replaced with
new versions of the files. The first call removes the link to LOCKFILE if an error occurs. Successive calls
remove the links to SAVEFILE and PASSWDFILE so that new links can be created, then removes the link
to LOCKFILE when it is no longer needed.

#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>

#define LOCKFILE "/etc/ptmp"
#define PASSWDFILE "/etc/passwd"
#define SAVEFILE "/etc/opasswd"
...
/* If no change was made, assume error and leave passwd unchanged. */
if (!valid_change) {

fprintf(stderr, "Could not change password for user %s\n", user);
unlink(LOCKFILE);
exit(1);

}

/* Change permissions on new password file. */
chmod(LOCKFILE, S_IRUSR | S_IRGRP | S_IROTH);

/* Remove sav ed password file. */
unlink(SAVEFILE);

/* Save current password file. */
link(PASSWDFILE, SAVEFILE);

/* Remove current password file. */
unlink(PASSWDFILE);

/* Save new password file as current password file. */
link(LOCKFILE,PASSWDFILE);

/* Remove lock file. */
unlink(LOCKFILE);

exit(0);

APPLICATION USAGE
Applications should use rmdir() to remove a directory.

RATIONALE
Unlinking a directory is restricted to the superuser in many historical implementations for reasons given in
link() (see also rename()).

The meaning of [EBUSY] in historical implementations is ‘‘mount point busy’’. Since this volume of
POSIX.1-2017 does not cover the system administration concepts of mounting and unmounting, the de-
scription of the error was changed to ‘‘resource busy’’. (This meaning is used by some device drivers when
a second process tries to open an exclusive use device.) The wording is also intended to allow implementa-
tions to refuse to remove a directory if it is the root or current working directory of any process.

The standard developers reviewed TR 24715-2006 and noted that LSB-conforming implementations may
return [EISDIR] instead of [EPERM] when unlinking a directory. A change to permit this behavior by
changing the requirement for [EPERM] to [EPERM] or [EISDIR] was considered, but decided against
since it would break existing strictly conforming and conforming applications. Applications written for

IEEE/The Open Group 2017 4

UNLINK(3P) POSIX Programmer’s Manual UNLINK(3P)

portability to both POSIX.1-2008 and the LSB should be prepared to handle either error code.

The purpose of the unlinkat() function is to remove directory entries in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be changed in
parallel to a call to unlink(), resulting in unspecified behavior. By opening a file descriptor for the target di-
rectory and using the unlinkat() function it can be guaranteed that the removed directory entry is located
relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), link(), remove(), rename(), rmdir(), symlink()

The Base Definitions volume of POSIX.1-2017, Section 4.3, Directory Protection, <fcntl.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

UNLOCKPT(3P) POSIX Programmer’s Manual UNLOCKPT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
unlockpt — unlock a pseudo-terminal master/slave pair

SYNOPSIS
#include <stdlib.h>

int unlockpt(int fildes);

DESCRIPTION
The unlockpt() function shall unlock the slave pseudo-terminal device associated with the master to which
fildes refers.

Conforming applications shall ensure that they call unlockpt() before opening the slave side of a pseudo-ter-
minal device.

RETURN VALUE
Upon successful completion, unlockpt() shall return 0. Otherwise, it shall return −1 and set errno to indicate
the error.

ERRORS
The unlockpt() function may fail if:

EBADF
The fildes argument is not a file descriptor open for writing.

EINVAL
The fildes argument is not associated with a master pseudo-terminal device.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See the RATIONALE section for posix_openpt().

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), posix_openpt(), ptsname()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

UNSETENV(3P) POSIX Programmer’s Manual UNSETENV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
unsetenv — remove an environment variable

SYNOPSIS
#include <stdlib.h>

int unsetenv(const char *name);

DESCRIPTION
The unsetenv() function shall remove an environment variable from the environment of the calling process.
The name argument points to a string, which is the name of the variable to be removed. The named argu-
ment shall not contain an ’=’ character. If the named variable does not exist in the current environment, the
environment shall be unchanged and the function is considered to have completed successfully.

The unsetenv() function shall update the list of pointers to which environ points.

The unsetenv() function need not be thread-safe.

RETURN VALUE
Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to indicate
the error, and the environment shall be unchanged.

ERRORS
The unsetenv() function shall fail if:

EINVAL
The name argument points to an empty string, or points to a string containing an ’=’ character.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to the RATIONALE section in setenv().

FUTURE DIRECTIONS
None.

SEE ALSO
getenv(), setenv()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>, <sys_types.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

USELOCALE(3P) POSIX Programmer’s Manual USELOCALE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
uselocale — use locale in current thread

SYNOPSIS
#include <locale.h>

locale_t uselocale(locale_t newloc);

DESCRIPTION
The uselocale() function shall set or query the current locale for the calling thread.

The value for the newloc argument shall be one of the following:

1. A value returned by the newlocale() or duplocale() functions

2. The special locale object descriptor LC_GLOBAL_LOCALE

3. (locale_t)0

If the newloc argument is (locale_t)0, the current locale shall not be changed; this value can be used to
query the current locale setting. If the newloc argument is LC_GLOBAL_LOCALE, any thread-local locale
for the calling thread shall be uninstalled; the thread shall again use the global locale as the current locale,
and changes to the global locale shall affect the thread. Otherwise, the locale represented by newloc shall be
installed as a thread-local locale to be used as the current locale for the calling thread.

Once the uselocale() function has been called to install a thread-local locale, the behavior of every interface
using data from the current locale shall be affected for the calling thread. The current locale for other
threads shall remain unchanged.

RETURN VALUE
Upon successful completion, the uselocale() function shall return a handle for the thread-local locale that
was in use as the current locale for the calling thread on entry to the function, or LC_GLOBAL_LOCALE
if no thread-local locale was in use. Otherwise, uselocale() shall return (locale_t)0 and set errno to indicate
the error.

ERRORS
The uselocale() function may fail if:

EINVAL
newloc is not a valid locale object and is not (locale_t)0.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Unlike the setlocale() function, the uselocale() function does not allow replacing some locale categories
only. Applications that need to install a locale which differs only in a few categories must use newlocale()
to change a locale object equivalent to the currently used locale and install it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale(), freelocale(), newlocale(), setlocale()

The Base Definitions volume of POSIX.1-2017, <locale.h>

IEEE/The Open Group 2017 1

USELOCALE(3P) POSIX Programmer’s Manual USELOCALE(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

UTIME(3P) POSIX Programmer’s Manual UTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
utime — set file access and modification times

SYNOPSIS
#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

DESCRIPTION
The utime() function shall set the access and modification times of the file named by the path argument.

If times is a null pointer, the access and modification times of the file shall be set to the current time. The
effective user ID of the process shall match the owner of the file, or the process has write permission to the
file or has appropriate privileges, to use utime() in this manner.

If times is not a null pointer, times shall be interpreted as a pointer to a utimbuf structure and the access
and modification times shall be set to the values contained in the designated structure. Only a process with
the effective user ID equal to the user ID of the file or a process with appropriate privileges may use utime()
this way.

The utimbuf structure is defined in the <utime.h> header. The times in the structure utimbuf are measured
in seconds since the Epoch.

Upon successful completion, the utime() function shall mark the last file status change timestamp for up-
date; see <sys/stat.h>.

RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno shall be set to
indicate the error, and the file times shall not be affected.

ERRORS
The utime() function shall fail if:

EACCES
Search permission is denied by a component of the path prefix; or the times argument is a null
pointer and the effective user ID of the process does not match the owner of the file, the process
does not have write permission for the file, and the process does not have appropriate privileges.

ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.

ENAMETOOLONG
The length of a component of a pathname is longer than {NAME_MAX}.

ENOENT
A component of path does not name an existing file or path is an empty string.

ENOTDIR
A component of the path prefix names an existing file that is neither a directory nor a symbolic
link to a directory, or the path argument contains at least one non-<slash> character and ends with
one or more trailing <slash> characters and the last pathname component names an existing file
that is neither a directory nor a symbolic link to a directory.

EPERM
The times argument is not a null pointer and the effective user ID of the calling process does not
match the owner of the file and the calling process does not have appropriate privileges.

EROFS
The file system containing the file is read-only.

IEEE/The Open Group 2017 1

UTIME(3P) POSIX Programmer’s Manual UTIME(3P)

The utime() function may fail if:

ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path ar-
gument.

ENAMETOOLONG
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a symbolic link pro-
duced an intermediate result with a length that exceeds {PATH_MAX}.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Since the utimbuf structure only contains time_t variables and is not accurate to fractions of a second, ap-
plications should use the utimensat() function instead of the obsolescent utime() function.

RATIONALE
The actime structure member must be present so that an application may set it, even though an implementa-
tion may ignore it and not change the last data access timestamp on the file. If an application intends to
leave one of the times of a file unchanged while changing the other, it should use stat() or fstat() to retrieve
the file’s st_atim and st_mtim parameters, set actime and modtime in the buffer, and change one of them be-
fore making the utime() call.

FUTURE DIRECTIONS
The utime() function may be removed in a future version.

SEE ALSO
fstat(), fstatat(), futimens()

The Base Definitions volume of POSIX.1-2017, <sys_stat.h>, <utime.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

UTIMENSAT(3P) POSIX Programmer’s Manual UTIMENSAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
utimensat, utimes — set file access and modification times

SYNOPSIS
#include <sys/stat.h>

int utimensat(int fd, const char *path, const struct timespec times[2],
int flag);

#include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

DESCRIPTION
Refer to futimens().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VA_ARG(3P) POSIX Programmer’s Manual VA_ARG(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
va_arg, va_copy, va_end, va_start — handle variable argument list

SYNOPSIS
#include <stdarg.h>

type va_arg(va_list ap, type);
void va_copy(va_list dest, va_list src);
void va_end(va_list ap);
void va_start(va_list ap, argN);

DESCRIPTION
Refer to the Base Definitions volume of POSIX.1-2017, <stdarg.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VFPRINTF(3P) POSIX Programmer’s Manual VFPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vdprintf, vfprintf, vprintf, vsnprintf, vsprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vdprintf(int fildes, const char *restrict format, va_list ap);
int vfprintf(FILE *restrict stream, const char *restrict format,

va_list ap);
int vprintf(const char *restrict format, va_list ap);
int vsnprintf(char *restrict s, size_t n, const char *restrict format,

va_list ap);
int vsprintf(char *restrict s, const char *restrict format, va_list ap);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The vdprintf(), vfprintf(), vprintf(), vsnprintf(), and vsprintf() functions shall be equivalent to the dprintf(),
fprintf(), printf(), snprintf(), and sprintf() functions respectively, except that instead of being called with a
variable number of arguments, they are called with an argument list as defined by <stdarg.h>.

These functions shall not invoke the va_end macro. As these functions invoke the va_arg macro, the value
of ap after the return is unspecified.

RETURN VALUE
Refer to fprintf().

ERRORS
Refer to fprintf().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fprintf()

The Base Definitions volume of POSIX.1-2017, <stdarg.h>, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

VFPRINTF(3P) POSIX Programmer’s Manual VFPRINTF(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

VFSCANF(3P) POSIX Programmer’s Manual VFSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vfscanf, vscanf, vsscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vfscanf(FILE *restrict stream, const char *restrict format,
va_list arg);

int vscanf(const char *restrict format, va_list arg);
int vsscanf(const char *restrict s, const char *restrict format,

va_list arg);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The vscanf(), vfscanf(), and vsscanf() functions shall be equivalent to the scanf(), fscanf(), and sscanf()
functions, respectively, except that instead of being called with a variable number of arguments, they are
called with an argument list as defined in the <stdarg.h> header. These functions shall not invoke the
va_end macro. As these functions invoke the va_arg macro, the value of ap after the return is unspecified.

RETURN VALUE
Refer to fscanf().

ERRORS
Refer to fscanf().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fscanf()

The Base Definitions volume of POSIX.1-2017, <stdarg.h>, <stdio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VFWPRINTF(3P) POSIX Programmer’s Manual VFWPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vfwprintf, vswprintf, vwprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *restrict stream, const wchar_t *restrict format,
va_list arg);

int vswprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, va_list arg);

int vwprintf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The vfwprintf(), vswprintf(), and vwprintf() functions shall be equivalent to fwprintf(), swprintf(), and
wprintf() respectively, except that instead of being called with a variable number of arguments, they are
called with an argument list as defined by <stdarg.h>.

These functions shall not invoke the va_end macro. However, as these functions do invoke the va_arg

macro, the value of ap after the return is unspecified.

RETURN VALUE
Refer to fwprintf().

ERRORS
Refer to fwprintf().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fwprintf()

The Base Definitions volume of POSIX.1-2017, <stdarg.h>, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 1

VFWPRINTF(3P) POSIX Programmer’s Manual VFWPRINTF(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

VFWSCANF(3P) POSIX Programmer’s Manual VFWSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vfwscanf, vswscanf, vwscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwscanf(FILE *restrict stream, const wchar_t *restrict format,
va_list arg);

int vswscanf(const wchar_t *restrict ws, const wchar_t *restrict format,
va_list arg);

int vwscanf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The vfwscanf(), vswscanf(), and vwscanf() functions shall be equivalent to the fwscanf(), swscanf(), and ws-

canf() functions, respectively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined in the <stdarg.h> header. These functions shall not invoke the
va_end macro. As these functions invoke the va_arg macro, the value of ap after the return is unspecified.

RETURN VALUE
Refer to fwscanf().

ERRORS
Refer to fwscanf().

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.5, Standard I/O Streams, fwscanf()

The Base Definitions volume of POSIX.1-2017, <stdarg.h>, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

VFWSCANF(3P) POSIX Programmer’s Manual VFWSCANF(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

VPRINTF(3P) POSIX Programmer’s Manual VPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vprintf — format the output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vprintf(const char *restrict format, va_list ap);

DESCRIPTION
Refer to vfprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VSCANF(3P) POSIX Programmer’s Manual VSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vscanf(const char *restrict format, va_list arg);

DESCRIPTION
Refer to vfscanf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VSNPRINTF(3P) POSIX Programmer’s Manual VSNPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vsnprintf, vsprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char *restrict s, size_t n,
const char *restrict format, va_list ap);

int vsprintf(char *restrict s, const char *restrict format,
va_list ap);

DESCRIPTION
Refer to vfprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VSSCANF(3P) POSIX Programmer’s Manual VSSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vsscanf — format input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsscanf(const char *restrict s, const char *restrict format,
va_list arg);

DESCRIPTION
Refer to vfscanf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VSWPRINTF(3P) POSIX Programmer’s Manual VSWPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vswprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VSWSCANF(3P) POSIX Programmer’s Manual VSWSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vswscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vswscanf(const wchar_t *restrict ws, const wchar_t *restrict format,
va_list arg);

DESCRIPTION
Refer to vfwscanf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VWPRINTF(3P) POSIX Programmer’s Manual VWPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vwprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwprintf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

VWSCANF(3P) POSIX Programmer’s Manual VWSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
vwscanf — wide-character formatted input of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwscanf(const wchar_t *restrict format, va_list arg);

DESCRIPTION
Refer to vfwscanf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WAIT(3P) POSIX Programmer’s Manual WAIT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wait, waitpid — wait for a child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION
The wait() and waitpid() functions shall obtain status information (see Section 2.13, Status Information)
pertaining to one of the caller’s child processes. The wait() function obtains status information for process
termination from any child process. The waitpid() function obtains status information for process termina-
tion, and optionally process stop and/or continue, from a specified subset of the child processes.

The wait() function shall cause the calling thread to become blocked until status information generated by
child process termination is made available to the thread, or until delivery of a signal whose action is either
to execute a signal-catching function or to terminate the process, or an error occurs. If termination status in-
formation is available prior to the call to wait(), return shall be immediate. If termination status information
is available for two or more child processes, the order in which their status is reported is unspecified.

As described in Section 2.13, Status Information, the wait() and waitpid() functions consume the status in-
formation they obtain.

The behavior when multiple threads are blocked in wait(), waitid(), or waitpid() is described in Section

2.13, Status Information.

The waitpid() function shall be equivalent to wait() if the pid argument is (pid_t)−1 and the options argu-
ment is 0. Otherwise, its behavior shall be modified by the values of the pid and options arguments.

The pid argument specifies a set of child processes for which status is requested. The waitpid() function
shall only return the status of a child process from this set:

* If pid is equal to (pid_t)−1, status is requested for any child process. In this respect, waitpid() is then
equivalent to wait().

* If pid is greater than 0, it specifies the process ID of a single child process for which status is re-
quested.

* If pid is 0, status is requested for any child process whose process group ID is equal to that of the call-
ing process.

* If pid is less than (pid_t)−1, status is requested for any child process whose process group ID is equal
to the absolute value of pid .

The options argument is constructed from the bitwise-inclusive OR of zero or more of the following flags,
defined in the <sys/wait.h> header:

WCONTINUED
The waitpid() function shall report the status of any continued child process specified by pid

whose status has not been reported since it continued from a job control stop.

WNOHANG The waitpid() function shall not suspend execution of the calling thread if status is not im-
mediately available for one of the child processes specified by pid .

WUNTRACED
The status of any child processes specified by pid that are stopped, and whose status has not
yet been reported since they stopped, shall also be reported to the requesting process.

If wait() or waitpid() return because the status of a child process is available, these functions shall return a

IEEE/The Open Group 2017 1

WAIT(3P) POSIX Programmer’s Manual WAIT(3P)

value equal to the process ID of the child process. In this case, if the value of the argument stat_loc is not a
null pointer, information shall be stored in the location pointed to by stat_loc. The value stored at the loca-
tion pointed to by stat_loc shall be 0 if and only if the status returned is from a terminated child process
that terminated by one of the following means:

1. The process returned 0 from main().

2. The process called _exit() or exit() with a status argument of 0.

3. The process was terminated because the last thread in the process terminated.

Regardless of its value, this information may be interpreted using the following macros, which are defined
in <sys/wait.h> and evaluate to integral expressions; the stat_val argument is the integer value pointed to
by stat_loc.

WIFEXITED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that terminated normally.

WEXITSTATUS(stat_val)
If the value of WIFEXITED(stat_val) is non-zero, this macro evaluates to the low-order 8 bits of the
status argument that the child process passed to _exit() or exit(), or the value the child process re-
turned from main().

WIFSIGNALED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that terminated due to the re-
ceipt of a signal that was not caught (see <signal.h>).

WTERMSIG(stat_val)
If the value of WIFSIGNALED(stat_val) is non-zero, this macro evaluates to the number of the sig-
nal that caused the termination of the child process.

WIFSTOPPED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that is currently stopped.

WSTOPSIG(stat_val)
If the value of WIFSTOPPED(stat_val) is non-zero, this macro evaluates to the number of the signal
that caused the child process to stop.

WIFCONTINUED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that has continued from a job
control stop.

It is unspecified whether the status value returned by calls to wait() or waitpid() for processes created by
posix_spawn() or posix_spawnp() can indicate a WIFSTOPPED(stat_val) before subsequent calls to wait()
or waitpid() indicate WIFEXITED(stat_val) as the result of an error detected before the new process image
starts executing.

It is unspecified whether the status value returned by calls to wait() or waitpid() for processes created by
posix_spawn() or posix_spawnp() can indicate a WIFSIGNALED(stat_val) if a signal is sent to the parent’s
process group after posix_spawn() or posix_spawnp() is called.

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the WUNTRACED
flag and did not specify the WCONTINUED flag, exactly one of the macros WIFEXITED(*stat_loc),
WIFSIGNALED(*stat_loc), and WIFSTOPPED(*stat_loc) shall evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the WUNTRACED
and WCONTINUED flags, exactly one of the macros WIFEXITED(*stat_loc), WIFSIG-
NALED(*stat_loc), WIFSTOPPED(*stat_loc), and WIFCONTINUED(*stat_loc) shall evaluate to a non-
zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the WUN-
TRACED or WCONTINUED flags, or by a call to the wait() function, exactly one of the macros WIFEX-
ITED(*stat_loc) and WIFSIGNALED(*stat_loc) shall evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the

IEEE/The Open Group 2017 2

WAIT(3P) POSIX Programmer’s Manual WAIT(3P)

WUNTRACED flag and specified the WCONTINUED flag, exactly one of the macros WIFEX-
ITED(*stat_loc), WIFSIGNALED(*stat_loc), and WIFCONTINUED(*stat_loc) shall evaluate to a non-
zero value.

If _POSIX_REALTIME_SIGNALS is defined, and the implementation queues the SIGCHLD signal, then
if wait() or waitpid() returns because the status of a child process is available, any pending SIGCHLD sig-
nal associated with the process ID of the child process shall be discarded. Any other pending SIGCHLD
signals shall remain pending.

Otherwise, if SIGCHLD is blocked, if wait() or waitpid() return because the status of a child process is
available, any pending SIGCHLD signal shall be cleared unless the status of another child process is avail-
able.

For all other conditions, it is unspecified whether child status will be available when a SIGCHLD signal is
delivered.

There may be additional implementation-defined circumstances under which wait() or waitpid() report sta-

tus. This shall not occur unless the calling process or one of its child processes explicitly makes use of a
non-standard extension. In these cases the interpretation of the reported status is implementation-defined.

If a parent process terminates without waiting for all of its child processes to terminate, the remaining child
processes shall be assigned a new parent process ID corresponding to an implementation-defined system
process.

RETURN VALUE
If wait() or waitpid() returns because the status of a child process is available, these functions shall return a
value equal to the process ID of the child process for which status is reported. If wait() or waitpid() returns
due to the delivery of a signal to the calling process, −1 shall be returned and errno set to [EINTR]. If
waitpid() was invoked with WNOHANG set in options, it has at least one child process specified by pid for
which status is not available, and status is not available for any process specified by pid , 0 is returned. Oth-
erwise, −1 shall be returned, and errno set to indicate the error.

ERRORS
The wait() function shall fail if:

ECHILD
The calling process has no existing unwaited-for child processes.

EINTR
The function was interrupted by a signal. The value of the location pointed to by stat_loc is unde-
fined.

The waitpid() function shall fail if:

ECHILD
The process specified by pid does not exist or is not a child of the calling process, or the process
group specified by pid does not exist or does not have any member process that is a child of the
calling process.

EINTR
The function was interrupted by a signal. The value of the location pointed to by stat_loc is unde-
fined.

EINVAL
The options argument is not valid.

The following sections are informative.

EXAMPLES
Waiting for a Child Process and then Checking its Status

The following example demonstrates the use of waitpid(), fork(), and the macros used to interpret the status
value returned by waitpid() (and wait()). The code segment creates a child process which does some un-
specified work. Meanwhile the parent loops performing calls to waitpid() to monitor the status of the child.

IEEE/The Open Group 2017 3

WAIT(3P) POSIX Programmer’s Manual WAIT(3P)

The loop terminates when child termination is detected.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
...

pid_t child_pid, wpid;
int status;

child_pid = fork();
if (child_pid == -1) { /* fork() failed */

perror("fork");
exit(EXIT_FAILURE);

}

if (child_pid == 0) { /* This is the child */
/* Child does some work and then terminates */
...

} else { /* This is the parent */
do {

wpid = waitpid(child_pid, &status, WUNTRACED
#ifdef WCONTINUED /* Not all implementations support this */

| WCONTINUED
#endif

);
if (wpid == -1) {

perror("waitpid");
exit(EXIT_FAILURE);

}

if (WIFEXITED(status)) {
printf("child exited, status=%d\n", WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {
printf("child killed (signal %d)\n", WTERMSIG(status));

} else if (WIFSTOPPED(status)) {
printf("child stopped (signal %d)\n", WSTOPSIG(status));

#ifdef WIFCONTINUED /* Not all implementations support this */
} else if (WIFCONTINUED(status)) {

printf("child continued\n");
#endif

} else { /* Non-standard case -- may never happen */
printf("Unexpected status (0x%x)\n", status);

}
} while (!WIFEXITED(status) && !WIFSIGNALED(status));

}

Waiting for a Child Process in a Signal Handler for SIGCHLD
The following example demonstrates how to use waitpid() in a signal handler for SIGCHLD without pass-
ing −1 as the pid argument. (See the APPLICATION USAGE section below for the reasons why passing a
pid of −1 is not recommended.) The method used here relies on the standard behavior of waitpid() when
SIGCHLD is blocked. On historical non-conforming systems, the status of some child processes might not
be reported.

IEEE/The Open Group 2017 4

WAIT(3P) POSIX Programmer’s Manual WAIT(3P)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#define CHILDREN 10

static void
handle_sigchld(int signum, siginfo_t *sinfo, void *unused)
{

int sav_errno = errno;
int status;

/*
* Obtain status information for the child which
* caused the SIGCHLD signal and write its exit code
* to stdout.
*/
if (sinfo->si_code != CLD_EXITED)
{

static char msg[] = "wrong si_code\n";
write(2, msg, sizeof msg - 1);

}
else if (waitpid(sinfo->si_pid, &status, 0) = = -1)
{

static char msg[] = "waitpid() failed\n";
write(2, msg, sizeof msg - 1);

}
else if (!WIFEXITED(status))
{

static char msg[] = "WIFEXITED was false\n";
write(2, msg, sizeof msg - 1);

}
else
{

int code = WEXITSTATUS(status);
char buf[2];
buf[0] = '0' + code;
buf[1] = '\n';
write(1, buf, 2);

}
errno = sav_errno;

}

int
main(void)
{

int i;
pid_t pid;
struct sigaction sa;

sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = handle_sigchld;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) = = -1)

IEEE/The Open Group 2017 5

WAIT(3P) POSIX Programmer’s Manual WAIT(3P)

{
perror("sigaction");
exit(EXIT_FAILURE);

}

for (i = 0; i < CHILDREN; i++)
{

switch (pid = fork())
{
case -1:

perror("fork");
exit(EXIT_FAILURE);

case 0:
sleep(2);
_exit(i);

}
}

/* Wait for all the SIGCHLD signals, then terminate on SIGALRM */
alarm(3);
for (;;)

pause();

return 0; /* NOTREACHED */
}

APPLICATION USAGE
Calls to wait() will collect information about any child process. This may result in interactions with other
interfaces that may be waiting for their own children (such as by use of system()). For this and other rea-
sons it is recommended that portable applications not use wait(), but instead use waitpid(). For these same
reasons, the use of waitpid() with a pid argument of −1, and the use of waitid() with the idtype argument set
to P_ALL, are also not recommended for portable applications.

As specified in Consequences of Process Termination, if the calling process has SA_NOCLDWAIT set or
has SIGCHLD set to SIG_IGN, then the termination of a child process will not cause status information to
become available to a thread blocked in wait(), waitid(), or waitpid(). Thus, a thread blocked in one of the
wait functions will remain blocked unless some other condition causes the thread to resume execution (such
as an [ECHILD] failure due to no remaining children in the set of waited-for children).

RATIONALE
A call to the wait() or waitpid() function only returns status on an immediate child process of the calling
process; that is, a child that was produced by a single fork() call (perhaps followed by an exec or other func-
tion calls) from the parent. If a child produces grandchildren by further use of fork(), none of those grand-
children nor any of their descendants affect the behavior of a wait() from the original parent process. Noth-
ing in this volume of POSIX.1-2017 prevents an implementation from providing extensions that permit a
process to get status from a grandchild or any other process, but a process that does not use such extensions
must be guaranteed to see status from only its direct children.

The waitpid() function is provided for three reasons:

1. To support job control

2. To permit a non-blocking version of the wait() function

3. To permit a library routine, such as system() or pclose(), to wait for its children without interfering
with other terminated children for which the process has not waited

The first two of these facilities are based on the wait3() function provided by 4.3 BSD. The function uses
the options argument, which is equivalent to an argument to wait3(). The WUNTRACED flag is used only
in conjunction with job control on systems supporting job control. Its name comes from 4.3 BSD and refers
to the fact that there are two types of stopped processes in that implementation: processes being traced via

IEEE/The Open Group 2017 6

WAIT(3P) POSIX Programmer’s Manual WAIT(3P)

the ptrace() debugging facility and (untraced) processes stopped by job control signals. Since ptrace() is
not part of this volume of POSIX.1-2017, only the second type is relevant. The name WUNTRACED was
retained because its usage is the same, even though the name is not intuitively meaningful in this context.

The third reason for the waitpid() function is to permit independent sections of a process to spawn and wait
for children without interfering with each other. For example, the following problem occurs in developing a
portable shell, or command interpreter:

stream = popen("/bin/true");
(void) system("sleep 100");
(void) pclose(stream);

On all historical implementations, the final pclose() fails to reap the wait() status of the popen().

The status values are retrieved by macros, rather than given as specific bit encodings as they are in most
historical implementations (and thus expected by existing programs). This was necessary to eliminate a
limitation on the number of signals an implementation can support that was inherent in the traditional en-
codings. This volume of POSIX.1-2017 does require that a status value of zero corresponds to a process
calling _exit(0), as this is the most common encoding expected by existing programs. Some of the macro
names were adopted from 4.3 BSD.

These macros syntactically operate on an arbitrary integer value. The behavior is undefined unless that
value is one stored by a successful call to wait() or waitpid() in the location pointed to by the stat_loc argu-
ment. An early proposal attempted to make this clearer by specifying each argument as *stat_loc rather
than stat_val. Howev er, that did not follow the conventions of other specifications in this volume of
POSIX.1-2017 or traditional usage. It also could have implied that the argument to the macro must literally
be *stat_loc; in fact, that value can be stored or passed as an argument to other functions before being inter-
preted by these macros.

The extension that affects wait() and waitpid() and is common in historical implementations is the ptrace()
function. It is called by a child process and causes that child to stop and return a status that appears identi-
cal to the status indicated by WIFSTOPPED. The status of ptrace() children is traditionally returned re-
gardless of the WUNTRACED flag (or by the wait() function). Most applications do not need to concern
themselves with such extensions because they hav e control over what extensions they or their children use.
However, applications, such as command interpreters, that invoke arbitrary processes may see this behavior
when those arbitrary processes misuse such extensions.

Implementations that support core file creation or other implementation-defined actions on termination of
some processes traditionally provide a bit in the status returned by wait() to indicate that such actions have
occurred.

Allowing the wait() family of functions to discard a pending SIGCHLD signal that is associated with a suc-
cessfully waited-for child process puts them into the sigwait() and sigwaitinfo() category with respect to
SIGCHLD.

This definition allows implementations to treat a pending SIGCHLD signal as accepted by the process in
wait(), with the same meaning of ‘‘accepted’’ as when that word is applied to the sigwait() family of func-
tions.

Allowing the wait() family of functions to behave this way permits an implementation to be able to deal
precisely with SIGCHLD signals.

In particular, an implementation that does accept (discard) the SIGCHLD signal can make the following
guarantees regardless of the queuing depth of signals in general (the list of waitable children can hold the
SIGCHLD queue):

1. If a SIGCHLD signal handler is established via sigaction() without the SA_RESETHAND flag,
SIGCHLD signals can be accurately counted; that is, exactly one SIGCHLD signal will be delivered to
or accepted by the process for every child process that terminates.

IEEE/The Open Group 2017 7

WAIT(3P) POSIX Programmer’s Manual WAIT(3P)

2. A single wait() issued from a SIGCHLD signal handler can be guaranteed to return immediately with
status information for a child process.

3. When SA_SIGINFO is requested, the SIGCHLD signal handler can be guaranteed to receive a non-
null pointer to a siginfo_t structure that describes a child process for which a wait via waitpid() or
waitid() will not block or fail.

4. The system() function will not cause the SIGCHLD handler of a process to be called as a result of the
fork()/exec executed within system() because system() will accept the SIGCHLD signal when it per-
forms a waitpid() for its child process. This is a desirable behavior of system() so that it can be used in
a library without causing side-effects to the application linked with the library.

An implementation that does not permit the wait() family of functions to accept (discard) a pending
SIGCHLD signal associated with a successfully waited-for child, cannot make the guarantees described
above for the following reasons:

Guarantee #1
Although it might be assumed that reliable queuing of all SIGCHLD signals generated by the sys-
tem can make this guarantee, the counter-example is the case of a process that blocks SIGCHLD
and performs an indefinite loop of fork()/wait() operations. If the implementation supports queued
signals, then eventually the system will run out of memory for the queue. The guarantee cannot be
made because there must be some limit to the depth of queuing.

Guarantees #2 and #3
These cannot be guaranteed unless the wait() family of functions accepts the SIGCHLD signal. Oth-
erwise, a fork()/wait() executed while SIGCHLD is blocked (as in the system() function) will result
in an invocation of the handler when SIGCHLD is unblocked, after the process has disappeared.

Guarantee #4
Although possible to make this guarantee, system() would have to set the SIGCHLD handler to
SIG_DFL so that the SIGCHLD signal generated by its fork() would be discarded (the SIGCHLD
default action is to be ignored), then restore it to its previous setting. This would have the undesir-
able side-effect of discarding all SIGCHLD signals pending to the process.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.13, Status Information, exec , exit(), fork(), system(), waitid()

The Base Definitions volume of POSIX.1-2017, Section 4.12, Memory Synchronization, <signal.h>,
<sys_wait.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 8

WAITID(3P) POSIX Programmer’s Manual WAITID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
waitid — wait for a child process to change state

SYNOPSIS
#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

DESCRIPTION
The waitid() function shall obtain status information (see Section 2.13, Status Information) pertaining to
termination, stop, and/or continue events in one of the caller’s child processes.

The waitid() function shall cause the calling thread to become blocked until an error occurs or status infor-
mation becomes available to the calling thread that satisfies all of the following properties (‘‘matching sta-
tus information’’):

* The status information is from one of the child processes in the set of child processes specified by the
idtype and id arguments.

* The state change in the status information matches one of the state change flags set in the options ar-
gument.

If matching status information is available prior to the call to waitid(), return shall be immediate. If match-
ing status information is available for two or more child processes, the order in which their status is re-
ported is unspecified.

As described in Section 2.13, Status Information, the waitid() function consumes the status information it
obtains unless the WNOWAIT flag is set in the options argument.

The behavior when multiple threads are blocked in wait(), waitid(), or waitpid() is described in Section

2.13, Status Information.

The waitid() function shall record the obtained status information in the structure pointed to by infop. The
fields of the structure pointed to by infop shall be filled in as described under ‘‘Pointer to a Function’’ in
Section 2.4.3, Signal Actions.

The idtype and id arguments are used to specify which children waitid() waits for.

If idtype is P_PID, waitid() shall wait for the child with a process ID equal to (pid_t)id.

If idtype is P_PGID, waitid() shall wait for any child with a process group ID equal to (pid_t)id.

If idtype is P_ALL, waitid() shall wait for any children and id is ignored.

The options argument is used to specify which state changes waitid() shall wait for. It is formed by OR’ing
together the following flags:

WCONTINUED
Status shall be returned for any continued child process whose status either has not been re-
ported since it continued from a job control stop or has been reported only by calls to
waitid() with the WNOWAIT flag set.

WEXITED Wait for processes that have exited.

WNOHANG Do not hang if no status is available; return immediately.

WNOWAIT Keep the process whose status is returned in infop in a waitable state. This shall not affect
the state of the process; the process may be waited for again after this call completes.

WSTOPPED Status shall be returned for any child that has stopped upon receipt of a signal, and whose
status either has not been reported since it stopped or has been reported only by calls to
waitid() with the WNOWAIT flag set.

IEEE/The Open Group 2017 1

WAITID(3P) POSIX Programmer’s Manual WAITID(3P)

Applications shall specify at least one of the flags WEXITED, WSTOPPED, or WCONTINUED to be
OR’ed in with the options argument.

The application shall ensure that the infop argument points to a siginfo_t structure. If waitid() returns be-
cause a child process was found that satisfied the conditions indicated by the arguments idtype and options,
then the structure pointed to by infop shall be filled in by the system with the status of the process; the
si_signo member shall be set equal to SIGCHLD. If waitid() returns because WNOHANG was specified
and status is not available for any process specified by idtype and id , then the si_signo and si_pid members
of the structure pointed to by infop shall be set to zero and the values of other members of the structure are
unspecified.

RETURN VALUE
If WNOHANG was specified and status is not available for any process specified by idtype and id , 0 shall
be returned. If waitid() returns due to the change of state of one of its children, 0 shall be returned. Other-
wise, −1 shall be returned and errno set to indicate the error.

ERRORS
The waitid() function shall fail if:

ECHILD
The calling process has no existing unwaited-for child processes.

EINTR
The waitid() function was interrupted by a signal.

EINVAL
An invalid value was specified for options, or idtype and id specify an invalid set of processes.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
Calls to waitid() with idtype equal to P_ALL will collect information about any child process. This may re-
sult in interactions with other interfaces that may be waiting for their own children (such as by use of sys-

tem()). For this reason it is recommended that portable applications not use waitid() with idtype of P_ALL.
See also APPLICATION USAGE for wait().

As specified in Consequences of Process Termination, if the calling process has SA_NOCLDWAIT set or
has SIGCHLD set to SIG_IGN, then the termination of a child process will not cause status information to
become available to a thread blocked in wait(), waitid(), or waitpid(). Thus, a thread blocked in one of the
wait functions will remain blocked unless some other condition causes the thread to resume execution (such
as an [ECHILD] failure due to no remaining children in the set of waited-for children).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.4.3, Signal Actions, Section 2.13, Status Information, exec , exit(), wait()

The Base Definitions volume of POSIX.1-2017, <signal.h>, <sys_wait.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 2

WAITID(3P) POSIX Programmer’s Manual WAITID(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

WAITPID(3P) POSIX Programmer’s Manual WAITPID(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
waitpid — wait for a child process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION
Refer to wait().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCPCPY(3P) POSIX Programmer’s Manual WCPCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcpcpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

wchar_t *wcpcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
Refer to wcscpy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCPNCPY(3P) POSIX Programmer’s Manual WCPNCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcpncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

wchar_t *wcpncpy(wchar_t restrict *ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
Refer to wcsncpy().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCRTOMB(3P) POSIX Programmer’s Manual WCRTOMB(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcrtomb — convert a wide-character code to a character (restartable)

SYNOPSIS
#include <wchar.h>

size_t wcrtomb(char *restrict s, wchar_t wc, mbstate_t *restrict ps);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

If s is a null pointer, the wcrtomb() function shall be equivalent to the call:

wcrtomb(buf, L'\0', ps)

where buf is an internal buffer.

If s is not a null pointer, the wcrtomb() function shall determine the number of bytes needed to represent the
character that corresponds to the wide character given by wc (including any shift sequences), and store the
resulting bytes in the array whose first element is pointed to by s. At most {MB_CUR_MAX} bytes are
stored. If wc is a null wide character, a null byte shall be stored, preceded by any shift sequence needed to
restore the initial shift state. The resulting state described shall be the initial conversion state.

If ps is a null pointer, the wcrtomb() function shall use its own internal mbstate_t object, which is initial-
ized at program start-up to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps

shall be used to completely describe the current conversion state of the associated character sequence. The
implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls wcrtomb().

The wcrtomb() function need not be thread-safe if called with a NULL ps argument.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

The wcrtomb() function shall not change the setting of errno if successful.

RETURN VALUE
The wcrtomb() function shall return the number of bytes stored in the array object (including any shift se-
quences). When wc is not a valid wide character, an encoding error shall occur. In this case, the function
shall store the value of the macro [EILSEQ] in errno and shall return (size_t)−1; the conversion state shall
be undefined.

ERRORS
The wcrtomb() function shall fail if:

EILSEQ
An invalid wide-character code is detected.

The wcrtomb() function may fail if:

EINVAL
ps points to an object that contains an invalid conversion state.

The following sections are informative.

EXAMPLES
None.

IEEE/The Open Group 2017 1

WCRTOMB(3P) POSIX Programmer’s Manual WCRTOMB(3P)

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), wcsrtombs()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSCASECMP(3P) POSIX Programmer’s Manual WCSCASECMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcscasecmp, wcscasecmp_l, wcsncasecmp, wcsncasecmp_l — case-insensitive wide-character string com-
parison

SYNOPSIS
#include <wchar.h>

int wcscasecmp(const wchar_t *ws1, const wchar_t *ws2);
int wcscasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

locale_t locale);
int wcsncasecmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);
int wcsncasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

size_t n, locale_t locale);

DESCRIPTION
The wcscasecmp() and wcsncasecmp() functions are the wide-character equivalent of the strcasecmp() and
strncasecmp() functions, respectively.

The wcscasecmp() and wcscasecmp_l() functions shall compare, while ignoring differences in case, the
wide-character string pointed to by ws1 to the wide-character string pointed to by ws2.

The wcsncasecmp() and wcsncasecmp_l() functions shall compare, while ignoring differences in case, not
more than n wide-characters from the wide-character string pointed to by ws1 to the wide-character string
pointed to by ws2.

The wcscasecmp() and wcsncasecmp() functions use the current locale to determine the case of the wide
characters.

The wcscasecmp_l() and wcsncasecmp_l() functions use the locale represented by locale to determine the
case of the wide characters.

When the LC_CTYPE category of the locale being used is from the POSIX locale, these functions shall be-
have as if the wide-character strings had been converted to lowercase and then a comparison of wide-char-
acter codes performed. Otherwise, the results are unspecified.

The information for wcscasecmp_l() and wcsncasecmp_l() about the case of the characters comes from the
locale represented by locale.

The behavior is undefined if the locale argument to wcscasecmp_l() or wcsncasecmp_l() is the special lo-
cale object LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon completion, the wcscasecmp() and wcscasecmp_l() functions shall return an integer greater than,
equal to, or less than 0 if the wide-character string pointed to by ws1 is, ignoring case, greater than, equal
to, or less than the wide-character string pointed to by ws2, respectively.

Upon completion, the wcsncasecmp() and wcsncasecmp_l() functions shall return an integer greater than,
equal to, or less than 0 if the possibly null wide-character terminated string pointed to by ws1 is, ignoring
case, greater than, equal to, or less than the possibly null wide-character terminated string pointed to by
ws2, respectively.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

IEEE/The Open Group 2017 1

WCSCASECMP(3P) POSIX Programmer’s Manual WCSCASECMP(3P)

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcasecmp(), wcscmp(), wcsncmp()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSCAT(3P) POSIX Programmer’s Manual WCSCAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcscat — concatenate two wide-character strings

SYNOPSIS
#include <wchar.h>

wchar_t *wcscat(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcscat() function shall append a copy of the wide-character string pointed to by ws2 (including the ter-
minating null wide-character code) to the end of the wide-character string pointed to by ws1. The initial
wide-character code of ws2 shall overwrite the null wide-character code at the end of ws1. If copying takes
place between objects that overlap, the behavior is undefined.

RETURN VALUE
The wcscat() function shall return ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsncat()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSCHR(3P) POSIX Programmer’s Manual WCSCHR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcschr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcschr() function shall locate the first occurrence of wc in the wide-character string pointed to by ws.
The application shall ensure that the value of wc is a character representable as a type wchar_t and a wide-
character code corresponding to a valid character in the current locale. The terminating null wide-character
code is considered to be part of the wide-character string.

RETURN VALUE
Upon completion, wcschr() shall return a pointer to the wide-character code, or a null pointer if the wide-
character code is not found.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsrchr()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSCMP(3P) POSIX Programmer’s Manual WCSCMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcscmp — compare two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcscmp(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcscmp() function shall compare the wide-character string pointed to by ws1 to the wide-character
string pointed to by ws2.

The sign of a non-zero return value shall be determined by the sign of the difference between the values of
the first pair of wide-character codes that differ in the objects being compared.

RETURN VALUE
Upon completion, wcscmp() shall return an integer greater than, equal to, or less than 0, if the wide-charac-
ter string pointed to by ws1 is greater than, equal to, or less than the wide-character string pointed to by
ws2, respectively.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp(), wcsncmp()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSCOLL(3P) POSIX Programmer’s Manual WCSCOLL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcscoll, wcscoll_l — wide-character string comparison using collating information

SYNOPSIS
#include <wchar.h>

int wcscoll(const wchar_t *ws1, const wchar_t *ws2);
int wcscoll_l(const wchar_t *ws1, const wchar_t *ws2,

locale_t locale);

DESCRIPTION
For wcscoll(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The wcscoll() and wcscoll_l() functions shall compare the wide-character string pointed to by ws1 to the
wide-character string pointed to by ws2, both interpreted as appropriate to the LC_COLLATE category of
the current locale, or the locale represented by locale, respectively.

The wcscoll() and wcscoll_l() functions shall not change the setting of errno if successful.

An application wishing to check for error situations should set errno to 0 before calling wcscoll() or wc-

scoll_l(). If errno is non-zero on return, an error has occurred.

The behavior is undefined if the locale argument to wcscoll_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
Upon successful completion, wcscoll() and wcscoll_l() shall return an integer greater than, equal to, or less
than 0, according to whether the wide-character string pointed to by ws1 is greater than, equal to, or less
than the wide-character string pointed to by ws2, when both are interpreted as appropriate to the current lo-
cale, or to the locale represented by locale, respectively. On error, wcscoll() and wcscoll_l() shall set errno,
but no return value is reserved to indicate an error.

ERRORS
These functions may fail if:

EINVAL
The ws1 or ws2 arguments contain wide-character codes outside the domain of the collating se-
quence.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The wcsxfrm() and wcscmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcsxfrm()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

IEEE/The Open Group 2017 1

WCSCOLL(3P) POSIX Programmer’s Manual WCSCOLL(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSCPY(3P) POSIX Programmer’s Manual WCSCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcpcpy, wcscpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

wchar_t *wcpcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);
wchar_t *wcscpy(wchar_t *restrict ws1, const wchar_t *restrict ws2);

DESCRIPTION
For wcscpy(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The wcpcpy() and wcscpy() functions shall copy the wide-character string pointed to by ws2 (including the
terminating null wide-character code) into the array pointed to by ws1.

The application shall ensure that there is room for at least wcslen(ws2)+1 wide characters in the ws1 array,
and that the ws2 and ws1 arrays do not overlap.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The wcpcpy() function shall return a pointer to the terminating null wide-character code copied into the ws1

buffer.

The wcscpy() function shall return ws1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), wcsdup(), wcsncpy()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced

IEEE/The Open Group 2017 1

WCSCPY(3P) POSIX Programmer’s Manual WCSCPY(3P)

during the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSCSPN(3P) POSIX Programmer’s Manual WCSCSPN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcscspn — get the length of a complementary wide substring

SYNOPSIS
#include <wchar.h>

size_t wcscspn(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcscspn() function shall compute the length (in wide characters) of the maximum initial segment of
the wide-character string pointed to by ws1 which consists entirely of wide-character codes not from the
wide-character string pointed to by ws2.

RETURN VALUE
The wcscspn() function shall return the length of the initial substring of ws1; no return value is reserved to
indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsspn()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSDUP(3P) POSIX Programmer’s Manual WCSDUP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsdup — duplicate a wide-character string

SYNOPSIS
#include <wchar.h>

wchar_t *wcsdup(const wchar_t *string);

DESCRIPTION
The wcsdup() function is the wide-character equivalent of the strdup() function.

The wcsdup() function shall return a pointer to a new wide-character string, allocated as if by a call to mal-

loc(), which is the duplicate of the wide-character string string. The returned pointer can be passed to
free(). A null pointer is returned if the new wide-character string cannot be created.

RETURN VALUE
Upon successful completion, the wcsdup() function shall return a pointer to the newly allocated wide-char-
acter string. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The wcsdup() function shall fail if:

ENOMEM
Memory large enough for the duplicate string could not be allocated.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
For functions that allocate memory as if by malloc(), the application should release such memory when it is
no longer required by a call to free(). For wcsdup(), this is the return value.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), strdup(), wcscpy()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSFTIME(3P) POSIX Programmer’s Manual WCSFTIME(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsftime — convert date and time to a wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcsftime(wchar_t *restrict wcs, size_t maxsize,
const wchar_t *restrict format, const struct tm *restrict timeptr);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcsftime() function shall be equivalent to the strftime() function, except that:

* The argument wcs points to the initial element of an array of wide characters into which the generated
output is to be placed.

* The argument maxsize indicates the maximum number of wide characters to be placed in the output
array.

* The argument format is a wide-character string and the conversion specifications are replaced by cor-
responding sequences of wide characters. It is unspecified whether an encoding error occurs if the for-
mat string contains wchar_t values that do not correspond to members of the character set of the cur-
rent locale.

* Field widths specify the number of wide characters instead of the number of bytes.

* The return value indicates the number of wide characters placed in the output array.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
If the total number of resulting wide-character codes including the terminating null wide-character code is
no more than maxsize, wcsftime() shall return the number of wide-character codes placed into the array
pointed to by wcs, not including the terminating null wide-character code. Otherwise, zero is returned and
the contents of the array are unspecified.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strftime()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

IEEE/The Open Group 2017 1

WCSFTIME(3P) POSIX Programmer’s Manual WCSFTIME(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSLEN(3P) POSIX Programmer’s Manual WCSLEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcslen, wcsnlen — get length of a fixed-sized wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcslen(const wchar_t *ws);
size_t wcsnlen(const wchar_t *ws, size_t maxlen);

DESCRIPTION
For wcslen(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The wcslen() function shall compute the number of wide-character codes in the wide-character string to
which ws points, not including the terminating null wide-character code.

The wcsnlen() function shall compute the smaller of the number of wide characters in the array to which ws

points, not including any terminating null wide-character code, and the value of maxlen. The wcsnlen()
function shall never examine more than the first maxlen characters of the wide-character array pointed to by
ws.

RETURN VALUE
The wcslen() function shall return the length of ws.

The wcsnlen() function shall return the number of wide characters preceding the first null wide-character
code in the array to which ws points, if ws contains a null wide-character code within the first maxlen wide
characters; otherwise, it shall return maxlen.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strlen()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

IEEE/The Open Group 2017 1

WCSLEN(3P) POSIX Programmer’s Manual WCSLEN(3P)

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSNCASECMP(3P) POSIX Programmer’s Manual WCSNCASECMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsncasecmp, wcsncasecmp_l — case-insensitive wide-character string comparison

SYNOPSIS
#include <wchar.h>

int wcsncasecmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);
int wcsncasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

size_t n, locale_t locale);

DESCRIPTION
Refer to wcscasecmp().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSNCAT(3P) POSIX Programmer’s Manual WCSNCAT(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsncat — concatenate a wide-character string with part of another

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncat(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcsncat() function shall append not more than n wide-character codes (a null wide-character code and
wide-character codes that follow it are not appended) from the array pointed to by ws2 to the end of the
wide-character string pointed to by ws1. The initial wide-character code of ws2 shall overwrite the null
wide-character code at the end of ws1. A terminating null wide-character code shall always be appended to
the result. If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The wcsncat() function shall return ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscat()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSNCMP(3P) POSIX Programmer’s Manual WCSNCMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsncmp — compare part of two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcsncmp() function shall compare not more than n wide-character codes (wide-character codes that
follow a null wide-character code are not compared) from the array pointed to by ws1 to the array pointed
to by ws2.

The sign of a non-zero return value shall be determined by the sign of the difference between the values of
the first pair of wide-character codes that differ in the objects being compared.

RETURN VALUE
Upon successful completion, wcsncmp() shall return an integer greater than, equal to, or less than 0, if the
possibly null-terminated array pointed to by ws1 is greater than, equal to, or less than the possibly null-ter-
minated array pointed to by ws2, respectively.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscasecmp(), wcscmp()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSNCPY(3P) POSIX Programmer’s Manual WCSNCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcpncpy, wcsncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
#include <wchar.h>

wchar_t *wcpncpy(wchar_t restrict *ws1, const wchar_t *restrict ws2,
size_t n);

wchar_t *wcsncpy(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
For wcsncpy(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The wcpncpy() and wcsncpy() functions shall copy not more than n wide-character codes (wide-character
codes that follow a null wide-character code are not copied) from the array pointed to by ws2 to the array
pointed to by ws1. If copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to by ws2 is a wide-character string that is shorter than n wide-character codes, null
wide-character codes shall be appended to the copy in the array pointed to by ws1, until n wide-character
codes in all are written.

RETURN VALUE
If any null wide-character codes were written into the destination, the wcpncpy() function shall return the
address of the first such null wide-character code. Otherwise, it shall return &ws1[n].

The wcsncpy() function shall return ws1.

No return values are reserved to indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If there is no null wide-character code in the first n wide-character codes of the array pointed to by ws2, the
result is not null-terminated.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), wcscpy()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and

IEEE/The Open Group 2017 1

WCSNCPY(3P) POSIX Programmer’s Manual WCSNCPY(3P)

The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSNLEN(3P) POSIX Programmer’s Manual WCSNLEN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsnlen — get length of a fixed-sized wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcsnlen(const wchar_t *ws, size_t maxlen);

DESCRIPTION
Refer to wcslen().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSNRTOMBS(3P) POSIX Programmer’s Manual WCSNRTOMBS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsnrtombs — convert wide-character string to multi-byte string

SYNOPSIS
#include <wchar.h>

size_t wcsnrtombs(char *restrict dst, const wchar_t **restrict src,
size_t nwc, size_t len, mbstate_t *restrict ps);

DESCRIPTION
Refer to wcsrtombs().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSPBRK(3P) POSIX Programmer’s Manual WCSPBRK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcspbrk — scan a wide-character string for a wide-character code

SYNOPSIS
#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcspbrk() function shall locate the first occurrence in the wide-character string pointed to by ws1 of
any wide-character code from the wide-character string pointed to by ws2.

RETURN VALUE
Upon successful completion, wcspbrk() shall return a pointer to the wide-character code or a null pointer if
no wide-character code from ws2 occurs in ws1.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), wcsrchr()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSRCHR(3P) POSIX Programmer’s Manual WCSRCHR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsrchr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcsrchr() function shall locate the last occurrence of wc in the wide-character string pointed to by ws.
The application shall ensure that the value of wc is a character representable as a type wchar_t and a wide-
character code corresponding to a valid character in the current locale. The terminating null wide-character
code shall be considered to be part of the wide-character string.

RETURN VALUE
Upon successful completion, wcsrchr() shall return a pointer to the wide-character code or a null pointer if
wc does not occur in the wide-character string.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSRTOMBS(3P) POSIX Programmer’s Manual WCSRTOMBS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsnrtombs, wcsrtombs — convert a wide-character string to a character string (restartable)

SYNOPSIS
#include <wchar.h>

size_t wcsnrtombs(char *restrict dst, const wchar_t **restrict src,
size_t nwc, size_t len, mbstate_t *restrict ps);

size_t wcsrtombs(char *restrict dst, const wchar_t **restrict src,
size_t len, mbstate_t *restrict ps);

DESCRIPTION
For wcsrtombs(): The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is unintentional. This volume
of POSIX.1-2017 defers to the ISO C standard.

The wcsrtombs() function shall convert a sequence of wide characters from the array indirectly pointed to
by src into a sequence of corresponding characters, beginning in the conversion state described by the ob-
ject pointed to by ps. If dst is not a null pointer, the converted characters shall then be stored into the array
pointed to by dst. Conversion continues up to and including a terminating null wide character, which shall
also be stored. Conversion shall stop earlier in the following cases:

* When a code is reached that does not correspond to a valid character

* When the next character would exceed the limit of len total bytes to be stored in the array pointed to
by dst (and dst is not a null pointer)

Each conversion shall take place as if by a call to the wcrtomb() function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null pointer (if con-
version stopped due to reaching a terminating null wide character) or the address just past the last wide
character converted (if any). If conversion stopped due to reaching a terminating null wide character, the re-
sulting state described shall be the initial conversion state.

If ps is a null pointer, the wcsrtombs() function shall use its own internal mbstate_t object, which is initial-
ized at program start-up to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps

shall be used to completely describe the current conversion state of the associated character sequence.

The wcsnrtombs() and wcsrtombs() functions need not be thread-safe if called with a NULL ps argument.

The wcsnrtombs() function shall be equivalent to the wcsrtombs() function, except that the conversion is
limited to the first nwc wide characters.

The wcsrtombs() function shall not change the setting of errno if successful.

The behavior of these functions shall be affected by the LC_CTYPE category of the current locale.

The implementation shall behave as if no function defined in System Interfaces volume of POSIX.1-2017
calls these functions.

RETURN VALUE
If conversion stops because a code is reached that does not correspond to a valid character, an encoding er-
ror occurs. In this case, these functions shall store the value of the macro [EILSEQ] in errno and return
(size_t)−1; the conversion state is undefined. Otherwise, these functions shall return the number of bytes in
the resulting character sequence, not including the terminating null (if any).

ERRORS
These functions shall fail if:

IEEE/The Open Group 2017 1

WCSRTOMBS(3P) POSIX Programmer’s Manual WCSRTOMBS(3P)

EILSEQ
A wide-character code does not correspond to a valid character.

These functions may fail if:

EINVAL
ps points to an object that contains an invalid conversion state.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), wcrtomb()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSSPN(3P) POSIX Programmer’s Manual WCSSPN(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsspn — get the length of a wide substring

SYNOPSIS
#include <wchar.h>

size_t wcsspn(const wchar_t *ws1, const wchar_t *ws2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcsspn() function shall compute the length (in wide characters) of the maximum initial segment of the
wide-character string pointed to by ws1 which consists entirely of wide-character codes from the wide-
character string pointed to by ws2.

RETURN VALUE
The wcsspn() function shall return the length of the initial substring of ws1; no return value is reserved to
indicate an error.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscspn()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSSTR(3P) POSIX Programmer’s Manual WCSSTR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsstr — find a wide-character substring

SYNOPSIS
#include <wchar.h>

wchar_t *wcsstr(const wchar_t *restrict ws1,
const wchar_t *restrict ws2);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcsstr() function shall locate the first occurrence in the wide-character string pointed to by ws1 of the
sequence of wide characters (excluding the terminating null wide character) in the wide-character string
pointed to by ws2.

RETURN VALUE
Upon successful completion, wcsstr() shall return a pointer to the located wide-character string, or a null
pointer if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function shall return ws1.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSTOD(3P) POSIX Programmer’s Manual WCSTOD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstod, wcstof, wcstold — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

double wcstod(const wchar_t *restrict nptr, wchar_t **restrict endptr);
float wcstof(const wchar_t *restrict nptr, wchar_t **restrict endptr);
long double wcstold(const wchar_t *restrict nptr,

wchar_t **restrict endptr);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall convert the initial portion of the wide-character string pointed to by nptr to double,
float, and long double representation, respectively. First, they shall decompose the input wide-character
string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by iswspace())

2. A subject sequence interpreted as a floating-point constant or representing infinity or NaN

3. A final wide-character string of one or more unrecognized wide-character codes, including the termi-
nating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional ’+’ or ’−’ sign, then one of the following:

* A non-empty sequence of decimal digits optionally containing a radix character; then an optional ex-
ponent part consisting of the wide character ’e’ or the wide character ’E’, optionally followed by a ’+’
or ’−’ wide character, and then followed by one or more decimal digits

* A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix character;
then an optional binary exponent part consisting of the wide character ’p’ or the wide character ’P’,
optionally followed by a ’+’ or ’−’ wide character, and then followed by one or more decimal digits

* One of INF or INFINITY, or any other wide string equivalent except for case

* One of NAN or NAN(n-wchar-sequence
opt

), or any other wide string ignoring case in the NAN part,
where:

n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide string, starting with the
first non-white-space wide character, that is of the expected form. The subject sequence contains no wide
characters if the input wide string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of wide characters
starting with the first digit or the radix character (whichever occurs first) shall be interpreted as a floating
constant according to the rules of the C language, except that the radix character shall be used in place of a
period, and that if neither an exponent part nor a radix character appears in a decimal floating-point number,

IEEE/The Open Group 2017 1

WCSTOD(3P) POSIX Programmer’s Manual WCSTOD(3P)

or if a binary exponent part does not appear in a hexadecimal floating-point number, an exponent part of the
appropriate type with value zero shall be assumed to follow the last digit in the string. If the subject se-
quence begins with a <hyphen-minus>, the sequence shall be interpreted as negated. A wide-character se-
quence INF or INFINITY shall be interpreted as an infinity, if representable in the return type, else as if it
were a floating constant that is too large for the range of the return type. A wide-character sequence NAN
or NAN(n-wchar-sequence

opt
) shall be interpreted as a quiet NaN, if supported in the return type, else as if

it were a subject sequence part that does not have the expected form; the meaning of the n-wchar sequences
is implementation-defined. A pointer to the final wide string shall be stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the conversion shall be
rounded in an implementation-defined manner.

The radix character shall be as defined in the current locale (category LC_NUMERIC). In the POSIX lo-
cale, or in a locale where the radix character is not defined, the radix character shall default to a <period>
(’.’).

In other than the C or POSIX locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be performed; the
value of nptr shall be stored in the object pointed to by endptr, provided that endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check for error
situations should set errno to 0, then call wcstod(), wcstof(), or wcstold(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value. If no conversion could be per-
formed, 0 shall be returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL, ±HUGE_VALF, or
±HUGE_VALL shall be returned (according to the sign of the value), and errno shall be set to [ERANGE].

If the correct value would cause underflow, a value whose magnitude is no greater than the smallest normal-
ized positive number in the return type shall be returned and errno set to [ERANGE].

ERRORS
The wcstod() function shall fail if:

ERANGE
The value to be returned would cause overflow or underflow.

The wcstod() function may fail if:

EINVAL
No conversion could be performed.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, and the result is not
exactly representable, the result should be one of the two numbers in the appropriate internal format that are
adjacent to the hexadecimal floating source value, with the extra stipulation that the error should have a cor-
rect sign for the current rounding direction.

If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>) significant
digits, the result should be correctly rounded. If the subject sequence D has the decimal form and more than
DECIMAL_DIG significant digits, consider the two bounding, adjacent decimal strings L and U, both hav-
ing DECIMAL_DIG significant digits, such that the values of L, D, and U satisfy "L<=D<=U". The result
should be one of the (equal or adjacent) values that would be obtained by correctly rounding L and U ac-
cording to the current rounding direction, with the extra stipulation that the error with respect to D should

IEEE/The Open Group 2017 2

WCSTOD(3P) POSIX Programmer’s Manual WCSTOD(3P)

have a correct sign for the current rounding direction.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswspace(), localeconv(), setlocale(), wcstol()

The Base Definitions volume of POSIX.1-2017, Chapter 7 , Locale, <float.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 3

WCSTOIMAX(3P) POSIX Programmer’s Manual WCSTOIMAX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstoimax, wcstoumax — convert a wide-character string to an integer type

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall be equivalent to the wcstol(), wcstoll(), wcstoul(), and wcstoull() functions, respec-
tively, except that the initial portion of the wide string shall be converted to intmax_t and uintmax_t repre-
sentation, respectively.

RETURN VALUE
These functions shall return the converted value, if any.

If no conversion could be performed, zero shall be returned. If the correct value is outside the range of rep-
resentable values, {INTMAX_MAX}, {INTMAX_MIN}, or {UINTMAX_MAX} shall be returned (ac-
cording to the return type and sign of the value, if any), and errno shall be set to [ERANGE].

ERRORS
These functions shall fail if:

EINVAL
The value of base is not supported.

ERANGE
The value to be returned is not representable.

These functions may fail if:

EINVAL
No conversion could be performed.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcstol(), wcstoul()

The Base Definitions volume of POSIX.1-2017, <inttypes.h>, <stddef.h>

IEEE/The Open Group 2017 1

WCSTOIMAX(3P) POSIX Programmer’s Manual WCSTOIMAX(3P)

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSTOK(3P) POSIX Programmer’s Manual WCSTOK(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstok — split a wide-character string into tokens

SYNOPSIS
#include <wchar.h>

wchar_t *wcstok(wchar_t *restrict ws1, const wchar_t *restrict ws2,
wchar_t **restrict ptr);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

A sequence of calls to wcstok() shall break the wide-character string pointed to by ws1 into a sequence of
tokens, each of which shall be delimited by a wide-character code from the wide-character string pointed to
by ws2. The ptr argument points to a caller-provided wchar_t pointer into which the wcstok() function
shall store information necessary for it to continue scanning the same wide-character string.

The first call in the sequence has ws1 as its first argument, and is followed by calls with a null pointer as
their first argument. The separator string pointed to by ws2 may be different from call to call.

The first call in the sequence shall search the wide-character string pointed to by ws1 for the first wide-
character code that is not contained in the current separator string pointed to by ws2. If no such wide-char-
acter code is found, then there are no tokens in the wide-character string pointed to by ws1 and wcstok()
shall return a null pointer. If such a wide-character code is found, it shall be the start of the first token.

The wcstok() function shall then search from there for a wide-character code that is contained in the current
separator string. If no such wide-character code is found, the current token extends to the end of the wide-
character string pointed to by ws1, and subsequent searches for a token shall return a null pointer. If such a
wide-character code is found, it shall be overwritten by a null wide character, which terminates the current
token. The wcstok() function shall save a pointer to the following wide-character code, from which the next
search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, shall start searching from the
saved pointer and behave as described above.

The implementation shall behave as if no function calls wcstok().

RETURN VALUE
Upon successful completion, the wcstok() function shall return a pointer to the first wide-character code of
a token. Otherwise, if there is no token, wcstok() shall return a null pointer.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

WCSTOK(3P) POSIX Programmer’s Manual WCSTOK(3P)

SEE ALSO
The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSTOL(3P) POSIX Programmer’s Manual WCSTOL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstol, wcstoll — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long wcstol(const wchar_t *restrict nptr, wchar_t **restrict endptr,
int base);

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

These functions shall convert the initial portion of the wide-character string pointed to by nptr to long and
long long, respectively. First, they shall decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by iswspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the value of base

3. A final wide-character string of one or more unrecognized wide-character codes, including the termi-
nating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to an integer, and return the result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant, or hexa-
decimal constant, any of which may be preceded by a ’+’ or ’−’ sign. A decimal constant begins with a
non-zero digit, and consists of a sequence of decimal digits. An octal constant consists of the prefix ’0’ op-
tionally followed by a sequence of the digits ’0’ to ’7’ only. A hexadecimal constant consists of the prefix
0x or 0X followed by a sequence of the decimal digits and letters ’a’ (or ’A’) to ’f ’ (or ’F’) with values 10
to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence of letters
and digits representing an integer with the radix specified by base, optionally preceded by a ’+’ or ’−’ sign,
but not including an integer suffix. The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the val-
ues 10 to 35; only letters whose ascribed values are less than that of base shall be permitted. If the value of
base is 16, the wide-character code representations of 0x or 0X may optionally precede the sequence of let-
ters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character string, start-
ing with the first non-white-space wide-character code that is of the expected form. The subject sequence
contains no wide-character codes if the input wide-character string is empty or consists entirely of white-
space wide-character code, or if the first non-white-space wide-character code is other than a sign or a per-
missible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes starting
with the first digit shall be interpreted as an integer constant. If the subject sequence has the expected form
and the value of base is between 2 and 36, it shall be used as the base for conversion, ascribing to each let-
ter its value as given above. If the subject sequence begins with a <hyphen-minus>, the value resulting from
the conversion shall be negated. A pointer to the final wide-character string shall be stored in the object
pointed to by endptr, provided that endptr is not a null pointer.

In other than the C or POSIX locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be performed; the

IEEE/The Open Group 2017 1

WCSTOL(3P) POSIX Programmer’s Manual WCSTOL(3P)

value of nptr shall be stored in the object pointed to by endptr, provided that endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0, {LONG_MIN} or {LLONG_MIN} and {LONG_MAX} or {LLONG_MAX} are returned on er-
ror and are also valid returns on success, an application wishing to check for error situations should set er-

rno to 0, then call wcstol() or wcstoll(), then check errno.

RETURN VALUE
Upon successful completion, these functions shall return the converted value, if any. If no conversion could
be performed, 0 shall be returned and errno may be set to indicate the error. If the correct value is outside
the range of representable values, {LONG_MIN}, {LONG_MAX}, {LLONG_MIN}, or {LLONG_MAX}
shall be returned (according to the sign of the value), and errno set to [ERANGE].

ERRORS
These functions shall fail if:

EINVAL
The value of base is not supported.

ERANGE
The value to be returned is not representable.

These functions may fail if:

EINVAL
No conversion could be performed.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswalpha(), wcstod()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSTOLD(3P) POSIX Programmer’s Manual WCSTOLD(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstold — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

long double wcstold(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

DESCRIPTION
Refer to wcstod().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSTOLL(3P) POSIX Programmer’s Manual WCSTOLL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstoll — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
Refer to wcstol().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSTOMBS(3P) POSIX Programmer’s Manual WCSTOMBS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstombs — convert a wide-character string to a character string

SYNOPSIS
#include <stdlib.h>

size_t wcstombs(char *restrict s, const wchar_t *restrict pwcs,
size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcstombs() function shall convert the sequence of wide-character codes that are in the array pointed to
by pwcs into a sequence of characters that begins in the initial shift state and store these characters into the
array pointed to by s, stopping if a character would exceed the limit of n total bytes or if a null byte is
stored. Each wide-character code shall be converted as if by a call to wctomb(), except that the shift state of
wctomb() shall not be affected.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

No more than n bytes shall be modified in the array pointed to by s. If copying takes place between objects
that overlap, the behavior is undefined. If s is a null pointer, wcstombs() shall return the length required to
convert the entire array regardless of the value of n, but no values are stored.

RETURN VALUE
If a wide-character code is encountered that does not correspond to a valid character (of one or more bytes
each), wcstombs() shall return (size_t)−1. Otherwise, wcstombs() shall return the number of bytes stored in
the character array, not including any terminating null byte. The array shall not be null-terminated if the
value returned is n.

ERRORS
The wcstombs() function shall fail if:

EILSEQ
A wide-character code does not correspond to a valid character.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wctomb()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base

IEEE/The Open Group 2017 1

WCSTOMBS(3P) POSIX Programmer’s Manual WCSTOMBS(3P)

Specifications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engi-
neers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee docu-
ment. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSTOUL(3P) POSIX Programmer’s Manual WCSTOUL(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstoul, wcstoull — convert a wide-character string to an unsigned long

SYNOPSIS
#include <wchar.h>

unsigned long wcstoul(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

unsigned long long wcstoull(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wcstoul() and wcstoull() functions shall convert the initial portion of the wide-character string pointed
to by nptr to unsigned long and unsigned long long representation, respectively. First, they shall decom-
pose the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by iswspace())

2. A subject sequence interpreted as an integer represented in some radix determined by the value of base

3. A final wide-character string of one or more unrecognized wide-character codes, including the termi-
nating null wide-character code of the input wide-character string

Then they shall attempt to convert the subject sequence to an unsigned integer, and return the result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant, or hexa-
decimal constant, any of which may be preceded by a ’+’ or ’−’ sign. A decimal constant begins with a
non-zero digit, and consists of a sequence of decimal digits. An octal constant consists of the prefix ’0’ op-
tionally followed by a sequence of the digits ’0’ to ’7’ only. A hexadecimal constant consists of the prefix
0x or 0X followed by a sequence of the decimal digits and letters ’a’ (or ’A’) to ’f ’ (or ’F’) with values 10
to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence of letters
and digits representing an integer with the radix specified by base, optionally preceded by a ’+’ or ’−’ sign,
but not including an integer suffix. The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the val-
ues 10 to 35; only letters whose ascribed values are less than that of base shall be permitted. If the value of
base is 16, the wide-character codes 0x or 0X may optionally precede the sequence of letters and digits, fol-
lowing the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character string, start-
ing with the first wide-character code that is not white space and is of the expected form. The subject se-
quence contains no wide-character codes if the input wide-character string is empty or consists entirely of
white-space wide-character codes, or if the first wide-character code that is not white space is other than a
sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes starting
with the first digit shall be interpreted as an integer constant. If the subject sequence has the expected form
and the value of base is between 2 and 36, it shall be used as the base for conversion, ascribing to each let-
ter its value as given above. If the subject sequence begins with a <hyphen-minus>, the value resulting from
the conversion shall be negated. A pointer to the final wide-character string shall be stored in the object
pointed to by endptr, provided that endptr is not a null pointer.

In other than the C or POSIX locale, additional locale-specific subject sequence forms may be accepted.

IEEE/The Open Group 2017 1

WCSTOUL(3P) POSIX Programmer’s Manual WCSTOUL(3P)

If the subject sequence is empty or does not have the expected form, no conversion shall be performed; the
value of nptr shall be stored in the object pointed to by endptr, provided that endptr is not a null pointer.

These functions shall not change the setting of errno if successful.

Since 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and 0 is also a valid return on
success, an application wishing to check for error situations should set errno to 0, then call wcstoul() or wc-

stoull(), then check errno.

RETURN VALUE
Upon successful completion, the wcstoul() and wcstoull() functions shall return the converted value, if any.
If no conversion could be performed, 0 shall be returned and errno may be set to indicate the error. If the
correct value is outside the range of representable values, {ULONG_MAX} or {ULLONG_MAX} respec-
tively shall be returned and errno set to [ERANGE].

ERRORS
These functions shall fail if:

EINVAL
The value of base is not supported.

ERANGE
The value to be returned is not representable.

These functions may fail if:

EINVAL
No conversion could be performed.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf(), iswalpha(), wcstod(), wcstol()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCSTOUMAX(3P) POSIX Programmer’s Manual WCSTOUMAX(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcstoumax — convert a wide-character string to an integer type

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
Refer to wcstoimax().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSWIDTH(3P) POSIX Programmer’s Manual WCSWIDTH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcswidth — number of column positions of a wide-character string

SYNOPSIS
#include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

DESCRIPTION
The wcswidth() function shall determine the number of column positions required for n wide-character
codes (or fewer than n wide-character codes if a null wide-character code is encountered before n wide-
character codes are exhausted) in the string pointed to by pwcs.

RETURN VALUE
The wcswidth() function either shall return 0 (if pwcs points to a null wide-character code), or return the
number of column positions to be occupied by the wide-character string pointed to by pwcs, or return −1 (if
any of the first n wide-character codes in the wide-character string pointed to by pwcs is not a printable
wide-character code).

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the return
value for a non-printable wide character is not specified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcwidth()

The Base Definitions volume of POSIX.1-2017, Section 3.103, Column Position, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCSXFRM(3P) POSIX Programmer’s Manual WCSXFRM(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcsxfrm, wcsxfrm_l — wide-character string transformation

SYNOPSIS
#include <wchar.h>

size_t wcsxfrm(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

size_t wcsxfrm_l(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n, locale_t locale);

DESCRIPTION
For wcsxfrm(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The wcsxfrm() and wcsxfrm_l() functions shall transform the wide-character string pointed to by ws2 and
place the resulting wide-character string into the array pointed to by ws1. The transformation shall be such
that if wcscmp() is applied to two transformed wide strings, it shall return a value greater than, equal to, or
less than 0, corresponding to the result of wcscoll() and wcscoll_l() applied to the same two original wide-
character strings, and the same LC_COLLATE category of the current locale or the locale object locale, re-
spectively. No more than n wide-character codes shall be placed into the resulting array pointed to by ws1,
including the terminating null wide-character code. If n is 0, ws1 is permitted to be a null pointer. If copy-
ing takes place between objects that overlap, the behavior is undefined.

The wcsxfrm() and wcsxfrm_l() functions shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error situations
should set errno to 0, then call wcsxfrm() or wcsxfrm_l(), then check errno.

The behavior is undefined if the locale argument to wcsxfrm_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The wcsxfrm() and wcsxfrm_l() functions shall return the length of the transformed wide-character string
(not including the terminating null wide-character code). If the value returned is n or more, the contents of
the array pointed to by ws1 are unspecified.

On error, the wcsxfrm() and wcsxfrm_l() functions may set errno, but no return value is reserved to indicate
an error.

ERRORS
These functions may fail if:

EINVAL
The wide-character string pointed to by ws2 contains wide-character codes outside the domain of
the collating sequence.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed wide-character strings can be ordered by wc-

scmp() as appropriate to collating sequence information in the current locale (category LC_COLLATE).

The fact that when n is 0 ws1 is permitted to be a null pointer is useful to determine the size of the ws1 ar-
ray prior to making the transformation.

IEEE/The Open Group 2017 1

WCSXFRM(3P) POSIX Programmer’s Manual WCSXFRM(3P)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcscoll()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCTOB(3P) POSIX Programmer’s Manual WCTOB(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wctob — wide-character to single-byte conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wctob(wint_t c);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wctob() function shall determine whether c corresponds to a member of the extended character set
whose character representation is a single byte when in the initial shift state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The wctob() function shall return EOF if c does not correspond to a character with length one in the initial
shift state. Otherwise, it shall return the single-byte representation of that character as an unsigned char
converted to int.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc()

The Base Definitions volume of POSIX.1-2017, <stdio.h>, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WCTOMB(3P) POSIX Programmer’s Manual WCTOMB(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wctomb — convert a wide-character code to a character

SYNOPSIS
#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wctomb() function shall determine the number of bytes needed to represent the character corresponding
to the wide-character code whose value is wchar (including any change in the shift state). It shall store the
character representation (possibly multiple bytes and any special bytes to change shift state) in the array ob-
ject pointed to by s (if s is not a null pointer). At most {MB_CUR_MAX} bytes shall be stored. If wchar is
0, a null byte shall be stored, preceded by any shift sequence needed to restore the initial shift state, and wc-

tomb() shall be left in the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale. For a state-de-
pendent encoding, this function shall be placed into its initial state by a call for which its character pointer
argument, s, is a null pointer. Subsequent calls with s as other than a null pointer shall cause the internal
state of the function to be altered as necessary. A call with s as a null pointer shall cause this function to re-
turn a non-zero value if encodings have state dependency, and 0 otherwise. Changing the LC_CTYPE cate-
gory causes the shift state of this function to be unspecified.

The wctomb() function need not be thread-safe.

The implementation shall behave as if no function defined in this volume of POSIX.1-2017 calls wctomb().

RETURN VALUE
If s is a null pointer, wctomb() shall return a non-zero or 0 value, if character encodings, respectively, do or
do not have state-dependent encodings. If s is not a null pointer, wctomb() shall return −1 if the value of
wchar does not correspond to a valid character, or return the number of bytes that constitute the character
corresponding to the value of wchar.

In no case shall the value returned be greater than the value of the {MB_CUR_MAX} macro.

ERRORS
The wctomb() function shall fail if:

EILSEQ
An invalid wide-character code is detected.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

WCTOMB(3P) POSIX Programmer’s Manual WCTOMB(3P)

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wcstombs()

The Base Definitions volume of POSIX.1-2017, <stdlib.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCTRANS(3P) POSIX Programmer’s Manual WCTRANS(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wctrans, wctrans_l — define character mapping

SYNOPSIS
#include <wctype.h>

wctrans_t wctrans(const char *charclass);
wctrans_t wctrans_l(const char *charclass, locale_t locale);

DESCRIPTION
For wctrans(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The wctrans() and wctrans_l() functions are defined for valid character mapping names identified in the
current locale. The charclass is a string identifying a generic character mapping name for which codeset-
specific information is required. The following character mapping names are defined in all locales: tolower
and toupper.

These functions shall return a value of type wctrans_t, which can be used as the second argument to subse-
quent calls of towctrans() and towctrans_l().

The wctrans() and wctrans_l() functions shall determine values of wctrans_t according to the rules of the
coded character set defined by character mapping information in the current locale or in the locale repre-
sented by locale, respectively (category LC_CTYPE).

The values returned by wctrans() shall be valid until a call to setlocale() that modifies the category
LC_CTYPE.

The values returned by wctrans_l() shall be valid only in calls to towctrans_l() with a locale represented by
locale with the same LC_CTYPE category value.

The behavior is undefined if the locale argument to wctrans_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The wctrans() and wctrans_l() functions shall return 0 and may set errno to indicate the error if the given
character mapping name is not valid for the current locale (category LC_CTYPE); otherwise, they shall re-
turn a non-zero object of type wctrans_t that can be used in calls to towctrans() and towctrans_l().

ERRORS
These functions may fail if:

EINVAL
The character mapping name pointed to by charclass is not valid in the current locale.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

IEEE/The Open Group 2017 1

WCTRANS(3P) POSIX Programmer’s Manual WCTRANS(3P)

SEE ALSO
towctrans()

The Base Definitions volume of POSIX.1-2017, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCTYPE(3P) POSIX Programmer’s Manual WCTYPE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wctype, wctype_l — define character class

SYNOPSIS
#include <wctype.h>

wctype_t wctype(const char *property);
wctype_t wctype_l(const char *property, locale_t locale);

DESCRIPTION
For wctype(): The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-2017 defers to the ISO C standard.

The wctype() and wctype_l() functions are defined for valid character class names as defined in the current
locale or in the locale represented by locale, respectively.

The property argument is a string identifying a generic character class for which codeset-specific type in-
formation is required. The following character class names shall be defined in all locales:

tab(!); lB lB lB. T{
alnum
alpha
blank
cntrl
T}!T{
digit
graph
lower
print
T}!T{
punct
space
upper
xdigit
T}

Additional character class names defined in the locale definition file (category LC_CTYPE) can also be
specified.

These functions shall return a value of type wctype_t, which can be used as the second argument to subse-
quent calls of iswctype() and iswctype_l().

The wctype() and wctype_l() functions shall determine values of wctype_t according to the rules of the
coded character set defined by character type information in the current locale or in the locale represented
by locale, respectively (category LC_CTYPE).

The values returned by wctype() shall be valid until a call to setlocale() that modifies the category
LC_CTYPE.

The values returned by wctype_l() shall be valid only in calls to iswctype_l() with a locale represented by
locale with the same LC_CTYPE category value.

The behavior is undefined if the locale argument to wctype_l() is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

IEEE/The Open Group 2017 1

WCTYPE(3P) POSIX Programmer’s Manual WCTYPE(3P)

RETURN VALUE
The wctype() and wctype_l() functions shall return 0 if the given character class name is not valid for the
current locale (category LC_CTYPE); otherwise, they shall return an object of type wctype_t that can be
used in calls to iswctype() and iswctype_l().

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswctype()

The Base Definitions volume of POSIX.1-2017, <wctype.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WCWIDTH(3P) POSIX Programmer’s Manual WCWIDTH(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wcwidth — number of column positions of a wide-character code

SYNOPSIS
#include <wchar.h>

int wcwidth(wchar_t wc);

DESCRIPTION
The wcwidth() function shall determine the number of column positions required for the wide character wc.
The application shall ensure that the value of wc is a character representable as a wchar_t, and is a wide-
character code corresponding to a valid character in the current locale.

RETURN VALUE
The wcwidth() function shall either return 0 (if wc is a null wide-character code), or return the number of
column positions to be occupied by the wide-character code wc, or return −1 (if wc does not correspond to
a printable wide-character code).

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the return
value for a non-printable wide character is not specified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcswidth()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WMEMCHR(3P) POSIX Programmer’s Manual WMEMCHR(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wmemchr — find a wide character in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemchr(const wchar_t *ws, wchar_t wc, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wmemchr() function shall locate the first occurrence of wc in the initial n wide characters of the object
pointed to by ws. This function shall not be affected by locale and all wchar_t values shall be treated iden-
tically. The null wide character and wchar_t values not corresponding to valid characters shall not be
treated specially.

If n is zero, the application shall ensure that ws is a valid pointer and the function behaves as if no valid oc-
currence of wc is found.

RETURN VALUE
The wmemchr() function shall return a pointer to the located wide character, or a null pointer if the wide
character does not occur in the object.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemcmp(), wmemcpy(), wmemmove(), wmemset()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WMEMCMP(3P) POSIX Programmer’s Manual WMEMCMP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wmemcmp — compare wide characters in memory

SYNOPSIS
#include <wchar.h>

int wmemcmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wmemcmp() function shall compare the first n wide characters of the object pointed to by ws1 to the
first n wide characters of the object pointed to by ws2. This function shall not be affected by locale and all
wchar_t values shall be treated identically. The null wide character and wchar_t values not corresponding
to valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function shall behave
as if the two objects compare equal.

RETURN VALUE
The wmemcmp() function shall return an integer greater than, equal to, or less than zero, respectively, as the
object pointed to by ws1 is greater than, equal to, or less than the object pointed to by ws2.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcpy(), wmemmove(), wmemset()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WMEMCPY(3P) POSIX Programmer’s Manual WMEMCPY(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wmemcpy — copy wide characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wmemcpy() function shall copy n wide characters from the object pointed to by ws2 to the object
pointed to by ws1. This function shall not be affected by locale and all wchar_t values shall be treated
identically. The null wide character and wchar_t values not corresponding to valid characters shall not be
treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function shall copy
zero wide characters.

RETURN VALUE
The wmemcpy() function shall return the value of ws1.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemmove(), wmemset()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WMEMMOVE(3P) POSIX Programmer’s Manual WMEMMOVE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wmemmove — copy wide characters in memory with overlapping areas

SYNOPSIS
#include <wchar.h>

wchar_t *wmemmove(wchar_t *ws1, const wchar_t *ws2, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wmemmove() function shall copy n wide characters from the object pointed to by ws2 to the object
pointed to by ws1. Copying shall take place as if the n wide characters from the object pointed to by ws2

are first copied into a temporary array of n wide characters that does not overlap the objects pointed to by
ws1 or ws2, and then the n wide characters from the temporary array are copied into the object pointed to
by ws1.

This function shall not be affected by locale and all wchar_t values shall be treated identically. The null
wide character and wchar_t values not corresponding to valid characters shall not be treated specially.

If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function shall copy
zero wide characters.

RETURN VALUE
The wmemmove() function shall return the value of ws1.

ERRORS
No errors are defined

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemcpy(), wmemset()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see

IEEE/The Open Group 2017 1

WMEMMOVE(3P) POSIX Programmer’s Manual WMEMMOVE(3P)

https://www.kernel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WMEMSET(3P) POSIX Programmer’s Manual WMEMSET(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wmemset — set wide characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemset(wchar_t *ws, wchar_t wc, size_t n);

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2017 de-
fers to the ISO C standard.

The wmemset() function shall copy the value of wc into each of the first n wide characters of the object
pointed to by ws. This function shall not be affected by locale and all wchar_t values shall be treated iden-
tically. The null wide character and wchar_t values not corresponding to valid characters shall not be
treated specially.

If n is zero, the application shall ensure that ws is a valid pointer, and the function shall copy zero wide
characters.

RETURN VALUE
The wmemset() functions shall return the value of ws.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wmemchr(), wmemcmp(), wmemcpy(), wmemmove()

The Base Definitions volume of POSIX.1-2017, <wchar.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WORDEXP(3P) POSIX Programmer’s Manual WORDEXP(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wordexp, wordfree — perform word expansions

SYNOPSIS
#include <wordexp.h>

int wordexp(const char *restrict words, wordexp_t *restrict pwordexp,
int flags);

void wordfree(wordexp_t *pwordexp);

DESCRIPTION
The wordexp() function shall perform word expansions as described in the Shell and Utilities volume of
POSIX.1-2017, Section 2.6, Word Expansions, subject to quoting as described in the Shell and Utilities vol-
ume of POSIX.1-2017, Section 2.2, Quoting, and place the list of expanded words into the structure pointed
to by pwordexp.

The words argument is a pointer to a string containing one or more words to be expanded. The expansions
shall be the same as would be performed by the command line interpreter if words were the part of a com-
mand line representing the arguments to a utility. Therefore, the application shall ensure that words does
not contain an unquoted <newline> character or any of the unquoted shell special characters ’|’, ’&’, ’;’,
’<’, ’>’ except in the context of command substitution as specified in the Shell and Utilities volume of
POSIX.1-2017, Section 2.6.3, Command Substitution. It also shall not contain unquoted parentheses or
braces, except in the context of command or variable substitution. The application shall ensure that every
member of words which it expects to have expanded by wordexp() does not contain an unquoted initial
comment character. The application shall also ensure that any words which it intends to be ignored (be-
cause they begin or continue a comment) are deleted from words. If the argument words contains an un-
quoted comment character (<number-sign>) that is the beginning of a token, wordexp() shall either treat the
comment character as a regular character, or interpret it as a comment indicator and ignore the remainder of
words.

The structure type wordexp_t is defined in the <wordexp.h> header and includes at least the following
members:

center box tab(!); cB | cB | cB lw(1.25i)B | lw(1.25i)I | lw(2.5i). Member Type!Member Name!Description
_ size_t!we_wordc!Count of words matched by words. char **!we_wordv!Pointer to list of expanded
words. size_t!we_offs!T{ Slots to reserve at the beginning of pwordexp−>we_wordv. T}

The wordexp() function shall store the number of generated words into pwordexp−>we_wordc and a pointer
to a list of pointers to words in pwordexp−>we_wordv. Each individual field created during field splitting
(see the Shell and Utilities volume of POSIX.1-2017, Section 2.6.5, Field Splitting) or pathname expansion
(see the Shell and Utilities volume of POSIX.1-2017, Section 2.6.6, Pathname Expansion) shall be a sepa-
rate word in the pwordexp−>we_wordv list. The words shall be in order as described in the Shell and Utili-
ties volume of POSIX.1-2017, Section 2.6, Word Expansions. The first pointer after the last word pointer
shall be a null pointer. The expansion of special parameters described in the Shell and Utilities volume of
POSIX.1-2017, Section 2.5.2, Special Parameters is unspecified.

It is the caller’s responsibility to allocate the storage pointed to by pwordexp. The wordexp() function shall
allocate other space as needed, including memory pointed to by pwordexp−>we_wordv. The wordfree()
function frees any memory associated with pwordexp from a previous call to wordexp().

The flags argument is used to control the behavior of wordexp(). The value of flags is the bitwise-inclusive
OR of zero or more of the following constants, which are defined in <wordexp.h>:

WRDE_APPEND
Append words generated to the ones from a previous call to wordexp().

IEEE/The Open Group 2017 1

WORDEXP(3P) POSIX Programmer’s Manual WORDEXP(3P)

WRDE_DOOFFS
Make use of pwordexp−>we_offs. If this flag is set, pwordexp−>we_offs is used to specify
how many null pointers to add to the beginning of pwordexp−>we_wordv. In other words,
pwordexp−>we_wordv shall point to pwordexp−>we_offs null pointers, followed by
pwordexp−>we_wordc word pointers, followed by a null pointer.

WRDE_NOCMD
If the implementation supports the utilities defined in the Shell and Utilities volume of
POSIX.1-2017, fail if command substitution, as specified in the Shell and Utilities volume
of POSIX.1-2017, Section 2.6.3, Command Substitution, is requested.

WRDE_REUSE
The pwordexp argument was passed to a previous successful call to wordexp(), and has
not been passed to wordfree(). The result shall be the same as if the application had called
wordfree() and then called wordexp() without WRDE_REUSE.

WRDE_SHOWERR
Do not redirect stderr to /dev/null.

WRDE_UNDEF
Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new set of words to those generated by a previous call
to wordexp(). The following rules apply to applications when two or more calls to wordexp() are made with
the same value of pwordexp and without intervening calls to wordfree():

1. The first such call shall not set WRDE_APPEND. All subsequent calls shall set it.

2. All of the calls shall set WRDE_DOOFFS, or all shall not set it.

3. After the second and each subsequent call, pwordexp−>we_wordv shall point to a list containing the
following:

a. Zero or more null pointers, as specified by WRDE_DOOFFS and pwordexp−>we_offs

b. Pointers to the words that were in the pwordexp−>we_wordv list before the call, in the same order
as before

c. Pointers to the new words generated by the latest call, in the specified order

4. The count returned in pwordexp−>we_wordc shall be the total number of words from all of the calls.

5. The application can change any of the fields after a call to wordexp(), but if it does it shall reset them
to the original value before a subsequent call, using the same pwordexp value, to wordfree() or word-

exp() with the WRDE_APPEND or WRDE_REUSE flag.

If the implementation supports the utilities defined in the Shell and Utilities volume of POSIX.1-2017, and
words contains an unquoted character—<newline>, ’|’, ’&’, ’;’, ’<’, ’>’, ’(’, ’)’, ’{’, ’}’—in an inappropri-
ate context, wordexp() shall fail, and the number of expanded words shall be 0.

Unless WRDE_SHOWERR is set in flags, wordexp() shall redirect stderr to /dev/null for any utilities exe-
cuted as a result of command substitution while expanding words. If WRDE_SHOWERR is set, wordexp()
may write messages to stderr if syntax errors are detected while expanding words, unless the stderr stream
has wide orientation in which case the behavior is undefined. It is unspecified whether any write errors en-
countered while outputting such messages will affect the stderr error indicator or the value of errno.

The application shall ensure that if WRDE_DOOFFS is set, then pwordexp−>we_offs has the same value
for each wordexp() call and wordfree() call using a given pwordexp.

The results are unspecified if WRDE_APPEND and WRDE_REUSE are both specified.

The following constants are defined as error return values:

WRDE_BADCHAR
One of the unquoted characters—<newline>, ’|’, ’&’, ’;’, ’<’, ’>’, ’(’, ’)’, ’{’, ’}’—ap-
pears in words in an inappropriate context.

IEEE/The Open Group 2017 2

WORDEXP(3P) POSIX Programmer’s Manual WORDEXP(3P)

WRDE_BADVAL
Reference to undefined shell variable when WRDE_UNDEF is set in flags.

WRDE_CMDSUB
Command substitution requested when WRDE_NOCMD was set in flags.

WRDE_NOSPACE
Attempt to allocate memory failed.

WRDE_SYNTAX
Shell syntax error, such as unbalanced parentheses or unterminated string.

RETURN VALUE
Upon successful completion, wordexp() shall return 0. Otherwise, a non-zero value, as described in <word-

exp.h>, shall be returned to indicate an error. If wordexp() returns the value WRDE_NOSPACE, then
pwordexp−>we_wordc and pwordexp−>we_wordv shall be updated to reflect any words that were success-
fully expanded. In other error cases, if the WRDE_APPEND flag was specified, pwordexp->we_wordc and
pwordexp->we_wordv shall not be modified.

The wordfree() function shall not return a value.

ERRORS
No errors are defined.

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
The wordexp() function is intended to be used by an application that wants to do all of the shell’s expan-
sions on a word or words obtained from a user. For example, if the application prompts for a pathname (or
list of pathnames) and then uses wordexp() to process the input, the user could respond with anything that
would be valid as input to the shell.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to prevent a
user from executing shell commands. Disallowing unquoted shell special characters also prevents un-
wanted side-effects, such as executing a command or writing a file.

POSIX.1-2008 does not require the wordexp() function to be thread-safe if passed an expression referenc-
ing an environment variable while any other thread is concurrently modifying any environment variable;
see exec .

Even though the WRDE_SHOWERR flag allows the implementation to write messages to stderr during
command substitution or syntax errors, this standard does not provide any way to detect write failures dur-
ing the output of such messages.

Applications which use wide-character output functions with stderr should ensure that any calls to word-

exp() do not write to stderr, by avoiding use of the WRDE_SHOWERR flag.

RATIONALE
This function was included as an alternative to glob(). There had been continuing controversy over exactly
what features should be included in glob(). It is hoped that by providing wordexp() (which provides all of
the shell word expansions, but which may be slow to execute) and glob() (which is faster, but which only
performs pathname expansion, without tilde or parameter expansion) this will satisfy the majority of appli-
cations.

While wordexp() could be implemented entirely as a library routine, it is expected that most implementa-
tions run a shell in a subprocess to do the expansion.

Tw o different approaches have been proposed for how the required information might be presented to the
shell and the results returned. They are presented here as examples.

One proposal is to extend the echo utility by adding a −q option. This option would cause echo to add a
<backslash> before each <backslash> and <blank> that occurs within an argument. The wordexp() function

IEEE/The Open Group 2017 3

WORDEXP(3P) POSIX Programmer’s Manual WORDEXP(3P)

could then invoke the shell as follows:

(void) strcpy(buffer, "echo -q");
(void) strcat(buffer, words);
if ((flags & WRDE_SHOWERR) == 0)

(void) strcat(buffer, "2>/dev/null");
f = popen(buffer, "r");

The wordexp() function would read the resulting output, remove unquoted <backslash> characters, and
break into words at unquoted <blank> characters. If the WRDE_NOCMD flag was set, wordexp() would
have to scan words before starting the subshell to make sure that there would be no command substitution.
In any case, it would have to scan words for unquoted special characters.

Another proposal is to add the following options to sh:

−w wordlist

This option provides a wordlist expansion service to applications. The words in wordlist shall be ex-
panded and the following written to standard output:

1. The count of the number of words after expansion, in decimal, followed by a null byte

2. The number of bytes needed to represent the expanded words (not including null separators), in
decimal, followed by a null byte

3. The expanded words, each terminated by a null byte

If an error is encountered during word expansion, sh exits with a non-zero status after writing the
former to report any words successfully expanded

−P Run in ‘‘protected’’ mode. If specified with the −w option, no command substitution shall be per-
formed.

With these options, wordexp() could be implemented fairly simply by creating a subprocess using fork()
and executing sh using the line:

execl(<shell path>, "sh", "-P", "-w", words, (char *)0);

after directing standard error to /dev/null.

It seemed objectionable for a library routine to write messages to standard error, unless explicitly requested,
so wordexp() is required to redirect standard error to /dev/null to ensure that no messages are generated,
ev en for commands executed for command substitution. The WRDE_SHOWERR flag can be specified to
request that error messages be written.

The WRDE_REUSE flag allows the implementation to avoid the expense of freeing and reallocating mem-
ory, if that is possible. A minimal implementation can call wordfree() when WRDE_REUSE is set.

FUTURE DIRECTIONS
None.

SEE ALSO
exec , fnmatch(), glob()

The Base Definitions volume of POSIX.1-2017, <wordexp.h>

The Shell and Utilities volume of POSIX.1-2017, Chapter 2, Shell Command Language

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The

IEEE/The Open Group 2017 4

WORDEXP(3P) POSIX Programmer’s Manual WORDEXP(3P)

original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 5

WPRINTF(3P) POSIX Programmer’s Manual WPRINTF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wprintf(const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwprintf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

WRITE(3P) POSIX Programmer’s Manual WRITE(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
pwrite, write — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

ssize_t write(int fildes, const void *buf, size_t nbyte);

DESCRIPTION
The write() function shall attempt to write nbyte bytes from the buffer pointed to by buf to the file associ-
ated with the open file descriptor, fildes.

Before any action described below is taken, and if nbyte is zero and the file is a regular file, the write()
function may detect and return errors as described below. In the absence of errors, or if error detection is
not performed, the write() function shall return zero and have no other results. If nbyte is zero and the file is
not a regular file, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data shall proceed from the position
in the file indicated by the file offset associated with fildes. Before successful return from write(), the file
offset shall be incremented by the number of bytes actually written. On a regular file, if the position of the
last byte written is greater than or equal to the length of the file, the length of the file shall be set to this po-
sition plus one.

On a file not capable of seeking, writing shall always take place starting at the current position. The value
of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset shall be set to the end of the file prior to
each write and no intervening file modification operation shall occur between changing the file offset and
the write operation.

If a write() requests that more bytes be written than there is room for (for example, the file size limit of the
process or the physical end of a medium), only as many bytes as there is room for shall be written. For ex-
ample, suppose there is space for 20 bytes more in a file before reaching a limit. A write of 512 bytes will
return 20. The next write of a non-zero number of bytes would give a failure return (except as noted below).

If the request would cause the file size to exceed the soft file size limit for the process and there is no room
for any bytes to be written, the request shall fail and the implementation shall generate the SIGXFSZ signal
for the thread.

If write() is interrupted by a signal before it writes any data, it shall return −1 with errno set to [EINTR].

If write() is interrupted by a signal after it successfully writes some data, it shall return the number of bytes
written.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined.

After a write() to a regular file has successfully returned:

* Any successful read() from each byte position in the file that was modified by that write shall return
the data specified by the write() for that position until such byte positions are again modified.

* Any subsequent successful write() to the same byte position in the file shall overwrite that file data.

Write requests to a pipe or FIFO shall be handled in the same way as a regular file with the following ex-
ceptions:

* There is no file offset associated with a pipe, hence each write request shall append to the end of the
pipe.

IEEE/The Open Group 2017 1

WRITE(3P) POSIX Programmer’s Manual WRITE(3P)

* Write requests of {PIPE_BUF} bytes or less shall not be interleaved with data from other processes
doing writes on the same pipe. Writes of greater than {PIPE_BUF} bytes may have data interleaved,
on arbitrary boundaries, with writes by other processes, whether or not the O_NONBLOCK flag of the
file status flags is set.

* If the O_NONBLOCK flag is clear, a write request may cause the thread to block, but on normal com-
pletion it shall return nbyte.

* If the O_NONBLOCK flag is set, write() requests shall be handled differently, in the following ways:

-- The write() function shall not block the thread.

-- A write request for {PIPE_BUF} or fewer bytes shall have the following effect: if there is suffi-
cient space available in the pipe, write() shall transfer all the data and return the number of bytes
requested. Otherwise, write() shall transfer no data and return −1 with errno set to [EAGAIN].

-- A write request for more than {PIPE_BUF} bytes shall cause one of the following:

-- When at least one byte can be written, transfer what it can and return the number of bytes
written. When all data previously written to the pipe is read, it shall transfer at least
{PIPE_BUF} bytes.

-- When no data can be written, transfer no data, and return −1 with errno set to [EAGAIN].

When attempting to write to a file descriptor (other than a pipe or FIFO) that supports non-blocking writes
and cannot accept the data immediately:

* If the O_NONBLOCK flag is clear, write() shall block the calling thread until the data can be ac-
cepted.

* If the O_NONBLOCK flag is set, write() shall not block the thread. If some data can be written with-
out blocking the thread, write() shall write what it can and return the number of bytes written. Other-
wise, it shall return −1 and set errno to [EAGAIN].

Upon successful completion, where nbyte is greater than 0, write() shall mark for update the last data modi-
fication and last file status change timestamps of the file, and if the file is a regular file, the S_ISUID and
S_ISGID bits of the file mode may be cleared.

For regular files, no data transfer shall occur past the offset maximum established in the open file descrip-
tion associated with fildes.

If fildes refers to a socket, write() shall be equivalent to send() with no flags set.

If the O_DSYNC bit has been set, write I/O operations on the file descriptor shall complete as defined by
synchronized I/O data integrity completion.

If the O_SYNC bit has been set, write I/O operations on the file descriptor shall complete as defined by
synchronized I/O file integrity completion.

If fildes refers to a shared memory object, the result of the write() function is unspecified.

If fildes refers to a typed memory object, the result of the write() function is unspecified.

If fildes refers to a STREAM, the operation of write() shall be determined by the values of the minimum
and maximum nbyte range (packet size) accepted by the STREAM. These values are determined by the
topmost STREAM module. If nbyte falls within the packet size range, nbyte bytes shall be written. If nbyte

does not fall within the range and the minimum packet size value is 0, write() shall break the buffer into
maximum packet size segments prior to sending the data downstream (the last segment may contain less
than the maximum packet size). If nbyte does not fall within the range and the minimum value is non-zero,
write() shall fail with errno set to [ERANGE]. Writing a zero-length buffer (nbyte is 0) to a STREAMS
device sends 0 bytes with 0 returned. However, writing a zero-length buffer to a STREAMS-based pipe or
FIFO sends no message and 0 is returned. The process may issue I_SWROPT ioctl() to enable zero-length
messages to be sent across the pipe or FIFO.

When writing to a STREAM, data messages are created with a priority band of 0. When writing to a
STREAM that is not a pipe or FIFO:

IEEE/The Open Group 2017 2

WRITE(3P) POSIX Programmer’s Manual WRITE(3P)

* If O_NONBLOCK is clear, and the STREAM cannot accept data (the STREAM write queue is full
due to internal flow control conditions), write() shall block until data can be accepted.

* If O_NONBLOCK is set and the STREAM cannot accept data, write() shall return −1 and set errno to
[EAGAIN].

* If O_NONBLOCK is set and part of the buffer has been written while a condition in which the
STREAM cannot accept additional data occurs, write() shall terminate and return the number of bytes
written.

In addition, write() shall fail if the STREAM head has processed an asynchronous error before the call. In
this case, the value of errno does not reflect the result of write(), but reflects the prior error.

The pwrite() function shall be equivalent to write(), except that it writes into a given position and does not
change the file offset (regardless of whether O_APPEND is set). The first three arguments to pwrite() are
the same as write() with the addition of a fourth argument offset for the desired position inside the file. An
attempt to perform a pwrite() on a file that is incapable of seeking shall result in an error.

RETURN VALUE
Upon successful completion, these functions shall return the number of bytes actually written to the file as-
sociated with fildes. This number shall never be greater than nbyte. Otherwise, −1 shall be returned and
errno set to indicate the error.

ERRORS
These functions shall fail if:

EAGAIN
The file is neither a pipe, nor a FIFO, nor a socket, the O_NONBLOCK flag is set for the file de-
scriptor, and the thread would be delayed in the write() operation.

EBADF
The fildes argument is not a valid file descriptor open for writing.

EFBIG
An attempt was made to write a file that exceeds the implementation-defined maximum file size or
the file size limit of the process, and there was no room for any bytes to be written.

EFBIG
The file is a regular file, nbyte is greater than 0, and the starting position is greater than or equal to
the offset maximum established in the open file description associated with fildes.

EINTR
The write operation was terminated due to the receipt of a signal, and no data was transferred.

EIO The process is a member of a background process group attempting to write to its controlling ter-
minal, TOSTOP is set, the calling thread is not blocking SIGTTOU, the process is not ignoring
SIGTTOU, and the process group of the process is orphaned. This error may also be returned un-
der implementation-defined conditions.

ENOSPC
There was no free space remaining on the device containing the file.

ERANGE
The transfer request size was outside the range supported by the STREAMS file associated with
fildes.

The pwrite() function shall fail if:

EINVAL
The file is a regular file or block special file, and the offset argument is negative. The file offset
shall remain unchanged.

ESPIPE
The file is incapable of seeking.

IEEE/The Open Group 2017 3

WRITE(3P) POSIX Programmer’s Manual WRITE(3P)

The write() function shall fail if:

EAGAIN
The file is a pipe or FIFO, the O_NONBLOCK flag is set for the file descriptor, and the thread
would be delayed in the write operation.

EAGAIN or EWOULDBLOCK
The file is a socket, the O_NONBLOCK flag is set for the file descriptor, and the thread would be
delayed in the write operation.

ECONNRESET
A write was attempted on a socket that is not connected.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any process, or that
only has one end open. A SIGPIPE signal shall also be sent to the thread.

EPIPE A write was attempted on a socket that is shut down for writing, or is no longer connected. In the
latter case, if the socket is of type SOCK_STREAM, a SIGPIPE signal shall also be sent to the
thread.

These functions may fail if:

EINVAL
The STREAM or multiplexer referenced by fildes is linked (directly or indirectly) downstream
from a multiplexer.

EIO A physical I/O error has occurred.

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENXIO
A request was made of a nonexistent device, or the request was outside the capabilities of the de-
vice.

ENXIO
A hangup occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at the STREAM head. In this
case, errno is set to the value included in the error message.

The write() function may fail if:

EACCES
A write was attempted on a socket and the calling process does not have appropriate privileges.

ENETDOWN
A write was attempted on a socket and the local network interface used to reach the destination is
down.

ENETUNREACH
A write was attempted on a socket and no route to the network is present.

The following sections are informative.

EXAMPLES
Writing from a Buffer

The following example writes data from the buffer pointed to by buf to the file associated with the file de-
scriptor fd .

#include <sys/types.h>
#include <string.h>
...
char buf[20];

IEEE/The Open Group 2017 4

WRITE(3P) POSIX Programmer’s Manual WRITE(3P)

size_t nbytes;
ssize_t bytes_written;
int fd;
...
strcpy(buf, "This is a test\n");
nbytes = strlen(buf);

bytes_written = write(fd, buf, nbytes);
...

APPLICATION USAGE
None.

RATIONALE
See also the RATIONALE section in read().

An attempt to write to a pipe or FIFO has several major characteristics:

* Atomic/non-atomic: A write is atomic if the whole amount written in one operation is not interleaved
with data from any other process. This is useful when there are multiple writers sending data to a sin-
gle reader. Applications need to know how large a write request can be expected to be performed
atomically. This maximum is called {PIPE_BUF}. This volume of POSIX.1-2017 does not say
whether write requests for more than {PIPE_BUF} bytes are atomic, but requires that writes of
{PIPE_BUF} or fewer bytes shall be atomic.

* Blocking/immediate: Blocking is only possible with O_NONBLOCK clear. If there is enough space
for all the data requested to be written immediately, the implementation should do so. Otherwise, the
calling thread may block; that is, pause until enough space is available for writing. The effective size
of a pipe or FIFO (the maximum amount that can be written in one operation without blocking) may
vary dynamically, depending on the implementation, so it is not possible to specify a fixed value for it.

* Complete/partial/deferred: A write request:

int fildes;
size_t nbyte;
ssize_t ret;
char *buf;

ret = write(fildes, buf, nbyte);

may return:

Complete ret=nbyte

Partial ret<nbyte

This shall never happen if nbyte≤{PIPE_BUF}. If it does happen (with
nbyte>{PIPE_BUF}), this volume of POSIX.1-2017 does not guarantee atomicity, even if
ret≤{PIPE_BUF}, because atomicity is guaranteed according to the amount requested ,
not the amount written.

Deferred: ret=−1, errno=[EAGAIN]

This error indicates that a later request may succeed. It does not indicate that it shall suc-
ceed, even if nbyte≤{PIPE_BUF}, because if no process reads from the pipe or FIFO, the
write never succeeds. An application could usefully count the number of times [EA-
GAIN] is caused by a particular value of nbyte>{PIPE_BUF} and perhaps do later writes
with a smaller value, on the assumption that the effective size of the pipe may have de-
creased.

Partial and deferred writes are only possible with O_NONBLOCK set.

The relations of these properties are shown in the following tables:

IEEE/The Open Group 2017 5

WRITE(3P) POSIX Programmer’s Manual WRITE(3P)

center box tab(!); cB s s s cB | cB cB c l1 | lw(1.25i)1 lw(1.25i)1 lw(1.25i). Write to a Pipe or FIFO with
O_NONBLOCK clear _ Immediately Writable:!None!Some!nbyte _ nbyte≤{PIPE_BUF}!Atomic block-
ing!Atomic blocking!Atomic immediate !nbyte!nbyte!nbyte _ nbyte>{PIPE_BUF}!Blocking nbyte!Block-
ing nbyte!Blocking nbyte

If the O_NONBLOCK flag is clear, a write request shall block if the amount writable immediately is less
than that requested. If the flag is set (by fcntl()), a write request shall never block.

center box tab(!); cB s s s cB | cB cB c l1 | lw(1.25i)1 lw(1.25i)1 lw(1.25i). Write to a Pipe or FIFO with
O_NONBLOCK set _ Immediately Writable:!None!Some!nbyte _ nbyte≤{PIPE_BUF}!−1, [EAGAIN]!−1,
[EAGAIN]!Atomic nbyte _ nbyte>{PIPE_BUF}!−1, [EAGAIN]!<nbyte or −1,!≤nbyte or −1, !![EA-
GAIN]![EAGAIN]

There is no exception regarding partial writes when O_NONBLOCK is set. With the exception of writing
to an empty pipe, this volume of POSIX.1-2017 does not specify exactly when a partial write is performed
since that would require specifying internal details of the implementation. Every application should be pre-
pared to handle partial writes when O_NONBLOCK is set and the requested amount is greater than
{PIPE_BUF}, just as every application should be prepared to handle partial writes on other kinds of file de-
scriptors.

The intent of forcing writing at least one byte if any can be written is to assure that each write makes
progress if there is any room in the pipe. If the pipe is empty, {PIPE_BUF} bytes must be written; if not, at
least some progress must have been made.

Where this volume of POSIX.1-2017 requires −1 to be returned and errno set to [EAGAIN], most histori-
cal implementations return zero (with the O_NDELAY flag set, which is the historical predecessor of
O_NONBLOCK, but is not itself in this volume of POSIX.1-2017). The error indications in this volume of
POSIX.1-2017 were chosen so that an application can distinguish these cases from end-of-file. While
write() cannot receive an indication of end-of-file, read() can, and the two functions have similar return val-
ues. Also, some existing systems (for example, Eighth Edition) permit a write of zero bytes to mean that the
reader should get an end-of-file indication; for those systems, a return value of zero from write() indicates a
successful write of an end-of-file indication.

Implementations are allowed, but not required, to perform error checking for write() requests of zero bytes.

The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes that can be written to a
pipe in a single operation) was considered, but rejected, because this concept would unnecessarily limit ap-
plication writing.

See also the discussion of O_NONBLOCK in read().

Writes can be serialized with respect to other reads and writes. If a read() of file data can be proven (by any
means) to occur after a write() of the data, it must reflect that write(), even if the calls are made by different
processes. A similar requirement applies to multiple write operations to the same file position. This is
needed to guarantee the propagation of data from write() calls to subsequent read() calls. This requirement
is particularly significant for networked file systems, where some caching schemes violate these semantics.

Note that this is specified in terms of read() and write(). The XSI extensions readv() and writev() also obey
these semantics. A new ‘‘high-performance’’ write analog that did not follow these serialization require-
ments would also be permitted by this wording. This volume of POSIX.1-2017 is also silent about any ef-
fects of application-level caching (such as that done by stdio).

This volume of POSIX.1-2017 does not specify the value of the file offset after an error is returned; there
are too many cases. For programming errors, such as [EBADF], the concept is meaningless since no file is
involved. For errors that are detected immediately, such as [EAGAIN], clearly the pointer should not
change. After an interrupt or hardware error, howev er, an updated value would be very useful and is the be-
havior of many implementations.

This volume of POSIX.1-2017 does not specify the behavior of concurrent writes to a regular file from
multiple threads, except that each write is atomic (see Section 2.9.7 , Thread Interactions with Regular File

Operations). Applications should use some form of concurrency control.

IEEE/The Open Group 2017 6

WRITE(3P) POSIX Programmer’s Manual WRITE(3P)

This volume of POSIX.1-2017 intentionally does not specify any pwrite() errors related to pipes, FIFOs,
and sockets other than [ESPIPE].

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), dup(), fcntl(), getrlimit(), lseek(), open(), pipe(), read(), ulimit(), writev()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <stropts.h>, <sys_uio.h>, <unistd.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 7

WRITEV(3P) POSIX Programmer’s Manual WRITEV(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
writev — write a vector

SYNOPSIS
#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The writev() function shall be equivalent to write(), except as described below. The writev() function shall
gather output data from the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], . . .,
iov[iovcnt−1]. The iovcnt argument is valid if greater than 0 and less than or equal to {IOV_MAX}, as de-
fined in <limits.h>.

Each iovec entry specifies the base address and length of an area in memory from which data should be
written. The writev() function shall always write a complete area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0, writev()
shall return 0 and have no other effect. For other file types, the behavior is unspecified.

If the sum of the iov_len values is greater than {SSIZE_MAX}, the operation shall fail and no data shall be
transferred.

RETURN VALUE
Upon successful completion, writev() shall return the number of bytes actually written. Otherwise, it shall
return a value of −1, the file-pointer shall remain unchanged, and errno shall be set to indicate an error.

ERRORS
Refer to write().

In addition, the writev() function shall fail if:

EINVAL
The sum of the iov_len values in the iov array would overflow an ssize_t.

The writev() function may fail and set errno to:

EINVAL
The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

The following sections are informative.

EXAMPLES
Writing Data from an Array

The following example writes data from the buffers specified by members of the iov array to the file associ-
ated with the file descriptor fd .

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
...
ssize_t bytes_written;
int fd;
char *buf0 = "short string\n";
char *buf1 = "This is a longer string\n";
char *buf2 = "This is the longest string in this example\n";
int iovcnt;

IEEE/The Open Group 2017 1

WRITEV(3P) POSIX Programmer’s Manual WRITEV(3P)

struct iovec iov[3];

iov[0].iov_base = buf0;
iov[0].iov_len = strlen(buf0);
iov[1].iov_base = buf1;
iov[1].iov_len = strlen(buf1);
iov[2].iov_base = buf2;
iov[2].iov_len = strlen(buf2);
...
iovcnt = sizeof(iov) / sizeof(struct iovec);

bytes_written = writev(fd, iov, iovcnt);
...

APPLICATION USAGE
None.

RATIONALE
Refer to write().

FUTURE DIRECTIONS
None.

SEE ALSO
readv(), write()

The Base Definitions volume of POSIX.1-2017, <limits.h>, <sys_uio.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

WSCANF(3P) POSIX Programmer’s Manual WSCANF(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wscanf(const wchar_t *restrict format, ...);

DESCRIPTION
Refer to fwscanf().

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 1

Y0(3P) POSIX Programmer’s Manual Y0(3P)

PROLOG
This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface
may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface
may not be implemented on Linux.

NAME
y0, y1, yn — Bessel functions of the second kind

SYNOPSIS
#include <math.h>

double y0(double x);
double y1(double x);
double yn(int n, double x);

DESCRIPTION
The y0(), y1(), and yn() functions shall compute Bessel functions of x of the second kind of orders 0, 1, and
n, respectively.

An application wishing to check for error situations should set errno to zero and call feclearex-

cept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestex-

cept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has
occurred.

RETURN VALUE
Upon successful completion, these functions shall return the relevant Bessel value of x of the second kind.

If x is NaN, NaN shall be returned.

If the x argument to these functions is negative, −HUGE_VAL or NaN shall be returned, and a domain error
may occur.

If x is 0.0, −HUGE_VAL shall be returned and a pole error may occur.

If the correct result would cause underflow, 0.0 shall be returned and a range error may occur.

If the correct result would cause overflow, −HUGE_VAL or 0.0 shall be returned and a range error may oc-
cur.

ERRORS
These functions may fail if:

Domain Error
The value of x is negative.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the invalid floating-point exception shall be raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the divide-by-zero floating-point exception shall be raised.

Range Error The correct result would cause overflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the overflow floating-point exception shall be raised.

Range Error The value of x is too large in magnitude, or the correct result would cause underflow.

If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno

shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREX-
CEPT) is non-zero, then the underflow floating-point exception shall be raised.

IEEE/The Open Group 2017 1

Y0(3P) POSIX Programmer’s Manual Y0(3P)

The following sections are informative.

EXAMPLES
None.

APPLICATION USAGE
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ER-
REXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feclearexcept(), fetestexcept(), isnan(), j0()

The Base Definitions volume of POSIX.1-2017, Section 4.20, Tr eatment of Error Conditions for Mathe-

matical Functions, <math.h>

COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1-2017, Standard
for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Speci-
fications Issue 7, 2018 Edition, Copyright (C) 2018 by the Institute of Electrical and Electronics Engineers,
Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html .

Any typographical or formatting errors that appear in this page are most likely to have been introduced dur-
ing the conversion of the source files to man page format. To report such errors, see https://www.ker-
nel.org/doc/man-pages/reporting_bugs.html .

IEEE/The Open Group 2017 2

