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Preface

When we set out to write the fourth edition of Software Architecture in
Practice, our first question to ourselves was: Does architecture still
matter? With the rise of cloud infrastructures, microservices,
frameworks, and reference architectures for every conceivable domain
and quality attribute, one might think that architectural knowledge is
hardly needed anymore. All the architect of today needs to do is select
from the rich array of tools and infrastructure alternatives out there,
instantiate and configure them, and voila! An architecture.

We were (and are) pretty sure this is not true. Admittedly, we are
somewhat biased. So we spoke to some of our colleagues—working
architects in the healthcare and automotive domains, in social media and
aviation, in defense and finance and e-commerce—none of whom can
afford to let dogmatic bias rule them. What we heard confirmed our
belief—that architecture is just as relevant today as it was more than 20
years ago, when we wrote the first edition.

Let’s examine a few of the reasons that we heard. First, the rate of
new requirements has been accelerating for many years, and it continues
to accelerate even now. Architects today are faced with a nonstop and
ever-increasing stream of feature requests and bugs to fix, driven by
customer and business needs and by competitive pressures. If architects
aren’t paying attention to the modularity of their system (and, no,
microservices are not a panacea here), that system will quickly become
an anchor—hard to understand, change, debug, and modify, and
weighing down the business.

Second, while the level of abstraction in systems is increasing—we
can and do regularly use many sophisticated services, blissfully unaware
of how they are implemented—the complexity of the systems we are
being asked to create is increasing at least as quickly. This is an arms
race, and the architects aren’t winning! Architecture has always been
about taming complexity, and that just isn’t going to go away anytime
soon.



Speaking of raising the level of abstraction, model-based systems
engineering (MBSE) has emerged as a potent force in the engineering
field over the last decade or so. MBSE is the formalized application of
modeling to support (among other things) system design. The
International Council on Systems Engineering (INCOSE) ranks MBSE
as one of a select set of “transformational enablers” that underlie the
entire discipline of systems engineering. A model is a graphical,
mathematical, or physical representation of a concept or a construct that
can be reasoned about. INCOSE is trying to move the engineering field
from a document-based mentality to a model-based mentality, where
structural models, behavioral models, performance models, and more are
all used consistently to build systems better, faster, and cheaper. MBSE
per se is beyond the scope of this book, but we can’t help but notice that
what is being modeled is architecture. And who builds the models?
Architects.

Third, the meteoric growth (and unprecedented levels of employee
turnover) that characterizes the world of information systems means that
no one understands everything in any real-world system. Just being
smart and working hard aren’t good enough.

Fourth, despite having tools that automate much of what we used to
do ourselves—think about all of the orchestration, deployment, and
management functions baked into Kubernetes, for example—we still
need to understand the quality attribute properties of these systems that
we depend upon, and we need to understand the emergent quality
attribute properties when we combine systems together. Most quality
attributes—performance, security, availability, safety, and so on—are
susceptible to “weakest link” problems, and those weakest links may
only emerge and bite us when we compose systems. Without a guiding
hand to ward off disaster, the composition is very likely to fail. That
guiding hand belongs to an architect, regardless of their title.

Given these considerations, we felt safe and secure that there was
indeed a need for this book.

But was there a need for a fourth edition? Again (and this should be
abundantly obvious), we concluded an emphatic “yes”! Much has
changed in the computing landscape since the last edition was published.
Some quality attributes that were not previously considered have risen to
importance in the daily lives of many architects. As software continues
to pervade all aspects of our society, safety considerations have become
paramount for many systems; think about all of the ways that software
controls the cars that we now drive. Likewise, energy efficiency is a



quality that few architects considered a decade ago, but now must pay
attention to, from massive data centers with unquenchable needs for
energy to the small (even tiny) battery-operated mobile and IoT devices
that surround us. Also, given that we are, more than ever, building
systems by leveraging preexisting components, the quality attribute of
integrability is consuming ever-increasing amounts of our attention.

Finally, we are building different kinds of systems, and building them
in different ways than a decade ago. Systems these days are often built
on top of virtualized resources that reside in a cloud, and they need to
provide and depend on explicit interfaces. Also, they are increasingly
mobile, with all of the opportunities and challenges that mobility brings.
So, in this edition we have added chapters on virtualization, interfaces,
mobility, and the cloud.

As you can see, we convinced ourselves. We hope that we have
convinced you as well, and that you will find this fourth edition a useful
addition to your (physical or electronic) bookshelf.

Register your copy of Software Architecture in Practice, Fourth
Edition, on the InformIT site for convenient access to updates
and/or corrections as they become available. To start the
registration process, go to informit.com/register and log in or
create an account. Enter the product ISBN (9780136886099)
and click Submit. Look on the Registered Products tab for an
Access Bonus Content link next to this product, and follow that
link to access any available bonus materials. If you would like to
be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

http://informit.com/register
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Part I: Introduction



1
What Is Software Architecture?

We are called to be architects of the future, not its victims.
—R. Buckminster Fuller

Writing (on our part) and reading (on your part) a book about software
architecture, which distills the experience of many people, presupposes
that

1. having a reasonable software architecture is important to the
successful development of a software system and

2. there is a sufficient body of knowledge about software architecture
to fill up a book.

There was a time when both of these assumptions needed justification.
Early editions of this book tried to convince readers that both of these
assumptions are true and, once you were convinced, supply you with
basic knowledge so that you could apply the practice of architecture
yourself. Today, there seems to be little controversy about either aim,
and so this book is more about the supplying than the convincing.

The basic principle of software architecture is every software system
is constructed to satisfy an organization’s business goals, and that the
architecture of a system is a bridge between those (often abstract)
business goals and the final (concrete) resulting system. While the path
from abstract goals to concrete systems can be complex, the good news
is that software architectures can be designed, analyzed, and documented
using known techniques that will support the achievement of these
business goals. The complexity can be tamed, made tractable.

These, then, are the topics for this book: the design, analysis, and
documentation of architectures. We will also examine the influences,
principally in the form of business goals that lead to quality attribute
requirements, that inform these activities.



In this chapter, we will focus on architecture strictly from a software
engineering point of view. That is, we will explore the value that a
software architecture brings to a development project. Later chapters
will take business and organizational perspectives.

1.1 What Software Architecture Is and What It Isn’t
There are many definitions of software architecture, easily discoverable
with a web search, but the one we like is this:

The software architecture of a system is the set of structures needed to
reason about the system. These structures comprise software elements,
relations among them, and properties of both.
This definition stands in contrast to other definitions that talk about

the system’s “early” or “major” or “important” decisions. While it is true
that many architectural decisions are made early, not all are—especially
in Agile and spiral-development projects. It’s also true that many
decisions that are made early are not what we would consider
architectural. Also, it’s hard to look at a decision and tell whether it’s
“major.” Sometimes only time will tell. And since deciding on an
architecture is one of the architect’s most important obligations, we need
to know which decisions an architecture comprises.

Structures, by contrast, are fairly easy to identify in software, and they
form a powerful tool for system design and analysis.

So, there we are: Architecture is about reasoning-enabling structures.
Let’s look at some of the implications of our definition.

Architecture Is a Set of Software Structures
This is the first and most obvious implication of our definition. A
structure is simply a set of elements held together by a relation. Software
systems are composed of many structures, and no single structure can lay
claim to being the architecture. Structures can be grouped into
categories, and the categories themselves provide useful ways to think
about the architecture. Architectural structures can be organized into
three useful categories, which will play an important role in the design,
documentation, and analysis of architectures:

1. Component-and-connector structures
2. Module structures



3. Allocation structures
We’ll delve more into these types of structures in the next section.

Although software comprises an endless supply of structures, not all
of them are architectural. For example, the set of lines of source code
that contain the letter “z,” ordered by increasing length from shortest to
longest, is a software structure. But it’s not a very interesting one, nor is
it architectural. A structure is architectural if it supports reasoning about
the system and the system’s properties. The reasoning should be about
an attribute of the system that is important to some stakeholder(s). These
include properties such as the functionality achieved by the system, the
system’s ability to keep operating usefully in the face of faults or
attempts to take it down, the ease or difficulty of making specific
changes to the system, the system’s responsiveness to user requests, and
many others. We will spend a great deal of time in this book exploring
the relationship between architecture and quality attributes like these.

Thus the set of architectural structures is neither fixed nor limited.
What is architectural depends on what is useful to reason about in your
context for your system.

Architecture Is an Abstraction
Since architecture consists of structures, and structures consist of
elements1 and relations, it follows that an architecture comprises
software elements and how those elements relate to each other. This
means that architecture specifically and intentionally omits certain
information about elements that is not useful for reasoning about the
system. Thus an architecture is foremost an abstraction of a system that
selects certain details and suppresses others. In all modern systems,
elements interact with each other by means of interfaces that partition
details about an element into public and private parts. Architecture is
concerned with the public side of this division; private details of
elements—details having to do solely with internal implementation—are
not architectural. This abstraction is essential to taming the complexity
of an architecture: We simply cannot, and do not want to, deal with all of
the complexity all of the time. We want—and need—the understanding
of a system’s architecture to be many orders of magnitude easier than
understanding every detail about that system. You can’t keep every detail
of a system of even modest size in your head; the point of architecture is
to make it so you don’t have to.



1. In this book, we use the term “element” when we mean either a
module or a component, and don’t want to distinguish between the
two.

Architecture versus Design
Architecture is design, but not all design is architecture. That is, many
design decisions are left unbound by the architecture—it is, after all, an
abstraction—and depend on the discretion and good judgment of
downstream designers and even implementers.

Every Software System Has a Software Architecture
Every system has an architecture, because every system has elements
and relations. However, it does not follow that the architecture is known
to anyone. Perhaps all of the people who designed the system are long
gone, the documentation has vanished (or was never produced), the
source code has been lost (or was never delivered), and all we have at
hand is the executing binary code. This reveals the difference between
the architecture of a system and the representation of that architecture.
Given that an architecture can exist independently of its description or
specification, this raises the importance of architecture documentation,
which is described in Chapter 22.

Not All Architectures Are Good Architectures
Our definition is indifferent as to whether the architecture for a system is
a good one or a bad one. An architecture may either support or hinder
achieving the important requirements for a system. Assuming that we do
not accept trial and error as the best way to choose an architecture for a
system—that is, picking an architecture at random, building the system
from it, and then hacking away and hoping for the best—this raises the
importance of architecture design, which is treated in Chapter 20 and
architecture evaluation, which will be dealt with in Chapter 21.

Architecture Includes Behavior
The behavior of each element is part of the architecture insofar as that
behavior can help you reason about the system. The behavior of elements
embodies how they interact with each other and with the environment.
This is clearly part of our definition of architecture and will have an



effect on the properties exhibited by the system, such as its runtime
performance.

Some aspects of behavior are below the architect’s level of concern.
Nevertheless, to the extent that an element’s behavior influences the
acceptability of the system as a whole, this behavior must be considered
part of the system’s architectural design, and should be documented as
such.

System and Enterprise Architectures
Two disciplines related to software architecture are system
architecture and enterprise architecture. Both of these disciplines
have broader concerns than software and affect software
architecture through the establishment of constraints within which a
software system, and its architect, must live.

System Architecture
A system’s architecture is a representation of a system in which
there is a mapping of functionality onto hardware and software
components, a mapping of the software architecture onto the
hardware architecture, and a concern for the human interaction with
these components. That is, system architecture is concerned with
the totality of hardware, software, and humans.

A system architecture will influence, for example, the
functionality that is assigned to different processors and the types
of networks that connect those processors. The software
architecture will determine how this functionality is structured and
how the software programs residing on the various processors
interact.

A description of the software architecture, as it is mapped to
hardware and networking components, allows reasoning about
qualities such as performance and reliability. A description of the
system architecture will allow reasoning about additional qualities
such as power consumption, weight, and physical dimensions.

When designing a particular system, there is frequently
negotiation between the system architect and the software architect



over the distribution of functionality and, consequently, the
constraints placed on the software architecture.

Enterprise Architecture
Enterprise architecture is a description of the structure and behavior
of an organization’s processes, information flow, personnel, and
organizational subunits. An enterprise architecture need not include
computerized information systems—clearly, organizations had
architectures that fit the preceding definition prior to the advent of
computers—but these days enterprise architectures for all but the
smallest businesses are unthinkable without information system
support. Thus a modern enterprise architecture is concerned with
how software systems support the enterprise’s business processes
and goals. Typically included in this set of concerns is a process for
deciding which systems with which functionality the enterprise
should support.

An enterprise architecture will specify, for example, the data
model that various systems use to interact. It will also specify rules
for how the enterprise’s systems interact with external systems.

Software is only one concern of enterprise architecture. How the
software is used by humans to perform business processes and the
standards that determine the computational environment are two
other common concerns addressed by enterprise architecture.

Sometimes the software infrastructure that supports
communication among systems and with the external world is
considered a portion of the enterprise architecture; at other times,
this infrastructure is considered one of the systems within an
enterprise. (In either case, the architecture of that infrastructure is a
software architecture!) These two views will result in different
management structures and spheres of influence for the individuals
concerned with the infrastructure.

Are These Disciplines in Scope for This Book? Yes! (Well, No.)
The system and the enterprise provide environments for, and
constraints on, the software architecture. The software architecture
must live within the system and the enterprise, and increasingly is
the focus for achieving the organization’s business goals. Enterprise
and system architectures share a great deal with software
architectures. All can be designed, evaluated, and documented; all



answer to requirements; all are intended to satisfy stakeholders; all
consist of structures, which in turn consist of elements and
relationships; all have a repertoire of patterns at their respective
architects’ disposal; and the list goes on. So to the extent that these
architectures share commonalities with software architecture, they
are in the scope of this book. But like all technical disciplines, each
has its own specialized vocabulary and techniques, and we won’t
cover those. Copious other sources exist that do.

1.2 Architectural Structures and Views
Because architectural structures are at the heart of our definition and
treatment of software architecture, this section will explore these
concepts in more depth. These concepts are dealt with in much greater
depth in Chapter 22, where we discuss architecture documentation.

Architectural structures have counterparts in nature. For example, the
neurologist, the orthopedist, the hematologist, and the dermatologist all
have different views of the various structures of a human body, as
illustrated in Figure 1.1. Ophthalmologists, cardiologists, and podiatrists
concentrate on specific subsystems. Kinesiologists and psychiatrists are
concerned with different aspects of the entire arrangement’s behavior.
Although these views are pictured differently and have very different
properties, all are inherently related and interconnected: Together they
describe the architecture of the human body.



Figure 1.1 Physiological structures

Architectural structures also have counterparts in human endeavors.
For example, electricians, plumbers, heating and air conditioning



specialists, roofers, and framers are each concerned with different
structures in a building. You can readily see the qualities that are the
focus of each of these structures.

So it is with software.

Three Kinds of Structures
Architectural structures can be divided into three major categories,
depending on the broad nature of the elements they show and the kinds
of reasoning they support:

1. Component-and-connector (C&C) structures focus on the way the
elements interact with each other at runtime to carry out the
system’s functions. They describe how the system is structured as a
set of elements that have runtime behavior (components) and
interactions (connectors). Components are the principal units of
computation and could be services, peers, clients, servers, filters,
or many other types of runtime element. Connectors are the
communication vehicles among components, such as call-return,
process synchronization operators, pipes, or others. C&C
structures help answer questions such as the following:

What are the major executing components and how do they
interact at runtime?
What are the major shared data stores?
Which parts of the system are replicated?
How does data progress through the system?
Which parts of the system can run in parallel?
Can the system’s structure change as it executes and, if so,
how?

By extension, these structures are crucially important for asking
questions about the system’s runtime properties, such as
performance, security, availability, and more.
C&C structures are the most common ones that we see, but two
other categories of structures are important and should not be
overlooked.
Figure 1.2 shows a sketch of a C&C structure of a system using an
informal notation that is explained in the figure’s key. The system



contains a shared repository that is accessed by servers and an
administrative component. A set of client tellers can interact with
the account servers and communicate among themselves using a
publish-subscribe connector.



Figure 1.2 A component-and-connector structure

2. Module structures partition systems into implementation units,
which in this book we call modules. Module structures show how a
system is structured as a set of code or data units that have to be
constructed or procured. Modules are assigned specific
computational responsibilities and are the basis of work
assignments for programming teams. In any module structure, the
elements are modules of some kind (perhaps classes, packages,
layers, or merely divisions of functionality, all of which are units
of implementation). Modules represent a static way of considering
the system. Modules are assigned areas of functional
responsibility; there is less emphasis in these structures on how the
resulting software manifests itself at runtime. Module
implementations include packages, classes, and layers. Relations
among modules in a module structure include uses, generalization
(or “is-a”), and “is part of.” Figures 1.3 and 1.4 show examples of
module elements and relations, respectively, using the Unified
Modeling Language (UML) notation.

Figure 1.3 Module elements in UML



Figure 1.4 Module relations in UML

Module structures allow us to answer questions such as the
following:

What is the primary functional responsibility assigned to each
module?
What other software elements is a module allowed to use?
What other software does it actually use and depend on?
What modules are related to other modules by generalization
or specialization (i.e., inheritance) relationships?

Module structures convey this information directly, but they can
also be used to answer questions about the impact on the system
when the responsibilities assigned to each module change. Thus
module structures are the primary tools for reasoning about a
system’s modifiability.



3. Allocation structures establish the mapping from software
structures to the system’s nonsoftware structures, such as its
organization, or its development, test, and execution environments.
Allocation structures answer questions such as the following:

Which processor(s) does each software element execute on?
In which directories or files is each element stored during
development, testing, and system building?
What is the assignment of each software element to
development teams?

Some Useful Module Structures
Useful module structures include:

Decomposition structure. The units are modules that are related to
each other by the “is-a-submodule-of” relation, showing how
modules are decomposed into smaller modules recursively until the
modules are small enough to be easily understood. Modules in this
structure represent a common starting point for design, as the
architect enumerates what the units of software will have to do and
assigns each item to a module for subsequent (more detailed) design
and eventual implementation. Modules often have products (such as
interface specifications, code, and test plans) associated with them.
The decomposition structure determines, to a large degree, the
system’s modifiability. That is, do changes fall within the purview of
a few (preferably small) modules? This structure is often used as the
basis for the development project’s organization, including the
structure of the documentation, and the project’s integration and test
plans. Figure 1.5 shows an example of a decomposition structure.



Figure 1.5 A decomposition structure

Uses structure. In this important but often overlooked structure, the
units are also modules, and perhaps classes. The units are related by
the uses relation, a specialized form of dependency. One unit of
software uses another if the correctness of the first requires the
presence of a correctly functioning version (as opposed to a stub) of
the second. The uses structure is used to engineer systems that can
be extended to add functionality, or from which useful functional



subsets can be extracted. The ability to easily create a subset of a
system allows for incremental development. This structure is also
the basis for measuring social debt—the amount of communication
that actually is, as opposed to merely should be, taking place among
teams—as it defines which teams should be talking to each other.
Figure 1.6 shows a uses structure and highlights the modules that
must be present in an increment if the module admin.client is
present.

Figure 1.6 Uses structure

Layer structure. The modules in this structure are called layers. A
layer is an abstract “virtual machine” that provides a cohesive set of
services through a managed interface. Layers are allowed to use
other layers in a managed fashion; in strictly layered systems, a layer
is only allowed to use a single other layer. This structure imbues a
system with portability—that is, the ability to change the underlying
virtual machine. Figure 1.7 shows a layer structure of the UNIX
System V operating system.



Figure 1.7 Layer structure

Class (or generalization) structure. The modules in this structure are
called classes, and they are related through an “inherits-from” or “is-
an-instance-of” relation. This view supports reasoning about
collections of similar behavior or capability and parameterized
differences. The class structure allows one to reason about reuse and
the incremental addition of functionality. If any documentation exists
for a project that has followed an object-oriented analysis and design
process, it is typically this structure. Figure 1.8 shows a
generalization structure taken from an architectural expert tool.



Figure 1.8 Generalization structure

Data model. The data model describes the static information
structure in terms of data entities and their relationships. For
example, in a banking system, entities will typically include
Account, Customer, and Loan. Account has several attributes, such
as account number, type (savings or checking), status, and current
balance. A relationship may dictate that one customer can have one
or more accounts, and one account is associated with one or more
customers. Figure 1.9 shows an example of a data model.



Figure 1.9 Data model

Some Useful C&C Structures
C&C structures show a runtime view of the system. In these structures,
the modules just described have all been compiled into executable forms.
Thus all C&C structures are orthogonal to the module-based structures
and deal with the dynamic aspects of a running system. For example, one
code unit (module) could be compiled into a single service that is
replicated thousands of times in an execution environment. Or 1,000
modules can be compiled and linked together to produce a single runtime
executable (component).

The relation in all C&C structures is attachment, showing how the
components and the connectors are hooked together. (The connectors
themselves can be familiar constructs such as “invokes.”) Useful C&C
structures include:

Service structure. The units here are services that interoperate
through a service coordination mechanism, such as messages. The
service structure is an important structure to help engineer a system
composed of components that may have been developed
independently of each other.



Concurrency structure. This C&C structure allows the architect to
determine opportunities for parallelism and the locations where
resource contention may occur. The units are components, and the
connectors are their communication mechanisms. The components
are arranged into “logical threads.” A logical thread is a sequence of
computations that could be allocated to a separate physical thread
later in the design process. The concurrency structure is used early in
the design process to identify and manage issues associated with
concurrent execution.

Some Useful Allocation Structures
Allocation structures define how the elements from C&C or module
structures map onto things that are not software—typically hardware
(possibly virtualized), teams, and file systems. Useful allocation
structures include:

Deployment structure. The deployment structure shows how
software is assigned to hardware processing and communication
elements. The elements are software elements (usually a process
from a C&C structure), hardware entities (processors), and
communication pathways. Relations are “allocated-to,” showing on
which physical units the software elements reside, and “migrates-
to,” if the allocation is dynamic. This structure can be used to reason
about performance, data integrity, security, and availability. It is of
particular interest in distributed systems and is the key structure
involved in the achievement of the quality attribute of deployability
(see Chapter 5). Figure 1.10 shows a simple deployment structure in
UML.



Figure 1.10 Deployment structure

Implementation structure. This structure shows how software
elements (usually modules) are mapped to the file structures in the
system’s development, integration, test, or configuration control
environments. This is critical for the management of development
activities and build processes.
Work assignment structure. This structure assigns responsibility for
implementing and integrating the modules to the teams that will
carry out these tasks. Having a work assignment structure be part of
the architecture makes it clear that the decision about who does the
work has architectural as well as management implications. The
architect will know the expertise required on each team. Amazon’s
decision to devote a single team to each of its microservices, for
example, is a statement about its work assignment structure. On
large development projects, it is useful to identify units of functional
commonality and assign those to a single team, rather than having
them be implemented by everyone who needs them. This structure
will also determine the major communication pathways among the
teams: regular web conferences, wikis, email lists, and so forth.

Table 1.1 summarizes these structures. It lists the meaning of the
elements and relations in each structure and tells what each might be



used for.

Table 1.1 Useful Architectural Structures
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Relating Structures to Each Other
Each of these structures provides a different perspective and design
handle on a system, and each is valid and useful in its own right.
Although the structures give different system perspectives, they are not
independent. Elements of one structure will be related to elements of
other structures, and we need to reason about these relations. For
example, a module in a decomposition structure may be manifested as
one, part of one, or several components in one of the C&C structures,



reflecting its runtime alter-ego. In general, mappings between structures
are many to many.

Figure 1.11 shows a simple example of how two structures might
relate to each other. The image on the left shows a module
decomposition view of a tiny client-server system. In this system, two
modules must be implemented: the client software and the server
software. The image on the right shows a C&C view of the same system.
At runtime, ten clients are running and accessing the server. Thus this
little system has two modules and eleven components (and ten
connectors).

Figure 1.11 Two views of a client-server system

Whereas the correspondence between the elements in the
decomposition structure and the client-server structure is obvious, these
two views are used for very different things. For example, the view on
the right could be used for performance analysis, bottleneck prediction,
and network traffic management, which would be extremely difficult or
impossible to do with the view on the left. (In Chapter 9, we’ll learn
about the map-reduce pattern, in which copies of simple, identical
functionality are distributed across hundreds or thousands of processing
nodes—one module for the whole system, but one component per node.)

Individual projects sometimes consider one structure to be dominant
and cast other structures, when possible, in terms of the dominant
structure. Often, the dominant structure is the module decomposition
structure, and for good reason: It tends to spawn the project structure,



since it mirrors the team structure of development. In other projects, the
dominant structure might be a C&C structure that shows how the
system’s functionality and/or critical quality attributes are achieved at
runtime.

Fewer Is Better
Not all systems warrant consideration of many architectural structures.
The larger the system, the more dramatic the difference between these
structures tends to be; but for small systems, we can often get by with
fewer structures. For example, instead of working with each of several
C&C structures, usually a single one will do. If there is only one process,
then the process structure collapses to a single node and need not be
explicitly represented in the design. If no distribution will occur (that is,
if the system is implemented on a single processor), then the deployment
structure is trivial and need not be considered further. In general, you
should design and document a structure only if doing so brings a positive
return on the investment, usually in terms of decreased development or
maintenance costs.

Which Structures to Choose?
We have briefly described a number of useful architectural structures,
and many more are certainly possible. Which ones should an architect
choose to work on? Which ones should the architect choose to
document? Surely not all of them. A good answer is that you should
think about how the various structures available to you provide insight
and leverage into the system’s most important quality attributes, and then
choose the ones that will play the best role in delivering those attributes.

Architectural Patterns
In some cases, architectural elements are composed in ways that solve
particular problems. These compositions have been found to be useful
over time and over many different domains, so they have been
documented and disseminated. These compositions of architectural
elements, which provide packaged strategies for solving some of the
problems facing a system, are called patterns. Architectural patterns are
discussed in detail in Part II of this book.



1.3 What Makes a “Good” Architecture?
There is no such thing as an inherently good or bad architecture.
Architectures are either more or less fit for some purpose. A three-tier
layered service-oriented architecture may be just the ticket for a large
enterprise’s web-based B2B system but completely wrong for an
avionics application. An architecture carefully crafted to achieve high
modifiability does not make sense for a throw-away prototype (and vice
versa!). One of the messages of this book is that architectures can, in
fact, be evaluated—one of the great benefits of paying attention to them
—but such evaluation only makes sense in the context of specific stated
goals.

Nevertheless, some rules of thumb should be followed when
designing most architectures. Failure to apply any of these guidelines
does not automatically mean that the architecture will be fatally flawed,
but it should at least serve as a warning sign that should be investigated.
These rules can be applied proactively for greenfield development, to
help build the system “right.” Or they can be applied as analysis
heuristics, to understand the potential problem areas in existing systems
and to guide the direction of its evolution.

We divide our observations into two clusters: process
recommendations and product (or structural) recommendations. Our
process recommendations are as follows:

1. A software (or system) architecture should be the product of a
single architect or a small group of architects with an identified
technical leader. This approach is important to give the architecture
its conceptual integrity and technical consistency. This
recommendation holds for agile and open source projects as well
as “traditional” ones. There should be a strong connection between
the architects and the development team, to avoid “ivory tower,”
impractical designs.

2. The architect (or architecture team) should, on an ongoing basis,
base the architecture on a prioritized list of well-specified quality
attribute requirements. These will inform the tradeoffs that always
occur. Functionality matters less.

3. The architecture should be documented using views. (A view is
simply a representation of one or more architectural structures.)
The views should address the concerns of the most important



stakeholders in support of the project timeline. This might mean
minimal documentation at first, with the documentation then being
elaborated later. Concerns usually are related to construction,
analysis, and maintenance of the system, as well as education of
new stakeholders.

4. The architecture should be evaluated for its ability to deliver the
system’s important quality attributes. This should occur early in
the life cycle, when it returns the most benefit, and repeated as
appropriate, to ensure that changes to the architecture (or the
environment for which it is intended) have not rendered the design
obsolete.

5. The architecture should lend itself to incremental implementation,
to avoid having to integrate everything at once (which almost
never works) as well as to discover problems early. One way to do
this is via the creation of a “skeletal” system in which the
communication paths are exercised but which at first has minimal
functionality. This skeletal system can be used to “grow” the
system incrementally, refactoring as necessary.

Our structural rules of thumb are as follows:
1. The architecture should feature well-defined modules whose

functional responsibilities are assigned on the principles of
information hiding and separation of concerns. The information-
hiding modules should encapsulate things likely to change, thereby
insulating the software from the effects of those changes. Each
module should have a well-defined interface that encapsulates or
“hides” the changeable aspects from other software that uses its
facilities. These interfaces should allow their respective
development teams to work largely independently of each other.

2. Unless your requirements are unprecedented—possible, but
unlikely—your quality attributes should be achieved by using
well-known architectural patterns and tactics (described in
Chapters 4 through 13) specific to each attribute.

3. The architecture should never depend on a particular version of a
commercial product or tool. If it must, it should be structured so
that changing to a different version is straightforward and
inexpensive.



4. Modules that produce data should be separate from modules that
consume data. This tends to increase modifiability because
changes are frequently confined to either the production or the
consumption side of data. If new data is added, both sides will
have to change, but the separation allows for a staged
(incremental) upgrade.

5. Don’t expect a one-to-one correspondence between modules and
components. For example, in systems with concurrency, multiple
instances of a component may be running in parallel, where each
component is built from the same module. For systems with
multiple threads of concurrency, each thread may use services from
several components, each of which was built from a different
module.

6. Every process should be written so that its assignment to a specific
processor can be easily changed, perhaps even at runtime. This is a
driving force in the increasing trends toward virtualization and
cloud deployment, as we will discuss in Chapters 16 and 17.

7. The architecture should feature a small number of simple
component interaction patterns. That is, the system should do the
same things in the same way throughout. This practice will aid in
understandability, reduce development time, increase reliability,
and enhance modifiability.

8. The architecture should contain a specific (and small) set of
resource contention areas, whose resolution is clearly specified and
maintained. For example, if network utilization is an area of
concern, the architect should produce (and enforce) for each
development team guidelines that will result in acceptable levels of
network traffic. If performance is a concern, the architect should
produce (and enforce) time budgets.

1.4 Summary
The software architecture of a system is the set of structures needed to
reason about the system. These structures comprise software elements,
relations among them, and properties of both.

There are three categories of structures:



Module structures show the system as a set of code or data units that
have to be constructed or procured.
Component-and-connector structures show the system as a set of
elements that have runtime behavior (components) and interactions
(connectors).
Allocation structures show how elements from module and C&C
structures relate to nonsoftware structures (such as CPUs, file
systems, networks, and development teams).

Structures represent the primary engineering leverage points of an
architecture. Each structure brings with it the power to manipulate one or
more quality attributes. Collectively, structures represent a powerful
approach for creating the architecture (and, later, for analyzing it and
explaining it to its stakeholders). And, as we will see in Chapter 22, the
structures that the architect has chosen as engineering leverage points are
also the primary candidates to choose as the basis for architecture
documentation.

Every system has a software architecture, but this architecture may or
may not be documented and disseminated.

There is no such thing as an inherently good or bad architecture.
Architectures are either more or less fit for some purpose.

1.5 For Further Reading
If you’re keenly interested in software architecture as a field of study,
you might be interested in reading some of the pioneering work. Most of
it does not mention “software architecture” at all, as this phrase evolved
only in the mid-1990s, so you’ll have to read between the lines.

Edsger Dijkstra’s 1968 paper on the T.H.E. operating system
introduced the concept of layers [Dijkstra 68]. The early work of David
Parnas laid many conceptual foundations, including information hiding
[Parnas 72], program families [Parnas 76], the structures inherent in
software systems [Parnas 74], and the uses structure to build subsets and
supersets of systems [Parnas 79]. All of Parnas’s papers can be found in
the more easily accessible collection of his important papers [Hoffman
00]. Modern distributed systems owe their existence to the concept of
cooperating sequential processes that (among others) Sir C. A. R. (Tony)
Hoare was instrumental in conceptualizing and defining [Hoare 85].



In 1972, Dijkstra and Hoare, along with Ole-Johan Dahl, argued that
programs should be decomposed into independent components with
small and simple interfaces. They called their approach structured
programming, but arguably this was the debut of software architecture
[Dijkstra 72].

Mary Shaw and David Garlan, together and separately, produced a
major body of work that helped create the field of study we call software
architecture. They established some of its fundamental principles and,
among other things, catalogued a seminal family of architectural styles
(a concept similar to patterns), several of which appear in this chapter as
architectural structures. Start with [Garlan 95].

Software architectural patterns have been extensively catalogued in
the series Pattern-Oriented Software Architecture [Buschmann 96 and
others]. We also deal with architectural patterns throughout Part II of this
book.

Early papers on architectural views as used in industrial development
projects are [Soni 95] and [Kruchten 95]. The former grew into a book
[Hofmeister 00] that presents a comprehensive picture of using views in
development and analysis.

A number of books have focused on practical implementation issues
associated with architectures, such as George Fairbanks’ Just Enough
Software Architecture [Fairbanks 10], Woods and Rozanski’s Software
Systems Architecture [Woods 11], and Martin’s Clean Architecture: A
Craftsman’s Guide to Software Structure and Design [Martin 17].

1.6 Discussion Questions
1. Is there a different definition of software architecture that you are

familiar with? If so, compare and contrast it with the definition
given in this chapter. Many definitions include considerations like
“rationale” (stating the reasons why the architecture is what it is) or
how the architecture will evolve over time. Do you agree or
disagree that these considerations should be part of the definition of
software architecture?

2. Discuss how an architecture serves as a basis for analysis. What
about decision making? What kinds of decision making does an
architecture empower?

3. What is architecture’s role in project risk reduction?



4. Find a commonly accepted definition of system architecture and
discuss what it has in common with software architecture. Do the
same for enterprise architecture.

5. Find a published example of a software architecture. Which
structures are shown? Given its purpose, which structures should
have been shown? What analysis does the architecture support?
Critique it: What questions do you have that the representation does
not answer?

6. Sailing ships have architectures, which means they have
“structures” that lend themselves to reasoning about the ship’s
performance and other quality attributes. Look up the technical
definitions for barque, brig, cutter, frigate, ketch, schooner, and
sloop. Propose a useful set of “structures” for distinguishing and
reasoning about ship architectures.

7. Aircraft have architectures that can be characterized by how they
resolve some major design questions, such as engine location, wing
location, landing gear layout, and more. For many decades, most jet
aircraft designed for passenger transport have the following
characteristics:

Engines housed in nacelles slung underneath the wing (as
opposed to engines built into the wings, or engines mounted on
the rear of the fuselage)
Wings that join the fuselage at the bottom (as opposed to the
top or middle)

First, do an online search to find an example and a counter-
example of this type of design from each of the following
manufacturers: Boeing, Embraer, Tupolev, and Bombardier. Next,
do some online research and answer the following question: What
qualities important to aircraft does this design provide?



2
Why Is Software Architecture
Important?

Ah, to build, to build!
That is the noblest art of all the arts.

—Henry Wadsworth Longfellow

If architecture is the answer, what was the question?
This chapter focuses on why architecture matters from a technical

perspective. We will examine a baker’s dozen of the most important
reasons. You can use these reasons to motivate the creation of a new
architecture, or the analysis and evolution of an existing system’s
architecture.

1. An architecture can either inhibit or enable a system’s driving
quality attributes.

2. The decisions made in an architecture allow you to reason about
and manage change as the system evolves.

3. The analysis of an architecture enables early prediction of a
system’s qualities.

4. A documented architecture enhances communication among
stakeholders.

5. The architecture is a carrier of the earliest, and hence most-
fundamental, hardest-to-change design decisions.

6. An architecture defines a set of constraints on subsequent
implementation.

7. The architecture dictates the structure of an organization, or vice
versa.



8. An architecture can provide the basis for incremental development.
9. An architecture is the key artifact that allows the architect and the

project manager to reason about cost and schedule.
10. An architecture can be created as a transferable, reusable model

that forms the heart of a product line.
11. Architecture-based development focuses attention on the assembly

of components, rather than simply on their creation.
12. By restricting design alternatives, architecture channels the

creativity of developers, reducing design and system complexity.
13. An architecture can be the foundation for training of a new team

member.
Even if you already believe us that architecture is important and don’t

need that point hammered home 13 more times, think of these 13 points
(which form the outline for this chapter) as 13 useful ways to use
architecture in a project, or to justify the resources devoted to
architecture.

2.1 Inhibiting or Enabling a System’s Quality
Attributes

A system’s ability to meet its desired (or required) quality attributes is
substantially determined by its architecture. If you remember nothing
else from this book, remember that.

This relationship is so important that we’ve devoted all of Part II of
this book to expounding that message in detail. Until then, keep these
examples in mind as a starting point:

If your system requires high performance, then you need to pay
attention to managing the time-based behavior of elements, their use
of shared resources, and the frequency and volume of their
interelement communication.
If modifiability is important, then you need to pay attention to
assigning responsibilities to elements and limiting the interactions
(coupling) of those elements so that the majority of changes to the
system will affect a small number of those elements. Ideally, each
change will affect just a single element.



If your system must be highly secure, then you need to manage and
protect interelement communication and control which elements are
allowed to access which information. You may also need to
introduce specialized elements (such as an authorization mechanism)
into the architecture to set up a strong “perimeter” to guard against
intrusion.
If you want your system to be safe and secure, you need to design in
safeguards and recovery mechanisms.
If you believe that scalability of performance will be important to the
success of your system, then you need to localize the use of
resources to facilitate the introduction of higher-capacity
replacements, and you must avoid hard-coding in resource
assumptions or limits.
If your projects need the ability to deliver incremental subsets of the
system, then you must manage intercomponent usage.
If you want the elements from your system to be reusable in other
systems, then you need to restrict interelement coupling so that when
you extract an element, it does not come out with too many
attachments to its current environment to be useful.

The strategies for these and other quality attributes are supremely
architectural. But an architecture alone cannot guarantee the
functionality or quality required of a system. Poor downstream design or
implementation decisions can always undermine an adequate
architectural design. As we like to say (mostly in jest): What the
architecture giveth, the implementation may taketh away. Decisions at
all stages of the life cycle—from architectural design to coding and
implementation and testing—affect system quality. Therefore, quality is
not completely a function of an architectural design. But that’s where it
starts.

2.2 Reasoning about and Managing Change
This is a corollary to the previous point.

Modifiability—the ease with which changes can be made to a system
— is a quality attribute (and hence covered by the arguments in the
previous section), but it is such an important quality that we have
awarded it its own spot in the List of Thirteen. The software



development community is coming to grips with the fact that roughly 80
percent of a typical software system’s total cost occurs after initial
deployment. Most systems that people work on are in this phase. Many
programmers and software designers never get to work on new
development—they work under the constraints of the existing
architecture and the existing body of code. Virtually all software systems
change over their lifetimes, to accommodate new features, to adapt to
new environments, to fix bugs, and so forth. But the reality is that these
changes are often fraught with difficulty.

Every architecture, no matter what it is, partitions possible changes
into three categories: local, nonlocal, and architectural.

A local change can be accomplished by modifying a single element
—for example, adding a new business rule to a pricing logic module.
A nonlocal change requires multiple element modifications but
leaves the underlying architectural approach intact—for example,
adding a new business rule to a pricing logic module, then adding
new fields to the database that this new business rule requires, and
then revealing the results of applying the rule in the user interface.
An architectural change affects the fundamental ways in which the
elements interact with each other and will probably require changes
all over the system—for example, changing a system from single-
threaded to multi-threaded.

Obviously, local changes are the most desirable, so an effective
architecture is one in which the most common changes are local, and
hence easy to make. Nonlocal changes are not as desirable but do have
the virtue that they can usually be staged—that is, rolled out—in an
orderly manner over time. For example, you might first make changes to
add a new pricing rule, then make the changes to actually deploy the
new rule.

Deciding when changes are essential, determining which change paths
have the least risk, assessing the consequences of proposed changes, and
arbitrating sequences and priorities for requested changes all require
broad insight into the relationships, performance, and behaviors of
system software elements. These tasks are all part of the job description
for an architect. Reasoning about the architecture and analyzing the
architecture can provide the insights necessary to make decisions about
anticipated changes. If you do not take this step, and if you do not pay



attention to maintaining the conceptual integrity of your architecture,
then you will almost certainly accumulate architecture debt. We deal
with this subject in Chapter 23.

2.3 Predicting System Qualities
This point follows from the previous two: Architecture not only imbues
systems with qualities, but does so in a predictable way.

This may seem obvious, but it need not be the case. Then designing an
architecture would consist of making a series of pretty much random
design decisions, building the system, testing for quality attributes, and
hoping for the best. Oops—not fast enough or hopelessly vulnerable to
attacks? Start hacking.

Fortunately, it is possible to make quality predictions about a system
based solely on an evaluation of its architecture. If we know that certain
kinds of architectural decisions lead to certain quality attributes in a
system, then we can make those decisions and rightly expect to be
rewarded with the associated quality attributes. After the fact, when we
examine an architecture, we can determine whether those decisions have
been made and confidently predict that the architecture will exhibit the
associated qualities.

This point and the previous point, taken together, mean that
architecture largely determines system qualities and—even better!—we
know how it does so, and we know how to make it do so.

Even if you don’t perform the quantitative analytic modeling
sometimes necessary to ensure that an architecture will deliver its
prescribed benefits, this principle of evaluating decisions based on their
quality attribute implications is invaluable for at least spotting potential
trouble early.

2.4 Communication among Stakeholders
One point made in Chapter 1 is that an architecture is an abstraction, and
that is useful because it represents a simplified model of the whole
system that (unlike the infinite details of the whole system) you can keep
in your head. So can others on your team. Architecture represents a
common abstraction of a system that most, if not all, of the system’s
stakeholders can use as a basis for creating mutual understanding,
negotiating, forming consensus, and communicating with each other. The
architecture—or at least parts of it—are sufficiently abstract that most



nontechnical people can understand it to the extent they need to,
particularly with some coaching from the architect, and yet that
abstraction can be refined into sufficiently rich technical specifications to
guide implementation, integration, testing, and deployment.

Each stakeholder of a software system—customer, user, project
manager, coder, tester, and so on—is concerned with different
characteristics of the system that are affected by its architecture. For
example:

the user is concerned that the system is fast, reliable, and available
when needed;
the customer (who pays for the system) is concerned that the
architecture can be implemented on schedule and according to
budget;
the manager is worried that (in addition to cost and schedule
concerns) the architecture will allow teams to work largely
independently, interacting in disciplined and controlled ways; and
the architect is worried about strategies to achieve all of those goals.

Architecture provides a common language in which different concerns
can be expressed, negotiated, and resolved at a level that is intellectually
manageable even for large, complex systems. Without such a language,
it is difficult to understand large systems sufficiently to make the early
decisions that influence both quality and usefulness. Architectural
analysis, as we will see in Chapter 21, both depends on this level of
communication and enhances it.

Chapter 22, on architecture documentation, covers stakeholders and
their concerns in greater depth.

“What Happens When I Push This Button?”:
Architecture as a Vehicle for Stakeholder
Communication
The project review droned on and on. The government-sponsored
development was behind schedule and over budget, and it was large
enough that these lapses were attracting the U.S. Congress’s



attention. And now the government was making up for past neglect
by holding a marathon come-one-come-all review session. The
contractor had recently undergone a buyout, which hadn’t helped
matters. It was the afternoon of the second day, and the agenda
called for presentation of the software architecture. The young
architect—an apprentice to the chief architect for the system—was
bravely explaining how the software architecture for the massive
system would enable it to meet its very demanding real-time,
distributed, high-reliability requirements. He had a solid
presentation and a solid architecture to present. It was sound and
sensible. But the audience—about 30 government representatives
who had varying roles in the management and oversight of this
sticky project—was tired. Some of them were even thinking that
perhaps they should have gone into real estate instead of enduring
another one of these marathon let’s-finally-get-it-right-this-time
reviews.

The slide showed, in semiformal box-and-line notation, what the
major software elements were in a runtime view of the system. The
names were all acronyms, suggesting no semantic meaning without
explanation, which the young architect gave. The lines showed data
flow, message passing, and process synchronization. The elements
were internally redundant, as the architect was explaining. “In the
event of a failure,” he began, using a laser pointer to denote one of
the lines, “a restart mechanism triggers along this path when. . . .”

“What happens when the mode select button is pushed?”
interrupted one of the audience members. He was a government
attendee representing the user community for this system.

“Beg your pardon?” asked the architect.
“The mode select button,” he said. “What happens when you

push it?”
“Um, that triggers an event in the device driver, up here,” began

the architect, laser-pointing. “It then reads the register and
interprets the event code. If it’s mode select, well, then, it signals
the blackboard, which in turn signals the objects that have
subscribed to that event. . . .”

“No, I mean what does the system do,” interrupted the
questioner. “Does it reset the displays? And what happens if this
occurs during a system reconfiguration?”



The architect looked a little surprised and flicked off the laser
pointer. This was not an architectural question, but since he was an
architect and therefore fluent in the requirements, he knew the
answer. “If the command line is in setup mode, the displays will
reset,” he said. “Otherwise, an error message will be put on the
control console, but the signal will be ignored.” He put the laser
pointer back on. “Now, the restart mechanism that I was talking
about. . . .”

“Well, I was just wondering,” said the users’ delegate. “Because
I see from your chart that the display console is sending signal
traffic to the target location module.”

“What should happen?” asked another member of the audience,
addressing the first questioner. “Do you really want the user to get
mode data during its reconfiguring?” And for the next 45 minutes,
the architect watched as the audience consumed his time slot by
debating what the correct behavior of the system was supposed to
be in various esoteric states—an absolutely essential conversation
that should have happened when the requirements were being
formulated but, for whatever reason, had not.

The debate was not architectural, but the architecture (and the
graphical rendition of it) had sparked debate. It is natural to think
of architecture as the basis for communication among some of the
stakeholders besides the architects and developers: Managers, for
example, use the architecture to create teams and allocate resources
among them. But users? The architecture is invisible to users, after
all; why should they latch on to it as a tool for system
understanding?

The fact is that they do. In this case, the questioner had sat
through two days of viewgraphs all about function, operation, user
interface, and testing. But it was the first slide on architecture that
—even though he was tired and wanted to go home—made him
realize he didn’t understand something. Attendance at many
architecture reviews has convinced me that seeing the system in a
new way prods the mind and brings new questions to the surface.
For users, architecture often serves as that new way, and the
questions that a user poses will be behavioral in nature. In a
memorable architecture evaluation exercise a few years ago, the
user representatives were much more interested in what the system
was going to do than in how it was going to do it, and naturally so.
Up until that point, their only contact with the vendor had been



through its marketers. The architect was the first legitimate expert
on the system to whom they had access, and they didn’t hesitate to
seize the moment.

Of course, careful and thorough requirements specifications
would ameliorate this, but for a variety of reasons, they are not
always created or available. In their absence, a specification of the
architecture often serves to trigger questions and improve clarity. It
is probably more prudent to recognize this possibility than to resist
it.

Sometimes such an exercise will reveal unreasonable
requirements, whose utility can then be revisited. A review of this
type that emphasizes synergy between requirements and
architecture would have let the young architect in our story off the
hook by giving him a place in the overall review session to address
that kind of information. And the user representative wouldn’t have
felt like a fish out of water, asking his question at a clearly
inappropriate moment.

—PCC

2.5 Early Design Decisions
Software architecture is a manifestation of the earliest design decisions
about a system, and these early bindings carry enormous weight with
respect to the system’s remaining development, its deployment, and its
maintenance life. It is also the earliest point at which these important
design decisions affecting the system can be scrutinized.

Any design, in any discipline, can be viewed as a sequence of
decisions. When painting a picture, an artist decides on the material for
the canvas and the media for recording—oil paint, watercolor, crayon—
even before the picture is begun. Once the picture is begun, other
decisions are immediately made: Where is the first line, what is its
thickness, what is its shape? All of these early design decisions have a
strong influence on the final appearance of the picture, and each decision
constrains the many decisions that follow. Each decision, in isolation,
might appear innocent enough, but the early ones in particular have
disproportionate weight simply because they influence and constrain so
much of what follows.



So it is with architecture design. An architecture design can also be
viewed as a set of decisions. Changing these early decisions will cause a
ripple effect, in terms of the additional decisions that must now be
changed. Yes, sometimes the architecture must be refactored or
redesigned, but this is not a task we undertake lightly—because the
“ripple” might turn into an avalanche.

What are these early design decisions embodied by software
architecture? Consider:

Will the system run on one processor or be distributed across
multiple processors?
Will the software be layered? If so, how many layers will there be?
What will each one do?
Will components communicate synchronously or asynchronously?
Will they interact by transferring control or data, or both?
Will the information that flows through the system be encrypted?
Which operating system will we use?
Which communication protocol will we choose?

Imagine the nightmare of having to change any of these or a myriad of
other related decisions. Decisions like these begin to flesh out some of
the structures of the architecture and their interactions.

2.6 Constraints on Implementation
If you want your implementation to conform to an architecture, then it
must conform to the design decisions prescribed by the architecture. It
must have the set of elements prescribed by the architecture, these
elements must interact with each other in the fashion prescribed by the
architecture, and each element must fulfill its responsibility to the other
elements as prescribed by the architecture. Each of these prescriptions is
a constraint on the implementer.

Element builders must be fluent in the specifications of their
individual elements, but they may not be aware of the architectural
tradeoffs—the architecture (or architect) simply constrains them in such
a way as to meet the tradeoffs. A classic example is when an architect
assigns performance budgets to the pieces of software involved in some
larger piece of functionality. If each software unit stays within its budget,



the overall transaction will meet its performance requirement.
Implementers of each of the constituent pieces may not know the overall
budget, but only their own.

Conversely, the architects need not be experts in all aspects of
algorithm design or the intricacies of the programming language—
although they should certainly know enough not to design something
that is difficult to build. Architects, however, are the people responsible
for establishing, analyzing, and enforcing the architectural decisions and
tradeoffs.

2.7 Influences on Organizational Structure
Not only does architecture prescribe the structure of the system being
developed, but that structure becomes engraved in the structure of the
development project (and sometimes the structure of the entire
organization). The normal method for dividing up the labor in a large
project is to assign different groups different portions of the system to
construct. This so-called work-breakdown structure of a system is
manifested in the architecture in the work assignment structure described
in Chapter 1. Because the architecture includes the broadest
decomposition of the system, it is typically used as the basis for the
work-breakdown structure. The work-breakdown structure in turn
dictates units of planning, scheduling, and budget; interteam
communication channels; configuration control and file-system
organization; integration and test plans and procedures; and even project
minutiae such as how the project intranet is organized and who sits with
whom at the company picnic. Teams communicate with each other in
terms of the interface specifications for their elements. The maintenance
activity, when launched, will also reflect the software structure, with
teams formed to maintain specific elements from the architecture—the
database, the business rules, the user interface, the device drivers, and so
forth.

A side effect of establishing the work-breakdown structure is to freeze
some aspects of the software architecture. A group that is responsible for
one of the subsystems may resist having its responsibilities distributed
across other groups. If these responsibilities have been formalized in a
contractual relationship, changing responsibilities could become
expensive or even litigious.

Thus, once the architecture has been agreed upon, it becomes very
costly—for managerial and business reasons—to significantly modify it.



This is one argument (among many) for analyzing the software
architecture for a large system before settling on a specific choice.

2.8 Enabling Incremental Development
Once an architecture has been defined, it can serve as the basis for
incremental development. The first increment can be a skeletal system in
which at least some of the infrastructure—how the elements initialize,
communicate, share data, access resources, report errors, log activity, and
so forth—is present, but much of the system’s application functionality is
not.

Building the infrastructure and building the application functionality
can go hand in hand. Design and build a little infrastructure to support a
little end-to-end functionality; repeat until done.

Many systems are built as skeletal systems that can be extended using
plug-ins, packages, or extensions. Examples include the R language,
Visual Studio Code, and most web browsers. The extensions, when
added, provide additional functionality over and above what is present in
the skeleton. This approach aids the development process by ensuring
that the system is executable early in the product’s life cycle. The
fidelity of the system increases as extensions are added, or early versions
are replaced by more complete versions of these parts of the software. In
some cases, the parts may be low-fidelity versions or prototypes of the
final functionality; in other cases, they may be surrogates that consume
and produce data at the appropriate rates but do little else. Among other
things, this allows potential performance (and other) problems to be
identified early in the product’s life cycle.

This practice gained attention in the early 2000s through the ideas of
Alistair Cockburn and his notion of a “walking skeleton.” More recently,
it has been adopted by those employing MVP (minimum viable product)
as a strategy for risk reduction.

The benefits of incremental development include a reduction of the
potential risk in the project. If the architecture is for a family of related
systems, the infrastructure can be reused across the family, lowering the
per-system cost of each.

2.9 Cost and Schedule Estimates
Cost and schedule estimates are an important tool for the project
manager. They help the project manager acquire the necessary resources



as well as monitor progress on the project. One of the duties of an
architect is to help the project manager create cost and schedule
estimates early in the project’s life cycle. While top-down estimates are
useful for setting goals and apportioning budgets, cost estimations based
on a bottom-up understanding of the system’s pieces are typically more
accurate than those based purely on top-down system knowledge.

As we have said, the organizational and work-breakdown structure of
a project is almost always based on its architecture. Each team or
individual responsible for a work item will be able to make more
accurate estimates for their piece than a project manager can, and will
feel more ownership in making those estimates come true. But the best
cost and schedule estimates will typically emerge from a consensus
between the top-down estimates (created by the architect and the project
manager) and the bottom-up estimates (created by the developers). The
discussion and negotiation that result from this process create a far more
accurate estimate than the use of either approach by itself.

It helps if the requirements for a system have been reviewed and
validated. The more up-front knowledge you have about the scope, the
more accurate the cost and schedule estimates will be.

Chapter 24 delves into the use of architecture in project management.

2.10 Transferable, Reusable Model
The earlier in the life cycle reuse is applied, the greater the benefit that
can be achieved from this practice. While code reuse offers a benefit,
reuse of architectures provides opportunities for tremendous leverage for
systems with similar requirements. When architectural decisions can be
reused across multiple systems, all of the early-decision consequences
we described in earlier sections are also transferred to those systems.

A product line or family is a set of systems that are all built using the
same set of shared assets—software components, requirements
documents, test cases, and so forth. Chief among these assets is the
architecture that was designed to handle the needs of the entire family.
Product-line architects choose an architecture (or a family of closely
related architectures) that will serve all envisioned members of the
product line. The architecture defines what is fixed for all members of
the product line and what is variable.

Product lines represent a powerful approach to multi-system
development that has shown order-of-magnitude payoffs in time to



market, cost, productivity, and product quality. The power of architecture
lies at the heart of this paradigm. Similar to other capital investments,
architectures for product lines become a developing organization’s
shared asset.

2.11 Architecture Allows Incorporation of
Independently Developed Elements

Whereas earlier software paradigms focused on programming as the
prime activity, with progress measured in lines of code, architecture-
based development often focuses on composing or assembling elements
that are likely to have been developed separately, even independently,
from each other. This composition is possible because the architecture
defines the elements that can be incorporated into the system. The
architecture constrains possible replacements (or additions) according to
how they interact with their environment, how they receive and
relinquish control, which data they consume and produce, how they
access data, and which protocols they use for communication and
resource sharing. We elaborate on these ideas in Chapter 15.

Commercial off-the-shelf components, open source software, publicly
available apps, and networked services are all examples of
independently developed elements. The complexity and ubiquity of
integrating many independently developed elements into your system
have spawned an entire industry of software tools, such as Apache Ant,
Apache Maven, MSBuild, and Jenkins.

For software, the payoffs can take the following forms:

Decreased time to market (It should be easier to use someone else’s
ready solution than to build your own.)
Increased reliability (Widely used software should have its bugs
ironed out already.)
Lower cost (The software supplier can amortize development cost
across its customer base.)
Flexibility (If the element you want to buy is not terribly special-
purpose, it’s likely to be available from several sources, which in
turn increases your buying leverage.)

An open system is one that defines a set of standards for software
elements—how they behave, how they interact with other elements, how



they share data, and so forth. The goal of an open system is to enable,
and even encourage, many different suppliers to be able to produce
elements. This can avoid “vendor lock-in,” a situation in which a single
vendor is the only one who can provide an element and charges a
premium price for doing so. Open systems are enabled by an architecture
that defines the elements and their interactions.

2.12 Restricting the Vocabulary of Design
Alternatives

As useful architectural solutions are collected, it becomes clear that
although software elements can be combined in more or less infinite
ways, there is something to be gained by voluntarily restricting ourselves
to a relatively small number of choices of elements and their interactions.
By doing so, we minimize the design complexity of the system we are
building.

A software engineer is not an artiste where creativity and freedom are
paramount. Instead, engineering is about discipline, and discipline
comes, in part, by restricting the vocabulary of alternatives to proven
solutions. Examples of these proven design solutions include tactics and
patterns, which will be discussed extensively in Part II. Reusing off-the-
shelf elements is another approach to restricting your design vocabulary.

Restricting your design vocabulary to proven solutions can yield the
following benefits:

Enhanced reuse
More regular and simpler designs that are more easily understood
and communicated, and bring more reliably predictable outcomes
Easier analysis with greater confidence
Shorter selection time
Greater interoperability

Unprecedented designs are risky. Proven designs are, well, proven.
This is not to say that software design can never be innovative or offer
new and exciting solutions. It can. But these solutions should not be
invented for the sake of novelty; rather, they should be sought when
existing solutions are insufficient to solve the problem at hand.



Properties of software follow from the choice of architectural tactics
or patterns. Tactics and patterns that are more desirable for a particular
problem should improve the resulting design solution, perhaps by
making it easier to arbitrate conflicting design constraints, by increasing
insights into poorly understood design contexts, and by helping surface
inconsistencies in requirements. We will discuss architectural tactics and
patterns in Part II.

2.13 A Basis for Training
The architecture, including a description of how the elements interact
with each other to carry out the required behavior, can serve as the first
introduction to the system for new project members. This reinforces our
point that one important use of software architecture is to support and
encourage communication among the various stakeholders. The
architecture serves as a common reference point for all of these people.

Module views are excellent means of showing someone the structure
of a project: who does what, which teams are assigned to which parts of
the system, and so forth. Component-and-connector views are excellent
choices for explaining how the system is expected to work and
accomplish its job. Allocation views show a new project member where
their assigned part fits into the project’s development or deployment
environment.

2.14 Summary
Software architecture is important for a wide variety of technical and
nontechnical reasons. Our List of Thirteen includes the following
benefits:

1. An architecture will inhibit or enable a system’s driving quality
attributes.

2. The decisions made in an architecture allow you to reason about
and manage change as the system evolves.

3. The analysis of an architecture enables early prediction of a
system’s qualities.

4. A documented architecture enhances communication among
stakeholders.



5. The architecture is a carrier of the earliest, and hence most-
fundamental, hardest-to-change design decisions.

6. An architecture defines a set of constraints on subsequent
implementation.

7. The architecture dictates the structure of an organization, or vice
versa.

8. An architecture can provide the basis for incremental development.
9. An architecture is the key artifact that allows the architect and the

project manager to reason about cost and schedule.
10. An architecture can be created as a transferable, reusable model

that forms the heart of a product line.
11. Architecture-based development focuses attention on the assembly

of components, rather than simply on their creation.
12. By restricting design alternatives, architecture productively

channels the creativity of developers, reducing design and system
complexity.

13. An architecture can be the foundation for training of a new team
member.

2.15 For Further Reading
The Software Architect Elevator: Redefining the Architect’s Role in the
Digital Enterprise by Gregor Hohpe describes the unique ability of
architects to interact with people at all levels inside and outside an
organization, and facilitate stakeholder communication [Hohpe 20].

The granddaddy of papers about architecture and organization is by
[Conway 68]. Conway’s law states that “organizations which design
systems . . . are constrained to produce designs which are copies of the
communication structures of these organizations.”

Cockburn’s notion of the walking skeleton is described in Agile
Software Development: The Cooperative Game [Cockburn 06].

A good example of an open systems architecture standard is
AUTOSAR, developed for the automotive industry (autosar.org).

For a comprehensive treatment on building software product lines, see
[Clements 16]. Feature-based product line engineering is a modern,
automation-centered approach to building product lines that expands the

http://autosar.org/


scope from software to systems engineering. A good summary may be
found at [INCOSE 19].

2.16 Discussion Questions
1. If you remember nothing else from this book, remember . . . what?

Extra credit for not peeking.

2. For each of the 13 reasons why architecture is important articulated
in this chapter, take the contrarian position: Propose a set of
circumstances under which architecture is not necessary to achieve
the result indicated. Justify your position. (Try to come up with
different circumstances for each of the 13 reasons.)

3. This chapter argues that architecture brings a number of tangible
benefits. How would you measure the benefits, on a particular
project, of each of the 13 points?

4. Suppose you want to introduce architecture-centric practices to your
organization. Your management is open to the idea but wants to
know the ROI for doing so. How would you respond?

5. Prioritize the list of 13 reasons in this chapter according to some
criteria that are meaningful to you. Justify your answer. Or, if you
could choose only two or three of the reasons to promote the use of
architecture in a project, which would you choose and why?



Part II: Quality Attributes



3
Understanding Quality Attributes

Quality is never an accident; it is always the result of high intention,
sincere effort, intelligent direction and skillful execution.

—William A. Foster

Many factors determine the qualities that must be provided for in a
system’s architecture. These qualities go beyond functionality, which is
the basic statement of the system’s capabilities, services, and behavior.
Although functionality and other qualities are closely related, as you will
see, functionality often takes the front seat in the development scheme.
This preference is shortsighted, however. Systems are frequently
redesigned not because they are functionally deficient—the replacements
are often functionally identical—but because they are difficult to
maintain, port, or scale; or they are too slow; or they have been
compromised by hackers. In Chapter 2, we said that architecture was the
first place in software creation in which the achievement of quality
requirements could be addressed. It is the mapping of a system’s
functionality onto software structures that determines the architecture’s
support for qualities. In Chapters 4–14, we discuss how various qualities
are supported by architectural design decisions. In Chapter 20, we show
how to integrate all of your drivers, including quality attribute decisions,
into a coherent design.

We have been using the term “quality attribute” loosely, but now it is
time to define it more carefully. A quality attribute (QA) is a measurable
or testable property of a system that is used to indicate how well the
system satisfies the needs of its stakeholders beyond the basic function
of the system. You can think of a quality attribute as measuring the
“utility” of a product along some dimension of interest to a stakeholder.

In this chapter our focus is on understanding the following:

How to express the qualities we want our architecture to exhibit



How to achieve the qualities through architectural means
How to determine the design decisions we might make with respect
to the qualities

This chapter provides the context for the discussions of individual
quality attributes in Chapters 4–14.

3.1 Functionality
Functionality is the ability of the system to do the work for which it was
intended. Of all of the requirements, functionality has the strangest
relationship to architecture.

First of all, functionality does not determine architecture. That is,
given a set of required functionality, there is no end to the architectures
you could create to satisfy that functionality. At the very least, you could
divide up the functionality in any number of ways and assign the sub-
pieces to different architectural elements.

In fact, if functionality were the only thing that mattered, you
wouldn’t have to divide the system into pieces at all: A single monolithic
blob with no internal structure would do just fine. Instead, we design our
systems as structured sets of cooperating architectural elements—
modules, layers, classes, services, databases, apps, threads, peers, tiers,
and on and on—to make them understandable and to support a variety of
other purposes. Those “other purposes” are the other quality attributes
that we’ll examine in the remaining sections of this chapter, and in the
subsequent quality attribute chapters in Part II.

Although functionality is independent of any particular structure, it is
achieved by assigning responsibilities to architectural elements. This
process results in one of the most basic architectural structures—module
decomposition.

Although responsibilities can be allocated arbitrarily to any module,
software architecture constrains this allocation when other quality
attributes are important. For example, systems are frequently (or perhaps
always) divided so that several people can cooperatively build them. The
architect’s interest in functionality is how it interacts with and constrains
other qualities.



Functional Requirements
After more than 30 years of writing about and discussing the
distinction between functional requirements and quality
requirements, the definition of functional requirements still eludes
me. Quality attribute requirements are well defined: Performance
has to do with the system’s timing behavior, modifiability has to do
with the system’s ability to support changes in its behavior or other
qualities after initial deployment, availability has to do with the
system’s ability to survive failures, and so forth.

Function, however, is a much more slippery concept. An
international standard (ISO 25010) defines functional suitability as
“the capability of the software product to provide functions which
meet stated and implied needs when the software is used under
specified conditions.” That is, functionality is the ability to provide
functions. One interpretation of this definition is that functionality
describes what the system does and quality describes how well the
system does its function. That is, qualities are attributes of the
system and function is the purpose of the system.

This distinction breaks down, however, when you consider the
nature of some of the ”function.” If the function of the software is
to control engine behavior, how can the function be correctly
implemented without considering timing behavior? Is the ability to
control access by requiring a user name/password combination not
a function, even though it is not the purpose of any system?

I much prefer using the word “responsibility” to describe
computations that a system must perform. Questions such as “What
are the timing constraints on that set of responsibilities?”, “What
modifications are anticipated with respect to that set of
responsibilities?”, and “What class of users is allowed to execute
that set of responsibilities?” make sense and are actionable.

The achievement of qualities induces responsibility; think of the
user name/password example just mentioned. Further, one can
identify responsibilities as being associated with a particular set of
requirements.

So does this mean that the term “functional requirement”
shouldn’t be used? People have an understanding of the term, but



when precision is desired, we should talk about sets of specific
responsibilities instead.

Paul Clements has long ranted against the careless use of the
term “nonfunctional,” and now it’s my turn to rant against the
careless use of the term “functional”—which is probably equally
ineffectually.

—LB

3.2 Quality Attribute Considerations
Just as a system’s functions do not stand on their own without due
consideration of quality attributes, neither do quality attributes stand on
their own; they pertain to the functions of the system. If a functional
requirement is “When the user presses the green button, the Options
dialog appears,” a performance QA annotation might describe how
quickly the dialog will appear; an availability QA annotation might
describe how often this function is allowed to fail, and how quickly it
will be repaired; a usability QA annotation might describe how easy it is
to learn this function.

Quality attributes as a distinct topic have been studied by the software
community at least since the 1970s. A variety of taxonomies and
definitions have been published (we discuss some of these in Chapter
14), many of which have their own research and practitioner
communities. However, there are three problems with most discussions
of system quality attributes:

1. The definitions provided for an attribute are not testable. It is
meaningless to say that a system will be “modifiable.” Every
system will be modifiable with respect to one set of changes and
not modifiable with respect to another. The other quality attributes
are similar in this regard: A system may be robust with respect to
some faults and brittle with respect to others, and so forth.

2. Discussion often focuses on which quality a particular issue
belongs to. Is a denial-of-service attack on a system an aspect of
availability, an aspect of performance, an aspect of security, or an
aspect of usability? All four attribute communities would claim
“ownership” of the denial-of-service attack. All are, to some



extent, correct. But this debate over categorization doesn’t help us,
as architects, understand and create architectural solutions to
actually manage the attributes of concern.

3. Each attribute community has developed its own vocabulary. The
performance community has “events” arriving at a system, the
security community has “attacks” arriving at a system, the
availability community has “faults” arriving, and the usability
community has “user input.” All of these may actually refer to the
same occurrence, but they are described using different terms.

A solution to the first two problems (untestable definitions and
overlapping issues) is to use quality attribute scenarios as a means of
characterizing quality attributes (see Section 3.3). A solution to the third
problem is to illustrate the concepts that are fundamental to that attribute
community in a common form, which we do in Chapters 4–14.

We will focus on two categories of quality attributes. The first
category includes those attributes that describe some property of the
system at runtime, such as availability, performance, or usability. The
second category includes those that describe some property of the
development of the system, such as modifiability, testability, or
deployability.

Quality attributes can never be achieved in isolation. The achievement
of any one will have an effect—sometimes positive and sometimes
negative—on the achievement of others. For example, almost every
quality attribute negatively affects performance. Take portability: The
main technique for achieving portable software is to isolate system
dependencies, which introduces overhead into the system’s execution,
typically as process or procedure boundaries, which then hurts
performance. Determining a design that may satisfy quality attribute
requirements is partially a matter of making the appropriate tradeoffs;
we discuss design in Chapter 21.

In the next three sections, we focus on how quality attributes can be
specified, what architectural decisions will enable the achievement of
particular quality attributes, and what questions about quality attributes
will enable the architect to make the correct design decisions.

3.3 Specifying Quality Attribute Requirements:
Quality Attribute Scenarios



We use a common form to specify all QA requirements as scenarios.
This addresses the vocabulary problems we identified previously. The
common form is testable and unambiguous; it is not sensitive to whims
of categorization. Thus it provides regularity in how we treat all quality
attributes.

Quality attribute scenarios have six parts:

Stimulus. We use the term “stimulus” to describe an event arriving at
the system or the project. The stimulus can be an event to the
performance community, a user operation to the usability
community, or an attack to the security community, and so forth. We
use the same term to describe a motivating action for developmental
qualities. Thus a stimulus for modifiability is a request for a
modification; a stimulus for testability is the completion of a unit of
development.
Stimulus source. A stimulus must have a source—it must come from
somewhere. Some entity (a human, a computer system, or any other
actor) must have generated the stimulus. The source of the stimulus
may affect how it is treated by the system. A request from a trusted
user will not undergo the same scrutiny as a request by an untrusted
user.
Response. The response is the activity that occurs as the result of the
arrival of the stimulus. The response is something the architect
undertakes to satisfy. It consists of the responsibilities that the
system (for runtime qualities) or the developers (for development-
time qualities) should perform in response to the stimulus. For
example, in a performance scenario, an event arrives (the stimulus)
and the system should process that event and generate a response. In
a modifiability scenario, a request for a modification arrives (the
stimulus) and the developers should implement the modification—
without side effects—and then test and deploy the modification.
Response measure. When the response occurs, it should be
measurable in some fashion so that the scenario can be tested—that
is, so that we can determine if the architect achieved it. For
performance, this could be a measure of latency or throughput; for
modifiability, it could be the labor or wall clock time required to
make, test, and deploy the modification.



These four characteristics of a scenario are the heart of our quality
attribute specifications. But two more characteristics are important, yet
often overlooked: environment and artifact.

Environment. The environment is the set of circumstances in which
the scenario takes place. Often this refers to a runtime state: The
system may be in an overload condition or in normal operation, or
some other relevant state. For many systems, “normal” operation can
refer to one of a number of modes. For these kinds of systems, the
environment should specify in which mode the system is executing.
But the environment can also refer to states in which the system is
not running at all: when it is in development, or testing, or refreshing
its data, or recharging its battery between runs. The environment sets
the context for the rest of the scenario. For example, a request for a
modification that arrives after the code has been frozen for a release
may be treated differently than one that arrives before the freeze.
The fifth successive failure of a component may be treated
differently than the first failure of that component.
Artifact. The stimulus arrives at some target. This is often captured
as just the system or project itself, but it’s helpful to be more precise
if possible. The artifact may be a collection of systems, the whole
system, or one or more pieces of the system. A failure or a change
request may affect just a small portion of the system. A failure in a
data store may be treated differently than a failure in the metadata
store. Modifications to the user interface may have faster response
times than modifications to the middleware.

To summarize, we capture quality attribute requirements as six-part
scenarios. While it is common to omit one or more of these six parts,
particularly in the early stages of thinking about quality attributes,
knowing that all of the parts are there forces the architect to consider
whether each part is relevant.

We have created a general scenario for each of the quality attributes
presented in Chapters 4–13 to facilitate brainstorming and elicitation of
concrete scenarios. We distinguish general quality attribute scenarios—
general scenarios—which are system independent and can pertain to any
system, from concrete quality attribute scenarios—concrete scenarios—
which are specific to the particular system under consideration.

To translate these generic attribute characterizations into requirements
for a particular system, the general scenarios need to be made system



specific. But, as we have found, it is much easier for a stakeholder to
tailor a general scenario into one that fits their system than it is for them
to generate a scenario from thin air.

Figure 3.1 shows the parts of a quality attribute scenario just
discussed. Figure 3.2 shows an example of a general scenario, in this
instance for availability.

Figure 3.1 The parts of a quality attribute scenario

Figure 3.2 A general scenario for availability

Not My Problem
Some time ago I was doing an architecture analysis on a complex
system created by and for Lawrence Livermore National



Laboratory. If you visit this organization’s website (llnl.gov) and try
to figure out what Livermore Labs does, you will see the word
“security” mentioned over and over. The lab focuses on nuclear
security, international and domestic security, and environmental and
energy security. Serious stuff . . .

Keeping this emphasis in mind, I asked my clients to describe
the quality attributes of concern for the system that I was
analyzing. I’m sure you can imagine my surprise when security
wasn’t mentioned once! The system stakeholders mentioned
performance, modifiability, evolvability, interoperability,
configurability, and portability, and one or two more, but the word
“security” never passed their lips.

Being a good analyst, I questioned this seemingly shocking and
obvious omission. Their answer was simple and, in retrospect,
straightforward: “We don’t care about it. Our systems are not
connected to any external network, and we have barbed-wire
fences and guards with machine guns.”

Of course, someone at Livermore Labs was very interested in
security. But not the software architects. The lesson here is that the
software architect may not bear the responsibility for every QA
requirement.

—RK

3.4 Achieving Quality Attributes through
Architectural Patterns and Tactics

We now turn to the techniques an architect can use to achieve the
required quality attributes: architectural patterns and tactics.

A tactic is a design decision that influences the achievement of a
quality attribute response—it directly affects the system’s response to
some stimulus. Tactics may impart portability to one design, high
performance to another, and integrability to a third.

An architectural pattern describes a particular recurring design
problem that arises in specific design contexts and presents a well-
proven architectural solution for the problem. The solution is specified
by describing the roles of its constituent elements, their responsibilities

http://llnl.gov/


and relationships, and the ways in which they collaborate. Like the
choice of tactics, the choice of an architectural pattern has a profound
effect on quality attributes—usually more than one.

Patterns typically comprise multiple design decisions and, in fact,
often comprise multiple quality attribute tactics. We say that patterns
often bundle tactics and, consequently, frequently make tradeoffs among
quality attributes.

We will look at example relationships between tactics and patterns in
each of our quality attribute–specific chapters. Chapter 14 explains how
a set of tactics for any quality attribute can be constructed; those tactics
are, in fact, the steps we used to produce the sets found in this book.

While we discuss patterns and tactics as though they were
foundational design decisions, the reality is that architectures often
emerge and evolve as a result of many small decisions and business
forces. For example, a system that was once tolerably modifiable may
deteriorate over time, through the actions of developers adding features
and fixing bugs. Similarly, a system’s performance, availability, security,
and any other quality may (and typically does) deteriorate over time,
again through the well-intentioned actions of programmers who are
focused on their immediate tasks and not on preserving architectural
integrity.

This “death by a thousand cuts” is common on software projects.
Developers may make suboptimal decisions due to a lack of
understanding of the structures of the system, schedule pressures, or
perhaps a lack of clarity in the architecture from the start. This kind of
deterioration is a form of technical debt known as architecture debt. We
discuss architecture debt in Chapter 23. To reverse this debt, we typically
refactor.

Refactoring may be done for many reasons. For example, you might
refactor a system to improve its security, placing different modules into
different subsystems based on their security properties. Or you might
refactor a system to improve its performance, removing bottlenecks and
rewriting slow portions of the code. Or you might refactor to improve
the system’s modifiability. For example, when two modules are affected
by the same kinds of changes over and over because they are (at least
partial) duplicates of each other, the common functionality could be
factored out into its own module, thereby improving cohesion and
reducing the number of places that need to be changed when the next
(similar) change request arrives.



Code refactoring is a mainstay practice of agile development projects,
as a cleanup step to make sure that teams have not produced duplicative
or overly complex code. However, the concept applies to architectural
elements as well.

Successfully achieving quality attributes often involves process-
related decisions, in addition to architecture-related decisions. For
example, a great security architecture is worthless if your employees are
susceptible to phishing attacks or do not choose strong passwords. We
are not dealing with the process aspects in this book, but be aware that
they are important.

3.5 Designing with Tactics
A system design consists of a collection of decisions. Some of these
decisions help control the quality attribute responses; others ensure
achievement of system functionality. We depict this relationship in
Figure 3.3. Tactics, like patterns, are design techniques that architects
have been using for years. In this book, we isolate, catalog, and describe
them. We are not inventing tactics here, but rather just capturing what
good architects do in practice.

Figure 3.3 Tactics are intended to control responses to stimuli.

Why do we focus on tactics? There are three reasons:
1. Patterns are foundational for many architectures, but sometimes

there may be no pattern that solves your problem completely. For
example, you might need the high-availability high-security broker



pattern, not the textbook broker pattern. Architects frequently need
to modify and adapt patterns to their particular context, and tactics
provide a systematic means for augmenting an existing pattern to
fill the gaps.

2. If no pattern exists to realize the architect’s design goal, tactics
allow the architect to construct a design fragment from “first
principles.” Tactics give the architect insight into the properties of
the resulting design fragment.

3. Tactics provide a way of making design and analysis more
systematic within some limitations. We’ll explore this idea in the
next section.

Like any design concept, the tactics that we present here can and
should be refined as they are applied to design a system. Consider
performance: Schedule resources is a common performance tactic. But
this tactic needs to be refined into a specific scheduling strategy, such as
shortest-job-first, round-robin, and so forth, for specific purposes. Use
an intermediary is a modifiability tactic. But there are multiple types of
intermediaries (layers, brokers, proxies, and tiers, to name just a few),
which are realized in different ways. Thus a designer will employ
refinements to make each tactic concrete.

In addition, the application of a tactic depends on the context. Again,
consider performance: Manage sampling rate is relevant in some real-
time systems but not in all real-time systems, and certainly not in
database systems or stock-trading systems where losing a single event is
highly problematic.

Note that there are some “super-tactics”—tactics that are so
fundamental and so pervasive that they deserve special mention. For
example, the modifiability tactics of encapsulation, restricting
dependencies, using an intermediary, and abstracting common services
are found in the realization of almost every pattern ever! But other
tactics, such as the scheduling tactic from performance, also appear in
many places. For example, a load balancer is an intermediary that does
scheduling. We see monitoring appearing in many quality attributes: We
monitor aspects of a system to achieve energy efficiency, performance,
availability, and safety. Thus we should not expect a tactic to live in only
one place, for just a single quality attribute. Tactics are design primitives
and, as such, are found over and over in different aspects of design. This



is actually an argument for why tactics are so powerful and deserving of
our attention—and yours. Get to know them; they’ll be your friends.

3.6 Analyzing Quality Attribute Design Decisions:
Tactics-Based Questionnaires

In this section, we introduce a tool the analyst can use to understand
potential quality attribute behavior at various stages through the
architecture’s design: tactics-based questionnaires.

Analyzing how well quality attributes have been achieved is a critical
part of the task of designing an architecture. And (no surprise) you
shouldn’t wait until your design is complete before you begin to do it.
Opportunities for quality attribute analysis crop up at many different
points in the software development life cycle, even very early ones.

At any point, the analyst (who might be the architect) needs to
respond appropriately to whatever artifacts have been made available for
analysis. The accuracy of the analysis and expected degree of confidence
in the analysis results will vary according to the maturity of the available
artifacts. But no matter the state of the design, we have found tactics-
based questionnaires to be helpful in gaining insights into the
architecture’s ability (or likely ability, as it is refined) to provide the
needed quality attributes.

In Chapters 4–13, we include a tactics-based questionnaire for each
quality attribute covered in the chapters. For each question in the
questionnaire, the analyst records the following information:

Whether each tactic is supported by the system’s architecture.
Whether there are any obvious risks in the use (or nonuse) of this
tactic. If the tactic has been used, record how it is realized in the
system, or how it is intended to be realized (e.g., via custom code,
generic frameworks, or externally produced components).
The specific design decisions made to realize the tactic and where in
the code base the implementation (realization) may be found. This is
useful for auditing and architecture reconstruction purposes.
Any rationale or assumptions made in the realization of this tactic.

To use these questionnaires, simply follow these four steps:



1. For each tactics question, fill the “Supported” column with “Y” if
the tactic is supported in the architecture and with “N” otherwise.

2. If the answer in the “Supported” column is “Y,” then in the
“Design Decisions and Location” column describe the specific
design decisions made to support the tactic and enumerate where
these decisions are, or will be, manifested (located) in the
architecture. For example, indicate which code modules,
frameworks, or packages implement this tactic.

3. In the “Risk” column indicate the risk of implementing the tactic
using a (H = High, M = Medium, L = Low) scale.

4. In the “Rationale” column, describe the rationale for the design
decisions made (including a decision to not use this tactic). Briefly
explain the implications of this decision. For example, explain the
rationale and implications of the decision in terms of the effort on
cost, schedule, evolution, and so forth.

While this questionnaire-based approach might sound simplistic, it
can actually be very powerful and insightful. Addressing the set of
questions forces the architect to take a step back and consider the bigger
picture. This process can also be quite efficient: A typical questionnaire
for a single quality attribute takes between 30 and 90 minutes to
complete.

3.7 Summary
Functional requirements are satisfied by including an appropriate set of
responsibilities within the design. Quality attribute requirements are
satisfied by the structures and behaviors of the architecture.

One challenge in architectural design is that these requirements are
often captured poorly, if at all. To capture and express a quality attribute
requirement, we recommend the use of a quality attribute scenario. Each
scenario consists of six parts:

1. Source of stimulus
2. Stimulus
3. Environment
4. Artifact
5. Response



6. Response measure
An architectural tactic is a design decision that affects a quality

attribute response. The focus of a tactic is on a single quality attribute
response. An architectural pattern describes a particular recurring design
problem that arises in specific design contexts and presents a well-
proven architectural solution for the problem. Architectural patterns can
be seen as “bundles” of tactics.

An analyst can understand the decisions made in an architecture
through the use of a tactics-based checklist. This lightweight architecture
analysis technique can provide insights into the strengths and
weaknesses of the architecture in a very short amount of time.

3.8 For Further Reading
Some extended case studies showing how tactics and patterns are used in
design can be found in [Cervantes 16].

A substantial catalog of architectural patterns can be found in the five-
volume set Pattern-Oriented Software Architecture, by Frank
Buschmann et al.

Arguments showing that many different architectures can provide the
same functionality—that is, that architecture and functionality are
largely orthogonal—can be found in [Shaw 95].

3.9 Discussion Questions
1. What is the relationship between a use case and a quality attribute

scenario? If you wanted to add quality attribute information to a use
case, how would you do it?

2. Do you suppose that the set of tactics for a quality attribute is finite
or infinite? Why?

3. Enumerate the set of responsibilities that an automatic teller
machine should support and propose a design to accommodate that
set of responsibilities. Justify your proposal.

4. Choose an architecture that you are familiar with (or choose the
ATM architecture you defined in question 3) and walk through the
performance tactics questionnaire (found in Chapter 9). What
insight did these questions provide into the design decisions made
(or not made)?



4
Availability

Technology does not always rhyme 
with perfection and reliability. 

Far from it in reality!
—Jean-Michel Jarre

Availability refers to a property of software—namely, that it is there and
ready to carry out its task when you need it to be. This is a broad
perspective and encompasses what is normally called reliability
(although it may encompass additional considerations such as downtime
due to periodic maintenance). Availability builds on the concept of
reliability by adding the notion of recovery—that is, when the system
breaks, it repairs itself. Repair may be accomplished by various means,
as we’ll see in this chapter.

Availability also encompasses the ability of a system to mask or repair
faults such that they do not become failures, thereby ensuring that the
cumulative service outage period does not exceed a required value over
a specified time interval. This definition subsumes concepts of
reliability, robustness, and any other quality attribute that involves a
concept of unacceptable failure.

A failure is the deviation of the system from its specification, where
that deviation is externally visible. Determining that a failure has
occurred requires some external observer in the environment.

A failure’s cause is called a fault. A fault can be either internal or
external to the system under consideration. Intermediate states between
the occurrence of a fault and the occurrence of a failure are called errors.
Faults can be prevented, tolerated, removed, or forecast. Through these
actions, a system becomes “resilient” to faults. Among the areas with
which we are concerned are how system faults are detected, how
frequently system faults may occur, what happens when a fault occurs,
how long a system is allowed to be out of operation, when faults or



failures may occur safely, how faults or failures can be prevented, and
what kinds of notifications are required when a failure occurs.

Availability is closely related to, but clearly distinct from, security. A
denial-of-service attack is explicitly designed to make a system fail—
that is, to make it unavailable. Availability is also closely related to
performance, since it may be difficult to tell when a system has failed
and when it is simply being egregiously slow to respond. Finally,
availability is closely allied with safety, which is concerned with keeping
the system from entering a hazardous state and recovering or limiting the
damage when it does.

One of the most demanding tasks in building a high-availability fault-
tolerant system is to understand the nature of the failures that can arise
during operation. Once those are understood, mitigation strategies can be
designed into the system.

Since a system failure is observable by users, the time to repair is the
time until the failure is no longer observable. This may be an
imperceptible delay in a user’s response time or it may be the time it
takes someone to fly to a remote location in the Andes to repair a piece
of mining machinery (as was recounted to us by a person responsible for
repairing the software in a mining machine engine). The notion of
“observability” is critical here: If a failure could have been observed,
then it is a failure, whether or not it was actually observed.

In addition, we are often concerned with the level of capability that
remains when a failure has occurred—a degraded operating mode.

Distinguishing between faults and failures allows us to discuss repair
strategies. If code containing a fault is executed but the system is able to
recover from the fault without any observable deviation from the
otherwise specified behavior, we say that no failure has occurred.

The availability of a system can be measured as the probability that it
will provide the specified services within the required bounds over a
specified time interval. A well-known expression is used to derive
steady-state availability (which came from the world of hardware):

MTBF/(MTBF + MTTR)

where MTBF refers to the mean time between failures and MTTR refers
to the mean time to repair. In the software world, this formula should be
interpreted to mean that when thinking about availability, you should
think about what will make your system fail, how likely it is that such an
event will occur, and how much time will be required to repair it.



From this formula, it is possible to calculate probabilities and make
claims like “the system exhibits 99.999 percent availability” or “there is
a 0.001 percent probability that the system will not be operational when
needed.” Scheduled downtimes (when the system is intentionally taken
out of service) should not be considered when calculating availability,
since the system is deemed “not needed” then; of course, this is
dependent on the specific requirements for the system, which are often
encoded in a service level agreement (SLA). This may lead to seemingly
odd situations where the system is down and users are waiting for it, but
the downtime is scheduled and so is not counted against any availability
requirements.

Detected faults can be categorized prior to being reported and
repaired. This categorization is commonly based on the fault’s severity
(critical, major, or minor) and service impact (service-affecting or non-
service-affecting). It provides the system operator with a timely and
accurate system status and allows for an appropriate repair strategy to be
employed. The repair strategy may be automated or may require manual
intervention.

As just mentioned, the availability expected of a system or service is
frequently expressed as an SLA. The SLA specifies the availability level
that is guaranteed and, usually, the penalties that the provider will suffer
if the SLA is violated. For example, Amazon provides the following
SLA for its EC2 cloud service:

AWS will use commercially reasonable efforts to make the Included
Services each available for each AWS region with a Monthly Uptime
Percentage of at least 99.99%, in each case during any monthly billing
cycle (the “Service Commitment”). In the event any of the Included
Services do not meet the Service Commitment, you will be eligible to
receive a Service Credit as described below.
Table 4.1 provides examples of system availability requirements and

associated threshold values for acceptable system downtime, measured
over observation periods of 90 days and one year. The term high
availability typically refers to designs targeting availability of 99.999
percent (“5 nines”) or greater. As mentioned earlier, only unscheduled
outages contribute to system downtime.

Table 4.1 System Availability Requirements

Availability Downtime/90 Days Downtime/Year



Availability Downtime/90 Days Downtime/Year
99.0% 21 hr, 36 min 3 days, 15.6 hr
99.9% 2 hr, 10 min 8 hr, 0 min, 46 sec
99.99% 12 min, 58 sec 52 min, 34 sec
99.999% 1 min, 18 sec 5 min, 15 sec
99.9999% 8 sec 32 sec

4.1 Availability General Scenario
We can now describe the individual portions of an availability general
scenario as summarized in Table 4.2.

Table 4.2 Availability General Scenario

Po
rti
on 
of 
Sc
en
ari
o

Description Possible Values

So
urc
e

This specifies where the fault comes from. Internal/external: people, 
hardware, software, 
physical infrastructure, 
physical environment

Sti
mu
lus

The stimulus to an availability scenario is 
a fault.

Fault: omission, crash, 
incorrect timing, 
incorrect response

Ar
tif
act

This specifies which portions of the 
system are responsible for and affected by 
the fault.

Processors, 
communication channels, 
storage, processes, 
affected artifacts in the 
system’s environment



Po
rti
on 
of 
Sc
en
ari
o

Description Possible Values

En
vir
on
me
nt

We may be interested in not only how a 
system behaves in its “normal” 
environment, but also how it behaves in 
situations such as when it is already 
recovering from a fault.

Normal operation, 
startup, shutdown, repair 
mode, degraded 
operation, overloaded 
operation

Re
sp
on
se

The most commonly desired response is 
to prevent the fault from becoming a 
failure, but other responses may also be 
important, such as notifying people or 
logging the fault for later analysis. This 
section specifies the desired system 
response.

Prevent the fault from 
becoming a failure

Detect the fault:

Log the fault

Notify the 
appropriate entities 
(people or systems)

Recover from the 
fault

Disable the source of 
events causing the 
fault

Be temporarily 
unavailable while a 

Re
sp
on
se 
me
as
ure

We may focus on a number of measures 
of availability, depending on the criticality 
of the service being provided.



Po
rti
on 
of 
Sc
en
ari
o

Description Possible Values

repair is being 
effected

Fix or mask the 
fault/failure or 
contain the damage 
it causes

Operate in a 
degraded mode 
while a repair is 
being effected

Time or time interval 
when the system 
must be available

Availability 
percentage (e.g., 
99.999 percent)

Time to detect the 
fault

Time to repair the 
fault



Po
rti
on 
of 
Sc
en
ari
o

Description Possible Values

Time or time interval 
in which system can 
be in degraded mode

Proportion (e.g., 99 
percent) or rate (e.g., 
up to 100 per 
second) of a certain 
class of faults that 
the system prevents, 
or handles without 
failing

An example concrete availability scenario derived from the general
scenario in Table 4.2 is shown in Figure 4.1. The scenario is this: A
server in a server farm fails during normal operation, and the system
informs the operator and continues to operate with no downtime.



Figure 4.1 Sample concrete availability scenario

4.2 Tactics for Availability
A failure occurs when the system no longer delivers a service that is
consistent with its specification and this failure is observable by the
system’s actors. A fault (or combination of faults) has the potential to
cause a failure. Availability tactics, in turn, are designed to enable a
system to prevent or endure system faults so that a service being
delivered by the system remains compliant with its specification. The
tactics we discuss in this section will keep faults from becoming failures
or at least bound the effects of the fault and make repair possible, as
illustrated in Figure 4.2.

Figure 4.2 Goal of availability tactics



Availability tactics have one of three purposes: fault detection, fault
recovery, or fault prevention. The tactics for availability are shown in
Figure 4.3. These tactics will often be provided by a software
infrastructure, such as a middleware package, so your job as an architect
may be choosing and assessing (rather than implementing) the right
availability tactics and the right combination of tactics.

Figure 4.3 Availability tactics

Detect Faults
Before any system can take action regarding a fault, the presence of the
fault must be detected or anticipated. Tactics in this category include:



Monitor. This component is used to monitor the state of health of
various other parts of the system: processors, processes, I/O,
memory, and so forth. A system monitor can detect failure or
congestion in the network or other shared resources, such as from a
denial-of-service attack. It orchestrates software using other tactics
in this category to detect malfunctioning components. For example,
the system monitor can initiate self-tests, or be the component that
detects faulty timestamps or missed heartbeats.1
1. When the detection mechanism is implemented using a counter

or timer that is periodically reset, this specialization of the
system monitor is referred to as a watchdog. During nominal
operation, the process being monitored will periodically reset the
watchdog counter/timer as part of its signal that it’s working
correctly; this is sometimes referred to as “petting the watchdog.”

Ping/echo. In this tactic, an asynchronous request/response message
pair is exchanged between nodes; it is used to determine reachability
and the round-trip delay through the associated network path. In
addition, the echo indicates that the pinged component is alive. The
ping is often sent by a system monitor. Ping/echo requires a time
threshold to be set; this threshold tells the pinging component how
long to wait for the echo before considering the pinged component
to have failed (“timed out”). Standard implementations of ping/echo
are available for nodes interconnected via Internet Protocol (IP).
Heartbeat. This fault detection mechanism employs a periodic
message exchange between a system monitor and a process being
monitored. A special case of heartbeat is when the process being
monitored periodically resets the watchdog timer in its monitor to
prevent it from expiring and thus signaling a fault. For systems
where scalability is a concern, transport and processing overhead can
be reduced by piggybacking heartbeat messages onto other control
messages being exchanged. The difference between heartbeat and
ping/echo lies in who holds the responsibility for initiating the health
check—the monitor or the component itself.
Timestamp. This tactic is used to detect incorrect sequences of
events, primarily in distributed message-passing systems. A
timestamp of an event can be established by assigning the state of a
local clock to the event immediately after the event occurs. Sequence
numbers can also be used for this purpose, since timestamps in a



distributed system may be inconsistent across different processors.
See Chapter 17 for a fuller discussion of the topic of time in a
distributed system.
Condition monitoring. This tactic involves checking conditions in a
process or device, or validating assumptions made during the design.
By monitoring conditions, this tactic prevents a system from
producing faulty behavior. The computation of checksums is a
common example of this tactic. However, the monitor must itself be
simple (and, ideally, provably correct) to ensure that it does not
introduce new software errors.
Sanity checking. This tactic checks the validity or reasonableness of
specific operations or outputs of a component. It is typically based
on a knowledge of the internal design, the state of the system, or the
nature of the information under scrutiny. It is most often employed at
interfaces, to examine a specific information flow.
Voting. Voting involves comparing computational results from
multiple sources that should be producing the same results and, if
they are not, deciding which results to use. This tactic depends
critically on the voting logic, which is usually realized as a simple,
rigorously reviewed, and tested singleton so that the probability of
error is low. Voting also depends critically on having multiple
sources to evaluate. Typical schemes include the following:

Replication is the simplest form of voting; here, the components
are exact clones of each other. Having multiple copies of
identical components can be effective in protecting against
random failures of hardware but cannot protect against design or
implementation errors, in hardware or software, since there is no
form of diversity embedded in this tactic.
Functional redundancy, in contrast, is intended to address the
issue of common-mode failures (where replicas exhibit the same
fault at the same time because they share the same
implementation) in hardware or software components, by
implementing design diversity. This tactic attempts to deal with
the systematic nature of design faults by adding diversity to
redundancy. The outputs of functionally redundant components
should be the same given the same input. The functional
redundancy tactic is still vulnerable to specification errors—and,



of course, functional replicas will be more expensive to develop
and verify.
Analytic redundancy permits not only diversity among
components’ private sides, but also diversity among the
components’ inputs and outputs. This tactic is intended to
tolerate specification errors by using separate requirement
specifications. In embedded systems, analytic redundancy helps
when some input sources are likely to be unavailable at times.
For example, avionics programs have multiple ways to compute
aircraft altitude, such as using barometric pressure, with the
radar altimeter, and geometrically using the straight-line distance
and look-down angle of a point ahead on the ground. The voter
mechanism used with analytic redundancy needs to be more
sophisticated than just letting majority rule or computing a
simple average. It may have to understand which sensors are
currently reliable (or not), and it may be asked to produce a
higher-fidelity value than any individual component can, by
blending and smoothing individual values over time.

Exception detection. This tactic focuses on the detection of a system
condition that alters the normal flow of execution. It can be further
refined as follows:

System exceptions will vary according to the processor hardware
architecture employed. They include faults such as divide by
zero, bus and address faults, illegal program instructions, and so
forth.
The parameter fence tactic incorporates a known data pattern
(such as 0xDEADBEEF) placed immediately after any variable-
length parameters of an object. This allows for runtime detection
of overwriting the memory allocated for the object’s variable-
length parameters.
Parameter typing employs a base class that defines functions
that add, find, and iterate over type-length-value (TLV)
formatted message parameters. Derived classes use the base
class functions to provide functions to build and parse messages.
Use of parameter typing ensures that the sender and the receiver
of messages agree on the type of the content, and detects cases
where they don’t.



Timeout is a tactic that raises an exception when a component
detects that it or another component has failed to meet its timing
constraints. For example, a component awaiting a response from
another component can raise an exception if the wait time
exceeds a certain value.

Self-test. Components (or, more likely, whole subsystems) can run
procedures to test themselves for correct operation. Self-test
procedures can be initiated by the component itself or invoked from
time to time by a system monitor. These may involve employing
some of the techniques found in condition monitoring, such as
checksums.

Recover from Faults
Recover from faults tactics are refined into preparation and repair tactics
and reintroduction tactics. The latter are concerned with reintroducing a
failed (but rehabilitated) component back into normal operation.

Preparation and repair tactics are based on a variety of combinations
of retrying a computation or introducing redundancy:

Redundant spare. This tactic refers to a configuration in which one
or more duplicate components can step in and take over the work if
the primary component fails. This tactic is at the heart of the hot
spare, warm spare, and cold spare patterns, which differ primarily in
how up-to-date the backup component is at the time of its takeover.
Rollback. A rollback permits the system to revert to a previous
known good state (referred to as the “rollback line”)—rolling back
time—upon the detection of a failure. Once the good state is
reached, then execution can continue. This tactic is often combined
with the transactions tactic and the redundant spare tactic so that
after a rollback has occurred, a standby version of the failed
component is promoted to active status. Rollback depends on a copy
of a previous good state (a checkpoint) being available to the
components that are rolling back. Checkpoints can be stored in a
fixed location and updated at regular intervals, or at convenient or
significant times in the processing, such as at the completion of a
complex operation.
Exception handling. Once an exception has been detected, the
system will handle it in some fashion. The easiest thing it can do is



simply to crash—but, of course, that’s a terrible idea from the point
of availability, usability, testability, and plain good sense. There are
much more productive possibilities. The mechanism employed for
exception handling depends largely on the programming
environment employed, ranging from simple function return codes
(error codes) to the use of exception classes that contain information
helpful in fault correlation, such as the name of the exception, the
origin of the exception, and the cause of the exception Software can
then use this information to mask or repair the fault.
Software upgrade. The goal of this tactic is to achieve in-service
upgrades to executable code images in a non-service-affecting
manner. Strategies include the following:

Function patch. This kind of patch, which is used in procedural
programming, employs an incremental linker/loader to store an
updated software function into a pre-allocated segment of target
memory. The new version of the software function will employ
the entry and exit points of the deprecated function.
Class patch. This kind of upgrade is applicable for targets
executing object-oriented code, where the class definitions
include a backdoor mechanism that enables the runtime addition
of member data and functions.
Hitless in-service software upgrade (ISSU). This leverages the
redundant spare tactic to achieve non-service-affecting upgrades
to software and associated schema.

In practice, the function patch and class patch are used to deliver bug
fixes, while the hitless ISSU is used to deliver new features and
capabilities.
Retry. The retry tactic assumes that the fault that caused a failure is
transient, and that retrying the operation may lead to success. It is
used in networks and in server farms where failures are expected and
common. A limit should be placed on the number of retries that are
attempted before a permanent failure is declared.
Ignore faulty behavior. This tactic calls for ignoring messages sent
from a particular source when we determine that those messages are
spurious. For example, we would like to ignore the messages
emanating from the live failure of a sensor.



Graceful degradation. This tactic maintains the most critical system
functions in the presence of component failures, while dropping less
critical functions. This is done in circumstances where individual
component failures gracefully reduce system functionality, rather
than causing a complete system failure.
Reconfiguration. Reconfiguration attempts to recover from failures
by reassigning responsibilities to the (potentially restricted)
resources or components left functioning, while maintaining as
much functionality as possible.

Reintroduction occurs when a failed component is reintroduced after it
has been repaired. Reintroduction tactics include the following:

Shadow. This tactic refers to operating a previously failed or in-
service upgraded component in a “shadow mode” for a predefined
duration of time prior to reverting the component back to an active
role. During this duration, its behavior can be monitored for
correctness and it can repopulate its state incrementally.
State resynchronization. This reintroduction tactic is a partner to the
redundant spare tactic. When used with active redundancy—a
version of the redundant spare tactic—the state resynchronization
occurs organically, since the active and standby components each
receive and process identical inputs in parallel. In practice, the states
of the active and standby components are periodically compared to
ensure synchronization. This comparison may be based on a cyclic
redundancy check calculation (checksum) or, for systems providing
safety-critical services, a message digest calculation (a one-way hash
function). When used alongside the passive redundancy version of
the redundant spare tactic, state resynchronization is based solely on
periodic state information transmitted from the active component(s)
to the standby component(s), typically via checkpointing.
Escalating restart. This reintroduction tactic allows the system to
recover from faults by varying the granularity of the component(s)
restarted and minimizing the level of service affectation. For
example, consider a system that supports four levels of restart,
numbered 0–3. The lowest level of restart (Level 0) has the least
impact on services and employs passive redundancy (warm spare),
where all child threads of the faulty component are killed and
recreated. In this way, only data associated with the child threads is



freed and reinitialized. The next level of restart (Level 1) frees and
reinitializes all unprotected memory; protected memory is
untouched. The next level of restart (Level 2) frees and reinitializes
all memory, both protected and unprotected, forcing all applications
to reload and reinitialize. The final level of restart (Level 3) involves
completely reloading and reinitializing the executable image and
associated data segments. Support for the escalating restart tactic is
particularly useful for the concept of graceful degradation, where a
system is able to degrade the services it provides while maintaining
support for mission-critical or safety-critical applications.
Nonstop forwarding. This concept originated in router design, and
assumes that functionality is split into two parts: the supervisory or
control plane (which manages connectivity and routing information)
and the data plane (which does the actual work of routing packets
from sender to receiver). If a router experiences the failure of an
active supervisor, it can continue forwarding packets along known
routes—with neighboring routers—while the routing protocol
information is recovered and validated. When the control plane is
restarted, it implements a “graceful restart,” incrementally rebuilding
its routing protocol database even as the data plane continues to
operate.

Prevent Faults
Instead of detecting faults and then trying to recover from them, what if
your system could prevent them from occurring in the first place?
Although it might sound as if some measure of clairvoyance would be
required, it turns out that in many cases it is possible to do just that.2

2. These tactics deal with runtime means to prevent faults from
occurring. Of course, an excellent way to prevent faults—at least in
the system you’re building, if not in systems that your system must
interact with—is to produce high-quality code. This can be done by
means of code inspections, pair programming, solid requirements
reviews, and a host of other good engineering practices.

Removal from service. This tactic refers to temporarily placing a
system component in an out-of-service state for the purpose of
mitigating potential system failures. For example, a component of a
system might be taken out of service and reset to scrub latent faults



(such as memory leaks, fragmentation, or soft errors in an
unprotected cache) before the accumulation of faults reaches the
service-affecting level, resulting in system failure. Other terms for
this tactic are software rejuvenation and therapeutic reboot. If you
reboot your computer every night, you are practicing removal from
service.
Transactions. Systems targeting high-availability services leverage
transactional semantics to ensure that asynchronous messages
exchanged between distributed components are atomic, consistent,
isolated, and durable—properties collectively referred to as the
“ACID properties.” The most common realization of the transactions
tactic is the “two-phase commit” (2PC) protocol. This tactic prevents
race conditions caused by two processes attempting to update the
same data item at the same time.
Predictive model. A predictive model, when combined with a
monitor, is employed to monitor the state of health of a system
process to ensure that the system is operating within its nominal
operating parameters, and to take corrective action when the system
nears a critical threshold. The operational performance metrics
monitored are used to predict the onset of faults; examples include
the session establishment rate (in an HTTP server), threshold
crossing (monitoring high and low watermarks for some constrained,
shared resource), statistics on the process state (e.g., in-service, out-
of-service, under maintenance, idle), and message queue length
statistics.
Exception prevention. This tactic refers to techniques employed for
the purpose of preventing system exceptions from occurring. The
use of exception classes, which allows a system to transparently
recover from system exceptions, was discussed earlier. Other
examples of exception prevention include error-correcting code
(used in telecommunications), abstract data types such as smart
pointers, and the use of wrappers to prevent faults such as dangling
pointers or semaphore access violations. Smart pointers prevent
exceptions by doing bounds checking on pointers, and by ensuring
that resources are automatically de-allocated when no data refers to
them, thereby avoiding resource leaks.
Increase competence set. A program’s competence set is the set of
states in which it is “competent” to operate. For example, the state



when the denominator is zero is outside the competence set of most
divide programs. When a component raises an exception, it is
signaling that it has discovered itself to be outside its competence
set; in essence, it doesn’t know what to do and is throwing in the
towel. Increasing a component’s competence set means designing it
to handle more cases—faults—as part of its normal operation. For
example, a component that assumes it has access to a shared
resource might throw an exception if it discovers that access is
blocked. Another component might simply wait for access or return
immediately with an indication that it will complete its operation on
its own the next time it does have access. In this example, the second
component has a larger competence set than the first.

4.3 Tactics-Based Questionnaire for Availability
Based on the tactics described in Section 4.2, we can create a set of
availability tactics–inspired questions, as presented in Table 4.3. To gain
an overview of the architectural choices made to support availability, the
analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further
activities: investigation of documentation, analysis of code or other
artifacts, reverse engineering of code, and so forth.

Table 4.3 Tactics-Based Questionnaire for Availability
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Detect 
Faults

Does the system use ping/echo to detect 
failure of a component or connection, or 
network congestion?
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Does the system use a component to 
monitor the state of health of other parts of 
the system? A system monitor can detect 
failure or congestion in the network or other 
shared resources, such as from a denial-of-
service attack.
Does the system use a heartbeat—a periodic 
message exchange between a system monitor 
and a process—to detect failure of a 
component or connection, or network 
congestion?
Does the system use a timestamp to detect 
incorrect sequences of events in distributed 
systems?
Does the system use voting to check that 
replicated components are producing the 
same results?

The replicated components may be identical 
replicas, functionally redundant, or 
analytically redundant.
Does the system use exception detection to 
detect a system condition that alters the 
normal flow of execution (e.g., system 
exception, parameter fence, parameter 
typing, timeout)?
Can the system do a self-test to test itself for 
correct operation?



Tactics 
Group

Tactics Question Su
pp
or
t? 
(Y
/N
)

R
i
s
k

Desig
n 
Decis
ions 
and 
Locat
ion

Rati
onale 
and 
Assu
mpti
ons

Recover 
from 
Faults 
(Prepara
tion and 
Repair)

Does the system employ redundant spares?

Is a component’s role as active versus spare 
fixed, or does it change in the presence of a 
fault? What is the switchover mechanism? 
What is the trigger for a switchover? How 
long does it take for a spare to assume its 
duties?
Does the system employ exception handling 
to deal with faults?

Typically the handling involves either 
reporting, correcting, or masking the fault.
Does the system employ rollback, so that it 
can revert to a previously saved good state 
(the “rollback line”) in the event of a fault?
Can the system perform in-service software 
upgrades to executable code images in a 
non-service-affecting manner?
Does the system systematically retry in 
cases where the component or connection 
failure may be transient?
Can the system simply ignore faulty 
behavior (e.g., ignore messages when it is 
determined that those messages are 
spurious)?
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Does the system have a policy of degradation 
when resources are compromised, 
maintaining the most critical system 
functions in the presence of component 
failures, and dropping less critical functions?
Does the system have consistent policies and 
mechanisms for reconfiguration after 
failures, reassigning responsibilities to the 
resources left functioning, while maintaining 
as much functionality as possible?

Recover 
from 
Faults 
(Reintro
duction)

Can the system operate a previously failed or 
in-service upgraded component in a 
“shadow mode” for a predefined time prior 
to reverting the component back to an active 
role?
If the system uses active or passive 
redundancy, does it also employ state 
resynchronization to send state information 
from active components to standby 
components?
Does the system employ escalating restart 
to recover from faults by varying the 
granularity of the component(s) restarted and 
minimizing the level of service affected?
Can message processing and routing portions 
of the system employ nonstop forwarding, 
where functionality is split into supervisory 
and data planes?



Tactics 
Group

Tactics Question Su
pp
or
t? 
(Y
/N
)

R
i
s
k

Desig
n 
Decis
ions 
and 
Locat
ion

Rati
onale 
and 
Assu
mpti
ons

Prevent 
Faults

Can the system remove components from 
service, temporarily placing a system 
component in an out-of-service state for the 
purpose of preempting potential system 
failures?
Does the system employ transactions—
bundling state updates so that asynchronous 
messages exchanged between distributed 
components are atomic, consistent, isolated, 
and durable?
Does the system use a predictive model to 
monitor the state of health of a component to 
ensure that the system is operating within 
nominal parameters?

When conditions are detected that are 
predictive of likely future faults, the model 
initiates corrective action.

4.4 Patterns for Availability
This section presents a few of the most important architectural patterns
for availability.

The first three patterns are all centered on the redundant spare tactic,
and will be described as a group. They differ primarily in the degree to
which the backup components’ state matches that of the active
component. (A special case occurs when the components are stateless, in
which case the first two patterns become identical.)

Active redundancy (hot spare). For stateful components, this refers
to a configuration in which all of the nodes (active or redundant



spare) in a protection group3 receive and process identical inputs in
parallel, allowing the redundant spare(s) to maintain a synchronous
state with the active node(s). Because the redundant spare possesses
an identical state to the active processor, it can take over from a
failed component in a matter of milliseconds. The simple case of one
active node and one redundant spare node is commonly referred to
as one-plus-one redundancy. Active redundancy can also be used for
facilities protection, where active and standby network links are used
to ensure highly available network connectivity.
3. A protection group is a group of processing nodes in which one

or more nodes are “active,” with the remaining nodes serving as
redundant spares.

Passive redundancy (warm spare). For stateful components, this
refers to a configuration in which only the active members of the
protection group process input traffic. One of their duties is to
provide the redundant spare(s) with periodic state updates. Because
the state maintained by the redundant spares is only loosely coupled
with that of the active node(s) in the protection group (with the
looseness of the coupling being a function of the period of the state
updates), the redundant nodes are referred to as warm spares.
Passive redundancy provides a solution that achieves a balance
between the more highly available but more compute-intensive (and
expensive) active redundancy pattern and the less available but
significantly less complex cold spare pattern (which is also
significantly cheaper).
Spare (cold spare). Cold sparing refers to a configuration in which
redundant spares remain out of service until a failover occurs, at
which point a power-on-reset4 procedure is initiated on the
redundant spare prior to its being placed in service. Due to its poor
recovery performance, and hence its high mean time to repair, this
pattern is poorly suited to systems having high-availability
requirements.
4. A power-on-reset ensures that a device starts operating in a

known state.
Benefits:

The benefit of a redundant spare is a system that continues to
function correctly after only a brief delay in the presence of a
failure. The alternative is a system that stops functioning



correctly, or stops functioning altogether, until the failed
component is repaired. This repair could take hours or days.

Tradeoffs:
The tradeoff with any of these patterns is the additional cost and
complexity incurred in providing a spare.
The tradeoff among the three alternatives is the time to recover
from a failure versus the runtime cost incurred to keep a spare
up-to-date. A hot spare carries the highest cost but leads to the
fastest recovery time, for example.

Other patterns for availability include the following.

Triple modular redundancy (TMR). This widely used
implementation of the voting tactic employs three components that
do the same thing. Each component receives identical inputs and
forwards its output to the voting logic, which detects any
inconsistency among the three output states. Faced with an
inconsistency, the voter reports a fault. It must also decide which
output to use, and different instantiations of this pattern use different
decision rules. Typical choices are letting the majority rule or
choosing some computed average of the disparate outputs.

Of course, other versions of this pattern that employ 5 or 19 or 53
redundant components are also possible. However, in most cases, 3
components are sufficient to ensure a reliable result.

Benefits:
TMR is simple to understand and to implement. It is blissfully
independent of what might be causing disparate results, and is
only concerned about making a reasonable choice so that the
system can continue to function.

Tradeoffs:
There is a tradeoff between increasing the level of replication,
which raises the cost, and the resulting availability. In systems
employing TMR, the statistical likelihood of two or more
components failing is vanishingly small, and three components
represents a sweet spot between availability and cost.

Circuit breaker. A commonly used availability tactic is retry. In the
event of a timeout or fault when invoking a service, the invoker



simply tries again—and again, and again. A circuit breaker keeps the
invoker from trying countless times, waiting for a response that
never comes. In this way, it breaks the endless retry cycle when it
deems that the system is dealing with a fault. That’s the signal for
the system to begin handling the fault. Until the circuit break is
“reset,” subsequent invocations will return immediately without
passing along the service request.

Benefits:
This pattern can remove from individual components the policy
about how many retries to allow before declaring a failure.
At worst, endless fruitless retries would make the invoking
component as useless as the invoked component that has failed.
This problem is especially acute in distributed systems, where
you could have many callers calling an unresponsive
component and effectively going out of service themselves,
causing the failure to cascade across the whole system. The
circuit breaker, in conjunction with software that listens to it
and begins recovery procedures, prevents that problem.

Tradeoffs:
Care must be taken in choosing timeout (or retry) values. If the
timeout is too long, then unnecessary latency is added. But if
the timeout is too short, then the circuit breaker will be tripping
when it does not need to—a kind of “false positive”—which
can lower the availability and performance of these services.

Other availability patterns that are commonly used include the
following:
Process pairs. This pattern employs checkpointing and rollback. In
case of failure, the backup has been checkpointing and (if necessary)
rolling back to a safe state, so is ready to take over when a failure
occurs.
Forward error recovery. This pattern provides a way to get out of an
undesirable state by moving forward to a desirable state. This often
relies upon built-in error-correction capabilities, such as data
redundancy, so that errors may be corrected without the need to fall
back to a previous state or to retry. Forward error recovery finds a
safe, possibly degraded state from which the operation can move
forward.



4.5 For Further Reading
Patterns for availability:

You can read about patterns for fault tolerance in [Hanmer 13].

General tactics for availability:

A more detailed discussion of some of the availability tactics in this
chapter is given in [Scott 09]. This is the source of much of the
material in this chapter.
The Internet Engineering Task Force has promulgated a number of
standards supporting availability tactics. These standards include
Non-Stop Forwarding [IETF 2004], Ping/Echo (ICMP [IETF 1981]
or ICMPv6 [RFC 2006b] Echo Request/Response), and MPLS (LSP
Ping) networks [IETF 2006a].

Tactics for availability—fault detection:

Triple modular redundancy (TMR) was developed in the early 1960s
by Lyons [Lyons 62].
The fault detection in the voting tactic is based on the fundamental
contributions to automata theory by Von Neumann, who
demonstrated how systems having a prescribed reliability could be
built from unreliable components [Von Neumann 56].

Tactics for availability—fault recovery:

Standards-based realizations of active redundancy exist for
protecting network links (i.e., facilities) at both the physical layer of
the seven-layer OSI (Open Systems Interconnection) model
[Bellcore 98, 99; Telcordia 00] and the network/link layer [IETF
2005].
Some examples of how a system can degrade through use
(degradation) are given in [Nygard 18].
Mountains of papers have been written about parameter typing, but
[Utas 05] writes about it in the context of availability (as opposed to
bug prevention, its usual context). [Utas 05] has also written about
escalating restart.



Hardware engineers often use preparation and repair tactics.
Examples include error detection and correction (EDAC) coding,
forward error correction (FEC), and temporal redundancy. EDAC
coding is typically used to protect control memory structures in
high-availability distributed real-time embedded systems [Hamming
80]. Conversely, FEC coding is typically employed to recover from
physical layer errors occurring in external network links [Morelos-
Zaragoza 06]. Temporal redundancy involves sampling spatially
redundant clock or data lines at time intervals that exceed the pulse
width of any transient pulse to be tolerated, and then voting out any
defects detected [Mavis 02].

Tactics for availability—fault prevention:

Parnas and Madey have written about increasing an element’s
competence set [Parnas 95].
The ACID properties, important in the transactions tactic, were
introduced by Gray in the 1970s and discussed in depth in [Gray 93].

Disaster recovery:

A disaster is an event such as an earthquake, flood, or hurricane that
destroys an entire data center. The U.S. National Institute of
Standards and Technology (NIST) identifies eight different types of
plans that should be considered in the event of a disaster, See
Section 2.2 of NIST Special Publication 800-34, Contingency
Planning Guide for Federal Information Systems,
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication80
0-34r1.pdf.

4.6 Discussion Questions
1. Write a set of concrete scenarios for availability using each of the

possible responses in the general scenario.

2. Write a concrete availability scenario for the software for a
(hypothetical) driverless car.

3. Write a concrete availability scenario for a program like Microsoft
Word.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-34r1.pdf


4. Redundancy is a key strategy for achieving high availability. Look
at the patterns and tactics presented in this chapter and decide how
many of them exploit some form of redundancy and how many do
not.

5. How does availability trade off against modifiability and
deployability? How would you make a change to a system that is
required to have 24/7 availability (i.e., no scheduled or unscheduled
down time, ever)?

6. Consider the fault detection tactics (ping/echo, heartbeat, system
monitor, voting, and exception detection). What are the
performance implications of using these tactics?

7. Which tactics are used by a load balancer (see Chapter 17) when it
detects a failure of an instance?

8. Look up recovery point objective (RPO) and recovery time
objective (RTO), and explain how these can be used to set a
checkpoint interval when using the rollback tactic.



5
Deployability

From the day we arrive on the planet And blinking, step into the sun
There’s more to be seen than can ever be seen More to do than can ever be

done
—The Lion King

There comes a day when software, like the rest of us, must leave home
and venture out into the world and experience real life. Unlike the rest of
us, software typically makes the trip many times, as changes and updates
are made. This chapter is about making that transition as orderly and as
effective and—most of all—as rapid as possible. That is the realm of
continuous deployment, which is most enabled by the quality attribute of
deployability.

Why has deployability come to take a front-row seat in the world of
quality attributes?

In the “bad old days,” releases were infrequent—large numbers of
changes were bundled into releases and scheduled. A release would
contain new features and bug fixes. One release per month, per quarter,
or even per year was common. Competitive pressures in many domains
—with the charge being led by e-commerce—resulted in a need for
much shorter release cycles. In these contexts, releases can occur at any
time—possibly hundreds of releases per day—and each can be instigated
by a different team within an organization. Being able to release
frequently means that bug fixes in particular do not have to wait until the
next scheduled release, but rather can be made and released as soon as a
bug is discovered and fixed. It also means that new features do not need
to be bundled into a release, but can be put into production at any time.

This is not desirable, or even possible, in all domains. If your software
exists in a complex ecosystem with many dependencies, it may not be
possible to release just one part of it without coordinating that release
with the other parts. In addition, many embedded systems, systems in



hard-to-access locations, and systems that are not networked would be
poor candidates for a continuous deployment mindset.

This chapter focuses on the large and growing numbers of systems for
which just-in-time feature releases are a significant competitive
advantage, and just-in-time bug fixes are essential to safety or security or
continuous operation. Often these systems are microservice and cloud-
based, although the techniques here are not limited to those technologies.

5.1 Continuous Deployment
Deployment is a process that starts with coding and ends with real users
interacting with the system in a production environment. If this process
is fully automated—that is, if there is no human intervention—then it is
called continuous deployment. If the process is automated up to the point
of placing (portions of) the system into production and human
intervention is required (perhaps due to regulations or policies) for this
final step, the process is called continuous delivery.

To speed up releases, we need to introduce the concept of a
deployment pipeline: the sequence of tools and activities that begin when
you check your code into a version control system and end when your
application has been deployed for users to send it requests. In between
those points, a series of tools integrate and automatically test the newly
committed code, test the integrated code for functionality, and test the
application for concerns such as performance under load, security, and
license compliance.

Each stage in the deployment pipeline takes place in an environment
established to support isolation of the stage and perform the actions
appropriate to that stage. The major environments are as follows:

Code is developed in a development environment for a single module
where it is subject to standalone unit tests. Once it passes the tests,
and after appropriate review, the code is committed to a version
control system that triggers the build activities in the integration
environment.
An integration environment builds an executable version of your
service. A continuous integration server compiles1 your new or
changed code, along with the latest compatible versions of code for
other portions of your service and constructs an executable image for
your service.2 Tests in the integration environment include the unit



tests from the various modules (now run against the built system), as
well as integration tests designed specifically for the whole system.
When the various tests are passed, the built service is promoted to
the staging environment.
1. If you are developing software using an interpreted language

such as Python or JavaScript, there is no compilation step.
2. In this chapter, we use the term “service” to denote any

independently deployable unit.
A staging environment tests for various qualities of the total system.
These include performance testing, security testing, license
conformance checks, and possibly user testing. For embedded
systems, this is where simulators of the physical environment
(feeding synthetic inputs to the system) are brought to bear. An
application that passes all staging environment tests—which may
include field testing—is deployed to the production environment,
using either a blue/green model or a rolling upgrade (see Section
5.6). In some cases, partial deployments are used for quality control
or to test the market response to a proposed change or offering.
Once in the production environment, the service is monitored closely
until all parties have some level of confidence in its quality. At that
point, it is considered a normal part of the system and receives the
same amount of attention as the other parts of the system.

You perform a different set of tests in each environment, expanding
the testing scope from unit testing of a single module in the development
environment, to functional testing of all the components that make up
your service in the integration environment, and ending with broad
quality testing in the staging environment and usage monitoring in the
production environment.

But not everything always goes according to plan. If you find
problems after the software is in its production environment, it is often
necessary to roll back to a previous version while the defect is being
addressed.

Architectural choices affect deployability. For example, by employing
the microservice architecture pattern (see Section 5.6), each team
responsible for a microservice can make its own technology choices; this
removes incompatibility problems that would previously have been
discovered at integration time (e.g., incompatible choices of which



version of a library to use). Since microservices are independent
services, such choices do not cause problems.

Similarly, a continuous deployment mindset forces you to think about
the testing infrastructure earlier in the development process. This is
necessary because designing for continuous deployment requires
continuous automated testing. In addition, the need to be able to roll
back or disable features leads to architectural decisions about
mechanisms such as feature toggles and backward compatibility of
interfaces. These decisions are best taken early on.

The Effect of Virtualization on the Different
Environments
Before the widespread use of virtualization technology, the
environments that we describe here were physical facilities. In most
organizations, the development, integration, and staging
environments comprised hardware and software procured and
operated by different groups. The development environment might
consist of a few desktop computers that the development team
repurposed as servers. The integration environment was operated
by the test or quality-assurance team, and might consist of some
racks, populated with previous-generation equipment from the data
center. The staging environment was operated by the operations
team and might have hardware similar to that used in production.

A lot of time was spent trying to figure out why a test that
passed in one environment failed in another environment. One
benefit of environments that employ virtualization is the ability to
have environment parity, where environments may differ in scale
but not in type of hardware or fundamental structure. A variety of
provisioning tools support environment parity by allowing every
team to easily build a common environment and by ensuring that
this common environment mimics the production environment as
closely as possible.

Three important ways to measure the quality of the pipeline are as
follows:



Cycle time is the pace of progress through the pipeline. Many
organizations will deploy to production several or even hundreds of
times a day. Such rapid deployment is not possible if human
intervention is required. It is also not possible if one team must
coordinate with other teams before placing its service in production.
Later in this chapter, we will see architectural techniques that allow
teams to perform continuous deployment without consulting other
teams.
Traceability is the ability to recover all of the artifacts that led to an
element having a problem. That includes all the code and
dependencies that are included in that element. It also includes the
test cases that were run on that element and the tools that were used
to produce the element. Errors in tools used in the deployment
pipeline can cause problems in production. Typically, traceability
information is kept in an artifact database. This database will
contain code version numbers, version numbers of elements the
system depends on (such as libraries), test version numbers, and tool
version numbers.
Repeatability is getting the same result when you perform the same
action with the same artifacts. This is not as easy as it sounds. For
example, suppose your build process fetches the latest version of a
library. The next time you execute the build process, a new version
of the library may have been released. As another example, suppose
one test modifies some values in the database. If the original values
are not restored, subsequent tests may not produce the same results.

DevOps
DevOps—a portmanteau of “development” and “operations”—is a
concept closely associated with continuous deployment. It is a
movement (much like the Agile movement), a description of a set
of practices and tools (again, much like the Agile movement), and a
marketing formula touted by vendors selling those tools. The goal
of DevOps is to shorten time to market (or time to release). The
goal is to dramatically shorten the time between a developer
making a change to an existing system—implementing a feature or



fixing a bug—and the system reaching the hands of end users, as
compared with traditional software development practices.

A formal definition of DevOps captures both the frequency of
releases and the ability to perform bug fixes on demand:

DevOps is a set of practices intended to reduce the time between
committing a change to a system and the change being placed
into normal production, while ensuring high quality. [Bass 15]
Implementing DevOps is a process improvement effort. DevOps

encompasses not only the cultural and organizational elements of
any process improvement effort, but also a strong reliance on tools
and architectural design. All environments are different, of course,
but the tools and automation we describe are found in the typical
tool chains built to support DevOps.

The continuous deployment strategy we describe here is the
conceptual heart of DevOps. Automated testing is, in turn, a
critically important ingredient of continuous deployment, and the
tooling for that often represents the highest technological hurdle for
DevOps. Some forms of DevOps include logging and post-
deployment monitoring of those logs, for automatic detection of
errors back at the “home office,” or even monitoring to understand
the user experience. This, of course, requires a “phone home” or
log delivery capability in the system, which may or may not be
possible or allowable in some systems.

DevSecOps is a flavor of DevOps that incorporates approaches
for security (for the infrastructure and for the applications it
produces) into the entire process. DevSecOps is increasingly
popular in aerospace and defense applications, but is also valid in
any application area where DevOps is useful and a security breach
would be particularly costly. Many IT applications fall in this
category.

5.2 Deployability
Deployability refers to a property of software indicating that it may be
deployed—that is, allocated to an environment for execution—within a
predictable and acceptable amount of time and effort. Moreover, if the
new deployment is not meeting its specifications, it may be rolled back,
again within a predictable and acceptable amount of time and effort. As



the world moves increasingly toward virtualization and cloud
infrastructures, and as the scale of deployed software-intensive systems
inevitably increases, it is one of the architect’s responsibilities to ensure
that deployment is done in an efficient and predictable way, minimizing
overall system risk.3

3. The quality attribute of testability (see Chapter 12) certainly plays a
critical role in continuous deployment, and the architect can provide
critical support for continuous deployment by ensuring that the
system is testable, in all the ways just mentioned. However, our
concern here is the quality attribute directly related to continuous
deployment over and above testability: deployability.

To achieve these goals, an architect needs to consider how an
executable is updated on a host platform, and how it is subsequently
invoked, measured, monitored, and controlled. Mobile systems in
particular present a challenge for deployability in terms of how they are
updated because of concerns about bandwidth. Some of the issues
involved in deploying software are as follows:

How does it arrive at its host (i.e., push, where updates deployed are
unbidden, or pull, where users or administrators must explicitly
request updates)?
How is it integrated into an existing system? Can this be done while
the existing system is executing?
What is the medium, such as DVD, USB drive, or Internet delivery?
What is the packaging (e.g., executable, app, plug-in)?
What is the resulting integration into an existing system?
What is the efficiency of executing the process?
What is the controllability of the process?

With all of these concerns, the architect must be able to assess the
associated risks. Architects are primarily concerned with the degree to
which the architecture supports deployments that are:

Granular. Deployments can be of the whole system or of elements
within a system. If the architecture provides options for finer
granularity of deployment, then certain risks can be reduced.



Controllable. The architecture should provide the capability to
deploy at varying levels of granularity, monitor the operation of the
deployed units, and roll back unsuccessful deployments.
Efficient. The architecture should support rapid deployment (and, if
needed, rollback) with a reasonable level of effort.

These characteristics will be reflected in the response measures of the
general scenario for deployability.

5.3 Deployability General Scenario
Table 5.1 enumerates the elements of the general scenario that
characterize deployability.

Table 5.1 General Scenario for Deployability

Po
rti
on 
of 
Sc
en
ari
o

Description Possible Values

So
urc
e

The trigger for the 
deployment

End user, developer, system administrator, 
operations personnel, component marketplace, 
product owner.

Sti
mu
lus

What causes the 
trigger

A new element is available to be deployed. This 
is typically a request to replace a software 
element with a new version (e.g., fix a defect, 
apply a security patch, upgrade to the latest 
release of a component or framework, upgrade to 
the latest version of an internally produced 
element).

New element is approved for incorporation.

An existing element/set of elements needs to be 
rolled back.



Po
rti
on 
of 
Sc
en
ari
o

Description Possible Values

Ar
tif
act
s

What is to be 
changed

Specific components or modules, the system’s 
platform, its user interface, its environment, or 
another system with which it interoperates. Thus 
the artifact might be a single software element, 
multiple software elements, or the entire system.

En
vir
on
me
nt

Staging, 
production (or a 
specific subset of 
either)

Full deployment.

Subset deployment to a specified portion of 
users, VMs, containers, servers, platforms.

Re
sp
on
se

What should 
happen

Incorporate the new components.

Deploy the new components.

Monitor the new components.

Roll back a previous deployment.
Re
sp
on
se 
me
as
ure

A measure of 
cost, time, or 
process 
effectiveness for a 
deployment, or 
for a series of 
deployments over 
time

Cost in terms of:

Number, size, and complexity of affected 
artifacts

Average/worst-case effort

Elapsed clock or calendar time



Po
rti
on 
of 
Sc
en
ari
o

Description Possible Values

Money (direct outlay or opportunity cost)

New defects introduced

Extent to which this deployment/rollback affects 
other functions or quality attributes.

Number of failed deployments.

Repeatability of the process.

Traceability of the process.

Cycle time of the process.

Figure 5.1 illustrates a concrete deployability scenario: “A new
release of an authentication/authorization service (which our product
uses) is made available in the component marketplace and the product
owner decides to incorporate this version into the release. The new
service is tested and deployed to the production environment within 40
hours of elapsed time and no more than 120 person-hours of effort. The
deployment introduces no defects and no SLA is violated.”



Figure 5.1 Sample concrete deployability scenario

5.4 Tactics for Deployability
A deployment is catalyzed by the release of a new software or hardware
element. The deployment is successful if these new elements are
deployed within acceptable time, cost, and quality constraints. We
illustrate this relationship—and hence the goal of deployability tactics—
in Figure 5.2.

Figure 5.2 Goal of deployability tactics

The tactics for deployability are shown in Figure 5.3. In many cases,
these tactics will be provided, at least in part, by a CI/CD (continuous
integration/continuous deployment) infrastructure that you buy rather



than build. In such a case, your job as an architect is often one of
choosing and assessing (rather than implementing) the right
deployability tactics and the right combination of tactics.

Figure 5.3 Deployability tactics

Next, we describe these six deployability tactics in more detail. The
first category of deployability tactics focuses on strategies for managing
the deployment pipeline, and the second category deals with managing
the system as it is being deployed and once it has been deployed.

Manage Deployment Pipeline

Scale rollouts. Rather than deploying to the entire user base, scaled
rollouts deploy a new version of a service gradually, to controlled
subsets of the user population, often with no explicit notification to
those users. (The remainder of the user base continues to use the
previous version of the service.) By gradually releasing, the effects
of new deployments can be monitored and measured and, if
necessary, rolled back. This tactic minimizes the potential negative
impact of deploying a flawed service. It requires an architectural
mechanism (not part of the service being deployed) to route a
request from a user to either the new or old service, depending on
that user’s identity.
Roll back. If it is discovered that a deployment has defects or does
not meet user expectations, then it can be “rolled back” to its prior
state. Since deployments may involve multiple coordinated updates



of multiple services and their data, the rollback mechanism must be
able to keep track of all of these, or must be able to reverse the
consequences of any update made by a deployment, ideally in a fully
automated fashion.
Script deployment commands. Deployments are often complex and
require many steps to be carried out and orchestrated precisely. For
this reason, deployment is often scripted. These deployment scripts
should be treated like code—documented, reviewed, tested, and
version controlled. A scripting engine executes the deployment
script automatically, saving time and minimizing opportunities for
human error.

Manage Deployed System

Manage service interactions. This tactic accommodates
simultaneous deployment and execution of multiple versions of
system services. Multiple requests from a client could be directed to
either version in any sequence. Having multiple versions of the same
service in operation, however, may introduce version
incompatibilities. In such cases, the interactions between services
need to be mediated so that version incompatibilities are proactively
avoided. This tactic is a resource management strategy, obviating the
need to completely replicate the resources so as to separately deploy
the old and new versions.
Package dependencies. This tactic packages an element together
with its dependencies so that they get deployed together and so that
the versions of the dependencies are consistent as the element moves
from development into production. The dependencies may include
libraries, OS versions, and utility containers (e.g., sidecar, service
mesh), which we will discuss in Chapter 9. Three means of
packaging dependencies are using containers, pods, or virtual
machines; these are discussed in more detail in Chapter 16.
Feature toggle. Even when your code is fully tested, you might
encounter issues after deploying new features. For that reason, it is
convenient to be able to integrate a “kill switch” (or feature toggle)
for new features. The kill switch automatically disables a feature in
your system at runtime, without forcing you to initiate a new
deployment. This provides the ability to control deployed features
without the cost and risk of actually redeploying services.



5.5 Tactics-Based Questionnaire for Deployability
Based on the tactics described in Section 5.4, we can create a set of
deployability tactics–inspired questions, as presented in Table 5.2. To
gain an overview of the architectural choices made to support
deployability, the analyst asks each question and records the answers in
the table. The answers to these questions can then be made the focus of
subsequent activities: investigation of documentation, analysis of code or
other artifacts, reverse engineering of code, and so forth.

Table 5.2 Tactics-Based Questionnaire for Deployability

Tactic
s 
Grou
ps

Tactics Question Sup
por
ted
? 
(Y/
N)

R
i
s
k

Design 
Decisi
ons 
and 
Locati
on

Ratio
nale 
and 
Assu
mptio
ns

Mana
ge 
deplo
yment 
pipeli
ne

Do you scale rollouts, rolling out new 
releases gradually (in contrast to releasing 
in an all-or-nothing fashion)?
Are you able to automatically roll back 
deployed services if you determine that 
they are not operating in a satisfactory 
fashion?
Do you script deployment commands to 
automatically execute complex sequences 
of deployment instructions?

Mana
ge 
deplo
yed 
syste
m

Do you manage service interactions so 
that multiple versions of services can be 
safely deployed simultaneously?
Do you package dependencies so that 
services are deployed along with all of the 
libraries, OS versions, and utility 
containers that they depend on?



Tactic
s 
Grou
ps

Tactics Question Sup
por
ted
? 
(Y/
N)

R
i
s
k

Design 
Decisi
ons 
and 
Locati
on

Ratio
nale 
and 
Assu
mptio
ns

Do you employ feature toggles to 
automatically disable a newly released 
feature (rather than rolling back the newly 
deployed service) if the feature is 
determined to be problematic?

5.6 Patterns for Deployability
Patterns for deployability can be organized into two categories. The first
category contains patterns for structuring services to be deployed. The
second category contains patterns for how to deploy services, which can
be parsed into two broad subcategories: all-or-nothing or partial
deployment. The two main categories for deployability are not
completely independent of each other, because certain deployment
patterns depend on certain structural properties of the services.

Patterns for Structuring Services

Microservice Architecture
The microservice architecture pattern structures the system as a
collection of independently deployable services that communicate only
via messages through service interfaces. There is no other form of
interprocess communication allowed: no direct linking, no direct reads of
another team’s data store, no shared-memory model, no back-doors
whatsoever. Services are usually stateless, and (because they are
developed by a single relatively small team4) are relatively small—hence
the term microservice. Service dependencies are acyclic. An integral part
of this pattern is a discovery service so that messages can be
appropriately routed.

4. At Amazon, service teams are constrained in size by the “two pizza
rule”: The team must be no larger than can be fed by two pizzas.



Benefits:

Time to market is reduced. Since each service is small and
independently deployable, a modification to a service can be
deployed without coordinating with teams that own other services.
Thus, once a team completes its work on a new version of a service
and that version has been tested, it can be deployed immediately.
Each team can make its own technology choices for its service, as
long as the technology choices support message passing. No
coordination is needed with respect to library versions or
programming languages. This reduces errors due to incompatibilities
that arise during integration—and which are a major source of
integration errors.
Services are more easily scaled than coarser-grained applications.
Since each service is independent, dynamically adding instances of
the service is straightforward. In this way, the supply of services can
be more easily matched to the demand.

Tradeoffs:

Overhead is increased, compared to in-memory communication,
because all communication among services occurs via messages
across a network. This can be mitigated somewhat by using the
service mesh pattern (see Chapter 9), which constrains the
deployment of some services to the same host to reduce network
traffic. Furthermore, because of the dynamic nature of microservice
deployments, discovery services are heavily used, adding to the
overhead. Ultimately, those discovery services may become a
performance bottleneck.
Microservices are less suitable for complex transactions because of
the difficulty of synchronizing activities across distributed systems.
The freedom for every team to choose its own technology comes at a
cost—the organization must maintain those technologies and the
required experience base.
Intellectual control of the total system may be difficult because of
the large number of microservices. This introduces a requirement for
catalogs and databases of interfaces to assist in maintaining



intellectual control. In addition, the process of properly combining
services to achieve a desired outcome may be complex and subtle.
Designing the services to have appropriate responsibilities and an
appropriate level of granularity is a formidable design task.
To achieve the ability to deploy versions independently, the
architecture of the services must be designed to allow for that
deployment strategy. Using the manage service interactions tactic
described in Section 5.4 can help achieve this goal.

Organizations that have heavily employed the microservice
architecture pattern include Google, Netflix, PayPal, Twitter, Facebook,
and Amazon. Many other organizations have adopted the microservice
architecture pattern as well; books and conferences exist that focus on
how an organization can adopt the microservice architecture pattern for
its own needs.

Patterns for Complete Replacement of Services
Suppose there are N instances of Service A and you wish to replace them
with N instances of a new version of Service A, leaving no instances of
the original version. You wish to do this with no reduction in quality of
service to the clients of the service, so there must always be N instances
of the service running.

Two different patterns for the complete replacement strategy are
possible, both of which are realizations of the scale rollouts tactic. We’ll
cover them both together:

1. Blue/green. In a blue/green deployment, N new instances of the
service would be created and each populated with new Service A
(let’s call these the green instances). After the N instances of new
Service A are installed, the DNS server or discovery service would
be changed to point to the new version of Service A. Once it is
determined that the new instances are working satisfactorily, then
and only then are the N instances of the original Service A
removed. Before this cutoff point, if a problem is found in the new
version, it is a simple matter of switching back to the original (the
blue services) with little or no interruption.

2. Rolling upgrade. A rolling upgrade replaces the instances of
Service A with instances of the new version of Service A one at a



time. (In practice, you can replace more than one instance at a
time, but only a small fraction are replaced in any single step.) The
steps of the rolling upgrade are as follows:

a. Allocate resources for a new instance of Service A (e.g., a
virtual machine).

b. Install and register the new version of Service A.
c. Begin to direct requests to the new version of Service A.
d. Choose an instance of the old Service A, allow it to

complete any active processing, and then destroy that
instance.

e. Repeat the preceding steps until all instances of the old
version have been replaced.

Figure 5.4 shows a rolling upgrade process as implemented by
Netflix’s Asgard tool on Amazon’s EC2 cloud platform.





Figure 5.4 A flowchart of the rolling upgrade pattern as
implemented by Netflix’s Asgard tool

Benefits:

The benefit of these patterns is the ability to completely replace
deployed versions of services without having to take the system out
of service, thus increasing the system’s availability.

Tradeoffs:

The peak resource utilization for a blue/green approach is 2N
instances, whereas the peak utilization for a rolling upgrade is N + 1
instances. In either case, resources to host these instances must be
procured. Before the widespread adoption of cloud computing,
procurement meant purchase: An organization had to purchase
physical computers to perform the upgrade. Most of the time there
was no upgrade in progress, so these additional computers largely
sat idle. This made the financial tradeoff clear, and rolling upgrade
was the standard approach. Now that computing resources can be
rented on an as-needed basis, rather than purchased, the financial
tradeoff is less compelling but still present.
Suppose you detect an error in the new Service A when you deploy
it. Despite all the testing you did in the development, integration,
and staging environments, when your service is deployed to
production, there may still be latent errors. If you are using
blue/green deployment, by the time you discover an error in the
new Service A, all of the original instances may have been deleted
and rolling back to the old version could take considerable time. In
contrast, a rolling upgrade may allow you to discover an error in the
new version of the service while instances of the old version are
still available.
From a client’s perspective, if you are using the blue/green
deployment model, then at any point in time either the new version
or the old version is active, but not both. If you are using the rolling
upgrade pattern, both versions are simultaneously active. This
introduces the possibility of two types of problems: temporal
inconsistency and interface mismatch.



Temporal inconsistency. In a sequence of requests by Client C
to Service A, some may be served by the old version of the
service and some may be served by the new version. If the
versions behave differently, this may cause Client C to
produce erroneous, or at least inconsistent, results. (This can
be prevented by using the manage service interactions tactic.)
Interface mismatch. If the interface to the new version of
Service A is different from the interface to the old version of
Service A, then invocations by clients of Service A that have
not been updated to reflect the new interface will produce
unpredictable results. This can be prevented by extending the
interface but not modifying the existing interface, and using
the mediator pattern (see Chapter 7) to translate from the
extended interface to an internal interface that produces correct
behavior. See Chapter 15 for a fuller discussion.

Patterns for Partial Replacement of Services
Sometimes changing all instances of a service is undesirable. Partial-
deployment patterns aim at providing multiple versions of a service
simultaneously for different user groups; they are used for purposes such
as quality control (canary testing) and marketing tests (A/B testing).

Canary Testing
Before rolling out a new release, it is prudent to test it in the production
environment, but with a limited set of users. Canary testing is the
continuous deployment analog of beta testing.5 Canary testing designates
a small set of users who will test the new release. Sometimes, these
testers are so-called power users or preview-stream users from outside
your organization who are more likely to exercise code paths and edge
cases that typical users may use less frequently. Users may or may not
know that they are being used as guinea pigs—er, that is, canaries.
Another approach is to use testers from within the organization that is
developing the software. For example, Google employees almost never
use the release that external users would be using, but instead act as
testers for upcoming releases. When the focus of the testing is on
determining how well new features are accepted, a variant of canary
testing called dark launch is used.



5. Canary testing is named after the 19th-century practice of bringing
canaries into coal mines. Coal mining releases gases that are
explosive and poisonous. Because canaries are more sensitive to
these gases than humans, coal miners brought canaries into the mines
and watched them for signs of reaction to the gases. The canaries
acted as early warning devices for the miners, indicating an unsafe
environment.

In both cases, the users are designated as canaries and routed to the
appropriate version of a service through DNS settings or through
discovery-service configuration. After testing is complete, users are all
directed to either the new version or the old version, and instances of the
deprecated version are destroyed. Rolling upgrade or blue/green
deployment could be used to deploy the new version.

Benefits:

Canary testing allows real users to “bang on” the software in ways
that simulated testing cannot. This allows the organization deploying
the service to collect “in use” data and perform controlled
experiments with relatively low risk.
Canary testing incurs minimal additional development costs, because
the system being tested is on a path to production anyway.
Canary testing minimizes the number of users who may be exposed
to a serious defect in the new system.

Tradeoffs:

Canary testing requires additional up-front planning and resources,
and a strategy for evaluating the results of the tests needs to be
formulated.
If canary testing is aimed at power users, those users have to be
identified and the new version routed to them.

A/B Testing
A/B testing is used by marketers to perform an experiment with real
users to determine which of several alternatives yields the best business
results. A small but meaningful number of users receive a different
treatment from the remainder of the users. The difference can be minor,
such as a change to the font size or form layout, or it can be more



significant. For example, HomeAway (now Vrbo) has used A/B testing
to vary the format, content, and look-and-feel of its worldwide websites,
tracking which editions produced the most rentals. The “winner” would
be kept, the “loser” discarded, and another contender designed and
deployed. Another example is a bank offering different promotions to
open new accounts. An oft-repeated story is that Google tested 41
different shades of blue to decide which shade to use to report search
results.

As in canary testing, DNS servers and discovery-service
configurations are set to send client requests to different versions. In A/B
testing, the different versions are monitored to see which one provides
the best response from a business perspective.

Benefits:

A/B testing allows marketing and product development teams to run
experiments on, and collect data from, real users.
A/B testing can allow for targeting of users based on an arbitrary set
of characteristics.

Tradeoffs:

A/B testing requires the implementation of alternatives, one of
which will be discarded.
Different classes of users, and their characteristics, need to be
identified up front.

5.7 For Further Reading
Much of the material in this chapter is adapted from Deployment and
Operations for Software Engineers by Len Bass and John Klein [Bass
19] and from [Kazman 20b].

A general discussion of deployability and architecture in the context
of DevOps can be found in [Bass 15].

The tactics for deployability owe much to the work of Martin Fowler
and his colleagues, which can be found in [Fowler 10], [Lewis 14], and
[Sato 14].

Deployment pipelines are described in much more detail in [Humble
10]



Microservices and the process of migrating to microservices are
described in [Newman 15].

5.8 Discussion Questions
1. Write a set of concrete scenarios for deployability using each of the

possible responses in the general scenario.

2. Write a concrete deployability scenario for the software for a car
(such as a Tesla).

3. Write a concrete deployability scenario for a smartphone app. Now
write one for the server-side infrastructure that communicates with
this app.

4. If you needed to display the results of a search operation, would you
perform A/B testing or simply use the color that Google has
chosen? Why?

5. Referring to the structures described in Chapter 1, which structures
would be involved in implementing the package dependencies
tactic? Would you use the uses structure? Why or why not? Are
there other structures you would need to consider?

6. Referring to the structures described in Chapter 1, which structures
would be involved in implementing the manage service interactions
tactic? Would you use the uses structure? Why or why not? Are
there other structures you would need to consider?

7. Under what circumstances would you prefer to roll forward to a
new version of service, rather than to roll back to a prior version?
When is roll forward a poor choice?



6
Energy Efficiency

Energy is a bit like money: If you have a positive balance, you can
distribute it in various ways, but according to the classical laws that were

believed at the beginning of the century, you weren’t allowed to be
overdrawn.

—Stephen Hawking

Energy used by computers used to be free and unlimited—or at least
that’s how we behaved. Architects rarely gave much consideration to the
energy consumption of software in the past. But those days are now
gone. With the dominance of mobile devices as the primary form of
computing for most people, with the increasing adoption of the Internet
of Things (IoT) in industry and government, and with the ubiquity of
cloud services as the backbone of our computing infrastructure, energy
has become an issue that architects can no longer ignore. Power is no
longer “free” and unlimited. The energy efficiency of mobile devices
affects us all. Likewise, cloud providers are increasingly concerned with
the energy efficiency of their server farms. In 2016, it was reported that
data centers globally accounted for more energy consumption (by 40
percent) than the entire United Kingdom—about 3 percent of all energy
consumed worldwide. More recent estimates put that share up as high as
10 percent. The energy costs associated with running and, more
importantly, cooling large data centers have led people to calculate the
cost of putting whole data centers in space, where cooling is free and the
sun provides unlimited power. At today’s launch prices, the economics
are actually beginning to look favorable. Notably, server farms located
underwater and in arctic climates are already a reality.

At both the low end and the high end, energy consumption of
computational devices has become an issue that we should consider.
This means that we, as architects, now need to add energy efficiency to
the long list of competing qualities that we consider when designing a



system. And, as with every other quality attribute, there are nontrivial
tradeoffs to consider: energy usage versus performance or availability or
modifiability or time to market. Thus considering energy efficiency as a
first-class quality attribute is important for the following reasons:

1. An architectural approach is necessary to gain control over any
important system quality attribute, and energy efficiency is no
different. If system-wide techniques for monitoring and managing
energy are lacking, then developers are left to invent them on their
own. This will, in the best case, result in an ad hoc approach to
energy efficiency that produces a system that is hard to maintain,
measure, and evolve. In the worst case, it will yield an approach
that simply does not predictably achieve the desired energy
efficiency goals.

2. Most architects and developers are unaware of energy efficiency as
a quality attribute of concern, and hence do not know how to go
about engineering and coding for it. More fundamentally, they lack
an understanding of energy efficiency requirements—how to
gather them and analyze them for completeness. Energy efficiency
is not taught, or typically even mentioned, as a programmer’s
concern in today’s educational curricula. In consequence, students
may graduate with degrees in engineering or computer science
without ever having been exposed to these issues.

3. Most architects and developers lack suitable design concepts—
models, patterns, tactics, and so forth—for designing for energy
efficiency, as well as managing and monitoring it at runtime. But
since energy efficiency is a relatively recent concern for the
software engineering community, these design concepts are still in
their infancy and no catalog yet exists.

Cloud platforms typically do not have to be concerned with running
out of energy (except in disaster scenarios), whereas this is a daily
concern for users of mobile devices and some IoT devices. In cloud
environments, scaling up and scaling down are core competencies, so
decisions must be made on a regular basis about optimal resource
allocation. With IoT devices, their size, form factors, and heat output all
constrain their design space—there is no room for bulky batteries. In
addition, the sheer number of IoT devices projected to be deployed in
the next decade makes their energy usage a concern.



In all of these contexts, energy efficiency must be balanced with
performance and availability, requiring engineers to consciously reason
about such tradeoffs. In the cloud context, greater allocation of resources
—more servers, more storage, and so on—creates improved
performance capabilities as well as improved robustness against failures
of individual devices, but at the cost of energy and capital outlays. In the
mobile and IoT contexts, greater allocation of resources is typically not
an option (although shifting the computational burden from a mobile
device to a cloud back-end is possible), so the tradeoffs tend to center on
energy efficiency versus performance and usability. Finally, in all
contexts, there are tradeoffs between energy efficiency, on the one hand,
and buildability and modifiability, on the other hand.

6.1 Energy Efficiency General Scenario
From these considerations, we can now determine the various portions of
the energy efficiency general scenario, as presented in Table 6.1.

Table 6.1 Energy Efficiency General Scenario

Porti
on of 
Scen
ario

Description Possible Values

Sour
ce

This specifies who or what 
requests or initiates a request to 
conserve or manage energy.

End user, manager, system 
administrator, automated 
agent

Stim
ulus

A request to conserve energy. Total usage, maximum 
instantaneous usage, average 
usage, etc.

Artif
acts

This specifies what is to be 
managed.

Specific devices, servers, 
VMs, clusters, etc.

Envir
onme
nt

Energy is typically managed at 
runtime, but many interesting 
special cases exist, based on 
system characteristics.

Runtime, connected, battery-
powered, low-battery mode, 
power-conservation mode



Porti
on of 
Scen
ario

Description Possible Values

Resp
onse

What actions the system takes to 
conserve or manage energy usage.

One or more of the following:

Disable services

Deallocate runtime 
services

Change allocation of 
services to servers

Run services at a lower 
consumption mode

Allocate/deallocate 
servers

Change levels of service

Change scheduling



Porti
on of 
Scen
ario

Description Possible Values

Resp
onse 
meas
ure

The measures revolve around the 
amount of energy saved or 
consumed and the effects on other 
functions or quality attributes.

Energy managed or saved in 
terms of:

Maximum/average 
kilowatt load on the 
system

Average/total amount of 
energy saved

Total kilowatt hours used

Time period during 
which the system must 
stay powered on

. . . while still maintaining a 
required level of functionality 
and acceptable levels of other 
quality attributes

Figure 6.1 illustrates a concrete energy efficiency scenario: A
manager wants to save energy at runtime by deallocating unused
resources at non-peak periods. The system deallocates resources while
maintaining worst-case latency of 2 seconds on database queries, saving
on average 50 percent of the total energy required.



Figure 6.1 Sample energy efficiency scenario

6.2 Tactics for Energy Efficiency
An energy efficiency scenario is catalyzed by the desire to conserve or
manage energy while still providing the required (albeit not necessarily
full) functionality. This scenario is successful if the energy responses are
achieved within acceptable time, cost, and quality constraints. We
illustrate this simple relationship—and hence the goal of energy
efficiency tactics—in Figure 6.2.

Figure 6.2 Goal of energy efficiency tactics

Energy efficiency is, at its heart, about effectively utilizing resources.
We group the tactics into three broad categories: resource monitoring,



resource allocation, and resource adaptation (Figure 6.3). By “resource,”
we mean a computational device that consumes energy while providing
its functionality. This is analogous to the definition of a hardware
resource in Chapter 9, which includes CPUs, data stores, network
communications, and memory.

Figure 6.3 Energy efficiency tactics

Monitor Resources
You can’t manage what you can’t measure, and so we begin with
resource monitoring. The tactics for resource monitoring are metering,
static classification, and dynamic classification.

Metering. The metering tactic involves collecting data about the
energy consumption of computational resources via a sensor
infrastructure, in near real time. At the coarsest level, the energy
consumption of an entire data center can be measured from its power
meter. Individual servers or hard drives can be measured using
external tools such as amp meters or watt-hour meters, or using
built-in tools such as those provided with metered rack PDUs (power
distribution units), ASICs (application-specific integrated circuits),
and so forth. In battery-operated systems, the energy remaining in a



battery can be determined through a battery management system,
which is a component of modern batteries.
Static classification. Sometimes real-time data collection is
infeasible. For example, if an organization is using an off-premises
cloud, it might not have direct access to real-time energy data. Static
classification allows us to estimate energy consumption by
cataloging the computing resources used and their known energy
characteristics—the amount of energy used by a memory device per
fetch, for example. These characteristics are available as
benchmarks, or from manufacturers’ specifications.
Dynamic classification. In cases where a static model of a
computational resource is inadequate, a dynamic model might be
required. Unlike static models, dynamic models estimate energy
consumption based on knowledge of transient conditions such as
workload. The model could be a simple table lookup, a regression
model based on data collected during prior executions, or a
simulation.

Allocate Resources
Resource allocation means assigning resources to do work in a way that
is mindful of energy consumption. The tactics for resource allocation are
to reduce usage, discovery, and scheduling.

Reduce usage. Usage can be reduced at the device level by device-
specific activities such as reducing the refresh rate of a display or
darkening the background. Removing or deactivating resources
when demands no longer require them is another method for
decreasing energy consumption. This may involve spinning down
hard drives, turning off CPUs or servers, running CPUs at a slower
clock rate, or shutting down current to blocks of the processor that
are not in use. It might also take the form of moving VMs onto the
minimum number of physical servers (consolidation), combined
with shutting down idle computational resources. In mobile
applications, energy savings may be realized by sending part of the
computation to the cloud, assuming that the energy consumption of
communication is lower than the energy consumption of
computation.



Discovery. As we will see in Chapter 7, a discovery service matches
service requests (from clients) with service providers, supporting the
identification and remote invocation of those services. Traditionally
discovery services have made these matches based on a description
of the service request (typically an API). In the context of energy
efficiency, this request could be annotated with energy information,
allowing the requestor to choose a service provider (resource) based
on its (possibly dynamic) energy characteristics. For the cloud, this
energy information can be stored in a “green service directory”
populated by information from metering, static classification, or
dynamic classification (the resource monitoring tactics). For a
smartphone, the information could be obtained from an app store.
Currently such information is ad hoc at best, and typically
nonexistent in service APIs.
Schedule resources. Scheduling is the allocation of tasks to
computational resources. As we will see in Chapter 9, the schedule
resources tactic can increase performance. In the energy context, it
can be used to effectively manage energy usage, given task
constraints and respecting task priorities. Scheduling can be based
on data collected using one or more resource monitoring tactics.
Using an energy discovery service in a cloud context, or a controller
in a multi-core context, a computational task can dynamically switch
among computational resources, such as service providers, selecting
the ones that offer better energy efficiency or lower energy costs. For
example, one provider may be more lightly loaded than another,
allowing it to adapt its energy usage, perhaps using some of the
tactics described earlier, and consume less energy, on average, per
unit of work.

Reduce Resource Demand
This category of tactics is detailed in Chapter 9. Tactics in this category
—manage event arrival, limit event response, prioritize events (perhaps
letting low-priority events go unserviced), reduce computational
overhead, bound execution times, and increase resource usage efficiency
—all directly increase energy efficiency by doing less work. This is a
complementary tactic to reduce usage, in that the reduce usage tactic
assumes that the demand stays the same, whereas the reduce resource
demand tactics are a means of explicitly managing (and reducing) the
demand.



6.3 Tactics-Based Questionnaire for Energy
Efficiency

As described in Chapter 3, this tactics-based questionnaire is intended to
very quickly understand the degree to which an architecture employs
specific tactics to manage energy efficiency.

Based on the tactics described in Section 6.2, we can create a set of
tactics-inspired questions, as presented in Table 6.2. To gain an overview
of the architectural choices made to support energy efficiency, the
analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further
activities: investigation of documentation, analysis of code or other
artifacts, reverse engineering of code, and so forth.

Table 6.2 Tactics-Based Questionnaire for Energy Efficiency

Ta
cti
cs 
Gr
ou
p

Tactics Question S
u
p
p
or
te
d
? 
(
Y
/
N
)

R
i
s
k

Des
ign 
Dec
isio
ns 
and 
Loc
atio
n

Rat
ion
ale 
an
d 
Ass
um
pti
ons

Re
sou
rce 
Mo
nit
ori
ng

Does your system meter the use of energy?

That is, does the system collect data about the actual 
energy consumption of computational devices via a 
sensor infrastructure, in near real time?
Does the system statically classify devices and 
computational resources? That is, does the system have 
reference values to estimate the energy consumption of 
a device or resource (in cases where real-time metering 
is infeasible or too computationally expensive)?



Re
sou
rce 
Mo
nit
ori
ng

Does the system dynamically classify devices and 
computational resources? In cases where static 
classification is not accurate due to varying load or 
environmental conditions, does the system use 
dynamic models, based on prior data collected, to 
estimate the varying energy consumption of a device or 
resource at runtime?

Re
sou
rce 
All
oca
tio
n

Does the system reduce usage to scale down resource 
usage? That is, can the system deactivate resources 
when demands no longer require them, in an effort to 
save energy? This may involve spinning down hard 
drives, darkening displays, turning off CPUs or 
servers, running CPUs at a slower clock rate, or 
shutting down memory blocks of the processor that are 
not being used.

 

Does the system schedule resources to more 
effectively utilize energy, given task constraints and 
respecting task priorities, by switching computational 
resources, such as service providers, to the ones that 
offer better energy efficiency or lower energy costs? Is 
scheduling based on data collected (using one or more 
resource monitoring tactics) about the state of the 
system?

 

Does the system make use of a discovery service to 
match service requests to service providers? In the 
context of energy efficiency, a service request could be 
annotated with energy requirement information, 
allowing the requestor to choose a service provider 
based on its (possibly dynamic) energy characteristics.

Re
du
ce 
Re
sou
rce 
De
ma
nd

Do you consistently attempt to reduce resource 
demand? Here, you may insert the questions in this 
category from the Tactics-Based Questionnaire for 
Performance from Chapter 9.

 



6.4 Patterns
Some examples of patterns used for energy efficiency include sensor
fusion, kill abnormal tasks, and power monitor.

Sensor Fusion
Mobile apps and IoT systems often collect data from their environment
using multiple sensors. In this pattern, data from low-power sensors can
be used to infer whether data needs to be collected from higher-power
sensors. A common example in the mobile phone context is using
accelerometer data to assess if the user has moved and, if so, to update
the GPS location. This pattern assumes that accessing the low-power
sensor is much cheaper, in terms of energy consumption, than accessing
the higher-power sensor.

Benefits:

The obvious benefit of this pattern is the ability to minimize the
usage of more energy-intensive devices in an intelligent way rather
than, for example, just reducing the frequency of consulting the
more energy-intensive sensor.

Tradeoffs:

Consulting and comparing multiple sensors adds up-front
complexity.
The higher-energy-consuming sensor will provide higher-quality
data, albeit at the cost of increased power consumption. And it will
provide this data more quickly, since using the more energy-
intensive sensor alone takes less time than first consulting a
secondary sensor.
In cases where the inference frequently results in accessing the
higher-power sensor, this pattern could result in overall higher
energy usage.

Kill Abnormal Tasks
Mobile systems, because they are often executing apps of unknown
provenance, may end up unknowingly running some exceptionally



power-hungry apps. This pattern provides a way to monitor the energy
usage of such apps and to interrupt or kill energy-greedy operations. For
example, if an app is issuing an audible alert and vibrating the phone and
the user is not responding to these alerts, then after a predetermined
timeout period the task is killed.

Benefits:

This pattern provides a “fail-safe” option for managing the energy
consumption of apps with unknown energy properties.

Tradeoffs:

Any monitoring process adds a small amount of overhead to system
operations, which may affect performance and, to a small extent,
energy usage.
The usability of this pattern needs to be considered. Killing energy-
hungry tasks may be counter to the user’s intention.

Power Monitor
The power monitor pattern monitors and manages system devices,
minimizing the time during which they are active. This pattern attempts
to automatically disable devices and interfaces that are not being actively
used by the application. It has long been used within integrated circuits,
where blocks of the circuit are shut down when they are not being used,
in an effort to save energy.

Benefits:

This pattern can allow for intelligent savings of power at little to no
impact to the end user, assuming that the devices being shut down
are truly not needed.

Tradeoffs:

Once a device has been switched off, switching it on adds some
latency before it can respond, as compared with keeping it
continually running. And, in some cases, the startup may be more
energy expensive than a certain period of steady-state operation.



The power monitor needs to have knowledge of each device and its
energy consumption characteristics, which adds up-front
complexity to the system design.

6.5 For Further Reading
The first published set of energy tactics appeared in [Procaccianti 14].
These were, in part, the inspiration for the tactics presented here. The
2014 paper subsequently inspired [Paradis 21]. Many of the tactics
presented in this chapter owe a debt to these two papers.

For a good general introduction to energy usage in software
development—and what developers do not know—you should read
[Pang 16].

Several research papers have investigated the consequences of design
choices on energy consumption, such as [Kazman 18] and [Chowdhury
19].

A general discussion of the importance of creating “energy-aware”
software can be found in [Fonseca 19].

Energy patterns for mobile devices have been catalogued by [Cruz 19]
and [Schaarschmidt 20].

6.6 Discussion Questions
1. Write a set of concrete scenarios for energy efficiency using each of

the possible responses in the general scenario.

2. Create a concrete energy efficiency scenario for a smartphone app
(for example, a health monitoring app).

3. Create a concrete energy efficiency scenario for a cluster of data
servers in a data center. What are the important distinctions between
this scenario and the one you created for question 2?

4. Enumerate the energy efficiency techniques that are currently
employed by your laptop or smartphone.

5. What are the energy tradeoffs in your smartphone between using
Wi-Fi and the cellular network?

6. Calculate the amount of greenhouse gases in the form of carbon
dioxide that you, over an average lifetime, will exhale into the
atmosphere. How many Google searches does this equate to?



7. Suppose Google reduced its energy usage per search by 1 percent.
How much energy would that save per year?

8. How much energy did you use to answer question 7?



7
Integrability

Integration is a basic law of life; when we resist it, disintegration is the
natural result, both inside and outside of us. Thus we come to the concept

of harmony through integration.
—Norman Cousins

According to the Merriam-Webster dictionary, the adjective integrable
means “capable of being integrated.” We’ll give you a moment to catch
your breath and absorb that profound insight. But for practical software
systems, software architects need to be concerned about more than just
making separately developed components cooperate; they are also
concerned with the costs and technical risks of anticipated and (to
varying degrees) unanticipated future integration tasks. These risks may
be related to schedule, performance, or technology.

A general, abstract representation of the integration problem is that a
project needs to integrate a unit of software C, or a set of units C1, C2,
… Cn, into a system S. S might be a platform, into which we integrate
{Ci}, or it might be an existing system that already contains {C1, C2, …,
Cn} and our task is to design for, and analyze the costs and technical
risks of, integrating {Cn+1, … Cm}.

We assume we have control over S, but the {Ci} may be outside our
control—supplied by external vendors, for example, so our level of
understanding of each Ci may vary. The clearer our understanding of Ci,
the more capable the design and accurate the analysis will be.

Of course, S is not static but will evolve, and this evolution may
require reanalysis. Integrability (like other quality attributes such as
modifiability) is challenging because it is about planning for a future
when we have incomplete information at our disposal. Simply put, some
integrations will be simpler than others because they have been



anticipated and accommodated in the architecture, whereas others will
be more complex because they have not been.

Consider a simple analogy: To plug a North American plug (an
example of a Ci) into a North American socket (an interface provided by
the electrical system S), the “integration” is trivial. However, integrating
a North American plug into a British socket will require an adapter. And
the device with the North American plug may only run on 110-volt
power, requiring further adaptation before it will work in a British 220-
volt socket. Furthermore, if the component was designed to run at 60 Hz
and the system provides 70 Hz, the component may not operate as
intended even though it plugs in just fine. The architectural decisions
made by 102the creators of S and Ci—for example, to provide plug
adapters or voltage adapters, or to make the component operate
identically at different frequencies—will affect the cost and risk of the
integration.

7.1 Evaluating the Integrability of an Architecture
Integration difficulty—the costs and the technical risks—can be thought
of as a function of the size of and the “distance” between the interfaces
of {Ci} and S:

Size is the number of potential dependencies between {Ci} and S.

Distance is the difficulty of resolving differences at each of the
dependencies.
Dependencies are often measured syntactically. For example, we say

that module A is dependent on component B if A calls B, if A inherits
from B, or if A uses B. But while syntactic dependency is important, and
will continue to be important in the future, dependency can occur in
forms that are not detectable by any syntactic relation. Two components
might be coupled temporally or through resources because they share
and compete for a finite resource at runtime (e.g., memory, bandwidth,
CPU), share control of an external device, or have a timing dependency.
Or they might be coupled semantically because they share knowledge of
the same protocol, file format, unit of measure, metadata, or some other
aspect. The reason that these distinctions are important is that temporal
and semantic dependencies are not often well understood, explicitly
acknowledged, or properly documented. Missing or implicit knowledge
is always a risk for a large, long-lived project, and such knowledge gaps



will inevitably increase the costs and risks of integration and integration
testing.

Consider the trend toward services and microservices in computation
today. This approach is fundamentally about decoupling components to
reduce the number and distance of their dependencies. Services only
“know” each other via their published interfaces and, if that interface is
an appropriate abstraction, changes to one service have less chance to
ripple to other services in the system. The ever-increasing decoupling of
components is an industry-wide trend that has been going on for
decades. Service orientation, by itself, addresses (that is, reduces) only
the syntactic aspects of dependency; it does not address the temporal or
semantic aspects. Supposedly decoupled components that have detailed
knowledge of each other and make assumptions about each other are in
fact tightly coupled, and changing them in the future may well be costly.

For integrability purposes, “interfaces” must be understood as much
more than simply APIs. They must characterize all of the relevant
dependencies between the elements. When trying to understand
dependencies between components, the concept of “distance” is helpful.
As components interact, how aligned are they with respect to how they
cooperate to successfully carry out an interaction? Distance may mean:

Syntactic distance. The cooperating elements must agree on the
number and type of the data elements being shared. For example, if
one element sends an integer and the other expects a floating point,
or perhaps the bits within a data field are interpreted differently, this
discrepancy presents a syntactic distance that must be bridged.
Differences in data types are typically easy to observe and predict.
For example, such type mismatches could be caught by a compiler.
Differences in bit masks, while similar in nature, are often more
difficult to detect, and the analyst may need to rely on
documentation or scrutiny of the code to identify them.
Data semantic distance. The cooperating elements must agree on the
data semantics; that is, even if two elements share the same data
type, their values are interpreted differently. For example, if one data
value represents altitude in meters and the other represents altitude
in feet, this presents a data semantic distance that must be bridged.
This kind of mismatch is typically difficult to observe and predict,
although the analyst’s life is improved somewhat if the elements
involved employ metadata. Mismatches in data semantics may be



discovered by comparing interface documentation or metadata
descriptions, if available, or by checking the code, if available.
Behavioral semantic distance. The cooperating elements must agree
on behavior, particularly with respect to the states and modes of the
system. For example, a data element may be interpreted differently
in system startup, shutdown, or recovery mode. Such states and
modes may, in some cases, be explicitly captured in protocols. As
another example, Ci and Cj may make different assumptions
regarding control, such as each expecting the other to initiate
interactions.
Temporal distance. The cooperating elements must agree on
assumptions about time. Examples of temporal distance include
operating at different rates (e.g., one element emits values at a rate of
10 Hz and the other expects values at 60 Hz) or making different
timing assumptions (e.g., one element expects event A to follow
event B and the other element expects event A to follow event B
with no more than 50 ms latency). While this might be considered to
be a subcase of behavioral semantics, it is so important (and often
subtle) that we call it out explicitly.
Resource distance. The cooperating elements must agree on
assumptions about shared resources. Examples of resource distance
may involve devices (e.g., one element requires exclusive access to a
device, whereas another expects shared access) or computational
resources (e.g., one element needs 12 GB of memory to run
optimally and the other needs 10 GB, but the target CPU has only 16
GB of physical memory; or three elements are simultaneously
producing data at 3 Mbps each, but the communication channel
offers a peak capacity of just 5 Mbps). Again, this distance may be
seen as related to behavioral distance, but it should be consciously
analyzed.

Such details are not typically mentioned in a programming language
interface description. In the organizational context, however, these
unstated, implicit interfaces often add time and complexity to integration
tasks (and modification and debugging tasks). This is why interfaces are
architectural concerns, as we will discuss further in Chapter 15.

In essence, integrability is about discerning and bridging the distance
between the elements of each potential dependency. This is a form of



planning for modifiability. We will revisit this topic in Chapter 8.

7.2 General Scenario for Integrability
Table 7.1 presents the general scenario for integrability.

Table 7.1 General Scenario for Integrability

Porti
on of 
Scena
rio

Description Possible Values

Sourc
e

Where does the 
stimulus come from?

One or more of the following:

Mission/system stakeholder

Component marketplace

Component vendor



Porti
on of 
Scena
rio

Description Possible Values

Stimu
lus

What is the stimulus? 
That is, what kind of 
integration is being 
described?

One of the following:

Add new component

Integrate new version of existing 
component

Integrate existing components 
together in a new way

Artifa
ct

What parts of the 
system are involved in 
the integration?

One of the following:

Entire system

Specific set of components

Component metadata

Component configuration



Porti
on of 
Scena
rio

Description Possible Values

Envir
onme
nt

What state is the 
system in when the 
stimulus occurs?

One of the following:

Development

Integration

Deployment

Runtime



Porti
on of 
Scena
rio

Description Possible Values

Respo
nse

How will an 
“integrable” system 
respond to the 
stimulus?

One or more of the following:

Changes are {completed, integrated, 
tested, deployed}

Components in the new 
configuration are successfully and 
correctly (syntactically and 
semantically) exchanging 
information

Components in the new 
configuration are successfully 
collaborating

Components in the new 
configuration do not violate any 
resource limits



Porti
on of 
Scena
rio

Description Possible Values

Respo
nse 
meas
ure

How is the response 
measured?

One or more of the following:

Cost, in terms of one or more of:

Number of components changed

Percentage of code changed

Lines of code changed

Effort

Money

Calendar time

Effects on other quality attribute 
response measures (to capture 
allowable tradeoffs)

Figure 7.1 illustrates a sample integrability scenario constructed from
the general scenario: A new data filtering component has become



available in the component marketplace. The new component is
integrated into the system and deployed in 1 month, with no more than 1
person-month of effort.

Figure 7.1 Sample integrability scenario

7.3 Integrability Tactics
The goals for the integrability tactics are to reduce the costs and risks of
adding new components, reintegrating changed components, and
integrating sets of components together to fulfill evolutionary
requirements, as illustrated in Figure 7.2.

Figure 7.2 Goal of integrability tactics



The tactics achieve these goals either by reducing the number of
potential dependencies between components or by reducing the expected
distance between components. Figure 7.3 shows an overview of the
integrability tactics.

Figure 7.3 Integrability tactics

Limit Dependencies

Encapsulate
Encapsulation is the foundation upon which all other integrability tactics
are built. It is therefore seldom seen on its own, but its use is implicit in
the other tactics described here.

Encapsulation introduces an explicit interface to an element and
ensures that all access to the element passes through this interface.
Dependencies on the element internals are eliminated, because all
dependencies must flow through the interface. Encapsulation reduces the
probability that a change to one element will propagate to other
elements, by reducing either the number of dependencies or their
distances. These strengths are, however, reduced because the interface
limits the ways in which external responsibilities can interact with the
element (perhaps through a wrapper). In consequence, the external



responsibilities can only directly interact with the element through the
exposed interface (indirect interactions, such as dependence on quality
of service, will likely remain unchanged).

Encapsulation may also hide interfaces that are not relevant for a
particular integration task. An example is a library used by a service that
can be completely hidden from all consumers and changed without these
changes propagating to the consumers.

Encapsulation, then, can reduce the number of dependencies as well
as the syntactic, data, and behavior semantic distances between C and S.

Use an Intermediary
Intermediaries are used for breaking dependencies between a set of
components Ci or between Ci and the system S. Intermediaries can be
used to resolve different types of dependencies. For example,
intermediaries such as a publish–subscribe bus, shared data repository, or
dynamic service discovery all reduce dependencies between data
producers and consumers by removing any need for either to know the
identity of the other party. Other intermediaries, such as data
transformers and protocol translators, resolve forms of syntactic and data
semantic distance.

Determining the specific benefits of a particular intermediary requires
knowledge of what the intermediary actually does. An analyst needs to
determine whether the intermediary reduces the number of dependencies
between a component and the system and which dimensions of distance,
if any, it addresses.

Intermediaries are often introduced during integration to resolve
specific dependencies, but they can also be included in an architecture to
promote integrability with respect to anticipated scenarios. Including a
communication intermediary such as a publish–subscribe bus in an
architecture, and then restricting communication paths to and from
sensors to this bus, is an example of using an intermediary with the goal
of promoting integrability of sensors.

Restrict Communication Paths
This tactic restricts the set of elements with which a given element can
communicate. In practice, this tactic is implemented by restricting a
element’s visibility (when developers cannot see an interface, they
cannot employ it) and by authorization (i.e., restricting access to only



authorized elements). The restrict communication paths tactic is seen in
service-oriented architectures (SOAs), in which point-to-point requests
are discouraged in favor of forcing all requests to go through an
enterprise service bus so that routing and preprocessing can be done
consistently.

Adhere to Standards
Standardization in system implementations is a primary enabler of
integrability and interoperability, across both platforms and vendors.
Standards vary considerably in terms of the scope of what they prescribe.
Some focus on defining syntax and data semantics. Others include richer
descriptions, such as those describing protocols that include behavioral
and temporal semantics.

Standards similarly vary in their scope of applicability or adoption.
For example, standards published by widely recognized standards-
setting organizations such as the Institute of Electrical and Electronics
Engineers (IEEE), the International Organization for Standardization
(ISO), and the Object Management Group (OMG) are more likely to be
broadly adopted. Conventions that are local to an organization,
particularly if well documented and enforced, can provide similar
benefits as “local standards,” though with less expectation of benefits
when integrating components from outside the local standard’s sphere of
adoption.

Adopting a standard can be an effective integrability tactic, although
its effectiveness is limited to benefits based on the dimensions of
difference addressed in the standard and how likely it is that future
component suppliers will conform to the standard. Restricting
communication with a system S to require use of the standard often
reduces the number of potential dependencies. Depending on what is
defined in a standard, it may also address syntactic, data semantic,
behavioral semantic, and temporal dimensions of distance.

Abstract Common Services
Where two elements provide services that are similar but not quite the
same, it may be useful to hide both specific elements behind a common
abstraction for a more general service. This abstraction might be realized
as a common interface implemented by both, or it might involve an
intermediary that translates requests for the abstract service to more



specific requests for the elements hidden behind the abstraction. The
resulting encapsulation hides the details of the elements from other
components in the system. In terms of integrability, this means that
future components can be integrated with a single abstraction rather than
separately integrated with each of the specific elements.

When the abstract common services tactic is combined with an
intermediary (such as a wrapper or adapter), it can also normalize
syntactic and semantic variations among the specific elements. For
example, we see this when systems use many sensors of the same type
from different manufacturers, each with its own device drivers, accuracy,
or timing properties, but the architecture provides a common interface to
them. As another example, your browser may accommodate various
kinds of ad-blocking plug-ins, yet because of the plug-in interface the
browser itself can remain blissfully unaware of your choice.

Abstracting common services allows for consistency when handling
common infrastructure concerns (e.g., translations, security mechanisms,
and logging). When these features change, or when new versions of the
components implementing these features change, the changes can be
made in a smaller number of places. An abstract service is often paired
with an intermediary that may perform processing to hide syntactic and
data semantic differences among specific elements.

Adapt

Discover
A discovery service is a catalog of relevant addresses, which comes in
handy whenever there is a need to translate from one form of address to
another, whenever the target address may have been dynamically bound,
or when there are multiple targets. It is the mechanism by which
applications and services locate each other. A discovery service may be
used to enumerate variants of particular elements that are used in
different products.

Entries in a discovery service are there because they were registered.
This registration can happen statically, or it can happen dynamically
when a service is instantiated. Entries in the discovery service should be
de-registered when they are no longer relevant. Again, this can be done
statically, such as with a DNS server, or dynamically. Dynamic de-
registration can be handled by the discovery service itself performing



health checks on its entries, or it can be carried out by an external piece
of software that knows when a particular entry in the catalog is no longer
relevant.

A discovery service may include entries that are themselves discovery
services. Likewise, entries in a discovery service may have additional
attributes, which a query may reference. For example, a weather
discovery service may have an attribute of “cost of forecast”; you can
then ask a weather discovery service for a service that provides free
forecasts.

The discover tactic works by reducing the dependencies between
cooperating services, which should be written without knowledge of
each other. This enables flexibility in the binding between services, as
well as when that binding occurs.

Tailor Interface
Tailoring an interface is a tactic that adds capabilities to, or hides
capabilities in, an existing interface without changing the API or
implementation. Capabilities such as translation, buffering, and data
smoothing can be added to an interface without changing it. An example
of removing capabilities is hiding particular functions or parameters
from untrusted users. A common dynamic application of this tactic is
intercepting filters that add functionality such as data validation to help
prevent SQL injections or other attacks, or to translate between data
formats. Another example is using techniques from aspect-oriented
programming that weave in preprocessing and postprocessing
functionality at compile time.

The tailor interface tactic allows functionality that is needed by many
services to be added or hidden based on context and managed
independently. It also enables services with syntactic differences to
interoperate without modification to either service.

This tactic is typically applied during integration; however, designing
an architecture so that it facilitates interface tailoring can support
integrability. Interface tailoring is commonly used to resolve syntactic
and data semantic distance during integration. It can also be applied to
resolve some forms of behavioral semantic distance, though it can be
more complex to do (e.g., maintaining a complex state to accommodate
protocol differences) and is perhaps more accurately categorized as
introducing an intermediary.



Configure Behavior
The tactic of configuring behavior is used by software components that
are implemented to be configurable in prescribed ways that allow them
to more easily interact with a range of components. The behavior of a
component can be configured during the build phase (recompile with a
different flag), during system initialization (read a configuration file or
fetch data from a database), or during runtime (specify a protocol version
as part of your requests). A simple example is configuring a component
to support different versions of a standard on its interfaces. Ensuring that
multiple options are available increases the chances that the assumptions
of S and a future C will match.

Building configurable behavior into portions of S is an integrability
tactic that allows S to support a wider range of potential Cs. This tactic
can potentially address syntactic, data semantic, behavioral semantic,
and temporal dimensions of distance.

Coordinate

Orchestrate
Orchestrate is a tactic that uses a control mechanism to coordinate and
manage the invocation of particular services so that they can remain
unaware of each other.

Orchestration helps with the integration of a set of loosely coupled
reusable services to create a system that meets a new need. Integration
costs are reduced when orchestration is included in an architecture in a
way that supports the services that are likely to be integrated in the
future. This tactic allows future integration activities to focus on
integration with the orchestration mechanism instead of point-to-point
integration with multiple components.

Workflow engines commonly make use of the orchestrate tactic. A
workflow is a set of organized activities that order and coordinate
software components to complete a business process. It may consist of
other workflows, each of which may itself consist of aggregated
services. The workflow model encourages reuse and agility, leading to
more flexible business processes. Business processes can be managed
under a philosophy of business process management (BPM) that views
processes as a set of competitive assets to be managed. Complex



orchestration can be specified in a language such as BPEL (Business
Process Execution Language).

Orchestration works by reducing the number of dependencies between
a system S and new components {Ci}, and eliminating altogether the
explicit dependencies among the components {Ci}, by centralizing those
dependencies at the orchestration mechanism. It may also reduce
syntactic and data semantic distance if the orchestration mechanism is
used in conjunction with tactics such as adherence to standards.

Manage Resources
A resource manager is a specific form of intermediary that governs
access to computing resources; it is similar to the restrict communication
paths tactic. With this tactic, software components are not allowed to
directly access some computing resources (e.g., threads or blocks of
memory), but instead request those resources from a resource manager.
Resource managers are typically responsible for allocating resource
access across multiple components in a way that preserves some
invariants (e.g., avoiding resource exhaustion or concurrent use),
enforces some fair access policy, or both. Examples of resource
managers include operating systems, transaction mechanisms in
databases, use of thread pools in enterprise systems, and use of the
ARINC 653 standard for space and time partitioning in safety-critical
systems.

The manage resource tactic works by reducing the resource distance
between a system S and a component C, by clearly exposing the resource
requirements and managing their common use.

7.4 Tactics-Based Questionnaire for Integrability
Based on the tactics described in Section 7.3, we can create a set of
integrability tactics–inspired questions, as presented in Table 7.2. To gain
an overview of the architectural choices made to support integrability,
the analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further
activities: investigation of documentation, analysis of code or other
artifacts, reverse engineering of code, and so forth.

Table 7.2 Tactics-Based Questionnaire for Integrability
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Does the system encapsulate functionality of 
each element by introducing explicit interfaces 
and requiring that all access to the elements 
passes through these interfaces?
Does the system broadly use intermediaries 
for breaking dependencies between 
components—for example, removing a data 
producer’s knowledge of its consumers?

    

Does the system abstract common services, 
providing a general, abstract interface for 
similar services?

    

Does the system provide a means to restrict 
communication paths between components?

    

Does the system adhere to standards in terms 
of how components interact and share 
information with each other?

    

Ada
pt

Does the system provide the ability to 
statically (i.e., at compile time) tailor 
interfaces—that is, the ability to add or hide 
capabilities of a component’s interface without 
changing its API or implementation?

    

Does the system provide a discovery service, 
cataloguing and disseminating information 
about services?

    

 Does the system provide a means to configure 
the behavior of components at build, 
initialization, or runtime?
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Does the system include an orchestration 
mechanism that coordinates and manages the 
invocation of components so they can remain 
unaware of each other?

    

Does the system provide a resource manager 
that governs access to computing resources?

    

7.5 Patterns
The first three patterns are all centered on the tailor interface tactic, and
are described here as a group:

Wrappers. A wrapper is a form of encapsulation whereby some
component is encased within an alternative abstraction. A wrapper
is the only element allowed to use that component; every other
piece of software uses the component’s services by going through
the wrapper. The wrapper transforms the data or control
information for the component it wraps. For example, a component
may expect input using Imperial measures but find itself in a
system in which all of the other components produce metric
measures. Wrappers can:

Translate an element of a component interface into an
alternative element
Hide an element of a component interface
Preserve an element of a component’s base interface without
change

Bridges. A bridge translates some “requires” assumptions of one
arbitrary component to some “provides” assumptions of another
component. The key difference between a bridge and a wrapper is
that a bridge is independent of any particular component. Also, the
bridge must be explicitly invoked by some external agent—possibly



but not necessarily by one of the components the bridge spans. This
last point should convey the idea that bridges are usually transient
and that the specific translation is defined at the time of bridge
construction (e.g., bridge compile time). The significance of both of
these distinctions will be made clear in the discussion of mediators.

Bridges typically focus on a narrower range of interface
translations than do wrappers because bridges address specific
assumptions. The more assumptions a bridge tries to address, the
fewer components to which it applies.
Mediators. Mediators exhibit properties of both bridges and
wrappers. The major distinction between bridges and mediators, is
that mediators incorporate a planning function that results in
runtime determination of the translation, whereas bridges establish
this translation at bridge construction time.

A mediator is also similar to a wrapper insofar as it becomes an
explicit component in the system architecture. That is, semantically
primitive, often transient bridges can be thought of as incidental
repair mechanisms whose role in a design can remain implicit. In
contrast, mediators have sufficient semantic complexity and
runtime autonomy (persistence) to play a first-class role in a
software architecture.

Benefits:

All three patterns allow access to an element without forcing a
change to the element or its interface.

Tradeoffs:

Creating any of the patterns requires up-front development work.
All of the patterns will introduce some performance overhead while
accessing the element, although typically this overhead is small.

Service-Oriented Architecture Pattern
The service-oriented architecture (SOA) pattern describes a collection of
distributed components that provide and/or consume services. In an
SOA, service provider components and service consumer components
can use different implementation languages and platforms. Services are



largely standalone entities: Service providers and service consumers are
usually deployed independently, and often belong to different systems or
even different organizations. Components have interfaces that describe
the services they request from other components and the services they
provide. A service’s quality attributes can be specified and guaranteed
with a service level agreement (SLA), which may sometimes be legally
binding. Components perform their computations by requesting services
from one another. Communication among the services is typically
performed by using web services standards such as WSDL (Web
Services Description Language) or SOAP (Simple Object Access
Protocol).

The SOA pattern is related to the microservice architecture pattern
(see Chapter 5). Micro-service architectures are assumed to compose a
single system and be managed by a single organization, however,
whereas SOAs provide reusable components that are assumed to be
heterogeneous and managed by distinct organizations.

Benefits:

Services are designed to be used by a variety of clients, leading
them to be more generic. Many commercial organizations will
provide and market their service with the goal of broad adoption.
Services are independent. The only method for accessing a service
is through its interface and through messages over a network.
Consequently, a service and the rest of the system do not interact,
except through their interfaces.
Services can be implemented heterogeneously, using whatever
languages and technologies are most appropriate.

Tradeoffs:

SOAs, because of their heterogeneity and distinct ownership, come
with a great many interoperability features such as WSDL and
SOAP. This adds complexity and overhead.

Dynamic Discovery
Dynamic discovery applies the discovery tactic to enable the discovery
of service providers at runtime. Consequently, a runtime binding can



occur between a service consumer and a concrete service.
Use of a dynamic discovery capability sets the expectation that the

system will clearly advertise both the services available for integration
with future components and the minimal information that will be
available for each service. The specific information available will vary,
but typically comprises data that can be mechanically searched during
discovery and runtime integration (e.g., identifying a specific version of
an interface standard by string match).

Benefits:

This pattern allows for flexibility in binding services together into a
cooperating whole. For example, services may be chosen at startup
or runtime based on their pricing or availability.

Tradeoffs:

Dynamic discovery registration and de-registration must be
automated, and tools for this purpose must be acquired or
generated.

7.6 For Further Reading
Much of the material for this chapter was inspired by and drawn from
[Kazman 20a].

An in-depth discussion of the quality attribute of integrability can be
found in [Hentonnen 07].

[MacCormack 06] and [Mo 16] define and provide empirical evidence
for architecture-level coupling metrics, which can be useful in measuring
designs for integrability.

The book Design Patterns: Elements of Reusable Object-Oriented
Software [Gamma 94] defines and distinguishes the bridge, wrapper, and
adapter patterns.

7.7 Discussion Questions
1. Think about an integration that you have done in the past—perhaps

integrating a library or a framework into your code. Identify the
various “distances” that you had to deal with, as discussed in
Section 7.1. Which of these required the greatest effort to resolve?



2. Write a concrete integrability scenario for a system that you are
working on (perhaps an exploratory scenario for some component
that you are considering integrating).

3. Which of the integrability tactics do you think would be the easiest
to implement in practice, and why? Which would be the most
difficult, and why?

4. Many of the integrability tactics are similar to the modifiability
tactics. If you make your system highly modifiable, does that
automatically mean that it will be easy to integrate into another
context?

5. A standard use of SOA is to add a shopping cart feature to an e-
commerce site. Which commercially available SOA platforms
provide different shopping cart services? What are the attributes of
the shopping carts? Can these attributes be discovered at runtime?

6. Write a program that accesses the Google Play Store, via its API,
and returns a list of weather forecasting applications and their
attributes.

7. Sketch a design for a dynamic discovery service. Which types of
distances does this service help to mitigate?



8
Modifiability

It is not the strongest of the species that survive, nor the most intelligent,
but the one most responsive to change.

—Charles Darwin

Change happens.
Study after study shows that most of the cost of the typical software

system occurs after it has been initially released. If change is the only
constant in the universe, then software change is not only constant but
ubiquitous. Changes happen to add new features, to alter or even retire
old ones. Changes happen to fix defects, tighten security, or improve
performance. Changes happen to enhance the user’s experience.
Changes happen to embrace new technology, new platforms, new
protocols, new standards. Changes happen to make systems work
together, even if they were never designed to do so.

Modifiability is about change, and our interest in it is to lower the cost
and risk of making changes. To plan for modifiability, an architect has to
consider four questions:

What can change? A change can occur to any aspect of a system: the
functions that the system computes, the platform (the hardware,
operating system, middleware), the environment in which the system
operates (the systems with which it must interoperate, the protocols
it uses to communicate with the rest of the world), the qualities the
system exhibits (its performance, its reliability, and even its future
modifications), and its capacity (number of users supported, number
of simultaneous operations).
What is the likelihood of the change? One cannot plan a system for
all potential changes—the system would never be done or if it was
done it would be far too expensive and would likely suffer quality



attribute problems in other dimensions. Although anything might
change, the architect has to make the tough decisions about which
changes are likely, and hence which changes will be supported and
which will not.
When is the change made and who makes it? Most commonly in the
past, a change was made to source code. That is, a developer had to
make the change, which was tested and then deployed in a new
release. Now, however, the question of when a change is made is
intertwined with the question of who makes it. An end user changing
the screen saver is clearly making a change to one aspect of the
system. Equally clear, it is not in the same category as changing the
system so that it uses a different database management system.
Changes can be made to the implementation (by modifying the
source code), during compilation (using compile-time switches),
during the build (by choice of libraries), during configuration setup
(by a range of techniques, including parameter setting), or during
execution (by parameter settings, plug-ins, allocation to hardware,
and so forth). A change can also be made by a developer, an end
user, or a system administrator. Systems that learn and adapt supply
a whole different answer to the question of when a change is made
and “who” makes it—it is the system itself that is the agent for
change.
What is the cost of the change? Making a system more modifiable
involves two types of costs:

The cost of introducing the mechanism(s) to make the system
more modifiable
The cost of making the modification using the mechanism(s)

For example, the simplest mechanism for making a change is to wait
for a change request to come in, then change the source code to
accommodate the request. In such a case, the cost of introducing the
mechanism is zero (since there is no special mechanism); the cost of
exercising it is the cost of changing the source code and revalidating the
system.

Toward the other end of the spectrum is an application generator, such
as a user interface builder. The builder takes as input a description of the
designed UI produced through direct manipulation techniques and which
may then produce source code. The cost of introducing the mechanism is



the cost of acquiring the UI builder, which may be substantial. The cost
of using the mechanism is the cost of producing the input to feed the
builder (this cost can be either substantial or negligible), the cost of
running the builder (close to zero), and finally the cost of whatever
testing is performed on the result (usually much less than for hand-
coding).

Still further along the spectrum are software systems that discover
their environments, learn, and modify themselves to accommodate any
changes. For those systems, the cost of making the modification is zero,
but that ability was purchased along with implementing and testing the
learning mechanisms, which may have been quite costly.

For N similar modifications, a simplified justification for a change
mechanism is that

N * Cost of making change without the mechanism ≤
Cost of creating the mechanism + (N * cost of making the change using

the mechanism)

Here, N is the anticipated number of modifications that will use the
modifiability mechanism—but it is also a prediction. If fewer changes
than expected come in, then an expensive modification mechanism may
not be warranted. In addition, the cost of creating the modifiability
mechanism could be applied elsewhere (opportunity cost)—in adding
new functionality, in improving the performance, or even in non-
software investments such as hiring or training. Also, the equation does
not take time into account. It might be cheaper in the long run to build a
sophisticated change-handling mechanism, but you might not be able to
wait for its completion. However, if your code is modified frequently,
not introducing some architectural mechanism and simply piling change
on top of change typically leads to substantial technical debt. We address
the topic of architectural debt in Chapter 23.

Change is so prevalent in the life of software systems that special
names have been given to specific flavors of modifiability. Some of the
common ones are highlighted here:

Scalability is about accommodating more of something. In terms of
performance, scalability means adding more resources. Two kinds of
performance scalability are horizontal scalability and vertical
scalability. Horizontal scalability (scaling out) refers to adding more
resources to logical units, such as adding another server to a cluster



of servers. Vertical scalability (scaling-up) refers to adding more
resources to a physical unit, such as adding more memory to a single
computer. The problem that arises with either type of scaling is how
to effectively utilize the additional resources. Being effective means
that the additional resources result in a measurable improvement of
some system quality, did not require undue effort to add, and did not
unduly disrupt operations. In cloud-based environments, horizontal
scalability is called elasticity. Elasticity is a property that enables a
customer to add or remove virtual machines from the resource pool
(see Chapter 17 for further discussion of such environments).
Variability refers to the ability of a system and its supporting
artifacts, such as code, requirements, test plans, and documentation,
to support the production of a set of variants that differ from each
other in a preplanned fashion. Variability is an especially important
quality attribute in a product line, which is a family of systems that
are similar but vary in features and functions. If the engineering
assets associated with these systems can be shared among members
of the family, then the overall cost of the product line plummets.
This is achieved by introducing mechanisms that allow the artifacts
to be selected and/or adapt to usages in the different product contexts
that are within the product line’s scope. The goal of variability in a
software product line is to make it easy to build and maintain
products in that family over a period of time.
Portability refers to the ease with which software that was built to
run on one platform can be changed to run on a different platform.
Portability is achieved by minimizing platform dependencies in the
software, isolating dependencies to well-identified locations, and
writing the software to run on a “virtual machine” (for example, a
Java Virtual Machine) that encapsulates all the platform
dependencies. Scenarios describing portability deal with moving
software to a new platform by expending no more than a certain
level of effort or by counting the number of places in the software
that would have to change. Architectural approaches to dealing with
portability are intertwined with those for deployability, a topic
addressed in Chapter 5.
Location independence refers to the case where two pieces of
distributed software interact and the location of one or both of the
pieces is not known prior to runtime. Alternatively, the location of
these pieces may change during runtime. In distributed systems,



services are often deployed to arbitrary locations, and clients of
those services must discover their location dynamically. In addition,
services in a distributed system must often make their location
discoverable once they have been deployed to a location. Designing
the system for location independence means that the location will be
easy to modify with minimal impact on the rest of the system.

8.1 Modifiability General Scenario
From these considerations, we can construct the general scenario for
modifiability. Table 8.1 summarizes this scenario.

Table 8.1 General Scenario for Modifiability

Po
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on 
of 
Sc
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Description Possible Values

So
urc
e

The agent that causes a 
change to be made. Most are 
human actors, but the system 
might be one that learns or 
self-modifies, in which case 
the source is the system 
itself.

End user, developer, system 
administrator, product line owner, the 
system itself

Sti
mu
lus

The change that the system 
needs to accommodate. (For 
this categorization, we 
regard fixing a defect as a 
change, to something that 
presumably wasn’t working 
correctly.)

A directive to add/delete/modify 
functionality, or change a quality 
attribute, capacity, platform, or 
technology; a directive to add a new 
product to a product line; a directive 
to change the location of a service to 
another location
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Description Possible Values

Ar
tif
act
s

The artifacts that are 
modified. Specific 
components or modules, the 
system’s platform, its user 
interface, its environment, or 
another system with which it 
interoperates.

Code, data, interfaces, components, 
resources, test cases, configurations, 
documentation

En
vir
on
me
nt

The time or stage at which 
the change is made.

Runtime, compile time, build time, 
initiation time, design time

Re
sp
on
se

Make the change and 
incorporate it into the 
system.

One or more of the following:

Make modification

Test modification

Deploy modification

Self-modify
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The resources that were 
expended to make the 
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Cost in terms of:
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affected artifacts

Effort

Elapsed time

Money (direct outlay or 
opportunity cost)

Extent to which this modification 
affects other functions or quality 
attributes

New defects introduced

How long it took the system to 
adapt



Figure 8.1 illustrates a concrete modifiability scenario: A developer
wishes to change the user interface. This change will be made to the
code at design time, it will take less than three hours to make and test
the change, and no side effects will occur.

Figure 8.1 Sample concrete modifiability scenario

8.2 Tactics for Modifiability
Tactics to control modifiability have as their goal controlling the
complexity of making changes, as well as the time and cost to make
changes. Figure 8.2 shows this relationship.

Figure 8.2 Goal of modifiability tactics

To understand modifiability, we begin with some of the earliest and
most fundamental complexity measures of software design—coupling



and cohesion—which were first described in the 1960s.
Generally, a change that affects one module is easier and less

expensive than a change that affects more than one module. However, if
two modules’ responsibilities overlap in some way, then a single change
may well affect them both. We can quantify this overlap by measuring
the probability that a modification to one module will propagate to the
other. This relationship is called coupling, and high coupling is an
enemy of modifiability. Reducing the coupling between two modules
will decrease the expected cost of any modification that affects either
one. Tactics that reduce coupling are those that place intermediaries of
various sorts between the two otherwise highly coupled modules.

Cohesion measures how strongly the responsibilities of a module are
related. Informally, it measures the module’s “unity of purpose.” Unity
of purpose can be measured by the change scenarios that affect a
module. The cohesion of a module is the probability that a change
scenario that affects a responsibility will also affect other (different)
responsibilities. The higher the cohesion, the lower the probability that a
given change will affect multiple modules. High cohesion is good for
modifiability; low cohesion is bad for it. If module A has a low
cohesion, then cohesion can be improved by removing responsibilities
unaffected by anticipated changes.

A third characteristic that affects the cost and complexity of a change
is the size of a module. All other things being equal, larger modules are
more difficult and more costly to change, and are more prone to have
bugs.

Finally, we need to be concerned with the point in the software
development life cycle where a change occurs. If we ignore the cost of
preparing the architecture for the modification, we prefer that a change is
bound as late as possible. Changes can be successfully made (i.e.,
quickly and at low cost) late in the life cycle only if the architecture is
suitably prepared to accommodate them. Thus the fourth and final
parameter in a model of modifiability is binding time of modification. An
architecture that is suitably equipped to accommodate modifications late
in the life cycle will, on average, cost less than an architecture that
forces the same modification to be made earlier. The preparedness of the
system means that some costs will be zero, or very low, for
modifications that occur late in the life cycle.

Now we can understand tactics and their consequences as affecting
one or more of these parameters: reducing size, increasing cohesion,



reducing coupling, and deferring binding time. These tactics are shown
in Figure 8.3.

Figure 8.3 Modifiability tactics

Increase Cohesion
Several tactics involve redistributing responsibilities among modules.
This step is taken to reduce the likelihood that a single change will affect
multiple modules.

Split module. If the module being modified includes responsibilities
that are not cohesive, the modification costs will likely be high.
Refactoring the module into several more cohesive modules should
reduce the average cost of future changes. Splitting a module should
not simply consist of placing half of the lines of code into each
submodule; instead, it should sensibly and appropriately result in a
series of submodules that are cohesive on their own.



Redistribute responsibilities. If responsibilities A, A′, and A″ (all
similar responsibilities) are sprinkled across several distinct
modules, they should be placed together. This refactoring may
involve creating a new module, or it may involve moving
responsibilities to existing modules. One method for identifying
responsibilities to be moved is to hypothesize a set of likely changes
as scenarios. If the scenarios consistently affect just one part of a
module, then perhaps the other parts have separate responsibilities
and should be moved. Alternatively, if some scenarios require
modifications to multiple modules, then perhaps the responsibilities
affected should be grouped together into a new module.

Reduce Coupling
We now turn to tactics that reduce the coupling between modules. These
tactics overlap with the integrability tactics described in Chapter 7,
because reducing dependencies among independent components (for
integrability) is similar to reducing coupling among modules (for
modifiability).

Encapsulate. See the discussion in Chapter 7.
Use an intermediary. See the discussion in Chapter 7.
Abstract common services. See the discussion in Chapter 7.
Restrict dependencies. This tactic restricts which modules a given
module interacts with or depends on. In practice, this tactic is
implemented by restricting a module’s visibility (when developers
cannot see an interface, they cannot employ it) and by authorization
(restricting access to only authorized modules). The restrict
dependencies tactic is seen in layered architectures, in which a layer
is allowed to use only lower layers (sometimes only the next lower
layer), and with the use of wrappers, where external entities can see
(and hence depend on) only the wrapper, and not the internal
functionality that it wraps.

Defer Binding
Because the work of people is almost always more expensive error-prone
than the work of computers, letting computers handle a change as much
as possible will almost always reduce the cost of making that change. If



we design artifacts with built-in flexibility, then exercising that flexibility
is usually cheaper than hand-coding a specific change.

Parameters are perhaps the best-known mechanism for introducing
flexibility, and their use is reminiscent of the abstract common services
tactic. A parameterized function f(a, b) is more general than the similar
function f(a) that assumes b = 0. When we bind the value of some
parameters at a different phase in the life cycle than the one in which we
defined the parameters, we are deferring binding.

In general, the later in the life cycle we can bind values, the better.
However, putting the mechanisms in place to facilitate that late binding
tends to be more expensive—a well-known tradeoff. And so the equation
given earlier in the chapter comes into play. We want to bind as late as
possible, as long as the mechanism that allows it is cost-effective.

The following tactics can be used to bind values at compile time or
build time:

Component replacement (for example, in a build script or makefile)
Compile-time parameterization
Aspects

The following tactics are available to bind values at deployment,
startup time, or initialization time:

Configuration-time binding
Resource files

Tactics to bind values at runtime include the following:

Discovery (see Chapter 7)
Interpret parameters
Shared repositories
Polymorphism

Separating the building of a mechanism for modifiability from the use
of that mechanism to make a modification admits the possibility of
different stakeholders being involved—one stakeholder (usually a
developer) to provide the mechanism and another stakeholder (an
administrator or installer) to exercise it later, possibly in a completely



different life-cycle phase. Installing a mechanism so that someone else
can make a change to the system without having to change any code is
sometimes called externalizing the change.

8.3 Tactics-Based Questionnaire for Modifiability
Based on the tactics described in Section 8.2, we can create a set of
tactics-inspired questions, as presented in Table 8.2. To gain an overview
of the architectural choices made to support modifiability, the analyst
asks each question and records the answers in the table. The answers to
these questions can then be made the focus of further activities:
investigation of documentation, analysis of code or other artifacts,
reverse engineering of code, and so forth.

Table 8.2 Tactics-Based Questionnaire for Modifiability
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Do you make modules more cohesive by splitting 
the module? For example, if you have a large, 
complex module, can you split it into two (or 
more) more cohesive modules?
Do you make modules more cohesive by 
redistributing responsibilities? For example, if 
responsibilities in a module do not serve the same 
purpose, they should be placed in other modules.

Re
du
ce 
Co
upl
ing

Do you consistently encapsulate functionality? 
This typically involves isolating the functionality 
under scrutiny and introducing an explicit 
interface to it.
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Do you consistently use an intermediary to keep 
modules from being too tightly coupled? For 
example, if A calls concrete functionality C, you 
might introduce an abstraction B that mediates 
between A and C.
Do you restrict dependencies between modules 
in a systematic way? Or is any system module 
free to interact with any other module?

Re
du
ce 
Co
upl
ing

Do you abstract common services, in cases 
where you are providing several similar services? 
For example, this technique is often used when 
you want your system to be portable across 
operating systems, hardware, or other 
environmental variations.

De
fer 
Bi
ndi
ng

Does the system regularly defer binding of 
important functionality so that it can be replaced 
later in the life cycle? For example, are there 
plug-ins, add-ons, resource files, or configuration 
files that can extend the functionality of the 
system?

8.4 Patterns
Patterns for modifiability divide the system into modules in such a way
that the modules can be developed and evolved separately with little
interaction among them, thereby supporting portability, modifiability,
and reuse. There are probably more patterns designed to support
modifiability than for any other quality attribute. We present a few that
are among the most commonly used here.

Client-Server Pattern



The client-server pattern consists of a server providing services
simultaneously to multiple distributed clients. The most common
example is a web server providing information to multiple simultaneous
users of a website.

The interactions between a server and its clients follow this sequence:

Discovery:
Communication is initiated by a client, which uses a discovery
service to determine the location of the server.
The server responds to the client using an agreed-upon
protocol.

Interaction:
The client sends requests to the server.
The server processes the requests and responds.

Several points about this sequence are worth noting:

The server may have multiple instances if the number of clients
grows beyond the capacity of a single instance.
If the server is stateless with respect to the clients, each request from
a client is treated independently.
If the server maintains state with respect to the clients, then:

Each request must identify the client in some fashion.
The client should send an “end of session” message so that the
server can remove resources associated with that particular
client.
The server may time out if the client has not sent a request in a
specified time so that resources associated with the client can be
removed.

Benefits:

The connection between a server and its clients is established
dynamically. The server has no a priori knowledge of its clients—
that is, there is low coupling between the server and its clients.



There is no coupling among the clients.
The number of clients can easily scale and is constrained only by
the capacity of the server. The server functionality can also scale if
its capacity is exceeded.
Clients and servers can evolve independently.
Common services can be shared among multiple clients.
The interaction with a user is isolated to the client. This factor has
resulted in the development of specialized languages and tools for
managing the user interface.

Tradeoffs:

This pattern is implemented such that communication occurs over a
network, perhaps even the Internet. Thus messages may be delayed
by network congestion, leading to degradation (or at least
unpredictability) of performance.
For clients that communicate with servers over a network shared by
other applications, special provisions must be made for achieving
security (especially confidentiality) and maintaining integrity.

Plug-in (Microkernel) Pattern
The plug-in pattern has two types of elements—elements that provide a
core set of functionality and specialized variants (called plug-ins) that
add functionality to the core via a fixed set of interfaces. The two types
are typically bound together at build time or later.

Examples of usage include the following cases:

The core functionality may be a stripped-down operating system
(the microkernel) that provides the mechanisms needed to
implement operating system services, such as low-level address
space management, thread management, and interprocess
communication (IPC). The plug-ins provide the actual operating
system functionality, such as device drivers, task management, and
I/O request management.
The core functionality is a product providing services to its users.
The plug-ins provide portability, such as operating system
compatibility or supporting library compatibility. The plug-ins can



also provide additional functionality not included in the core
product. In addition, they can act as adapters to enable integration
with external systems (see Chapter 7).

Benefits:

Plug-ins provide a controlled mechanism to extend a core product
and make it useful in a variety of contexts.
The plug-ins can be developed by different teams or organizations
than the developers of the microkernel. This allows for the
development of two different markets: for the core product and for
the plug-ins.
The plug-ins can evolve independently from the microkernel. Since
they interact through fixed interfaces, as long as the interfaces do
not change, the two types of elements are not otherwise coupled.

Tradeoffs:

Because plug-ins can be developed by different organizations, it is
easier to introduce security vulnerabilities and privacy threats.

Layers Pattern
The layers pattern divides the system in such a way that the modules can
be developed and evolved separately with little interaction among the
parts, which supports portability, modifiability, and reuse. To achieve this
separation of concerns, the layers pattern divides the software into units
called layers. Each layer is a grouping of modules that offers a cohesive
set of services. The allowed-to-use relationship among the layers is
subject to a key constraint: The relations must be unidirectional.

Layers completely partition a set of software, and each partition is
exposed through a public interface. The layers are created to interact
according to a strict ordering relation. If (A, B) is in this relation, we say
that the software assigned to layer A is allowed to use any of the public
facilities provided by layer B. (In a vertically arranged representation of
layers, which is almost ubiquitous, A will be drawn higher than B.) In
some cases, modules in one layer are required to directly use modules in
a nonadjacent lower layer, although normally only next-lower-layer uses
are allowed. This case of software in a higher layer using modules in a



nonadjacent lower layer is called layer bridging. Upward usages are not
allowed in this pattern.

Benefits:

Because a layer is constrained to use only lower layers, software in
lower layers can be changed (as long as the interface does not
change) without affecting the upper layers.
Lower-level layers may be reused across different applications. For
example, suppose a certain layer allows portability across operating
systems. This layer would be useful in any system that must run on
multiple, different operating systems. The lowest layers are often
provided by commercial software—an operating system, for
example, or network communications software.
Because the allowed-to-use relations are constrained, the number of
interfaces that any team must understand is reduced.

Tradeoffs:

If the layering is not designed correctly, it may actually get in the
way, by not providing the lower-level abstractions that
programmers at the higher levels need.
Layering often adds a performance penalty to a system. If a call is
made from a function in the top-most layer, it may have to traverse
many lower layers before being executed by the hardware.
If many instances of layer bridging occur, the system may not meet
its portability and modifiability goals, which strict layering helps to
achieve.

Publish-Subscribe Pattern
Publish-subscribe is an architectural pattern in which components
communicate primarily through asynchronous messages, sometimes
referred to as “events” or “topics.” The publishers have no knowledge of
the subscribers, and subscribers are only aware of message types.
Systems using the publish-subscribe pattern rely on implicit invocation;
that is, the component publishing a message does not directly invoke any
other component. Components publish messages on one or more events
or topics, and other components register an interest in the publication. At



runtime, when a message is published, the publish–subscribe (or event)
bus notifies all of the elements that registered an interest in the event or
topic. In this way, the message publication causes an implicit invocation
of (methods in) other components. The result is loose coupling between
the publishers and the subscribers.

The publish-subscribe pattern has three types of elements:

Publisher component. Sends (publishes) messages.
Subscriber component. Subscribes to and then receives messages.
Event bus. Manages subscriptions and message dispatch as part of
the runtime infrastructure.

Benefits:
Publishers and subscribers are independent and hence loosely
coupled. Adding or changing subscribers requires only registering
for an event and causes no changes to the publisher.
System behavior can be easily changed by changing the event or
topic of a message being published, and consequently which
subscribers might receive and act on this message. This seemingly
small change can have large consequences, as features may be
turned on or off by adding or suppressing messages.
Events can be logged easily to allow for record and playback and
thereby reproduce error conditions that can be challenging to
recreate manually.

Tradeoffs:
Some implementations of the publish-subscribe pattern can
negatively impact performance (latency). Use of a distributed
coordination mechanism will ameliorate the performance
degradation.
In some cases, a component cannot be sure how long it will take to
receive a published message. In general, system performance and
resource management are more difficult to reason about in publish-
subscribe systems.
Use of this pattern can negatively impact the determinism produced
by synchronous systems. The order in which methods are invoked,
as a result of an event, can vary in some implementations.



Use of the publish-subscribe pattern can negatively impact
testability. Seemingly small changes in the event bus—such as a
change in which components are associated with which events—can
have a wide impact on system behavior and quality of service.
Some publish-subscribe implementations limit the mechanisms
available to flexibly implement security (integrity). Since publishers
do not know the identity of their subscribers, and vice versa, end-to-
end encryption is limited. Messages from a publisher to the event
bus can be uniquely encrypted, and messages from the event bus to a
subscriber can be uniquely encrypted; however, any end-to-end
encrypted communication requires all publishers and subscribers
involved to share the same key.

8.5 For Further Reading
Serious students of software engineering and its history should read two
early papers about designing for modifiability. The first is Edsger
Dijkstra’s 1968 paper about the T.H.E. operating system, which is the
first paper that talks about designing systems to use layers, and the
modifiability benefits that this approach brings [Dijkstra 68]. The second
is David Parnas’s 1972 paper that introduced the concept of information
hiding. [Parnas 72] suggested defining modules not by their
functionality, but by their ability to internalize the effects of changes.

More patterns for modifiability are given in Software Systems
Architecture: Working With Stakeholders Using Viewpoints and
Perspectives [Woods 11].

The Decoupling Level metric [Mo 16] is an architecture-level
coupling metric that can give insights into how globally coupled an
architecture is. This information can be used to track coupling over time,
as an early warning indicator of technical debt.

A fully automated way of detecting modularity violations—and other
kinds of design flaws—has been described in [Mo 19]. The detected
violations can be used as a guide to refactoring, so as to increase
cohesion and reduce coupling.

Software modules intended for use in a software product line are often
imbued with variation mechanisms that allow them to be quickly
modified to serve in different applications—that is, in different members
of the product line. Lists of variation mechanisms for components in a
product line can be found in the works by Bachmann and Clements



[Bachmann 05], Jacobson and colleagues [Jacobson 97], and
Anastasopoulos and colleagues [Anastasopoulos 00].

The layers pattern comes in many forms and variations—“layers with
a sidecar,” for example. Section 2.4 of [DSA2] sorts them all out, and
discusses why (surprisingly for an architectural pattern invented more
than a half-century ago) most layer diagrams for software that you’ve
ever seen are very ambiguous. If you don’t want to spring for the book,
then [Bachmann 00a] is a good substitute.

8.6 Discussion Questions
1. Modifiability comes in many flavors and is known by many names;

we discussed a few in the opening section of this chapter, but that
discussion only scratches the surface. Find one of the IEEE or ISO
standards dealing with quality attributes, and compile a list of
quality attributes that refer to some form of modifiability. Discuss
the differences.

2. In the list you compiled for question 1, which tactics and patterns
are especially helpful for each?

3. For each quality attribute that you discovered as a result of question
2, write a modifiability scenario that expresses it.

4. In many laundromats, washing machines and dryers accept coins
but do not give change. Instead, separate machines dispense change.
In an average laundromat, there are six or eight washers and dryers
for every change machine. What modifiability tactics do you see at
work in this arrangement? What can you say about availability?

5. For the laundromat in question 4, describe the specific form of
modifiability (using a modifiability scenario) that seems to be the
aim of arranging the machines as described.

6. A wrapper, introduced in Chapter 7, is a common architectural
pattern to aid modifiability. Which modifiability tactics does a
wrapper embody?

7. Other common architectural patterns that can increase a system’s
modifiability include blackboard, broker, peer-to-peer, model-view-
controller, and reflection. Discuss each in terms of the modifiability
tactics it packages.



8. Once an intermediary has been introduced into an architecture,
some modules may attempt to circumvent it, either inadvertently
(because they are not aware of the intermediary) or intentionally
(for performance, for convenience, or out of habit). Discuss some
architectural means to prevent an undesirable circumvention of an
intermediary. Discuss some non-architectural means as well.

9. The abstract common services tactic is intended to reduce coupling
but might also reduce cohesion. Discuss.

10. Discuss the proposition that the client-server pattern is the
microkernel pattern with runtime binding.



9
Performance

An ounce of performance is worth pounds of promises.
—Mae West

It’s about time.
Performance, that is: It’s about time and the software system’s ability

to meet timing requirements. The melancholy fact is that operations on
computers take time. Computations take time on the order of thousands
of nanoseconds, disk access (whether solid state or rotating) takes time
on the order of tens of milliseconds, and network access takes time
ranging from hundreds of microseconds within the same data center to
upward of 100 milliseconds for intercontinental messages. Time must be
taken into consideration when designing your system for performance.

When events occur—interrupts, messages, requests from users or
other systems, or clock events marking the passage of time—the system,
or some element of the system, must respond to them in time.
Characterizing the events that can occur (and when they can occur) and
the system’s or element’s time-based response to those events is the
essence of discussing performance.

Web-based system events come in the form of requests from users
(numbering in the tens or tens of millions) via their clients such as web
browsers. Services get events from other services. In a control system
for an internal combustion engine, events come from the operator’s
controls and the passage of time; the system must control both the firing
of the ignition when a cylinder is in the correct position and the mixture
of the fuel to maximize power and efficiency and minimize pollution.

For a web-based system, a database-centric system, or a system
processing input signals from its environment, the desired response
might be expressed as the number of requests that can be processed in a
unit of time. For the engine control system, the response might be the



allowable variation in the firing time. In each case, the pattern of events
arriving and the pattern of responses can be characterized, and this
characterization forms the language with which to construct performance
scenarios.

For much of the history of software engineering, which began when
computers were slow and expensive and the tasks to perform dwarfed
the ability to do them, performance has been the driving factor in
architecture. As such, it has frequently compromised the achievement of
all other qualities. As the price/performance ratio of hardware continues
to plummet and the cost of developing software continues to rise, other
qualities have emerged as important competitors to performance.

But performance remains of fundamental importance. There are still
(and will likely always be) important problems that we know how to
solve with computers, but that we can’t solve fast enough to be useful.

All systems have performance requirements, even if they are not
expressed. For example, a word processing tool may not have any
explicit performance requirement, but no doubt you would agree that
waiting an hour (or a minute, or a second) before seeing a typed
character appear on the screen is unacceptable. Performance continues to
be a fundamentally important quality attribute for all software.

Performance is often linked to scalability—that is, increasing your
system’s capacity for work, while still performing well. They’re
certainly linked, although technically scalability is making your system
easy to change in a particular way, and so is a kind of modifiability, as
discussed in Chapter 8. In addition, scalability of services in the cloud is
discussed explicitly in Chapter 17.

Often, performance improvement happens after you have constructed
a version of your system and found its performance to be inadequate.
You can anticipate this by architecting your system with performance in
mind. For example, if you have designed the system with a scalable
resource pool, and you subsequently determine that this pool is a
bottleneck (from your instrumented data), then you can easily increase
the size of the pool. If not, your options are limited—and mostly all bad
—and they may involve considerable rework.

It is not useful to spend a lot of your time optimizing a portion of the
system that is responsible for only a small percentage of the total time.
Instrumenting the system by logging timing information will help you
determine where the actual time is spent and allow you to focus on
improving the performance of critical portions of the system.



9.1 Performance General Scenario
A performance scenario begins with an event arriving at the system.
Responding correctly to the event requires resources (including time) to
be consumed. While this is happening, the system may be
simultaneously servicing other events.

Concurrency
Concurrency is one of the more important concepts that an architect
must understand and one of the least-taught topics in computer
science courses. Concurrency refers to operations occurring in
parallel. For example, suppose there is a thread that executes the
statements

x = 1;
x++;

and another thread that executes the same statements. What is the
value of x after both threads have executed those statements? It
could be either 2 or 3. I leave it to you to figure out how the value 3
could occur—or should I say I interleave it to you?

Concurrency occurs anytime your system creates a new thread,
because threads, by definition, are independent sequences of
control. Multitasking on your system is supported by independent
threads. Multiple users are simultaneously supported on your
system through the use of threads. Concurrency also occurs
anytime your system is executing on more than one processor,
whether those processors are packaged separately or as multi-core
processors. In addition, you must consider concurrency when you
use parallel algorithms, parallelizing infrastructures such as map-
reduce, or NoSQL databases, or when you use one of a variety of
concurrent scheduling algorithms. In other words, concurrency is a
tool available to you in many ways.

Concurrency, when you have multiple CPUs or wait states that
can exploit it, is a good thing. Allowing operations to occur in
parallel improves performance, because delays introduced in one
thread allow the processor to progress on another thread. But



because of the interleaving phenomenon just described (referred to
as a race condition), concurrency must also be carefully managed.

As our example shows, race conditions can occur when two
threads of control are present and there is shared state. The
management of concurrency frequently comes down to managing
how state is shared. One technique for preventing race conditions is
to use locks to enforce sequential access to state. Another
technique is to partition the state based on the thread executing a
portion of code. That is, if we have two instances of x, x is not
shared by the two threads and no race condition will occur.

Race conditions are among the hardest types of bugs to discover;
the occurrence of the bug is sporadic and depends on (possibly
minute) differences in timing. I once had a race condition in an
operating system that I could not track down. I put a test in the
code so that the next time the race condition occurred, a debugging
process was triggered. It took more than a year for the bug to recur
so that the cause could be determined.

Do not let the difficulties associated with concurrency dissuade
you from utilizing this very important technique. Just use it with
the knowledge that you must carefully identify critical sections in
your code and ensure (or take actions to ensure) that race
conditions will not occur in those sections.

—LB

Table 9.1 summarizes the general scenario for performance.

Table 9.1 Performance General Scenario
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The system will process the stimulus. Processing 
the stimulus will take time. This time may be 
required for computation, or it may be required 
because processing is blocked by contention for 

System 
returns a 
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shared resources. Requests can fail to be satisfied 
because the system is overloaded or because of a 
failure somewhere in the processing chain.

response

System 
returns an 
error

System 
generates no 
response

System 
ignores the 
request if 
overloaded

System 
changes the 
mode or 
level of 
service

System 
services a 
higher-
priority 
event
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System 
consumes 
resources

Re
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on
se 
m
ea
su
re

Timing measures can include latency or 
throughput. Systems with timing deadlines can 
also measure jitter of response and ability to meet 
the deadlines. Measuring how many of the 
requests go unsatisfied is also a type of measure, 
as is how much of a computing resource (e.g., a 
CPU, memory, thread pool, buffer) is utilized.

The 
(maximum, 
minimum, 
mean, 
median) 
time the 
response 
takes 
(latency)

The number 
or 
percentage 
of satisfied 
requests 
over some 
time interval 
(throughput) 
or set of 
events 
received
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of 
Sc
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Description Possible Values

The number 
or 
percentage 
of requests 
that go 
unsatisfied

The 
variation in 
response 
time (jitter)

Usage level 
of a 
computing 
resource

Figure 9.1 gives an example concrete performance scenario: Five
hundred users initiate 2,000 requests in a 30-second interval, under
normal operations. The system processes all of the requests with an
average latency of two seconds.



Figure 9.1 Sample performance scenario

9.2 Tactics for Performance
The goal of performance tactics is to generate a response to events
arriving at the system under some time-based or resource-based
constraint. The event can be a single event or a stream, and is the trigger
to perform computation. Performance tactics control the time or
resources used to generate a response, as illustrated in Figure 9.2.

Figure 9.2 The goal of performance tactics

At any instant during the period after an event arrives but before the
system’s response to it is complete, either the system is working to
respond to that event or the processing is blocked for some reason. This
leads to the two basic contributors to the response time and resource



usage: processing time (when the system is working to respond and
actively consuming resources) and blocked time (when the system is
unable to respond).

Processing time and resource usage. Processing consumes
resources, which takes time. Events are handled by the execution of
one or more components, whose time expended is a resource.
Hardware resources include CPU, data stores, network
communication bandwidth, and memory. Software resources include
entities defined by the system under design. For example, thread
pools and buffers must be managed and access to critical sections
must be made sequential.
For example, suppose a message is generated by one component. It
might be placed on the network, after which it arrives at another
component. It is then placed in a buffer; transformed in some
fashion; processed according to some algorithm; transformed for
output; placed in an output buffer; and sent onward to some
component, another system, or some actor. Each of these steps
contributes to the overall latency and resource consumption of the
processing of that event.
Different resources behave differently as their utilization approaches
their capacity—that is, as they become saturated. For example, as a
CPU becomes more heavily loaded, performance usually degrades
fairly steadily. In contrast, when you start to run out of memory, at
some point the page swapping becomes overwhelming and
performance crashes suddenly.
Blocked time and resource contention. A computation can be
blocked because of contention for some needed resource, because
the resource is unavailable, or because the computation depends on
the result of other computations that are not yet available:

Contention for resources. Many resources can be used by only a
single client at a time. As a consequence, other clients must wait
for access to those resources. Figure 9.2 shows events arriving at
the system. These events may be in a single stream or in multiple
streams. Multiple streams vying for the same resource or
different events in the same stream vying for the same resource
contribute to latency. The more contention for a resource that
occurs, the more latency grows.



Availability of resources. Even in the absence of contention,
computation cannot proceed if a resource is unavailable.
Unavailability may be caused by the resource being offline or by
failure of the component for any reason.
Dependency on other computation. A computation may have to
wait because it must synchronize with the results of another
computation or because it is waiting for the results of a
computation that it initiated. If a component calls another
component and must wait for that component to respond, the
time can be significant when the called component is at the other
end of a network (as opposed to co-located on the same
processor), or when the called component is heavily loaded.

Whatever the cause, you must identify places in the architecture where
resource limitations might cause a significant contribution to overall
latency.

With this background, we turn to our tactic categories. We can either
reduce demand for resources (control resource demand) or make the
resources we have available handle the demand more effectively
(manage resources).

Control Resource Demand
One way to increase performance is to carefully manage the demand for
resources. This can be done by reducing the number of events processed
or by limiting the rate at which the system responds to events. In
addition, a number of techniques can be applied to ensure that the
resources that you do have are applied judiciously:

Manage work requests. One way to reduce work is to reduce the
number of requests coming into the system to do work. Ways to do
that include the following:

Manage event arrival. A common way to manage event arrivals
from an external system is to put in place a service level
agreement (SLA) that specifies the maximum event arrival rate
that you are willing to support. An SLA is an agreement of the
form “The system or component will process X events arriving
per unit time with a response time of Y.” This agreement
constrains both the system—it must provide that response—and



the client—if it makes more than X requests per unit time, the
response is not guaranteed. Thus, from the client’s perspective, if
it needs more than X requests per unit time to be serviced, it
must utilize multiple instances of the element processing the
requests. SLAs are one method for managing scalability for
Internet-based systems.
Manage sampling rate. In cases where the system cannot
maintain adequate response levels, you can reduce the sampling
frequency of the stimuli—for example, the rate at which data is
received from a sensor or the number of video frames per second
that you process. Of course, the price paid here is the fidelity of
the video stream or the information you gather from the sensor
data. Nevertheless, this is a viable strategy if the result is “good
enough.” Such an approach is commonly used in signal
processing systems where, for example, different codices can be
chosen with different sampling rates and data formats. This
design choice seeks to maintain predictable levels of latency;
you must decide whether having a lower fidelity but consistent
stream of data is preferable to having erratic latency. Some
systems manage the sampling rate dynamically in response to
latency measures or accuracy needs.

Limit event response. When discrete events arrive at the system (or
component) too rapidly to be processed, then the events must be
queued until they can be processed, or they are simply discarded.
You may choose to process events only up to a set maximum rate,
thereby ensuring predictable processing for the events that are
actually processed. This tactic could be triggered by a queue size or
processor utilization exceeding some warning level. Alternatively, it
could be triggered by an event rate that violates an SLA. If you
adopt this tactic and it is unacceptable to lose any events, then you
must ensure that your queues are large enough to handle the worst
case. Conversely, if you choose to drop events, then you need to
choose a policy: Do you log the dropped events or simply ignore
them? Do you notify other systems, users, or administrators?
Prioritize events. If not all events are equally important, you can
impose a priority scheme that ranks events according to how
important it is to service them. If insufficient resources are available
to service them when they arise, low-priority events might be
ignored. Ignoring events consumes minimal resources (including



time), thereby increasing performance compared to a system that
services all events all the time. For example, a building management
system may raise a variety of alarms. Life-threatening alarms such as
a fire alarm should be given higher priority than informational
alarms such as a room being too cold.
Reduce computational overhead. For events that do make it into the
system, the following approaches can be implemented to reduce the
amount of work involved in handling each event:

Reduce indirection. The use of intermediaries (so important for
modifiability, as we saw in Chapter 8) increases the
computational overhead in processing an event stream, so
removing them improves latency. This is a classic
modifiability/performance tradeoff. Separation of concerns—
another linchpin of modifiability—can also increase the
processing overhead necessary to service an event if it leads to
an event being serviced by a chain of components rather than a
single component. You may be able to realize the best of both
worlds, however: Clever code optimization can let you program
using the intermediaries and interfaces that support
encapsulation (and thus keep the modifiability) but reduce, or in
some cases eliminate, the costly indirection at runtime.
Similarly, some brokers allow for direct communication between
a client and a server (after initially establishing the relationship
via the broker), thereby eliminating the indirection step for all
subsequent requests.
Co-locate communicating resources. Context switching and
intercomponent communication costs add up, especially when
the components are on different nodes on a network. One
strategy for reducing computational overhead is to co-locate
resources. Co-location may mean hosting cooperating
components on the same processor to avoid the time delay of
network communication; it may mean putting the resources in
the same runtime software component to avoid even the expense
of a subroutine call; or it may mean placing tiers of a multi-tier
architecture on the same rack in the data center.
Periodic cleaning. A special case when reducing computational
overhead is to perform a periodic cleanup of resources that have
become inefficient. For example, hash tables and virtual memory



maps may require recalculation and reinitialization. Many
system administrators and even regular computer users do a
periodic reboot of their systems for exactly this reason.

Bound execution times. You can place a limit on how much
execution time is used to respond to an event. For iterative, data-
dependent algorithms, limiting the number of iterations is a method
for bounding execution times. The cost, however, is usually a less
accurate computation. If you adopt this tactic, you will need to
assess its effect on accuracy and see if the result is “good enough.”
This resource management tactic is frequently paired with the
manage sampling rate tactic.
Increase efficiency of resource usage. Improving the efficiency of
algorithms used in critical areas can decrease latency and improve
throughput and resource consumption. This is, for some
programmers, their primary performance tactic. If the system does
not perform adequately, they try to “tune up” their processing logic.
As you can see, this approach is actually just one of many tactics
available.

Manage Resources
Even if the demand for resources is not controllable, the management of
these resources can be. Sometimes one resource can be traded for
another. For example, intermediate data may be kept in a cache or it may
be regenerated depending on which resources are more critical: time,
space, or network bandwidth. Here are some resource management
tactics:

Increase resources. Faster processors, additional processors,
additional memory, and faster networks all have the potential to
improve performance. Cost is usually a consideration in the choice
of resources, but increasing the resources is, in many cases, the
cheapest way to get immediate improvement.
Introduce concurrency. If requests can be processed in parallel, the
blocked time can be reduced. Concurrency can be introduced by
processing different streams of events on different threads or by
creating additional threads to process different sets of activities.
(Once concurrency has been introduced, you can choose scheduling



policies to achieve the goals you find desirable using the schedule
resources tactic.)
Maintain multiple copies of computations. This tactic reduces the
contention that would occur if all requests for service were allocated
to a single instance. Replicated services in a microservice
architecture or replicated web servers in a server pool are examples
of replicas of computation. A load balancer is a piece of software
that assigns new work to one of the available duplicate servers;
criteria for assignment vary but can be as simple as a round-robin
scheme or assigning the next request to the least busy server. The
load balancer pattern is discussed in detail in Section 9.4.
Maintain multiple copies of data. Two common examples of
maintaining multiple copies of data are data replication and caching.
Data replication involves keeping separate copies of the data to
reduce the contention from multiple simultaneous accesses. Because
the data being replicated is usually a copy of existing data, keeping
the copies consistent and synchronized becomes a responsibility that
the system must assume. Caching also involves keeping copies of
data (with one set of data possibly being a subset of the other), but
on storage with different access speeds. The different access speeds
may be due to memory speed versus secondary storage speed, or the
speed of local versus remote communication. Another responsibility
with caching is choosing the data to be cached. Some caches operate
by merely keeping copies of whatever was recently requested, but it
is also possible to predict users’ future requests based on patterns of
behavior, and to begin the calculations or prefetches necessary to
comply with those requests before the user has made them.
Bound queue sizes. This tactic controls the maximum number of
queued arrivals and consequently the resources used to process the
arrivals. If you adopt this tactic, you need to establish a policy for
what happens when the queues overflow and decide if not
responding to lost events is acceptable. This tactic is frequently
paired with the limit event response tactic.
Schedule resources. Whenever contention for a resource occurs, the
resource must be scheduled. Processors are scheduled, buffers are
scheduled, and networks are scheduled. Your concern as an architect
is to understand the characteristics of each resource’s use and choose



the scheduling strategy that is compatible with it. (See the
“Scheduling Policies” sidebar.)

Figure 9.3 summarizes the tactics for performance.

Figure 9.3 Performance tactics

Scheduling Policies
A scheduling policy conceptually has two parts: a priority
assignment and dispatching. All scheduling policies assign
priorities. In some cases, the assignment is as simple as first-
in/first-out (or FIFO). In other cases, it can be tied to the deadline
of the request or its semantic importance. Competing criteria for
scheduling include optimal resource usage, request importance,
minimizing the number of resources used, minimizing latency,
maximizing throughput, preventing starvation to ensure fairness,
and so forth. You need to be aware of these possibly conflicting
criteria and the effect that the chosen scheduling policy has on the
system’s ability to meet them.



A high-priority event stream can be dispatched—assigned to a
resource—only if that resource is available. Sometimes this
depends on preempting the current user of the resource. Possible
preemption options are as follows: can occur anytime, can occur
only at specific preemption points, or executing processes cannot
be preempted. Some common scheduling policies are these:

First-in/first-out. FIFO queues treat all requests for resources as
equals and satisfy them in turn. One possibility with a FIFO
queue is that one request will be stuck behind another one that
takes a long time to generate a response. As long as all of the
requests are truly equal, this is not a problem—but if some
requests are of higher priority than others, it creates a
challenge.
Fixed-priority scheduling. Fixed-priority scheduling assigns
each source of resource requests a particular priority and
assigns the resources in that priority order. This strategy
ensures better service for higher-priority requests. However, it
also admits the possibility that a lower-priority, but still
important request might take an arbitrarily long time to be
serviced, because it is stuck behind a series of higher-priority
requests. Three common prioritization strategies are these:

Semantic importance. Semantic importance assigns a
priority statically according to some domain characteristic
of the task that generates it.
Deadline monotonic. Deadline monotonic is a static
priority assignment that assigns a higher priority to streams
with shorter deadlines. This scheduling policy is used when
scheduling streams of different priorities with real-time
deadlines.
Rate monotonic. Rate monotonic is a static priority
assignment for periodic streams that assigns a higher
priority to streams with shorter periods. This scheduling
policy is a special case of deadline monotonic, but is better
known and more likely to be supported by the operating
system.

Dynamic priority scheduling. Strategies include these:



Round-robin. The round-robin scheduling strategy orders
the requests and then, at every assignment possibility,
assigns the resource to the next request in that order. A
special form of round-robin is a cyclic executive, where
possible assignment times are designated at fixed time
intervals.
Earliest-deadline-first. Earliest-deadline-first assigns
priorities based on the pending requests with the earliest
deadline.
Least-slack-first. This strategy assigns the highest priority
to the job having the least “slack time,” which is the
difference between the execution time remaining and the
time to the job’s deadline.

For a single processor and processes that are preemptible, both
the earliest-deadline-first and least-slack-first scheduling
strategies are optimal choices. That is, if the set of processes
can be scheduled so that all deadlines are met, then these
strategies will be able to schedule that set successfully.
Static scheduling. A cyclic executive schedule is a scheduling
strategy in which the preemption points and the sequence of
assignment to the resource are determined offline. The runtime
overhead of a scheduler is thereby obviated.

Performance Tactics on the Road
Tactics are generic design principles. To exercise this point, think
about the design of the systems of roads and highways where you
live. Traffic engineers employ a bunch of design “tricks” to
optimize the performance of these complex systems, where
performance has a number of measures, such as throughput (how
many cars per hour get from the suburbs to the football stadium),
average-case latency (how long it takes, on average, to get from
your house to downtown), and worst-case latency (how long does it
take an emergency vehicle to get you to the hospital). What are
these tricks? None other than our good old buddies, tactics.



Let’s consider some examples:

Manage event rate. Lights on highway entrance ramps let cars
onto the highway only at set intervals, and cars must wait
(queue) on the ramp for their turn.
Prioritize events. Ambulances and police, with their lights and
sirens going, have higher priority than ordinary citizens; some
highways have high-occupancy vehicle (HOV) lanes, giving
priority to vehicles with two or more occupants.
Maintain multiple copies. Add traffic lanes to existing roads or
build parallel routes.

In addition, users of the system can employ their own tricks:

Increase resources. Buy a Ferrari, for example. All other things
being equal, being the fastest car with a competent driver on an
open road will get you to your destination more quickly.
Increase efficiency. Find a new route that is quicker and/or
shorter than your current route.
Reduce computational overhead. Drive closer to the car in front
of you, or load more people into the same vehicle (i.e.,
carpooling).

What is the point of this discussion? To paraphrase Gertrude
Stein: Performance is performance is performance. Engineers have
been analyzing and optimizing complex systems for centuries,
trying to improve their performance, and they have been
employing the same design strategies to do so. So you should feel
some comfort in knowing that when you try to improve the
performance of your computer-based system, you are applying
tactics that have been thoroughly “road tested.”

—RK

9.3 Tactics-Based Questionnaire for Performance
Based on the tactics described in Section 9.2, we can create a set of
tactics-inspired questions, as presented in Table 9.2. To gain an overview



of the architectural choices made to support performance, the analyst
asks each question and records the answers in the table. The answers to
these questions can then be made the focus of further activities:
investigation of documentation, analysis of code or other artifacts,
reverse engineering of code, and so forth.

Table 9.2 Tactics-Based Questionnaire for Performance

Tactics 
Group

Tactics Question Sup
port
ed?
(Y/
N)

R
i
s
k

Design 
Decision
s and 
Locatio
n

Rationa
le and 
Assum
ptions

Contro
l 
Resour
ce 
Deman
d

Do you have in place a service level 
agreement (SLA) that specifies the 
maximum event arrival rate that you 
are willing to support?
Can you manage the rate at which 
you sample events arriving at the 
system?
How will the system limit the 
response (amount of processing) for 
an event?
Have you defined different categories 
of requests and defined priorities for 
each category?
Can you reduce computational 
overhead by, for example, co-
location, cleaning up resources, or 
reducing indirection?
Can you bound the execution time of 
your algorithms?
Can you increase computational 
efficiency through your choice of 
algorithms?

Manag
e 

Can you allocate more resources to 
the system or its components?



Tactics 
Group

Tactics Question Sup
port
ed?
(Y/
N)

R
i
s
k

Design 
Decision
s and 
Locatio
n

Rationa
le and 
Assum
ptions

Resour
ces

Are you employing concurrency? If 
requests can be processed in parallel, 
the blocked time can be reduced.
Can computations be replicated on 
different processors?

Manag
e 
Resour
ces

Can data be cached (to maintain a 
local copy that can be quickly 
accessed) or replicated (to reduce 
contention)?
Can queue sizes be bounded to place 
an upper bound on the resources 
needed to process stimuli?
Have you ensured that the scheduling 
strategies you are using are 
appropriate for your performance 
concerns?

9.4 Patterns for Performance
Performance concerns have plagued software engineers for decades, so it
comes as no surprise that a rich set of patterns have been developed for
managing various aspects of performance. In this section, we sample just
a few of them. Note that some patterns serve multiple purposes. For
example, we saw the circuit breaker pattern in Chapter 4, where it was
identified as an availability pattern, but it also has a benefit for
performance—since it reduces the time that you wait around for
nonresponsive services.

The patterns we will introduce here are service mesh, load balancer,
throttling, and map-reduce.

Service Mesh



The service mesh pattern is used in microservice architectures. The main
feature of the mesh is a sidecar—a kind of proxy that accompanies each
microservice, and which provides broadly useful capabilities to address
application-independent concerns such as interservice communications,
monitoring, and security. A sidecar executes alongside each microservice
and handles all interservice communication and coordination. (As we
will describe in Chapter 16, these elements are often packaged into
pods.) They are deployed together, which cuts down on the latency due
to networking, thereby boosting performance.

This approach allows developers to separate the functionality—the
core business logic—of the microservice from the implementation,
management, and maintenance of cross-cutting concerns, such as
authentication and authorization, service discovery, load balancing,
encryption, and observability.

Benefits:

Software to manage cross-cutting concerns can be purchased off the
shelf or implemented and maintained by a specialist team that does
nothing else, allowing developers of the business logic to focus on
only that concern.
A service mesh enforces the deployment of utility functions onto
the same processor as the services that use those utility functions.
This cuts down on communication time between the service and its
utilities since the communication does not need to use network
messages.
The service mesh can be configured to make communication
dependent on context, thus simplifying functions such as the canary
and A/B testing described in Chapter 3.

Tradeoffs:

The sidecars introduce more executing processes, and each of these
will consume some processing power, adding to the system’s
overhead.
A sidecar typically includes multiple functions, and not all of these
will be needed in every service or every invocation of a service.



Load Balancer
A load balancer is a kind of intermediary that handles messages
originating from some set of clients and determines which instance of a
service should respond to those messages. The key to this pattern is that
the load balancer serves as a single point of contact for incoming
messages—for example, a single IP address—but it then farms out
requests to a pool of providers (servers or services) that can respond to
the request. In this way, the load can be balanced across the pool of
providers. The load balancer implements some form of the schedule
resources tactic. The scheduling algorithm may be very simple, such as
round-robin, or it may take into account the load on each provider, or the
number of requests awaiting service at each provider.

Benefits:

Any failure of a server is invisible to clients (assuming there are
still some remaining processing resources).
By sharing the load among several providers, latency can be kept
lower and more predictable for clients.
It is relatively simple to add more resources (more servers, faster
servers) to the pool available to the load balancer, and no client
needs to be aware of this.

Tradeoffs:

The load balancing algorithm must be very fast; otherwise, it may
itself contribute to performance problems.
The load balancer is a potential bottleneck or single point of failure,
so it is itself often replicated (and even load balanced).

Load balancers are discussed in much more detail in Chapter 17.

Throttling
The throttling pattern is a packaging of the manage work requests tactic.
It is used to limit access to some important resource or service. In this
pattern, there is typically an intermediary—a throttler—that monitors
(requests to) the service and determines whether an incoming request can
be serviced.



Benefits:

By throttling incoming requests, you can gracefully handle
variations in demand. In doing so, services never become
overloaded; they can be kept in a performance “sweet spot” where
they handle requests efficiently.

Tradeoffs:

The throttling logic must be very fast; otherwise, it may itself
contribute to performance problems.
If client demand regularly exceeds capacity, buffers will need to be
very large, or there is a risk of losing requests.
This pattern can be difficult to add to an existing system where
clients and servers are tightly coupled.

Map-Reduce
The map-reduce pattern efficiently performs a distributed and parallel
sort of a large data set and provides a simple means for the programmer
to specify the analysis to be done. Unlike our other patterns for
performance, which are independent of any application, the map-reduce
pattern is specifically designed to bring high performance to a specific
kind of recurring problem: sort and analyze a large data set. This
problem is experienced by any organization dealing with massive data—
think Google, Facebook, Yahoo, and Netflix—and all of these
organizations do in fact use map-reduce.

The map-reduce pattern has three parts:

First is a specialized infrastructure that takes care of allocating
software to the hardware nodes in a massively parallel computing
environment and handles sorting the data as needed. A node may be
a virtual machine, a standalone processor, or a core in a multi-core
chip.
Second and third are two programmer-coded functions called,
predictably enough, map and reduce.

The map function takes as input a key and a data set. It uses the
key to hash the data into a set of buckets. For example, if our
data set consisted of playing cards, the key could be the suit. The



map function is also used to filter the data—that is, determine
whether a data record is to be involved in further processing or
discarded. Continuing our card example, we might choose to
discard jokers or letter cards (A, K, Q, J), keeping only numeric
cards, and we could then map each card into a bucket, based on
its suit. The performance of the map phase of the map-reduce
pattern is enhanced by having multiple map instances, each of
which processes a different portion of the data set. An input file
is divided into portions, and a number of map instances are
created to process each portion. Continuing our example, let’s
consider that we have 1 billion playing cards, not just a single
deck. Since each card can be examined in isolation, the map
process can be carried out by tens or hundreds of thousands of
instances in parallel, with no need for communication among
them. Once all of the input data has been mapped, these buckets
are shuffled by the map-reduce infrastructure, and then assigned
to new processing nodes (possibly reusing the nodes used in the
map phase) for the reduce phase. For example, all of the clubs
could be assigned to one cluster of instances, all of the diamonds
to another cluster, and so forth.
All of the heavy analysis takes place in the reduce function. The
number of reduce instances corresponds to the number of
buckets output by the map function. The reduce phase does some
programmer-specified analysis and then emits the results of that
analysis. For example, we could count the number of clubs,
diamonds, hearts, and spades, or we could sum the numeric
values of all of the cards in each bucket. The output set is almost
always much smaller than the input sets—hence the name
“reduce.”

The map instances are stateless and do not communicate with each
other. The only communication between the map instances and the
reduce instances is the data emitted from the map instances as <key,
value> pairs.

Benefits:

Extremely large, unsorted data sets can be efficiently analyzed
through the exploitation of parallelism.



A failure of any instance has only a small impact on the processing,
since map-reduce typically breaks large input datasets into many
smaller ones for processing, allocating each to its own instance.

Tradeoffs:

If you do not have large data sets, the overhead incurred by the
map-reduce pattern is not justified.
If you cannot divide your data set into similarly sized subsets, the
advantages of parallelism are lost.
Operations that require multiple reduces are complex to orchestrate.

9.5 For Further Reading
Performance is the subject of a rich body of literature. Here are some
books we recommend as general overviews of performance:

Foundations of Software and System Performance Engineering:
Process, Performance Modeling, Requirements, Testing, Scalability,
and Practice [Bondi 14]. This book provides a comprehensive
overview of performance engineering, ranging from technical
practices to organizational ones.
Software Performance and Scalability: A Quantitative Approach
[Liu 09]. This book covers performance geared toward enterprise
applications, with an emphasis on queueing theory and
measurement.
Performance Solutions: A Practical Guide to Creating Responsive,
Scalable Software [Smith 01]. This book covers designing with
performance in mind, with emphasis on building (and populating
with real data) practical predictive performance models.

To get an overview of some of the many patterns for performance, see
Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems [Douglass 99] and Pattern-Oriented Software Architecture
Volume 3: Patterns for Resource Management [Kircher 03]. In addition,
Microsoft has published a catalog of performance and scalability
patterns for cloud-based applications: https://docs.microsoft.com/en-
us/azure/architecture/patterns/category/performance-scalability.

https://docs.microsoft.com/en-us/azure/architecture/patterns/category/performance-scalability


9.6 Discussion Questions
1. “Every system has real-time performance constraints.” Discuss. Can

you provide a counterexample?

2. Write a concrete performance scenario that describes the average
on-time flight arrival performance for an airline.

3. Write several performance scenarios for an online auction site.
Think about whether your major concern is worst-case latency,
average-case latency, throughput, or some other response measure.
Which tactics would you use to satisfy your scenarios?

4. Web-based systems often use proxy servers, which are the first
element of the system to receive a request from a client (such as
your browser). Proxy servers are able to serve up often-requested
web pages, such as a company’s home page, without bothering the
real application servers that carry out transactions. A system may
include many proxy servers, and they are often located
geographically close to large user communities, to decrease
response time for routine requests. What performance tactics do you
see at work here?

5. A fundamental difference between interaction mechanisms is
whether interaction is synchronous or asynchronous. Discuss the
advantages and disadvantages of each with respect to each of these
performance responses: latency, deadline, throughput, jitter, miss
rate, data loss, or any other required performance-related response
you may be used to.

6. Find physical-world (that is, non-software) examples of applying
each of the manage resources tactics. For example, suppose you
were managing a brick-and-mortar big-box retail store. How would
you get people through the checkout lines faster using these tactics?

7. User interface frameworks typically are single-threaded. Why is
this? What are the performance implications? (Hint: Think about
race conditions.)



10
Safety

Giles: Well, for god’s sake, be careful. . . . If you should be hurt or killed,
shall take it amiss.

Willow: Well, we try not to get killed. That’s part of our whole mission
statement: Don’t get killed.

Giles: Good.
—Buffy the Vampire Slayer, Season 3, episode “Anne”

“Don’t kill anyone” should be a part of every software architect’s
mission statement.

The thought that software could kill people or cause injury or damage
used to belong solidly in the realm of computers-run-amok science
fiction; think of HAL politely declining to open the pod bay doors in the
now-aged but still-classic movie 2001: A Space Odyssey, leaving Dave
stranded in space.

Sadly, it didn’t stay there. As software has come to control more and
more of the devices in our lives, software safety has become a critical
concern.

The thought that software (strings of 0s and 1s) can kill or maim or
destroy is still an unnatural notion. To be fair, it’s not the 0s and 1s that
wreak havoc—at least, not directly. It’s what they’re connected to.
Software, and the computer in which it runs, has to be connected to the
outside world in some way before it can do damage. That’s the good
news. The bad news is that the good news isn’t all that good. Software is
connected to the outside world, always. If your program has no effect
whatsoever that is observable outside of itself, it probably serves no
purpose.

In 2009, an employee of the Shushenskaya hydroelectric power
station used a cybernetwork to remotely—and accidentally—activate an
unused turbine with a few errant keystrokes. The offline turbine created



a “water hammer” that flooded and then destroyed the plant and killed
dozens of workers.

There are many other equally notorious examples. The Therac 25 fatal
radiation overdose, the Ariane 5 explosion, and a hundred lesser-known
accidents all caused harm because the computer was connected to the
environment: a turbine, an X-ray emitter, and a rocket’s steering
controls, in the examples just cited. The infamous Stuxnet virus was
created to intentionally cause damage and destruction. In these cases,
software commanded some hardware in its environment to take a
disastrous action, and the hardware obeyed. Actuators are devices that
connect hardware to software; they are the bridge between the world of
0s and 1s and the world of motion and control. Send a digital value to an
actuator (or write a bit string in the hardware register corresponding to
the actuator) and that value is translated to some mechanical action, for
better or worse.

But connecting to the outside world doesn’t have to mean robot arms
or uranium centrifuges or missile launchers: Connecting to a simple
display screen is enough. Sometimes all the computer has to do is send
erroneous information to its human operators. In September 1983, a
Soviet satellite sent data to its ground system computer, which
interpreted that data as a missile launched from the United States aimed
at Moscow. Seconds later, the computer reported a second missile in
flight. Soon, a third, then a fourth, and then a fifth appeared. Soviet
Strategic Rocket Forces Lieutenant Colonel Stanislav Yevgrafovich
Petrov made the astonishing decision to ignore the computers, believing
them to be in error. He thought it extremely unlikely that the United
States would have fired just a few missiles, thereby inviting mass
retaliatory destruction. He decided to wait it out, to see if the missiles
were real—that is, to see if his country’s capital city was going to be
incinerated. As we know, it wasn’t. The Soviet system had mistaken a
rare sunlight condition for missiles in flight. You and/or your parents
may well owe your life to Lieutenant Colonel Petrov.

Of course, the humans don’t always get it right when the computers
get it wrong. On the stormy night of June 1, 2009, Air France flight 447
from Rio de Janeiro to Paris plummeted into the Atlantic Ocean, killing
all 228 people on board, despite the aircraft’s engines and flight controls
working perfectly. The Airbus A-330’s flight recorders, which were not
recovered until May 2011, showed that the pilots never knew that the
aircraft had entered a high-altitude stall. The sensors that measure
airspeed had become clogged with ice and therefore unreliable; the



autopilot disengaged as a result. The human pilots thought the aircraft
was going too fast (and in danger of structural failure) when in fact it
was going too slow (and falling). During the entire 3-minute-plus plunge
from 35,000 feet, the pilots kept trying to pull the nose up and throttle
back to lower the speed, when all they needed to do was lower the nose
to increase the speed and resume normal flying. Very probably adding to
the confusion was the way the A-330’s stall warning system worked.
When the system detects a stall, it emits a loud audible alarm. The
software deactivates the stall warning when it “thinks” that the angle of
attack measurements are invalid. This can occur when the airspeed
readings are very low. That is what happened with AF447: Its forward
speed dropped below 60 knots, and the angle of attack was extremely
high. As a consequence of this flight control software rule, the stall
warning stopped and started several times. Worse, it came on whenever
the pilot pushed forward on the stick (increasing the airspeed and taking
the readings into the “valid” range, but still in stall) and then stopped
when he pulled back. That is, doing the right thing resulted in exactly the
wrong feedback, and vice versa. Was this an unsafe system, or a safe
system operated unsafely? Ultimately questions like this are decided in
the courts.

As this edition was going to publication, Boeing was still reeling from
the grounding of its 737 MAX aircraft after two crashes that appear to
have been caused at least partly by a piece of software called MCAS,
which pushed the aircraft’s nose down at the wrong time. Faulty sensors
seem to be involved here, too, as well as a baffling design decision that
caused the software to rely on only one sensor to determine its behavior,
instead of the two available on the aircraft. It also appears that Boeing
never tested the software in question under the conditions of a sensor
failure. The company did provide a way to disable the system in flight,
although remembering how to do that when your airplane is doing its
best to kill you may be asking a lot of a flight crew—especially when
they were never made aware of the existence of the MCAS in the first
place. In total, 346 people died in the two crashes of the 737 MAX.

Okay, enough scary stories. Let’s talk about the principles behind
them as they affect software and architectures.

Safety is concerned with a system’s ability to avoid straying into
states that cause or lead to damage, injury, or loss of life to actors in its
environment. These unsafe states can be caused by a variety of factors:

Omissions (the failure of an event to occur).



Commission (the spurious occurrence of an undesirable event). The
event could be acceptable in some system states but undesirable in
others.
Timing. Early (the occurrence of an event before the time required)
or late (the occurrence of an event after the time required) timing can
both be potentially problematic.
Problems with system values. These come in two categories: Coarse
incorrect values are incorrect but detectable, whereas subtle incorrect
values are typically undetectable.
Sequence omission and commission. In a sequence of events, either
an event is missing (omission) or an unexpected event is inserted
(commission).
Out of sequence. A sequence of events arrive, but not in the
prescribed order.

Safety is also concerned with detecting and recovering from these
unsafe states to prevent or at least minimize resulting harm.

Any portion of the system can lead to an unsafe state: The software,
the hardware portions, or the environment can behave in an
unanticipated, unsafe fashion. Once an unsafe state is detected, the
potential system responses are similar to those enumerated for
availability (in Chapter 4). The unsafe state should be recognized and the
system should be made through

Continuing operations after recovering from the unsafe state or
placing the system in a safe mode, or
Shutting down (fail safe), or
Transitioning to a state requiring manual operation (e.g., manual
steering if the power steering in a car fails).

In addition, the unsafe state should be reported immediately and/or
logged.

Architecting for safety begins by identifying the system’s safety-
critical functions—those functions that could cause harm as just outlined
—using techniques such as failure mode and effects analysis (FMEA;
also called hazard analysis) and fault tree analysis (FTA). FTA is a top-
down deductive approach to identify failures that could result in moving



the system into an unsafe state. Once the failures have been identified,
the architect needs to design mechanisms to detect and mitigate the fault
(and ultimately the hazard).

The techniques outlined in this chapter are intended to discover
possible hazards that could result from the system’s operation and help
in creating strategies to cope with these hazards.

10.1 Safety General Scenario
With this background, we can construct the general scenario for safety,
shown in Table 10.1.

Table 10.1 Safety General Scenario
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So
ur
ce

A data source (a sensor, a software component that 
calculates a value, a communication channel), a time 
source (clock), or a user action

Specific 
instances of a:

Sensor

Software 
component

Communic
ation 
channel

Device 
(such as a 
clock)

Sti
m
ul
us

An omission, commission, or occurrence of 
incorrect data or timing

A specific 
instance of an 
omission:

A value 
never 
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arrives.

A function 
is never 
performed.

A specific 
instance of a 
commission:

A function 
is 
performed 
incorrectly.

A device 
produces a 
spurious 
event.

A device 
produces 
incorrect 
data.
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A specific 
instance of 
incorrect data:

A sensor 
reports 
incorrect 
data.

A software 
component 
produces 
incorrect 
results.

A timing 
failure:

Data 
arrives too 
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late or too 
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A 
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early or at 
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Events 
occur in 
the wrong 
order.
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System operating mode

Normal 
operation

Degraded 
operation

Manual 
operation

Recovery 
mode

Ar
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The artifact is some part of the system. Safety-critical 
portions of the 
system

Re
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se

The system does not leave a safe state space, or the 
system returns to a safe state space, or the system 
continues to operate in a degraded mode to prevent 
(further) injury or damage or to minimize injury or 
damage. Users are advised of the unsafe state or the 
prevention of entry into the unsafe state. The event 
is logged.

Recognize the 
unsafe state 
and one or 
more of the 
following:
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Avoid the 
unsafe 
state

Recover

Continue 
in 
degraded 
or safe 
mode

Shut down

Switch to 
manual 
operation

Switch to a 
backup 
system

Notify 
appropriat
e entities 
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(people or 
systems)

Log the 
unsafe 
state (and 
the 
response to 
it)
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m
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Time to return to safe state space; damage or injury 
caused

One or more of 
the following:

Amount or 
percentage 
of entries 
into unsafe 
states that 
are 
avoided

Amount or 
percentage
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which the 



Po
rti
on 
of
Sc
en
ar
io

Description Possible 
Values

system can 
(automatic
ally) 
recover

Change in 
risk 
exposure: 
size(loss) * 
prob(loss)

Percentage 
of time the 
system can 
recover

Amount of 
time the 
system is 
in a 
degraded 
or safe 
mode

Amount or 
percentage 
of time the 
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system is 
shut down

Elapsed 
time to 
enter and 
recover 
(from 
manual 
operation, 
from a safe 
or 
degraded 
mode)

A sample safety scenario is: A sensor in the patient monitoring system
fails to report a life-critical value after 100 ms. The failure is logged, a
warning light is illuminated on the console, and a backup (lower-
fidelity) sensor is engaged. The system monitors the patient using the
backup sensor after no more than 300 ms. Figure 10.1 illustrates this
scenario.



Figure 10.1 Sample concrete safety scenario

10.2 Tactics for Safety
Safety tactics may be broadly categorized as unsafe state avoidance,
unsafe state detection, or unsafe state remediation. Figure 10.2 shows the
goal of the set of safety tactics.

Figure 10.2 Goal of safety tactics

A logical precondition to avoid or detect entry into an unsafe state is
the ability to recognize what constitutes an unsafe state. The following



tactics assume that capability, which means that you should perform
your own hazard analysis or FTA once you have your architecture in
hand. Your design decisions may themselves have introduced new safety
vulnerabilities not accounted for during requirements analysis.

You will note a substantial overlap between the tactics presented here
and those presented in Chapter 4 on availability. This overlap occurs
because availability problems may often lead to safety problems, and
because many of the design solutions for repairing these problems are
shared between the qualities.

Figure 10.3 summarizes the architectural tactics to achieve safety.

Figure 10.3 Safety tactics

Unsafe State Avoidance



Substitution
This tactic employs protection mechanisms—often hardware-based—for
potentially dangerous software design features. For example, hardware
protection devices such as watchdogs, monitors, and interlocks can be
used in lieu of software versions. Software versions of these mechanisms
can be starved of resources, whereas a separate hardware device provides
and controls its own resources. Substitution is typically beneficial only
when the function being replaced is relatively simple.

Predictive Model
The predictive model tactic, as introduced in Chapter 4, predicts the state
of health of system processes, resources, or other properties (based on
monitoring the state), not only to ensure that the system is operating
within its nominal operating parameters but also to provide early
warning of a potential problem. For example, some automotive cruise
control systems calculate the closing rate between the vehicle and an
obstacle (or another vehicle) ahead and warn the driver before the
distance and time become too small to avoid a collision. A predictive
model is typically combined with condition monitoring, which we
discuss later.

Unsafe State Detection

Timeout
The timeout tactic is used to determine whether the operation of a
component is meeting its timing constraints. This might be realized in
the form of an exception being raised, to indicate the failure of a
component if its timing constraints are not met. Thus this tactic can
detect late timing and omission failures. Timeout is a particularly
common tactic in real-time or embedded systems and distributed
systems. It is related to the availability tactics of system monitor,
heartbeat, and ping-echo.

Timestamp
As described in Chapter 4, the timestamp tactic is used to detect
incorrect sequences of events, primarily in distributed message-passing
systems. A timestamp of an event can be established by assigning the



state of a local clock to the event immediately after the event occurs.
Sequence numbers can also be used for this purpose, since timestamps in
a distributed system may be inconsistent across different processors.

Condition Monitoring
This tactic involves checking conditions in a process or device, or
validating assumptions made during the design, perhaps by using
assertions. Condition monitoring identifies system states that may lead to
hazardous behavior. However, the monitor should be simple (and,
ideally, provable) to ensure that it does not introduce new software errors
or contribute significantly to overall workload. Condition monitoring
provides the input to a predictive model and to sanity checking.

Sanity Checking
The sanity checking tactic checks the validity or reasonableness of
specific operation results, or inputs or outputs of a component. This
tactic is typically based on a knowledge of the internal design, the state
of the system, or the nature of the information under scrutiny. It is most
often employed at interfaces, to examine a specific information flow.

Comparison
The comparison tactic allows the system to detect unsafe states by
comparing the outputs produced by a number of synchronized or
replicated elements. Thus the comparison tactic works together with a
redundancy tactic, typically the active redundancy tactic presented in the
discussion of availability. When the number of replicants is three or
greater, the comparison tactic can not only detect an unsafe state but also
indicate which component has led to it. Comparison is related to the
voting tactic used in availability. However, a comparison may not always
lead to a vote; another option is to simply shut down if outputs differ.

Containment
Containment tactics seek to limit the harm associated with an unsafe
state that has been entered. This category includes three subcategories:
redundancy, limit consequences, and barrier.

Redundancy



The redundancy tactics, at first glance, appear to be similar to the various
sparing/redundancy tactics presented in the discussion of availability.
Clearly, these tactics overlap, but since the goals of safety and
availability are different, the use of backup components differs. In the
realm of safety, redundancy enables the system to continue operation in
the case where a total shutdown or further degradation would be
undesirable.

Replication is the simplest redundancy tactic, as it just involves
having clones of a component. Having multiple copies of identical
components can be effective in protecting against random failures of
hardware, but it cannot protect against design or implementation errors
in hardware or software since there is no form of diversity embedded in
this tactic.

Functional redundancy, by contrast, is intended to address the issue of
common-mode failures (where replicas exhibit the same fault at the
same time because they share the same implementation) in hardware or
software components, by implementing design diversity. This tactic
attempts to deal with the systematic nature of design faults by adding
diversity to redundancy. The outputs of functionally redundant
components should be the same given the same input. The functional
redundancy tactic is still vulnerable to specification errors, however, and
of course, functional replicas will be more expensive to develop and
verify.

Finally, the analytic redundancy tactic permits not only diversity of
components, but also a higher-level diversity that is visible at the input
and output level. As a consequence, it can tolerate specification errors by
using separate requirement specifications. Analytic redundancy often
involves partitioning the system into high assurance and high
performance (low assurance) portions. The high assurance portion is
designed to be simple and reliable, whereas the high performance
portion is typically designed to be more complex and more accurate, but
less stable: It changes more rapidly, and may not be as reliable as the
high assurance portion. (Hence, here we do not mean high performance
in the sense of latency or throughput; rather, this portion “performs” its
task better than the high assurance portion.)

Limit Consequences
The second subcategory of containment tactics is called limit
consequences. These tactics are all intended to limit the bad effects that



may result from the system entering an unsafe state.
The abort tactic is conceptually the simplest. If an operation is

determined to be unsafe, it is aborted before it can cause damage. This
technique is widely employed to ensure that systems fail safely.

The degradation tactic maintains the most critical system functions in
the presence of component failures, dropping or replacing functionality
in a controlled way. This approach allows individual component failures
to gracefully reduce system functionality in a planned, deliberate, and
safe way, rather than causing a complete system failure. For example, a
car navigation system may continue to operate using a (less accurate)
dead reckoning algorithm in a long tunnel where it has lost its GPS
satellite signal.

The masking tactic masks a fault by comparing the results of several
redundant components and employing a voting procedure in case one or
more of the components differ. For this tactic to work as intended, the
voter must be simple and highly reliable.

Barrier
The barrier tactics contain problems by keeping them from propagating.

The firewall tactic is a specific realization of the limit access tactic,
which is described in Chapter 11. A firewall limits access to specified
resources, typically processors, memory, and network connections.

The interlock tactic protects against failures arising from incorrect
sequencing of events. Realizations of this tactic provide elaborate
protection schemes by controlling all access to protected components,
including controlling the correct sequencing of events affecting those
components.

Recovery
The final category of safety tactics is recovery, which acts to place the
system in a safe state. It encompasses three tactics: rollback, repair state,
and reconfiguration.

The rollback tactic permits the system to revert to a saved copy of a
previous known good state—the rollback line—upon the detection of a
failure. This tactic is often combined with checkpointing and
transactions, to ensure that the rollback is complete and consistent. Once
the good state is reached, then execution can continue, potentially



employing other tactics such as retry or degradation to ensure that the
failure does not reoccur.

The repair state tactic repairs an erroneous state—effectively
increasing the set of states that a component can handle competently
(i.e., without failure)—and then continues execution. For example, a
vehicle’s lane keep assist feature will monitor whether a driver is staying
within their lane and actively return the vehicle to a position between the
lines—a safe state—if it drifts out. This tactic is inappropriate as a
means of recovery from unanticipated faults.

Reconfiguration attempts to recover from component failures by
remapping the logical architecture onto the (potentially limited)
resources left functioning. Ideally, this remapping allows full
functionality to be maintained. When this is not possible, the system
may be able to maintain partial functionality in combination with the
degradation tactic.

10.3 Tactics-Based Questionnaire for Safety
Based on the tactics described in Section 10.2, we can create a set of
tactics-inspired questions, as presented in Table 10.2. To gain an
overview of the architectural choices made to support safety, the analyst
asks each question and records the answers in the table. The answers to
these questions can then be made the focus of further activities:
investigation of documentation, analysis of code or other artifacts,
reverse engineering of code, and so forth.

Table 10.2 Tactics-Based Questionnaire for Safety
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Do you employ substitution—that is, safer, often 
hardware-based protection mechanisms for 
potentially dangerous software design features?
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Do you use a predictive model to predict the state 
of health of system processes, resources, or other 
properties—based on monitored information—not 
only to ensure that the system is operating within 
its nominal operating parameters, but also to 
provide early warning of a potential problem?

Unsa
fe 
State 
Dete
ction

Do you use timeouts to determine whether the 
operation of a component meets its timing 
constraints?
Do you use timestamps to detect incorrect 
sequences of events?
Do you employ condition monitoring to check 
conditions in a process or device, particularly to 
validate assumptions made during design?
Is sanity checking employed to check the validity 
or reasonableness of specific operation results, or 
inputs or outputs of a component?
Does the system employ comparison to detect 
unsafe states, by comparing the outputs produced 
based on the number of synchronized or replicated 
elements?
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Do you use replication—clones of a component
—to protect against random failures of hardware?
Do you use functional redundancy to address the 
common-mode failures by implementing diversely 
designed components?
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Do you use analytic redundancy—functional 
“replicas” that include high assurance/high 
performance and low assurance/low performance 
alternatives—to be able to tolerate specification 
errors?

Cont
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ent: 
Limit 
Cons
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Can the system abort an operation that is 
determined to be unsafe before it can cause 
damage?
Does the system provide controlled degradation, 
where the most critical system functions are 
maintained in the presence of component failures, 
while less critical functions are dropped or 
degraded?
Does the system mask a fault by comparing the 
results of several redundant components and 
employ a voting procedure in case one or more of 
the components differ?

Cont
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ent: 
Barri
er

Does the system support limiting access to critical 
resources (e.g., processors, memory, and network 
connections) through a firewall?
Does the system control access to protected 
components and protect against failures arising 
from incorrect sequencing of events through 
interlocks?

Reco
very

Is the system able to roll back—that is, to revert 
to a previous known good state—upon the 
detection of a failure?
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Can the system repair a state determined to be 
erroneous, without failure, and then continue 
execution?
Can the system reconfigure resources, in the 
event of failures, by remapping the logical 
architecture onto the resources left functioning?

Prior to beginning the tactics-based questionnaire for safety, you
should assess whether the project under review has performed a hazard
analysis or FTA to identify what constitutes an unsafe state (to be
detected, avoided, contained, or recovered from) in your system.
Without this analysis, designing for safety is likely to be less effective.

10.4 Patterns for Safety
A system that unexpectedly stops operating, or starts operating
incorrectly, or falls into a degraded mode of operation is likely to affect
safety negatively, if not catastrophically. Hence, the first place to look for
safety patterns is in patterns for availability, such as the ones described in
Chapter 4. They all apply here.

Redundant sensors. If the data produced by a sensor is important to
determine whether a state is safe or unsafe, that sensor should be
replicated. This protects against the failure of any single sensor.
Also, independent software should monitor each sensor—in essence,
the redundant spare tactic from Chapter 4 applied to safety-critical
hardware.

Benefits:
This form of redundancy, which is applied to sensors, guards
against the failure of a single sensor.



Tradeoffs:
Redundant sensors add cost to the system, and processing the
inputs from multiple sensors is more complicated than
processing the input from a single sensor.

Monitor-actuator. This pattern focuses on two software elements—a
monitor and an actuator controller—that are employed before
sending a command to a physical actuator. The actuator controller
performs the calculations necessary to determine the values to send
to the physical actuator. The monitor checks these values for
reasonableness before sending them. This separates the computation
of the value from the testing of the value.

Benefits:
In this form of redundancy applied to actuator control, the monitor
acts as a redundant check on the actuator controller computations.

Tradeoffs:
The development and maintenance of the monitor take time and
resources.
Because of the separation this pattern achieves between
actuator control and monitoring, this particular tradeoff is easy
to manipulate by making the monitor as simple (easy to
produce but may miss errors) or as sophisticated (more
complex but catches more errors) as required.

Separated safety. Safety-critical systems must frequently be certified
as safe by some authority. Certifying a large system is expensive, but
dividing a system into safety-critical portions and non-safety-critical
portions can reduce those costs. The safety-critical portion must still
be certified. Likewise, the division into safety-critical and non-
critical portions must be certified to ensure that there is no influence
on the safety-critical portion from the non-safety-critical portion.

Benefits:
The cost of certifying the system is reduced because you need to
certify only a (usually small) portion of the total system.
Cost and safety benefits accrue because the effort focuses on just
those portions of the system that are germane to safety.



Tradeoffs:
The work involved in performing the separation can be
expensive, such as installing two different networks in a system
to partition safety-critical and non-safety-critical messages.
However, this approach limits the risk and consequences of
bugs in the non-safety-critical portion from affecting the safety-
critical portion.
Separating the system and convincing the certification agency
that the separation was performed correctly and that there are
no influences from the non-safety-critical portion on the safety-
critical portion is difficult, but is far easier than the alternative:
having the agency certify everything to the same rigid level.

Design Assurance Levels
The separated safety pattern emphasizes dividing the software
system into safety-critical portions and non-safety-critical portions.
In avionics, the distinction is finer-grained. DO-178C, “Software
Considerations in Airborne Systems and Equipment Certification,”
is the primary document by which certification authorities such as
Federal Aviation Administration (FAA), European Union Aviation
Safety Agency (EASA), and Transport Canada approve all
commercial software-based aerospace systems. It defines a ranking
called Design Assurance Level (DAL) for each software function.
The DAL is determined from the safety assessment process and
hazard analysis by examining the effects of a failure condition in
the system. The failure conditions are categorized by their effects
on the aircraft, crew, and passengers:

A: Catastrophic. Failure may cause deaths, usually with loss of
the airplane.
B: Hazardous. Failure has a large negative impact on safety or
performance, or reduces the crew’s ability to operate the
aircraft due to physical distress or a higher workload, or causes
serious or fatal injuries among the passengers.



C: Major. Failure significantly reduces the safety margin or
significantly increases crew workload, and may result in
passenger discomfort (or even minor injuries).
D: Minor. Failure slightly reduces the safety margin or slightly
increases crew workload. Examples might include causing
passenger inconvenience or a routine flight plan change.
E: No effect. Failure has no impact on safety, aircraft operation,
or crew workload.

Software validation and testing is a terrifically expensive task,
undertaken with very finite budgets. DALs help you decide where
to put your limited testing resources. The next time you’re on a
commercial airline flight, if you see a glitch in the entertainment
system or your reading light keeps blinking off, take comfort by
thinking of all the validation money spent on making sure the flight
control system works just fine.

—PC

10.5 For Further Reading
To gain an appreciation for the importance of software safety, we suggest
reading some of the disaster stories that arise when software fails. A
venerable source is the ACM Risks Forum, available at risks.org. This
has been moderated by Peter Neumann since 1985 and is still going
strong.

Two prominent standard safety processes are described in ARP-4761,
“Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment,” developed by SAE
International, and MIL STD 882E, “Standard Practice: System Safety,”
developed by the U.S. Department of Defense.

Wu and Kelly [Wu 04] published a set of safety tactics in 2004, based
on a survey of existing architectural approaches, which inspired much of
the thinking in this chapter.

Nancy Leveson is a thought leader in the area of software and safety.
If you’re working in safety-critical systems, you should become familiar
with her work. You can start small with a paper like [Leveson 04], which

http://risks.org/


discusses a number of software-related factors that have contributed to
spacecraft accidents. Or you can start at the top with [Leveson 11], a
book that treats safety in the context of today’s complex, socio-technical,
software-intensive systems.

The Federal Aviation Administration is the U.S. government agency
charged with oversight of the U.S. airspace system and is extremely
concerned about safety. Its 2019 System Safety Handbook is a good
practical overview of the topic. Chapter 10 of this handbook deals with
software safety. You can download it from
faa.gov/regulations_policies/handbooks_manuals/aviation/risk_manage
ment/ss_handbook/.

Phil Koopman is well known in the automotive safety field. He has
several tutorials available online that deal with safety-critical patterns.
See, for example, youtube.com/watch?v=JA5wdyOjoXg and
youtube.com/watch?v=4Tdh3jq6W4Y. Koopman’s book, Better
Embedded System Software, gives much more detail about safety
patterns [Koopman 10].

Fault tree analysis dates from the early 1960s, but the granddaddy of
resources for it is the U.S. Nuclear Regulatory Commission’s Fault Tree
Handbook, published in 1981. NASA’s 2002 Fault Tree Handbook with
Aerospace Applications is an updated comprehensive primer of the NRC
handbook. Both are available online as downloadable PDF files.

Similar to Design Assurance Levels, Safety Integrity Levels (SILs)
provide definitions of how safety-critical various functions are. These
definitions create a common understanding among the architects
involved in designing the system, but also assist with safety evaluation.
The IEC 61508 Standard titled “Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related Systems”
defines four SILs, with SIL 4 being the most dependable and SIL 1
being the least dependable. This standard is instantiated through domain-
specific standards such as IEC 62279 for the railway industry, titled
“Railway Applications: Communication, Signaling and Processing
Systems: Software for Railway Control and Protection Systems.”

In a world where semi-autonomous and autonomous vehicles are the
subject of much research and development, functional safety is
becoming increasingly more prominent. For a long time, ISO 26026 has
been the standard in functional safety of road vehicles. There is also a
wave of new norms such as ANSI/UL 4600, “Standard for Safety for the
Evaluation of Autonomous Vehicles and Other Products,” which tackle

http://faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
http://youtube.com/watch?v=JA5wdyOjoXg
http://youtube.com/watch?v=4Tdh3jq6W4Y


the challenges that emerge when software takes the wheel, figuratively
and literally.

10.6 Discussion Questions
1. List 10 computer-controlled devices that are part of your everyday

life right now, and hypothesize ways that a malicious or
malfunctioning system could use them to hurt you.

2. Write a safety scenario that is designed to prevent a stationary
robotic device (such as an assembly arm on a manufacturing line)
from injuring someone, and discuss tactics to achieve it.

3. The U.S. Navy’s F/A-18 Hornet fighter aircraft was one of the early
applications of fly-by-wire technology, in which onboard computers
send digital commands to the control surfaces (ailerons, rudder,
etc.) based on the pilot’s input to the control stick and rudder pedals.
The flight control software was programmed to prevent the pilot
from commanding certain violent maneuvers that might cause the
aircraft to enter an unsafe flight regime. During early flight testing,
which often involves pushing the aircraft to (and beyond) its utmost
limits, an aircraft entered an unsafe state and “violent maneuvers”
were exactly what were needed to save it—but the computers
dutifully prevented them. The aircraft crashed into the ocean
because of software designed to keep it safe. Write a safety scenario
to address this situation, and discuss the tactics that would have
prevented this outcome.

4. According to slate.com and other sources, a teenage girl in
Germany “went into hiding after she forgot to set her Facebook
birthday invitation to private and accidentally invited the entire
Internet. After 15,000 people confirmed they were coming, the
girl’s parents canceled the party, notified police, and hired private
security to guard their home.” Fifteen hundred people showed up
anyway, resulting in several minor injuries and untold mayhem. Is
Facebook unsafe? Discuss.

5. Write a safety scenario to protect the unfortunate girl in Germany
from Facebook.

6. On February 25, 1991, during the Gulf War, a U.S. Patriot missile
battery failed to intercept an incoming Scud missile, which struck a
barracks, killing 28 soldiers and injuring dozens. The cause of the

http://slate.com/


failure was an inaccurate calculation of the time since boot due to
arithmetic errors in the software that accumulated over time. Write a
safety scenario that addresses the Patriot failure and discuss tactics
that might have prevented it.

7. Author James Gleick (“A Bug and a Crash,”
around.com/ariane.html) writes that “It took the European Space
Agency 10 years and $7 billion to produce Ariane 5, a giant rocket
capable of hurling a pair of three-ton satellites into orbit with each
launch. . . . All it took to explode that rocket less than a minute into
its maiden voyage . . . was a small computer program trying to stuff
a 64-bit number into a 16-bit space. One bug, one crash. Of all the
careless lines of code recorded in the annals of computer science,
this one may stand as the most devastatingly efficient.” Write a
safety scenario that addresses the Ariane 5 disaster, and discuss
tactics that might have prevented it.

8. Discuss how you think safety tends to “trade off” against the quality
attributes of performance, availability, and interoperability.

9. Discuss the relationship between safety and testability.

10. What is the relationship between safety and modifiability?

11. With the Air France flight 447 story in mind, discuss the
relationship between safety and usability.

12. Create a list of faults or a fault tree for an automatic teller machine.
Include faults dealing with hardware component failure,
communications failure, software failure, running out of supplies,
user errors, and security attacks. How would you use tactics to
accommodate these faults?

http://around.com/ariane.html


11
Security

If you reveal your secrets to the wind, you should not blame the wind for
revealing them to the trees.

—Kahlil Gibran

Security is a measure of the system’s ability to protect data and
information from unauthorized access while still providing access to
people and systems that are authorized. An attack—that is, an action
taken against a computer system with the intention of doing harm—can
take a number of forms. It may be an unauthorized attempt to access data
or services or to modify data, or it may be intended to deny services to
legitimate users.

The simplest approach to characterizing security focuses on three
characteristics: confidentiality, integrity, and availability (CIA):

Confidentiality is the property that data or services are protected
from unauthorized access. For example, a hacker cannot access your
income tax returns on a government computer.
Integrity is the property that data or services are not subject to
unauthorized manipulation. For example, your grade has not been
changed since your instructor assigned it.
Availability is the property that the system will be available for
legitimate use. For example, a denial-of-service attack won’t prevent
you from ordering this book from an online bookstore.

We will use these characteristics in our general scenario for security.
One technique that is used in the security domain is threat modeling.

An “attack tree,” which is similar to the fault tree discussed in Chapter 4,
is used by security engineers to determine possible threats. The root of
the tree is a successful attack, and the nodes are possible direct causes of



that successful attack. Children nodes decompose the direct causes, and
so forth. An attack is an attempt to compromise CIA, with the leaves of
attack trees being the stimulus in the scenario. The response to the attack
is to preserve CIA or deter attackers through monitoring of their
activities.

Privacy
An issue closely related to security is the quality of privacy. Privacy
concerns have become more important in recent years and are
enshrined into law in the European Union through the General Data
Protection Regulation (GDPR). Other jurisdictions have adopted
similar regulations.

Achieving privacy is about limiting access to information, which
in turn is about which information should be access-limited and to
whom access should be allowed. The general term for information
that should be kept private is personally identifiable information
(PII). The National Institute of Standards and Technology (NIST)
defines PII as “any information about an individual maintained by
an agency, including (1) any information that can be used to
distinguish or trace an individual’s identity, such as name, social
security number, date and place of birth, mother’s maiden name, or
biometric records; and (2) any other information that is linked or
linkable to an individual, such as medical, educational, financial,
and employment information.”

The question of who is permitted access to such data is more
complicated. Users are routinely asked to review and agree to
privacy agreements initiated by organizations. These privacy
agreements detail who, outside of the collecting organization, is
entitled to see PII. The collecting organization itself should have
policies that govern who within that organization can have access
to such data. Consider, for example, a tester for a software system.
To perform tests, realistic data should be used. Does that data
include PII? Generally, PII is obscured for testing purposes.

Frequently the architect, perhaps acting for the project manager,
is asked to verify that PII is hidden from members of the
development team who do not need to have access to PII.



11.1 Security General Scenario
From these considerations, we can now describe the individual portions
of a security general scenario, which is summarized in Table 11.1.

Table 11.1 Security General Scenario
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The attack may be from outside the organization 
or from inside the organization. The source of the 
attack may be either a human or another system. 
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a successful 
attack

How much 
data is 
vulnerable to 
a particular 
attack

Figure 11.1 shows a sample concrete scenario derived from the
general scenario: A disgruntled employee at a remote location attempts
to improperly modify the pay rate table during normal operations. The
unauthorized access is detected, the system maintains an audit trail, and
the correct data is restored within one day.

Figure 11.1 Sample scenario for security

11.2 Tactics for Security



One method for thinking about how to achieve security in a system is to
focus on physical security. Secure installations permit only limited
access to them (e.g., by using fences and security checkpoints), have
means of detecting intruders (e.g., by requiring legitimate visitors to
wear badges), have deterrence mechanisms (e.g., by having armed
guards), have reaction mechanisms (e.g., automatic locking of doors),
and have recovery mechanisms (e.g., off-site backup). These lead to our
four categories of tactics: detect, resist, react, and recover. The goal of
security tactics is shown in Figure 11.2, and Figure 11.3 outlines these
categories of tactics.

Figure 11.2 Goal of security tactics



Figure 11.3 Security tactics

Detect Attacks
The detect attacks category consists of four tactics: detect intrusion,
detect service denial, verify message integrity, and detect message delay.

Detect intrusion. This tactic compares network traffic or service
request patterns within a system to a set of signatures or known
patterns of malicious behavior stored in a database. The signatures
can be based on protocol characteristics, request characteristics,
payload sizes, applications, source or destination address, or port
number.
Detect service denial. This tactic compares the pattern or signature
of network traffic coming into a system to historical profiles of
known denial-of-service (DoS) attacks.



Verify message integrity. This tactic employs techniques such as
checksums or hash values to verify the integrity of messages,
resource files, deployment files, and configuration files. A checksum
is a validation mechanism wherein the system separately maintains
redundant information for files and messages, and uses this
redundant information to verify the file or message. A hash value is
a unique string generated by a hashing function, whose input could
be files or messages. Even a slight change in the original files or
messages results in a significant change in the hash value.
Detect message delivery anomalies. This tactic seeks to detect
potential man-in-the-middle-attacks, in which a malicious party is
intercepting (and possibly modifying) messages. If message delivery
times are normally stable, then by checking the time that it takes to
deliver or receive a message, it becomes possible to detect
suspicious timing behavior. Similarly, abnormal numbers of
connections and disconnections may indicate such an attack.

Resist Attacks
There are a number of well-known means of resisting an attack:

Identify actors. Identifying actors (users or remote computers)
focuses on identifying the source of any external input to the system.
Users are typically identified through user IDs. Other systems may
be “identified” through access codes, IP addresses, protocols, ports,
or some other means.
Authenticate actors. Authentication means ensuring that an actor is
actually who or what it purports to be. Passwords, one-time
passwords, digital certificates, two-factor authentication, and
biometric identification provide a means for authentication. Another
example is CAPTCHA (Completely Automated Public Turing test to
tell Computers and Humans Apart), a type of challenge–response
test that is used to determine whether the user is human. Systems
may require periodic reauthentication, such as when your
smartphone automatically locks after a period of inactivity.
Authorize actors. Authorization means ensuring that an
authenticated actor has the rights to access and modify either data or
services. This mechanism is usually enabled by providing some



access control mechanisms within a system. Access control can be
assigned per actor, per actor class, or per role.
Limit access. This tactic involves limiting access to computer
resources. Limiting access might mean restricting the number of
access points to the resources, or restricting the type of traffic that
can go through the access points. Both kinds of limits minimize the
attack surface of a system. For example, a demilitarized zone (DMZ)
is used when an organization wants to let external users access
certain services but not access other services. The DMZ sits between
the Internet and an intranet, and is protected by a pair of firewalls,
one on either side. The internal firewall is a single point of access to
the intranet; it functions as a limit to the number of access points as
well as controls the type of traffic allowed through to the intranet.
Limit exposure. This tactic focuses on minimizing the effects of
damage caused by a hostile action. It is a passive defense since it
does not proactively prevent attackers from doing harm. Limiting
exposure is typically realized by reducing the amount of data or
services that can be accessed through a single access point, and
hence compromised in a single attack.
Encrypt data. Confidentiality is usually achieved by applying some
form of encryption to data and to communication. Encryption
provides extra protection to persistently maintained data beyond that
available from authorization. Communication links, by comparison,
may not have authorization controls. In such cases, encryption is the
only protection for passing data over publicly accessible
communication links. Encryption can be symmetric (readers and
writers use the same key) or asymmetric (with readers and writers
use paired public and private keys).
Separate entities. Separating different entities limits the scope of an
attack. Separation within the system can be done through physical
separation on different servers attached to different networks, the use
of virtual machines, or an “air gap”—that is, by having no electronic
connection between different portions of a system. Finally, sensitive
data is frequently separated from nonsensitive data to reduce the
possibility of attack by users who have access to nonsensitive data.
Validate input. Cleaning and checking input as it is received by a
system, or portion of a system, is an important early line of defense
in resisting attacks. This is often implemented by using a security



framework or validation class to perform actions such as filtering,
canonicalization, and sanitization of input. Data validation is the
main form of defense against attacks such as SQL injection, in
which malicious code is inserted into SQL statements, and cross-site
scripting (XSS), in which malicious code from a server runs on a
client.
Change credential settings. Many systems have default security
settings assigned when the system is delivered. Forcing the user to
change those settings will prevent attackers from gaining access to
the system through settings that may be publicly available. Similarly,
many systems require users to choose a new password after some
maximum time period.

React to Attacks
Several tactics are intended to respond to a potential attack.

Revoke access. If the system or a system administrator believes that
an attack is under way, then access can be severely limited to
sensitive resources, even for normally legitimate users and uses. For
example, if your desktop has been compromised by a virus, your
access to certain resources may be limited until the virus is removed
from your system.
Restrict login. Repeated failed login attempts may indicate a
potential attack. Many systems limit access from a particular
computer if there are repeated failed attempts to access an account
from that computer. Of course, legitimate users may make mistakes
in attempting to log in, so the limited access may last for only a
certain time period. In some cases, systems double the lockout time
period after each unsuccessful login attempt.
Inform actors. Ongoing attacks may require action by operators,
other personnel, or cooperating systems. Such personnel or systems
—the set of relevant actors—must be notified when the system has
detected an attack.

Recover from Attacks
Once a system has detected and attempted to resist an attack, it needs to
recover. Part of recovery is restoration of services. For example,



additional servers or network connections may be kept in reserve for
such a purpose. Since a successful attack can be considered a kind of
failure, the set of availability tactics (from Chapter 4) that deal with
recovering from a failure can be brought to bear for this aspect of
security as well.

In addition to the availability tactics for recovery, the audit and
nonrepudiation tactics can be used:

Audit. We audit systems—that is, keep a record of user and system
actions and their effects—to help trace the actions of, and to identify,
an attacker. We may analyze audit trails to attempt to prosecute
attackers or to create better defenses in the future.
Nonrepudiation. This tactic guarantees that the sender of a message
cannot later deny having sent the message and that the recipient
cannot deny having received the message. For example, you cannot
deny ordering something from the Internet, and the merchant cannot
disclaim getting your order. This could be achieved with some
combination of digital signatures and authentication by trusted third
parties.

11.3 Tactics-Based Questionnaire for Security
Based on the tactics described in Section 11.2, we can create a set of
security tactics–inspired questions, as presented in Table 11.2. To gain an
overview of the architectural choices made to support security, the
analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further
activities: investigation of documentation, analysis of code or other
artifacts, reverse engineering of code, and so forth.

Table 11.2 Tactics-Based Questionnaire for Security
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Dete
cting 
Atta
cks

Does the system support the detection of 
intrusions by, for example, comparing network 
traffic or service request patterns within a 
system to a set of signatures or known patterns 
of malicious behavior stored in a database?
Does the system support the detection of 
denial-of-service attacks by, for example, 
comparing the pattern or signature of network 
traffic coming into a system to historical 
profiles of known DoS attacks?
Does the system support the verification of 
message integrity via techniques such as 
checksums or hash values?
Does the system support the detection of 
message delays by, for example, checking the 
time that it takes to deliver a message?

Resi
sting 
Atta
cks

Does the system support the identification of 
actors through user IDs, access codes, IP 
addresses, protocols, ports, etc.?
Does the system support the authentication of 
actors via, for example, passwords, digital 
certificates, two-factor authentication, or 
biometrics?
Does the system support the authorization of 
actors, ensuring that an authenticated actor has 
the rights to access and modify either data or 
services?
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Does the system support limiting access to 
computer resources via restricting the number 
of access points to the resources, or restricting 
the type of traffic that can go through the 
access points?
Does the system support limiting exposure by 
reducing the amount of data or services that 
can be accessed through a single access point?

Resi
sting 
Atta
cks

Does the system support data encryption, for 
data in transit or data at rest?
Does the system design consider the 
separation of entities via physical separation 
on different servers attached to different 
networks, virtual machines, or an “air gap”?
Does the system support changing credential 
settings, forcing the user to change those 
settings periodically or at critical events?
Does the system validate input in a consistent, 
system-wide way—for example, using a 
security framework or validation class to 
perform actions such as filtering, 
canonicalization, and sanitization of external 
input?

Reac
ting 
to 
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Does the system support revoking access by 
limiting access to sensitive resources, even for 
normally legitimate users and uses if an attack 
is under way?
Does the system support restricting login in 
instances such as multiple failed login 
attempts?
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Does the system support informing actors 
such as operators, other personnel, or 
cooperating systems when the system has 
detected an attack?

Rec
over
ing 
from 
Atta
cks

Does the system support maintaining an audit 
trail to help trace the actions of, and to identify, 
an attacker?
Does the system guarantee the property of 
nonrepudiation, which guarantees that the 
sender of a message cannot later deny having 
sent the message and that the recipient cannot 
deny having received the message?
Have you checked the “recover from faults” 
category of tactics from Chapter 4?

11.4 Patterns for Security
Two of the more well-known patterns for security are intercepting
validator and intrusion prevention system.

Intercepting Validator
This pattern inserts a software element—a wrapper—between the source
and the destination of messages. This approach assumes greater
importance when the source of the messages is outside the system. The
most common responsibility of this pattern is to implement the verify
message integrity tactic, but it can also incorporate tactics such as detect
intrusion and detect service denial (by comparing messages to known
intrusion patterns), or detect message delivery anomalies.

Benefits:



Depending on the specific validator that you create and deploy, this
pattern can cover most of the waterfront of the “detect attack”
category of tactics, all in one package.

Tradeoffs:

As always, introducing an intermediary exacts a performance price.
Intrusion patterns change and evolve over time, so this component
must be kept up-to-date so that it maintains its effectiveness. This
imposes a maintenance obligation on the organization responsible
for the system.

Intrusion Prevention System
An intrusion prevention system (IPS) is a standalone element whose
main purpose is to identify and analyze any suspicious activity. If the
activity is deemed acceptable, it is allowed. Conversely, if it is
suspicious, the activity is prevented and reported. These systems look for
suspicious patterns of overall usage, not just anomalous messages.

Benefits:

These systems can encompass most of the “detect attacks” and
“react to attacks” tactics.

Tradeoffs:

The patterns of activity that an IPS looks for change and evolve
over time, so the patterns database must be constantly updated.
Systems employing an IPS incur a performance cost.
IPSs are available as commercial off-the-shelf components, which
makes them unnecessary to develop but perhaps not entirely suited
to a specific application.

Other notable security patterns include compartmentalization and
distributed responsibility. Both of these combine the “limit access” and
“limit exposure” tactics—the former with respect to information, the
latter with respect to activities.

Just as we included (by reference) tactics for availability in our list of
security tactics, patterns for availability also apply to security by



counteracting attacks that seek to stop the system from operating.
Consider the availability patterns discussed in Chapter 4 here as well.

11.5 For Further Reading
The architectural tactics that we have described in this chapter are only
one aspect of making a system secure. Other aspects include the
following:

Coding. Secure Coding in C and C++[Seacord 13] describes how to
code securely.
Organizational processes. Organizations must have processes that
take responsibility for various aspects of security, including ensuring
that systems are upgraded to put into place the latest protections.
NIST 800-53 provides an enumeration of organizational processes
[NIST 09]. Organizational processes must account for insider
threats, which account for 15–20 percent of attacks. [Cappelli 12]
discusses insider threats.
Technical processes. Microsoft’s Security Development Lifecycle
includes modeling of threats:
microsoft.com/download/en/details.aspx?id=16420.

The Common Weakness Enumeration is a list of the most common
categories of vulnerabilities discovered in systems, including SQL
injection and XSS: https://cwe.mitre.org/.

NIST has published several volumes that give definitions of security
terms [NIST 04], categories of security controls [NIST 06], and an
enumeration of security controls that an organization could employ
[NIST 09]. A security control could be a tactic, but it could also be
organizational, coding, or technical in nature.

Good books on engineering systems for security include Ross
Anderson’s Security Engineering: A Guide to Building Dependable
Distributed Systems, third edition [Anderson 20], and the series of books
by Bruce Schneier.

Different domains have different sets of security practices that are
relevant to their domain. The Payment Card Industry (PCI), for example,
has established a set of standards intended for those involved in credit
card processing (pcisecuritystandards.org).

http://microsoft.com/download/en/details.aspx?id=16420
https://cwe.mitre.org/
http://pcisecuritystandards.org/


The Wikipedia page on “Security Patterns” contains brief definitions
of a large number of security patterns.

Access control is commonly performed using a standard called
OAuth. You can read about OAuth at
https://en.wikipedia.org/wiki/OAuth.

11.6 Discussion Questions
1. Write a set of concrete scenarios for security for an automobile.

Consider in particular how you would specify scenarios regarding
control of the vehicle.

2. One of the most sophisticated attacks on record was carried out by a
virus known as Stuxnet. Stuxnet first appeared in 2009, but became
widely known in 2011 when it was revealed that it had apparently
severely damaged or incapacitated the high-speed centrifuges
involved in Iran’s uranium enrichment program. Read about
Stuxnet, and see if you can devise a defense strategy against it,
based on the tactics described in this chapter.

3. Security and usability are often seen to be at odds with each other.
Security often imposes procedures and processes that seem like
needless overhead to the casual user. Nevertheless, some say that
security and usability go (or should go) hand in hand, and argue that
making the system easy to use securely is the best way to promote
security to the users. Discuss.

4. List some examples of critical resources for security, which a DoS
attack might target and try to exhaust. Which architectural
mechanisms could be employed to prevent this kind of attack?

5. Which of the tactics detailed in this chapter will protect against an
insider threat? Can you think of any that should be added?

6. In the United States, Netflix typically accounts for more than 10
percent of all Internet traffic. How would you recognize a DoS
attack on Netflix.com? Can you create a scenario to characterize
this situation?

7. The public disclosure of vulnerabilities in an organization’s
production systems is a matter of controversy. Discuss why this is
so, and identify the pros and cons of public disclosure of

https://en.wikipedia.org/wiki/OAuth
http://netflix.com/


vulnerabilities. How could this issue affect your role as an
architect?

8. Similarly, the public disclosure of an organization’s security
measures and the software to achieve them (via open source
software, for example) is a matter of controversy. Discuss why this
is so, identify the pros and cons of public disclosure of security
measures, and describe how this could affect your role as an
architect.



12
Testability

Testing leads to failure, and failure leads to understanding.
—Burt Rutan

A substantial portion of the cost of developing well-engineered systems
is taken up by testing. If a carefully thought-out software architecture can
reduce this cost, the payoff is large.

Software testability refers to the ease with which software can be
made to demonstrate its faults through (typically execution-based)
testing. Specifically, testability refers to the probability, assuming that
the software has at least one fault, that it will fail on its next test
execution. Intuitively, a system is testable if it “reveals” its faults easily.
If a fault is present in a system, then we want it to fail during testing as
quickly as possible. Of course, calculating this probability is not easy
and—as you will see when we discuss response measures for testability
—other measures will be used. In addition, an architecture can enhance
testability by making it easier both to replicate a bug and to narrow
down the possible root causes of the bug. We do not typically think of
these activities as part of testability per se, but in the end just revealing a
bug isn’t enough: You also need to find and fix the bug!

Figure 12.1 shows a simple model of testing in which a program
processes input and produces output. An oracle is an agent (human or
computational) that decides whether the output is correct by comparing
the output to the expected result. Output is not just the functionally
produced value, but can also include derived measures of quality
attributes such as how long it took to produce the output. Figure 12.1
also indicates that the program’s internal state can be shown to the
oracle, and an oracle can decide whether that state is correct—that is, it
can detect whether the program has entered an erroneous state and
render a judgment as to the correctness of the program. Setting and



examining a program’s internal state is an aspect of testing that will
figure prominently in our tactics for testability.

Figure 12.1 A model of testing

For a system to be properly testable, it must be possible to control
each component’s inputs (and possibly manipulate its internal state) and
then to observe its outputs (and possibly its internal state, either after or
on the way to computing the outputs). Frequently, control and
observation are accomplished through the use of a test harness, a set of
specialized software (or in some cases, hardware) designed to exercise
the software under test. Test harnesses come in various forms, and may
include capabilities such as a record-and-playback capability for data
sent across interfaces, or a simulator for an external environment in
which a piece of embedded software is tested, or even distinct software
that runs during production (see the sidebar “Netflix’s Simian Army”).
The test harness can provide assistance in executing the test procedures
and recording the output. A test harness and its accompanying
infrastructure can be substantial pieces of software in their own right,
with their own architecture, stakeholders, and quality attribute
requirements.

Netflix’s Simian Army
Netflix distributes movies and television shows via both DVD and
streaming video. Its streaming video service has been extremely



successful. In fact, in 2018, Netflix’s streaming video accounted for
15 percent of the global Internet traffic. Naturally, high availability
is important to Netflix.

Netflix hosts its computer services in the Amazon EC2 cloud,
and the company utilizes a set of services that were originally
called the “Simian Army” as a portion of its testing process.
Netflix began with a Chaos Monkey, which randomly killed
processes in the running system. This allows the monitoring of the
effect of failed processes and gives the ability to ensure that the
system will not fail or suffer serious degradation as a result of a
process failure.

The Chaos Monkey acquired some friends to assist in the testing.
The Netflix Simian Army included these, in addition to the Chaos
Monkey:

The Latency Monkey induced artificial delays in network
communication to simulate service degradation and measured
whether upstream services responded appropriately.
The Conformity Monkey identified instances that did not
adhere to best practices and shut them down. For example, if an
instance did not belong to an auto-scaling group, it would not
appropriately scale when demand went up.
The Doctor Monkey tapped into health checks that ran on each
instance as well as monitoring other external signs of health
(e.g., CPU load) to detect unhealthy instances.
The Janitor Monkey ensured that the Netflix cloud environment
was running free of clutter and waste. It searched for unused
resources and disposed of them.
The Security Monkey was an extension of Conformity Monkey.
It found security violations or vulnerabilities, such as
improperly configured security groups, and terminated the
offending instances. It also ensured that all SSL and digital
rights management (DRM) certificates were valid and not
coming up for renewal.
The 10-18 Monkey (localization-internationalization) detected
configuration and runtime problems in instances serving
customers in multiple geographic regions, using different
languages and character sets. The name 10-18 comes from



L10n-i18n, a sort of shorthand for the words “localization” and
“internationalization.”

Some members of the Simian Army used fault injection to place
faults into the running system in a controlled and monitored
fashion. Other members monitored various specialized aspects of
the system and its environment. Both of these techniques have
broader applicability than just for Netflix.

Given that not all faults are equal in terms of severity, more
emphasis should be placed on finding the most severe faults than
on finding other faults. The Simian Army reflected a determination
by Netflix that the targeted faults were the most serious in terms of
their impacts.

Netflix’s strategy illustrates that some systems are too complex
and adaptive to be tested fully, because some of their behaviors are
emergent. One aspect of testing in that arena is logging of
operational data produced by the system, so that when failures
occur, the logged data can be analyzed in the lab to try to reproduce
the faults.

—LB

Testing is carried out by various developers, users, or quality
assurance personnel. Either portions of the system or the entire system
may be tested. The response measures for testability deal with how
effective the tests are in discovering faults and how long it takes to
perform the tests to some desired level of coverage. Test cases can be
written by the developers, the testing group, or the customer. In some
cases, testing actually drives development, as is the case with test-driven
development.

Testing of code is a special case of validation, which entails making
sure that an engineered artifact meets its stakeholders’ needs or is
suitable for use. In Chapter 21, we will discuss architectural design
reviews—another kind of validation, in which the artifact being tested is
the architecture.

12.1 Testability General Scenario



Table 12.1 enumerates the elements of the general scenario that
characterize testability.

Table 12.1 Testability General Scenario

Porti
on of 
Scena
rio

Description Possible Values

Sourc
e

The test cases can be executed by a 
human or an automated test tool.

One or more of the 
following:

Unit testers

Integration testers

System testers

Acceptance testers

End users

Either run tests 
manually or use 
automated testing tools



Porti
on of 
Scena
rio

Description Possible Values

Stimu
lus

A test or set of tests is initiated. These tests serve to:

Validate system 
functions

Validate qualities

Discover emerging 
threats to quality



Porti
on of 
Scena
rio

Description Possible Values

Envir
onme
nt

Testing occurs at various events or life-
cycle milestones.

The set of tests is 
executed due to:

The completion of 
a coding increment 
such as a class, 
layer, or service

The completed 
integration of a 
subsystem

The complete 
implementation of 
the whole system

The deployment of 
the system into a 
production 
environment

The delivery of the 
system to a 
customer

A testing schedule



Porti
on of 
Scena
rio

Description Possible Values

Artifa
cts

The artifact is the portion of the system 
being tested and any required test 
infrastructure.

The portion being 
tested:

A unit of code 
(corresponding to a 
module in the 
architecture)

Components

Services

Subsystems

The entire system

The test 
infrastructure



Porti
on of 
Scena
rio

Description Possible Values

Respo
nse

The system and its test infrastructure can 
be controlled to perform the desired 
tests, and the results from the test can be 
observed.

One or more of the 
following:

Execute test suite 
and capture results

Capture activity 
that resulted in the 
fault

Control and 
monitor the state of 
the system

Respo
nse 
meas
ure

Response measures are aimed at 
representing how easily a system under 
test “gives up” its faults or defects.

One or more of the 
following:

Effort to find a 
fault or class of 
faults

Effort to achieve a 
given percentage 
of state space 
coverage



Porti
on of 
Scena
rio

Description Possible Values

Probability of a 
fault being 
revealed by the 
next test

Time to perform 
tests

Effort to detect 
faults

Length of time to 
prepare test 
infrastructure

Effort required to 
bring the system 
into a specific state

Reduction in risk 
exposure: 
size(loss) × 
probability(loss)

Figure 12.2 shows a concrete scenario for testability: The developer
completes a code unit during development and performs a test sequence
whose results are captured and that gives 85 percent path coverage
within 30 minutes.



Figure 12.2 Sample testability scenario

12.2 Tactics for Testability
Tactics for testability are intended to promote easier, more efficient, and
more capable testing. Figure 12.3 illustrates the goal of the testability
tactics. Architectural techniques for enhancing the software testability
have not received as much attention as other quality attribute disciplines
such as modifiability, performance, and availability, but as we stated
earlier, anything the architect can do to reduce the high cost of testing
will yield a significant benefit.

Figure 12.3 The goal of testability tactics

There are two categories of tactics for testability. The first category
deals with adding controllability and observability to the system. The



second deals with limiting complexity in the system’s design.

Control and Observe System State
Control and observation are so central to testability that some authors
define testability in those terms. The two go hand in hand; it makes no
sense to control something if you can’t observe what happens when you
do. The simplest form of control and observation is to provide a software
component with a set of inputs, let it do its work, and then observe its
outputs. However, the control-and-observe category of testability tactics
provides insights into software that go beyond its inputs and outputs.
These tactics cause a component to maintain some sort of state
information, allow testers to assign a value to that state information, and
make that information accessible to testers on demand. The state
information might be an operating state, the value of some key variable,
performance load, intermediate process steps, or anything else useful to
re-creating component behavior. Specific tactics include the following:

Specialized interfaces. Having specialized testing interfaces allows
you to control or capture variable values for a component either
through the application of a test harness or through normal
execution. Examples of specialized test routines, some of which
might otherwise not be available except for testing purposes, include
these:

A set and get method for important variables, modes, or
attributes
A report method that returns the full state of the object
A reset method to set the internal state (e.g., all the attributes of
a class) to a specified internal state
A method to turn on verbose output, various levels of event
logging, performance instrumentation, or resource monitoring

Specialized testing interfaces and methods should be clearly
identified or kept separate from the access methods and interfaces
for required functionality, so that they can be removed if needed.
Note, however, that in performance-critical and some safety-critical
systems, it is problematic to field different code than that which was
tested. If you remove the test code, how will you know the code
released has the same behavior, particularly the same timing



behavior, as the code you tested? Thus this strategy is more effective
for other kinds of systems.
Record/playback. The state that caused a fault is often difficult to re-
create. Recording the state when it crosses an interface allows that
state to be used to “play the system back” and to re-create the fault.
Record refers to capturing information crossing an interface and
playback refers to using it as input for further testing.
Localize state storage. To start a system, subsystem, or component
in an arbitrary state for a test, it is most convenient if that state is
stored in a single place. By contrast, if the state is buried or
distributed, this approach becomes difficult, if not impossible. The
state can be fine-grained, even bit-level, or coarse-grained to
represent broad abstractions or overall operational modes. The
choice of granularity depends on how the states will be used in
testing. A convenient way to “externalize” state storage (i.e., to
make it amenable to manipulation through interface features) is to
use a state machine (or state machine object) as the mechanism to
track and report current state.
Abstract data sources. Similar to the case when controlling a
program’s state, the ability to control its input data makes it easier to
test. Abstracting the interfaces lets you substitute test data more
easily. For example, if you have a database of customer transactions,
you could design your architecture so that you can readily point your
test system at other test databases, or possibly even to files of test
data instead, without having to change your functional code.
Sandbox. “Sandboxing” refers to isolating an instance of the system
from the real world to enable experimentation that is unconstrained
by any worries about having to undo the consequences of the
experiment. Testing is facilitated by the ability to operate the system
in such a way that it has no permanent consequences, or so that any
consequences can be rolled back. The sandbox tactic can be used for
scenario analysis, training, and simulation. Simulation, in particular,
is a commonly employed strategy for testing and training in contexts
where failure in the real world might lead to severe consequences.
One common form of sandboxing is to virtualize resources. Testing a
system often involves interacting with resources whose behavior is
outside the system’s control. Using a sandbox, you can build a
version of the resource whose behavior is under your control. For



example, the system clock’s behavior is typically not under our
control—it increments one second each second. Thus, if we want to
make the system think it’s midnight on the day when all of the data
structures are supposed to overflow, we need a way to do that,
because waiting around is a poor choice. When we can abstract
system time from clock time, we can allow the system (or
components) to run at faster than wall-clock time, and test the
system (or components) at critical time boundaries such as the next
transition to or from Daylight Savings Time. Similar virtualizations
could be done for other resources, such as the memory, battery,
network, and so on. Stubs, mocks, and dependency injection are
simple but effective forms of virtualization.
Executable assertions. With this tactic, assertions are (usually) hand-
coded and placed at desired locations to indicate when and where a
program is in a faulty state. The assertions are often designed to
check that data values satisfy specified constraints. Assertions are
defined in terms of specific data declarations, and they must be
placed where the data values are referenced or modified. Assertions
can be expressed as pre- and post-conditions for each method and
also as class-level invariants. This increases the system’s
observability, as an assertion can be flagged as having failed.
Assertions systematically inserted where data values change can be
seen as a manual way to produce an “extended” type. Essentially, the
user is annotating a type with additional checking code. Anytime an
object of that type is modified, the checking code executes
automatically, with warnings being generated if any conditions are
violated. To the extent that the assertions cover the test cases, they
effectively embed the test oracle in the code—assuming the
assertions are correct and correctly coded.

All of these tactics add some capability or abstraction to the software that
(were we not interested in testing) otherwise would not be there. They
can be seen as augmenting bare-bones, get-the-job-done software with
more elaborate software that has some special capabilities designed to
enhance the efficiency and effectiveness of testing.

In addition to the testability tactics, a number of techniques are
available for replacing one component with a different version of itself
that facilitates testing:



Component replacement simply swaps the implementation of a
component with a different implementation that (in the case of
testability) has features that facilitate testing. Component
replacement is often accomplished in a system’s build scripts.
Preprocessor macros, when activated, can expand to state-reporting
code or activate probe statements that return or display information,
or return control to a testing console.
Aspects (in aspect-oriented programs) can handle the cross-cutting
concern of how the state is reported.

Limit Complexity
Complex software is much harder to test. Its operating state space is
large, and (all else being equal) it is more difficult to re-create an exact
state in a large state space than to do so in a small state space. Because
testing is not just about making the software fail, but also about finding
the fault that caused the failure so that it can be removed, we are often
concerned with making behavior repeatable. This category includes two
tactics:

Limit structural complexity. This tactic includes avoiding or
resolving cyclic dependencies between components, isolating and
encapsulating dependencies on the external environment, and
reducing dependencies between components in general (typically
realized by lowering the coupling between components). For
example, in object-oriented systems you can simplify the inheritance
hierarchy:

Limit the number of classes from which a class is derived, or the
number of classes derived from a class.
Limit the depth of the inheritance tree, and the number of
children of a class.
Limit polymorphism and dynamic calls.

One structural metric that has been shown empirically to correlate to
testability is the response of a class. The response of class C is a
count of the number of methods of C plus the number of methods of
other classes that are invoked by the methods of C. Keeping this
metric low can increase testability. In addition, architecture-level
coupling metrics, such as propagation cost and decoupling level, can



be used to measure and track the overall level of coupling in a
system’s architecture.
Ensuring that the system has high cohesion, loose coupling, and
separation of concerns—all modifiability tactics (see Chapter 8)—
can also help with testability. These characteristics limit the
complexity of the architectural elements by giving each element a
focused task such that it has limited interactions with other elements.
Separation of concerns can help achieve controllability and
observability, as well as reduce the size of the overall program’s
state space.
Finally, some architectural patterns lend themselves to testability. In
a layered pattern, you can test lower layers first, then test higher
layers with confidence in the lower layers.
Limit nondeterminism. The counterpart to limiting structural
complexity is limiting behavioral complexity. When it comes to
testing, nondeterminism is a pernicious form of complex behavior,
and nondeterministic systems are more difficult to test than
deterministic systems. This tactic involves finding all the sources of
nondeterminism, such as unconstrained parallelism, and weeding
them out to the extent possible. Some sources of nondeterminism are
unavoidable—for instance, in multi-threaded systems that respond to
unpredictable events—but for such systems, other tactics (such as
record/playback) are available to help manage this complexity.

Figure 12.4 summarizes the tactics used for testability.



Figure 12.4 Testability tactics

12.3 Tactics-Based Questionnaire for Testability
Based on the tactics described in Section 12.2, we can create a set of
tactics-inspired questions, as presented in Table 12.2. To gain an
overview of the architectural choices made to support testability, the
analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further
activities: investigation of documentation, analysis of code or other
artifacts, reverse engineering of code, and so forth.

Table 12.2 Tactics-Based Questionnaire for Testability

Tactics 
Group

Tactics Question Supp
orted
? 
(Y/N
)

R
i
s
k

Design 
Decisions 
and 
Location

Rational
e and 
Assumpt
ions

Control 
and 
Observe 

Does your system have 
specialized interfaces for 
getting and setting values?



Tactics 
Group

Tactics Question Supp
orted
? 
(Y/N
)

R
i
s
k

Design 
Decisions 
and 
Location

Rational
e and 
Assumpt
ions

System 
State

Does your system have a 
record/playback mechanism?
Is your system’s state storage 
localized?
Does your system abstract its 
data sources?
Can some or all of your system 
operate in a sandbox?
Is there a role for executable 
assertions in your system?

Limit 
Complexit
y

Does your system limit 
structural complexity in a 
systematic way?
Is there nondeterminism in your 
system, and is there a way to 
control or limit this 
nondeterminism?

12.4 Patterns for Testability
Patterns for testability all make it easier to decouple test-specific code
from the actual functionality of a system. We discuss three patterns here:
dependency injection, strategy, and intercepting filter.

Dependency Injection Pattern
In the dependency injection pattern, a client’s dependencies are separated
from its behavior. This pattern makes use of inversion of control. Unlike
in traditional declarative programming, where control and dependencies
reside explicitly in the code, inversion of control dependencies means
that control and dependencies are provided from, and injected into the
code, by some external source.



In this pattern, there are four roles:

A service (that you want to make broadly available)
A client of the service
An interface (used by the client, implemented by the service)
An injector (that creates an instance of the service and injects it into
the client)

When an interface creates the service and injects it into the client, a
client is written with no knowledge of a concrete implementation. In
other words, all of the implementation specifics are injected, typically at
runtime.

Benefits:

Test instances can be injected (rather than production instances),
and these test instances can manage and monitor the state of the
service. Thus the client can be written with no knowledge of how it
is to be tested. This is, in fact, how many modern testing
frameworks are implemented.

Tradeoffs:

Dependency injection makes runtime performance less predictable,
because it might change the behavior being tested.
Adding this pattern adds a small amount of up-front complexity and
may require retraining of developers to think in terms of inversion
of control.

Strategy Pattern
In the strategy pattern, a class’s behavior can be changed at runtime. This
pattern is often employed when multiple algorithms can be employed to
perform a given task, and the specific algorithm to be used can be chosen
dynamically. The class simply contains an abstract method for the
desired functionality, with the concrete version of this method being
selected based on contextual factors. This pattern is often used to replace
non-test versions of some functionality with test versions that provide
additional outputs, additional internal sanity checking, and so forth.



Benefits:

This pattern makes classes simpler, by not combining multiple
concerns (such as different algorithms for the same function) into a
single class.

Tradeoffs:

The strategy pattern, like all design patterns, adds a small amount
of up-front complexity. If the class is simple or if there are few
runtime choices, this added complexity is likely wasted.
For small classes, the strategy pattern can make code slightly less
readable. However, as complexity grows, breaking up the class in
this way can enhance readability.

Intercepting Filter Pattern
The intercepting filter pattern is used to inject pre- and post-processing
to a request or a response between a client and a service. Any number of
filters can be defined and applied, in an arbitrary order, to the request
before passing the request to the eventual service. For example, logging
and authentication services are filters that are often useful to implement
once and apply universally. Testing filters can be inserted in this way,
without disturbing any of the other processing in the system.

Benefits:

This pattern, like the strategy pattern, makes classes simpler, by not
placing all of the pre- and post-processing logic in the class.
Using an intercepting filter can be a strong motivator for reuse and
can dramatically reduce the size of the code base.

Tradeoffs:

If a large amount of data is being passed to the service, this pattern
can be highly inefficient and can add a nontrivial amount of latency,
as each filter makes a complete pass over the entire input.

12.5 For Further Reading



The literature on software testing would sink a battleship, but the writing
about how to make your system more testable from an architectural
standpoint is less voluminous. For a good overview of testing, see
[Binder 00]. Jeff Voas’s foundational work on testability and the
relationship between testability and reliability is worth investigating, too.
There are several papers to choose from, but [Voas 95] is a good start
that will point you to others.

Bertolino and Strigini [Bertolino 96a, 96b] are the developers of the
model of testing shown in Figure 12.1.

“Uncle Bob” Martin has written extensively on test-driven
development and the relationship between architecture and testing. The
best book on this is Robert C. Martin’s Clean Architecture: A
Craftsman’s Guide to Software Structure and Design [Martin 17]. An
early and authoritative reference for test-driven development was written
by Kent Beck: Test-Driven Development by Example [Beck 02].

The propagation cost coupling metric was first described in
[MacCormack 06]. The decoupling level metric was described in [Mo
16].

Model checking is a technique that symbolically executes all possible
code paths. The size of a system that can be validated using model
checking is limited, but device drivers and microkernels have
successfully been model checked. See
https://en.wikipedia.org/wiki/Model_checking for a list of model
checking tools.

12.6 Discussion Questions
1. A testable system is one that gives up its faults easily. That is, if a

system contains a fault, then it doesn’t take long or much effort to
make that fault show up. In contrast, fault tolerance is all about
designing systems that jealously hide their faults; there, the whole
idea is to make it very difficult for a system to reveal its faults. Is it
possible to design a system that is both highly testable and highly
fault tolerant, or are these two design goals inherently
incompatible? Discuss.

2. What other quality attributes do you think testability is most in
conflict with? What other quality attributes do you think testability
is most compatible with?

https://en.wikipedia.org/wiki/Model_checking


3. Many of the tactics for testability are also useful for achieving
modifiability. Why do you think that is?

4. Write some concrete testability scenarios for a GPS-based
navigation app. What tactics would you employ in a design to
respond to these scenarios?

5. One of our tactics is to limit nondeterminism, and one method is to
use locking to enforce synchronization. What impact does the use of
locks have on other quality attributes?

6. Suppose you’re building the next great social networking system.
You anticipate that within a month of your debut, you will have half
a million users. You can’t pay half a million people to test your
system, yet it has to be robust and easy to use when all half a
million are banging away at it. What should you do? What tactics
will help you? Write a testability scenario for this social network
system.

7. Suppose you use executable assertions to improve testability. Make
a case for, and then a case against, allowing the assertions to run in
the production system as opposed to removing them after testing.



13
Usability

People ignore design that ignores people.
—Frank Chimero

Usability is concerned with how easy it is for the user to accomplish a
desired task and the kind of user support that the system provides. Over
the years, a focus on usability has shown itself to be one of the cheapest
and easiest ways to improve a system’s quality (or more precisely, the
user’s perception of quality) and hence end-user satisfaction.

Usability comprises the following areas:

Learning system features. If the user is unfamiliar with a particular
system or a particular aspect of it, what can the system do to make
the task of learning easier? This might include providing help
features.
Using a system efficiently. What can the system do to make the user
more efficient in its operation? This might include enabling the user
to redirect the system after issuing a command. For example, the
user may wish to suspend one task, perform several operations, and
then resume that task.
Minimizing the impact of user errors. What can the system do to
ensure that a user error has minimal impact? For example, the user
may wish to cancel a command issued incorrectly or undo its effects.
Adapting the system to user needs. How can the user (or the system
itself) adapt to make the user’s task easier? For example, the system
may automatically fill in URLs based on a user’s past entries.
Increasing confidence and satisfaction. What does the system do to
give the user confidence that the correct action is being taken? For
example, providing feedback that indicates that the system is



performing a long-running task, along with the completion
percentage so far, will increase the user’s confidence in the system.

Researchers focusing on human–computer interactions have used the
terms user initiative, system initiative, and mixed initiative to describe
which of the human–computer pair takes the initiative in performing
certain actions and how the interaction proceeds. Usability scenarios can
combine initiatives from both perspectives. For example, when
canceling a command, the user issues a cancel (user initiative) and the
system responds. During the cancel, however, the system may display a
progress indicator (system initiative). Thus the cancel operation may
comprise a mixed initiative. In this chapter, we will use this distinction
between user initiative and system initiative to discuss the tactics that the
architect uses to achieve the various scenarios.

There is a strong connection between the achievement of usability and
modifiability. The user interface design process consists of generating
and then testing a user interface design. It is highly unlikely that you will
get this right the first time, so you should plan to iterate this process—
and hence you should design your architecture to make that iteration less
painful. This is why usability is strongly connected to modifiability. As
you iterate, deficiencies in the design are—one hopes—corrected and the
process repeats.

This connection has resulted in standard patterns to support user
interface design. Indeed, one of the most helpful things you can do to
achieve usability is to modify your system, over and over, to make it
better as you learn from your users and discover improvements to be
made.

13.1 Usability General Scenario
Table 13.1 enumerates the elements of the general scenario that
characterize usability.

Table 13.1 Usability General Scenario

Portio
n of 
Scena
rio

Description Possible Values



Portio
n of 
Scena
rio

Description Possible Values

Sourc
e

Where does the 
stimulus come 
from?

The end user (who may be in a specialized role, 
such as a system or network administrator) is 
the primary source of the stimulus for usability.

An external event arriving at a system (to which 
the user may react) may also be a stimulus 
source.

Stimul
us

What does the 
end user want?

End user wants to:

Use a system efficiently

Learn to use the system

Minimize the impact of errors

Adapt the system

Configure the system

Enviro
nment

When does the 
stimulus reach 
the system?

The user actions with which usability is 
concerned always occur at runtime or at system 
configuration time.



Portio
n of 
Scena
rio

Description Possible Values

Artifa
cts

What portion of 
the system is 
being 
stimulated?

Common examples include:

A GUI

A command-line interface

A voice interface

A touch screen

Respo
nse

How should the 
system 
respond?

The system should:

Provide the user with the features needed

Anticipate the user’s needs

Provide appropriate feedback to the user



Portio
n of 
Scena
rio

Description Possible Values

Respo
nse 
measu
re

How is the 
response 
measured?

One or more of the following:

Task time

Number of errors

Learning time

Ratio of learning time to task time

Number of tasks accomplished

User satisfaction

Gain of user knowledge

Ratio of successful operations to total 
operations

Amount of time or data lost when an error 
occurs

Figure 13.1 gives an example of a concrete usability scenario that you
could generate using Table 13.1: The user downloads a new application



and is using it productively after 2 minutes of experimentation.

Figure 13.1 Sample usability scenario

13.2 Tactics for Usability
Figure 13.2 shows the goal of the set of usability tactics.

Figure 13.2 The goal of usability tactics

Support User Initiative
Once a system is executing, usability is enhanced by giving the user
feedback about what the system is doing and by allowing the user to
make appropriate responses. For example, the tactics described next—
cancel, undo, pause/resume, and aggregate—support the user in either
correcting errors or being more efficient.



The architect designs a response for user initiative by enumerating and
allocating the responsibilities of the system to respond to the user
command. Here are some common examples of tactics to support user
initiative:

Cancel. When the user issues a cancel command, the system must be
listening for it (thus there is the responsibility to have a constant
listener that is not blocked by the actions of whatever is being
canceled); the activity being canceled must be terminated; any
resources being used by the canceled activity must be freed; and
components that are collaborating with the canceled activity must be
informed so that they can also take appropriate action.
Undo. To support the ability to undo, the system must maintain a
sufficient amount of information about system state so that an earlier
state may be restored, at the user’s request. Such a record may take
the form of state “snapshots”—for example, checkpoints—or a set of
reversible operations. Not all operations can be easily reversed. For
example, changing all occurrences of the letter “a” to the letter “b”
in a document cannot be reversed by changing all instances of “b” to
“a”, because some of those instances of “b” may have existed prior
to the original change. In such a case, the system must maintain a
more elaborate record of the change. Of course, some operations
cannot be undone at all: You can’t unship a package or unfire a
missile, for example.
Undo comes in flavors. Some systems allow a single undo (where
invoking undo again reverts you to the state in which you
commanded the first undo, essentially undoing the undo). In other
systems, commanding multiple undo operations steps you back
through many previous states, either up to some limit or all the way
back to the time when the application was last opened.
Pause/resume. When a user has initiated a long-running operation—
say, downloading a large file or a set of files from a server—it is
often useful to provide the ability to pause and resume the operation.
Pausing a long-running operation may be done to temporarily free
resources so that they may be reallocated to other tasks.
Aggregate. When a user is performing repetitive operations, or
operations that affect a large number of objects in the same way, it is
useful to provide the ability to aggregate the lower-level objects into
a single group, so that the operation may be applied to the group,



thus freeing the user from the drudgery, and potential for mistakes,
of doing the same operation repeatedly. An example is aggregating
all of the objects in a slide and changing the text to 14-point font.

Support System Initiative
When the system takes the initiative, it must rely on a model of the user,
a model of the task being undertaken by the user, or a model of the
system state. Each model requires various types of input to accomplish
its initiative. The support system initiative tactics identify the models the
system uses to predict either its own behavior or the user’s intention.
Encapsulating this information will make it easier to tailor or modify it.
Tailoring and modification can either be dynamically based on past user
behavior or happen offline during development. The relevant tactics are
described here:

Maintain task model. The task model is used to determine context so
the system can have some idea of what the user is attempting to do
and provide assistance. For example, many search engines provide
predictive type-ahead capabilities, and many mail clients provide
spell-correction. Both of these functions are based on task models.
Maintain user model. This model explicitly represents the user’s
knowledge of the system, the user’s behavior in terms of expected
response time, and other aspects specific to a user or a class of users.
For example, language-learning apps are constantly monitoring areas
where a user makes mistakes and then providing additional exercises
to correct those behaviors. A special case of this tactic is commonly
found in user interface customization, wherein a user can explicitly
modify the system’s user model.
Maintain system model. The system maintains an explicit model of
itself. This is used to determine expected system behavior so that
appropriate feedback can be given to the user. A common
manifestation of a system model is a progress bar that predicts the
time needed to complete the current activity.

Figure 13.3 summarizes the tactics to achieve usability.



Figure 13.3 Usability tactics

13.3 Tactics-Based Questionnaire for Usability
Based on the tactics described in Section 13.2, we can create a set of
usability tactics–inspired questions, as presented in Table 13.2. To gain
an overview of the architectural choices made to support usability, the
analyst asks each question and records the answers in the table. The
answers to these questions can then be made the focus of further
activities: investigation of documentation, analysis of code or other
artifacts, reverse engineering of code, and so forth.

Table 13.2 Tactics-Based Questionnaire for Usability

Tactics 
Group

Tactics Question Supp
orted
? 
(Y/N)

R
i
s
k

Design 
Decisions 
and 
Location

Rationale 
and 
Assumpti
ons

Support 
User 
Initiativ
e

Is the system able to listen to 
and respond to a cancel 
command?
Is it possible to undo the last 
command, or the last several 
commands?



Tactics 
Group

Tactics Question Supp
orted
? 
(Y/N)

R
i
s
k

Design 
Decisions 
and 
Location

Rationale 
and 
Assumpti
ons

Is it possible to pause and 
then resume long-running 
operations?
Is it possible to aggregate UI 
objects into a group and apply 
operations on the group?

Support 
System 
Initiativ
e

Does the system maintain a 
model of the task?
Does the system maintain a 
model of the user?
Does the system maintain a 
model of itself?

13.4 Patterns for Usability
We will briefly discuss three usability patterns: model-view-controller
(MVC) and its variants, observer, and memento. These patterns primarily
promote usability by promoting separation of concerns, which in turn
makes it easy to iterate the design of a user interface. Other kinds of
patterns are also possible—including patterns used in the design of the
user interface itself, such as breadcrumbs, shopping cart, or progressive
disclosure—but we will not discuss them here.

Model-View-Controller
MVC is likely the most widely known pattern for usability. It comes in
many variants, such as MVP (model-view-presenter), MVVM (model-
view-view-model), MVA (model-view-adapter), and so forth. Essentially
all of these patterns are focused on separating the model—the underlying
“business” logic of the system—from its realization in one or more UI
views. In the original MVC model, the model would send updates to a
view, which a user would see and interact with. User interactions—key
presses, button clicks, mouse motions, and so forth—are transmitted to
the controller, which interprets them as operations on the model and then



sends those operations to the model, which changes its state in response.
The reverse path was also a portion of the original MVC pattern. That is,
the model might be changed and the controller would send updates to the
view.

The sending of updates depends on whether the MVC is in one
process or is distributed across processes (and potentially across the
network). If the MVC is in one process, then the updates are sent using
the observer pattern (discussed in the next subsection). If the MVC is
distributed across processes, then the publish-subscribe pattern is often
used to send updates (see Chapter 8).

Benefits:

Because MVC promotes clear separation of concerns, changes to
one aspect of the system, such as the layout of the UI (the view),
often have no consequences for the model or the controller.
Additionally, because MVC promotes separation of concerns,
developers can be working on all aspects of the pattern—model,
view, and controller—relatively independently and in parallel.
These separate aspects can also be tested in parallel.
A model can be used in systems with different views, or a view
might be used in systems with different models.

Tradeoffs:

MVC can become burdensome for complex UIs, as information is
often sprinkled throughout several components. For example, if
there are multiple views of the same model, a change to the model
may require changes to several otherwise unrelated components.
For simple UIs, MVC adds up-front complexity that may not pay
off in downstream savings.
MVC adds a small amount of latency to user interactions. While
this is generally acceptable, it might be problematic for applications
that require very low latency.

Observer



The observer pattern is a way to link some functionality with one or
more views. This pattern has a subject—the entity being observed—and
one or more observers of that subject. Observers need to register
themselves with the subject; then, when the state of the subject changes,
the observers are notified. This pattern is often used to implement MVC
(and its variants)—for example, as a way to notify the various views of
changes to the model.

Benefits:

This pattern separates some underlying functionality from the
concern of how, and how many times, this functionality is
presented.
The observer pattern makes it easy to change the bindings between
the subject and the observers at runtime.

Tradeoffs:

The observer pattern is overkill if multiple views of the subject are
not required.
The observer pattern requires that all observers register and de-
register with the subject. If observers neglect to de-register, then
their memory is never freed, which effectively results in a memory
leak. In addition, this can negatively affect performance, since
obsolete observers will continue to be invoked.
Observers may need to do considerable work to determine if and
how to reflect a state update, and this work may be repeated for
each observer. For example, suppose the subject is changing its
state at a fine granularity, such as a temperature sensor that reports
1/100th degree fluctuations, but the view updates changes only in
full degrees. In such cases where there is an “impedance
mismatch,” substantial processing resources may be wasted.

Memento
The memento pattern is a common way to implement the undo tactic.
This pattern features three major components: the originator, the
caretaker, and the memento. The originator is processing some stream of
events that change its state (originating from user interaction). The



caretaker is sending events to the originator that cause it to change its
state. When the caretaker is about to change the state of the originator, it
can request a memento—a snapshot of the existing state—and can use
this artifact to restore that existing state if needed, by simply passing the
memento back to the originator. In this way, the caretaker knows nothing
about how state is managed; the memento is simply an abstraction that
the caretaker employs.

Benefits:

The obvious benefit of this pattern is that you delegate the
complicated process of implementing undo, and figuring out what
state to preserve, to the class that is actually creating and managing
that state. In consequence, the originator’s abstraction is preserved
and the rest of the system does not need to know the details.

Tradeoffs:

Depending on the nature of the state being preserved, the memento
can consume arbitrarily large amounts of memory, which can affect
performance. In a very large document, try cutting and pasting
many large sections, and then undoing all of that. This is likely to
result in your text processor noticeably slowing down.
In some programming languages, it is difficult to enforce the
memento as an opaque abstraction.

13.5 For Further Reading
Claire Marie Karat has investigated the relation between usability and
business advantage [Karat 94].

Jakob Nielsen has also written extensively on this topic, including a
calculation of the ROI of usability [Nielsen 08].

Bonnie John and Len Bass have investigated the relation between
usability and software architecture. They have enumerated
approximately two dozen usability scenarios that have architectural
impact and given associated patterns for these scenarios [Bass 03].

Greg Hartman has defined attentiveness as the system’s ability to
support user initiative and allow cancel or pause/resume [Hartman 10].



13.6 Discussion Questions
1. Write a concrete usability scenario for your automobile that

specifies how long it takes you to set your favorite radio stations.
Now consider another part of the driver experience and create
scenarios that test other aspects of the response measures from the
general scenario table (Table 13.1).

2. How might usability trade off against security? How might it trade
off against performance?

3. Pick a few of your favorite websites that do similar things, such as
social networking or online shopping. Now pick one or two
appropriate responses from the usability general scenario (such as
“anticipate the user’s need”) and an appropriate corresponding
response measure. Using the response and response measure you
chose, compare the websites’ usability.

4. Why is it that in so many systems, the cancel button in a dialog box
appears to be unresponsive? Which architectural principles do you
think were ignored in these systems?

5. Why do you think that progress bars frequently behave erratically,
moving from 10 to 90 percent in one step and then getting stuck on
90 percent?

6. Research the crash of Air France flight 296 into the forest at
Habsheim, France, in 1988. The pilots said they were unable to read
the digital display of the radio altimeter or hear its audible readout.
In this context, discuss the relationship between usability and safety.



14
Working with Other Quality
Attributes

Quality is not what happens when what you do matches your intentions. It
is what happens when what you do matches your customers’ expectations.

—Guaspari

Chapters 4–13 each dealt with a particular quality attribute (QA) that is
important to software systems. Each of those chapters discussed how its
particular QA is defined, gave a general scenario for that QA, and
showed how to write specific scenarios to express precise shades of
meaning concerning that QA. In addition, each provided a collection of
techniques to achieve that QA in an architecture. In short, each chapter
presented a kind of portfolio for specifying and designing to achieve a
particular QA.

However, as you can no doubt infer, those ten chapters only begin to
scratch the surface of the various QAs that you might need in a software
system you’re working on.

This chapter will show how to build the same kind of specification
and design approach for a QA not covered in our “A list.”

14.1 Other Kinds of Quality Attributes
The quality attributes covered so far in Part II of this book all have
something in common: They deal with either the system in operation, or
the development project that creates and fields the system. Put another
way, to measure one of those QAs, either you measure the system while
it is running (availability, energy efficiency, performance, security,
safety, usability), or you measure the people doing something to the
system while it is not (modifiability, deployability, integrability,



testability). While these certainly give you an “A list” of important QAs,
there are other qualities that could be equally useful.

Quality Attributes of the Architecture
Another category of QAs focuses on measuring the architecture itself.
Here are three examples:

Buildability. This QA measures how well the architecture lends itself
to rapid and efficient development. It is measured by the cost
(typically in money or time) that it takes to turn the architecture into
a working product that meets all of its requirements. In that sense, it
resembles the other QAs that measure a development project, but it
differs in that the knowledge targeted by the measurement relates to
the architecture itself.
Conceptual integrity. Conceptual integrity refers to consistency in
the design of the architecture, and it contributes to the architecture’s
understandability and leads to less confusion and more predictability
in its implementation and maintenance. Conceptual integrity
demands that the same thing is done in the same way through the
architecture. In an architecture with conceptual integrity, less is
more. For example, there are countless ways that components can
send information to each other: messages, data structures, signaling
of events, and so forth. An architecture with conceptual integrity
would feature a small number of ways, and provide alternatives only
if there is a compelling reason to do so. Similarly, components
should all report and handle errors in the same way, log events or
transactions in the same way, interact with the user in the same way,
sanitize data in the same way, and so forth.
Marketability. An architecture’s “marketability” is another QA of
concern. Some systems are well known for their architectures, and
these architectures sometimes carry a meaning all their own,
independent of what other QAs they bring to the system. The current
emphasis on building cloud-based and micro-service-based systems
has taught us that the perception of an architecture can be at least as
important as the actual qualities that the architecture brings. Many
organizations, for example, have felt compelled to build cloud-based
systems (or some other technologie du jour) whether or not that was
the correct technical choice.



Development Distributability
Development distributability is the quality of designing the software to
support distributed software development. Like modifiability, this quality
is measured in terms of the activities of a development project. Many
systems these days are developed using globally distributed teams. One
problem that must be overcome when adopting this approach is
coordinating the teams’ activities. The system should be designed so that
coordination among teams is minimized—that is, the major subsystems
should exhibit low coupling. This minimal coordination needs to be
achieved both for the code and for the data model. Teams working on
modules that communicate with each other may need to negotiate the
interfaces of those modules. When a module is used by many other
modules, each developed by a different team, communication and
negotiation become more complex and burdensome. Thus the
architectural structure and the social (and business) structure of the
project need to be reasonably aligned. Similar considerations apply for
the data model. Scenarios for development distributability will deal with
the compatibility of the communication structures and data model of the
system being developed and the coordination mechanisms utilized by the
organizations doing the development.

System Quality Attributes
Physical systems, such as aircraft and automobiles and kitchen
appliances, that rely on software embedded within them are designed to
meet a whole litany of QAs: weight, size, electric consumption, power
output, pollution output, weather resistance, battery life, and on and on.
Often the software architecture can have a profound effect on the
system’s QAs. For example, software that makes inefficient use of
computing resources might require additional memory, a faster
processor, a bigger battery, or even an additional processor (we dealt
with the topic of energy efficiency as a QA in Chapter 6). Additional
processors will add to a system’s power consumption, of course, but also
to its weight, its physical profile, and expense.

Conversely, the architecture or implementation of a system can enable
or preclude software from meeting its QA requirements. For example:

1. The performance of a piece of software is fundamentally
constrained by the performance of the processor that runs it. No
matter how well you design the software, you just can’t run the



latest whole-earth weather forecasting models on Grandpa’s laptop
and expect to know if it’s going to rain tomorrow.

2. Physical security is probably more important and more effective
than software security at preventing fraud and theft. If you don’t
believe this, write your laptop’s password on a slip of paper, tape it
to your laptop, and leave it in an unlocked car with the windows
down. (Actually, please don’t do that. Consider this a thought
experiment.)

The lesson here is that if you are the architect for software that resides
in a physical system, you will need to understand the QAs that are
important for the entire system to achieve, and work with the system
architects and engineers to ensure that your software architecture
contributes positively to achieving them.

The scenario techniques we introduced for software QAs work
equally well for system QAs. If the system engineers and architects
aren’t already using them, try to introduce them.

14.2 Using Standard Lists of Quality Attributes—Or
Not

Architects have no shortage of QA lists for software systems at their
disposal. The standard with the pause-and-take-a-breath title of
“ISO/IEC FCD 25010: Systems and Software Engineering: Systems and
Software Product Quality Requirements and Evaluation (SQuaRE):
System and Software Quality Models” is a good example (Figure 14.1).
This standard divides QAs into those supporting a “quality in use” model
and those supporting a “product quality” model. That division is a bit of
a stretch in some places, but it nevertheless begins a divide-and-conquer
march through a breathtaking array of qualities.



Figure 14.1 ISO/IEC FCD 25010 Product Quality Standard

ISO 25010 lists the following QAs that deal with product quality:

Functional suitability. Degree to which a product or system provides
functions that meet the stated and implied needs when used under
the specified conditions.



Performance efficiency. Performance relative to the amount of
resources used under the stated conditions.
Compatibility. Degree to which a product, system, or component can
exchange information with other products, systems, or components,
and/or perform its required functions, while sharing the same
hardware or software environment.
Usability. Degree to which a product or system can be used by
specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use.
Reliability. Degree to which a system, product, or component
performs the specified functions under the specified conditions for a
specified period of time.
Security. Degree to which a product or system protects information
and data so that persons or other products or systems have the degree
of data access appropriate to their types and levels of authorization.
Maintainability. Degree of effectiveness and efficiency with which a
product or system can be modified by the intended maintainers.
Portability. Degree of effectiveness and efficiency with which a
system, product, or component can be transferred from one
hardware, software, or other operational or usage environment to
another.

In ISO 25010, these “quality characteristics” are each composed of
“quality sub-characteristics” (for example, nonrepudiation is a sub-
characteristic of security). The standard slogs through almost five dozen
separate descriptions of quality sub-characteristics in this way. It defines
for us the qualities of “pleasure and “comfort.” It distinguishes between
“functional correctness” and “functional completeness,” and then adds
“functional appropriateness” for good measure. To exhibit
“compatibility,” systems must either have “interoperability” or just plain
“coexistence.” “Usability” is a product quality, not a quality-in-use
quality, although it includes “satisfaction,” which is a quality-in-use
quality. “Modifiability” and “testability” are both part of
“maintainability.” So is “modularity,” which is a strategy for achieving a
quality rather than a goal in its own right. “Availability” is part of
“reliability.” “Interoperability” is part of “compatibility.” And
“scalability” isn’t mentioned at all.



Got all that?
Lists like these—and there are many of them floating around—do

serve a purpose. They can be helpful checklists to assist requirements
gatherers in making sure that no important needs were overlooked. Even
more useful than standalone lists, they can serve as the basis for creating
your own checklist that contains the QAs of concern in your domain,
your industry, your organization, your products. QA lists can also serve
as the basis for establishing measures, though the names themselves give
little clue as to how to do this. If “fun” turns out to be an important
concern in your system, how do you measure it to know if your system
is providing enough of it?

General lists like these also have some drawbacks. First, no list will
ever be complete. As an architect, you will inevitably be called upon to
design a system to meet a stakeholder concern not foreseen by any list-
maker. For example, some writers speak of “manageability,” which
expresses how easy it is for system administrators to manage the
application. This can be achieved by inserting useful instrumentation for
monitoring operations and for debugging and performance tuning. We
know of an architecture that was designed with the conscious goal of
retaining key staff and attracting talented new hires to a quiet region of
the American Midwest. That system’s architects spoke of imbuing the
system with “Iowability.” They achieved it by bringing in state-of-the-art
technology and giving their development teams wide creative latitude.
Good luck finding “Iowability” in any standard list of QAs, but that QA
was as important to that organization as any other.

Second, lists often generate more controversy than understanding. You
might argue persuasively that “functional correctness” should be part of
“reliability,” or that “portability” is just a kind of “modifiability,” or that
“maintainability” is a kind of “modifiability” (not the other way around).
The writers of ISO 25010 apparently spent time and effort deciding to
make security its own characteristic, instead of a sub-characteristic of
functionality, which it was in a previous version. We strongly believe
that effort in making these arguments could be better spent elsewhere.

Third, these lists often purport to be taxonomies—that is, lists with the
special property that every member can be assigned to exactly one place.
But QAs are notoriously squishy in this regard. For example, we
discussed denial of service as being part of security, availability,
performance, and usability in Chapter 3.

These observations reinforce the lesson introduced in Chapter 3: QA
names, by themselves, are largely useless and are at best invitations to



begin a conversation. Moreover, spending time worrying about which
qualities are subqualities of which other qualities is almost useless.
Instead, scenarios provide the best way for us to specify precisely what
we mean when we speak of a QA.

Use standard lists of QAs to the extent that they are helpful as
checklists, but don’t feel the need to slavishly adhere to their
terminology or structure. And don’t fool yourself that such a checklist
removes the need for deeper analysis.

14.3 Dealing with “X-Ability”: Bringing a New QA
into the Fold

Suppose, as an architect, you had to deal with a QA for which there is no
compact body of knowledge, no “portfolio” like Chapters 4–13 provided
for those QAs. Suppose you find yourself having to deal with a QA like
“development distributability” or “manageability” or even “Iowability”?
What do you do?

Capture Scenarios for the New Quality Attribute
The first step is to interview the stakeholders whose concerns have led to
the need for this QA. You can work with them, either individually or as a
group, to build a set of attribute characterizations that refine what is
meant by the QA. For example, you might decompose development
distributability into the subattributes of software segmentation, software
composition, and team coordination. After that refinement, you can work
with the stakeholders to craft a set of specific scenarios that characterize
what is meant by that QA. An example of this process can be found in
Chapter 22, where we describe building a “utility tree.”

Once you have a set of specific scenarios, then you can work to
generalize the collection. Look at the set of stimuli you’ve collected, the
set of responses, the set of response measures, and so on. Use those to
construct a general scenario by making each part of the general scenario
a generalization of the specific instances you collected.

Model the Quality Attribute
If you can build (or even better, find) a conceptual model of the QA, that
foundation can be helpful in creating a set of design approaches for it. By
“model,” we don’t mean anything more than an understanding of the set



of parameters to which the QA is sensitive and the set of architectural
characteristics that influence those parameters. For example, a model of
modifiability might tell us that modifiability is a function of how many
places in a system have to be changed in response to a modification, and
the interconnectedness of those places. A model for performance might
tell us that throughput is a function of transactional workload, the
dependencies among the transactions, and the number of transactions
that can be processed in parallel.

Figure 14.2 shows a simple queuing model for performance. Such
models are widely used to analyze the latency and throughput of various
types of queuing systems, including manufacturing and service
environments, as well as computer systems.

Figure 14.2 A generic queuing model

Within this model, seven parameters can affect the latency that the
model predicts:

Arrival rate
Queuing discipline
Scheduling algorithm
Service time
Topology
Network bandwidth
Routing algorithm



These are the only parameters that can affect latency within this model.
This is what gives the model its power. Furthermore, each of these
parameters can be affected by various architectural decisions. This is
what makes the model useful for an architect. For example, the routing
algorithm can be fixed or it could be a load-balancing algorithm. A
scheduling algorithm must be chosen. The topology can be affected by
dynamically adding or removing new servers. And so forth.

If you are creating your own model, your set of scenarios will inform
your investigation. Its parameters can be derived from the stimuli (and
its sources), the responses (and their measures), the artifacts (and their
properties), and the environment (and its characteristics).

Assemble Design Approaches for the New Quality
Attribute
The process of generating a set of mechanisms based on a model
includes the following steps:

Enumerate the model’s parameters.
For each parameter, enumerate the architectural characteristics (and
the mechanisms to achieve those characteristics) that can affect this
parameter. You can do this by:

Revisiting a body of mechanisms you’re familiar with and
asking yourself how each one affects the QA parameter.
Searching for designs that have successfully dealt with this QA.
You can search on the name you’ve given the QA itself, but you
can also search for the terms you chose when you refined the
QA into subattributes.
Searching for publications and blog posts on this QA and
attempting to generalize their observations and findings.
Finding experts in this area and interviewing them or simply
writing and asking them for advice.

What results is a list of mechanisms to, in the example case, control
performance and, in the more general case, to control the QA that the
model is concerned with. This makes the design problem much more
tractable. This list of mechanisms is finite and reasonably small, because
the number of parameters of the model is bounded and for each



parameter, the number of architectural decisions to affect the parameter
is limited.

14.4 For Further Reading
The mother of all QA lists may be the one on—where else?—Wikipedia.
This list can be found, naturally enough, under “List of system quality
attributes.” As this book went to publication, you could gorge yourself
on definitions of more than 80 distinct QAs. Our favorite is
“demonstrability,” which is helpfully defined as the quality of being
demonstrable. Who says you can’t believe what you read on the Internet?

See Chapter 8 of [Bass 19] to get a list of qualities of a deployment
pipeline. These include traceability, testability (of the deployment
pipeline), tooling, and cycle time.

14.5 Discussion Questions
1. The Kingdom of Bhutan measures the happiness of its population,

and government policy is formulated to increase Bhutan’s GNH
(gross national happiness). Read about how the GNH is measured
(try grossnationalhappiness.com) and then sketch a general scenario
for the QA of happiness that will let you express concrete happiness
requirements for a software system.

2. Choose a QA not described in Chapters 4–13. For that QA,
assemble a set of specific scenarios that describe what you mean by
it. Use that set of scenarios to construct a general scenario for it.

3. For the QA you chose for question 2, assemble a set of design
mechanisms (patterns and tactics) that help you achieve it.

4. Repeat questions 2 and 3 for the QA of development cost, and then
for the QA of operating cost.

5. What might cause you to add a tactic or pattern to the sets of QAs
already described in Chapters 4–13 (or any other QA, for that
matter)?

6. Discuss how you think development distributability tends to trade
off against the QAs of performance, availability, modifiability, and
integrability.

http://grossnationalhappiness.com/


7. Research some QA lists for things that are not software systems:
qualities of a good car, for example, or a good person to be in a
relationship with. Add qualities of your own choosing to the list or
lists that you find.

8. Development-time tactics have to do with separating and
encapsulating responsibilities. Performance tactics have to do with
putting things together. That is why they are perpetually in conflict.
Must it always be so? Is there a principled way of quantifying the
tradeoffs?

9. Is there a taxonomy of tactics? Chemists have the periodic table and
laws of molecular interaction, atomic physicists have their catalogs
of subatomic particles and laws for what happens when they collide,
pharmacologists have their catalogs of chemicals and laws for their
interactions with receptors and metabolic systems, and so forth.
What is the equivalent for tactics? And are there laws for their
interaction?

10. Security is a QA that is especially sensitive to processes that take
place in the physical world outside the computer: processes for
applying patches, processes for choosing and safeguarding your
passwords, processes for physically securing the installations where
computers and data live, processes for deciding whether to trust a
piece of imported software, processes for deciding whether to trust
a human developer or user, and so forth. What are the
corresponding processes that are important for performance? Or
usability? Are there any? Why is security so process-sensitive?
Should processes be a portion of the QA structure or are they
orthogonal to it?

11. What is the relationship between each pair of QAs in the following
list?

Performance and security
Security and buildability
Energy efficiency and time to market
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Software Interfaces
With Cesare Pautasso

NASA lost its $125-million Mars Climate Orbiter because spacecraft
engineers failed to convert from English to metric measurements when

exchanging vital data before the craft was launched. . . .

A navigation team at [NASA] used the metric system of millimeters and
meters in its calculations, while [the company that] designed and built the

spacecraft provided crucial acceleration data in the English system of
inches, feet and pounds. . . .

In a sense, the spacecraft was lost in translation.
—Robert Lee Hotz, “Mars Probe Lost Due to Simple Math Error,” Los

Angeles Times, October 1, 1999

This chapter describes the concepts surrounding interfaces, and discusses
how to design and document them.

An interface, software or otherwise, is a boundary across which
elements meet and interact, communicate, and coordinate. Elements
have interfaces that control access to their internals. Elements may also
be subdivided, with each sub-element having its own interface.

An element’s actors are the other elements, users, or systems with
which it interacts. The collection of actors with which an element
interacts is called the environment of the element. By “interacts,” we
mean anything one element does that can impact the processing of
another element. This interaction is part of the element’s interface.
Interactions can take a variety of forms, though most involve the transfer
of control and/or data. Some are supported by standard programming-
language constructs, such as local or remote procedure calls (RPCs),
data streams, shared memory, and message passing.



These constructs, which provide points of direct interaction with an
element, are called resources. Other interactions are indirect. For
example, the fact that using resource X on element A leaves element B
in a particular state is something that other elements using the resource
may need to know if it affects their processing, even though they never
interact with element A directly. That fact about A is a part of the
interface between A and the other elements in A’s environment. In this
chapter, we focus only on the direct interactions.

Recall that, in Chapter 1, we defined architecture in terms of elements
and their relationships. In this chapter, we focus on one type of
relationship. Interfaces are a fundamental abstraction mechanism
necessary to connect elements together. They have an outsized impact on
a system’s modifiability, usability, testability, performance, integrability,
and more. Furthermore, asynchronous interfaces, which are commonly
part of distributed systems, require event handlers—an architectural
element.

For a given element’s interface, there can be one or more
implementations, each of which might have different performance,
scalability, or availability guarantees. Likewise, different
implementations for the same interface may be constructed for different
platforms.

Three points are implied by the discussion thus far:
1. All elements have interfaces. All elements interact with some

actors; otherwise, what is the point of the element’s existence?
2. Interfaces are two-way. When considering interfaces, most

software engineers first think of a summary of what an element
provides. What methods does the element make available? What
events does it process? But an element also interacts with its
environment by making use of resources external to it or by
assuming that its environment behaves in a certain way. If these
resources are missing or if the environment doesn’t behave as
expected, the element can’t function correctly. So an interface is
more than what is provided by an element; an interface also
includes what is required by an element.

3. An element can interact with more than one actor through the
same interface. For example, web servers often restrict the number
of HTTP connections that can be open simultaneously.



15.1 Interface Concepts
In this section, we discuss the concepts of multiple interfaces, resources,
operations, properties, and events, as well as the evolution of interfaces.

Multiple Interfaces
It is possible to split a single interface into multiple interfaces. Each of
these has a related logical purpose, and serves a different class of actors.
Multiple interfaces provide a kind of separation of concerns. A specific
class of actor might require only a subset of the functionality available;
this functionality can be provided by one of the interfaces. Conversely,
the provider of an element may want to grant actors different access
rights, such as read or write, or to implement a security policy. Multiple
interfaces support different levels of access. For example, an element
might expose its functionality through its main interface and give access
to debugging or performance monitoring data or administrative functions
via separate interfaces. There may be public read-only interfaces for
anonymous actors and private interfaces that allow authenticated and
authorized actors to modify the state of an element.

Resources
Resources have syntax and semantics:

Resource syntax. The syntax is the resource’s signature, which
includes any information that another program will need to write a
syntactically correct program that uses the resource. The signature
includes the name of the resource, the names and data types of
arguments, if any, and so forth.
Resource semantics. What is the result of invoking this resource?
Semantics come in a variety of guises, including the following:

Assignment of values to data that the actor invoking the resource
can access. The value assignment might be as simple as setting
the value of a return argument or as far-reaching as updating a
central database.
Assumptions about the values crossing the interface.
Changes in the element’s state brought about by using the
resource. This includes exceptional conditions, such as side



effects from a partially completed operation.
Events that will be signaled or messages that will be sent as a
result of using the resource.
How other resources will behave differently in the future as the
result of using this resource. For example, if you ask a resource
to destroy an object, trying to access that object in the future
through other resources could produce an error as a result.
Humanly observable results. These are prevalent in embedded
systems. For example, calling a program that turns on a display
in a cockpit has a very observable effect—the display comes on.
In addition, the statement of semantics should make it clear
whether the execution of the resource will be atomic or may be
suspended or interrupted.

Operations, Events, and Properties
The resources of provided interfaces consist of operations, events, and
properties. These resources are complemented by an explicit description
of the behavior caused or data exchanged when accessing each interface
resource in terms of its syntax, structure, and semantics. (Without this
description, how would the programmer or actor know whether or how
to use the resources?)

Operations are invoked to transfer control and data to the element for
processing. Most operations also return a result. Operations may fail,
and as part of the interface it should be clear how actors can detect
errors, either signaled as part of the output or through some dedicated
exception-handling channel.

In addition, events—which are normally asynchronous—may be
described in interfaces. Incoming events can represent the receipt of a
message taken from a queue, or the arrival of a stream element that is to
be consumed. Active elements—those that do not passively wait to be
invoked by other elements—produce outgoing events used to notify
listeners (or subscribers) about interesting things happening within the
element.

In addition to the data transferred via operations and events, an
important aspect of interfaces is metadata, such as access rights, units of
measure, or formatting assumptions. Another name for this interface
metadata is properties. Property values can influence the behavior of



operations, as highlighted in the quotation that began this chapter.
Property values also affect the behavior of the element, depending on its
state.

Complex interfaces of elements that are both stateful and active will
feature a combination of operations, events, and properties.

Interface Evolution
All software evolves, including interfaces. Software that is encapsulated
by an interface is free to evolve without impact to the elements that use
this interface as long as the interface itself does not change. An interface,
however, is a contract between an element and its actors. Just as a legal
contract can be changed only within certain constraints, software
interfaces should be changed with care. Three techniques can be used to
change an interface: deprecation, versioning, and extension.

Deprecation. Deprecation means removing an interface. Best
practice when deprecating an interface is to give extensive notice to
the actors of the element. This warning, in theory, allows the actors
time to adjust to the interface’s removal. In practice, many actors
will not adjust in advance, but rather will discover the deprecation
only when the interface is removed. One technique when
deprecating an interface is to introduce an error code signifying that
this interface is to be deprecated at (specific date) or that this
interface has been deprecated.
Versioning. Multiple interfaces support evolution by keeping the old
interface and adding a new one. The old one can be deprecated when
it is no longer needed or the decision has been made to no longer
support it. This requires the actor to specify which version of an
interface it is using.
Extension. Extending an interface means leaving the original
interface unchanged and adding new resources to the interface that
embody the desired changes. Figure 15.1(a) shows the original
interface. If the extension does not contain any incompatibilities
with the original interface, then the element can implement the
external interface directly, as shown in Figure 15.1(b). In contrast, if
the extension introduces some incompatibilities, then it is necessary
to have an internal interface for the element and to add a mediator to
translate between the external interface and the internal interface, as



shown in Figure 15.1(c). As an example of an incompatibility,
suppose the original interface assumed that apartment numbers were
included in the address but the extended interface broke out
apartment numbers as a separate parameter. The internal interface
would have the apartment number as a separate parameter. Then the
mediator, if invoked from the original interface, would parse the
address to determine any apartment number, whereas the mediator
would pass the apartment number included in the separate parameter
on to the internal interface unchanged.

Figure 15.1 (a) The original interface. (b) Extending the interface.
(c) Using an intermediary.

15.2 Designing an Interface
Decisions about which resources should be externally visible should be
driven by the needs of actors that use the resources. Adding resources to
an interface implies a commitment to maintain those resources as part of
the interface for as long as the element will be in use. Once actors start to



depend on a resource you provide, their elements will break if the
resource is changed or removed. The reliability of your architecture is
affected when the interface contract between elements is broken.

Some additional design principles for interfaces are highlighted here:

Principle of least surprise. Interfaces should behave consistently
with the actor’s expectations. Names play a role here: An aptly
named resource gives actors a good hint about what the resource can
be used for.
Small interfaces principle. If two elements need to interact, have
them exchange as little information as possible.
Uniform access principle. Avoid leaking implementation details
through the interface. A resource should be accessible to its actors in
the same way regardless of how they are implemented. An actor
should be unaware, for example, whether a value is returned from a
cache, from a computation, or from a fresh fetch of the value from
some external source.
Don’t repeat yourself principle. Interfaces should offer a set of
composable primitives as opposed to many redundant ways to
achieve the same goal.

Consistency is an important aspect of designing clear interfaces. As an
architect, you should establish and follow conventions on how resources
are named, how API parameters are ordered, and how errors should be
handled. Of course, not all interfaces are under the control of the
architect, but insofar as possible the design of interfaces should be
consistent throughout all elements of the same architecture. Developers
will also appreciate it if interfaces follow the conventions of the
underlying platform or the programming language idioms they expect.
More than winning developers’ goodwill, however, consistency will help
minimize the number of development errors based on misunderstanding.

A successful interaction with an interface requires agreement on the
following aspects:

1. Interface scope
2. Interaction style
3. Representation and structure of the exchanged data
4. Error handling



Each of these constitutes an important aspect of designing an
interface. We’ll cover each in turn.

Interface Scope
The scope of an interface defines the collection of resources directly
available to the actors. You, as an interface designer, might want to
reveal all resources; alternatively, you might wish to constrain the access
to certain resources or to certain actors. For example, you might want to
constrain access for reasons of security, performance management, and
extensibility.

A common pattern for constraining and mediating access to resources
of an element or a group of elements is to establish a gateway element.
A gateway—often called a message gateway—translates actor requests
into requests to the target element’s (or elements’) resources, and so
becomes an actor for the target element or elements. Figure 15.2
provides an example of a gateway. Gateways are useful for the following
reasons:

The granularity of resources provided by an element may be
different than an actor needs. A gateway can translate between
elements and actors.
Actors may need access to, or be restricted to, specific subsets of the
resources.
The specifics of the resources—their number, protocol, type,
location, and properties—may change over time, and the gateway
can provide a more stable interface.



Figure 15.2 A gateway that provides access to a variety of different
resources

We now turn to the specifics of designing particular interfaces. This
means deciding which operations, events, and properties it should
feature. Additionally, you must choose suitable data representation
formats and data semantics to ensure the compatibility and
interoperability of your architectural elements with each other. Our
opening quotation gives one example of the importance of these
decisions.

Interaction Styles
Interfaces are meant to be connected together so that different elements
can communicate (transfer data) and coordinate (transfer control). There
are many ways for such interactions to take place, depending on the mix
between communication and coordination, and on whether the elements
will be co-located or remotely deployed. For example:

Interfaces of co-located elements may provide efficient access to
large quantities of data via local shared memory buffers.



Elements that are expected to be available at the same time can use
synchronous calls to invoke the operations they require.
Elements deployed in an unreliable distributed environment will
need to rely on asynchronous interactions based on consuming and
producing events, exchanged via message queues or data streams.

Many different interaction styles exist, but we will focus on two of the
most widely used: RPC and REST.

Remote Procedure Call (RPC). RPC is modeled on procedure calls
in imperative languages, except that the called procedure is located
elsewhere on a network. The programmer codes the procedure call
as if a local procedure were being called (with some syntactic
variation); the call is then translated into a message sent to a remote
element where the actual procedure is invoked. Finally, the results
are sent back as a message to the calling element.
RPC dates from the 1980s and has undergone many modifications
since its inception. The early versions of this protocol were
synchronous, with the parameters of the message being sent as text.
The most recent RPC version, called gRPC, transfers parameters in
binary, is asynchronous, and supports authentication, bidirectional
streaming and flow control, blocking or nonblocking bindings, and
cancellation and timeouts. gRPC uses HTTP 2.0 for transport.
Representational State Transfer (REST). REST is a protocol for web
services. It grew out of the original protocol used when the World
Wide Web was introduced. REST comprises a set of six constraints
imposed on the interactions between elements:

Uniform interface. All interactions use the same form (typically
HTTP). Resources on the providing side of the interface are
specified via URIs (Uniform Resource Identifiers). Naming
conventions should be consistent and, in general, the principle of
least surprise should be followed.
Client-server. The actors are clients and the resource providers
are servers using the client-server pattern.
Stateless. All client-server interactions are stateless. That is, the
client should not assume that the server has retained any
information about the client’s last request. In consequence,



interactions such as authorization are encoded into a token and
the token is passed with each request.
Cacheable. Caching is applied to resources when applicable.
Caching can be implemented on the server side or the client side.
Tiered system architecture. The “server” can be broken into
multiple independent elements, which may be deployed
independently. For example, the business logic and the database
can be deployed independently.
Code on demand (optional). It is possible for the server to
provide code to the client to be executed. JavaScript is an
example.

Although not the only protocol that can be used with REST, HTTP is
the most common choice. HTTP, which has been standardized by the
World Wide Web Consortium (W3C), has the basic form of <command>
<URI>. Other parameters can be included, but the heart of the protocol
is the command and the URI. Table 15.1 lists the five most important
commands in HTTP and describes their relationship to the traditional
CRUD (create, read, update, delete) database operations.

Table 15.1 Most Important Commands in HTTP and Their Relationship
to CRUD Database Operations

HTTP Command CRUD Operation Equivalent
post create
get read
put update/replace
patch update/modify
delete delete

Representation and Structure of Exchanged Data
Every interface provides the opportunity to abstract the internal data
representation, which is typically built using programming language data
types (e.g., objects, arrays, collections), into a different one—that is, a
representation more suitable for being exchanged across different
programming language implementations and sent across the network.



Converting from the internal to the external representation is termed
“serialization,” “marshaling,” or “translation.”

In the following discussion, we focus on the selection of a general-
purpose data interchange format or representation for sending
information over a network. This decision is based on the following
concerns:

Expressiveness. Can the representation serialize arbitrary data
structures? Is it optimized for trees of objects? Does it need to carry
text written in different languages?
Interoperability. Does the representation used by the interface match
what its actors expect and know how to parse? A standard
representation (such as JSON, described later in this section) will
make it easy for actors to transform the bits transmitted across the
network into internal data structures. Does the interface implement a
standard?
Performance. Does the chosen representation allow efficient usage
of the available communication bandwidth? What is the algorithmic
complexity of parsing the representation to read its content into the
internal element representation? How much time is spent preparing
the messages before they can be sent out? What is the monetary cost
of the required bandwidth?
Implicit coupling. What are the assumptions shared by the actors and
elements that could lead to errors and data loss when decoding
messages?
Transparency. Is it possible to intercept the exchanged messages and
easily observe their content? This is a double-edged sword. On the
one hand, if self-describing messages help developers more easily
debug message payloads and eavesdroppers more readily intercept
and interpret their content. On the other hand, binary representations,
particularly encrypted ones, require special debugging tools, but are
more secure.

The most common programming-language–independent data
representation styles can be divided between textual (e.g., XML or
JSON) and binary (e.g., protocol buffers) options.

EXtensible Markup Language (XML)



XML was standardized by the World Wide Web Consortium (W3C) in
1998. XML annotations to a textual document, called tags, are used to
specify how to interpret the information in the document by breaking the
information into chunks or fields and identifying the data type of each
field. Tags can be annotated with attributes.

XML is a meta-language: Out of the box, it does nothing except allow
you to define a customized language to describe your data. Your
customized language is defined by an XML schema, which is itself an
XML document that specifies the tags you will use, the data type that
should be used to interpret fields enclosed by each tag, and the
constraints that apply to the structure of your document. XML schemas
enable you as an architect to specify a rich information structure.

XML documents are used as representations of structured data for
many purposes: for messages exchanged in a distributed system (SOAP),
the content of web pages (XHTML), vector images (SVG), business
documents (DOCX), web service interface description (WSDL), and
static configuration files (e.g., MacOS property lists).

One strength of XML is that a document annotated using this
language can be checked to validate that it conforms to a schema. This
prevents faults caused by malformed documents and eliminates the need
for some kinds of error checking by the code that reads and processes
the document. The tradeoff is that parsing the document and validating it
are relatively expensive in terms of processing and memory. A document
must be read completely before it can be validated and may require
multiple read passes to unmarshal. This requirement, coupled with
XML’s verbosity, can result in unacceptable runtime performance and
bandwidth consumption. While during XML’s heyday the argument was
often made that “XML is human readable,” today this benefit is cited far
less often.

JavaScript Object Notation (JSON)
JSON structures data as nested name/value pairs and array data types.
The JSON notation grew out of the JavaScript language and was first
standardized in 2013; today, however, it is independent of any
programming language. Like XML, JSON is a textual representation
featuring its own schema language. Compared to XML, however, JSON
is significantly less verbose, as field names occur only once. Using a
name/value representation instead of start and end tags, JSON documents
can be parsed as they are read.



JSON data types are derived from JavaScript data types, and resemble
those of any modern programming language. This makes JSON
serialization and deserialization much more efficient than XML. The
notation’s original use case was to send JavaScript objects between a
browser and web server—for example, to transfer a lightweight data
representation to be rendered as HTML in the browser, as opposed to
performing the rendering on the server side and having to download
more verbose views represented using HTML.

Protocol Buffers
The Protocol Buffer technology originated at Google and was used
internally for several years before being released as open source in 2008.
Like JSON, Protocol Buffers use data types that are close to
programming-language data types, making serialization and
deserialization efficient. As with XML, Protocol Buffer messages have a
schema that defines a valid structure, and that schema can specify both
required and optional elements and nested elements. However, unlike
both XML and JSON, Protocol Buffers are a binary format, so they are
extremely compact and use memory and network bandwidth resources
quite efficiently. In this respect, Protocol Buffers harken back to a much
earlier binary representation called Abstract Syntax Notation One
(ASN.1), which originated in the early 1980s when network bandwidth
was a precious resource and no bit could be wasted.

The Protocol Buffers open source project provides code generators to
allow easy use of Protocol Buffers with many programming languages.
You specify your message schema in a proto file, which is then compiled
by a language-specific protocol buffer compiler. The procedures
generated by the compilers will be used by an actor to serialize and by
an element to deserialize the data.

As when using XML and JSON, the interacting elements may be
written in different languages. Each element then uses the Protocol
Buffer compiler specific to its language. Although Protocol Buffers can
be used for any data-structuring purpose, they are mostly employed as
part of the gRPC protocol.

Protocol Buffers are specified using an interface description language.
Since they are compiled by language-specific compilers, the
specification is necessary to ensure correct behavior of the interface. It
also acts as documentation for the interfaces. Placing the interface



specification in a database allows for searching it to see how values
propagate through the various elements.

Error Handling
When designing an interface, architects naturally concentrate on how it
is supposed to be used in the nominal case, when everything works
according to plan. The real world, of course, is far from the nominal
case, and a well-designed system must know how to take appropriate
action in the face of undesired circumstances. What happens when an
operation is called with invalid parameters? What happens when a
resource requires more memory than is available? What happens when a
call to an operation never returns, because it has failed? What happens
when the interface is supposed to trigger a notification event based on
the value of a sensor, but the sensor isn’t responding or is responding
with gibberish?

Actors need to know whether the element is working correctly,
whether their interaction is successful and whether an error has occurred.
Strategies to do so include the following:

Failed operations may throw an exception.
Operations may return a status indicator with predefined codes,
which would need to be tested to detect erroneous outcomes.
Properties may be used to store data indicating whether the latest
operation was successful or not, or whether stateful elements are in
an erroneous state.
Error events such as a timeout may be triggered for failed
asynchronous interactions.
The error log may be read by connecting to a specific output data
stream.

The specification of which exceptions, which status codes, which
events, and which information are used to describe erroneous outcomes
becomes part of the interface of an element. Common sources of errors
(which the interface should handle gracefully) include the following:

Incorrect, invalid, or illegal information was sent to the interface—
for example, calling an operation with a null value parameter that



should not be null. Associating an error condition with the resource
is the prudent thing to do.
The element is in the wrong state for handling the request. The
element may have entered the improper state as a result of a previous
action or the lack of a previous action on the part of the same or
another actor. Examples of the latter include invoking an operation
or reading a property before the element’s initialization has
completed, and writing to a storage device that has been taken
offline by the system’s human operator.
A hardware or software error occurred that prevented the element
from successfully executing. Processor failures, failure of the
network to respond, and inability to allocate more memory are
examples of this kind of error condition.
The element is not configured correctly. For example, its database
connection string refers to the wrong database server.

Indicating the source of the error helps the system choose the
appropriate correction and recovery strategy. Temporary errors with
idempotent operations can be dealt with by waiting and retrying. Errors
due to invalid input require fixing the bad requests and resending them.
Missing dependencies should be reinstalled before reattempting to use
the interface. Implementation bugs should be fixed by adding the usage
failure scenario as an additional test case to avoid regressions.

15.3 Documenting the Interface
Although an interface comprises all aspects of the interaction that an
element has with its environment, what we choose to disclose about an
interface—that is, what we put in an interface’s documentation—is more
limited. Writing down every aspect of every possible interaction is not
practical and almost never desirable. Rather, you should expose only
what the actors on an interface need to know to interact with it. Put
another way, you choose what information is permissible and appropriate
for people to assume about the element.

The interface documentation indicates what other developers need to
know about an interface to use it in combination with other elements. A
developer might subsequently observe properties that are a manifestation
of how the element is implemented, but that are not detailed in the
interface documentation. Because these are not part of the interface



documentation, they are subject to change, and developers use them at
their own risk.

Also recognize that different people need to know different kinds of
information about the interface. You may have to include separate
sections in the interface documentation that accommodate different
stakeholders of the interface. As you document an element’s interface,
keep the following stakeholder roles in mind:

Developer of the element. Needs to be aware of the contract that
their interface must fulfill. Developers can test only the information
embodied in the interface description.
Maintainer. A special kind of developer who makes assigned
changes to the element and its interface while minimizing disruption
of existing actors.
Developer of an element using the interface. Needs to understand the
interface’s contract and how to use it. Such developers can provide
input to the interface design and documentation process in terms of
use cases that the interface should support.
Systems integrator and tester. Puts the system together from its
constituent elements and has a strong interest in the behavior of the
resulting assembly. This role needs detailed information about all the
resources and functionality provided by and required by an element.
Analyst. This role depends on the types of analyses conducted. For a
performance analyst, for example, the interface documentation
should include a service level agreement (SLA) guarantee, so that
actors can adjust their requests appropriately.
Architect looking for assets to reuse in a new system. Often starts by
examining the interfaces of elements from a previous system. The
architect may also look in the commercial marketplace to find off-
the-shelf elements that can be purchased and do the job. To see
whether an element is a candidate, the architect is interested in the
capabilities of the interface resources, their quality attributes, and
any variability that the element provides.

Describing an element’s interface means making statements about the
element that other elements can depend on. Documenting an interface
means that you have to describe which services and properties are parts
of the contract—a step that represents a promise to actors that the



element will, indeed, fulfill this contract. Every implementation of the
element that does not violate the contract is a valid implementation.

A distinction must be drawn between the interface of an element and
the documentation of that interface. What you can observe about an
element is part of its interface—how long an operation takes, for
example. The documentation of the interface covers a subset of that
behavior: It lays out what we want our actors to be able to depend on.

“Hyrum’s law” (www.hyrumslaw.com) states: “With a sufficient
number of users of an interface, it does not matter what you promise in
the contract: All observable behaviors of your system will be depended
on by somebody.” True enough. But, as we said earlier, an actor that
depends on what you do not publish about an element’s interface does so
at its own risk.

15.4 Summary
Architectural elements have interfaces, which are boundaries over which
elements interact with each other. Interface design is an architectural
duty, because compatible interfaces allow architectures with many
elements to do something productive and useful together. A primary use
of an interface is to encapsulate an element’s implementation, so that this
implementation may change without affecting other elements.

Elements may have multiple interfaces, providing different types of
access and privileges to different classes of actors. Interfaces state which
resources the element provides to its actors as well as what the element
needs from its environment to function correctly. Like architectures
themselves, interfaces should be as simple as possible, but no simpler.

Interfaces have operations, events, and properties; these are the parts
of an interface that the architect can design. To do so, the architect must
decide the element’s

Interface scope
Interaction style
Representation, structure, and semantics of the exchanged data
Error handling

Some of these issues can be addressed by standardized means. For
example, data exchange can use mechanisms such as XML, JSON, or
Protocol Buffers.

http://www.hyrumslaw.com/


All software evolves, including interfaces. Three techniques that can
be used to change an interface are deprecation, versioning, and
extension.

The interface documentation indicates what other developers need to
know about an interface to use it in combination with other elements.
Documenting an interface involves deciding which element operations,
events, and properties to expose to the element’s actors, and detailing the
interface’s syntax and semantics.

15.5 For Further Reading
To see the difference between an XML representation, a JSON
representation, and a Protocol Buffer representation of a postal address,
see https://schema.org/PostalAddress, https://schema.org/PostalAddress,
and https://github.com/mgravell/protobuf-
net/blob/master/src/protogen.site/wwwroot/protoc/google/type/postal_ad
dress.proto.

You can read more about gRPC at https://grpc.io/.
REST was defined by Roy Fielding in his PhD thesis:

ics.uci.edu/~fielding/pubs/dissertation/top.htm.

15.6 Discussion Questions
1. Describe the interface to a dog, or another kind of animal with

which you are familiar. Describe its operations, events, and
properties. Does a dog have multiple interfaces (e.g., one for a
known human and another for a stranger)?

2. Document the interface to a light bulb. Document its operations,
events, and properties. Document its performance and resource
utilization. Document any error states it may enter and what the
result will be. Can you think of multiple implementations that have
the same interface you just described?

3. Under what circumstances should performance (e.g., how long an
operation takes) be a part of an element’s published interface?
Under what circumstances should it not?

4. Suppose an architectural element will be used in a high-availability
system. How might that affect its interface documentation? Suppose

https://schema.org/PostalAddress
https://schema.org/PostalAddress
https://github.com/mgravell/protobuf-net/blob/master/src/protogen.site/wwwroot/protoc/google/type/postal_address.proto
https://grpc.io/
http://ics.uci.edu/~fielding/pubs/dissertation/top.htm


the same element will now be used in a high-security system. What
might you document differently?

5. The section “Error Handling” listed a number of different error-
handling strategies. For each, when is its use appropriate?
Inappropriate? What quality attributes will each enhance or
diminish?

6. What would you have done to prevent the interface error that led to
the loss of the Mars Climate Orbiter, as described at the beginning
of this chapter?

7. On June 4, 1996, an Ariane 5 rocket failed quite spectacularly, only
37 seconds after launch. Research this failure, and discuss what
better interface discipline could have done to prevent it.

8. A database schema represents an interface between an element and
a database; it provides the metadata for accessing the database.
Given this view, schema evolution is a form of interface evolution.
Discuss ways in which a schema can evolve and not break the
existing interface, and ways in which it does break it. Describe how
deprecation, versioning, and extension apply to schema evolution.



16
Virtualization

Virtual means never knowing where your next byte is coming from.
—Unknown

In the 1960s, the computing community was frustrated by the problem of
sharing resources such as memory, disk, I/O channels, and user input
devices on one physical machine among several independent
applications. The inability to share resources meant that only one
application could be run at a time. Computers at that time cost millions
of dollars—real money in those days—and most applications used only a
fraction, typically around 10%, of the available resources, so this
situation had a significant effect on computing costs.

Virtual machines and, later, containers emerged to deal with sharing.
The goal of these virtual machines and containers is to isolate one
application from another, while still sharing resources. Isolation allows
developers to write applications as if they are the only ones using the
computer, while sharing resources allows multiple applications to run on
the computer at the same time. Because the applications are sharing one
physical computer with a fixed set of resources, there are limits to the
illusion that isolation creates. If, for example, one application consumes
all of the CPU resources, then the other applications cannot execute. For
most purposes, however, these mechanisms have changed the face of
systems and software architecture. They fundamentally change how we
conceive of, deploy, and pay for computing resources.

Why is this topic of interest and concern to architects? As an architect,
you may be inclined—or indeed required—to use some form of
virtualization to deploy the software that you create. For an increasingly
large set of applications, you’ll be deploying to the cloud (coming up in
Chapter 17) and using containers to do it. Furthermore, in cases where
you will deploy to specialized hardware, virtualization allows you to



perform testing in an environment that is much more accessible than the
specialized hardware.

The purpose of this chapter is to introduce some of the most important
terms, considerations, and tradeoffs in employing virtual resources.

16.1 Shared Resources
For economic reasons, many organizations have adopted some forms of
shared resources. These can dramatically lower the costs of deploying a
system. There are four resources that we typically care about sharing:

1. Central processor unit (CPU). Modern computers have multiple
CPUs (and each CPU can have multiple processing cores). They
may also have one or more graphics processing units (GPUs), or
other special-purpose processors, such as a tensor processing unit
(TPU).

2. Memory. A physical computer has a fixed amount of physical
memory.

3. Disk storage. Disks provide persistent storage for instructions and
data, across reboots and shutdowns of the computer. A physical
computer typically has one or more attached disks, each with a
fixed amount of storage capacity. Disk storage can refer to either a
rotating magnetic or optical hard disk drive device, or a solid-state
disk drive device; the latter has neither disks nor any moving parts
to drive.

4. Network connection. Today, every nontrivial physical computer
has one or more network connections through which all messages
pass.

Now that we have enumerated the resources that we want to share, we
need to think about how to share them, and how to do this in a
sufficiently “isolated” way so that different applications are unaware of
each other’s existence.

Processor sharing is achieved through a thread-scheduling
mechanism. The scheduler selects and assigns an execution thread to an
available processor, and that thread maintains control until the processor
is rescheduled. No application thread can gain control of a processor
without going through the scheduler. Rescheduling occurs when the
thread yields control of the processor, when a fixed time interval expires,
or when an interrupt occurs.



Historically, as applications grew, all the code and data would not fit
into physical memory. Virtual memory technology was developed to
deal with this challenge. Memory management hardware partitions a
process’s address space into pages, and swaps pages between physical
memory and secondary storage as needed. The pages that are in physical
memory can be accessed immediately, and other pages are stored on the
secondary memory until they are needed. The hardware supports the
isolation of one address space from another.

Disk sharing and isolation are achieved using several mechanisms.
First, the physical disks can be accessed only through a disk controller
that ensures the data streams to and from each thread are delivered in
sequence. Also, the operating system may tag executing threads and disk
content such as files and directories with information such as a user ID
and group, and restrict visibility or access by comparing the tags of the
thread requesting access and the disk content.

Network isolation is achieved through the identification of messages.
Every virtual machine (VM) or container has an Internet Protocol (IP)
address, which is used to identify messages to or from that VM or
container. In essence, the IP address is used to route responses to the
correct VM or container. Another network mechanism for sending and
receiving messages relies on the use of ports. Every message intended
for a service has a port number associated with it. A service listens on a
port and receives messages that arrive at the device on which the service
is executing designated for the port on which the service is listening.

16.2 Virtual Machines
Now that we have seen how the resource usage of one application can be
isolated from the resource usage of another application, we can employ
and combine these mechanisms. Virtual machines allow the execution of
multiple simulated, or virtual, computers in a single physical computer.

Figure 16.1 depicts several VMs residing in a physical computer. The
physical computer is called the “host computer” and the VMs are called
“guest computers.” Figure 16.1 also shows a hypervisor, which is an
operating system for the VMs. This hypervisor runs directly on the
physical computer hardware and is often called a bare-metal or Type 1
hypervisor. The VMs that it hosts implement applications and services.
Bare-metal hypervisors typically run in a data center or cloud.



Figure 16.1 Bare-metal hypervisor and VMs

Figure 16.2 depicts another type of hypervisor, called a hosted or Type
2 hypervisor. In this case, the hypervisor runs as a service on top of a
host operating system, and the hypervisor in turn hosts one or more
VMs. Hosted hypervisors are typically used on desktop or laptop
computers. They allow developers to run and test applications that are
not compatible with the computer’s host operating system (e.g., to run
Linux applications on a Windows computer or to run Windows
applications on an Apple computer). They can also be used to replicate a
production environment on a development computer, even if the
operating system is the same on both. This approach ensures that the
development and production environments match each other.



Figure 16.2 Hosted hypervisor

A hypervisor requires that its guest VMs use the same instruction set
as the underlying physical CPU—the hypervisor does not translate or
simulate instruction execution. For example, if you have a VM for a
mobile or embedded device that uses an ARM processor, you cannot run
that virtual machine on a hypervisor that uses an x86 processor. Another
technology, related to hypervisors, supports cross-processor execution; it
is called an emulator. An emulator reads the binary code for the target or
guest processor and simulates the execution of guest instructions on the
host processor. The emulator often also simulates guest I/O hardware
devices. For example, the open source QEMU emulator1 can emulate a
full PC system, including BIOS, x86 processor and memory, sound card,
graphics card, and even a floppy disk drive.
1. qemu.org

Hosted/Type 2 hypervisors and emulators allow a user to interact with
the applications running inside the VM through the host machine’s on-
screen display, keyboard, and mouse/touchpad. Developers working on
desktop applications or working on specialized devices, such as mobile
platforms or devices for the Internet of Things, may use a hosted/Type 2

http://qemu.org/


hypervisor and/or an emulator as part of their build/test/integrate
toolchain.

A hypervisor performs two main functions: (1) It manages the code
running in each VM, and (2) it manages the VMs themselves. To
elaborate:

1. Code that communicates outside the VM by accessing a virtualized
disk or network interface is intercepted by the hypervisor and
executed by the hypervisor on behalf of the VM. This allows the
hypervisor to tag these external requests so that the response to
these requests can be routed to the correct VM.
The response to an external request to an I/O device or the network
is an asynchronous interrupt. This interrupt is initially handled by
the hypervisor. Since multiple VMs are operating on a single
physical host machine and each VM may have I/O requests
outstanding, the hypervisor must have a method for forwarding the
interrupt to the correct VM. This is the purpose of the tagging
mentioned earlier.

2. VMs must be managed. For example, they must be created and
destroyed, among other things. Managing VMs is a function of the
hypervisor. The hypervisor does not decide on its own to create or
destroy a VM, but rather acts on instructions from a user or, more
frequently, from a cloud infrastructure (you’ll read more about this
in Chapter 17). The process of creating a VM involves loading a
VM image (discussed in the next section).
In addition to creating and destroying VMs, the hypervisor
monitors them. Health checks and resource usage are part of the
monitoring. The hypervisor is also located inside the defensive
security perimeter of the VMs, as a defense against attacks.
Finally, the hypervisor is responsible for ensuring that a VM does
not exceed its resource utilization limits. Each VM has limits on
CPU utilization, memory, and disk and network I/O bandwidth.
Before starting a VM, the hypervisor first ensures that sufficient
physical resources are available to satisfy that VM’s needs, and
then the hypervisor enforces those limits while the VM is running.

A VM is booted just as a bare-metal physical machine is booted.
When the machine begins executing, it automatically reads a special
program called the boot loader from disk storage, either internal to the



computer or connected through a network. The boot loader reads the
operating system code from disk into memory, and then transfers
execution to the operating system. In the case of a physical computer, the
connection to the disk drive is made during the power-up process. In the
case of the VM, the connection to the disk drive is established by the
hypervisor when it starts the VM. The “VM Images” section discusses
this process in more detail.

From the perspective of the operating system and software services
inside a VM, it appears as if the software is executing inside of a bare-
metal physical machine. The VM provides a CPU, memory, I/O devices,
and a network connection.

Given the many concerns that it must address, the hypervisor is a
complicated piece of software. One concern with VMs is the overhead
introduced by the sharing and isolation needed for virtualization. That is,
how much slower does a service run on a virtual machine, compared to
running directly in a bare-metal physical machine? The answer to this
question is complicated: It depends on the characteristics of the service
and on the virtualization technology used. For example, services that
perform more disk and network I/O incur more overhead than services
that do not share these host resources. Virtualization technology is
improving all the time, but overheads of approximately 10% have been
reported by Microsoft on its Hyper-V hypervisor.2
2. https://docs.microsoft.com/en-us/biztalk/technical-guides/system-

resource-costs-on-hyper-v
There are two major implications of VMs for an architect:
1. Performance. Virtualization incurs a performance cost. While Type

1 hypervisors carry only a modest performance penalty, Type 2
hypervisors may impose a significantly larger overhead.

2. Separation of concerns. Virtualization allows an architect to treat
runtime resources as commodities, deferring provisioning and
deployment decisions to another person or organization.

16.3 VM Images
We call the contents of the disk storage that we boot a VM from a VM
image. This image contains the bits that represent the instructions and
data that make up the software that we will run (i.e., the operating system
and services). The bits are organized into files and directories according

https://docs.microsoft.com/en-us/biztalk/technical-guides/system-resource-costs-on-hyper-v


to the file system used by your operating system. The image also
contains the boot load program, stored in its predetermined location.

There are three approaches you can follow to create a new VM image:
1. You can find a machine that is already running the software you

want and make a snapshot copy of the bits in that machine’s
memory.

2. You can start from an existing image and add additional software.
3. You can create an image from scratch. Here, you start by obtaining

installation media for your chosen operating system. You boot your
new machine from the install media, and it formats the machine’s
disk drive, copies the operating system onto the drive, and adds the
boot loader in the predetermined location.

For the first two approaches, repositories of machine images (usually
containing open-source software) are available that provide a variety of
minimal images with just OS kernels, other images that include
complete applications, and everything in between. These efficient
starting points can support you in quickly trying out a new package or
program.

However, some issues may arise when you are pulling down and
running an image that you (or your organization) did not create:

You cannot control the versions of the OS and software.
The image may have software that contains vulnerabilities or that is
not configured securely; even worse, the image may include
malware.

Other important aspects of VM images are:

These images are very large, so transferring them over a network can
be very slow.
An image is bundled with all of its dependencies.
You can build a VM image on your development computer and then
deploy it to the cloud.
You may wish to add your own services to the VM.

While you could easily install services when creating an image, this
would lead to a unique image for every version of every service. Aside



from the storage cost, this proliferation of images becomes difficult to
keep track of and manage. Thus it is customary to create images that
contain only the operating system and other essential programs, and then
add services to these images after the VM is booted, in a process called
configuration.

16.4 Containers
VMs solve the problem of sharing resources and maintaining isolation.
However, VM images can be large, and transferring VM images around
the network is time-consuming. Suppose you have an 8 GB(yte) VM
image. You wish to move this from one location on the network to
another. In theory, on a 1 Gb(it) per second network, this will take 64
seconds. However, in practice a 1 Gbps network operates at around 35%
efficiency. Thus transferring an 8 GB VM image will take more than 3
minutes in the real world. Although you can adopt some techniques to
reduce this transfer time, the result will still be a duration measured in
minutes. After the image is transferred, the VM must boot the operating
system and start your services, which takes still more time.

Containers are a mechanism to maintain most of the advantages of
virtualization while reducing the image transfer time and startup time.
Like VMs and VM images, containers are packaged into executable
container images for transfer. (However, this terminology is not always
followed in practice.)

Reexamining Figure 16.1, we see that a VM executes on virtualized
hardware under the control of the hypervisor. In Figure 16.3, we see
several containers operating under the control of a container runtime
engine, which in turn is running on top of a fixed operating system. The
container runtime engine acts as a virtualized operating system. Just as
all VMs on a physical host share the same underlying physical hardware,
all containers within a host share the same operating system kernel
through the runtime engine (and through the operating system, they
share the same underlying physical hardware). The operating system can
be loaded either onto a bare-metal physical machine or a virtual
machine.



Figure 16.3 Containers on top of a container runtime engine on top
of an operating system on top of a hypervisor (or bare metal)

VMs are allocated by locating a physical machine that has sufficient
unused resources to support an additional VM. This is done,
conceptually, by querying the hypervisors to find one with spare
capacity. Containers are allocated by finding a container runtime engine
that has sufficient unused resources to support an additional container.
This may, in turn, require the creation of an additional VM to support an
additional container runtime engine. Figure 16.3 depicts containers
running on a container runtime engine running on an operating system
running in a VM under the control of a hypervisor.

This sharing of the operating system represents a source of
performance improvement when transferring images. As long as the
target machine has a standard container runtime engine running on it
(and these days all container runtime engines are built to standards),
there is no need to transfer the operating system as part of the container
image.

The second source of performance improvement is the use of “layers”
in the container images. (Note that container layers are different from the
notion of layers in module structures that we introduced in Chapter 1.)
To better understand container layers, we will describe how a container
image is constructed. In this case, we will illustrate the construction of a



container to run the LAMP stack, and we will build the image in layers.
(LAMP—which stands for Linux, Apache, MySQL, and PHP—is a
widely used stack for constructing web applications.)

The process of building an image using the LAMP stack is as follows:
1. Create a container image containing a Linux distribution. (This

image can be downloaded from a library using a container
management system.)

2. Once you create the image and identify it as an image, execute it
(i.e., instantiate it).

3. Use that container to load services—Apache, in our example, using
features of Linux.

4. Exit the container and inform the container management system
that this is a second image.

5. Execute this second image and load MySQL.
6. Exit the container and give this third image a name.
7. Repeat this process one more time and load PHP. Now you have a

fourth container image; this one holds the entire LAMP stack.
Because this image was created in steps and you told the container
management system to make each step an image, the container
management system considers the final image to be made up of “layers.”

Now you can move the LAMP stack container image to a different
location for production use. The initial move requires moving all the
elements of the stack. Suppose, however, you update PHP to a newer
version and move this revised stack into production (Step 7 in the
preceding process). The container management system knows that only
PHP was revised and moves only the PHP layer of the image. This saves
the effort involved in moving the rest of the stack. Since changing a
software component within an image happens much more frequently
than initial image creation, placing a new version of the container into
production becomes a much faster process than it would be using a VM.
Whereas loading a VM takes on the order of minutes, loading a new
version of a container takes on the order of microseconds or
milliseconds. Note that this process works only with the uppermost layer
of the stack. If, for example, you wanted to update MySQL with a newer
version, you would need to execute Steps 5 through 7 in the earlier list.



You can create a script with the steps for the creation of a container
image and store it in a file. This file is specific to the tool you are using
to create the container image. Such a file allows you to specify which
pieces of software are to be loaded into the container and saved as an
image. Using version control on the specification file ensures that each
member of your team can create an identical container image and
modify the specification file as needed. Treating these scripts as code
brings a wealth of advantages: These scripts can be consciously
designed, tested, configuration controlled, reviewed, documented, and
shared.

16.5 Containers and VMs
What are the tradeoffs between delivering your service in a VM and
delivering your service in a container?

As we noted earlier, a VM virtualizes the physical hardware: CPU,
disk, memory, and network. The software that you run on the VM
includes an entire operating system, and you can run almost any
operating system in a VM. You can also run almost any program in a
VM (unless it must interact directly with the physical hardware), which
is important when working with legacy or purchased software. Having
the entire operating system also allows you to run multiple services in
the same VM—a desirable outcome when the services are tightly
coupled or share large data sets, or if you want to take advantage of the
efficient interservice communication and coordination that are available
when the services run within the context of the same VM. The
hypervisor ensures that the operating system starts, monitors its
execution, and restarts the operating system if it crashes.

Container instances share an operating system. The operating system
must be compatible with the container runtime engine, which limits the
software that can run on a container. The container runtime engine starts,
monitors, and restarts the service running in a container. This engine
typically starts and monitors just one program in a container instance. If
that one program completes and exits normally, execution of that
container ends. For this reason, containers generally run a single service
(although that service can be multi-threaded). Furthermore, one benefit
of using containers is that the size of the container image is small,
including only those programs and libraries necessary to support the
service we want to run. Multiple services in a container could bloat the
image size, increasing the container startup time and runtime memory



footprint. As we will see shortly, we can group container instances
running related services so that they will execute on the same physical
machine and can communicate efficiently. Some container runtime
engines even allow containers within a group to share memory and
coordination mechanisms such as semaphores.

Other differences between VMs and containers are as follows:

Whereas a VM can run any operating system, containers are
currently limited to Linux, Windows, or IOS.
Services within the VM are started, stopped, and paused through
operating system functions, whereas services within containers are
started and stopped through container runtime engine functions.
VMs persist beyond the termination of services running within them;
containers do not.
Some restrictions on port usage exist when using containers that do
not exist when using VMs.

16.6 Container Portability
We have introduced the concept of a container runtime manager with
which the container interacts. Several vendors provide container runtime
engines, most notably Docker, containerd, and Mesos. Each of these
providers has a container runtime engine that provides capabilities to
create container images and to allocate and execute container instances.
The interface between the container runtime engine and the container has
been standardized by the Open Container Initiative, allowing a container
created by one vendor’s package (say, Docker) to be executed on a
container runtime engine provided by another vendor (say, containerd).

This means that you can develop a container on your development
computer, deploy it to a production computer, and have it execute there.
Of course, the resources available will be different in each case, so
deployment is still not trivial. If you specify all the resources as
configuration parameters, the movement of your container into
production is simplified.

16.7 Pods
Kubernetes is open source orchestration software for deploying,
managing, and scaling containers. It has one more element in its



hierarchy: Pods. A Pod is a group of related containers. In Kubernetes,
nodes (hardware or VMs) contain Pods, and Pods contain containers, as
shown in Figure 16.4. The containers in a Pod share an IP address and
port space to receive requests from other services. They can
communicate with each other using interprocess communication (IPC)
mechanisms such as semaphores or shared memory, and they can share
ephemeral storage volumes that exist for the lifetime of the Pod. They
have the same lifetime—the containers in Pods are allocated and
deallocated together. For example, service meshes, discussed in Chapter
9, are often packaged as a Pod.

Figure 16.4 Node with Pods that in turn have containers

The purpose of a Pod is to reduce communication costs between
closely related containers. In Figure 16.4, if container 1 and container 2
communicate frequently, the fact they are deployed as a Pod, and thus
allocated onto the same VM, allows the use of faster communication
mechanisms than message passing.

16.8 Serverless Architecture
Recall that allocating a VM starts by locating a physical machine with
enough free capacity and then loading a VM image into that physical
machine. The physical computers, therefore, constitute a pool from
which you can allocate resources. Suppose now that instead of allocating
VMs into physical machines, you wish to allocate containers into



container runtime engines. That is, you have a pool of container runtime
engines, into which containers are allocated.

Load times for a container are very short—taking just a few seconds
for a cold start and a few milliseconds to reallocate. Now let’s carry this
one step further. Since VM allocation and loading are relatively time-
consuming, potentially taking minutes to load and start the instance, you
typically leave a VM instance running even if there is idle time between
requests. In comparison, since the allocation of a container into a
container runtime engine is fast, it is not necessary to leave the container
running. We can afford to reallocate a new container instance for every
request. When your service completes the processing of a request,
instead of looping back to take another request, it exits, and the container
stops running and is deallocated.

This approach to system design is called serverless architecture—
though it is not, in fact, serverless. There are servers, which host
container runtime engines, but since they are allocated dynamically with
each request, the servers and container runtime engines are embodied in
the infrastructure. You, as a developer, are not responsible for allocating
or deallocating them. The cloud service provider features that support
this capability are called function-as-a-service (FaaS).

A consequence of the dynamic allocation and deallocation in response
to individual requests is that these short-lived containers cannot maintain
any state: The containers must be stateless. In a serverless architecture,
any state needed for coordination must be stored in an infrastructure
service delivered by the cloud provider or passed as parameters.

Cloud providers impose some practical limitations on FaaS features.
The first is that the providers have a limited selection of base container
images, which restricts your programming language options and library
dependencies. This is done to reduce the container load time—your
service is constrained to be a thin image layer on top of the provider’s
base image layer. The next limitation is that the “cold start” time, when
your container is allocated and loaded the first time, can be several
seconds. Subsequent requests are handled nearly instantaneously, as your
container image is cached on a node. Finally, the execution time for a
request is limited—your service must process the request and exit within
the provider’s time limit or it will be terminated. Cloud providers do this
for economic reasons, so that they can tailor the pricing of FaaS
compared to other ways of running containers, and to ensure that no
FaaS user consumes too much of the resource pool. Some designers of



serverless systems devote considerable energy to working around or
defeating these limitations—for example, prestarting services to avoid
cold-start latency, making dummy requests to keep services in cache,
and forking or chaining requests from one service to another to extend
the effective execution time.

16.9 Summary
Virtualization has been a boon for software and system architects, as it
provides efficient, cost-effective allocation platforms for networked
(typically web-based) services. Hardware virtualization allows for the
creation of several virtual machines that share the same physical
machine. It does this while enforcing isolation of the CPU, memory, disk
storage, and network. Consequently, the resources of the physical
machine can be shared among several VMs, while the number of
physical machines that an organization must purchase or rent is
minimized.

A VM image is the set of bits that are loaded into a VM to enable its
execution. VM images can be created by various techniques for
provisioning, including using operating system functions or loading a
pre-created image.

Containers are a packaging mechanism that virtualizes the operating
system. A container can be moved from one environment to another if a
compatible container runtime engine is available. The interface to
container runtime engines has been standardized.

Placing several containers into a Pod means that they are all allocated
together and any communication between the containers can be done
quickly.

Serverless architecture allows for containers to be rapidly instantiated
and moves the responsibility for allocation and deallocation to the cloud
provider infrastructure.

16.10 For Further Reading
The material in this chapter is taken from Deployment and Operations
for Software Engineers [Bass 19], where you can find more detailed
discussions.

Wikipedia is always a good place to find current details of protocols,
container runtime engines, and serverless architectures.



16.11 Discussion Questions
1. Create a LAMP container using Docker. Compare the size of your

container image to one you find on the Internet. What is the source
of the difference? Under what circumstances is this a cause of
concern for you as an architect?

2. How does the container management system know that only one
layer has been changed so that it needs to transport only one layer?

3. We have focused on isolation among VMs that are running at the
same time on a hypervisor. VMs may shut down and stop executing,
and new VMs may start up. What does a hypervisor do to maintain
isolation, or prevent leakage, between VMs running at different
times? Hint: Think about the management of memory, disk, virtual
MAC, and IP addresses.

4. What set of services would it make sense to group into a Pod (as
was done with service meshes) and why?

5. What are the security issues associated with containers? How would
you mitigate them?

6. What are the concerns associated with employing virtualization
technologies in embedded systems?

7. What class of integration and deployment errors can be avoided
with VMs, containers, and Pods? What class cannot?



17
The Cloud and Distributed
Computing

A distributed system is one in which the failure of a computer you didn’t
even know existed can render your own computer unusable.

—Leslie Lamport

Cloud computing is about the on-demand availability of resources. This
term is used to refer to a wide range of computing capabilities. For
example, you might say, “All my photos are backed up to the cloud.” But
what does that mean? It means:

My photos are stored on someone else’s computers. They worry
about the capital investment and maintenance and upkeep and
backups.
My photos are accessible by me over the Internet.
I pay only for the space that I use, or that I requisition.
The storage service is elastic, meaning that it can grow or shrink as
my needs change.
My use of the cloud is self-provisioned: I create an account and can
immediately begin using it to store my materials.

The computing capabilities delivered from the cloud range from
applications such as photo (or other kinds of digital artifact) storage, to
fine-grained services exposed through APIs (e.g., text translation or
currency conversion), to low-level infrastructure services such as
processors, network, and storage virtualization.

In this chapter, we will focus on how a software architect can use
infrastructure services from the cloud to deliver the services that the
architect is designing and developing. Along the way, we will take a



journey into some of the most important principles and techniques of
distributed computing. This means using multiple (real or virtual)
computers to work cooperatively together, thereby producing faster
performance and a more robust system than a single computer doing all
the work. We included this subject matter in this chapter because
nowhere is distributed computing more ingrained than in cloud-based
systems. The treatment we give here is a brief overview of the principles
most relevant to architecture.

We first discuss how the cloud provides and manages virtual
machines.

17.1 Cloud Basics
Public clouds are owned and provided by cloud service providers. These
organizations provide infrastructure services to anyone who agrees to the
terms of service and can pay for use of the services. In general, the
services you build using this infrastructure are accessible on the public
Internet, although you can provision mechanisms such as firewalls to
restrict visibility and access.

Some organizations operate a private cloud. A private cloud is owned
and operated by an organization for the use of members of that
organization. An organization might choose to operate a private cloud
because of concerns such as control, security, and cost. In this case, the
cloud infrastructure and the services developed on it are visible and
accessible only within the organization’s network.

The hybrid cloud approach is a mixed model, in which some
workloads are run in a private cloud and other workloads are run in a
public cloud. A hybrid cloud might be used during a migration from a
private cloud to a public cloud (or vice versa), or it might be used
because some data are legally required to be subject to greater control
and scrutiny than is possible with a public cloud.

For an architect designing software using cloud services, there is not
much difference, from a technical perspective, between private clouds
and public clouds. Thus we will focus our discussion here on
infrastructure-as-a-service public clouds.

A typical public cloud data center has tens of thousands of physical
devices—closer to 100,000 than to 50,000. The limiting factor on the
size of a data center is the electric power it consumes and the amount of
heat that the equipment produces: There are practical limits to bringing
electrical power into the buildings, distributing it to the equipment, and



removing the heat that the equipment generates. Figure 17.1 shows a
typical cloud data center. Each rack consists of more than 25 computers
(each with multiple CPUs), with the exact number depending on the
power and cooling available. The data center consists of rows and rows
of such racks, with high-speed network switches connecting the racks.
Cloud data centers are one reason why energy efficiency (a topic
discussed in Chapter 6) has become a critical quality attribute in some
applications.

Figure 17.1 A cloud data center

When you access a cloud via a public cloud provider, you are actually
accessing data centers scattered around the globe. The cloud provider
organizes its data centers into regions. A cloud region is both a logical
and a physical construct. Since the services you develop and deploy to
the cloud are accessed over the Internet, cloud regions can help you be



sure that the service is physically close to its users, thereby reducing the
network delay to access the service. Also, some regulatory constraints,
such as the General Data Protection Regulation (GDPR), may restrict the
transmission of certain types of data across national borders, so cloud
regions help cloud providers comply with these regulations.

A cloud region has many data centers that are physically distributed
and have different sources for electrical power and Internet connectivity.
The data centers within a region are grouped into availability zones, such
that the probability of all data centers in two different availability zones
failing at the same time is extremely low.

Choosing the cloud region that your service will run on is an
important design decision. When you ask to be provided with a new
virtual machine (VM) that runs in the cloud, you may specify which
region the VM will run on. Sometimes the availability zone may be
chosen automatically, but you often will want to choose the zone
yourself, for availability and business continuity reasons.

All access to a public cloud occurs over the Internet. There are two
main gateways into a cloud: a management gateway and a message
gateway (Figure 17.2). Here we will focus on the management gateway;
we discussed message gateways in Chapter 15.



Figure 17.2 Gateways into a public cloud

Suppose you wish to have a VM allocated for you in the cloud. You
send a request to the management gateway asking for a new VM
instance. This request has many parameters, but three essential
parameters are the cloud region where the new instance will run, the
instance type (e.g., CPU and memory size), and the ID of a VM image.
The management gateway is responsible for tens of thousands of
physical computers, and each physical computer has a hypervisor that
manages the VMs on it. So, the management gateway will identify a
hypervisor that can manage an additional VM of the type you have
selected by asking, Is there enough unallocated CPU and memory
capacity available on that physical machine to meet your needs? If so, it
will ask that hypervisor to create an additional VM; the hypervisor will
perform this task and return the new VM’s IP address to the management
gateway. The management gateway then sends that IP address to you.
The cloud provider ensures that enough physical hardware resources are
available in its data centers so that your request will never fail due to
insufficient resources.

The management gateway returns not only the IP address for the
newly allocated VM, but also a hostname. The hostname returned after
allocating a VM reflects the fact that the IP address has been added to
the cloud Domain Name System (DNS). Any VM image can be used to
create the new VM instance; that is, the VM image may comprise a
simple service or be just one step in the deployment process to create a
complex system.

The management gateway performs other functions in addition to
allocating new VMs. It supports collecting billing information about the
VM, and it provides the capability to monitor and destroy the VM.

The management gateway is accessed through messages over the
Internet to its API. These messages can come from another service, such
as a deployment service, or they can be generated from a command-line
program on your computer (allowing you to script operations). The
management gateway can also be accessed through a web-based
application operated by the cloud service provider, although this kind of
interactive interface is not efficient for more than the most trivial
operations.

17.2 Failure in the Cloud



When a data center contains tens of thousands of physical computers, it
is almost a certainty that one or more will fail every day. Amazon reports
that in a data center with around 64,000 computers, each with two
spinning disk drives, approximately 5 computers and 17 disks will fail
every day. Google reports similar statistics. In addition to computer and
disk failures, network switches can fail; the data center can overheat,
causing all the computers to fail; or some natural disaster may bring the
entire data center down. Although your cloud provider will have
relatively few total outages, the physical computer on which your
specific VM is running may fail. If availability is important to your
service, you need to think carefully about what level of availability you
wish to achieve and how to achieve it.

We’ll discuss two concepts especially relevant to failure in the cloud:
timeouts and long tail latency.

Timeouts
Recall from Chapter 4 that timeout is a tactic for availability. In a
distributed system, timeouts are used to detect failure. There are several
consequences of using timeouts:

Timeouts can’t distinguish between a failed computer or broken
network connection and a slow reply to a message that exceeds the
timeout period. This will cause you to label some slow responses as
failures.
A timeout will not tell you where the failure or slowness occurs.
Many times, a request to a service triggers that service to make
requests to other services, which make more requests. Even if each
of the responses in this chain has a latency that is close to (but
slower than) the expected average response time, the overall latency
may (falsely) suggest a failure.

A timeout—a decision that a response has taken too long—is
commonly used to detect a failure. A timeout cannot isolate whether the
failure is due to a failure in the software of the requested service, the
virtual or physical machine that the service is running on, or the network
connection to the service. In most cases, the cause is not important: You
made a request, or you were expecting a periodic keep-alive or heartbeat



message, and did not receive a timely response, and now you need to
take action to remedy this.

This seems simple, but in real systems it can be complicated. There is
usually a cost, such as a latency penalty, for a recovery action. You may
need to start a new VM, which could take minutes before it is ready to
accept new requests. You may need to establish a new session with a
different service instance, which may affect the usability of your system.
The response times in cloud systems can show considerable variations.
Jumping to a conclusion that there was a failure, when there was actually
just a temporary delay, may add a recovery cost when it isn’t necessary.

Distributed system designers generally parameterize the timeout
detection mechanism so that it can be tuned for a system or
infrastructure. One parameter is the timeout interval—how long the
system should wait before deciding that a response has failed. Most
systems do not trigger failure recovery after a single missed response.
Instead, the typical approach is to look for some number of missed
responses over a longer time interval. The number of missed responses is
a second parameter for the timeout mechanism. For example, a timeout
might be set to 200 milliseconds, and failure recovery is triggered after 3
missed messages over a 1-second interval.

For systems running with a single data center, timeouts and thresholds
can be set aggressively, since network delays are minimal and missed
responses are likely due to software crashes or hardware failures. In
contrast, for systems operating over a wide area network, a cellular radio
network, or even a satellite link, more thought should be put into setting
the parameters, as these systems may experience intermittent but longer
network delays. In such cases, the parameters may be relaxed to reflect
this possibility and avoid triggering unnecessary recovery actions.

Long Tail Latency
Regardless of whether the cause is an actual failure or just a slow
response, the response to your original request may exhibit what is called
long tail latency. Figure 17.3 shows a histogram of the latency of 1,000
“launch instance” requests to Amazon Web Services (AWS). Notice that
some requests took a very long time to satisfy. When evaluating
measurement sets such as this one, you must be careful which statistic
you use to characterize the data set. In this case, the histogram peaks at a
latency of 22 seconds; however, the average latency over all the
measurements is 28 seconds, and the median latency (half the requests



are completed with latency less than this value) is 23 seconds. Even after
a latency of 57 seconds, 5 percent of the requests have still not been
completed (i.e., the 95th percentile is 57 seconds). So, although the mean
latency for each service-to-service request to a cloud-based service may
be within tolerable limits, a reasonable number of these requests can
have much greater latency—in this case, from 2 to 10 times longer than
the average. These are the measurements in the long tail on the right side
of the histogram.

Figure 17.3 Long tail distribution of 1,000 “launch instance”
requests to AWS

Long tail latencies are a result of congestion or failure somewhere in
the path of the service request. Many factors may contribute to
congestion—server queues, hypervisor scheduling, or others—but the
cause of the congestion is out of your control as a service developer.
Your monitoring techniques and your strategies to achieve your required
performance and availability must reflect the reality of a long tail
distribution.

Two techniques to handle long tail problems are hedged requests and
alternative requests.

Hedged requests. Make more requests than are needed and then
cancel the requests (or ignore responses) after sufficient responses



have been received. For example, suppose 10 instances of a
microservice (see Chapter 5) are to be launched. Issue 11 requests
and after 10 have completed, terminate the request that has not
responded yet.
Alternative requests. A variant of the hedged request technique is
called alternative request. In the just-described scenario, issue 10
requests. When 8 requests have completed, issue 2 more, and when a
total of 10 responses have been received, cancel the 2 requests that
are still remaining.

17.3 Using Multiple Instances to Improve
Performance and Availability

If a service hosted in a cloud receives more requests than it can process
within the required latency, the service becomes overloaded. This can
occur because there is an insufficient I/O bandwidth, CPU cycles,
memory, or some other resource. In some cases, you can resolve a
service overload issue by running the service in a different instance type
that provides more of the resource that is needed. This approach is
simple: The design of the service does not change; instead, the service
just runs on a larger virtual machine. Called vertical scaling or scaling
up, this approach corresponds to the increased resources performance
tactic from Chapter 9.

There are limits to what can be achieved with vertical scaling. In
particular, there may not be a large enough VM instance type to support
the workload. In this case, horizontal scaling or scaling out provides
more resources of the type needed. Horizontal scaling involves having
multiple copies of the same service and using a load balancer to
distribute requests among them—equivalent to the maintain multiple
copies of computations tactic and the load balancer pattern, respectively,
from Chapter 9.

Distributed Computing and Load Balancers
Load balancers can be standalone systems, or they can bundled with
other functions. A load balancer must be very efficient because it sits in
the path of every message from a client to a service, and even when it is
packaged with other functions, it is logically isolated. Here, we divide
our discussion into two main aspects: how load balancers work and how



services that sit behind a load balancer must be designed to manage the
service state. Once we understand these processes, we can explore the
management of the system’s health and how load balancers can improve
its availability.

A load balancer solves the following problem: There is a single
instance of a service running on a VM or in a container, and too many
requests are arriving at this instance for it to provide acceptable latency.
One solution is to have multiple instances of the service and distribute
the requests among them. The distribution mechanism in such a case is a
separate service—the load balancer. Figure 17.4 shows a load balancer
distributing requests between two VM (service) instances. The same
discussion would apply if there were two container instances.
(Containers were discussed in Chapter 16.)

Figure 17.4 A load balancer distributing requests from two clients to
two service instances

You may be wondering what constitutes “too many requests” and
“reasonable response time.” We’ll come back to these questions later in
this chapter when we discuss autoscaling. For now, let’s focus on how a
load balancer works.



In Figure 17.4, each request is sent to a load balancer. For the
purposes of our discussion, suppose the load balancer sends the first
request to instance 1, the second request to instance 2, the third request
back to instance 1, and so forth. This sends half of the requests to each
instance, balancing the load between the two instances—hence the
name.

Some observations about this simple example of a load balancer:

The algorithm we provided—alternate the messages between the two
instances—is called “round-robin.” This algorithm balances the load
uniformly across the service instances only if every request
consumes roughly the same resources in its response. Other
algorithms for distributing the messages exist for cases where the
resource consumption needed to process requests varies.
From a client’s perspective, the service’s IP address is actually the
address of the load balancer. This address may be associated with a
hostname in the DNS. The client does not know, or need to know,
how many instances of the service exist or the IP address of any of
those service instances. This makes the client resilient to changing
this information—an example of using an intermediary, as discussed
in Chapter 8.
Multiple clients may coexist. Each client sends its messages to the
load balancer, which does not care about the message source. The
load balancer distributes the messages as they arrive. (We’ll ignore
the concept called “sticky sessions” or “session affinity” for the
moment.)
Load balancers may get overloaded. In this case, the solution is to
balance the load of the load balancer, sometimes referred to as global
load balancing. That is, a message goes through a hierarchy of load
balancers before arriving at the service instance.

So far, our discussion of load balancers has focused on increasing the
amount of work that can be handled. Here, we will consider how load
balancers also serve to increase the availability of services.

Figure 17.4 shows messages from clients passing through the load
balancer, but does not show the return messages. Return messages go
directly from the service instances to the clients (determined by the
“from” field in the IP message header), bypassing the load balancer. As a
consequence, the load balancer has no information about whether a



message was processed by a service instance, or how long it took to
process a message. Without additional mechanisms, the load balancer
would not know whether any service instance was alive and processing,
or if any instance or all instances had failed.

Health checks are a mechanism that allow the load balancer to
determine whether an instance is performing properly. This is the
purpose of the “fault detection” category of availability tactics from
Chapter 4. The load balancer will periodically check the health of the
instances assigned to it. If an instance fails to respond to a health check,
it is marked as unhealthy and no further messages are sent to it. Health
checks can consist of pings from the load balancer to the instance,
opening a TCP connection to the instance or even sending a message for
processing. In the latter case, the return IP address is the address of the
load balancer.

It is possible for an instance to move from healthy to unhealthy, and
back again. Suppose, for example, that the instance has an overloaded
queue. When initially contacted, it may not respond to the load
balancer’s health check, but once the queue has been drained, it may be
ready to respond again. For this reason, the load balancer checks
multiple times before moving an instance to an unhealthy list, and then
periodically checks the unhealthy list to determine whether an instance is
again responding. In other cases, a hard failure or crash may cause the
failed instance to restart and re-register with the load balancer, or a new
replacement instance may be started and registered with the load
balancer, so as to maintain overall service delivery capacity.

A load balancer with health checking improves availability by hiding
the failure of a service instance from clients. The pool of service
instances can be sized to accommodate some number of simultaneous
service instance failures while still providing enough overall service
capacity to handle the required volume of client requests within the
desired latency. However, even when using health checking, a service
instance might sometimes start processing a client request but never
return a response. Clients must be designed so that they resend a request
if they do not receive a timely response, allowing the load balancer to
distribute the request to a different service instance. Services must
correspondingly be designed such that multiple identical requests can be
accommodated.

State Management in Distributed Systems



State refers to information internal to a service that affects the
computation of a response to a client request. State—or, more precisely,
the collection of the values of the variables or data structures that store
the state—depends on the history of requests to the service.

Management of state becomes important when a service can process
more than one client request at the same time, either because a service
instance is multi-threaded, because there are multiple service instances
behind a load balancer, or both. The key issue is where the state is
stored. The three options are:

1. The history maintained in each service instance, in which case the
services are described as “stateful.”

2. The history maintained in each client, in which case the services
are described as “stateless.”

3. The history persists outside the services and clients, in a database,
in which case the services are described as “stateless.”

Common practice is to design and implement services to be stateless.
Stateful services lose their history if they fail, and recovering that state
can be difficult. Also, as we will see in the next section, new service
instances may be created, and designing services to be stateless allows a
new service instance to process a client request and produce the same
response as any other service instance.

In some cases, it may be difficult or inefficient to design a service to
be stateless, so we might want a series of messages from a client to be
processed by the same service instance. We can accomplish this by
having the first request in the series be handled by the load balancer and
distributed to a service instance, and then allowing the client to establish
a session directly with that service instance and subsequent requests to
bypass the Load balancer. Alternatively, some load balancers can be
configured to treat certain types of requests as sticky, which causes the
load balancer to send subsequent requests from a client to the same
service instance that handled the last message from this client. These
approaches—direct sessions and sticky messages—should be used only
under special circumstances because of the possibility of failure of the
instance and the risk that the instance to which the messages are sticking
may become overloaded.

Frequently, there is a need to share information across all instances of
a service. This information may consist of state information, as
discussed earlier, or it may be other information that is needed for the



service instances to work together efficiently—for example, the IP
address of the load balancer for the service. A solution exists to manage
relatively small amounts of information shared among all instances of a
service, as discussed next.

Time Coordination in a Distributed System
Determining exactly what time it is might seem to be a trivial task, but it
is actually not easy. Hardware clocks found in computers will gain or
lose one second about every 12 days. If your computing device is out in
the world, so to speak, it may have access to a time signal from a Global
Positioning System (GPS) satellite, which provides a time accurate to
within 100 nanoseconds or less.

Having two or more devices agree on what time it is can be even more
challenging. The clock readings from two different devices on a network
will be different. The Network Time Protocol (NTP) is used to
synchronize time across different devices that are connected over a local
or wide area network. It involves exchanging messages between a time
server and client devices to estimate the network latency, and then
applying algorithms to synchronize a client device’s clock to the time
server. NTP is accurate to around 1 millisecond on local area networks
and around 10 milliseconds on public networks. Congestion can cause
errors of 100 milliseconds or more.

Cloud service providers provide very precise time references for their
time servers. For example, Amazon and Google use atomic clocks,
which have virtually unmeasurable drift. Both can therefore provide an
extremely accurate answer to the question, “What time is it?” Of course,
what time it is when you get the answer is another matter.

Happily, for many purposes, almost-accurate time is good enough.
However, as a practical matter, you should assume some level of error
exists between the clock readings on two different devices. For this
reason, most distributed systems are designed so that time
synchronization among devices is not required for applications to
function correctly. You can use device time to trigger periodic actions, to
timestamp log entries, and for a few other purposes where accurate
coordination with other devices is not necessary.

Also happily, for many proposes, it is more important to know the
order of events rather than the time at which those events occurred.
Trading decisions on the stock market fall into this category, as do online



auctions of any form. Both rely on processing packets in the same order
in which they were transmitted.

For critical coordination across devices, most distributed systems use
mechanisms such as vector clocks (which are not really clocks, but
rather counters that trace actions as they propagate through the services
in an application) to determine whether one event happened before
another event, rather than comparing times. This ensures that the
application can apply the actions in the correct order. Most of the data
coordination mechanisms that we discuss in the next section rely on this
kind of ordering of actions.

For an architect, successful time coordination involves knowing
whether you really need to rely on actual clock times, or whether
ensuring correct sequencing suffices. If the former is important, then
know your accuracy requirements and choose a solution accordingly.

Data Coordination in a Distributed System
Consider the problem of creating a resource lock to be shared across
distributed machines. Suppose some critical resource is being accessed
by service instances on two distinct VMs running on two distinct
physical computers. We assume this critical resource is a data item—for
example, your bank account balance. Changing the account balance
requires reading the current balance, adding or subtracting the
transaction amount, and then writing back the new balance. If we allow
both service instances to operate independently on this data item, there is
the possibility of a race condition, such as two simultaneous deposits
overwriting each other. The standard solution in this situation is to lock
the data item, so that a service cannot access your account balance until
it gets the lock. We avoid a race condition because service instance 1 is
granted a lock on your bank account and can work in isolation to make
its deposit until it yields the lock. Then service instance 2, which has
been waiting for the lock to become available, can lock the bank account
and make the second deposit.

This solution using a shared lock is easy to implement when the
services are processes running on a single machine, and requesting and
releasing a lock are simple memory access operations that are very fast
and atomic. However, in a distributed system, two problems arise with
this scheme. First, the two-phase commit protocol traditionally used to
acquire a lock requires multiple messages to be transmitted across the
network. In the best case, this just adds delay to the actions, but in the



worst case, any of these messages may fail to be delivered. Second,
service instance 1 may fail after it has acquired the lock, preventing
service instance 2 from proceeding.

The solution to these problems involves complicated distributed
coordination algorithms. Leslie Lamport, quoted at the beginning of the
chapter, developed one of the first such algorithms, which he named
“Paxos.” Paxos and other distributed coordination algorithms rely on a
consensus mechanism to allow participants to reach agreement even
when computer or network failures occur. These algorithms are
notoriously complicated to design correctly, and even implementing a
proven algorithm is difficult due to subtleties in programming language
and network interface semantics. In fact, distributed coordination is one
of those problems that you should not try to solve yourself. Using one of
the existing solution packages, such as Apache Zookeeper, Consul, and
etcd, is almost always a better idea than rolling your own. When service
instances need to share information, they store it in a service that uses a
distributed coordination mechanism to ensure that all services see the
same values.

Our last distributed computing topic is the automatic creation and
destruction of instances.

Autoscaling: Automatic Creation and Destruction of
Instances
Consider a traditional data center, where your organization owns all the
physical resources. In this environment, your organization needs to
allocate enough physical hardware to a system to handle the peak of the
largest workload that it has committed to process. When the workload is
less than the peak, some (or much) of the hardware capacity allocated to
the system is idle. Now compare this to a cloud environment. Two of the
defining features of the cloud are that you pay only for the resources you
requisition and that you can easily and quickly add and release resources
(elasticity). Together, these features allow you to create systems that
have the capacity to handle your workload, and you don’t pay for any
excess capacity.

Elasticity applies at different time scales. Some systems see relatively
stable workloads, in which case you might consider manually reviewing
and changing resource allocation on a monthly or quarterly time scale to
match this slowly changing workload. Other systems see more dynamic



workloads with rapid increases and decreases in the rate of requests, and
so need a way to automate adding and releasing service instances.

Autoscaling is an infrastructure service that automatically creates new
instances when needed and releases surplus instances when they are no
longer needed. It usually works in conjunction with load balancing to
grow and shrink the pool of service instances behind a load balancer.
Autoscaling containers is slightly different from autoscaling VMs. We
discuss autoscaling VMs first and then discuss the differences when
containers are being autoscaled.

Autoscaling VMs
Returning to Figure 17.4, suppose that the two clients generate more
requests than can be handled by the two service instances shown.
Autoscaling creates a third instance, based on the same virtual machine
image that was used for the first two instances. The new instance is
registered with the load balancer so that subsequent requests are
distributed among three instances rather than two. Figure 17.5 shows a
new component, the autoscaler, that monitors and autoscales the
utilization of the server instances. Once the autoscaler creates a new
service instance, it notifies the load balancer of the new IP address so
that the load balancer can distribute requests to the new instance, in
addition to the requests it distributes to the other instances.

Figure 17.5 An autoscaler monitoring the utilization



Because the clients do not know how many instances exist or which
instance is serving their requests, autoscaling activities are invisible to
service clients. Furthermore, if the client request rate decreases, an
instance can be removed from the load balancer pool, halted, and
deallocated, again without the client’s knowledge.

As an architect of a cloud-based service, you can set up a collection of
rules for the autoscaler that govern its behavior. The configuration
information you provide to the autoscaler includes the following items:

The VM image to be launched when a new instance is created, and
any instance configuration parameters required by the cloud
provider, such as security settings
The CPU utilization threshold (measured over time) for any instance
above which a new instance is launched
The CPU utilization threshold (measured over time) for any instance
below which an existing instance is shut down
The network I/O bandwidth thresholds (measured over time) for
creating and deleting instances
The minimum and maximum number of instances you want in this
group

The autoscaler does not create or remove instances based on
instantaneous values of the CPU utilization or network I/O bandwidth
metrics, for two reasons. First, these metrics have spikes and valleys and
are meaningful only when averaged over a reasonable time interval.
Second, allocating and starting a new VM takes a relatively long time,
on the order of minutes. The VM image must be loaded and connected to
the network, and the operating system must boot before it will be ready
to process messages. Consequently, autoscaler rules typically are of the
form, “Create a new VM when CPU utilization is above 80 percent for 5
minutes.”

In addition to creating and destroying VMs based on utilization
metrics, you can set rules to provide a minimum or maximum number of
VMs or to create VMs based on a time schedule. During a typical week,
for example, load may be heavier during work hours; based on this
knowledge, you can allocate more VMs before the beginning of a
workday and remove some after the workday is over. These scheduled



allocations should be based on historical data about the pattern of usage
of your services.

When the autoscaler removes an instance, it cannot just shut down the
VM. First, it must notify the load balancer to stop sending requests to the
service instance. Next, because the instance may be in the process of
servicing a request, the autoscaler must notify the instance that it should
terminate its activities and shut down, after which it can be destroyed.
This process is called “draining” the instance. As a service developer,
you are responsible for implementing the appropriate interface to receive
instructions to terminate and drain an instance of your service.

Autoscaling Containers
Because containers are executing on runtime engines that are hosted on
VMs, scaling containers involves two different types of decisions. When
scaling VMs, an autoscaler decides that additional VMs are required, and
then allocates a new VM and loads it with the appropriate software.
Scaling containers means making a two-level decision. First, decide that
an additional container (or Pod) is required for the current workload.
Second, decide whether the new container (or Pod) can be allocated on
an existing runtime engine instance or whether a new instance must be
allocated. If a new instance must be allocated, you need to check whether
a VM with sufficient capacity is available or if an additional VM needs
to be allocated.

The software that controls the scaling of containers is independent of
the software that controls the scaling of VMs. This allows the scaling of
containers to be portable across different cloud providers. It is possible
that the evolution of containers will integrate the two types of scaling. In
such a case, you should be aware that you may be creating a dependency
between your software and the cloud provider that could be difficult to
break.

17.4 Summary
The cloud is composed of distributed data centers, with each data center
containing tens of thousands of computers. It is managed through a
management gateway that is accessible over the Internet and is
responsible for allocating, deallocating, and monitoring VMs, as well as
measuring resource usage and computing billing.



Because of the large number of computers in a data center, failure of a
computer in such a center happens quite frequently. You, as an architect
of a service, should assume that at some point, the VMs on which your
service is executing will fail. You should also assume that your requests
for other services will exhibit a long tail distribution, such that as many
as 5 percent of your requests will take 5 to 10 times longer than the
average request. Thus you must be concerned about the availability of
your service.

Because single instances of your service may not be able to satisfy all
requests in a timely manner, you may decide to run multiple VMs or
containers containing instances of your service. These multiple instances
sit behind a load balancer. The load balancer receives requests from
clients and distributes the requests to the various instances.

The existence of multiple instances of your service and multiple
clients has a significant impact on how you handle state. Different
decisions on where to keep the state will lead to different results. The
most common practice is to keep services stateless, because stateless
services allow for easier recovery from failure and easier addition of
new instances. Small amounts of data can be shared among service
instances by using a distributed coordination service. Distributed
coordination services are complicated to implement, but several proven
open source implementations are available for your use.

The cloud infrastructure can automatically scale your service by
creating new instances when demand grows and removing instances
when demand shrinks. You specify the behavior of the autoscaler
through a set of rules giving the conditions for the creation or deletion of
instances.

17.5 For Further Reading
More details about how networks and virtualization work can be found
in [Bass 19].

The long tail latency phenomenon in the context of the cloud was first
identified in [Dean 13].

Paxos was first presented by [Lamport 98]. People found the original
article difficult to understand, but a very thorough description of Paxos
can be found in Wikipedia—
https://en.wikipedia.org/wiki/Paxos_(computer_science). Around the
same time, Brian Oki and Barbara Liskov independently developed and

https://en.wikipedia.org/wiki/Paxos_(computer_science)


published an algorithm called Viewstamped Replication that was later
shown to be equivalent to Lamport’s Paxos [Oki 88].

A description of Apache Zookeeper can be found at
https://zookeeper.apache.org/. Consul can be found at
https://www.consul.io/, and etcd can be found at https://etcd.io/

A discussion of different types of load balancers can be found at
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-
balancer-types.html.

Time in a distributed system is discussed in
https://medium.com/coinmonks/time-and-clocks-and-ordering-of-
events-in-a-distributed-system-cdd3f6075e73.

Managing state in a distributed system is discussed in
https://conferences.oreilly.com/software-architecture/sa-ny-
2018/public/schedule/detail/64127.

17.6 Discussion Questions
1. A load balancer is a type of intermediary. Intermediaries enhance

modifiability but detract from performance, yet a load balancer
exists to increase performance. Explain this apparent paradox.

2. A context diagram displays an entity and other entities with which it
communicates. It separates the responsibilities allocated to the
chosen entity from those responsibilities allocated to other entities,
and shows the interactions needed to accomplish the chosen entity’s
responsibilities. Draw a context diagram for a load balancer.

3. Sketch the set of steps to allocate a VM within a cloud and display
its IP address.

4. Research the offerings of a major cloud provider. Write a set of
rules that would govern the autoscaling for a service that you would
implement on this cloud.

5. Some load balancers use a technique called message queues.
Research message queues and describe the differences between load
balancers with and without message queues.

https://zookeeper.apache.org/
https://www.consul.io/
https://etcd.io/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/load-balancer-types.html
https://medium.com/coinmonks/time-and-clocks-and-ordering-of-events-in-a-distributed-system-cdd3f6075e73
https://conferences.oreilly.com/software-architecture/sa-ny-2018/public/schedule/detail/64127


18
Mobile Systems
With Yazid Hamdi and Greg Hartman

The telephone will be used to inform people that a telegram has been sent.
—Alexander Graham Bell

So, what did Alexander Graham Bell know, anyway? Mobile systems,
including and especially phones, are ubiquitous in our world today.
Besides phones, they include trains, planes, and automobiles; they
include ships and satellites, entertainment and personal computing
devices, and robotic systems (autonomous or not); they include
essentially any system or device that has no permanent connection to a
continuous abundant power source.

A mobile system has the ability to be in movement while continuing
to deliver some or all of its functionality. This makes dealing with some
of its characteristics a different matter from dealing with fixed systems.
In this chapter we focus on five of those characteristics:

1. Energy. Mobile systems have limited sources of power and must
be concerned with using power efficiently.

2. Network connectivity. Mobile systems tend to deliver much of their
functionality by exchanging information with other devices while
they are in motion. They must therefore connect to those devices,
but their mobility makes these connections tricky.

3. Sensors and actuators. Mobile systems tend to gain more
information from sensors than fixed systems do, and they often use
actuators to interact with their environment.

4. Resources. Mobile systems tend to be more resource-constrained
than fixed systems. For one thing, they are often quite small, such



that physical packaging becomes a limiting factor. For another,
their mobility often makes weight a factor. Mobile devices that
must be small and lightweight have limits on the resources they
can provide.

5. Life cycle. Testing mobile systems differs from the testing of other
systems. Deploying new versions also introduces some special
issues.

When designing a system for a mobile platform, you must deal with a
large number of domain-specific requirements. Self-driving automobiles
and autonomous drones must be safe; smartphones must provide an open
platform for a variety of vastly different applications; entertainment
systems must work with a wide range of content formats and service
providers. In this chapter, we’ll focus on the characteristics shared by
many (if not all) mobile systems that an architect must consider when
designing a system.

18.1 Energy
In this section, we focus on the architectural concerns most relevant to
managing the energy of mobile systems. For many mobile devices, their
source of energy is a battery with a very finite capacity for delivering
that energy. Other mobile devices, such as cars and planes, run on the
power produced by generators, which in turn may be powered by engines
that run on fuel—again, a finite resource.

The Architect’s Concerns
The architect must be concerned with monitoring the power source,
throttling energy usage, and tolerating loss of power. We elaborate on
these concerns in the next three subsections.

Monitoring the Power Source
In Chapter 6 on energy efficiency, we introduced a category of tactics
called “resource monitoring” for monitoring the usage of computational
resources, which are consumers of energy. In mobile systems, we need to
monitor the energy source, so that we can initiate appropriate behavior
when the energy available becomes low. Specifically, in a mobile device
powered by a battery, we may need to inform a user that the battery level
is low, put the device into battery-saving mode, alert applications to the



imminent shutdown of the device so they can prepare for a restart, and
determine the power usage of each application.

All of these uses depend on monitoring the current state of the battery.
Most laptops or smartphones use a smart battery as a power source. A
smart battery is a rechargeable battery pack with a built-in battery
management system (BMS). The BMS can be queried to get the current
state of the battery. Other mobile systems might use a different battery
technology, but all have some equivalent capability. For the purposes of
this section, we will assume that the reading identifies the percentage of
capacity left.

Battery-powered mobile systems include a component, often in the
kernel of the operating system, that knows how to interact with the BMS
and can return the current battery capacity on request. A battery manager
is responsible for periodically querying that component to retrieve the
state of the battery. This enables the system to inform the user of the
energy status and trigger the battery-saving mode, if necessary. To
inform the applications that the device is about to shut down, the
applications must register with the battery manager.

Two characteristics of batteries change as they age: the maximum
battery capacity and the maximum sustained current. An architect must
allow for managing consumption within the changing envelope of
available power so that the device still performs at an acceptable level.
Monitoring plays a role in generator-equipped systems as well, since
some applications may need to be shut down or put on standby when
generator output is low. The battery manager can also determine which
applications are currently active and what their energy consumption is.
The overall percentage of the change in battery capacity can then be
estimated based on this information.

Of course, the battery manager itself utilizes resources—memory and
CPU time. The amount of CPU time consumed by the battery manager
can be managed by adjusting the query interval.

Throttling Energy Usage
Energy usage can be reduced by either terminating or degrading portions
of the system that consume energy; this is the throttle usage tactic
described in Chapter 6. The specifics of how this is done depend on the
individual elements of the system, but a common example is reducing
the brightness or the refresh rate of the display on a smartphone. Other
techniques for throttling energy usage include reducing the number of



active cores of the processor, reducing the clock rate of the cores, and
reducing the frequency of sensor readings. For example, instead of
asking for GPS location data every few seconds, ask for it every minute
or so. Instead of relying on different location data sources such as GPS
and cell towers, use just one of those.

Tolerating a Loss of Power
Mobile systems should gracefully tolerate power failures and restarts.
For example, a requirement of such a system could be that following
restoration of power, the system is back on and working in the nominal
mode within 30 seconds. This requirement implies different
requirements apply to different portions of the system, such as the
following:

Example hardware requirements:
The system’s computer does not suffer permanent damage if
power is cut at any time.
The system’s computer (re)starts the OS robustly whenever
sufficient power is provided.
The system’s OS has the software scheduled to launch as soon as
the OS is ready.

Example software requirements:
The runtime environment can be killed at any moment without
affecting the integrity of the binaries, configurations, and
operational data in permanent storage, and while keeping the
state consistent after a restart (whether that is a reset or a
resume).
Applications need a strategy to deal with data that arrives while
the application is inoperative.
The runtime can start after a failure so that the startup time, from
system power on to the software being in a ready state, is less
than a specified period.

18.2 Network Connectivity
In this section, we focus on the architectural concerns most relevant to
network connectivity of mobile systems. We will focus on wireless



communication between the mobile platform and the outside world. The
network might be used to control the device or to send and receive
information.

Wireless networks are categorized based on the distance over which
they operate.

Within 4 centimeters. Near Field Communication (NFC) is used for
keycards and contactless payment systems. Standards in this area are
being developed by the GSM Alliance.
Within 10 meters. The IEEE 802.15 family of standards covers this
distance. Bluetooth and Zigbee are common protocols within this
category
Within 100 meters. The IEEE 802.11 family of standards (Wi-Fi) is
used within this distance.
Within several kilometers. The IEEE 802.16 standards cover this
distance. WiMAX is the commercial name for the IEEE 802.16
standards.
More than several kilometers. This is achieved by cellular or satellite
communication.

Within all of these categories, the technologies and the standards are
evolving rapidly.

The Architect’s Concerns
Designing for communication and network connectivity requires the
architect to balance a large number of concerns, including the following:

Number of communication interfaces to support. With all of the
different protocols and their rapid evolution, it is tempting for an
architect to include all possible kinds of network interfaces. The goal
when designing a mobile system is just the opposite: Only the
strictly required interfaces should be included to optimize power
consumption, heat generation, and space allocation.
Movement from one protocol to another. Despite the need to take a
minimalist approach to interfaces, the architect must account for the
possibility that during the course of a session, the mobile system
may move from an environment that supports one protocol to an



environment that supports another protocol. For example, a video
may be streaming on Wi-Fi, but then the system may move to an
environment without Wi-Fi and the video will be received over a
cellular network. Such transitions should be seamless to the user.
Choosing the appropriate protocol dynamically. In the event that
multiple protocols are simultaneously available, the system should
choose a protocol dynamically based on factors such as cost,
bandwidth, and power consumption.
Modifiability. Given the large number of protocols and their rapid
evolution, it is likely that over the lifetime of a mobile system, new
or alternative protocols will need to be supported. The system should
be designed to support changes or replacements in the elements of
the system involved in communication.
Bandwidth. The information to be communicated to other systems
should be analyzed for distance, volume, and latency requirements
so that appropriate architectural choices can be made. The protocols
all vary in terms of those qualities.
Intermittent/limited/no connectivity. Communication may be lost
while the device is in motion (e.g., a smartphone going through a
tunnel). The system should be designed so that data integrity is
maintained in case of a loss of connectivity, and computation can be
resumed without loss of consistency when connectivity returns. The
system should be designed to deal gracefully with limited
connectivity or even no connectivity. Degraded and fallback modes
should be dynamically available to deal with such situations.
Security. Mobile devices are particularly vulnerable to spoofing,
eavesdropping, and man-in-the-middle attacks, so responding to
such attacks should be part of the architect’s concerns.

18.3 Sensors and Actuators
A sensor is a device that detects the physical characteristics of its
environment and translates those characteristics into an electronic
representation. A mobile device gathers environmental data either to
guide its own operation (such as the altimeter in a drone), or to report
that data back to a user (such as the magnetic compass in your
smartphone).



A transducer senses external electronic impulses and converts them
into a more usable internal form. In this section. we will use the term
“sensor” to encompass transducers as well, and assume the electronic
representation is digital.

A sensor hub is a coprocessor that helps integrate data from different
sensors and process it. A sensor hub can help offload these jobs from a
product’s main CPU, thereby saving battery consumption and improving
performance.

Inside the mobile system, software will abstract some characteristics
of the environment. This abstraction may map directly to a sensor, such
as with measurement of temperature or pressure, or it may integrate the
input of several sensors, such as pedestrians identified in a self-driving
automobile controller.

An actuator is the reverse of a sensor: It takes a digital representation
as input and causes some action in the environment. The lane keep assist
feature in an automobile utilizes actuators, as does an audio alert from
your smartphone.

The Architect’s Concerns
An architect has several concerns with respect to sensors:

How to create an accurate representation of the environment based
on the sensor inputs.
How the system should respond to that representation of the
environment.
Security and privacy of the sensor data and actuator commands.
Degraded operation. If sensors fail or become unreadable, the system
should enter a degraded mode. For example, if GPS readings are not
available in tunnels, the system can use dead reckoning techniques
to estimate location.

The representation of the environment that is created and acted upon
by a system is domain specific, as is the appropriate approach to
degraded operation. We discussed security and privacy in detail in
Chapter 8, but here we will focus on only the first concern: creating an
accurate representation of the environment based on the data returned by
the sensors. This is performed using the sensor stack—a confederation



of devices and software drivers that help turn raw data into interpreted
information about the environment.

Different platforms and domains tend to have their own sensor stacks,
and sensor stacks often come with their own frameworks to help deal
with the devices more easily. Over time, sensors are likely to encompass
more and more functionality; in turn, the functions of a particular stack
will change over time. Here, we enumerate some of the functions that
must be achieved in the stack regardless of where a particular
decomposition may have placed them:

Reading raw data. The lowest level of the stack is a software driver
to read the raw data. The driver reads the sensor either directly or, in
the case where the sensor is a portion of a sensor hub, through the
hub. The driver gets a reading from the sensor periodically. The
period frequency is a parameter that will influence both the
processor load from reading and processing the sensor and the
accuracy of the created representation.
Smoothing data. Raw data usually has a great deal of noise or
variation. Voltage variations, dirt or grime on a sensor, and a myriad
of other causes can make two successive readings of a sensor differ.
Smoothing is a process that uses a series of measurements over time
to produce an estimate that tends to be more accurate than single
readings. Calculating a moving average and using a Kalman filter
are two of the many techniques for smoothing data.
Converting data. Sensors can report data in many formats—from
voltage readings in millivolts to altitude above sea level in feet to
temperature in degrees Celsius. It is possible, however, that two
different sensors measuring the same phenomenon might report their
data in different formats. The converter is responsible for converting
readings from whatever form is reported by the sensor into a
common form meaningful to the application. As you might imagine,
this function may need to deal with a wide variety of sensors.
Sensor fusion. Sensor fusion combines data from multiple sensors to
build a more accurate or more complete or more dependable
representation of the environment than would be possible from any
individual sensor. For example, how does an automobile recognize
pedestrians in its path or likely to be in its path by the time it gets
there, day or night, in all kinds of weather? No single sensor can
accomplish this feat. Instead, the automobile must intelligently



combine inputs from sensors such as thermal imagers, radar, lidar,
and cameras.

18.4 Resources
In this section, we discuss computing resources from the perspective of
their physical characteristics. For example, in devices where energy
comes from batteries, we need to be concerned with battery volume,
weight, and thermal properties. The same holds true for resources such
as networks, processors, and sensors.

The tradeoff in the choice of resources is between the contribution of
the particular resource under consideration and its volume, weight, and
cost. Cost is always a factor. Costs include both the manufacturing costs
and nonrecurring engineering costs. Many mobile systems are
manufactured by the millions and are highly price-sensitive. Thus a
small difference in the price of a processor multiplied by the millions of
copies of the system in which that processor is embedded can make a
significant difference to the profitability of the organization producing
the system. Volume discounts and reuse of hardware across different
products are techniques that device vendors use to reduce costs.

Volume, weight, and cost are constraints given both by the marketing
department of an organization and by the physical considerations of its
use. The marketing department is concerned with customers’ reactions.
The physical considerations for the device’s use depend on both human
and usage factors. Smartphone displays must be large enough for a
human to read; automobiles are constrained by weight limits on roads;
trains are constrained by track width; and so forth.

Other constraints on mobile system resources (and therefore on
software architects) reflect the following factors:

Safety considerations. Physical resources that have safety
consequences must not fail or must have backups. Backup
processors, networks, or sensors add cost and weight, as well as
consume space. For example, many aircraft have an emergency
source of power that can be used in case of engine failure.
Thermal limits. Heat can be generated by the system itself (think of
your lap on which your laptop sits), which can have a detrimental
effect on the system’s performance, even to the point of inducing
failure. The environment’s ambient temperature—too high or too



low—can have an impact as well. There should be an understanding
of the environment in which the system will be operated prior to
making hardware choices.
Other environmental concerns. Other concerns include exposure to
adverse conditions such as moisture or dust, or being dropped.

The Architect’s Concerns
An architect must make a number of important decisions surrounding
resources and their usage:

Assigning tasks to electronic control units (ECUs). Larger mobile
systems, such as cars or airplanes, have multiple ECUs of differing
power and capacity. A software architect must decide which
subsystems will be assigned to which ECUs. This decision can be
based on a number of factors:

Fit of the ECU to the function. Functions must be allocated to
ECUs with sufficient power to perform the function. Some
ECUs may have specialized processors; for example, an ECU
with a graphics processor is a better fit for graphics functions.
Criticality. More powerful ECUs may be reserved for critical
functions. For example, engine controllers are more critical and
more reliable than the comfort features subsystem.
Location in the vehicle. First-class passengers may have better
Wi-Fi connectivity than second-class passengers.
Connectivity. Some functions may be split among several ECUs.
If so, they must be on the same internal network and able to
communicate with each other.
Locality of communication. Putting components that intensely
communicate with each other on the same ECU will improve
their performance and reduce network traffic.
Cost. Typically a manufacturer wants to minimize the number of
ECUs deployed.

Offloading functionality to the cloud. Applications such as route
determination and pattern recognition can be performed partly by the
mobile system itself—where the sensors are located—and partly
from portions of the application that are resident on the cloud—



where more data storage and more powerful processors are
available. The architect must determine whether the mobile system
has sufficient power for specific functions, whether there is adequate
connectivity to offload some functions, and how to satisfy
performance requirements when the functions are split between the
mobile system and the cloud. The architect should also take into
consideration data storage available locally, data update intervals,
and privacy concerns.
Shutting down functions depending on the mode of operations.
Subsystems that are not being used can scale down their footprint,
allowing competing subsystems to access more resources, and
thereby deliver better performance. In sports cars, an example is
switching on a “race mode,” which disables the processes
responsible for calculating comfortable suspension parameters based
on the road profile and activates calculations of torque distribution,
braking power, suspension hardening, and centrifugal forces.
Strategy for displaying information. This issue is tied to available
display resolution. It’s possible to do GPS style mapping on a 320 ×
320 pixel display, but a lot of effort has to go into minimizing the
information on the display. At a resolution of 1,280 × 720, there are
more pixels, so the information display can be richer. (Having the
ability to change the information on the display is a strong motivator
for a pattern such as MVC [see Chapter 13] so that the view can be
swapped out based on the specific display characteristics.)

18.5 Life Cycle
The life cycle of mobile systems tends to feature some idiosyncrasies
that an architect needs to take into account, and these differ from the
choices made for traditional (nonmobile) systems. We’ll dive right in.

The Architect’s Concerns
The architect must be concerned with the hardware choices, testing,
deploying updates, and logging. We elaborate on these concerns in the
next four subsections.

Hardware First



For many mobile systems, the hardware is chosen before the software is
designed. Consequently, the software architecture must live with the
constraints imposed by the chosen hardware.

The main stakeholders in early hardware choices are management,
sales, and regulators. Their concerns typically focus on ways to reduce
risks rather than ways to promote quality attributes. The best approach
for a software architect is to actively drive these early discussions,
emphasizing the tradeoffs involved, instead of passively awaiting their
outcomes.

Testing
Mobile devices present some unique considerations for testing:

Test display layouts. Smartphones and tablets come in a wide variety
of shapes, sizes, and aspect ratios. Verifying the correctness of the
layout on all of these devices is complicated. Some operating system
frameworks allow the user interface to be operated from unit tests,
but may miss some unpleasant edge cases. For example, suppose
you display control buttons on your screen, with the layout specified
in HTML and CSS, and suppose it’s automatically generated for all
display devices you anticipate using. A naive generation for a tiny
display could produce a control on a 1 × 1 pixel, or controls right at
the edge of the display, or controls that overlap. These may easily
escape detection during testing.
Test operational edge cases.

An application should survive battery exhaustion and shutdown
of the system. The preservation of state in such cases needs to be
ensured and tested.
The user interface typically operates asynchronously from the
software that provides the functionality. When the user interface
does not react correctly, re-creating the sequence of events that
caused the problem is difficult because the problem may depend
on the timing, or on a specific set of operations in progress at the
time.

Test resource usage. Some vendors will make simulators of their
devices available to software architects. That’s helpful, but testing
battery usage with a simulator is problematic.



Test for network transitions. Ensuring that the system makes the best
choice when multiple communication networks are available is also
difficult. As a device moves from one network to another (e.g., from
a Wi-Fi network to a cellular network and then to a different Wi-Fi
network), the user should be unaware of these transitions.

Testing for transportation or industrial systems tends to happen on
four levels: the individual software component level, the function level,
the device level, and the system level. The levels and boundaries
between them may vary depending on the system, but they are implied
in several reference processes and standards such as Automotive SPICE.

For example, suppose we are testing a car’s lane keep assist function,
where the vehicle stays in the lane defined by markings on the road and
does so without driver input. Testing of this system may address the
following levels:

1. Software component. A lane detection software component will be
tested through the usual techniques for unit and end-to-end testing,
with the aim of validating the software’s stability and correctness.

2. Function. The next step is to run the software component together
with other components of the lane keep assist function, such as a
mapping component to identify highway exits, in a simulated
environment. The aim is to validate the interfacing and safe
concurrency when all components of the function are working
together. Here, simulators are used to provide the software function
with inputs that correspond to a vehicle driving down a marked
road.

3. Device. The bundled lane keep assist function, even if it passes the
tests in the simulated environment and on the development
computers, needs to be deployed on its target ECU and tested there
for performance and stability. In this device test phase, the
environment would still be simulated, but this time through
simulated external inputs (messages from other ECUs, sensor
inputs, and so forth) connected to the ECU’s ports.

4. System. In the final system integration testing phase, all devices
with all functions and all components are built into full-size
configurations, first in a test lab and then in a test prototype. For
example, the lane keep assist function could be subjected to
testing, along with its actions on the steering and



acceleration/braking functions, while being fed a projected image
or a video of the road. The role of these tests is to confirm that the
integrated subsystems work together and deliver the desired
functionality and system quality attributes.

An important point here is test traceability: If an issue is found in step
4, it needs to be reproducible and traceable through all test setups, since
a fix will have to go through all four test levels again.

Deploying Updates
In a mobile device, updates to the system either fix issues, provide new
functionality, or install features that are unfinished but perhaps were
partially installed at the time of an earlier release. Such an update may
target the software, the data, or (less often) the hardware. Modern cars,
for example, require software updates, which are fetched over networks
or downloaded via USB interfaces. Beyond providing for the capability
of updates during operation, the following specific issues relate to
deploying updates:

Maintaining data consistency. For consumer devices, upgrades tend
to be automatic and one-way (there’s no way to roll back to an
earlier version). This suggests keeping data on the cloud is a good
idea—but then all the interactions between the cloud and the
application need to be tested.
Safety. The architect needs to determine which states of the system
can safely support an update. For example, updating a car’s engine
control software while the vehicle is driving down the highway is a
bad idea. This, in turn, implies that the system needs to be aware of
safety-relevant states with respect to updates.
Partial system deployment. Re-deploying a total application or large
subsystem will consume both bandwidth and time. The application
or subsystem should be architected so that the portions that change
frequently can be easily updated. This calls for a specific type of
modifiability (see Chapter 8) and an attention to deployability (see
Chapter 5). In addition, updates should be easy and automated.
Accessing physical portions of a device to update them may be
awkward. Returning to the engine controller example, updating the
controller software should not require access to the engine.



Extendability. Mobile vehicle systems tend to have relatively long
lifetimes. Retrofitting cars, trains, airplanes, satellites, and so forth
will likely become necessary at some point. Retrofitting means
adding new technology to old systems, either by replacement or
addition. This could occur for the following reasons:

The component reaches the end of its life before the overall
system reaches its end. The end of life means support will be
discontinued, which creates high risks in case of failures: There
will be no trusted source from which to get answers or support
with reasonable costs—that is, without having to dissect and
reverse-engineer the component in question.
Newer better technology has come out, prompting a
hardware/software upgrade. An example is retrofitting a 2000s
car with a smartphone-connected infotainment system instead of
an old radio/CD player.
Newer technology is available that adds functionality without
replacing existing functionality. For example, suppose the
2000s-era car never had a radio/CD player at all, or lacked a
backup camera.

Logging
Logs are critical when investigating and resolving incidents that have
occurred or may occur. In mobile systems, the logs should be offloaded
to a location where they are accessible regardless of the accessibility of
the mobile system itself. This is useful not only for incident handling, but
also for performing various types of analyses on the usage of the system.
Many software applications do something similar when they encounter a
problem and ask for permission to send the details to the vendor. For
mobile systems, this logging capability is particularly important, and
they may very well not ask permission to obtain the data.

18.6 Summary
Mobile systems span a broad range of forms and applications, from
smartphones and tablets to vehicles such as automobiles and aircraft. We
have categorized the differences between mobile systems and fixed
systems as being based on five characteristics: energy, connectivity,
sensors, resources, and life cycle.



The energy in many mobile systems comes from batteries. Batteries
are monitored to determine both the remaining time on the battery and
the usage of individual applications. Energy usage can be controlled by
throttling individual applications. Applications should be constructed to
survive power failures and restart seamlessly when power is restored.

Connectivity means connecting to other systems and the Internet
through wireless means. Wireless communication can be via short-
distance protocols such as Bluetooth, medium-range protocols such as
Wi-Fi protocols, and long-distance cellular protocols. Communication
should be seamless when moving from one protocol class to another, and
considerations such as bandwidth and cost help the architect decide
which protocols to support.

Mobile systems utilize a variety of sensors. Sensors provide readings
of the external environment, which the architect then uses to develop a
representation within the system of the external environment. Sensor
readings are processed by a sensor stack specific to each operating
system; these stacks will deliver readings meaningful to the
representation. It may take multiple sensors to develop a meaningful
representation, with the readings from these sensors then being fused
(integrated). Sensors may also become degraded over time, so multiple
sensors may be needed to get an accurate representation of the
phenomenon being measured.

Resources have physical characteristics such as size and weight, have
processing capabilities, and carry a cost. The design choices involve
tradeoffs among these factors. Critical functions may require more
powerful and reliable resources. Some functions may be shared between
the mobile system and the cloud, and some functions may be shut down
in certain modes to free up resources for other functions.

Life-cycle issues include choice of hardware, testing, deploying
updates, and logging. Testing of the user interface may be more
complicated with mobile systems than with fixed systems. Likewise,
deployment is more complicated because of bandwidth, safety
considerations, and other issues.

18.7 For Further Reading
The Battery University (https://batteryuniversity.com/) has more
materials than you care about on batteries of various types and their
measurement.

https://batteryuniversity.com/


You can read more about various network protocols at the following
sites:

link-labs.com/blog/complete-list-iot-network-protocols
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://searchnetworking.techtarget.com/tutorial/Wireless-protocols-
learning-guide
https://en.wikipedia.org/wiki/IEEE_802
You can find out more about sensors in [Gajjarby 17].
Some test tools for mobile applications can be found at these two

sites:
https://codelabs.developers.google.com/codelabs/firebase-test-
lab/index.html#0
https://firebase.google.com/products/test-lab
Some of the difficulties involved in making self-driving cars safe are

discussed in “Adventures in Self Driving Car Safety,” Philip Koopman’s
presentation on Slideshare: slideshare.net/PhilipKoopman1/adventures-
in-self-driving-car-safety?qid=eb5f5305-45fb-419e-83a5-
998a0b667004&v=&b=&from_search=3.

You can find out about Automotive SPICE at automotivespice.com.
ISO 26262, “Road Vehicles: Functional Safety,” is an international

standard for functional safety of automotive electrical and/or electronic
systems (iso.org/standard/68383.html).

18.8 Discussion Questions
1. Which architectural choices would you make to design a system

that could tolerate complete loss of power and have the ability to
restart where it left off without compromising the integrity of its
data?

2. What are the architectural issues involved in network transitions,
such as starting a file transfer over Bluetooth and then moving out
of Bluetooth range and switching over to Wi-Fi, all the while
keeping the transfer seamlessly proceeding?

3. Determine the weight and size of the battery in one of your mobile
systems. What compromises do you think the architect made
because of the size and weight?

http://link-labs.com/blog/complete-list-iot-network-protocols
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://searchnetworking.techtarget.com/tutorial/Wireless-protocols-learning-guide
https://en.wikipedia.org/wiki/IEEE_802
https://codelabs.developers.google.com/codelabs/firebase-test-lab/index.html#0
https://firebase.google.com/products/test-lab
http://slideshare.net/PhilipKoopman1/adventures-in-self-driving-car-safety?qid=eb5f5305-45fb-419e-83a5-998a0b667004&v=&b=&from_search=3
http://automotivespice.com/
http://iso.org/standard/68383.html


4. Which types of problems can a CSS testing tool find? Which does it
miss? How do these considerations affect the testing of mobile
devices?

5. Consider an interplanetary probe such as those used in NASA’s
Mars exploration program. Does it meet the criteria of a mobile
device? Characterize its energy characteristics, network
connectivity issues (obviously, none of the network types discussed
in Section 18.2 are up to the task), sensors, resource issues, and
special life-cycle considerations.

6. Consider mobility not as a class of computing system, but rather as
a quality attribute, like security or modifiability. Write a general
scenario for mobility. Write a specific mobility scenario for a
mobile device of your choosing. Describe a set of tactics to achieve
the quality attribute of “mobility.”

7. Section 18.5 discussed several aspects of testing that are more
challenging in mobile systems. What testability tactics from
Chapter 12 can help with these issues?



Part IV: Scalable Architecture
Practices



19
Architecturally Significant
Requirements

The most important single aspect of software development is to be clear
about what you are trying to build.
—Bjarne Stroustrup, creator of C++

Architectures exist to build systems that satisfy requirements. By
“requirements,” we do not necessarily mean a documented catalog
produced using the best techniques that requirements engineering has to
offer. Instead, we mean the set of properties that, if not satisfied by your
system, will cause the system to be a failure. Requirements exist in as
many forms as there are software development projects—from polished
specifications to verbal shared understanding (real or imagined) among
principal stakeholders. The technical, economic, and philosophical
justifications for your project’s requirements practices are beyond the
scope of this book. What is in scope is that, regardless of how they are
captured, they establish the criteria for success or failure, and architects
need to know them.

To an architect, not all requirements are created equal. Some have a
much more profound effect on the architecture than others. An
architecturally significant requirement (ASR) is a requirement that will
have a profound effect on the architecture—that is, the architecture
might well be dramatically different in the absence of such a
requirement.

You cannot hope to design a successful architecture if you do not
know the ASRs. ASRs often, but not always, take the form of quality
attribute (QA) requirements—the performance, security, modifiability,
availability, usability, and so forth, that the architecture must provide to
the system. In Chapters 4–14, we introduced patterns and tactics to
achieve QAs. Each time you select a pattern or tactic to use in your



architecture, you are doing so because of the need to meet QA
requirements. The more difficult and important the QA requirement, the
more likely it is to significantly affect the architecture, and hence to be
an ASR.

Architects must identify ASRs, usually after doing a significant bit of
work to uncover candidate ASRs. Competent architects know this.
Indeed, as we observe experienced architects going about their duties,
we notice that the first thing they do is start talking to the important
stakeholders. They’re gathering the information they need to produce the
architecture that will respond to the project’s needs—whether or not this
information has been previously identified.

This chapter provides some systematic techniques for identifying the
ASRs and other factors that will shape the architecture.

19.1 Gathering ASRs from Requirements
Documents

An obvious location to look for candidate ASRs is in the requirements
document or in user stories. After all, we are looking for requirements,
and requirements should be (duh) in requirements documents.
Unfortunately, this is not usually the case, although information in the
requirements documents can certainly be useful.

Don’t Get Your Hopes Up
Many projects don’t create or maintain the kind of requirements
document that professors in software engineering classes or authors of
traditional software engineering books love to prescribe. Furthermore, no
architect just sits and waits until the requirements are “finished” before
starting work. The architect must begin while the requirements are still in
flux. Consequently, the QA requirements are quite likely to be uncertain
when the architect starts work. Even where they exist and are stable,
requirements documents often fail an architect in two ways:

Most of the information found in a requirements specification does
not affect the architecture. As we’ve seen over and over,
architectures are mostly driven or “shaped” by QA requirements,
which determine and constrain the most important architectural
decisions. Even so, the vast bulk of most requirements specifications
focus on the required features and functionality of a system, which



shape the architecture the least. The best software engineering
practices do prescribe capturing QA requirements. For example, the
Software Engineering Body of Knowledge (SWEBOK) says that QA
requirements are like any other requirements: They must be captured
if they are important, and they should be specified unambiguously
and be testable.
In practice, though, we rarely see adequate capture of QA
requirements. How many times have you seen a requirement of the
form “The system shall be modular” or “The system shall exhibit
high usability” or “The system shall meet users’ performance
expectations”? These are not useful requirements because they are
not testable; they are not falsifiable. But, looking on the bright side,
they can be viewed as invitations for the architect to begin a
conversation about what the requirements in these areas really are.
Much of what is useful to an architect won’t be found in even the
best requirements document. Many concerns that drive an
architecture do not manifest themselves at all as observables in the
system being specified, and thus are not the subject of requirements
specifications. ASRs often derive from business goals in the
development organization itself; we’ll explore this connection in
Section 19.3. Developmental qualities are also out of scope; you will
rarely see a requirements document that describes teaming
assumptions, for example. In an acquisition context, the
requirements document represents the interests of the acquirer, not
those of the developer. Stakeholders, the technical environment, and
the organization itself all play a role in influencing architectures.
When we discuss architecture design, in Chapter 20, we will explore
these requirements in more detail.

Sniffing out ASRs from a Requirements Document
While requirements documents won’t tell an architect the whole story,
they are still an important source of ASRs. Of course, ASRs will not be
conveniently labeled as such; the architect should expect to perform a bit
of investigation and archaeology to ferret them out.

Some specific things to look for are the following categories of
information:



Usage. User roles versus system modes, internationalization,
language distinctions.
Time. Timeliness and element coordination.
External elements. External systems, protocols, sensors or actuators
(devices), middleware.
Networking. Network properties and configurations (including their
security properties).
Orchestration. Processing steps, information flows.
Security properties. User roles, permissions, authentication.
Data. Persistence and currency.
Resources. Time, concurrency, memory footprint, scheduling,
multiple users, multiple activities, devices, energy usage, soft
resources (e.g., buffers, queues), and scalability requirements.
Project management. Plans for teaming, skill sets, training, team
coordination.
Hardware choices. Processors, families of processors, evolution of
processors.
Flexibility of functionality, portability, calibrations, configurations.
Named technologies, commercial packages.

Anything that is known about their planned or anticipated evolution will
be useful information, too.

Not only are these categories architecturally significant in their own
right, but the possible change and evolution of each are also likely to be
architecturally significant. Even if the requirements document you’re
mining doesn’t mention evolution, consider which of the items in the
preceding list are likely to change over time, and design the system
accordingly.

19.2 Gathering ASRs by Interviewing Stakeholders
Suppose your project isn’t producing a comprehensive requirements
document. Or maybe it is, but it won’t have the QAs nailed down by the
time you need to start your design work. What do you do?



First, stakeholders often don’t know what their QA requirements
actually are. In that case, architects are called upon to help set the QA
requirements for a system. Projects that recognize this need for
collaboration and encourage it are much more likely to be successful
than those that don’t. Relish the opportunity! No amount of nagging
your stakeholders will suddenly instill in them the necessary insights. If
you insist on quantitative QA requirements, you may get numbers that
are arbitrary and at least some of those requirements will be difficult to
satisfy and, in the end, actually detract from system success.

Experienced architects often have deep insights into which QA
responses have been exhibited by similar systems, and which QA
responses are reasonable to expect and to provide in the current context.
Architects can also usually give quick feedback as to which QA
responses will be straightforward to achieve and which will likely be
problematic or even prohibitive.

For example, a stakeholder may ask for 24/7 availability—who
wouldn’t want that? However, the architect can explain how much that
requirement is likely to cost, which will give the stakeholders
information to make a tradeoff between availability and affordability.
Also, architects are the only people in the conversation who can say, “I
can actually deliver an architecture that will do better than what you had
in mind—would that be useful to you?”

Interviewing the relevant stakeholders is the surest way to learn what
they know and need. Once again, it behooves a project to capture this
critical information in a systematic, clear, and repeatable way. Gathering
this information from stakeholders can be achieved by many methods.
One such method is the Quality Attribute Workshop (QAW), described
in the sidebar.

The Quality Attribute Workshop
The QAW is a facilitated, stakeholder-focused method to generate,
prioritize, and refine quality attribute scenarios before the software
architecture is completed. It emphasizes system-level concerns and
specifically the role that software will play in the system. The QAW
is keenly dependent on the participation of system stakeholders.

After introductions and an overview of the workshop steps, the
QAW involves the following elements:



Business/mission presentation. The stakeholder representing
the business concerns behind the system (typically a manager
or management representative) spends about one hour
presenting the system’s business context, broad functional
requirements, constraints, and known QA requirements. The
QAs that will be refined in later steps will be derived largely
from the business/mission needs presented in this step.
Architectural plan presentation. While a detailed system or
software architecture might not exist, it is possible that broad
system descriptions, context drawings, or other artifacts have
been created that describe some of the system’s technical
details. At this point in the workshop, the architect will present
the system architectural plans as they stand. This lets
stakeholders know the current architectural thinking, to the
extent that it exists.
Identification of architectural drivers. The facilitators will
share their list of key architectural drivers that they assembled
in the prior two steps, and ask the stakeholders for
clarifications, additions, deletions, and corrections. The idea is
to reach a consensus on a distilled list of architectural drivers
that include overall requirements, business drivers, constraints,
and quality attributes.
Scenario brainstorming. Each stakeholder expresses a scenario
representing his or her concerns with respect to the system.
Facilitators ensure that each scenario addresses a QA concern,
by specifying an explicit stimulus and response.
Scenario consolidation. After the scenario brainstorming,
similar scenarios are consolidated where reasonable.
Facilitators ask stakeholders to identify those scenarios that are
very similar in content. Scenarios that are similar are merged,
as long as the people who proposed them agree and feel that
their scenarios will not be diluted in the process.
Scenario prioritization. Prioritization of the scenarios is
accomplished by allocating each stakeholder a number of votes
equal to 30 percent of the total number of scenarios generated
after consolidation. Stakeholders can allocate any number of
their votes to any scenario or combination of scenarios. The
votes are counted, and the scenarios are prioritized accordingly.



Scenario refinement. After the prioritization, the top scenarios
are refined and elaborated. Facilitators help the stakeholders
put the scenarios in the six-part scenario form of source–
stimulus–artifact–environment–response–response measure
that we described in Chapter 3. As the scenarios are refined,
issues surrounding their satisfaction will emerge and should be
recorded. This step lasts as long as time and resources allow.

The results of stakeholder interviews should include a list of
architectural drivers and a set of QA scenarios that the stakeholders (as a
group) prioritized. This information can be used for the following
purposes:

Refine system and software requirements.
Understand and clarify the system’s architectural drivers.
Provide a rationale for why the architect subsequently made certain
design decisions.
Guide the development of prototypes and simulations.
Influence the order in which the architecture is developed.

I Don’t Know What That Requirement Should Be
It is not uncommon when interviewing stakeholders and probing for
ASRs that they will complain, “I don’t know what that requirement
should be.” While it is true that this is the way that they feel, it is
also frequently the case that they know something about the
requirement, particularly if the stakeholders are experienced in the
domain. In this case, eliciting this “something” is far better than
simply making up the requirement on your own. For example, you
might ask, “How quickly should the system respond to this
transaction request?” If the answer is “I don’t know,” my advice
here is to play dumb. You can say, “So . . . 24 hours would be OK?”
The response is often an indignant and astonished “No!” “Well,
how about 1 hour? “No!” “Five minutes? “No!” “How about 10



seconds?” “Well, <grumble, mumble> I suppose I could live with
something like that. . . .”

By playing dumb, you can often get people to at least give you a
range of acceptable values, even if they do not know precisely
what the requirement should be. And this range is typically enough
for you to choose architectural mechanisms. A response time of 24
hours versus 10 minutes versus 10 seconds versus 100 milliseconds
means, to an architect, choosing very different architectural
approaches. Armed with this information, you can now make
informed design decisions.

—RK

19.3 Gathering ASRs by Understanding the Business
Goals

Business goals are the raison d’être for building a system. No
organization builds a system without a reason; rather, the people
involved want to further the mission and ambitions of their organization
and themselves. Common business goals include making a profit, of
course, but most organizations have many more concerns than simply
profit. In still other organizations (e.g., nonprofits, charities,
governments), profit is the furthest thing from anyone’s mind.

Business goals are of interest to architects because they frequently
lead directly to ASRs. There are three possible relationships between
business goals and an architecture:

1. Business goals often lead to quality attribute requirements. Every
quality attribute requirement—such as user-visible response time
or platform flexibility or iron-clad security or any of a dozen other
needs—originates from some higher purpose that can be described
in terms of added value. A desire to differentiate a product from its
competition and let the developing organization capture market
share may lead to a requirement for what might seem like an
unusually fast response time. Also, knowing the business goal
behind a particularly stringent requirement enables the architect to
question the requirement in a meaningful way—or marshal the
resources to meet it.



2. Business goals may affect the architecture without inducing a
quality attribute requirement at all. A software architect related to
us that some years ago he delivered an early draft of the
architecture to his manager. The manager remarked that a database
was missing from the architecture. The architect, pleased that the
manager had noticed, explained how he (the architect) had devised
a design approach that obviated the need for a bulky, expensive
database. The manager, however, pressed for the design to include
a database, because the organization had a database unit
employing a number of highly paid technical staff who were
currently unassigned and needed work. No requirements
specification would capture such a requirement, nor would any
manager allow such a motivation to be captured. And yet that
architecture, had it been delivered without a database, would have
been just as deficient—from the manager’s point of view—as if it
had failed to deliver an important function or QA.

3. No influence of a business goal on the architecture. Not all
business goals lead to quality attributes. For example, a business
goal to “reduce cost” might be realized by lowering the facility’s
thermostats in the winter or reducing employees’ salaries or
pensions.

Figure 19.1 illustrates the major points from this discussion. In the
figure, the arrows mean “leads to.” The solid arrows highlight the
relationships of greatest interest to architects.

Figure 19.1 Some business goals may lead to quality attribute
requirements, or lead directly to architectural decisions, or lead to
non-architectural solutions.

Architects often become aware of an organization’s business and
business goals via osmosis—working, listening, talking, and soaking up
the goals that are at work in an organization. Osmosis is not without its
benefits, but more systematic ways of determining such goals are both
possible and desirable. Moreover, it is worthwhile to capture business



goals explicitly, because they often imply ASRs that would otherwise go
undetected until it is too late or too expensive to address them.

One way to do this is to employ the PALM method, which entails
holding a workshop with the architect and key business stakeholders.
The heart of PALM consists of these steps:

Business goals elicitation. Using the categories given later in this
section to guide the discussion, capture from stakeholders the set of
important business goals for this system. Elaborate the business
goals and express them as business goal scenarios.1 Consolidate
almost-alike business goals to eliminate duplication. Have the
participants prioritize the resulting set to identify the most important
goals.
1. A business goal scenario is a structured seven-part expression

that captures a business goal, similar in intent and usage to a QA
scenario. This chapter’s “For Further Reading” section contains a
reference that describes PALM, and business goal scenarios, in
full detail.

Identify potential QAs from business goals. For each important
business goal scenario, have the participants describe a QA and
response measure value that (if architected into the system) would
help achieve the goal.

The process of capturing business goals is well served by having a set
of candidate business goals handy to use as conversation-starters. If you
know that many businesses want to gain market share, for instance, you
can use that motivation to engage the right stakeholders in your
organization: “What are our ambitions about market share for this
product, and how could the architecture contribute to meeting them?”

Our research in business goals has led us to adopt the categories
shown in the list that follows. These categories can be used as an aid to
brainstorming and elicitation. By employing the list of categories, and
asking the stakeholders about possible business goals in each category,
some assurance of coverage is gained.

1. Growth and continuity of the organization
2. Meeting financial objectives
3. Meeting personal objectives
4. Meeting responsibility to the employees



5. Meeting responsibility to society
6. Meeting responsibility to the state
7. Meeting responsibility to the shareholders
8. Managing market position
9. Improving business processes

10. Managing the quality and reputation of products
11. Managing change in the environment over time

19.4 Capturing ASRs in a Utility Tree
In a perfect world, the techniques described in Sections 19.2 and 19.3
would be applied early on in your development process: You would
interview the key stakeholders, elicit their business goals and driving
architectural requirements, and have them prioritize all of these inputs
for you. Of course, the real world, lamentably, is less than perfect. It is
often the case that you do not have access to these stakeholders when
you need them, for organizational or business reasons. So what do you
do?

Architects can use a construct called a utility tree when the “primary
sources” of requirements are not available. A utility tree is a top-down
representation of what you, as an architect, believe to be the QA-related
ASRs that are critical to the success of the system.

A utility tree begins with the word “Utility” as the root node. Utility is
an expression of the overall “goodness” of the system. You then
elaborate on this root node by listing the major QAs that the system is
required to exhibit. (You might recall that we said in Chapter 3 that QA
names by themselves were not very useful. Never fear—they are only
being used as intermediate placeholders for subsequent elaboration and
refinement!)

Under each QA, record specific refinements of that QA. For example,
performance might be decomposed into “data latency” and “transaction
throughput” or, alternatively, “user wait time” and “time to refresh web
page.” The refinements that you choose should be the ones that are
relevant to your system. Under each refinement, you can then record the
specific ASRs, expressed as QA scenarios.

Once the ASRs are recorded as scenarios and placed at the leaves of
the tree, you can evaluate these scenarios against two criteria: the



business value of the candidate scenario and the technical risk of
achieving it. You can use any scale you like, but we find that a simple
“H” (high), “M” (medium), and “L” (low) scoring system suffices for
each criterion. For business value, “high” designates a must-have
requirement, “medium” identifies a requirement that is important but
would not lead to project failure were it omitted, and “low” describes a
nice requirement to meet but not something worth much effort. For
technical risk, “high” means that meeting this ASR is keeping you
awake at night, “medium” means meeting this ASR is concerning but
does not carry a high risk, and “low” means that you have confidence in
your ability to meet this ASR.

Table 19.1 shows a portion of an example utility tree. Each ASR is
labeled with an indicator of its business value and its technical risk.

Table 19.1 Tabular Form of the Utility Tree for a System in the
Healthcare Space

Qual
ity 
Attri
bute

Attribute 
Refineme
nt

ASR Scenario

Perf
orma
nce

Transactio
n response 
time

A user updates a patient’s account in response to a 
change-of-address notification while the system is 
under peak load, and the transaction completes in less 
than 0.75 seconds. (H, H)

Throughp
ut

At peak load, the system is able to complete 150 
normalized transactions per second. (M, M)

Usab
ility

Proficienc
y training

A new hire with two or more years’ experience in the 
business can learn, with 1 week of training, to execute 
any of the system’s core functions in less than 5 
seconds. (M, L)

Efficiency 
of 
operations

A hospital payment officer initiates a payment plan for 
a patient while interacting with that patient and 
completes the process with no input errors. (M, M)

Conf
igura
bility

Data 
configurab
ility

A hospital increases the fee for a particular service. 
The configuration team makes and tests the change in 
1 working day; no source code needs to change. (H, L)



Qual
ity 
Attri
bute

Attribute 
Refineme
nt

ASR Scenario

Main
taina
bility

Routine 
changes

A maintainer encounters response-time deficiencies, 
fixes the bug, and distributes the bug fix with no more 
than 3 person-days of effort. (H, M)
A reporting requirement requires a change to the 
report-generating metadata. Change is made and tested 
in 4 person-hours of effort (M, L)

Upgrades 
to 
commerci
al 
componen
ts

The database vendor releases a new major version that 
is successfully tested and installed in less than 3 
person-weeks. (H, M)

Adding 
new 
feature

A feature that tracks blood bank donors is created and 
successfully integrated within 2 person-months. (M, 
M)

Secu
rity

Confidenti
ality

A physical therapist is allowed to see that part of a 
patient’s record dealing with orthopedic treatment, but 
not other parts or any financial information. (H, M)

Resisting 
attacks

The system repels an unauthorized intrusion attempt 
and reports the attempt to authorities within 90 
seconds. (H, M)

Avail
abilit
y

No down 
time

The database vendor releases new software, which is 
hot-swapped into place, with no downtime. (H, L)
The system supports 24/7/365 web-based account 
access by patients. (M, M)

Once you have a utility tree filled out, you can use it to make
important checks. For instance:

A QA or QA refinement without any ASR scenario is not
necessarily an error or omission that needs to be rectified, but rather
an indication you should investigate whether there are unrecorded
ASR scenarios in that area.



ASR scenarios that receive a (H, H) rating are obviously the ones
that deserve the most attention from you; these are the most
significant of the significant requirements. A very large number of
these scenarios might be a cause for concern regarding whether the
system is, in fact, achievable.

19.5 Change Happens
Edward Berard said, “Walking on water and developing software from a
specification are both easy if both are frozen.” Nothing in this chapter
should be taken to assume that such a miraculous state of affairs is likely
to exist. Requirements—whether captured or not—change all the time.
Architects have to adapt and keep up, to ensure that their architectures
are still the right ones that will bring success to the project. In Chapter
25, where we discuss architecture competence, we’ll advise that
architects need to be great communicators, and this means great
bidirectional communicators, taking in as well as supplying information.
Always keep a channel open to the key stakeholders who determine the
ASRs so you can keep up with changing requirements. The methods
offered in this chapter can be applied repetitively to accommodate
change.

Even better than keeping up with change is staying one step ahead of
it. If you get wind of a change to the ASRs, you can take preliminary
steps to design for it, as an exercise to understand the implications. If the
change will be prohibitively expensive, sharing that information with the
stakeholders will be a valuable contribution, and the earlier they know it,
the better. Even more valuable might be suggestions about changes that
would do (almost) as well in meeting the goals but without breaking the
budget.

19.6 Summary
Architectures are driven by architecturally significant requirements. An
ASR must have:

A profound impact on the architecture. Including this requirement
will likely result in a different architecture than if it were not
included.
A high business or mission value. If the architecture is going to
satisfy this requirement—potentially at the expense of not satisfying



others—it must be of high value to important stakeholders.

ASRs can be extracted from a requirements document, captured from
stakeholders during a workshop (e.g., a QAW), captured from the
architect in a utility tree, or derived from business goals. It is helpful to
record them in one place so that the list can be reviewed, referenced,
used to justify design decisions, and revisited over time or in the case of
major system changes.

In gathering these requirements, you should be mindful of the
organization’s business goals. Business goals can be expressed in a
common, structured form and represented as business goal scenarios.
Such goals may be elicited and documented using PALM, a structured
facilitation method.

A useful representation of QA requirements is a utility tree. Such a
graphical depiction helps to capture these requirements in a structured
form, starting from coarse, abstract notions of QAs and gradually
refining them to the point where they are captured as scenarios. These
scenarios are then prioritized, with this prioritized set defining your
“marching orders” as an architect.

19.7 For Further Reading
The Open Group Architecture Framework, available at
opengroup.org/togaf/, provides a complete template for documenting a
business scenario that contains a wealth of useful information. Although
we believe architects can make use of a lighter-weight means to capture
a business goal, it’s worth a look.

The definitive reference source for the Quality Attribute Workshop is
[Barbacci 03].

The term architecturally significant requirement was created by the
SARA group (Software Architecture Review and Assessment), as part of
a document that can be retrieved at
http://pkruchten.wordpress.com/architecture/SARAv1.pdf.

The Software Engineering Body of Knowledge (SWEBOK), third
edition, can be downloaded here: computer.org/education/bodies-of-
knowledge/software-engineering/v3. As we go to press, a fourth edition
is being developed.

A full description of PALM [Clements 10b] can be found here:
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_
15179.pdf.

http://opengroup.org/togaf/
http://pkruchten.wordpress.com/architecture/SARAv1.pdf
http://computer.org/education/bodies-of-knowledge/software-engineering/v3
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_15179.pdf


19.8 Discussion Questions
1. Interview representative stakeholders for a business system in use at

your company or your university and capture at least three business
goals for it. To do so, use PALM’s seven-part business goal scenario
outline, referenced in the “For Further Reading” section.

2. Based on the business goals you uncovered for question 1, propose
a set of corresponding ASRs.

3. Create a utility tree for an ATM. (Interview some of your friends
and colleagues if you would like to have them contribute QA
considerations and scenarios.) Consider a minimum of four
different QAs. Ensure that the scenarios that you create at the leaf
nodes have explicit responses and response measures.

4. Find a software requirements specification that you consider to be
of high quality. Using colored pens (real ones if the document is
printed; virtual ones if the document is online), color red all the
material that you find completely irrelevant to a software
architecture for that system. Color yellow all of the material that
you think might be relevant, but not without further discussion and
elaboration. Color green all of the material that you are certain is
architecturally significant. When you’re done, every part of the
document that’s not white space should be red, yellow, or green.
Approximately what percentage of each color did your document
end up being? Do the results surprise you?



20
Designing an Architecture
With Humberto Cervantes

A designer knows he has achieved perfection not when there is nothing left
to add, but when there is nothing left to take away.

—Antoine de Saint-Exupéry

Design—including architectural design—is a complex activity to
perform. It involves making a myriad of decisions that take into account
many aspects of a system. In the past, this task was only entrusted to
senior software engineers—gurus—with decades of hard-won
experience. A systematic method provides guidance in performing this
complex activity so that it can be learned and capably performed by mere
mortals.

In this chapter, we provide a detailed discussion of a method—
Attribute-Driven Design (ADD)—that allows an architecture to be
designed in a systematic, repeatable, and cost-effective way.
Repeatability and teachability are the hallmarks of an engineering
discipline. To make a method repeatable and teachable, we need a set of
steps that any suitably trained engineer can follow.

We begin by providing an overview of ADD and its steps. This
overview is followed by more detailed discussions of some of the key
steps.

20.1 Attribute-Driven Design
Architectural design for software systems is no different than design in
general: It involves making decisions, and working with the available
materials and skills, to satisfy requirements and constraints. In
architectural design, we turn decisions about architectural drivers into



structures, as shown in Figure 20.1. Architectural drivers comprise
architecturally significant requirements (ASRs—the topic of Chapter
19), but also include functionality, constraints, architectural concerns,
and design purpose. The resulting structures are then used to guide the
project in the many ways we laid out in Chapter 2: They guide analysis
and construction. They serve as the foundation for educating a new
project member. They guide cost and schedule estimations, team
formation, risk analysis and mitigation, and, of course, implementation.

Figure 20.1 Overview of the architecture design activity

Prior to starting architecture design, it is important to determine the
scope of the system—what is inside and what is outside of the system
you are creating, and which external entities the system will interact
with. This context can be represented using a system context diagram,
like that shown in Figure 20.2. Context diagrams are discussed in more
detail in Chapter 22.



Figure 20.2 Example of a system context diagram

In ADD, architecture design is performed in rounds, each of which
may consist of a series of design iterations. A round comprises the
architecture design activities performed within a development cycle.
Through one or more iterations, you produce an architecture that suits
the established design purpose for this round.

Within each iteration, a series of design steps is performed. ADD
provides detailed guidance on the steps that need to be performed inside
each iteration. Figure 20.3 shows the steps and artifacts associated with
ADD. In the figure, steps 1–7 constitute a round. Within a round, steps
2–7 constitute one or more iterations within a round. In the following
subsections, we provide an overview of each of these steps.



Figure 20.3 Steps and artifacts of ADD

20.2 The Steps of ADD
The sections that follow describe the steps for ADD.

Step 1: Review Inputs
Before starting a design round, you need to ensure that the architectural
drivers (the inputs to the design process) are available and correct. These
include:



The purpose of the design round
The primary functional requirements
The primary quality attribute (QA) scenarios
Any constraints
Any concerns

Why do we explicitly capture the design purpose? You need to make
sure that you are clear about your goals for a round. In an incremental
design context comprising multiple rounds, the purpose for a design
round may be, for example, to produce a design for early estimation, to
refine an existing design to build a new increment of the system, or to
design and generate a prototype to mitigate certain technical risks. In
addition, you need to know the existing architecture’s design, if this is
not greenfield development.

At this point, the primary functionality—typically captured as a set of
use cases or user stories—and QA scenarios should have been
prioritized, ideally by your most important project stakeholders. (You
can employ several different techniques to elicit and prioritize them, as
discussed in Chapter 19). You, the architect, must now “own” these. For
example, you need to check whether any important stakeholders were
overlooked in the original requirements elicitation process, and whether
any business conditions have changed since the prioritization was
performed. These inputs really do “drive” design, so getting them right
and getting their priority right are crucial. We cannot stress this point
strongly enough. Software architecture design, like most activities in
software engineering, is a “garbage-in-garbage-out” process. The results
of ADD cannot be good if the inputs are poorly formed.

The drivers become part of an architectural design backlog that you
should use to perform the different design iterations. When you have
made design decisions that account for all of the items in the backlog,
you’ve completed this round. (We discuss the idea of a backlog in more
depth in Section 20.8.)

Steps 2–7 make up the activities for each design iteration carried out
within this design round.

Step 2: Establish Iteration Goal by Selecting Drivers



Each design iteration focuses on achieving a particular goal. Such a goal
typically involves designing to satisfy a subset of the drivers. For
example, an iteration goal could be to create structures from elements
that will allow a particular performance scenario, or a use case to be
achieved. For this reason, when performing design activities, you need to
establish a goal before you start a particular design iteration.

Step 3: Choose One or More Elements of the System to
Refine
Satisfying drivers requires you to make architectural design decisions,
which then manifest themselves in one or more architectural structures.
These structures are composed of interrelated elements—modules and/or
components, as defined in Chapter 1—and these elements are generally
obtained by refining other elements that you previously identified in an
earlier iteration. Refinement can mean decomposition into finer-grained
elements (top-down approach), combination of elements into coarser-
grained elements (bottom-up approach) or the improvement of
previously identified elements. For greenfield development, you can start
by establishing the system context and then selecting the only available
element—that is, the system itself—for refinement by decomposition.
For existing systems or for later design iterations in greenfield systems,
you normally choose to refine elements that were identified in prior
iterations.

The elements that you will select are the ones involved in the
satisfaction of specific drivers. For this reason, when the design
addresses an existing system, you need to have a good understanding of
the elements that are part of the as-built architecture of the system.
Obtaining this information might involve some “detective work,”
reverse engineering, or discussions with developers.

In some cases, you may need to reverse the order of steps 2 and 3. For
example, when designing a greenfield system or when fleshing out
certain types of reference architectures, you will, at least in the early
stages of design, focus on elements of the system and start the iteration
by selecting a particular element and then considering the drivers that
you want to address.

Step 4: Choose One or More Design Concepts That
Satisfy the Selected Drivers



Choosing the design concept(s) is probably the most difficult decision
you will face in the design process, because it requires you to identify the
various design concepts that might plausibly be used to achieve your
iteration goal, and to then make a selection from these alternatives. Many
different types of design concepts are available—for example, tactics,
patterns, reference architectures, and externally developed components—
and, for each type, many options may exist. This can result in a
considerable number of alternatives that need to be analyzed to before
making the final choice. In Section 20.3, we discuss the identification
and selection of design concepts in more detail.

Step 5: Instantiate Architectural Elements, Allocate
Responsibilities, and Define Interfaces
Once you have selected one or more design concepts, you must make
another type of design decision: how to instantiate elements out of the
design concepts that you just selected. For example, if you selected the
layers pattern as a design concept, you must decide how many layers will
be used, and their allowed relationships, since the pattern itself does not
prescribe these.

After instantiating the elements, you then need to allocate
responsibilities to each of them. For example, in an app, at least three
layers are usually present: presentation, business, and data. The
responsibilities of these layers differ: The responsibilities of the
presentation layer include managing all of the user interactions, the
business layer manages application logic and enforces business rules,
and the data layer manages the persistence and consistency of data.

Instantiating elements is only one part of creating structures that
satisfy a driver or a concern. The elements that have been instantiated
also need to be connected, thereby allowing them to collaborate with
each other. This requires the existence of relationships between the
elements and the exchange of information through some kind of
interface. The interface is a contractual specification indicating how
information should flow between the elements. In Section 20.4, we
present more details on how the different types of design concepts are
instantiated, how structures are created, and how interfaces are defined.

Step 6: Sketch Views and Record Design Decisions



At this point, you have finished performing the design activities for the
iteration. However, you may have not taken any actions to ensure that
the views—the representations of the structures you created—are
preserved. For instance, if you performed step 5 in a conference room,
you probably ended up with a series of diagrams on a whiteboard. This
information is essential to the rest of the process, and you must capture it
so that you can later analyze and communicate it to other stakeholders.
Capturing the views may be as simple as taking a picture of the
whiteboard.

The views that you have created are almost certainly not complete;
thus, these diagrams may need to be revisited and refined in a
subsequent iteration. This is typically done to accommodate elements
resulting from other design decisions that you will make to support
additional drivers. This is why we speak of “sketching” the views in
ADD, where a “sketch” refers to a preliminary type of documentation.
The more formal, more fully fleshed-out documentation of these views
—should you choose to produce it (see Chapter 22)—occurs only after
the design iterations have been finished (as part of the architectural
documentation activity).

In addition to capturing the sketches of the views, you should record
the significant decisions made in the design iteration, as well as the
reasons that motivated these decisions (i.e., the rationale), to facilitate
later analysis and understanding of the decisions. For example, decisions
about important tradeoffs should be recorded at this time. During a
design iteration, decisions are primarily made in steps 4 and 5. In
Section 20.5, we explain how to create preliminary documentation
during the design process, including recording design decisions and their
rationale.

Step 7: Perform Analysis of Current Design and Review
Iteration Goal and Achievement of Design Purpose
By step 7, you should have created a partial design that addresses the
goal established for the iteration. Making sure that this is actually the
case is a good idea, to avoid unhappy stakeholders and later rework. You
can perform the analysis yourself by reviewing the sketches of the views
and design decisions that you captured, but an even better idea is to have
someone else help you review this design. We do this for the same
reason that organizations frequently have a separate testing/quality
assurance group: Another person will not share your assumptions, and



will have a different experience base and a different perspective. This
diversity helps to find “bugs,” in both code and architecture. We discuss
architectural analysis in more depth in Chapter 21.

Once the design performed in the iteration has been analyzed, you
should review the state of your architecture in terms of your established
design purpose. This means considering if, at this point, you have
performed enough design iterations to satisfy the drivers that are
associated with the design round. It also means considering whether the
design purpose has been achieved or if additional design rounds are
needed in future project increments. In Section 20.6, we discuss simple
techniques that allow you to keep track of design progress.

Iterate If Necessary
You should perform additional iterations and repeat steps 2–7 for every
driver that was considered. More often than not, however, this kind of
repetition will not be possible because of time or resource constraints
that force you to stop the design activities and move on to
implementation.

What are the criteria for evaluating if more design iterations are
necessary? Let risk be your guide. You should at least have addressed
the drivers with the highest priority. Ideally, you should have certainty
that critical drivers are satisfied or, at least, that the design is “good
enough” to satisfy them.

20.3 More on ADD Step 4: Choose One or More
Design Concepts

Most of the time you, as an architect, don’t need to, and should not,
reinvent the wheel. Rather, your major design activity is to identify and
select design concepts to meet the most important challenges and address
the key drivers across the design iterations. Design is still an original and
creative endeavor, but the creativity resides in the appropriate
identification of these existing solutions, followed by combining and
adapting them to the problem at hand. Even with an existing corpus of
solutions to choose from—and we are not always blessed with a rich
corpus—this is still the hardest part of design.

Identification of Design Concepts



The identification of design concepts might appear daunting, because of
the vast number of options available. There are likely dozens of design
patterns and externally developed components that you could use to
address any particular issue. To make things worse, these design
concepts are scattered across many different sources: in practitioner
blogs and websites, in research literature, and in books. Moreover, in
many cases, there is no canonical definition of a concept. Different sites,
for example, will define the broker pattern in different, largely informal
ways. Finally, once you have identified the alternatives that can
potentially help you achieve the design goals of the iteration, you need to
select the best one(s) for your purposes.

To address a specific design problem, you can and often will use and
combine different types of design concepts. For example, to build a
security driver, you might employ a security pattern, a security tactic, a
security framework, or some combination of these.

Once you have more clarity regarding the types of design concepts
that you wish to use, you still need to identify alternatives—that is,
design candidates. You can achieve this in several ways, although you
will probably use a combination of these techniques rather than a single
method:

Leverage existing best practices. You can identify alternatives by
making use of existing catalogs. Some design concepts, such as
patterns, are extensively documented; others, such as externally
developed components, are documented in a less thorough way. The
benefits of this approach are that you can identify many alternatives
and leverage the considerable knowledge and experience of others.
The downsides are that searching and studying the information can
require a considerable amount of time, the quality of the documented
knowledge is often unknown, and the assumptions and biases of the
authors are also unknown.
Leverage your own knowledge and experience. If the system you are
designing is similar to other systems you have designed in the past,
you will probably want to begin with some of the design concepts
that you have used before. The benefit of this approach is that the
identification of alternatives can be performed rapidly and
confidently. The downside is that you may end up using the same
ideas repeatedly, even if they are not the most appropriate for all the
design problems that you are facing, or if they have been superseded



by newer, better approaches. As the saying goes: If all you have is a
hammer, all the world looks like a nail.
Leverage the knowledge and experience of others. As an architect,
you have a background and knowledge that you have gained through
the years. This background and knowledge will vary from person to
person, especially if the types of design problems they have
addressed in the past differ. You can leverage this information by
performing the identification and selection of design concepts with
some of your peers through brainstorming.

Selection of Design Concepts
Once you have identified a list of alternative design concepts, you need
to select which one of the alternatives is the most appropriate to solve the
design problem at hand. You can achieve this in a relatively simple way,
by creating a table that lists the pros and cons associated with each
alternative and selecting one of the alternatives based on those criteria
and your drivers. The table can also contain other criteria, such as the
cost associated with the use of the alternative. Methods such as SWOT
(strengths, weaknesses, opportunities, threats) analysis can help you
make this decision.

When identifying and selecting design concepts, keep in mind the
constraints that are part of the architectural drivers, because some
constraints will restrict you from selecting particular alternatives. For
example, a constraint might be that all libraries and frameworks must
employ an approved license. In that case, even if you have found a
framework that could be useful for your needs, you may need to discard
it if it does not carry an approved license.

You also need to keep in mind that the decisions regarding the
selection of design concepts that you made in previous iterations may
restrict the design concepts that you can now select due to
incompatibilities. An example would be selecting a web architecture in
an initial iteration and then selecting a user interface framework for local
applications in a subsequent iteration.

Creation of Prototypes
In case the previously mentioned analysis techniques do not guide you to
make an appropriate selection of design concepts, you may need to
create prototypes and collect measurements from them. Creating early



“throwaway” prototypes is a useful technique to help in the selection of
externally developed components. This type of prototype is usually
created without consideration for maintainability, reuse, or allowance for
achieving other important goals. Such a prototype should not be used as
a basis for further development.

Although the creation of prototypes can be costly, certain scenarios
strongly motivate them. When thinking about whether you should create
a prototype, ask these questions:

Does the project incorporate emerging technologies?
Is the technology new in the company?
Are there certain drivers, particularly QAs, whose satisfaction using
the selected technology presents risks (i.e., it is not understood
whether they can be satisfied)?
Is there a lack of trusted information, internal or external, that would
provide some degree of certainty that the selected technology will be
useful to satisfy the project drivers?
Are there configuration options associated with the technology that
need to be tested or understood?
Is it unclear whether the selected technology can be easily integrated
with other technologies that are used in the project?

If most of your answers to these questions are “yes,” then you should
strongly consider the creation of a throwaway prototype.

To Prototype or Not to Prototype?
Architectural decisions must often be made with imperfect
knowledge. To decide which way to go, a team could run a series of
experiments (such as building prototypes) to try to reduce their
uncertainty about which path to follow. The problem is that such
experiments could carry a substantial cost, and the conclusions
drawn from them might not be definitive.

For example, suppose a team needs to decide whether the system
they are designing should be based on a traditional three-tier
architecture or should be composed of microservices. Since it is the



team’s first project with microservices, they are not confident about
that approach. They do a cost estimation for the two alternatives,
and project that the cost of developing the three-tier architecture
would be $500,000 and that of developing the microservices would
be $650,000. If, having developed the three-tier architecture, the
team later concluded that the wrong architecture was chosen, the
estimated refactoring cost would be $300,000. If the microservices
architecture was the first one developed, and a later refactoring was
needed, its estimated additional cost would be $100,000.

What should the team do?
To decide whether it is worth it to conduct the experiments, or

how much we should be willing to spend on experimentation in
relation to the confidence to be gained and the cost of being wrong,
the team could use a technique known as Value of Information
(VoI) to settle the questions. The VoI technique is used to calculate
the expected gain from a reduction in the uncertainty surrounding a
decision through some form of data collection exercise—in this
case, the construction of prototypes. To use VoI, the team will need
to assess the following parameters: the cost of making the wrong
design choice, the cost of performing the experiments, the team’s
level of confidence in each design choice, and their level of
confidence in the results of the experiments. Using these estimates,
VoI then applies Bayes’s Theorem to calculate two quantities: the
expected value of perfect information (EVPI) and the expected
value of sample or imperfect information (EVSI). EVPI denotes
the maximum one should be willing to pay for the experiments,
were they to provide definitive results (e.g., no false positives or
false negatives). EVSI represents how much one should be willing
to spend knowing that the results of the experiment might not
identify the right solution with 100 percent certainty.

As these results represent expected values, they should be
evaluated in the context of the team’s appetite for risk.

—Eduardo Miranda

20.4 More on ADD Step 5: Producing Structures



Design concepts per se won’t help you satisfy your drivers unless you
produce structures; that is, you need to identify and connect elements
that are derived from the selected design concepts. This is the
“instantiation” phase for architectural elements in ADD: creating
elements and relationships between them, and associating responsibilities
with these elements. Recall that the architecture of a software system is
composed of a set of structures. As we saw in Chapter 1, these structures
can be grouped into three major categories:

Module structures, which are composed of elements that exist at
development time, such as files, modules, and classes
Component and connector (C&C) structures, which are composed of
elements that exist at runtime, such as processes and threads
Allocation structures, which are composed of both software
elements (from a module or C&C structure) and non-software
elements that may exist both at development and at runtime, such as
file systems, hardware, and development teams

When you instantiate a design concept, you may actually affect more
than one structure. For example, in a particular iteration, you might
instantiate the passive redundancy (warm spare) pattern, introduced in
Chapter 4. This will result in both a C&C structure and an allocation
structure. As part of applying this pattern, you will need to choose the
number of spares, the degree to which the state of the spares is kept
consistent with that of the active node, a mechanism for managing and
transferring state, and a mechanism for detecting the failure of a node.
These decisions are responsibilities that must live somewhere in the
elements of a module structure.

Instantiating Elements
Here’s how instantiation might look for each of the design concept
categories:

Reference architectures. In the case of reference architectures,
instantiation typically means that you perform some sort of
customization. This will require you to add or remove elements that
are part of the structure that is defined by the reference architecture.
For example, if you are designing a web application that needs to
communicate with an external application to handle payments, you



will probably need to add an integration component alongside the
traditional presentation, business, and data tiers.
Patterns. Patterns provide a generic structure composed of elements,
along with their relationships and their responsibilities. As this
structure is generic, you will need to adapt it to your specific
problem. Instantiation usually involves transforming the generic
structure defined by the pattern into a specific one that is adapted to
the needs of the problem you are solving. For example, consider the
client-server architectural pattern. It establishes the basic elements of
computation (i.e., clients and servers) and their relationships (i.e.,
connection and communication), but does not specify how many
clients or servers you should use for your problem, or what the
functionality of each should be, or which clients should talk to which
servers, or which communication protocol they should use.
Instantiation fills in these blanks.
Tactics. This design concept does not prescribe a particular structure.
Thus, to instantiate a tactic, you may adapt a different type of design
concept (that you’re already using) to realize the tactic.
Alternatively, you may utilize a design concept that, without any
need for adaptation, already realizes the tactic. For example, you
might (1) select a security tactic of authenticating actors and
instantiate it through a custom-coded solution that you weave into
your preexisting login process; or (2) adopt a security pattern that
includes actor authentication; or (3) integrate an externally
developed component such as a security framework that
authenticates actors.
Externally developed components. The instantiation of these
components may or not imply the creation of new elements. For
example, in the case of object-oriented frameworks, instantiation
may require you to create new classes that inherit from the base
classes defined in the framework. This will result in new elements.
An example that does not involve the creation of new elements is
specifying configuration options for a chosen technology, such as the
number of threads in a thread pool.

Associating Responsibilities and Identifying Properties
When you are creating elements by instantiating design concepts, you
need to consider the responsibilities that are allocated to these elements.



For example, if you instantiate the microservices architecture pattern
(Chapter 5), you need to decide what the microservices will do, how
many of each you will deploy, and what the properties of those
microservices will be. When instantiating elements and allocating
responsibilities, you should keep in mind the design principle that
elements should have high cohesion (internally), be defined by a narrow
set of responsibilities, and demonstrate low coupling (externally).

An important aspect that you need to consider when instantiating
design concepts is the properties of the elements. This may involve
aspects such as the configuration options, statefulness, resource
management, priority, or even hardware characteristics (if the elements
that you created are physical nodes) of the chosen technologies.
Identifying these properties supports analysis and the documentation of
your design rationale.

Establishing Relationships between the Elements
The creation of structures also requires making decisions with respect to
the relationships that exist between the elements and their properties.
Consider again the client-server pattern. In instantiating this pattern, you
need to decide which clients will talk to which servers, via which ports
and protocols. You also need to decide whether communication will be
synchronous or asynchronous. Who initiates interactions? How much
information is transferred and at what rate?

These design decisions can have a significant impact with respect to
achieving QAs such as performance.

Defining Interfaces
Interfaces establish a contractual specification that allows elements to
collaborate and exchange information. They may be either external or
internal.

External interfaces are interfaces of other systems with which your
system must interact. These may form constraints for your system, since
you usually cannot influence their specification. As we noted earlier,
establishing a system context at the beginning of the design process is
useful to identify external interfaces. Since external entities and the
system under development interact via interfaces, there should be at least
one external interface per external system (as shown in Figure 20.2).



Internal interfaces are interfaces between the elements that result from
the instantiation of design concepts. To identify the relationships and the
interface details, you need to understand how the elements interact with
each other to support use cases or QA scenarios. As we said in Chapter
15 in our discussion of software Interfaces, “interacts” means anything
one element does that can impact the processing of another element. A
particularly common type of interaction is the runtime exchange of
information.

Behavioral representations such as UML sequence diagrams,
statecharts, and activity diagrams (see Chapter 22) allow you to model
the information that is exchanged between elements during execution.
This type of analysis is also useful to identify relationships between
elements: If two elements need to exchange information directly or
otherwise depend on each other, then a relationship between these
elements exists. Any information that is exchanged becomes part of the
specification of the interface.

The identification of interfaces is usually not performed equally
across all design iterations. When you are starting the design of a
greenfield system, for example, your first iterations will produce only
abstract elements such as layers; these elements will then be refined in
later iterations. The interfaces of abstract elements such as layers are
typically underspecified. For example, in an early iteration you might
simply specify that the UI tier sends “commands” to the business logic
tier, and the business logic tier sends “results” back. As the design
process proceeds, and particularly when you create structures to address
specific use cases and QA scenarios, you will need to refine the
interfaces of the elements that participate in these interactions.

In some special cases, identifying the appropriate interfaces may be
greatly simplified. For example, if you choose a complete technology
stack or a set of components that have been designed to interoperate,
then the interfaces will already be defined by those technologies. In such
a case, the specification of interfaces is a relatively trivial task, as the
chosen technologies have “baked in” many interface assumptions and
decisions.

Finally, be aware that not all of the internal interfaces need to be
identified in any given ADD iteration. Some may be delegated to later
design activities.



20.5 More on ADD Step 6: Creating Preliminary
Documentation during the Design

As we will see in Chapter 22, software architecture is documented as a
set of views, which represent the different structures that compose the
architecture. The formal documentation of these views is not part of
ADD. Structures, however, are produced as part of design. Capturing
them, even if they are represented informally (as sketches), along with
the design decisions that led you to create these structures, is a task that
should be performed as part of normal ADD activities.

Recording Sketches of the Views
When you produce structures by instantiating the design concepts that
you have selected to address a particular design problem, you will
typically not only produce these structures in your mind but also create
some sketches of them. In the simplest case, you will produce these
sketches on a whiteboard, a flipchart, a drawing tool, or even just a piece
of paper. Additionally, you may use a modeling tool to draw the
structures in a more rigorous way. The sketches that you produce are an
initial documentation for your architecture that you should capture and
that you may flesh out later, if necessary. When you create sketches, you
don’t necessarily need to use a more formal language such as UML—
although if you’re fluent and comfortable with this process, please do so.
If you use some informal notation, you should be careful in maintaining
consistency in the use of symbols. Eventually, you will need to add a
legend to your diagrams to provide clarity and avoid ambiguity.

You should develop a discipline of writing down the responsibilities
that you allocate to the elements as you create the structures. The
reasons for this are simple: As you identify an element, you are
determining some responsibilities for that element in your mind. Writing
them down at that moment ensures that you won’t have to remember the
intended responsibilities later. Also, it is easier to write down the
responsibilities associated with your elements gradually, rather than
documenting all of them together at a later time.

Creating this preliminary documentation as you design the
architecture requires some discipline. The benefits are worth the effort,
though, as you will be able to later produce the more detailed
architecture documentation relatively easily and quickly. One simple
way to document responsibilities, if you are using a whiteboard or a



flipchart, is to take a photo of the sketch that you have produced and
paste it in a document, along with a table that summarizes the
responsibilities of every element depicted in the diagram (see an
example in Figure 20.4). If you use a design tool, you can select an
element to create and use the text area that usually appears in the
properties sheet of the element to document its responsibilities, and then
generate the documentation automatically.

Figure 20.4 Example preliminary documentation

The diagram is complemented by a table that describes the element’s
responsibilities. Table 20.1 serves this purpose for some of the elements
identified in Figure 20.4.

Table 20.1 Elements and Responsibilities

Ele
men
t

Responsibility

Data 
Strea
m

This element collects data from all data sources in real time, and 
dispatches it to both the Batch Component and the Speed 
Component for processing.

Batc
h

This is responsible for storing raw data and pre-computing the 
Batch Views to be stored in the Serving Component.

. . . . . .



Of course, it’s not necessary to document everything at this stage. The
three purposes of documentation are analysis, construction, and
education. At the moment you are designing, you should choose a
documentation purpose and then document to fulfill that purpose, based
on your risk mitigation concerns. For example, if you have a critical QA
scenario that your architecture design needs to meet, and if you will need
to prove the proposed design satisfies this criterion in an analysis, then
you must take care to document the information that is relevant for the
analysis to be satisfactory. Likewise, if you anticipate having to train
new team members, then you should sketch a C&C view of the system,
showing how it operates and how the elements interact at runtime, and
perhaps a module view of the system, showing at least the major layers
or subsystems.

Finally, remember as you are documenting that your design may
eventually be analyzed. Consequently, you need to think about which
information should be documented to support this analysis.

Recording Design Decisions
In each design iteration, you will make important design decisions to
achieve your iteration goal. When you study a diagram that represents an
architecture, you might see the end product of a thought process but
can’t always easily understand the decisions that were made to achieve
this result. Recording design decisions beyond the representation of the
chosen elements, relationships, and properties is fundamental to help
clarify how you arrived at the result—that is, the design rationale. We
delve into this topic in detail in Chapter 22.

20.6 More on ADD Step 7: Perform Analysis of the
Current Design and Review the Iteration Goal
and Achievement of the Design Purpose

At the end of an iteration, it is prudent to do some analysis to reflect on
the design decisions that you just made. We describe several techniques
to do so in Chapter 21. One kind of analysis that you need to perform at
this point is to assess whether you have done enough design work. In
particular:

How much design do you need to do?



How much design have you done so far?
Are you finished?

Practices such as the use of backlogs and Kanban boards can help you
track the design progress and answer these questions.

Use of an Architectural Backlog
An architectural backlog is a to-do list of the pending actions that still
need to be performed as part of the architecture design process. Initially,
you should populate the design backlog with your drivers, but other
activities that support the design of the architecture can also be included
—for example:

Creation of a prototype to test a particular technology or to address a
specific QA risk
Exploration and understanding of existing assets (possibly requiring
reverse engineering)
Issues uncovered in a review of the design decisions made to this
point

Also, you may add more items to the backlog as decisions are made.
As a case in point, if you choose a reference architecture, you will
probably need to add specific concerns, or QA scenarios derived from
them, to the architectural design backlog. For example, if we choose a
web application reference architecture and discover that it does not
provide session management, then that becomes a concern that needs to
be added to the backlog.

Use of a Design Kanban Board
Another tool that can be used to track design progress is a Kanban board,
such as the one shown in Figure 20.5. This board establishes three
categories of backlog items: “Not Yet Addressed,” “Partially
Addressed,” and “Completely Addressed.”



Figure 20.5 A Kanban board used to track design progress

At the beginning of an iteration, the inputs to the design process
become entries in the backlog. Initially (in step 1), the entries in your
backlog for this design round should be located in the “Not Yet
Addressed” column of the board. When you begin a design iteration, in
step 2, the backlog entries that correspond to the drivers that you address
in the design iteration goal should be moved to the “Partially Addressed”
column. Finally, once you finish an iteration and the analysis of your
design decisions reveals that a particular driver has been addressed (step
7), the entry should be moved to the “Completely Addressed” column of
the board.

It is important to establish clear criteria that will allow a driver to be
moved to the “Partially Addressed” or “Completely Addressed”
columns. A criterion for “Completely Addressed” may be, for example,



that the driver has been analyzed or that it has been implemented in a
prototype, and you determine that the requirements for that driver have
been satisfied. Drivers that are selected for a particular iteration may not
be completely addressed in that iteration. In that case, they should
remain in the “Partially Addressed” column.

It can be useful to select a technique that will allow you to
differentiate the entries in the board according to their priority. For
example, you might use different colors for entries, depending on the
priority.

A Kanban board makes it easy to visually track the advancement of
design, as you can quickly see how many of the (most important) drivers
are being or have been addressed in the iteration. This technique also
helps you decide whether you need to perform additional iterations.
Ideally, the design round is terminated when a majority of your drivers
(or at least the ones with the highest priority) are located under the
“Completely Addressed” column.

20.7 Summary
Design is hard. Methods are needed to make it more tractable (and
repeatable). In this chapter, we discussed the attribute-driven design
(ADD) method in detail; it allows an architecture to be designed in a
systematic and cost-effective way.

We also discussed several important aspects that need to be
considered in the steps of the design process. These aspects include the
identification and selection of design concepts, their use in producing
structures, the definition of interfaces, the production of preliminary
documentation, and ways to track design progress.

20.8 For Further Reading
The first version of ADD, initially called “Architecture-Based Design,”
was documented in [Bachmann 00b].

A description of ADD 2.0 was subsequently published in 2006. It was
the first method to focus specifically on QAs and their achievement
through the selection of different types of structures and their
representation through views. Version 2.0 of ADD was first documented
in an SEI Technical Report [Wojcik 06].

The version of ADD described in this chapter is ADD 3.0. Some
important improvements over the original version include giving more



consideration to the selection of implementation technologies as primary
design concepts, considering additional drivers such as design purpose
and architectural concerns, making initial documentation and analysis be
explicit steps of the design process, and providing guidance in how to
begin the design process and how to use it in Agile settings. An entire
book [Cervantes 16] is devoted to architecture design using ADD 3.0.
Some of the concepts of ADD 3.0 were first introduced in an IEEE
Software article [Cervantes 13].

George Fairbanks wrote an engaging book that describes a risk-driven
process of architecture design, entitled Just Enough Software
Architecture: A Risk-Driven Approach [Fairbanks 10].

The Value of Information technique dates from the 1960s [Raiffa 00].
A more modern treatment can be found in [Hubbard 14].

For a general approach on systems design, you can read the classic
tome by Butler Lampson [Lampson 11].

Using concepts of lean manufacturing, Kanban is a method for
scheduling the production of a system, as described by Corey Ladas
[Ladas 09].

20.9 Discussion Questions
1. What are the advantages of following an established method for

design? What are the disadvantages?

2. Is performing architectural design compatible with an agile
development methodology? Choose an agile method and discuss
ADD in that context.

3. What is the relationship between design and analysis? Are there
some kinds of knowledge that you need for one but not the other?

4. If you had to argue for the value of creating and maintaining
architectural documentation to your manager during the design
process, what arguments would you put forward?

5. How would your realization of the steps of ADD differ if you were
doing greenfield development versus brownfield development?



21
Evaluating an Architecture

A doctor can bury his mistakes, but an architect can only advise his clients
to plant vines.

—Frank Lloyd Wright

In Chapter 2, we said that one major reason architecture is important is
that you can predict the quality attributes of any system derived from it,
before you build the system, by examining its architecture. That’s a pretty
good deal, if you think about it. And this is the chapter where that
capability comes home.

Architecture evaluation is the process of determining the degree to
which an architecture is fit for the purpose for which it is intended.
Architecture is such an important contributor to the success of a system
and software engineering project that it makes sense to pause and make
sure that the architecture you’re designing will be able to provide all
that’s expected of it. That’s the role of evaluation, which is based on
analyzing the alternatives. Fortunately, there are mature methods to
analyze architectures that use many of the concepts and techniques
you’ve already learned in this book.

To be useful, the cost of evaluation needs to be less than the value it
provides. Given this relationship, an important question is “How much
time and money is the evaluation going to cost?” Different evaluation
techniques come with different costs, but all of them can be measured in
terms of the time spent by the people involved in the preparation,
execution, and follow-up of the evaluation activities.

21.1 Evaluation as a Risk Reduction Activity
Every architecture comes with risks. The output of an architecture
evaluation includes an identification of risky portions of the architecture.
A risk is an event that has both an impact and a probability. The



estimated cost of a risk is the probability of that event occurring
multiplied by the cost of the impact. Fixing those risks is not an output of
the evaluation. Once the risks have been identified, then fixing them is,
like the evaluation itself, a cost/benefit issue.

Applying this concept to architecture evaluation, you can see that if
the system being constructed costs millions or billions of dollars or has
large safety-critical implications, then the impact of a risk event will be
large. By comparison, if the system is a console-based game costing tens
or hundreds of thousands of dollars to create, then the impact of a risk
event will be considerably smaller.

The probability of a risk event is related to, among other things, how
precedented or unprecedented the system under development and its
architecture are. If you and your organization have long and deep
experience in this domain, then the probability of producing a bad
architecture is less than if this project is your first go.

Thus evaluations act like an insurance policy. How much insurance
you need depends on how exposed you are to the risk of an unsuitable
architecture and your risk tolerance.

Evaluations can be done throughout the development process at
different phases, with different evaluators, and with differences in how
the evaluation is performed—we’ll cover some of the options in this
chapter. Regardless of their precise details, evaluations build on the
concepts you have already learned: Systems are constructed to satisfy
business goals, business goals are exemplified by quality attribute
scenarios, and quality attribute goals are achieved through the
application of tactics and patterns.

21.2 What Are the Key Evaluation Activities?
Regardless of who performs the evaluation and when it is performed, an
evaluation is based on architectural drivers—primarily architecturally
significant requirements (ASRs) expressed as quality attribute scenarios.
Chapter 19 describes how to determine ASRs. The number of ASRs that
enter into the evaluation is a function of the contextual factors and the
cost of the evaluation. We next describe the possible contextual factors
for architecture evaluation.

An evaluation can be carried out at any point in the design process
where a candidate architecture, or at least a coherent reviewable part of
one, exists.



Every evaluation should include (at least) these steps:
1. The reviewers individually ensure that they understand the current

state of the architecture. This can be done through shared
documentation, through a presentation by the architect, or through
some combination of these.

2. The reviewers determine a number of drivers to guide the review.
These drivers may already be documented, or they can be
developed by the review team or by additional stakeholders.
Typically the most important drivers to review are the high-priority
quality attribute scenarios (and not, say, purely functional use
cases).

3. For each scenario, each reviewer should determine whether the
scenario is satisfied. The reviewers pose questions to determine
two types of information. First, they want to determine that the
scenario is, in fact, satisfied. This could be done by having the
architect walk through the architecture and explain how the
scenario is satisfied. If the architecture is already documented, then
the reviewers can use that documentation to make this assessment.
Second, they want to determine whether any of the other scenarios
being considered will not be satisfied because of the decisions
made in the portion of the architecture being reviewed. The
reviewers may pose alternatives to any risky aspect of the current
design that might better satisfy the scenario. These alternatives
should be subjected to the same type of analysis. Time constraints
play a role in determining how long this step is allowed to
continue.

4. The reviewers capture potential problems exposed during the prior
step. This list of potential problems forms the basis for the follow-
up of the review. If the potential problem is a real problem, then
either it must be fixed or a decision must be explicitly made by the
designers and the project manager that they are willing to accept
the risk.

How much analysis should you do? Decisions made to achieve one of
the driving architectural requirements should be subject to more analysis
than others, because they will shape critical portions of the architecture.
Some specific considerations include these:



The importance of the decision. The more important the decision, the
more care should be taken in making it and making sure it’s right.
The number of potential alternatives. The more alternatives, the
more time could be spent in evaluating them.
Good enough as opposed to perfect. Many times, two possible
alternatives do not differ dramatically in their consequences. In such
a case, it is more important to make a choice and move on with the
design process than it is to be absolutely certain that the best choice
is being made.

21.3 Who Can Perform the Evaluation?
Evaluators should be highly skilled in the domain and the various quality
attributes for which the system is to be evaluated. Excellent
organizational and facilitation skills are also a must for evaluators.

Evaluation by the Architect
Evaluation is done—implicitly or explicitly—every time the architect
makes a key design decision to address an ASR or completes a design
milestone. This evaluation involves deciding among the competing
alternatives. Evaluation by the architect is an integral part of the process
of architecture design, as we discussed in Chapter 20.

Evaluation by Peer Review
Architectural designs to address ASRs can be peer reviewed, just as code
can be peer reviewed. There should be a fixed amount of time allocated
for the peer review, typically several hours to half a day.

If the designers are using the Attribute-Driven Design (ADD) process
described in Chapter 20, then a peer review can be done at the end of
step 7 of each ADD iteration. Reviewers should also use the tactics-
based questionnaires that we presented in Chapters 4–13.

Evaluation by Outsiders
Outside evaluators can cast a more objective eye on an architecture.
“Outside” is relative; this may mean outside the development project,
outside the business unit where the project resides but within the same
company, or outside the company altogether. To the degree that



evaluators are “outside,” they are less likely to be afraid to bring up
sensitive problems, or problems that aren’t apparent because of
organizational culture or because “we’ve always done it that way.”

Often, outsiders are chosen to participate in the evaluation because
they possess specialized knowledge or experience, such as knowledge
about a quality attribute that’s important to the system being examined,
skill with a particular technology being employed, or long experience in
successfully evaluating architectures.

Also, whether justified or not, managers tend to be more inclined to
listen to problems uncovered by an outside team hired at considerable
cost than by team members within the organization. This can be
understandably frustrating to project staff who may have been
complaining about the same problems, to no avail, for months.

In principle, an outside team may evaluate a completed architecture,
an incomplete architecture, or a portion of an architecture. In practice,
because engaging them is complicated and often expensive, they tend to
be used to evaluate complete architectures.

21.4 Contextual Factors
For peer reviews or outside analysis, a number of contextual factors must
be considered when setting up an evaluation:

What artifacts are available? To perform an architectural evaluation,
there must be an artifact that both describes the architecture and is
readily available. Some evaluations may take place after the system
is operational. In this case, some architecture recovery and analysis
tools may be used to assist in discovering the architecture, to find
architecture design flaws, and to test that the as-built system
conforms to the as-designed system.
Who sees the results? Some evaluations are performed with the full
knowledge and participation of all of the stakeholders. Others are
performed more privately.
Which stakeholders will participate? The evaluation process should
include a method to elicit the important stakeholders’ goals and
concerns regarding the system. At this stage, it is critical to identify
the individuals who are needed and ensure their participation in the
evaluation.



What are the business goals? The evaluation should answer whether
the system will satisfy the business goals. If the business goals are
not explicitly captured and prioritized prior to the evaluation, then a
portion of the evaluation should be dedicated to this task.

Evaluations by peers and by outside evaluators are common enough
that we have formalized processes to guide the evaluation. These
processes define who should participate and which activities should
occur during the evaluation. Formalizing a process enables the
organization to make the process more repeatable, help the stakeholders
understand what will be required and delivered by the evaluation, train
new evaluators to use the process, and understand the investment
required to perform the evaluation.

We begin by describing a process for outside evaluators (Architecture
Tradeoff Analysis Method); we then describe a process for peer review
(Lightweight Architecture Evaluation).

21.5 The Architecture Tradeoff Analysis Method
The Architecture Tradeoff Analysis Method (ATAM) is the process we
have formalized to perform architecture evaluations. The ATAM has
been used for more than two decades to evaluate software architectures
of large systems in domains ranging from automotive to financial to
defense. The ATAM is designed so that evaluators do not need prior
familiarity with the architecture or its business goals, and the system
need not be constructed yet. An ATAM exercise may be held either in
person or remotely.

Participants in the ATAM
The ATAM requires the participation and mutual cooperation of three
groups:

The evaluation team. This group is external to the project whose
architecture is being evaluated. It usually consists of three to five
people. Each member of the team is assigned a number of specific
roles to play during the evaluation; a single person may adopt
several roles in an ATAM exercise. (See Table 21.1 for a description
of these roles.) The evaluation team may be a standing unit in which
architecture evaluations are regularly performed, or its members may
be chosen from a pool of architecturally savvy individuals for the



occasion. They may work for the same organization as the
development team whose architecture is on the table, or they may be
outside consultants. In any case, they need to be recognized as
competent, unbiased outsiders with no hidden agendas or axes to
grind.

Table 21.1 ATAM Evaluation Team Roles

Rol
e

Responsibilities

Tea
m 
Lea
der

Sets up the evaluation; coordinates with the client, making sure 
the client’s needs are met; establishes the evaluation contract; 
forms the evaluation team; sees that the final report is produced 
and delivered.

Eva
luat
ion 
Lea
der

Runs the evaluation; facilitates elicitation of scenarios; 
administers the scenario prioritization process; facilitates the 
evaluation of scenarios against the architecture.

Sce
nari
o 
Scri
be

Writes scenarios in a sharable, public form during scenario 
elicitation; captures the agreed-on wording of each scenario, 
halting discussion until the exact wording is captured.

E-
Scri
be

Captures the proceedings in electronic form: raw scenarios, 
issue(s) that motivate each scenario (often lost in the wording 
of the scenario itself), and the results of each scenario’s 
analysis; also generates a list of adopted scenarios for 
distribution to all participants.

Qu
esti
one
r

Asks probing quality attribute–based questions.

Project decision makers. These people are empowered to speak for
the development project or have the authority to mandate changes to
it. They usually include the project manager and, if an identifiable
customer is footing the bill for the development, a representative of
that customer may be present as well. The architect is always



included—a cardinal rule of architecture evaluation is that the
architect must willingly participate.
Architecture stakeholders. Stakeholders have a vested interest in the
architecture performing as advertised. They are the people whose
ability to do their job hinges on the architecture promoting
modifiability, security, high reliability, or the like. Stakeholders
include developers, testers, integrators, maintainers, performance
engineers, users, and builders of systems interacting with the one
under consideration. Their job during an evaluation is to articulate
the specific quality attribute goals that the architecture should meet
for the system to be considered a success. A rule of thumb—and that
is all it is—is that you should expect to enlist 10 to 25 stakeholders
for the evaluation of a large enterprise-critical architecture. Unlike
the evaluation team and the project decision makers, stakeholders do
not participate in the entire exercise.

Outputs of the ATAM
1. A concise presentation of the architecture. One requirement of the

ATAM is that the architecture be presented in one hour or less,
which leads to an architectural presentation that is both concise
and, usually, understandable.

2. Articulation of the business goals. Frequently, the business goals
presented in the ATAM exercise are being seen by some of the
assembled participants for the first time and these are captured in
the outputs. This description of the business goals survives the
evaluation and becomes part of the project’s legacy.

3. Prioritized quality attribute requirements expressed as quality
attribute scenarios. These quality attribute scenarios take the form
described in Chapter 3. The ATAM uses prioritized quality
attribute scenarios as the basis for evaluating the architecture.
Those scenarios may already exist (perhaps as a result of a prior
requirements-capture exercise or ADD activity), but if not, they are
generated by the participants as part of the ATAM exercise.

4. A set of risks and non-risks. An architectural risk is a decision that
may lead to undesirable consequences in light of stated quality
attribute requirements. Similarly, an architectural non-risk is a
decision that, upon analysis, is deemed safe. The identified risks



form the basis for an architectural risk mitigation plan. These risks
are the primary output of an ATAM exercise.

5. A set of risk themes. When the analysis is complete, the evaluation
team examines the full set of discovered risks to look for
overarching themes that identify systemic weaknesses in the
architecture or even in the architecture process and team. If left
untreated, these risk themes will threaten the project’s business
goals.

6. Mapping of architectural decisions to quality requirements.
Architectural decisions can be interpreted in terms of the drivers
that they support or hinder. For each quality attribute scenario
examined during an ATAM exercise, those architectural decisions
that help to achieve it are determined and captured. They can serve
as a statement of the rationales for those decisions.

7. A set of identified sensitivity points and tradeoff points. Sensitivity
points are architectural decisions that have a marked effect on a
quality attribute response. Tradeoffs occur when two or more
quality attribute responses are sensitive to the same architectural
decision, but one of them improves while the other degrades—
hence the tradeoff.

The outputs of the ATAM exercise can be used to build a final report that
recaps the method, summarizes the proceedings, captures the scenarios
and their analysis, and catalogs the findings.

An ATAM-based evaluation also produces intangible results that
should not be ignored. These include a sense of community on the part
of the stakeholders, open communication channels between the architect
and the stakeholders, and a better overall understanding among all
participants of the architecture and its strengths and weaknesses. While
these results are hard to measure, they are no less important than the
others.

Phases of the ATAM
Activities in an ATAM-based evaluation are spread out over four phases:

In phase 0, “Partnership and Preparation,” the evaluation team
leadership and the key project decision makers work out the details
of the exercise. The project representatives brief the evaluators about



the project so that the evaluation team can be supplemented by
people who possess the appropriate expertise. Together, the two
groups agree on logistics, such as the time when the evaluation will
take place and technology used to support the meetings. They also
agree on a preliminary list of stakeholders (by name, not just role),
and negotiate when the final report will be delivered and to whom.
They deal with formalities such as a statement of work or
nondisclosure agreements. The evaluation team examines the
architecture documentation to gain an understanding of the
architecture and the major design approaches that it comprises.
Finally, the evaluation team leader explains what information the
manager and architect will be expected to show during phase 1, and
helps them construct their presentations, if necessary.
During Phases 1 and 2, collectively known as “Evaluation,”
everyone gets down to the business of analysis. By now, the
evaluation team will have studied the architecture documentation
and will have a good idea of what the system is about, the major
architectural approaches taken, and the quality attributes that are of
paramount importance. During phase 1, the evaluation team meets
with the project decision makers to begin information gathering and
analysis. In phase 2, the architecture’s stakeholders add their input to
the proceedings and analysis continues.
In Phase 3, “Follow-up,” the evaluation team produces and delivers
its final report. This report—which may be a formal document or
simply a set of slides—is first circulated to key stakeholders to
ensure that it contains no errors of understanding. After this review
is complete, it is delivered to the client.

Table 21.2 shows the four phases of the ATAM, who participates in
each phase, and the typical cumulative time spent on the activity—
possibly in several segments.

Table 21.2 ATAM Phases and Their Characteristics

P
h
as
e

Activity Participants Typical Cumulative Time



P
h
as
e

Activity Participants Typical Cumulative Time

0 Partnership 
and 
preparation

Evaluation team leadership 
and key project decision 
makers

Proceeds informally as 
required, perhaps over a 
few weeks

1 Evaluation Evaluation team and project 
decision makers

1–2 days

2 Evaluation 
(continued)

Evaluation team, project 
decision makers, and 
stakeholders

2 days

3 Follow-up Evaluation team and 
evaluation client

1 week

Source: Adapted from [Clements 01b].

Steps of the Evaluation Phases
The ATAM analysis phases (phases 1 and 2) consist of nine steps. Steps
1–6 are carried out in phase 1 with the evaluation team and the project’s
decision makers—typically, the architecture team, project manager, and
client. In phase 2, with all stakeholders involved, steps 1–6 are
summarized and steps 7–9 are carried out.

Step 1: Present the ATAM
The first step calls for the evaluation leader to present the ATAM to the
assembled project representatives. This time is used to explain the
process that everyone will be following, to answer questions, and to set
the context and expectations for the remainder of the activities. Using a
standard presentation, the leader describes the ATAM steps in brief and
the outputs of the evaluation.

Step 2: Present the Business Goals
Everyone involved in the evaluation—the project representatives as well
as the evaluation team members—needs to understand the context for the
system and the primary business goals motivating its development. In



this step, a project decision maker (ideally the project manager or
customer representative) presents a system overview from a business
perspective. This presentation should describe the following aspects of
the project:

The system’s most important functions
Any relevant technical, managerial, economic, or political
constraints
The business goals and context as they relate to the project
The major stakeholders
The architectural drivers (emphasizing architecturally significant
requirements)

Step 3: Present the Architecture
The lead architect (or architecture team) makes a presentation describing
the architecture at an appropriate level of detail. The “appropriate level”
depends on several factors: how much of the architecture has been
designed and documented, how much time is available, and the nature of
the behavioral and quality requirements.

In this presentation, the architect covers technical constraints such as
the operating system, platforms prescribed for use, and other systems
with which this system must interact. Most importantly, the architect
describes the architectural approaches (or patterns, or tactics, if the
architect is fluent in that vocabulary) used to meet the requirements.

We expect architectural views, as introduced in Chapter 1 and
described in detail in Chapter 22, to be the primary vehicle by which the
architect conveys the architecture. Context diagrams, component-and-
connector views, module decomposition or layered views, and the
deployment view are useful in almost every evaluation, and the architect
should be prepared to show them. Other views can be presented if they
contain information relevant to the architecture at hand, especially
information relevant to satisfying important quality attribute
requirements.

Step 4: Identify the Architectural Approaches
The ATAM focuses on analyzing an architecture by understanding its
architectural approaches. Architectural patterns and tactics are useful for



(among other reasons) the known ways in which each one affects
particular quality attributes. For example, a layered pattern tends to bring
portability and maintainability to a system, possibly at the expense of
performance. A publish-subscribe pattern is scalable in the number of
producers and consumers of data, whereas the active redundancy pattern
promotes high availability.

Step 5: Generate a Quality Attribute Utility Tree
The quality attribute goals are articulated in detail via a quality attribute
utility tree, which we introduced in Section 19.4. Utility trees serve to
make the requirements concrete by defining precisely the relevant
quality attribute requirements that the architects were working to
provide.

The important quality attribute goals for the architecture under
consideration were named or implied in step 2, when the business goals
were presented, but not with a degree of specificity that would permit
analysis. Broad goals such as “modifiability” or “high throughput” or
“ability to be ported to a number of platforms” establish context and
direction, and provide a backdrop against which subsequent information
is presented. However, they are not specific enough to let us tell if the
architecture suffices to achieve those aims. Modifiable in what way?
Throughput that is how high? Ported to what platforms and in how much
time? The answers to these kinds of questions are expressed as quality
attribute scenarios representing architecturally significant requirements.

Recall that the utility tree is constructed by the architect and the
project decision makers. Together, they determine the importance of
each scenario: The architect rates the technical difficulty or risk of the
scenario (on a H, M, L scale), and the project decision makers rate its
business importance.

Step 6: Analyze the Architectural Approaches
The evaluation team examines the highest-ranked scenarios (as identified
in the utility tree) one at a time; the architect is asked to explain how the
architecture supports each one. Evaluation team members—especially
the questioners—probe for the architectural approaches that the architect
used to carry out the scenario. Along the way, the evaluation team
documents the relevant architectural decisions and identifies and catalogs
their risks, non-risks, and tradeoffs. For well-known approaches, the



evaluation team asks how the architect overcame known weaknesses in
the approach or how the architect gained assurance that the approach
sufficed. The goal is for the evaluation team to be convinced that the
instantiation of the approach is appropriate for meeting the attribute-
specific requirements for which it is intended.

Scenario walkthrough leads to a discussion of possible risks and non-
risks. For example:

The frequency of heartbeats affects the time in which the system can
detect a failed component. Some assignments will result in
unacceptable values of this response; these are risks.
The frequency of heartbeats determines the time for detection of a
fault.
Higher frequency leads to improved availability but also consumes
more processing time and communication bandwidth (potentially
leading to reduced performance). This is a tradeoff.

These issues, in turn, may catalyze a deeper analysis, depending on
how the architect responds. For example, if the architect cannot
characterize the number of clients and cannot say how load balancing
will be achieved by allocating processes to hardware, there is little point
in proceeding to any performance analysis. If such questions can be
answered, the evaluation team can perform at least a rudimentary, or
back-of-the-envelope, analysis to determine if these architectural
decisions are problematic vis-à-vis the quality attribute requirements
they are meant to address.

The analysis during step 6 is not meant to be comprehensive. The key
is to elicit sufficient architectural information to establish some link
between the architectural decisions that have been made and the quality
attribute requirements that need to be satisfied.

Figure 21.1 shows a template for capturing the analysis of an
architectural approach for a scenario. As shown in the figure, based on
the results of this step, the evaluation team can identify and record a set
of risks and non-risks, sensitivity points, and tradeoffs.



Figure 21.1 Example of architecture approach analysis (adapted
from [Clements 01b])



At the end of step 6, the evaluation team should have a clear picture of
the most important aspects of the entire architecture, the rationale for
key design decisions, and a list of risks, non-risks, sensitivity points, and
tradeoff points.

At this point, phase 1 is concluded.

Hiatus and Start of Phase 2
The evaluation team summarizes what it has learned and interacts
informally with the architect during a hiatus of a week or so. More
scenarios might be analyzed during this period, if desired, or answers to
questions posed in phase 1 may be clarified.

Attendees at the phase 2 meeting include an expanded list of
participants, with additional stakeholders joining the discussion. To use
an analogy from programming: Phase 1 is akin to when you test your
own program, using your own criteria. Phase 2 is when you give your
program to an independent quality assurance group, who will likely
subject your program to a wider variety of tests and environments.

In phase 2, step 1 is repeated so that the stakeholders understand the
method and the roles they are to play. Then the evaluation leader recaps
the results of steps 2–6, and shares the current list of risks, non-risks,
sensitivity points, and tradeoffs. After bringing the stakeholders up to
speed with the evaluation results so far, the remaining three steps can be
carried out.

Step 7: Brainstorm and Prioritize Scenarios
The evaluation team asks the stakeholders to brainstorm quality attribute
scenarios that are operationally meaningful with respect to the
stakeholders’ individual roles. A maintainer will likely propose a
modifiability scenario, while a user will probably come up with a
scenario that expresses ease of operation, and a quality assurance person
will propose a scenario about testing the system or being able to replicate
the state of the system leading up to a fault.

While utility tree generation (step 5) is used primarily to understand
how the architect perceived and handled quality attribute architectural
drivers, the purpose of scenario brainstorming is to take the pulse of the
larger stakeholder community: to understand what system success means
for them. Scenario brainstorming works well in larger groups, creating



an atmosphere in which the ideas and thoughts of one person stimulate
others’ ideas.

Once the scenarios have been collected, they must be prioritized, for
the same reasons that the scenarios in the utility tree needed to be
prioritized: The evaluation team needs to know where to devote its
limited analysis time. First, stakeholders are asked to merge scenarios
they feel represent the same behavior or quality concern. Next, they vote
for those scenarios they feel are most important. Each stakeholder is
allocated a number of votes equal to 30 percent of the number of
scenarios,1 rounded up. Thus, if 40 scenarios were collected, each
stakeholder would be given 12 votes. These votes can be allocated in
any way that the stakeholder sees fit: all 12 votes for 1 scenario, 1 vote
for each of 12 distinct scenarios, or anything in between.
1. This is a common facilitated brainstorming technique.

The list of prioritized scenarios is compared with those from the
utility tree exercise. If they agree, it indicates good alignment between
what the architect had in mind and what the stakeholders actually
wanted. If additional driving scenarios are discovered—and they usually
are—this may itself be a risk, if the discrepancy is large. Such
discoveries indicate some level of disagreement about the system’s
important goals between the stakeholders and the architect.

Step 8: Analyze the Architectural Approaches
After the scenarios have been collected and prioritized in step 7, the
evaluation team guides the architect in the process of analyzing the
highest-ranked scenarios. The architect explains how architectural
decisions contribute to realizing each scenario. Ideally, this activity will
be dominated by the architect’s explanation of scenarios in terms of
previously discussed architectural approaches.

In this step the evaluation team performs the same activities as in step
6, using the highest-ranked, newly generated scenarios. Typically, this
step might cover the top five to ten scenarios, as time permits.

Step 9: Present the Results
In step 9, the evaluation team convenes and groups risks into risk
themes, based on some common underlying concern or systemic
deficiency. For example, a group of risks about inadequate or out-of-date
documentation might be grouped into a risk theme stating that



documentation is given insufficient consideration. A group of risks about
the system’s inability to function in the face of various hardware and/or
software failures might lead to a risk theme about insufficient attention
to backup capability or providing high availability.

For each risk theme, the evaluation team identifies which of the
business goals listed in step 2 are affected. Identifying risk themes and
then relating them to specific drivers brings the evaluation full circle by
relating the final results to the initial presentation, thereby providing a
satisfying closure to the exercise. Equally important, it elevates the risks
that were uncovered to the attention of management. What might
otherwise have seemed to a manager like an esoteric technical issue is
now identified unambiguously as a threat to something the manager is
on record as caring about.

The collected information from the evaluation is summarized and
presented to stakeholders. The following outputs are presented:

The architectural approaches documented
The set of scenarios and their prioritization from the brainstorming
The utility tree
The risks and non-risks discovered
The sensitivity points and tradeoffs found
Risk themes and the business goals threatened by each one

Going Off Script
Years of experience have taught us that no architecture evaluation
exercise ever goes completely by the book. And yet for all the ways
that an exercise might go terribly wrong, for all the details that can
be overlooked, for all the fragile egos that can be bruised, and for
all the high stakes that are on the table, we have never had an
architecture evaluation exercise spiral out of control. Every single
one has been a success, as measured by the feedback we gather
from clients.

While they all turned out successfully, there have been a few
memorable cliffhangers.



More than once, we began an architecture evaluation, only to
discover that the development organization had no architecture to
be evaluated. Sometimes there was a stack of class diagrams or
vague text descriptions masquerading as an architecture. Once we
were promised that the architecture would be ready by the time the
exercise began, but in spite of good intentions, it wasn’t. (We
weren’t always so prudent about pre-exercise preparation and
qualification. Our current diligence is a result of experiences like
these.) But it was okay. In cases like these, the evaluation’s main
results included the articulated set of quality attributes, a
“whiteboard” architecture sketched during the exercise, plus a set
of documentation obligations for the architect. In all cases, the
client felt that the detailed scenarios, the analysis we were able to
perform on the elicited architecture, and the recognition of what
needed to be done more than justified the exercise.

A couple of times we began an evaluation, only to lose the
architect in the middle of the exercise. In one case, the architect
resigned between preparation and execution of the evaluation. This
organization was in turmoil, and the architect simply got a better
offer in a calmer environment elsewhere. Usually, we don’t
proceed without the architect, but it was okay, because the
architect’s apprentice stepped in. A little additional prework to
prepare him, and we were all set. The evaluation went off as
planned, and the preparation that the apprentice did for the exercise
helped mightily to prepare him to step into the architect’s shoes.

Once we discovered halfway through an ATAM exercise that the
architecture we had prepared to evaluate was being jettisoned in
favor of a new one that no one had bothered to mention. During
step 6 of phase 1, the architect responded to a problem raised by a
scenario by casually mentioning that “the new architecture” would
not suffer from that deficiency. Everyone in the room, stakeholders
and evaluators alike, looked at each other in the puzzled silence
that followed. “What new architecture?” I asked blankly, and out it
came. The developing organization (a contractor for the U.S.
military, which had commissioned the evaluation) had prepared a
new architecture for the system to handle the more stringent
requirements they knew were coming in the future. We called a
timeout, conferred with the architect and the client, and decided to
continue the exercise using the new architecture as the subject
instead of the old. We backed up to step 3 (the architecture



presentation), but everything else on the table—business goals,
utility tree, scenarios—remained completely valid. The evaluation
proceeded as before, and at the conclusion of the exercise, our
military client was extremely pleased at the knowledge gained.

In perhaps the most bizarre evaluation in our experience, we lost
the architect midway through phase 2. The client for this exercise
was the project manager in an organization undergoing a massive
restructuring. The manager was a pleasant gentleman with a quick
sense of humor, but there was an undercurrent that said he was not
to be crossed. The architect was being reassigned to a different part
of the organization in the near future; this was tantamount to being
fired from the project, and the manager said he wanted to establish
the quality of the architecture before his architect’s awkward
departure. (We didn’t find any of this out until after the evaluation.)
When we set up the ATAM exercise, the manager suggested that
the junior designers attend. “They might learn something,” he said.
We agreed. As the exercise began, our schedule (which was very
tight to begin with) kept being disrupted. The manager wanted us
to meet with his company’s executives. Then he wanted us to have
a long lunch with someone who he said could give us more
architectural insights. It turned out that the executives were busy at
the time of our scheduled meeting. So the manager asked if we
could come back and meet with them later on.

By now, phase 2 was thrown off schedule to such an extent that
the architect, to our horror, had to leave to fly back to his home in a
distant city. He was none too happy that his architecture was going
to be evaluated without him. The junior designers, he said, would
never be able to answer our questions. Before his departure, our
team huddled. The exercise seemed to be teetering on the brink of
disaster. We had an unhappy departing architect, a blown schedule,
and questionable expertise available. We decided to split our
evaluation team. One half of the team would continue with phase 2
using the junior designers as our information resource. The second
half of the team would continue with phase 2 by telephone the next
day with the architect. Somehow we would make the best of a bad
situation.

Surprisingly, the project manager seemed completely
unperturbed by the turn of events. “It will work out, I’m sure,” he
said pleasantly, and then retreated to confer with various vice
presidents about the reorganization.



I led the team interviewing the junior designers. We had never
gotten a completely satisfactory architecture presentation from the
architect. Discrepancies in the documentation were met with a
breezy “Oh, well, that’s not how it really works.” So I decided to
start over with ATAM step 3. We asked the half dozen or so
designers what their view of the architecture was. “Could you draw
it?” I asked them. They looked at each other nervously, but one
said, “I think I can draw part of it.” He took to the whiteboard and
drew a very reasonable component-and-connector view. Someone
else volunteered to draw a process view. A third person drew the
architecture for an important offline part of the system. Others
jumped in to assist.

As we looked around the room, everyone was busy transcribing
the whiteboard pictures. None of the pictures corresponded to
anything we had seen in the documentation so far. “Are these
diagrams documented anywhere?” I asked. One of the designers
looked up from his busy scribbling for a moment to grin. “They are
now,” he said.

As we proceeded to step 8, analyzing the architecture using the
scenarios previously captured, the designers did an astonishingly
good job of working together to answer our questions. Nobody
knew everything, but everybody knew something. Together in a
half day, they produced a clear and consistent picture of the whole
architecture that was much more coherent and understandable than
anything the architect had been willing to produce in two whole
days of pre-exercise discussion. And by the end of phase 2, the
design team was transformed. This erstwhile group of information-
starved individuals with limited compartmentalized knowledge
became a true architecture team. The members drew out and
recognized each other’s expertise. This expertise was revealed and
validated in front of everyone—and most important, in front of
their project manager, who had slipped back into the room to
observe. There was a look of supreme satisfaction on his face. It
began to dawn on me that—you guessed it—it was okay.

It turned out that this project manager knew how to manipulate
events and people in ways that would have impressed Machiavelli.
The architect’s departure was not because of the reorganization, but
merely coincident with it. The project manager had orchestrated it.
The architect had, the manager felt, become too autocratic and
dictatorial, and the manager wanted the junior design staff to be



given the opportunity to mature and contribute. The architect’s
mid-exercise departure was exactly what the project manager had
wanted. And the design team’s emergence under fire had been the
primary purpose of the evaluation exercise all along. Although we
found several important issues related to the architecture, the
project manager knew about every one of them before we ever
arrived. In fact, he made sure we uncovered some of them by
making a few discreet remarks during breaks or after a day’s
session.

Was this exercise a success? The client could not have been
more pleased. His instincts about the architecture’s strengths and
weaknesses were confirmed. We were instrumental in helping his
design team, which would guide the system through the stormy
seas of the company’s reorganization, come together as an effective
and cohesive unit at exactly the right time. And the client was so
pleased with our final report that he made sure the company’s
board of directors saw it.

These cliffhangers certainly stand out in our memory. There was
no architecture documented. But it was okay. It wasn’t the right
architecture. But it was okay. There was no architect. But it was
okay. The client really wanted to effect a team reorganization. In
every instance, we reacted as reasonably as we could, and each
time it was okay.

Why? Why, time after time, does it turn out okay? I think there
are three reasons.

First, the people who commission the architecture evaluation
really want it to succeed. The architect, developers, and
stakeholders assembled at the client’s behest also want it to
succeed. As a group, they help keep the exercise marching toward
the goal of architectural insight.

Second, we are always honest. If we feel that the exercise is
derailing, we call a timeout and confer among ourselves, and
usually confer with the client. While a small amount of bravado
can come in handy during an exercise, we never, ever try to bluff
our way through an evaluation. Participants can detect that false
note instinctively, and the evaluation team must never lose the
respect of the other participants.

Third, the methods are constructed to establish and maintain a
steady consensus throughout the exercise. There are no surprises at



the end. The participants lay down the ground rules for what
constitutes a suitable architecture, and they contribute to the risks
uncovered at every step of the way.

So: Do the best job you can. Be honest. Trust the methods. Trust
in the goodwill and good intentions of the people you have
assembled. And it will be okay.

—PCC (Adapted from [Clements 01b])

21.6 Lightweight Architecture Evaluation
The Lightweight Architecture Evaluation (LAE) method is intended to
be used in a project-internal context where the reviewing is carried out
by peers on a regular basis. It uses the same concepts as the ATAM and
is meant to be performed regularly. An LAE session may be convened to
focus on what has changed since the prior review—in the architecture or
in the architecture drivers—or to examine a previously unexamined
portion of the architecture. Because of this limited scope, many of the
ATAM’s steps can be omitted or shortened.

The duration of an LAE exercise depends on the number of quality
attribute scenarios generated and examined, which is in turn based on the
scope of the review. The number of scenarios examined depends on the
importance of the system being reviewed. Thus an LAE exercise can be
as short as a couple of hours or as long as a full day. It is carried out
entirely by members internal to the organization.

Because the participants are all internal to the organization and fewer
in number than for the ATAM, giving everyone their say and achieving a
shared understanding takes much less time. In addition, an LAE
exercise, because it is a lightweight process, can be done regularly; in
turn, many of the steps of the method can be omitted or only briefly
touched upon. The potential steps in an LAE exercise, along with our
experiences with how these play out in practice, are shown in Table 21.3.
The LAE exercise is typically convened by and led by the project
architect.

Table 21.3 A Typical Agenda for Lightweight Architecture Evaluation

Step Notes



Step Notes
1: 
Present 
the 
metho
d steps

Assuming the participants are familiar with the process, this 
step may be omitted.

2: 
Revie
w the 
busine
ss 
goals

The participants are expected to understand the system and its 
business goals and their priorities. A brief review may be done 
to ensure that these are fresh in everyone’s mind and that there 
are no surprises.

3: 
Revie
w the 
archite
cture

All participants are expected to be familiar with the system, so a 
brief overview of the architecture is presented, using at least the 
module and C&C views, highlighting any changes since the last 
review, and one or two scenarios are traced through these views.

4: 
Revie
w the 
archite
ctural 
approa
ches

The architect highlights the architectural approaches used for 
specific quality attribute concerns. This is typically done as a 
portion of step 3.

5: 
Revie
w the 
quality 
attribut
e 
utility 
tree

A utility tree should already exist; the team reviews the existing 
tree and updates it, if needed, with new scenarios, new response 
goals, or new scenario priorities and risk assessments.



Step Notes
6: 
Brainst
orm 
and 
prioriti
ze 
scenari
os

A brief brainstorming activity can occur at this time to establish 
whether any new scenarios merit analysis.

7: 
Analyz
e the 
archite
ctural 
approa
ches

This step—mapping the highly ranked scenarios onto the 
architecture—consumes the bulk of the time and should focus 
on the most recent changes to the architecture, or on a part of 
the architecture that the team has not previously analyzed. If the 
architecture has changed, the high-priority scenarios should be 
reanalyzed in light of these changes.

8: 
Captur
e the 
results

At the end of an evaluation, the team reviews the existing and 
newly discovered risks, non-risks, sensitivities, and tradeoffs, 
and discusses whether any new risk themes have arisen.

There is no final report, but (as in the ATAM) a scribe is responsible
for capturing results, which can then be shared and serve as the basis for
risk remediation.

An entire LAE can be prosecuted in less than a day—perhaps an
afternoon. The results will depend on how well the assembled team
understands the goals of the method, the techniques of the method, and
the system itself. The evaluation team, being internal, is typically less
objective than an external evaluation team, and this may compromise the
value of its results: One tends to hear fewer new ideas and fewer
dissenting opinions. Nevertheless, this version of evaluation is
inexpensive, is easy to convene, and involves relatively low ceremony,
so it can be quickly deployed whenever a project wants an architecture
quality assurance sanity check.

Tactics-Based Questionnaires



Another (even lighter) lightweight evaluation method that we
discussed in Chapter 3 is the tactics-based questionnaire. A tactics-
based questionnaire focuses on a single quality attribute at a time. It
can be used by the architect to aid in reflection and introspection, or
it can be used to structure a question-and-answer session between
an evaluator (or evaluation team) and an architect (or group of
designers). This kind of session is typically short—around one hour
per quality attribute—but can reveal a great deal about the design
decisions taken, and those not taken, in pursuit of control of a
quality attribute and the risks that are often buried within those
decisions. We have provided quality attribute–specific
questionnaires in Chapters 4–13 to help guide you in this process.

A tactics-based analysis can lead to surprising results in a very
short time. For example, once I was analyzing a system that
managed healthcare data. We had agreed to analyze the quality
attribute of security. During the session, I dutifully walked through
the security tactics–based questionnaire, asking each question in
turn (as you may recall, in these questionnaires each tactic is
transformed into a question). For example, I asked, “Does the
system support the detection of intrusions?”, “Does the system
support the verification of message integrity?”, and so forth. When
I got to the question “Does the system support data encryption?”,
the architect paused and smiled. Then he (sheepishly) admitted that
the system had a requirement that no data could be passed over a
network “in the clear”—that is, without encryption. So they
XOR’ed all data before sending it over the network.

This is a great example of the kind of risk that a tactics-based
questionnaire can uncover, very quickly and inexpensively. Yes,
they had met the requirement in a strict sense—they were not
sending any data in the clear. But the encryption algorithm that
they chose could be cracked by a high school student with modest
abilities!

—RK

21.7 Summary



If a system is important enough for you to explicitly design its
architecture, then that architecture should be evaluated.

The number of evaluations and the extent of each evaluation may vary
from project to project. A designer should perform an evaluation during
the process of making an important decision.

The ATAM is a comprehensive method for evaluating software
architectures. It works by having project decision makers and
stakeholders articulate a precise list of quality attribute requirements (in
the form of scenarios) and by illuminating the architectural decisions
relevant to analyzing each high-priority scenario. The decisions can then
be understood in terms of risks or non-risks to find any trouble spots in
the architecture.

Lightweight evaluations can be performed regularly as part of a
project’s internal peer review activities. Lightweight Architecture
Evaluation, based on the ATAM, provides an inexpensive, low-ceremony
architecture evaluation that can be carried out in less than a day.

21.8 For Further Reading
For a more comprehensive treatment of the ATAM, see [Clements 01b].

Multiple case studies of applying the ATAM are available. They can
be found by going to sei.cmu.edu/library and searching for “ATAM case
study.”

Several lighter-weight architecture evaluation methods have been
developed. They can be found in [Bouwers 10], [Kanwal 10], and
[Bachmann 11].

Analyses of the kinds of insights derived from an ATAM can be found
in [Bass 07] and [Bellomo 15].

21.9 Discussion Questions
1. Think of a software system that you’re working on. Prepare a 30-

minute presentation on the business goals for this system.

2. If you were going to evaluate the architecture for this system, who
would you want to participate? What would be the stakeholder
roles, and who could you get to represent those roles?

3. Calculate the cost of an ATAM-based evaluation for a large
enterprise-scale system’s architecture. Assume a fully burdened

http://sei.cmu.edu/library


labor rate of $250,000 per year for the participants. Assuming that
an evaluation uncovers an architectural risk and mitigating this risk
saves 10 percent of project costs, under what circumstances would
this ATAM be a sensible choice for a project?

4. Research a costly system failure that could be attributed to one or
more poor architectural decisions. Do you think an architecture
evaluation might have caught the risks? If so, compare the cost of
the failure with the cost of the evaluation.

5. It is not uncommon for an organization to evaluate two competing
architectures. How would you modify the ATAM to produce a
quantitative output that facilitates this comparison?

6. Suppose you’ve been asked to evaluate the architecture for a system
in confidence. The architect isn’t available. You aren’t allowed to
discuss the evaluation with any of the system’s stakeholders. How
would you proceed?

7. Under what circumstances would you want to employ a full-
strength ATAM, and under what circumstances would you want to
employ an LAE?



22
Documenting an Architecture

Documentation is a love letter that you write to your future self.
—Damian Conway

Creating an architecture isn’t enough. It has to be communicated in a
way to let its stakeholders use it properly to do their jobs. If you go to the
trouble of creating a strong architecture, one that you expect to stand the
test of time, then you must go to the trouble of describing it in enough
detail, without ambiguity, and organized so that others can quickly find
and update needed information.

Documentation speaks for the architect. It speaks for the architect
today, when the architect should be doing other things besides answering
a hundred questions about the architecture. And it speaks for the
architect tomorrow, who has forgotten the details of what the
architecture includes, or when that person has left the project and
someone else is now the architect.

The best architects produce good documentation not because it’s
“required,” but because they see that it is essential to the matter at hand
—producing a high-quality product, predictably and with as little rework
as possible. They see their immediate stakeholders as the people most
intimately involved in this undertaking: developers, deployers, testers,
analysts.

But architects also see documentation as delivering value to
themselves. Documentation serves as the receptacle to hold the results of
major design decisions as they are confirmed. A well-thought-out
documentation scheme can make the process of design go much more
smoothly and systematically. Documentation helps the architect(s)
reason about the architecture design and communicate it while the
architecting is in progress, whether in a six-month design phase or a six-
day Agile sprint.



Note that “documentation” doesn’t necessarily mean producing a
physical, printed, book-like artifact. Online documentation such as a
wiki, hosted in ways that can engender discussion, stakeholder feedback,
and searching, is an ideal forum for architecture documentation. Also,
don’t think of documentation as a step that is distinct from and follows
design. The language you use to explain the architecture to others can be
used by you as you carry out your design work. Design and
documentation are, ideally, the same piece of work.

22.1 Uses and Audiences for Architecture
Documentation

Architecture documentation must serve varied purposes. It should be
sufficiently transparent and accessible to be quickly understood by new
employees. It should be sufficiently concrete to serve as a blueprint for
construction or forensics. It should have enough information to serve as a
basis for analysis.

Architecture documentation can be seen as both prescriptive and
descriptive. For some audiences, it prescribes what should be true,
placing constraints on decisions yet to be made. For other audiences, it
describes what is true, recounting decisions already made about a
system’s design.

Many different kinds of people will have an interest in architecture
documentation. They hope and expect that this documentation will help
them do their respective jobs. Understanding the uses of architecture
documentation is essential, as those uses determine the important
information to capture.

Fundamentally, architecture documentation has four uses.
1. Architecture documentation serves as a means of education. The

educational use consists of introducing people to the system. The
people may be new members of the team, external analysts, or
even a new architect. In many cases, the “new” person is the
customer to whom you’re showing your solution for the first time
—a presentation you hope will result in funding or go-ahead
approval.

2. Architecture documentation serves as a primary vehicle for
communication among stakeholders. Its precise use as a
communication vehicle depends on which stakeholders are doing
the communicating.



Perhaps one of the most avid consumers of architecture
documentation is none other than the project’s future architect.
That may be the same person (as noted in the quotation that
opened this chapter) or it may be a replacement, but in either case
the future architect is guaranteed to have an enormous stake in the
documentation. New architects are interested in learning how their
predecessors tackled the difficult issues of the system and why
particular decisions were made. Even if the future architect is the
same person, he or she will use the documentation as a repository
of thought, a storehouse of design decisions too numerous and
hopelessly intertwined to ever be reproducible from memory alone.
We enumerate the stakeholders for architecture, and its
documentation, in Section 22.8.

3. Architecture documentation serves as the basis for system analysis
and construction. Architecture tells implementers which modules
to implement and how those modules are wired together. These
dependencies determine the other teams with which the
development team for the module must communicate.
For those interested in the design’s ability to meet the system’s
quality objectives, the architecture documentation serves as fodder
for evaluation. It must contain the information necessary to
evaluate a variety of attributes, such as security, performance,
usability, availability, and modifiability.

4. Architecture documentation serves as the basis for forensics when
an incident occurs. When an incident occurs, someone is
responsible for tracking down both the immediate cause of the
incident and the underlying cause. Information about the flow of
control immediately prior to the incident will provide the “as
executed” architecture. For example, a database of interface
specifications will provide context for the flow of control, and
component descriptions will indicate what should have happened
in each component on the trace of events.

For the documentation to continue to provide value over time, it needs
to be kept up to date.

22.2 Notations



Notations for documenting views differ considerably in their degree of
formality. Roughly speaking, there are three main categories of notation:

Informal notations. Views may be depicted (often graphically) using
general-purpose diagramming and editing tools and visual
conventions chosen for the system at hand. Most box-and-line
drawings you’ve probably seen fall into this category—think
PowerPoint or something similar, or hand-drawn sketches on a
whiteboard. The semantics of the description are characterized in
natural language, and cannot be formally analyzed.
Semiformal notations. Views may be expressed in a standardized
notation that prescribes graphical elements and rules of construction,
but does not provide a complete semantic treatment of the meaning
of those elements. Rudimentary analysis can be applied to determine
if a description satisfies syntactic properties. UML and its system-
engineering adjunct SysML are semiformal notations in this sense.
Most widely used commercially available modeling tools employ
notations in this category.
Formal notations. Views may be described in a notation that has a
precise (usually mathematically based) semantics. Formal analysis
of both syntax and semantics is possible. A variety of formal
notations for software architecture are available. Generally referred
to as architecture description languages (ADLs), they typically
provide both a graphical vocabulary and an underlying semantics for
architecture representation. In some cases, these notations are
specialized to particular architectural views. In other cases, they
allow many views, or even provide the ability to formally define
new views. The usefulness of ADLs lies in their ability to support
automation through associated tools—automation to provide useful
analysis of the architecture, or assist in code generation. In practice,
the use of formal notations is rare.

Typically, more formal notations take more time and effort to create
and understand, but repay this effort with reduced ambiguity and more
opportunities for analysis. Conversely, more informal notations are
easier to create, but provide fewer guarantees.

Regardless of the level of formality, always remember that different
notations are better (or worse) for expressing different kinds of
information. Formality aside, no UML class diagram will help you



reason about schedulability, nor will a sequence diagram tell you very
much about the system’s likelihood of being delivered on time. You
should choose your notations and representation languages while
keeping in mind the important issues you need to capture and reason
about.

22.3 Views
Perhaps the most important concept associated with software architecture
documentation is that of the view. A software architecture is a complex
entity that cannot be described in a simple one-dimensional fashion. A
view is a representation of a set of system elements and relations among
them—not all system elements, but those of a particular type. For
example, a layered view of a system would show elements of type
“layer”; that is, it would show the system’s decomposition into layers,
along with the relations among those layers. A pure layered view would
not, however, show the system’s services, or clients and servers, or data
model, or any other type of element.

Thus views let us divide the multidimensional entity that is a software
architecture into a number of (we hope) interesting and manageable
representations of the system. The concept of views leads to a basic
principle of architecture documentation:

Documenting an architecture is a matter of documenting the relevant
views and then adding documentation that applies to more than one
view.
What are the relevant views? This depends entirely on your goals. As

we saw previously, architecture documentation can serve many
purposes: a mission statement for implementers, a basis for analysis, the
specification for automatic code generation, the starting point for system
understanding and reverse engineering, or the blueprint for project
estimation and planning.

Different views also expose different quality attributes to different
degrees. In turn, the quality attributes that are of most concern to you
and the other stakeholders in the system’s development will affect which
views you choose to document. For instance, a module view will let you
reason about your system’s maintainability, a deployment view will let
you reason about your system’s performance and reliability, and so forth.

Because different views support different goals and uses, we do not
advocate using any particular view or collection of views. The views you



should document depend on the uses you expect to make of the
documentation. Different views will highlight different system elements
and relations. How many different views to represent is the result of a
cost/benefit decision. Each view has a cost and a benefit, and you should
ensure that the expected benefits of creating and maintaining a particular
view outweigh its costs.

The choice of views is driven by the need to document a particular
pattern in your design. Some patterns are composed of modules, others
consist of components and connectors, and still others have deployment
considerations. Module views, component-and-connector (C&C) views,
and allocation views are the appropriate mechanism for representing
these considerations, respectively. These categories of views correspond,
of course, to the three categories of architectural structures described in
Chapter 1. (Recall from Chapter 1 that a structure is a collection of
elements, relations, and properties, whereas a view is a representation of
one or more architectural structures.)

In this section, we explore these three categories of structure-based
views and then introduce a new category: quality views.

Module Views
A module is an implementation unit that provides a coherent set of
responsibilities. A module might take the form of a class, a collection of
classes, a layer, an aspect, or any decomposition of the implementation
unit. Example module views are decomposition, uses, and layers. Every
module view has a collection of properties assigned to it. These
properties express important information associated with each module
and the relationships among the modules, as well as constraints on the
module. Example properties include responsibilities, visibility
information (what other modules can use it), and revision history. The
relations that modules have to one another include is-part-of, depends-
on, and is-a.

The way in which a system’s software is decomposed into manageable
units remains one of the important forms of system structure. At a
minimum, it determines how a system’s source code is decomposed into
units, what kinds of assumptions each unit can make about services
provided by other units, and how those units are aggregated into larger
ensembles. It also includes shared data structures that impact, and are
impacted by, multiple units. Module structures often determine how



changes to one part of a system might affect other parts and hence the
ability of a system to support modifiability, portability, and reuse.

The documentation of any software architecture is unlikely to be
complete without at least one module view. Table 22.1 summarizes the
characteristics of module views.

Table 22.1 Summary of Module Views

Ele
men
ts

Modules, which are implementation units of software that provide 
a coherent set of responsibilities

Rela
tions

Is-part-of, which defines a part/whole relationship between 
the submodule (the part) and the aggregate module (the 
whole)

Depends-on, which defines a dependency relationship 
between two modules

Is-a, which defines a generalization/specialization 
relationship between a more specific module (the child) and a 
more general module (the parent)

Con
strai
nts

Different module views may impose topological constraints, such 
as limitations on the visibility between modules.

Usag
e

Blueprint for construction of the code

Analysis of the impact of changes

Planning incremental development



Requirements traceability analysis

Communicating the functionality of a system and the 
structure of its code base

Supporting the definition of work assignments, 
implementation schedules, and budget information

Showing the data model

Properties of modules that help to guide implementation or are input
into analysis should be recorded as part of the supporting documentation
for a module view. The list of properties may vary but is likely to
include the following:

Name. A module’s name is, of course, the primary means to refer to
it. A module’s name often suggests something about its role in the
system. In addition, a module’s name may reflect its position in a
decomposition hierarchy; the name A.B.C, for example, refers to a
module C that is a submodule of a module B, which is itself a
submodule of A.
Responsibilities. The responsibility property for a module is a way to
identify its role in the overall system and establishes an identity for it
beyond the name. Whereas a module’s name may suggest its role, a
statement of responsibility establishes that role with much more
certainty. Responsibilities should be described in sufficient detail to
make clear to the reader what each module does. A module’s
responsibilities are often captured by tracing to a project’s
requirements specification, if there is one.
Implementation information. Modules are units of implementation. It
is therefore useful to record information related to their
implementation from the point of view of managing their



development and building the system that contains them. This might
include:

Mapping to source code units. This identifies the files that
constitute the implementation of a module. For example, a
module Account, if implemented in Java, might have several
files that constitute its implementation: IAccount.java (an
interface), AccountImpl.java (implementation of Account
functionality), and perhaps even a unit test AccountTest.java.
Test information. The module’s test plan, test cases, test harness,
and test data are important to document. This information may
simply be a pointer to the location of these artifacts.
Management information. A manager may need information
about the module’s predicted schedule and budget. This
information may simply be a pointer to the location of these
artifacts.
Implementation constraints. In many cases, the architect will
have an implementation strategy in mind for a module or may
know of constraints that the implementation must follow.
Revision history. Knowing the history of a module, including its
authors and particular changes, may help you when you’re
performing maintenance activities.

A module view can be used to explain the system’s functionality to
someone not familiar with it. The various levels of granularity of the
module decomposition provide a top-down presentation of the system’s
responsibilities and, therefore, can guide the learning process. For a
system whose implementation is already in place, module views, if kept
up-to-date, are helpful because they explain the structure of the code
base to a new developer on the team.

Conversely, it is difficult to use the module views to make inferences
about runtime behavior, because these views are just a static partition of
the functions of the software. Thus a module view is not typically used
for analysis of performance, reliability, and many other runtime
qualities. For those purposes, we rely on component-and-connector and
allocation views.

Component-and-Connector Views



C&C views show elements that have some runtime presence, such as
processes, services, objects, clients, servers, and data stores. These
elements are termed components. Additionally, C&C views include as
elements the pathways of interaction, such as communication links and
protocols, information flows, and access to shared storage. Such
interactions are represented as connectors in C&C views. Example C&C
views include client-server, microservice, and communicating processes.

A component in a C&C view may represent a complex subsystem,
which itself can be described as a C&C subarchitecture. A component’s
subarchitecture may employ a different pattern than the one in which the
component appears.

Simple examples of connectors include service invocation,
asynchronous message queues, event multicast supporting publish-
subscribe interactions, and pipes that represent asynchronous, order-
preserving data streams. Connectors often represent much more complex
forms of interaction, such as a transaction-oriented communication
channel between a database server and a client, or an enterprise service
bus that mediates interactions between collections of service users and
providers.

Connectors need not be binary; that is, they need not have exactly two
components with which they interact. For example, a publish-subscribe
connector might have an arbitrary number of publishers and subscribers.
Even if the connector is ultimately implemented using binary
connectors, such as a procedure call, it can be useful to adopt n-ary
connector representations in a C&C view. Connectors embody a protocol
of interaction. When two or more components interact, they must obey
conventions about order of interactions, locus of control, and handling of
error conditions and timeouts. The protocol of interaction should be
documented.

The primary relation within a C&C view is attachment. Attachments
indicate which connectors are attached to which components, thereby
defining a system as a graph of components and connectors.
Compatibility often is defined in terms of information type and protocol.
For example, if a web server expects encrypted communication via
HTTPS, then the client must perform the encryption.

An element (component or connector) of a C&C view will have
various properties associated with it. Specifically, every element should
have a name and type, with its additional properties depending on the
type of component or connector. As an architect, you should define



values for the properties that support the intended analyses for the
particular C&C view. The following are examples of some typical
properties and their uses:

Reliability. What is the likelihood of failure for a given component
or connector? This property might be used to help determine overall
system availability.
Performance. What kinds of response time will the component
provide under what loads? What kind of bandwidth, latency, or jitter
can be expected for a given connector? This property can be used
with others to determine system-wide properties such as response
times, throughput, and buffering needs.
Resource requirements. What are the processing and storage needs
of a component or a connector? If relevant, how much energy does it
consume? This property can be used to determine whether a
proposed hardware configuration will be adequate.
Functionality. What functions does an element perform? This
property can be used to reason about the end-to-end computation
performed by a system.
Security. Does a component or a connector enforce or provide
security features, such as encryption, audit trails, or authentication?
This property can be used to determine potential system security
vulnerabilities.
Concurrency. Does this component execute as a separate process or
thread? This property can help to analyze or simulate the
performance of concurrent components and identify possible
deadlocks and bottlenecks.
Runtime extensibility. Does the messaging structure support evolving
data exchanges? Can the connectors be adapted to process those new
message types?

C&C views are commonly used to show developers and other
stakeholders how the system works: One can “animate” or trace through
a C&C view, showing an end-to-end thread of activity. C&C views are
also used to reason about runtime system quality attributes, such as
performance and availability. In particular, a well-documented view
allows architects to predict overall system properties such as latency or



reliability, given estimates or measurements of properties of the
individual elements and their interactions.

Table 22.2 summarizes the characteristics of C&C views.

Table 22.2 Summary of C&C Views

Eleme
nts

Components: principal processing units and data stores.

Connectors: pathways of interaction between components.

Relati
ons

Attachments: Components are associated with connectors to 
yield a graph.

Constr
aints

Components can only be attached to connectors, and 
connectors can only be attached to components.

Attachments can only be made between compatible 
components and connectors.

Connectors cannot appear in isolation; a connector must be 
attached to a component.

Usage Show how the system works.



Guide development by specifying the structure and 
behavior of runtime elements.

Help reason about runtime system quality attributes, such as 
performance and availability.

Notations for C&C Views
As always, box-and-line drawings are available to represent C&C views.
Although informal notations are limited in terms of the semantics that
they can convey, following some simple guidelines can lend rigor and
depth to the descriptions. The primary guideline is simple: Assign each
component type and each connector type a separate symbol, and list each
of the types in a key.

UML components are a good semantic match to C&C components
because they permit intuitive documentation of important information
such as interfaces, properties, and behavioral descriptions. UML
components also distinguish between component types and component
instances, which is useful when defining view-specific component types.

Allocation Views
Allocation views describe the mapping of software units to elements of
an environment in which the software is developed or in which it
executes. The environment in such a view varies; it might be the
hardware, the operating environment in which the software is executed,
the file systems supporting development or deployment, or the
development organization(s).

Table 22.3 summarizes the characteristics of allocation views. These
views consist of software elements and environmental elements.
Examples of environmental elements are a processor, a disk farm, a file
or folder, or a group of developers. The software elements come from a
module or C&C view.

Table 22.3 Summary of Allocation Views

El Software element and environmental element. A software element 



e
m
en
ts

has properties that are required of the environment. An 
environmental element has properties that are provided to the 
software.

R
el
ati
on
s

Allocated-to: A software element is mapped (allocated to) an 
environmental element.

C
on
st
ra
in
ts

Varies by view.

Us
ag
e

For reasoning about performance, availability, security, and safety. 
For reasoning about distributed development and allocation of work 
to teams. For reasoning about concurrent access to software 
versions. For reasoning about the form and mechanisms of system 
installation.

The relation in an allocation view is allocated-to. We usually talk
about allocation views in terms of a mapping from software elements to
environmental elements, although the reverse mapping would also be
relevant and potentially interesting. A single software element can be
allocated to multiple environmental elements, and multiple software
elements can be allocated to a single environmental element. If these
allocations change over time, during execution of the system, then the
architecture is said to be dynamic with respect to that allocation. For
example, processes might migrate from one processor or virtual machine
to another.

Software elements and environmental elements have properties in
allocation views. One goal of an allocation view is to compare the
properties required by the software element with the properties provided
by the environmental elements to determine whether the allocation will
be successful. For example, to ensure its required response time, a
component has to execute on (be allocated to) a processor that provides
sufficiently fast processing power. As another example, a computing
platform might not allow a task to use more than 10 kilobytes of virtual



memory; an execution model of the software element in question can be
used to determine the required virtual memory usage. Similarly, if you
are migrating a module from one team to another, you might want to
ensure that the new team has the appropriate skills and background
knowledge to work with that module.

Allocation views can depict either static or dynamic views. A static
view illustrates a fixed allocation of resources in an environment. A
dynamic view shows the conditions and the triggers for which allocation
of resources changes. For example, some systems provision and utilize
new resources as their loads increase. An example is a load-balancing
system in which new processes or threads are created on another
machine. In this view, the conditions under which the allocation view
changes, the allocation of runtime software, and the dynamic allocation
mechanism need to be documented.

Recall from Chapter 1 that one of the allocation structures is the work
assignment structure, which allocates modules to teams for development.
That allocation can also be changed, depending on the “load”—in this
case, the load on development teams already at work.

Quality Views
Module, C&C, and allocation views are all structural views: They
primarily show the structures that the architect has designed into the
architecture to satisfy functional and quality attribute requirements.

These views are excellent choices for guiding and constraining
downstream developers, whose primary job is to implement those
structures. However, in systems in which certain quality attributes (or,
for that matter, any stakeholder concerns) are particularly important and
pervasive, structural views may not be the best way to present the
architectural solution to those needs. The reason is that the solution may
be spread across multiple structures that are cumbersome to combine
(e.g., because the element types shown in each structure are different).

Another kind of view, which we call a quality view, can be tailored for
specific stakeholders or to address specific concerns. Quality views are
formed by extracting the relevant pieces of structural views and
packaging them together. Here are five examples:

A security view can show all of the architectural measures taken to
provide security. It would depict the components that have some
security role or responsibility, how those components communicate,



any data repositories for security information, and repositories that
are of security interest. The view’s properties would include other
security measures (e.g., physical security) in the system’s
environment. The security view would also show the operation of
security protocols and where and how humans interact with the
security elements. Finally, it would capture how the system responds
to specific threats and vulnerabilities.
A communications view might be especially helpful for systems that
are globally dispersed and heterogeneous. This view would show all
of the component-to-component channels, various network channels,
quality-of-service parameter values, and areas of concurrency. Such
a view can be used to analyze certain kinds of performance and
reliability, such as deadlock or race condition detection. In addition,
it could show (for example) how network bandwidth is dynamically
allocated.
An exception or error-handling view could help illuminate and draw
attention to error reporting and resolution mechanisms. Such a view
would show how components detect, report, and resolve faults or
errors. It would help the architect identify the sources of errors and
specify appropriate corrective actions for each. Finally, it would
facilitate root-cause analysis in those cases.
A reliability view would model reliability mechanisms such as
replication and switch-over. It would also depict timing issues and
transaction integrity.
A performance view would include those aspects of the architecture
useful for inferring the system’s performance. Such a view might
show network traffic models, maximum latencies for operations, and
so forth.

These and other quality views reflect the documentation philosophy of
ISO/IEC/IEEE standard 42010:2011, which prescribes creating views
driven by the concerns of the architecture’s stakeholders.

22.4 Combining Views
The basic principle of documenting an architecture as a set of separate
views brings a divide-and-conquer advantage to the task of
documentation. Of course, if those views were irrevocably different, with
no association with one another, no one would be able to understand the



system as a whole. However, because all structures in an architecture are
part of the same architecture and exist to achieve a common purpose,
many of them have strong associations with each other. Managing how
architectural structures are associated is an important part of the
architect’s job, independently of whether any documentation of those
structures exists.

Sometimes the most convenient way to show a strong association
between two views is to collapse them into a single combined view. A
combined view contains elements and relations that come from two or
more other views. Such views can be very useful as long as you do not
try to overload them with too many mappings.

The easiest way to merge views is to create an overlay that combines
the information that would otherwise have appeared in two separate
views. This works well if the relationship between the two views is tight
—that is, if there are strong associations between elements in one view
and elements in the other view. In such a case, the structure described by
the combined view will be easier to understand than the two views seen
separately. In an overlay, the elements and the relations keep the types as
defined in their constituent views.

The following combinations of views often occur quite naturally:

C&C views with each other. Because all C&C views show runtime
relations among components and connectors of various types, they
tend to combine well. Different (separate) C&C views tend to show
different parts of the system, or tend to show decomposition
refinements of components in other views. The result is often a set
of views that can be combined easily.
Deployment view with any C&C view that shows processes.
Processes are the components that are deployed onto processors,
virtual machines, or containers. Thus there is a strong association
between the elements in these views.
Decomposition view and any work assignment, implementation,
uses, or layered views. The decomposed modules form the units of
work, development, and uses. In addition, these modules populate
layers.

Figure 22.1 shows an example of a combined view that is an overlay
of client-server, multi-tier, and deployment views.



Figure 22.1 A combined view

22.5 Documenting Behavior
Documenting an architecture requires behavior documentation that
complements the structural views by describing how architecture
elements interact with each other. Reasoning about characteristics such
as a system’s potential to deadlock, a system’s ability to complete a task
in the desired amount of time, or maximum memory consumption
requires that the architecture description provide information about the
characteristics of individual elements and their resource consumption, as
well as patterns of interaction among them—that is, how they behave in
relation to each other. In this section, we provide guidance as to what
types of things you will want to document to reap these benefits.



Two kinds of notations are available for documenting behavior: trace-
oriented and comprehensive.

Traces are sequences of activities or interactions that describe the
system’s response to a specific stimulus when the system is in a specific
state. A trace describes a sequence of activities or interactions between
structural elements of the system. Although one might conceivably
describe all possible traces to generate the equivalent of a
comprehensive behavioral model, trace-oriented documentation does not
really seek to do so. Here we describe four notations for documenting
traces: use cases, sequence diagrams, communication diagrams, and
activity diagrams. Although other notations are available (such as
message sequence charts, timing diagrams, and the Business Process
Execution Language), we have chosen these four as a representative
sample of trace-oriented notations.

Use cases describe how actors can use a system to accomplish their
goals; they are frequently used to capture the functional
requirements for a system. UML provides a graphical notation for
use case diagrams but does not specify how the text of a use case
should be written. The UML use case diagram is a good way to
provide an overview of the actors and the behavior of a system. Its
description, which is textual, should include the following items: the
use case name and a brief description, the actor or actors who initiate
the use case (primary actors), other actors who participate in the use
case (secondary actors), the flow of events, alternative flows, and
non-success cases.
A UML sequence diagram shows a sequence of interactions among
instances of elements pulled from the structural documentation. It is
useful, when designing a system, for identifying where interfaces
need to be defined. The sequence diagram shows only the instances
participating in the scenario being documented. It has two
dimensions: vertical, representing time, and horizontal, representing
the various instances. The interactions are arranged in time sequence
from top to bottom. Figure 22.2 is an example of a sequence diagram
that illustrates the basic UML notation. Sequence diagrams are not
explicit about showing concurrency. If that is your goal, use activity
diagrams instead.



Figure 22.2 A simple example of a UML sequence diagram

As shown in Figure 22.2, objects (i.e., element instances) have a
lifeline, drawn as a vertical dashed line down the time axis. The
sequence is usually started by an actor on the far left. The instances
interact by sending messages, which are shown as horizontal arrows.
A message can be a message sent over a network, a function call, or
an event sent through a queue. The message usually maps to a
resource (operation) in the interface of the receiver instance. A filled
arrowhead on a solid line represents a synchronous message,
whereas an open arrowhead represents an asynchronous message.
The dashed arrow is a return message. The execution occurrence
bars along the lifeline indicate that the instance is processing or
blocked waiting for a return.
A UML communication diagram shows a graph of interacting
elements and annotates each interaction with a number denoting its



order. Similar to sequence diagrams, instances shown in a
communication diagram are elements described in the accompanying
structural documentation. Communication diagrams are useful when
the task is to verify that an architecture can fulfill the functional
requirements. Such diagrams are not useful when understanding of
concurrent actions is important, as when conducting a performance
analysis.
UML activity diagrams are similar to flowcharts. They show a
business process as a sequence of steps (called actions) and include
notation to express conditional branching and concurrency, as well
as to show sending and receiving events. Arrows between actions
indicate the flow of control. Optionally, activity diagrams can
indicate the architecture element or actor performing the actions.
Notably, activity diagrams can express concurrency. A fork node
(depicted as a thick bar orthogonal to the flow arrows) splits the flow
into two or more concurrent flows of actions. These concurrent
flows may later be synchronized into a single flow through a join
node (also depicted as an orthogonal bar). The join node waits for all
incoming flows to complete before proceeding.

Unlike sequence and communication diagrams, activity diagrams don’t
show the actual operations being performed on specific objects. Thus
these diagrams are useful to broadly describe the steps in a specific
workflow. Conditional branching (shown by a diamond symbol) allows a
single diagram to represent multiple traces, although an activity diagram
usually does not attempt to show all possible traces or the complete
behavior for the system (or part of it). Figure 22.3 shows an activity
diagram.



Figure 22.3 Activity diagram

In contrast to trace notations, comprehensive notations show the
complete behavior of structural elements. Given this type of
documentation, it is possible to infer all possible paths from the initial
state to the final state. State machines are a kind of formalism used by
many comprehensive notations. This formalism represents the behavior
of architecture elements because each state is an abstraction of all



possible histories that could lead to that state. State machine languages
allow you to complement a structural description of the elements of the
system with constraints on interactions and timed reactions to both
internal and environmental stimuli.

UML state machine diagrams allow you to trace the behavior of your
system, given specific inputs. Such a diagram represents states using
boxes and transitions between states using arrows. Thus it models
elements of the architecture and helps illustrate their runtime
interactions. Figure 22.4 is an example of a state machine diagram
showing the states of a car stereo.



Figure 22.4 UML state machine diagram for a car stereo system



Each transition in a state machine diagram is labeled with the event
causing the transition. For example, in Figure 22.4, the transitions
correspond to the buttons the driver can press or driving actions that
affect the cruise control system. Optionally, the transition can specify a
guard condition, which is enclosed in brackets. When the event
corresponding to the transition occurs, the guard condition is evaluated
and the transition is enabled only if the guard is true at that time.
Transitions can also have consequences, called actions or effects, which
are indicated by a slash. When an action is present, it indicates that the
behavior following the slash will be performed when the transition
occurs. The states may also specify entry and exit actions.

22.6 Beyond Views
In addition to views and behavior, comprehensive information about an
architecture will include the following items:

Mapping between views. Because all the views of an architecture
describe the same system, it stands to reason that any two views will
have much in common. Combining views (as described in Section
22.4) produces a set of views. Illuminating the associations among
those views can then help that reader gain a powerful insight into
how the architecture works as a unified conceptual whole.
The associations between elements across views in an architecture
are, in general, many-to-many. For instance, each module may map
to multiple runtime elements, and each runtime element may map to
multiple modules.
View-to-view associations can be conveniently captured as tables.
To create such a table list the elements of the first view in some
convenient lookup order. The table itself should be annotated or
introduced with an explanation of the association that it depicts—
that is, the correspondence between the elements across the two
views. Examples include “is implemented by” for mapping from a
component-and-connector view to a module view, “implements” for
mapping from a module view to a component-and-connector view,
“included in” for mapping from a decomposition view to a layered
view, and many others.
Documenting patterns. If you employ patterns in your design, as
recommended in Chapter 20, these patterns should be identified in
the documentation. First, record the fact that the given pattern is



being used. Then say why this solution approach was chosen—why
the pattern is appropriate for the problem at hand. Using a pattern
involves making successive design decisions that eventually result in
that pattern’s instantiation. These design decisions may manifest
themselves as newly instantiated elements and the relations among
them, which in turn should be documented in structural views.
One or more context diagrams. A context diagram shows how the
system or portion of the system relates to its environment. The
purpose of this diagram is to depict the scope of a view. Here
“context” means an environment with which the (part of the) system
interacts. Entities in the environment may be humans, other
computer systems, or physical objects, such as sensors or controlled
devices. A context diagram may be created for each view, with each
diagram showing how different types of elements interact with the
system’s environment. Context diagrams are useful for presenting an
initial picture of how a system or subsystem interacts with its
environment.
Variability guide. A variability guide shows how to exercise any
variation points that are part of the architecture shown in this view.
Rationale. The rationale explains why the design reflected in the
view came to be. The goal of this section is to explain why the
design has its present form and to provide a convincing argument
that it is sound. Documenting the rationale is described in more
detail in Section 22.7.
Glossary and acronym list. Likely your architecture will contain
many specialized terms and acronyms. Decoding these for your
readers will ensure that all your stakeholders are speaking the same
language, as it were.
Document control information. List the issuing organization, the
current version number, the date of issue and status, a change
history, and the procedure for submitting change requests to the
document. Usually this information is captured in the front matter.
Change control tools can provide much of this information.

22.7 Documenting the Rationale
When designing, you make important design decisions to achieve the
goals of each iteration. These design decisions include:



Selecting a design concept from several alternatives
Creating structures by instantiating the selected design concept
Establishing relationships between elements and defining interfaces
Allocating resources (e.g., people, hardware, computation)

When you study a diagram that represents an architecture, you see the
end product of a thought process but can’t always easily understand the
decisions that were made to achieve this result. Recording design
decisions beyond the representation of the chosen elements,
relationships, and properties is fundamental to help in understanding
how you arrived at the result; in other words, it lays out the design
rationale.

When your iteration goal involves satisfying an important quality
attribute scenario, some of the decisions that you make will play a
significant role in achieving the scenario response measure.
Consequently, you should take the greatest care in recording these
decisions: They are essential to facilitate analysis of the design you
created, to facilitate implementation, and, still later, to aid in
understanding the architecture (e.g., during maintenance). Given that
most design decisions are “good enough,” and seldom optimal, you also
need to justify the decisions made, and to record the risks associated
with your decisions so that they may be reviewed and possibly revisited.

You may perceive recording design decisions as a tedious task.
However, depending on the criticality of the system being developed,
you can adjust the amount of information that is recorded. For example,
to record a minimum of information, you can use a simple table such as
Table 22.4. If you decide to record more than this minimum, the
following information might prove useful:

What evidence was produced to justify decisions?
Who did what?
Why were shortcuts taken?
Why were tradeoffs made?
What assumptions did you make?

Table 22.4 Example Table to Document Design Decisions



Design Decisions 
and Location

Rationale and Assumptions (Include 
Discarded Alternatives)

Design Decisions 
and Location

Rationale and Assumptions (Include 
Discarded Alternatives)

Introduce 
concurrency (tactic) 
in the 
TimeServerConnecto
r and 
FaultDetectionServic
e

Concurrency should be introduced to be able to 
receive and process several events (traps) 
simultaneously.

Use of the messaging 
pattern through the 
introduction of a 
message queue in the 
communications 
layer

Although the use of a message queue imposes a 
performance penalty, a message queue was 
chosen because some implementations have high 
performance and, furthermore, this will be 
helpful to support quality attribute scenario QA-
3.

. . . . . .

In the same way that we suggest that you record responsibilities as you
identify elements, you should record the design decisions as you make
them. If you leave it until later, you will not remember why you did
things.

22.8 Architecture Stakeholders
In Chapter 2, we said that one of the key purposes of architecture was to
enable communication among stakeholders. In this chapter, we have said
that architecture documentation is produced in service of architecture
stakeholders. So who are they?

The set of stakeholders will vary, depending on the organization and
the project. The list of stakeholders in this section is suggestive but is not
intended to be complete. As an architect, one of your primary
obligations is to identify the real stakeholders for your project. Similarly,
the documentation needs we lay out here for each stakeholder are typical
but not definitive. You’ll need to take the following discussion as a
starting point and adapt it according to the needs of your project.

Key stakeholders of an architecture include the following:



Project managers care about schedule, resource assignments, and
perhaps contingency plans to release a subset of the system for
business reasons. To create a schedule, the project manager needs
information about the modules to be implemented and in what
sequence, with some information about their complexity, such as the
list of responsibilities, as well as their dependencies on other
modules. The dependencies may suggest a certain sequence in the
implementation. The project manager is not interested in the design
specifics of any element or the exact interface beyond knowing
whether those tasks have been completed. However, this person is
interested in the system’s overall purpose and constraints; its
interaction with other systems, which may suggest an organization-
to-organization interface that the manager will have to establish; and
the hardware environment, which the manager may have to procure.
The project manager might create or help create the work
assignment view, in which case he or she will need a decomposition
view to do it. A project manager, then, will likely be interested in the
following views:

Module views. Decomposition and uses and/or layered.
Allocation views. Deployment and work assignment.
Other. Top-level context diagrams showing interacting systems
and system overview and purpose.

Members of the development team, for whom the architecture
provides marching orders, are given constraints on how they do their
job. Sometimes developers are given responsibility for an element
they did not implement, such as a commercial off-the-shelf product
or a legacy element. Someone still has to be responsible for that
element, to make sure that it performs as advertised and to tailor it as
necessary. This person will want to know the following information:

The general idea behind the system. Although that information
lies in the realm of requirements rather than architecture, a top-
level context diagram or system overview can go a long way
toward providing the necessary information.
Which elements the developer has been assigned for
implementation—that is, where functionality should be
implemented.



The details of the assigned element, including the data model
with which it must operate.
The elements with which the assigned part interfaces and what
those interfaces are.
The code assets that the developer can utilize.
The constraints, such as quality attributes, legacy system
interfaces, and budget (resource or fiscal), that must be met.
A developer, then, is likely to want to see
Module views. Decomposition, uses and/or layered, and
generalization.
Component-and-connector (C&C) views. Various, showing the
component(s) the developer was assigned and the components
they interact with.
Allocation views. Deployment, implementation, and installation.
Other. System overview; a context diagram containing the
module(s) the developer has been assigned; the interface
documentation of the developer’s element(s) and the interface
documentation of those elements with which they interact; a
variability guide to implement required variability; and rationale
and constraints.

Testers and integrators are stakeholders for whom the architecture
specifies the correct black-box behavior of the pieces that must fit
together. A black-box tester will need to access the interface
documentation for the element. Integrators and system testers need
to see collections of interfaces, behavior specifications, and a uses
view so they can work with incremental subsets. Testers and
integrators, then, are likely to want to see the following views:

Module views. Decomposition, uses, and data model.
C&C views. All.
Allocation views. Deployment; install; and implementation, to
find out where the assets to build the module are.
Other. Context diagrams showing the module(s) to be tested or
integrated; the interface documentation and behavior
specification(s) of the module(s) and the interface
documentation of those elements with which they interact.



Testers and integrators deserve special attention because it is not
unusual for a project to spend roughly half of its overall effort in
testing. Ensuring a smooth, automated, and error-free testing process
will have a major positive effect on the project’s overall cost.
Designers of other systems with which this one must interoperate are
also stakeholders. For these people, the architecture defines the set
of operations provided and required, as well as the protocols for their
operation. These stakeholders will likely want to see the following
artifacts:

Interface documentations for those elements with which their
system will interact, as found in module and/or C&C views
The data model for the system with which their system will
interact
Top-level context diagrams from various views showing the
interactions

Maintainers use architecture as a starting point for maintenance
activities, revealing the areas a prospective change will affect.
Maintainers will want to see the same information as developers, as
both must make their changes within the same constraints. But
maintainers will also want to see a decomposition view that allows
them to pinpoint the locations where a change will need to be carried
out, and perhaps a uses view to help them build an impact analysis to
fully scope out the effects of the change. In addition, they will want
to see the design rationale, which will allow them to benefit from the
architect’s original thinking and save them time by identifying
already discarded design alternatives. A maintainer, then, is likely to
want to see the same views as the developers of a system do.
End users do not need to see the architecture, which is, after all,
largely invisible to them. Nevertheless, they can often gain useful
insights into the system, what it does, and how they can use it
effectively by examining the architecture. If end users or their
representatives review your architecture, you may be able to uncover
design discrepancies that would otherwise have gone unnoticed until
deployment. To serve this purpose, an end user is likely to be
interested in the following views:

C&C views. Views emphasizing flow of control and
transformation of data, to see how inputs are transformed into



outputs; analysis results dealing with properties of interest, such
as performance or reliability.
Allocation views. A deployment view to understand how
functionality is allocated to the platforms with which the users
interact.
Other. Context diagrams.

Analysts are interested in whether the design meets the system’s
quality objectives. The architecture serves as fodder for architecture
evaluation methods and must provide the information necessary to
evaluate quality attributes. For example, architecture includes the
model that drives such analytical tools as rate-monotonic real-time
schedulability analysis, reliability block diagrams, simulations and
simulation generators, theorem provers, and model checkers. These
tools require information about resource consumption, scheduling
policies, dependencies, component failure rates, and so forth.
Because analysis can encompass almost any subject matter area,
analysts may need access to information documented in any part of
the architecture documentation.
Infrastructure support personnel set up and maintain the
infrastructure that supports the development, integration, staging,
and production environments of the system. A variability guide is
particularly useful to help set up the software configuration
management environment. Infrastructure support people likely want
to see the following views:

Module views. Decomposition and uses.
C&C views. Various, to see what will run on the infrastructure.
Allocation views. Deployment and install, to see where the
software (including the infrastructure) will run; implementation.
Other. Variability guides.

Future architects are the most avid readers of architecture
documentation, with a vested interest in everything. You, after a
period of time, or your replacement (when you get promoted and
assigned to a more complex project) will want to know all the key
design decisions and why they were made. Future architects are
interested in it all, but they will be especially keen to have access to
comprehensive and candid rationale and design information. And,



remember, that future architect might be you! Do not expect to
remember all of these minute design decisions that you’re making
now. Remember, architecture documentation is a love letter you
write to your future self.

22.9 Practical Considerations
Up to now, this chapter has been concerned with the information that
architecture documentation should contain. Over and above the contents
of architecture documentation, however, are issues dealing with its form,
distribution, and evolution. In this section, we discuss some of these
concerns.

Modeling Tools
Many commercially available modeling tools are available that support
the specification of architectural constructs in a defined notation; SysML
is a widely used choice. Many of these tools offer features aimed at
practical large-scale use in industrial settings: interfaces that support
multiple users, version control, syntactic and semantic consistency
checking of the models, support for trace links between models and
requirements or models and tests, and, in some cases, automatic
generation of executable source code that implements the models. In
many projects, these are must-have capabilities, so the purchase price of
the tool—which is not insignificant in some cases—should be evaluated
against what it would cost the project to achieve these capabilities on its
own.

Online Documentation, Hypertext, and Wikis
Documentation for a system can be structured as linked web pages. Web-
oriented documents typically consist of short pages (created to fit on one
screen) with a deeper structure. One page usually provides some
overview information and has links to more detailed information.

Using tools such as wikis, it’s possible to create a shared document to
which many stakeholders can contribute. The hosting organization needs
to decide what permissions it wants to give to various stakeholders; the
tool used has to support the chosen permissions policy. In the case of
architecture documentation, we want selected stakeholders to comment



on and add clarifying information to the architecture, but we would want
only selected team personnel to be able to actually change it.

Follow a Release Strategy
Your project’s development plan should specify the process for keeping
the important documentation, including the architecture documentation,
current. Document artifacts should be subject to version control, as with
any other important project artifact. The architect should plan to issue
releases of the documentation to support major project milestones, which
usually means far enough ahead of the milestone to give developers time
to put the architecture to work. For example, revised documentation
could be provided to the development team at the end of each iteration or
sprint or with each incremental release.

Documenting Architectures That Change Dynamically
When your web browser encounters a file type it’s never seen before,
odds are that it will go to the Internet, search for and download the
appropriate plug-in to handle the file, install it, and reconfigure itself to
use it. Without even needing to shut down, let alone go through the
code–integrate–test development cycle, the browser is able to change its
own architecture by adding a new component.

Service-oriented systems that utilize dynamic service discovery and
binding also exhibit these properties. More challenging systems that are
highly dynamic, self-organizing, and reflective (meaning self-aware)
already exist. In these cases, the identities of the components interacting
with each other cannot be pinned down, let alone their interactions, in
any static architecture document.

Another kind of architectural dynamism, equally challenging from a
documentation perspective, is found in systems that are rebuilt and
redeployed with great rapidity. Some development shops, such as those
responsible for commercial websites, build and “go live” with their
system many times every day.

Whether they change at runtime or as a result of high-frequency
release-and-deploy cycles, all dynamic architectures share something in
common with respect to documentation: They change much faster than
the documentation cycle. In either case, no one is going to hold up things
until a new architecture document is produced, reviewed, and released.



Even so, knowing the architecture of these ever-changing systems is
every bit as important, and arguably more so, than for systems that
follow more traditional life cycles. Here’s what you can do if you’re an
architect in a highly dynamic environment:

Document what is true about all versions of your system. Your web
browser doesn’t go out and grab just any piece of software when it
needs a new plug-in; a plug-in must have specific properties and a
specific interface. And that new piece of software doesn’t just plug
in anywhere, but rather in a predetermined location in the
architecture. Record those invariants. This process may make your
documented architecture more a description of constraints or
guidelines that any compliant version of the system must follow.
That’s fine.
Document the ways the architecture is allowed to change. In the
examples mentioned earlier, this will usually mean adding new
components and replacing components with new implementations.
The place to do this is the variability guide discussed in Section 22.6
Generate interface documentation automatically. If you use explicit
interface mechanisms such as protocol buffers (described in Chapter
15), then there are always up-to-date definitions of component
interfaces; otherwise, the system would not work. Incorporate those
interface definitions into a database so that revision histories are
available and the interfaces can be searched to determine what
information is used in which components.

Traceability
Architecture, of course, does not live in a bubble, but in a milieu of
information about the system under development that includes
requirements, code, tests, budgets and schedules, and more. The
purveyors of each of these areas must ask themselves, “Is my part right?
How do I know?” This question takes on different specific forms in
different areas; for example, the tester asks, “Am I testing the right
things?” As we saw in Chapter 19, architecture is a response to
requirements and business goals, and its version of the “Is my part
right?” question is to ensure that those have been satisfied. Traceability
means linking specific design decisions to the specific requirements or
business goals that led to them, and those links should be captured in the
documentation. If, at the end of the day, all ASRs are accounted for



(“covered”) in the architecture’s trace links, then we have assurance that
the architecture part is right. Trace links may be represented informally
—a table, for instance—or may be supported technologically in the
project’s tool environment. In either case, trace links should be part of
the architecture documentation.

22.10 Summary
Writing architectural documentation is much like other types of writing.
The golden rule is: Know your reader. You must understand the uses to
which the writing will be put and the audience for the writing.
Architectural documentation serves as a means for communication
among various stakeholders: up the management chain, down into the
developers, and across to peers.

An architecture is a complicated artifact, best expressed by focusing
on particular perspectives, called views, which depend on the message to
be communicated. You must choose the views to document and choose
the notation to document these views. This may involve combining
various views that have a large overlap. You must not only document the
structure of the architecture but also the behavior.

In addition, you should document the relations among the views in
your documentation, the patterns you use, the system’s context, any
variability mechanisms built into the architecture, and the rationale for
your major design decisions.

There are other practical considerations for creating, maintaining, and
distributing the documentation, such as choosing a release strategy,
choosing a dissemination tool such as a wiki, and creating
documentation for architectures that change dynamically.

22.11 For Further Reading
Documenting Software Architectures: Views and Beyond [Clements 10a]
is a comprehensive treatment of the architecture documentation approach
described in this chapter. It details a multitude of different views and
notations for them. It also describes how to package the documentation
into a coherent whole. Appendix A covers using the Unified Modeling
Language (UML) to document architecture and architectural
information.

ISO/IEC/IEEE 42010:2011 (“eye-so-forty-two-oh-ten” for short) is
the ISO (and IEEE) standard, Systems and Software Engineering:



Architecture Description. This standard centers on two key ideas: a
conceptual framework for architecture description and a statement of
which information must be found in any ISO/IEC/IEEE 42010-
compliant architecture description, using multiple viewpoints driven by
stakeholders’ concerns.

AADL (addl.info) is an architecture description language that has
become an SAE standard for documenting architectures. The SAE is an
organization for engineering professionals in the aerospace, automotive,
and commercial vehicle industries.

SysML is a general-purpose systems modeling language intended to
support a broad range of analysis and design activities for systems
engineering applications. It is defined so that sufficient detail can be
specified to support a variety of automated analysis and design tools.
The SysML standard is maintained by the Object Management Group
(OMG); this language was developed by OMG in cooperation with the
International Council on Systems Engineering (INCOSE). SysML was
developed as a profile of UML, which means that it reuses much of
UML, but also provides the extensions necessary to meet the needs of
systems engineers. Copious information about SysML is available
online, but Appendix C of [Clements 10a] discusses how SysML can be
used to document architectures. As this book went to press, SysML 2.0
was under development.

An extended example of documenting architectural decisions while
designing can be found in [Cervantes 16].

22.12 Discussion Questions
1. Go to the website of your favorite open source system and look for

its architectural documentation. What is there? What is missing?
How would this affect your ability to contribute code to this
project?

2. Banks are justifiably cautious about security. Sketch the
documentation you would need for an ATM to reason about its
security architecture.

3. If you are designing a microservice-based architecture, what
elements, relations, and properties would you need to document to
be able to reason about end-to-end latency or throughput?

http://addl.info/


4. Suppose your company has just purchased another company and
you have been given the task of merging a system in your company
with a similar system in the other company. What views of the other
system’s architecture would you like to see and why? Would you
ask for the same views of both systems?

5. When would you choose to document behavior using trace
notations and when would you use a comprehensive notation? What
value do you get and what effort is required for each of them?

6. How much of a project’s budget would you devote to software
architecture documentation? Why? How would you measure the
cost and the benefit? How would this change if your project was a
safety-critical system or a high-security system?



23
Managing Architecture Debt
With Yuanfang Cai

Some debts are fun when you are acquiring them, but none are fun when
you set about retiring them.

—Ogden Nash

Without careful attention and the input of effort, designs become harder
to maintain and evolve over time. We call this form of entropy
“architecture debt,” and it is an important and highly costly form of
technical debt. The broad field of technical debt has been intensively
studied for more than a decade—primarily focusing on code debt.
Architecture debt is typically more difficult to detect and more difficult
to eradicate than code debt because it involves nonlocal concerns. The
tools and methods that work well for discovering code debt—code
inspections, code quality checkers, and so forth—typically do not work
well for detecting architecture debt.

Of course, not all debt is burdensome and not all debt is bad debt.
Sometimes a principle is violated when there is a worthy tradeoff—for
example, sacrificing low coupling or high cohesion to improve runtime
performance or time to market.

This chapter introduces a process to analyze existing systems for
architecture debt. This process gives the architect both the knowledge
and the tools to identify and manage such debt. It works by identifying
architecturally connected elements—with problematic design relations—
and analyzing a model of their maintenance costs. If that model indicates
the existence of a problem, typically signaled by an unusually high
amount of changes and bugs, this signifies an area of architecture debt.

Once architecture debt has been identified, if it is bad enough, it
should be removed through refactoring. Without quantitative evidence of



payoff, typically it is difficult to get project stakeholders to agree to this
step. The business case (without architecture debt analysis) goes like
this: “I will take three months to refactor this system and give you no
new functionality.” What manager would agree to that? However, armed
with the kinds of analyses we present here, you can make a very
different pitch to your manager, one couched in terms of ROI and
increased productivity that pays the refactoring effort back, and more, in
a short time.

The process that we advocate requires three types of information:

Source code. This is used to determine structural dependencies.
Revision history, as extracted from a project’s version control
system. This is used to determine the co-evolution of code units.
Issue information, as extracted from an issue control system. This is
used to determine the reason for changes.

The model for analyzing debt identifies areas of the architecture that
are experiencing unusually high rates of bugs and churn (committed
lines of code) and attempts to associate these symptoms with design
flaws.

23.1 Determining Whether You Have an
Architecture Debt Problem

In our process for managing architecture debt, we will focus on the
physical manifestation of architectural elements, which means the files in
which their source code is stored. How do we determine if a group of
files is architecturally connected? One way is to identify the static
dependencies between the files in your project—this method calls that
method, for example. You can find these by employing a static code
analysis tool. A second approach is to capture the evolutionary
dependencies between files in a project. An evolutionary dependency
occurs when two files change together, and you can extract this
information from your revision control system.

We can represent the file dependencies using a special kind of
adjacency matrix called a design structure matrix (DSM). While other
representations are certainly possible, DSMs have been used in
engineering design for decades and are currently supported by a number
of industrial tools. In a DSM, entities of interest (in our case, files) are



placed both on the rows of the matrix and, in the same order, on the
columns. The cells of the matrix are annotated to indicate the type of
dependency.

We can annotate a DSM cell with information showing that the file on
the row inherits from the file on the column, or that it calls the file on the
column, or that it co-changes with the file on the column. The first two
annotations are structural, whereas the third is an evolutionary (or
history) dependency.

To repeat: Each row in the DSM represents a file. Entries on a row
show the dependencies that this file has on other files in the system. If
the system has low coupling, you would expect the DSM to be sparse;
that is, any given file will be dependent on a small number of other files.
Furthermore, you would hope that the DSM is lower diagonal; that is, all
entries appear below the diagonal. This means that a file depends only
on lower-level files, not on higher-level ones, and that you have no
cyclic dependencies in your system.

Figure 23.1 shows 11 of the files from the Apache Camel project—an
open source integration framework—and their structural dependencies
(indicated by the labels “dp,” “im,” and “ex” for dependency,
implementation, and extension, respectively). For example, the file on
row 9 of Figure 23.1, MethodCallExpression.java, depends on and
extends the file on column 1, ExpressionDefinition.java, and the file
on row 11, AssertionClause.java, depends on the file on column 10,
MockEndpoint.java. These static dependencies are extracted by reverse-
engineering the source code.



Figure 23.1 A DSM of Apache Camel showing structural
dependencies

The matrix shown in Figure 23.1 is quite sparse. It means that these
files are not heavily structurally coupled to each other and, as a
consequence, you might expect that it would be relatively easy to change
these files independently. In other words, this system seems to have
relatively little architecture debt.



Now consider Figure 23.2, which overlays historical co-change
information on Figure 23.1. Historical co-change information is
extracted from the version control system. This indicates how often two
files change together in commits.

Figure 23.2 A DSM Apache Camel overlaying evolutionary
dependencies

Figure 23.2 shows a very different picture of the Camel project. For
example, the cell at row 8, column 3 is marked with “4”: This means that
there is no structural relation between BeanExpression.java and



MethodNotFoundException.java, but they were found to have changed
together four times in the revision history. A cell with both a number and
text indicates that this pair of files has both structural and evolutionary
coupling relations. For example, the cell at row 22, column 1 is marked
with “dp, 3”: This means that XMLTokenizerExpression.java depends
on ExpressionDefinition.java, and they were changed together three
times.

The matrix in Figure 23.2 is rather dense. Although these files are
generally not structurally coupled to each other, they are strongly
evolutionarily coupled. Furthermore, we see many annotations in cells
above the diagonal in the matrix. Thus the coupling is not just from
higher-level to lower-level files, but rather goes in all directions.

This project, in fact, suffers from high architecture debt. The
architects confirm this. They report that almost every change in the
project is costly and complex, and predicting when new features will be
ready or when bugs will be fixed is challenging.

While this kind of qualitative analysis can, by itself, be of value to an
architect or analyst, we can do better: We can actually quantify the costs
and impact of the debt that our code base is already carrying, and we can
do this fully automatically. To do so, we use the concept of “hotspots”—
areas of the architecture with design flaws, sometimes called architecture
anti-patterns or architecture flaws.

23.2 Discovering Hotspots
If you suspect that your code base has architecture debt—perhaps bug
rates are going up and feature velocity is going down—you need to
identify the specific files and their flawed relationships that are creating
that debt.

Compared to code-based technical debt, architecture debt is often
harder to identify because its root causes are distributed among several
files and their interrelationships. If you have a cyclic dependency where
the cycle of dependencies passes through six files, it is unlikely that
anyone in your organization completely understands this cycle and it is
not easily observable. For these kinds of complex cases, we need help, in
the form of automation, to identify the architecture debt.

We call the sets of elements that make outsized contributions to the
maintenance costs of a system hotspots. Architecture debt leads to high
maintenance costs due to high coupling and low cohesion. So, to identify
hotspots, we look for anti-patterns that contribute to high coupling and



low cohesion. Six common anti-patterns—which occur in virtually every
system—are highlighted here:

Unstable interface. An influential file—one representing an
important service, resource, or abstraction in the system—changes
frequently with its dependents, as recorded in the revision history.
The “interface” file is the entry point for other system elements to
use the service or resource. It is frequently modified due to internal
reasons, changes to its API, or both. To identify this anti-pattern,
search for a file with a large number of dependents that is modified
frequently with other files.
Modularity violation. Structurally decoupled modules frequently
change together. To identify this anti-pattern, search for two or more
structurally independent files—that is, files that have no structural
dependency on each other—that change together frequently.
Unhealthy inheritance. A base class depends on its subclasses or a
client class depends on both the base class and one or more of its
subclasses. To determine unhealthy inheritance instances, search for
either of the following two sets of relationships in a DSM:
In an inheritance hierarchy, a parent depends on its child class.
In an inheritance hierarchy, a client of the class hierarchy depends on
both the parent and one or more of its children.
Cyclic dependency or clique. A group of files is tightly connected.
To identify this anti-pattern, search for sets of files that form a
strongly connected graph, where there is a structural dependency
path between any two elements of the graph.
Package cycle. Two or more packages depend on each other, rather
than forming a hierarchical structure, as they should. Detecting this
anti-pattern is similar to detecting a clique: A package cycle is
determined by discovering packages that form a strongly connected
graph.
Crossing. A file has both a high number of dependent files and a
high number of files on which it depends, and it changes frequently
with its dependents and the files it depends on. To determine the file
at the center of a crossing, search for a file that has both high fan-in
and fan-out with other files and that has substantial co-change
relations with these other files.



Not every file in a hotspot will be tightly coupled to every other file.
Instead, a collection of files may be tightly coupled to each other and
decoupled from other files. Each such collection is a potential hotspot
and is a potential candidate for debt removal, through refactoring.

Figure 23.3 is a DSM based on files in Apache Cassandra—a widely
used NoSQL database. It shows an example of a clique (a cycle of
dependencies). In this DSM, you can see that the file on row 8
(locator.AbstractReplicationStrategy) depends on file 4
(service.WriteResponseHandler) and aggregates file 5
(locator.TokenMetadata). Files 4 and 5, in turn, depend on file 8, thus
forming a clique.

Figure 23.3 An example of a clique

A second example from Cassandra demonstrates the unhealthy
inheritance anti-pattern. The DSM in Figure 23.4 shows the
io.sstable.SSTableReader class (row 14) inheriting from
io.sstable.SSTable (row 12). The inheritance relationship is indicated
in the DSM by the “ih” notation. Note, however, that
io.sstable.SSTable depends on io.sstable.SSTableReader, as
indicated by the “dp” annotation in cell (12, 14). This dependency is a
calling relation, which means that the parent class calls the child class.
Note that the cells (12, 14) and (14, 12) are both annotated with the
number 68. This represents the number of times that
io.sstable.SSTable and io.sstable.SSTableReader were co-
committed in changes, according to the project’s revision history. This
excessively high number of co-changes is a form of debt. This debt can



be removed by refactoring—that is, by moving some functionality from
the child class to the parent.

Figure 23.4 Architecture anti-patterns in Apache Cassandra

The majority of issues in an issue tracking system can be divided into
two broad categories: bug fixes and feature enhancements. Bug fixes and
both bug-related and change-related churn are highly correlated with
anti-patterns and hotspots. In other words, those files that participate in
anti-patterns and require frequent bug fixes or frequent changes are
likely hotspots.

For each file, we determine the total number of bug fixes and changes,
as well as the total amount of churn that file has experienced. Next, we
sum the bug fixes, changes, and churn experienced by the files in each
anti-pattern. This gives us a weighting for each anti-pattern in terms of
its contribution to architecture debt. In this way, all of the debt-laden
files, along with all of their relationships, can be identified and their debt
quantified.

Based on this process, a debt-reduction strategy (typically achieved
through refactoring) is straightforward. Knowing the files implicated in
the debt, along with their flawed relationships (as determined by the
identified anti-patterns), allows the architect to fashion and justify a
refactoring plan. If a clique exists, for example, a dependency needs to
be removed or reversed, so as to break the cycle of dependencies. If
unhealthy inheritance is present, some functionality needs to be moved,
typically from a child class to a parent class. If a modularity violation is



identified, the unencapsulated “secret” shared among files needs to be
encapsulated as its own abstraction. And so forth.

23.3 Example
We illustrate this process with a case study, which we call SS1, done
with SoftServe, a multinational software outsourcing company. At the
time of the analysis, the SS1 system contained 797 source files, and we
captured its revision history and issues over a two-year period. SS1 was
maintained by six full-time developers and many more occasional
contributors.

Identifying Hotspots
During the period that we studied SS1, 2,756 issues were recorded in its
Jira issue-tracker (1,079 of which were bugs) and 3,262 commits were
recorded in the Git version control repository.

We identified hotspots using the process just described. In the end,
three clusters of architecturally related files were identified as containing
the most harmful anti-patterns and hence the most debt in the project.
The debt from these three clusters represented a total of 291 files, out of
797 files in the entire project, or a bit more than one-third of the
project’s files. The number of defects associated with these three clusters
covered 89 percent of the project’s total defects (265).

The chief architect of the project agreed that these clusters were
problematic but had difficulty explaining why. When presented with this
analysis, he acknowledged that these were true design problems,
violating multiple design rules. The architect then crafted a number of
refactorings, focusing on remedying the flawed relations among the files
identified in the hotspots. These refactorings were based on removing
the anti-patterns in the hotspots, so the architect had a great deal of
guidance in how to do this.

But does it pay to do these kinds of refactorings? After all, not all
debts are worth paying off. This is the topic of the next section.

Quantifying Architecture Debt
Because the remediations suggested by the analysis are very specific, the
architect can easily estimate the number of person-months required for
each of the refactorings identified on the basis of the anti-patterns in the



hotspots. The other side of the cost/benefit equation is the benefit from
the refactorings. To estimate the savings, we make one assumption: The
refactored files will have roughly the same number of bug fixes in the
future as the average file had in the past. This is actually a very
conservative assumption since the average number of bug fixes in the
past was inflated by those files in the identified hotspots. Moreover, this
calculation does not consider other significant costs of bugs, such as lost
reputation, lost sales, and additional quality assurance and debugging
effort.

We calculate the cost of these debts in terms of the lines of code
committed for bug fixes. This information can be retrieved from a
project’s revision control and issue-tracking systems.

For SS1, the debt calculations we made were as follows:
1. The architect estimated the effort required to refactor the three

hotspots as 14 person-months.
2. We calculated the average bug fixes per file annually for the total

project as 0.33.
3. We calculated the average number of annual bug fixes for files in

hotspots as 237.8.
4. Based on these results, we estimated that the annual number of bug

fixes for the files in the hotspots, after refactoring, would be 96.
5. The difference between the actual churn associated with the

hotspot files and the expected amount of churn after refactoring is
the expected savings.

The estimated annual savings for the refactored files (using company
average productivity numbers) was 41.35 person-months. Considering
the calculations in steps 1–5, we see that for a cost of 14 person-months,
the project can expect to save more than 41 person-months annually.

In case after case, we have seen these kinds of returns on investment.
Once the architecture debts have been identified, they can be paid down
and life becomes measurably better for the project, in terms of its feature
velocity and bug-fixing time, in a way that more than pays for the effort
involved.

23.4 Automation



This form of architectural analysis can be fully automated. Each of the
anti-patterns introduced in Section 23.2 can be identified in an automated
fashion and the tooling can be built into a continuous integration tool
suite so that architecture debt is continuously monitored. This analysis
process requires the following tools:

A tool to extract a set of issues from an issue tracker
A tool to extract a log from a revision control system
A tool to reverse-engineer the code base, to determine the syntactic
dependencies among files
A tool to build DSMs from the extracted information and walk
through the DSM looking for the anti-patterns
A tool that calculates the debt associated with each hotspot

The only specialized tools needed for this process are the ones to build
the DSM and analyze the DSM. Projects likely already have issue
tracking systems and revision histories, and plenty of reverse-
engineering tools are available, including open source options.

23.5 Summary
This chapter has presented a process for identifying and quantifying
architecture debt in a project. Architecture debt is an important and
highly costly form of technical debt. Compared to code-based technical
debt, architecture debt is often harder to identify because its root causes
are distributed among several files and their interrelationships.

The process outlined in this chapter involves gathering information
from the project’s issue tracker, its revision control system, and the
source code itself. Using this information, architecture anti-patterns can
be identified and grouped into hotspots, and the impact of these hotspots
can be quantified.

This architecture debt monitoring process can be automated and built
into a system’s continuous integration tool suite. Once architecture debt
has been identified, if it is bad enough, it should be removed through
refactoring. The output of this process provides the quantitative data
necessary to make the business case for refactoring to project
management.



23.6 For Further Reading
The field of technical debt has, at this point, a rich research literature.
The term technical debt was coined by Ward Cunningham in 1992
(although, at the time, he simply called it “debt” [Cunningham 92]). This
idea was refined and elaborated by many others, most prominent among
them Martin Fowler [Fowler 09] and Steve McConnell [McConnell 07].
George Fairbanks describes the iterative nature of debt in his IEEE
Software article, “Ur-Technical Debt” [Fairbanks 20]. A comprehensive
look at the problem of managing technical debt can be found in
[Kruchten 19].

The definition of architecture debt used in this chapter was borrowed
from [Xiao 16]. The SoftServe case study was published in [Kazman
15].

Some of the tools used to create and analyze DSMs are described in
[Xiao 14]. The tools to detect architectural flaws are introduced in [Mo
15].

The impacts of architecture flaws have been discussed and empirically
investigated in several papers, including [Feng 16] and [Mo 18].

23.7 Discussion Questions
1. How would you distinguish a project with architecture debt from a

“busy” project where lots of features are being implemented?

2. Find examples of projects that have undergone major refactorings.
What evidence was used to motivate or justify these refactorings?

3. Under what circumstances is accumulating debt a reasonable
strategy? How would you know that you had reached the point of
too much debt?

4. Is architecture debt more or less detrimental than other kinds of
debt, such as code debt, documentation debt, or testing debt?

5. Discuss the strengths and weaknesses of doing this kind of
architecture analysis as compared with the methods discussed in
Chapter 21.



Part V: Architecture and the
Organization



24
The Role of Architects in Projects

I don’t know why people hire architects and then tell them what to do.
—Frank Gehry

Any practice of architecture performed outside of a classroom takes
place in the larger context of a development project, which is planned
and carried out by people working in one or more organizations.
Architecture, for all its importance, is only the means toward a larger
end. In this chapter, we deal with the aspects of architecture and the
architect’s responsibilities that derive from the realities of development
projects.

We begin by discussing a key project role with whom you as an
architect are likely to have a close working relationship: the project
manager.

24.1 The Architect and the Project Manager
One of the most important relations within a team is between the
software architect and the project manager. The project manager is
responsible for the overall performance of the project—typically for
keeping it on budget, on schedule, and staffed with the right people
doing the right jobs. To carry out these responsibilities, the project
manager will often turn to the project architect for support.

Think of the project manager as primarily responsible for the external-
facing aspects of the project and the software architect as responsible for
the internal technical aspects of the project. The external view needs to
accurately reflect the internal situation, and the internal activities need to
accurately reflect the expectations of the external stakeholders. That is,
the project manager should know, and reflect to upper management, the
progress and the risks within the project, whereas the software architect
should know, and reflect to developers, external stakeholder concerns.



The relationship between the project manager and the software architect
can have a large impact on the success of a project. They should have a
good working relationship and be mindful of the roles they are filling
and the boundaries of those roles.

The Project Management Body of Knowledge (PMBOK) lists a
number of knowledge areas for project managers. These are the areas for
which the project manager will likely turn to the architect for input.
Table 24.1 identifies the knowledge area described by the PMBOK and
the software architect’s role in that area.

Table 24.1 Architect’s Role in Supporting Project Management
Knowledge Areas

PMBO
K 
Knowle
dge 
Area

Description Software Architect Role

Project 
Integrat
ion 
Manage
ment

Ensuring that the various 
elements of the project 
are properly coordinated

Create design and organize team 
around design; manage 
dependencies. Implement the 
capture of metrics. Orchestrate 
requests for changes.

Project 
Scope 
Manage
ment

Ensuring that the project 
includes all of the work 
required and only the 
work required

Elicit, negotiate, and review runtime 
requirements and generate 
development requirements. Estimate 
cost, schedule, and risk associated 
with meeting requirements.

Project 
Time 
Manage
ment

Ensuring that the project 
completes in a timely 
fashion

Help define the work breakdown 
structure. Define tracking measures. 
Recommend assignment of 
resources to software development 
teams.

Project 
Cost 
Manage
ment

Ensuring that the project 
is completed within the 
required budget

Gather costs from individual teams; 
make recommendations regarding 
build/buy and resource allocations.



PMBO
K 
Knowle
dge 
Area

Description Software Architect Role

Project 
Quality 
Manage
ment

Ensuring that the project 
will satisfy the needs for 
which it was undertaken

Design for quality and track the 
system against the design. Define 
quality metrics.

Project 
Human 
Resourc
e 
Manage
ment

Ensuring that the project 
makes the most effective 
use of the people 
involved with the project

Define the required technical skill 
sets. Mentor developers about career 
paths. Recommend training. 
Interview candidates.

Project 
Commu
nication
s 
Manage
ment

Ensuring timely and 
appropriate generation, 
collection, dissemination, 
storage, and disposition 
of project information

Ensure communication and 
coordination among developers. 
Solicit feedback as to progress, 
problems, and risks. Oversee 
documentation.

Project 
Risk 
Manage
ment

Identifying, analyzing, 
and responding to project 
risk

Identify and quantify risks; adjust 
the architecture and processes to 
mitigate risk.

Project 
Procure
ment 
Manage
ment

Acquiring goods and 
services from outside the 
organization

Determine technology requirements; 
recommend technology, training, 
and tools.

Recommendations to the Architect
Maintain a good working relationship with the project manager. Be
aware of the project manager’s tasks and concerns, and how you as an
architect may be asked to support those tasks and concerns.

24.2 Incremental Architecture and Stakeholders



Agile methodologies are built on the pillar of incremental development,
with each increment delivering value to the customer or user. We’ll
discuss Agile and architecture in its own section, but even if your project
is not an Agile one, you should still expect to develop and release your
architecture in increments following a tempo that supports the project’s
own test and release schedule.

Incremental architecture, then, is about releasing the architecture in
increments. Specifically, this means releasing architecture
documentation (as described in Chapter 22) in increments. This, in turn,
entails deciding which views to release (out of your planned set) and at
which depth. Using the structures we outlined in Chapter 1, consider
these as candidates for your first increment:

A module decomposition structure. This will inform the team
structure for the development project, allowing the project
organization to emerge. Teams can be defined, staffed, budgeted, and
trained. The team structure will be the basis of project planning and
budgeting, so this technical structure defines the project’s
management structure.
A module “uses” structure. This will allow increments to be planned,
which is critical in any project that hopes to release its software
incrementally. As we said in Chapter 1, the uses structure is used to
engineer systems that can be extended to add functionality, or from
which useful functional subsets can be extracted. Trying to create a
system that purposefully supports incremental development is
problematic if you don’t plan what exactly the increments will be.
Whichever component-and-connector (C&C) structure(s) best
convey the overall solution approach.
A broad-brush deployment structure that at least addresses major
questions such as whether the system will be deployed on mobile
devices, on a cloud infrastructure, and so forth.

After that, use the needs of the architecture’s stakeholders as a guide
when crafting the contents of subsequent releases.

Recommendations to the Architect
First and foremost, make sure you know who your stakeholders are and
what their needs are, so that you can design appropriate solutions and



documentation. Moreover:

Work with the project’s stakeholders to determine the release tempo
and the contents of each project increment.
Your first architectural increment should include module
decomposition and uses views, as well as a preliminary C&C view.
Use your influence to ensure that early releases deal with the
system’s most challenging quality attribute requirements, thereby
ensuring that no unpleasant architectural surprises appear late in the
development cycle.
Stage your architecture releases to support those project increments
and to support the needs of the development stakeholders as they
work on each increment.

24.3 Architecture and Agile Development
Agile development began as a rebellion against—among other things—
development approaches that were rigid and heavyweight with respect to
process, overbearing with respect to required documentation, focused on
up-front planning and design, and culminating in a single delivery that
everyone hoped would resemble what it was that the customer wanted in
the first place. Agilistas advocate allocating resources that might
otherwise be spent on process and documentation to figuring out what
the customer really wants and providing it in small, testable delivery
increments, starting very early on.

The key question is this: How much up-front work, in terms of
requirements analysis, risk mitigation, and architecture design, should a
project undertake? There is no single right answer to this question, but
you can find a “sweet spot” for any given project. The “right” amount of
project work depends on several factors, with the most dominant being
project size, but other important factors include complex functional
requirements, highly demanding quality attribute requirements, volatile
requirements (related to the “precedentedness” or novelty of the
domain), and degree of distribution of development.

So how do architects achieve the right amount of agility? Figure 24.1
shows your options. You can opt for waterfall-style “Big Design Up
Front” (BDUF), shown in Figure 24.1(a). Or you can throw architectural
caution to the wind and trust in what Agilistas call the “emergent”
approach, wherein the final architecture emerges as coders deliver their



increments, shown in Figure 24.1(b). That approach may work for small,
simple projects that can turn on a dime and simply refactor on demand,
but we have never seen it work for large, complex projects.

Figure 24.1 Three approaches to architectural design

Not surprisingly, the approach we recommend lies in between these
two extremes: It’s the “Iteration 0” approach, shown in Figure 24.1(c). In
projects where you have some understanding of the requirements, you
should consider beginning by performing a few iterations of attribute-
driven design (ADD; described in Chapter 20). These design iterations
can focus on choosing the major architectural patterns (including a
reference architecture, if one is appropriate), frameworks, and
components. Aim for support of the project’s increments in a way that
helps the architecture’s stakeholders, as recommended in Section 24.2.
Early on, this will help you structure the project, define work



assignments and team formation, and address the most critical quality
attributes. If and when requirements change—particularly if these are
driving quality attribute requirements—adopt a practice of Agile
experimentation, where spikes are used to address new requirements. A
spike is a time-boxed task that is created to answer a technical question
or gather information; it is not intended to lead to a finished product.
Spikes are developed in a separate code branch and, if successful,
merged into the main branch of the code. In this way, emerging
requirements can be taken in stride and managed without being too
disruptive to the overall process of development.

Agile programming and architecture have not always been on the best
of terms. The Agile Manifesto of 2001, the “Prime Directive” of the
Agile movement, implies that architecture is emergent and does not need
to be planned or designed up-front.

It was (and still is) easy to find published treatments of Agile that
declare that if you aren’t delivering working software, then you aren’t
doing anything of value. It follows that if you’re working on an
architecture, then you’re taking resources away from programming and,
therefore, you’re doing nothing of value—architecture,
schmarchitecture! Write the code, and the architecture will emerge
organically.

For medium to large systems, this view has inevitably collapsed under
the harsh weight of experience. Solutions to quality attribute
requirements cannot simply be “bolted on” to an existing system in an
arbitrarily late stage of development. Solutions for security, high
performance, safety, and many more concerns must be designed into the
system’s architecture from the beginning, even if the first 20 planned
incremental deliveries don’t exercise those capabilities. Yes, you can
begin coding and yes, the architecture will emerge—but it will be the
wrong one.

In short, the Agile Manifesto makes a pretty lousy prenup agreement
for any marriage between Agile and architecture. However,
accompanying the Manifesto are 12 Agile principles that, if read
charitably, hint at a middle ground between the two camps. Table 24.2
lists these principles and provides architecture-centric commentary on
each one.

Table 24.2 Agile Principles and Architecture-centric Perspective



Agile 
Principle

Architecture-centric ViewAgile 
Principle

Architecture-centric View

Our 
highest 
priority is 
to satisfy 
the 
customer 
through 
early and 
continuou
s delivery 
of 
valuable 
software.

Absolutely.

Welcome 
changing 
requireme
nts, even 
late 
in develop
ment. 
Agile 
processes 
harness 
change 
for the 
customer’
s 
competiti
ve 
advantage
.

Absolutely. This principle is served by architectures that 
provide high degrees of modifiability (Chapter 8) and 
deployability (Chapter 5).



Agile 
Principle

Architecture-centric View

Deliver 
working 
software 
frequently
, from a 
couple of 
weeks to 
a couple 
of 
months, 
with 
a preferen
ce for the 
shorter 
time 
scale.

Absolutely, as long as this principle is not seen as precluding 
a thoughtful architecture. DevOps has a large role to play 
here, and we have seen, in Chapter 5, how architectures can 
support DevOps.

Business 
people 
and 
developer
s must 
work toge
ther daily 
throughou
t the 
project.

Business goals lead to quality attribute requirements, which 
the architecture’s primary duty is to fulfill, as we discussed 
in Chapter 19.



Agile 
Principle

Architecture-centric View

Build 
projects 
around 
motivated 
individual
s. Give 
them the 
environm
ent and 
support 
they 
need, and 
trust them 
to get the 
job done.

While we agree in principle, many developers are 
inexperienced. So make sure to include a skilled, 
experienced, and motivated architect to help guide these 
individuals.

The most 
efficient 
and 
effective 
method 
of convey
ing 
informati
on to and 
within a 
developm
ent team 
is face-to-
face 
conversati
on.

This is nonsense for nontrivial systems. Humans invented 
writing because our brains can’t remember everything we 
need to remember. Interfaces, protocols, architectural 
structures, and more need to be written down, and the 
inefficiencies and ineffectiveness of repeated instruction and 
resulting errors from misunderstanding belie this principle. 
According to this argument, nobody should produce user 
manuals, but should just publish the developers’ phone 
numbers with an open invitation to call them anytime. This 
is also nonsense for any system that has a maintenance phase 
(that’s pretty much every system) in which the original team 
is nowhere to be found. With whom are you going to have 
that face-to-face conversation to learn important details? See 
Chapter 22 for our guidance in this matter.



Agile 
Principle

Architecture-centric View

Working 
software 
is the 
primary 
measure 
of 
progress.

Yes, as long as “primary” is not taken to mean “only,” and as 
long as this principle is not used as an excuse to eliminate all 
work except coding.

Agile 
processes 
promote 
sustainabl
e 
developm
ent. The 
sponsors, 
developer
s, and 
users 
should be 
able to 
maintain a 
constant 
pace 
indefinitel
y.

Absolutely.

Continuo
us 
attention 
to 
technical 
excellenc
e and 
good 
design 
enhances 
agility.

Absolutely.



Agile 
Principle

Architecture-centric View

Simplicity
—the art 
of 
maximizi
ng the 
amount of 
work not 
done—is 
essential.

Yes, of course, as long as it is understood that the work we 
are not doing can actually be jettisoned safely without 
detriment to the system being delivered.

The best 
architectu
res, 
requireme
nts, and 
designs 
emerge 
from self-
organizin
g teams.

No, they don’t. The best architectures are consciously 
designed by skilled, talented, trained, and experienced 
architects, as we describe in Chapter 20

At regular 
intervals, 
the team 
reflects on 
how to 
become 
more 
effective, 
and then 
tunes and 
adjusts its 
behavior 
according
ly.

Absolutely.

So that’s six “Absolutely” agreements, four general agreements, and two
strong disagreements.



Agile, as it was first codified, seemed to work best in small
organizations building small products. Organizations of medium to large
size wishing to apply Agile to large projects quickly found that
coordinating the large number of small Agile teams was a formidable
challenge. In Agile, small teams do small pieces of work over small
intervals. One challenge is ensuring that these many (dozens to
hundreds) small teams have divided the work suitably so that no work is
overlooked and no work is done twice. Another challenge is sequencing
the teams’ many tasks so that their results can be amalgamated,
frequently and quickly, to produce the next small increment of a sensibly
working system.

One example of an approach to apply Agile at enterprise scale is the
Scaled Agile Framework (SAFe), which emerged around 2007 and has
been refined continuously since then. SAFe provides a reference model
of workflows, roles, and processes under which large organizations can
coordinate the activities of many teams, each operating in classic Agile
fashion, to systematically and successfully produce a large-scale system.

SAFe acknowledges the role of architecture. It admits “intentional
architecture,” the definition of which will strike a chord with readers of
this book. Intentional architecture “defines a set of purposeful, planned
architectural strategies and initiatives, which enhance solution design,
performance, and usability and provide guidance for inter-team design
and implementation synchronization.” But SAFe also strongly counsels
a counterbalancing force called “emergent design,” which “provides the
technical basis for a fully evolutionary and incremental implementation
approach ” (scaledagileframework.com). We would argue that those
qualities would emerge from an intentional architecture as well, since the
ability to rapidly evolve and the ability to support incremental
implementations do not happen without careful up-front thought. Ways
to achieve these are, in fact, covered throughout this book.

24.4 Architecture and Distributed Development
Most substantial projects today are developed by distributed teams,
where “distributed” may mean spread across floors in a building, across
buildings on an industrial campus, across campuses in one or two
different time zones, or among different divisions or subcontractors
scattered around the globe.

Distributed development comes with both benefits and challenges:

http://scaledagileframework.com/


Cost. Labor costs vary depending on location, and there is a
perception that moving some development to a low-cost venue will
inevitably decrease the overall cost of the project. Indeed, experience
has shown that, for software development, savings may be reaped in
the long term. However, until the developers in the low-cost venue
have a sufficient level of domain expertise and until the management
practices are adapted to compensate for the difficulties of distributed
development, a large amount of rework must be done, thereby
cutting into and perhaps overwhelming any savings from wages.
Skill sets and labor availability. Organizations may not be able to
hire developers at a single location: Relocation costs may be high,
the size of the developer pool may be small, or the skill sets needed
may be specialized and unavailable in a single location. Developing
a system in a distributed fashion allows for the work to move to
where the workers are rather than forcing the workers to move to the
work location, albeit at the cost of additional communication and
coordination.
Local knowledge of markets. Developers who are developing
variants of a system to be sold in their market have more knowledge
about the types of features that are appropriate and the types of
cultural issues that may arise.

How does distributed development play out on a project? Assume
Module A uses an interface from Module B. In time, as circumstances
change, this interface may need to be modified. In consequence, the
team responsible for Module B must coordinate with the team
responsible for Module A, as indicated in Figure 24.2. This kind of
coordination is easy if it involves a short conversation at the shared
vending machines, but it’s not so easy if it involves a preplanned web
conference at a time when it is the middle of the night for one of the
teams.



Figure 24.2 Coordination between teams and modules

More broadly, methods for coordination include the following
options:

Informal contacts. Informal contacts, such as meeting at the coffee
room or in the hallway, are possible only if the teams are co-located.
Documentation. Documentation, if it is well written, well organized,
and properly disseminated, can be used as a means to coordinate the
teams, whether they are co-located or at a distance.
Meetings. Teams can hold meetings, either scheduled or ad hoc, and
either face to face or remote, to help bring the team together and
raise awareness of issues.
Asynchronous electronic communication. Various forms of
asynchronous electronic communication can be used as a
coordination mechanism, such as email, news groups, blogs, and
wikis.

The choice of coordination method depends on many factors,
including the organization’s infrastructure, corporate culture, language
skills, time zones involved, and number of teams dependent on a
particular module. Until an organization has established a working
method for coordinating among distributed teams, misunderstandings
among the teams will likely cause delays and, in some cases, serious
defects in a project.



What does this mean for architecture and the architect? It means that
allocation of responsibilities to teams is more important in distributed
development than in co-located development, where all of the
developers are in a single office, or at least in close proximity. It also
means that attention to module dependencies takes on added importance
over and above their usual role in quality attributes such as modifiability
and performance: Dependencies among modules owned by globally
distributed teams are more likely to be problematic and should be
minimized to the extent possible.

In addition, documentation is especially important in distributed
development. Co-located teams have a variety of informal coordination
possibilities such as going to the next office or meeting in the coffee
room or the hall. Remote teams do not have these informal mechanisms
available, so they must rely on more formal mechanisms such as
documentation, and team members must take the initiative to talk to each
other when doubts arise.

As this book was being prepared for publication, companies around
the world were learning to cope with remote participation and work-
from-home practices due to the COVID-19 crisis. It is too soon to
definitively state the long-term effects of this pandemic on the business
world, but it seems likely to lead to distributed development becoming
the norm. People working together are now all doing so via
teleconference; there are no more hallway conversations or meetings at
the vending machines. For work to continue at all, everyone is learning
to adapt to the distributed development paradigm. It will be fascinating
to see if this leads to any new architectural trends.

24.5 Summary
Software architects do their work in the context of a development project
of some sort. As such, they need to understand their role and
responsibilities from that perspective.

The project manager and the software architect may be seen as
occupying complementary roles: The manager runs the project from an
administrative perspective, and the architect runs the project from a
technical solution perspective. These two roles intersect in various ways,
and the architect can support the manager to enhance the project’s
chance of success.

In a project, architectures do not spring fully formed from Zeus’s
forehead, but rather are released in increments that are useful to



stakeholders. Thus the architect needs to have a good understanding of
the architecture’s stakeholders and their information needs.

Agile methodologies focus on incremental development. Over time,
architecture and Agile (although they got off to a rough start together)
have become indispensable partners.

Global development creates a need for an explicit coordination
strategy that is based on more formal strategies than are needed for co-
located development.

24.6 For Further Reading
Dan Paulish has written an excellent book on managing in an
architecture-centric environment—Architecture-centric Software Project
Management: A Practical Guide—and the material in this chapter about
distributed development is adapted from his book [Paulish 02].

You can read about SAFe at scaledagileframework.com. Before SAFe,
some members of the Agile community had independently arrived at a
medium-weight management process that advocates up-front
architecture. See [Coplein 10] for a description of the role of architecture
in agile projects.

Basic concepts of project management are covered in the IEEE Guide,
Adoption of the Project Management Institute (PMI) Standard: A Guide
to the Project Management Body of Knowledge, sixth edition [IEEE 17].

Software architecture metrics often fall within an architect’s purview
on a project. A paper by Coulin et al. provides a helpful overview of the
literature on this subject and, along the way, categorizes the metrics
themselves [Coulin 19].

Architects occupy a unique position within an organization. They are
expected to be fluent in all phases of the system’s life cycle, from the
cradle to the grave. Of all the members of a project, they are the ones
most sensitive to the needs of all of the project’s and the system’s
stakeholders. They usually are chosen to be architects in part because of
their above-average communication skills. The Software Architect
Elevator: Redefining the Architect’s Role in the Digital Enterprise
[Hohpe 20] describes this unique ability of architects to interact with
people at all levels inside and outside an organization.

24.7 Discussion Questions

http://scaledagileframework.com/


1. Consider “amenable to globally distributed development” as a
quality attribute that can be increased or decreased by architectural
design decisions, just like the other quality attributes we outlined in
Part II of this book. Construct a general scenario for it, and a list of
tactics to help achieve it. Oh, and figure out a good name for it.

2. Generic project management practices often advocate creating a
work breakdown structure as the first artifact produced by a project.
What is wrong with this practice from an architectural perspective?

3. If you were managing a globally distributed team, which
architectural documentation artifacts would you want to create first?

4. If you were managing a globally distributed team, which aspects of
project management would have to change to account for cultural
differences?

5. How could architectural evaluation be used to help guide and
manage the project?

6. In Chapter 1, we described a work assignment structure for software
architecture, which can be documented as a work assignment view.
Discuss how documenting a work assignment view for your
architecture provides a vehicle for software architects and managers
to work together to staff a project. Where is the dividing line
between the part of the work assignment view that the architect
should provide and the part that the manager should provide?



25
Architecture Competence

The lyf so short, the craft so long to lerne.
—Geoffrey Chaucer

If software architecture is worth doing, then surely it’s worth doing well.
Most of the literature about architecture concentrates on the technical
aspects. This is not surprising; it is a deeply technical discipline. But
architectures are created by architects working in organizations that are
full of actual human beings. Dealing with these humans is a decidedly
nontechnical undertaking. What can be done to help architects,
especially architects-in-training, be better at this important dimension of
their job? And what can be done to help organizations do a better job of
encouraging their architects to produce their best work?

This chapter is about the competence of individual architects and the
organizations that wish to produce high-quality architectures.

Since the architecture competence of an organization depends, in part,
on the competence of architects, we begin by asking what it is that
architects are expected to do, know, and be skilled at. Then we’ll look at
what organizations can and should do to help their architects produce
better architectures. Individual and organizational competencies are
intertwined. Understanding only one or the other won’t do.

25.1 Competence of Individuals: Duties, Skills, and
Knowledge of Architects

Architects perform many activities beyond directly producing an
architecture. These activities, which we call duties, form the backbone of
an individual’s architecture competence. Writers about architects also
speak of skills and knowledge. For example, the ability to communicate
ideas clearly and to negotiate effectively are skills often ascribed to
competent architects. In addition, architects need to have up-to-date



knowledge about patterns, technologies, standards, quality attributes, and
a host of other topics.

Duties, skills, and knowledge form a triad upon which architecture
competence for individuals rests. The relationship among these three is
shown in Figure 25.1—namely, skills and knowledge support the ability
to perform the required duties. Infinitely talented architects are of no use
if they cannot (for whatever reason) perform the duties required of the
position; we would not say they were competent.

Figure 25.1 Skills and knowledge support the execution of duties.

To give examples of these concepts:

“Design the architecture” is a duty.
“Ability to think abstractly” is a skill.
“Patterns and tactics” constitute knowledge.

These examples purposely illustrate that skills and knowledge are
important (only) for supporting the ability to carry out duties effectively.
As another example, “documenting the architecture” is a duty, “ability to
write clearly” is a skill, and “ISO Standard 42010” is part of the related
body of knowledge. Of course, a skill or knowledge area can support
more than one duty.

Knowing the duties, skills, and knowledge of architects (or, more
precisely, the duties, skills, and knowledge that are needed of architects
in a particular organizational setting) can help establish measurement
and improvement strategies for individual architects. If you want to
improve your individual architectural competence, you should take the
following steps:



1. Gain experience carrying out the duties. Apprenticeship is a
productive path to achieving experience. Education alone is not
enough, because education without on-the-job application merely
enhances knowledge.

2. Improve your nontechnical skills. This dimension of improvement
involves taking professional development courses, for example, in
leadership or time management. Some people will never become
truly great leaders or communicators, but we can all improve on
these skills.

3. Master the body of knowledge. One of the most important things a
competent architect must do is master the body of knowledge and
remain up-to-date on it. To emphasize the importance of keeping
current with the field, consider the advances in knowledge required
for architects that have emerged in just the last few years. For
example, architectures to support computing in the cloud (Chapter
17) were not important several years ago. Taking courses,
becoming certified, reading books and journals, visiting websites,
reading blogs, attending architecture-oriented conferences, joining
professional societies, and meeting with other architects are all
useful ways to improve knowledge.

Duties
This section summarizes a wide variety of architects’ duties. Not every
architect in every organization will perform every one of these duties on
every project. However, competent architects should not be surprised to
find themselves engaged in any of the activities listed here. We divide
these duties into technical duties (Table 25.1) and nontechnical duties
(Table 25.2). One immediate observation you should make is the large
number of many nontechnical duties. An obvious implication, for those
of you who wish to be architects, is that you must pay adequate attention
to the nontechnical aspects of your education and your professional
activities.

Table 25.1 Technical Duties of a Software Architect

General 
Duty 
Area

Speci
fic 
Duty 
Area

Example Duties



General 
Duty 
Area

Speci
fic 
Duty 
Area

Example Duties

Archite
cting

Creati
ng an 
archit
ecture

Design or select an architecture. Create a software 
architecture design plan. Build a product line or product 
architecture. Make design decisions. Expand details and 
refine the design to converge on a final design. Identify 
the patterns and tactics, and articulate the principles and 
key mechanisms of the architecture. Partition the 
system. Define how the components fit together and 
interact. Create prototypes.

Evalu
ating 
and 
analy
zing 
an 
archit
ecture

Evaluate an architecture (for your current system or for 
other systems) to determine the satisfaction of use cases 
and quality attribute scenarios. Create prototypes. 
Participate in design reviews. Review the designs of the 
components designed by junior engineers. Review 
designs for compliance with the architecture. Compare 
software architecture evaluation techniques. Model 
alternatives. Perform tradeoff analysis.

Docu
menti
ng an 
archit
ecture

Prepare architectural documents and presentations 
useful to stakeholders. Document or automate the 
documentation of software interfaces. Produce 
documentation standards or guidelines. Document 
variability and dynamic behavior.

Worki
ng 
with 
and 
transf
ormin
g 
existi
ng 
syste
m(s)

Maintain and evolve an existing system and its 
architecture. Measure architecture debt. Migrate 
existing system to new technology and platforms. 
Refactor existing architectures to mitigate risks. 
Examine bugs, incident reports, and other issues to 
determine revisions to existing architecture.



General 
Duty 
Area

Speci
fic 
Duty 
Area

Example Duties

Perfor
ming 
other 
archit
ecting 
duties

Sell the vision. Keep the vision alive. Participate in 
product design meetings. Give technical advice on 
architecture, design, and development. Provide 
architectural guidelines for software design activities. 
Lead architecture improvement activities. Participate in 
software process definition and improvement. Provide 
architecture oversight of software development 
activities.

Duties 
concern
ed with 
life-
cycle 
activitie
s other 
than 
architec
ting

Mana
ging 
the 
requir
ement
s

Analyze functional and quality attribute software 
requirements. Understand business, organizational, and 
customer needs, and ensure that the requirements meet 
these needs. Listen to and understand the scope of the 
project. Understand the client’s key design needs and 
expectations. Advise on the tradeoffs between software 
design choices and requirements choices.

Evalu
ating 
future 
techn
ologie
s

Analyze the current IT environment and recommend 
solutions for deficiencies. Work with vendors to 
represent the organization’s requirements and influence 
future products. Develop and present technical white 
papers.

Select
ing 
tools 
and 
techn
ology

Manage the introduction of new software solutions. 
Perform technical feasibility studies of new 
technologies and architectures. Evaluate commercial 
tools and software components from an architectural 
perspective. Develop internal technical standards and 
contribute to the development of external technical 
standards.

Table 25.2 Nontechnical Duties of a Software Architect



Gen
eral 
Dut
y 
Are
a

Spe
cific 
Dut
y 
Are
a

Example Duties

Ma
nag
eme
nt

Sup
porti
ng 
proj
ect 
man
age
men
t

Provide feedback on the appropriateness and difficulty of the 
project. Help with budgeting and planning. Follow budgetary 
constraints. Manage resources. Perform sizing and 
estimation. Perform migration planning and risk assessment. 
Take care of or oversee configuration control. Create 
development schedules. Measure results using metrics and 
improve both personal results and teams’ productivity. 
Identify and schedule architectural releases. Serve as a 
“bridge” between the technical team and the project manager.

Man
agin
g 
the 
peop
le 
on 
the 
arch
itect
’s 
team

Build “trusted advisor” relationships. Coordinate. Motivate. 
Advocate. Train. Act as a supervisor. Allocate 
responsibilities.

Org
aniz
atio
n- 
and 
busi
ness
-
rela
ted 
duti
es

Sup
porti
ng 
the 
orga
nizat
ion

Grow an architecture evaluation capability in the 
organization. Review and contribute to research and 
development efforts. Participate in the hiring process for the 
team. Help with product marketing. Institute cost-effective 
and appropriate software architecture design reviews. Help 
develop intellectual property.



Sup
porti
ng 
the 
busi
ness

Understand and evaluate business processes. Translate 
business strategy into technical strategy. Influence the 
business strategy. Understand and communicate the business 
value of software architecture. Help the organization meet its 
business goals. Understand customer and market trends.

Lea
ders
hip 
and 
tea
m 
buil
ding

Prov
idin
g 
tech
nical 
lead
ershi
p

Be a thought leader. Produce technology trend analysis or 
roadmaps. Mentor other architects.

Buil
ding 
a 
team

Build the development team and align them with the 
architecture vision. Mentor developers and junior architects. 
Educate the team on the use of the architecture. Foster the 
professional development of team members. Coach teams of 
software design engineers for planning, tracking, and 
completion of work within the agreed plan. Mentor and 
coach staff in the use of software technologies. Maintain 
morale, both within and outside the architecture group. 
Monitor and manage team dynamics.

Architects also routinely perform many other duties, such as leading
code reviews or getting involved in test planning. In many projects,
architects pitch in to help with the actual implementation and testing, in
critical areas. While important, these are not strictly speaking
architectural duties.

Skills
Given the wide range of duties enumerated in the previous section,
which skills does an architect need to possess? Much has been written
about the architect’s special role of leadership in a project; the ideal
architect is an effective communicator, manager, team builder, visionary,
and mentor. Some certificate or certification programs emphasize
nontechnical skills. Common to these certification programs are



assessment areas of leadership, organization dynamics, and
communication.

Table 25.3 enumerates the set of skills most useful to an architect.

Table 25.3 Skills of a Software Architect

Ge
ne
ral 
Sk
ill 
Ar
ea

Speci
fic 
Skill 
Area

Example Skills

Co
m
m
un
ica
tio
n 
ski
lls

Outw
ard 
comm
unicat
ion 
(beyo
nd the 
team)

Ability to make oral and written communications and 
presentations. Ability to present and explain technical 
information to diverse audiences. Ability to transfer 
knowledge. Ability to persuade. Ability to see from and sell 
to multiple viewpoints.

Inwar
d 
comm
unicat
ion 
(withi
n the 
team)

Ability to listen, interview, consult, and negotiate. Ability to 
understand and express complex topics.

Int
er
pe
rso
nal 
ski
lls

Team 
relatio
nships

Ability to be a team player. Ability to work effectively with 
superiors, subordinates, colleagues, and customers. Ability to 
maintain constructive working relationships. Ability to work 
in a diverse team environment. Ability to inspire creative 
collaboration. Ability to build consensus. Ability to be 
diplomatic and respect others. Ability to mentor others. 
Ability to handle and resolve conflict.

W
or
k 

Leade
rship

Ability to make decisions. Ability to take initiative and be 
innovative. Ability to demonstrate independent judgment, be 
influential, and command respect.



Ge
ne
ral 
Sk
ill 
Ar
ea

Speci
fic 
Skill 
Area

Example Skillsski
lls

Workl
oad 
mana
geme
nt

Ability to work well under pressure, plan, manage time, and 
estimate. Ability to support a wide range of issues and work 
on multiple complex tasks concurrently. Ability to effectively 
prioritize and execute tasks in a high-pressure environment.

Skills 
to 
excel 
in the 
corpo
rate 
enviro
nment

Ability to think strategically. Ability to work under general 
supervision and under constraints. Ability to organize 
workflow. Ability to detect where the power is and how it 
flows in an organization. Ability to do what it takes to get the 
job done. Ability to be entrepreneurial, to be assertive 
without being aggressive, and to receive constructive 
criticism.

Skills 
for 
handli
ng 
infor
matio
n

Ability to be detail-oriented while maintaining overall vision 
and focus. Ability to see the big picture.

Skills 
for 
handli
ng the 
unexp
ected

Ability to tolerate ambiguity. Ability to take and manage 
risks. Ability to solve problems. Ability to be adaptable, 
flexible, open-minded, and resilient.

Abilit
y to 
think 
abstra
ctly

Ability to look at different things and find a way to see how 
they are, in fact, just different instances of the same thing. 
This may be one of the most important skills for an architect 
to have.



Knowledge
A competent architect has an intimate familiarity with an architectural
body of knowledge. Table 25.4 gives a set of knowledge areas for an
architect.

Table 25.4 Knowledge Areas of a Software Architect

General 
Knowledg
e Area

Specific 
Knowle
dge 
Area

Specific Knowledge Examples

Computer 
science 
knowledge

Knowle
dge of 
architect
ure 
concepts

Knowledge of architecture frameworks, 
architectural patterns, tactics, structures and 
views, reference architectures, relationships to 
system and enterprise architecture, emerging 
technologies, architecture evaluation models and 
methods, and quality attributes.

Knowle
dge of 
software 
engineer
ing

Knowledge of software development knowledge 
areas, including requirements, design, 
construction, maintenance, configuration 
management, engineering management, and 
software engineering process. Knowledge of 
systems engineering.

Computer 
science 
knowledge

Design 
knowled
ge

Knowledge of tools and design and analysis 
techniques. Know-ledge of how to design 
complex multi-product systems. Knowledge of 
object-oriented analysis and design, and UML and 
SysML diagrams.

Program
ming 
knowled
ge

Knowledge of programming languages and 
programming language models. Knowledge of 
specialized programming techniques for security, 
real time, safety, etc.

Knowledg
e of 
technologi
es and 
platforms

Specific 
technolo
gies and 
platform
s

Knowledge of hardware/software interfaces, web-
based applications, and Internet technologies. 
Knowledge of specific software/operating 
systems.



General 
Knowledg
e Area

Specific 
Knowle
dge 
Area

Specific Knowledge Examples

General 
knowled
ge of 
technolo
gies and 
platform
s

Knowledge of the IT industry’s future directions 
and the ways in which infrastructure impacts an 
application.

Knowledg
e about the 
organizati
on’s 
context 
and 
manageme
nt

Domain 
knowled
ge

Knowledge of the most relevant domains and 
domain-specific technologies.

Industry 
knowled
ge

Knowledge of the industry’s best practices and 
Industry standards. Knowledge of how to work in 
onshore/offshore team environments.

Business 
knowled
ge

Knowledge of the company’s business practices, 
and its competition’s products, strategies, and 
processes. Knowledge of business and technical 
strategy, and business reengineering principles 
and processes. Knowledge of strategic planning, 
financial models, and budgeting.

Leaders
hip and 
manage
ment 
techniqu
es

Knowledge of how to coach, mentor, and train 
software team members. Knowledge of project 
management. Knowledge of project engineering.

What about Experience?
Albert Einstein said, “The only source of knowledge is experience,” and
just about everybody says that experience is the best teacher. We agree.
However, experience is not the only teacher—you can also acquire
knowledge from real teachers. How lucky we are that we need not all
burn ourselves to acquire the knowledge that touching a hot stove is a
bad idea.



We consider experience as something that adds to an architect’s store
of knowledge, which is why we don’t treat it separately. As your career
advances, you’ll accumulate your own wealth of experience, which
you’ll store as knowledge.

As the old joke goes, a pedestrian in New York stopped a passerby
and asked, “Excuse me. Could you tell me how to get to Carnegie Hall?”
The passerby, who happened to be a musician, replied with a heavy sigh,
“Practice, practice, practice.”

Exactly.

25.2 Competence of a Software Architecture
Organization

Organizations, by their practices and structure, can either help or hinder
architects in performing their duties. For example, if an organization has
a career path for architects, that will motivate employees to become
architects. If an organization has a standing architecture review board,
then the project architect will know how and with whom to schedule a
review. The absence of these practices and structures will mean that an
architect has to fight battles with the organization or determine how to
carry out a review without internal guidance. It makes sense, therefore,
to ask whether a particular organization is architecturally competent and
to develop instruments whose goal is measuring the architectural
competence of an organization. The architectural competence of
organizations is the topic of this section. Here is our definition:

The architectural competence of an organization is the ability of that
organization to grow, use, and sustain the skills and knowledge
necessary to effectively carry out architecture-centric practices at the
individual, team, and organizational levels to produce architectures
with acceptable cost that lead to systems aligned with the
organization’s business goals.
Organizations have duties, skills, and knowledge for architecture, just

like individual architects. For example, adequately funding the
architecture effort is an organizational duty, as is effectively using the
available architecture workforce (by appropriate teaming and other
means). These are organizational duties because they are outside the
control of individual architects. An organization-level skill might be
effective knowledge management or human resource management as
applied to architects. An example of organizational knowledge is the



composition of an architecture-based life-cycle model that software
projects may employ.

Here are some things—duties—that an organization could perform to
help improve the success of its architecture efforts:

Personnel-related:
Hire talented architects.
Establish a career track for architects.
Make the position of architect highly regarded through visibility,
rewards, and prestige.
Have architects join professional organizations.
Establish an architect certification program.
Establish a mentoring program for architects.
Establish an architecture training and education program.
Measure architects’ performance.
Have architects receive external architect certifications.
Reward or penalize architects based on project success or
failure.

Process-related:
Establish organization-wide architecture practices.
Establish a clear statement of responsibilities and authority for
architects.
Establish a forum for architects to communicate and share
information and experience.
Establish an architecture review board.
Include architecture milestones in project plans.
Have architects provide input into product definition.
Hold an organization-wide architecture conference.
Measure and track the quality of architectures produced.
Bring in outside expert consultants on architecture.
Have architects advise on the development team structure.



Give architects influence throughout the entire project life cycle.
Technology-related:

Establish and maintain a repository of reusable architectures and
architecture-based artifacts.
Create and maintain a repository of design concepts.
Provide a centralized resource to analyze and help with
architecture tools.

If you are interviewing for the position of architect in an organization,
you’ll probably have a list of questions to determine if you want to work
there. To that list, you can add questions drawn from the preceding list to
help you ascertain the organization’s level of architecture competence.

25.3 Become a Better Architect
How do architects become good architects, and how do good architects
become great architects? We close this chapter with a proposal, which is
this: Be mentored, and mentor others.

Be Mentored
While experience may be the best teacher, most of us will not have the
luxury, in a single lifetime, to gain firsthand all the experience needed to
make us great architects. But we can gain experience secondhand. Find a
skilled architect whom you respect, and attach yourself to that person.
Find out if your organization has a mentoring program that you can join.
Or establish an informal mentoring relationship—find excuses to
interact, ask questions, or offer to help (for instance, offer to be a
reviewer).

Your mentor doesn’t have to be a colleague. You can also join
professional societies where you can establish mentor relationships with
other members. There are meetups. There are professional social
networks. Don’t limit yourself to just your organization.

Mentor Others
You should also be willing to mentor others as a way of giving back or
paying forward the kindnesses that have enriched your career. But there
is a selfish reason to mentor as well: We find that teaching a concept is



the litmus test of whether we deeply understand that concept. If we can’t
teach it, it’s likely we don’t really understand it—so that can be part of
your goal in teaching and mentoring others in the profession. Good
teachers almost always report their delight in how much they learn from
their students, and how much their students’ probing questions and
surprising insights add to the teachers’ deeper understanding of the
subject.

25.4 Summary
When we think of software architects, we usually first think of the
technical work that they produce. But, in the same way that an
architecture is much more than a technical “blueprint” for a system, an
architect is much more than a designer of an architecture. This has led us
to try to understand, in a more holistic way, what an architect and an
architecture-centric organization must do to succeed. An architect must
carry out the duties, hone the skills, and continuously acquire the
knowledge necessary to be successful.

The key to becoming a good and then a better architect is continuous
learning, mentoring, and being mentored.

25.5 For Further Reading
Questions to probe an organization’s competence can be found in the
Technical Note, “Models for Evaluating and Improving Architecture
Competence,” sei.cmu.edu/library/abstracts/reports/08tr006.cfm.

The Open Group has a certification program for qualifying the skills,
knowledge, and experience of IT, business, and enterprise architects,
which is related to measuring and certifying an individual architect’s
competence.

The Information Technology Architecture Body of Knowledge
(ITABoK) is a “free public archive of IT architecture best practices,
skills, and knowledge developed from the experience of individual and
corporate members of Iasa, the world’s largest IT architecture
professional organization” (https://itabok.iasaglobal.org/itabok/).

Bredemeyer Consulting (bredemeyer.com) provides copious materials
about IT, software, and enterprise architects and their role.

Joseph Ingeno, in Software Architect’s Handbook, devotes a chapter to
“The Soft Skills of Software Architects” and another one to “Becoming
a Better Software Architect” [Ingeno 18].

http://sei.cmu.edu/library/abstracts/reports/08tr006.cfm
https://itabok.iasaglobal.org/itabok/
http://bredemeyer.com/


25.6 Discussion Questions
1. In which skills and knowledge discussed in this chapter do you

think you might be most deficient? How would you reduce these
deficiencies?

2. Which duties, skills, or knowledge do you think are the most
important or cost-effective to improve in an individual architect?
Justify your answer.

3. Add three duties, three skills, and three knowledge areas that were
not on our lists.

4. How would you measure the value of specific architecture duties in
a project? How would you distinguish the value added by these
duties from the value added by other activities such as quality
assurance or configuration management?

5. How would you measure someone’s communication skills?

6. This chapter listed a number of practices of an architecturally
competent organization. Prioritize that list based on expected
benefit over expected cost.

7. Suppose you are in charge of hiring an architect for an important
system in your company. How would you go about it? What would
you ask the candidates in an interview? Would you ask them to
produce anything? If so, what? Would you have them take a test of
some kind? If so, what? Who in your company would you have
interview them? Why?

8. Suppose you are the architect being hired. What questions would
you ask about the company with which you’re interviewing, related
to the areas listed in Section 25.2? Try to answer this question from
the point of view of an architect early in their career, and then from
the point of view of a highly skilled architect with many years of
experience.

9. Search for certification programs for architects. For each one, try to
characterize how much it deals (respectively) with duties, skills, and
knowledge.



Part VI: Conclusions



26
A Glimpse of the Future: Quantum
Computing

[A quantum computer can be compared] to the airplane the Wright
brothers flew at Kitty Hawk in 1903. The Wright Flyer barely got off the

ground, but it foretold a revolution.
—wired.com/2015/12/for-google-quantum-computing-is-like-learning-to-

fly/

What will the future bring in terms of developments that affect the
practice of software architecture? Humans are notoriously bad at
predicting the long-term future, but we keep trying because, well, it’s
fun. To close our book, we have chosen to focus on one particular aspect
that is firmly rooted in the future but seems tantalizingly close to reality:
quantum computing.

Quantum computers will likely become practical over the next five to
ten years. Consider that the system you are currently working on may
have a lifetime on the order of tens—plural—of years. Code written in
the 1960s and 1970s is still being used today on a daily basis. If the
systems you are working on have lifetimes on that order, you may need
to convert them to take advantage of quantum computer capabilities
when quantum computers become practical.

Quantum computers are generating high interest because of their
potential to perform calculations at speeds that far outpace the most
capable and powerful of their classical counterparts. In 2019, Google
announced that its quantum computer completed a complex computation
in 200 seconds. That same calculation, claimed Google, would take even
the most powerful supercomputers approximately 10,000 years to finish.
It isn’t that quantum computers do what classical computers do, only
extraordinarily faster; rather, they do what classical computers can’t do
using the otherworldly properties of quantum physics.



Quantum computers won’t be better than classical computers at
solving every problem. For example, for many of the most common
transaction-oriented data-processing tasks, they are likely irrelevant.
They will be good at problems that involve combinatorics and are
computationally difficult for classic computers. However, it is unlikely
that a quantum computer will ever power your phone or watch or sit on
your office desk.

Understanding the theoretical basis of a quantum computer involves
deep understanding of physics, including quantum physics, and that is
far outside our scope. For context, the same was also true of classical
computers when they were invented in the 1940s. Over time, the
requirement for understanding how CPUs and memory work has
disappeared due to the introduction of useful abstractions, such as high-
level programming languages. The same thing will happen in quantum
computers. In this chapter, we introduce the essential concepts of
quantum computing without reference to the underlying physics (which
has been known to make heads actually explode).

26.1 Single Qubit
The fundamental unit of calculation in a quantum computer is a unit of
quantum information called a qubit (more on that shortly). The simple
definition of a quantum computer is a processor that manipulates qubits.
At the time of this book’s publication, the best quantum computer in
existence contained several hundred qubits.

A “QPU” will interact with a classic CPU in the same fashion that a
graphic processing unit interacts with a CPU today. In other words, the
CPU will view the QPU as a service to be provided with some input and
that will produce some output. The communications between the CPU
and the QPU will be in terms of classic bits. What the QPU does with
the input to produce the output is outside of the scope of the CPU.

A bit in a classic computer has a value of either 0 or 1 and, when
functioning properly, there is no ambiguity about which value it
assumes. Also, a bit in a classic computer has a nondestructive readout.
That is, measuring the value will give you a 0 or a 1, and the bit will
retain the value that it had when the read operation began.

A qubit differs in both characteristics. A qubit is characterized by
three numbers. Two of these numbers are probabilities: the probability
that a measurement will deliver 1 and the probability that a measurement
will deliver 0. The third number, called the phase, describes a rotation of



the qubit. A measurement of a qubit will return either a 0 or a 1 (with
probabilities as designated) and will destroy the current value of the
qubit and replace it with the value that it returned. A qubit with non-zero
probabilities for both 0 and 1 is said to be in superposition.

Phases are managed by making the probabilities complex numbers.
The amplitudes (probabilities) are designated as |α|2 and |β|2. If |α|2 is 40
percent and |β|2 is 60 percent, then 4 out of 10 measurements will be 0,
and 6 out of those 10 measurements will be 1. These amplitudes are
subject to some probability of measurement error, and reducing this error
probability is one of the engineering challenges of building quantum
computers.

There are two consequences of this definition:

1. |α|2 + |β|2 = 1. Because |α|2 and |β|2 are probabilities of a
measurement delivering 0 or 1, respectively, and because a
measurement will deliver one or the other, the sum of the
probabilities must be 1.

2. There is no copying of a qubit. A copy from classical bit A to
classical bit B is a read of bit A followed by a store of that value
into B. The measurement (i.e., read) of qubit A will destroy A and
deliver either a value of 0 or a value of 1. The store into qubit B
will thus be either a 0 or a 1 and will not encompass the
probabilities or phases that were embedded into A.

The phase value is an angle between 0 and 2Π radians. It does not
affect the probabilities of the superposition, but gives another lever to
manipulate qubits. Some quantum algorithms mark certain qubits by
manipulating their phase.

Operations on Qubits
Some single qubit operations are analogs of classical bit operations,
whereas others are specific to qubits. One characteristic of most quantum
operations is that they are invertible; that is, given the result of an
operation, it is possible to recover the input into that operation.
Invertibility is another distinction between classical bit operations and
qubit operations. The one exception to invertibility is the READ
operation: Since measurement is destructive, the result of a READ
operation does not allow the recovery of the original qubit. Examples of
qubit operations include the following:



1. A READ operation takes as input a single qubit and produces as
output either a 0 or a 1 with probabilities determined by the
amplitudes of the input qubit. The value of the input qubit
collapses to either a 0 or a 1.

2. A NOT operation takes a qubit in superposition and flips the
amplitudes. That is, the probability of the resulting qubit being 0 is
the original probability of it being 1, and vice versa.

3. A Z operation adds Π to the phase of the qubit (modulo 2Π).
4. A HAD (short for Hadamard) operation creates an equal

superposition, which means the amplitudes of qubits with value 0
and 1, respectively, are equal. A 0 input value generates a phase of
0 radians, and a 1 input value generates a phase of Π radians.

It is possible to chain multiple operations together to produce more
sophisticated units of functionality.

Some operators work on more than one qubit. The primary two-qubit
operator is CNOT—a controlled not. The first qubit is the control bit. If
it is 1, then the operation performs a NOT on the second qubit. If the
first qubit is 0, then the second qubit remains unchanged.

Entanglement
Entanglement is one of the key elements of quantum computing. It has
no analog in classical computing, and gives quantum computing some of
its very strange and wondrous properties, allowing it to do what classical
computers cannot.

Two qubits are said to be “entangled” if, when measured, the second
qubit measurement matches the measurement of the first. Entanglement
can occur no matter the amount of time between the two measurements,
or the physical distance between the qubits. This leads us to what is
called quantum teleportation. Buckle up.

26.2 Quantum Teleportation
Recall that it is not possible to copy one qubit to another directly. Thus,
if we want to copy one qubit to another, we must use indirect means.
Furthermore, we must accept the destruction of the state of the original
qubit. The recipient qubit will have the same state as the original,
destroyed qubit. Quantum teleportation is the name given to this copying



of the state. There is no requirement that the original qubit and the
recipient qubit have any physical relationship, nor are there constraints
on the distance that separates them. In consequence, it is possible to
transfer information over great distances, even hundreds or thousands of
kilometers, between qubits that have been physically implemented.

The teleportation of the state of a qubit depends on entanglement.
Recall that entanglement means that a measurement of one entangled
qubit will guarantee that a measurement of the second qubit will have
the same value. Teleportation utilizes three qubits. Qubit A and B are
entangled, and then qubit ψ is entangled with qubit A. Qubit ψ is
teleported to the location of qubit B, and its state becomes the state of
qubit B. Roughly speaking, teleportation proceeds through these four
steps:

1. Entangle qubits A and B. We discussed what this means in the
prior section. The locations of A and B can be physically separate.

2. Prepare the “payload.” The payload qubit will have the state to be
teleported. The payload, which is the qubit ψ, is prepared at the
location of A.

3. Propagate the payload. The propagation involves two classical bits
that are transferred to the location of B. The propagation also
involves measuring A and ψ, which destroys the state of both of
these qubits.

4. Re-create the state of ψ in B.
We have omitted many key details, but the point is this: Quantum

teleportation is an essential ingredient of quantum communication. It
relies on transmitting two bits over conventional communication
channels. It is inherently secure, since all that an eavesdropper can
determine are the two bits sent over conventional channels. Because A
and B communicate through entanglement, they are not physically sent
over a communication line. The U.S. National Institute of Science and
Technology (NIST) is considering a variety of different quantum-based
communication protocols to be the basis of a transport protocol called
HTTPQ, which is intended to be a replacement for HTTPS. Given that it
takes decades to replace one communication protocol with another, the
goal is for HTTPQ to be adopted prior to the availability of quantum
computers that can break HTTPS.



26.3 Quantum Computing and Encryption
Quantum computers are extremely proficient at calculating the inverse of
a function—in particular, the inverse of a hash function. There are many
cases where this kind of calculation would be extremely useful, but
particularly so in decrypting passwords. Passwords are almost never
directly stored; instead, the hash of them is stored. The assumption
behind storing only the hash is that computing the inverse of the hash
function is computationally difficult and would take hundreds, if not
thousands, of years to do—using conventional computers, that is.
Quantum computers, however, change this calculation.

Grover’s algorithm is an example of a probabilistic algorithm that
computes the inverse of a function. It takes on the order of 2128

iterations to calculate the inverse of a hash based on 256 bits. This
represents a quadratic speedup over conventional computational
algorithms, meaning that the quantum algorithm time is approximately
the square root of the conventional algorithm time. This makes an
enormous amount of password-protected material, previously thought to
be secure, quite vulnerable.

Modern secure encryption algorithms are based on the difficulty of
factoring the product of two large prime numbers. Let p and q be two
distinct primes each greater than 128 bits in magnitude. The product of
these two primes pq is roughly 256 bits in magnitude. This product is
relatively easy to compute given p and q. However, factoring the
product, pq, and recovering p and q is computationally very difficult on
a classical computer: It is in the category NP-hard.

What this means is that given a message encrypted based on the
primes p and q, decrypting this message is relatively easy if you know p
and q but practically impossible if you don’t—at least on a classical
computer. Quantum computers, however, can factor pq much more
efficiently than classical computers. Shor’s algorithm is a quantum
algorithm that can factor pq with running time on the order of log
(number of bits in p and q).

26.4 Other Algorithms
Quantum computing holds similar game-changing potential for many
applications. Here, we begin our discussion by introducing a necessary
but currently nonexistent piece of hardware—QRAM.



QRAM
Quantum random access memory (QRAM) is a critical element for
implementing and applying many quantum algorithms. QRAM, or
something similar, will be necessary to provide efficient access to large
amounts of data such as that used in machine learning applications.
Currently, no implementation of QRAM exists, but several research
groups are exploring how such an implementation could work.

Conventional RAM comprises a hardware device that takes as input a
memory location and returns as output the contents of that memory
location. QRAM is conceptually similar: It takes as input a memory
location (likely a superposition of memory locations) and returns as
output the superpositioned contents of those memory locations. The
memory locations whose contents are returned were written
conventionally—that is, each bit has one value. The values are returned
in superposition, and the amplitudes are determined by the specification
of the memory locations to be returned. Because the original values were
conventionally written, they can be copied in a nondestructive fashion.

A problem with the proposed QRAM is that the number of physical
resources required scales linearly with the number of bits retrieved. Thus
it may not be practical to construct QRAM for very large retrievals. As
with much of the discussion of quantum computers, QRAM is in the
theoretical discussion stage rather than the engineering phase. Stay
tuned.

The remaining algorithms we discuss assume the existence of a
mechanism for efficiently accessing the data manipulated by an
algorithm, such as with QRAM.

Matrix Inversion
Matrix inversion underlies many problems in science. Machine learning,
for example, requires the ability to invert large matrices. Quantum
computers hold promise to speed up matrix inversion in this context. The
HHL algorithm by Harrow, Hassidim, and Lloyd will invert a linear
matrix, subject to some constraints. The general problem is to solve the
equation Ax = b, where A is an N × N matrix, x is a set of N unknowns,
and b is a set of N known values. You learned about the simplest case (N
= 2) in elementary algebra. As N grows, however, matrix inversion
becomes the standard technique to solve the set of equations.



The following constraints apply when solving this problem with
quantum computers:

1. The b’s must be quickly accessible. This is the problem that
QRAM is supposed to solve.

2. The matrix A must satisfy certain conditions. If it is a sparse
matrix, then it likely can be processed efficiently on a quantum
computer. The matrix must also be well conditioned; that is, the
determinant of the matrix must be non-zero or close to zero. A
small determinant causes issues when inverting a matrix on a
classical computer, so this is not a quantum unique problem.

3. The result of applying the HHL algorithm is that the x values
appear in superposition. Thus a mechanism is needed for
efficiently isolating the actual values from the superposition.

The actual algorithm is too complicated for us to present here. One
noteworthy element, however, is that it relies on an amplitude
magnification technique based on using phases.

26.5 Potential Applications
Quantum computers are expected to have an impact on a wide variety of
application areas. IBM, for example, is focusing on cybersecurity, drug
development, financial modeling, better batteries, cleaner fertilization,
traffic optimization, weather forecasting and climate change, and
artificial intelligence and machine learning, to name just a few.

To date, except for cybersecurity, this list of potential quantum
computing applications remains mostly speculation. Several
cybersecurity algorithms have been proven to provide substantial
improvements over classical algorithms, but the remainder of the
application areas are, thus far, the subject of much and feverish research.
As yet, however, none of these efforts has generated public results.

As the chapter-opening quotation suggested, quantum computers are
at the stage that airplanes were at the time of the Wright brothers. The
promise is great but a tremendous amount of work must be done to turn
the promise into reality.

26.6 Final Thoughts
Quantum computers are currently in their infancy. Applications for such
computers are primarily speculation at this point, especially applications



that require large amounts of data. Nonetheless, progress is happening
rapidly in terms of the number of qubits in actual physical existence. It
seems reasonable that Moore’s law will apply to quantum computers,
much as it has in conventional computing. If so, then the number of
qubits available will grow exponentially over time.

The qubit operations discussed in Section 26.2 lend themselves to a
programming style where operations are chained together to perform
useful functionality. This will likely follow the same arc as machine
languages for classical computers. Machine languages still exist but have
become a realm consigned to only a handful of programmers. Most
programmers use a wide variety of higher-level languages. We should
expect to see the same evolution in programming quantum computers.
Efforts at quantum computing language design are under way but remain
in a nascent state.

Programming languages are only the tip of the iceberg. What about
the other topics we have covered in this book? Are there new quality
attributes relevant to quantum computers, new architectural patterns, an
additional architecture view? Almost certainly.

What will a network of quantum computers look like? Will hybrid
networks of quantum and classical computers become widespread? All
of these are potential areas into which quantum computing will almost
certainly evolve—eventually.

What can architects do in the meantime? First, pay attention to
breaking developments. If the systems you are working on today involve
areas that quantum computing is likely to affect (or, more likely,
completely turn on its head), isolate those parts of the system to
minimize the disruption when quantum computing finally shows up.
Especially for secure systems, follow the field to find out what to do
when your conventional encryption algorithms become worthless.

But your preparation need not all be defensive. Imagine what you
could do with a communication network that is able to transfer
information instantly, no matter the physical distance between the nodes.
If this sounds far-fetched—well, so did flying machines once upon a
time.

As always, we await the future with eagerness.

26.7 For Further Reading
General overview:



Programming Quantum Computers by Eric Johnston, Nic Harrigan,
and Mercedes Gimeno-Segovia discusses quantum computing
without reference to physics or linear algebra [Johnston 19].
Quantum Computing: Progress and Prospects [NASEM 19]
provides an overview of the current state of quantum computing and
the challenges to be overcome to make real quantum computers.
Quantum computers not only provide faster solutions compared to
classical computers, but also address some problems that can only be
solved with quantum computers. This powerful theoretical result
emerged in May 2018: quantamagazine.org/finally-a-problem-that-
only-quantum-computers-will-ever-be-able-to-solve-20180621/.

http://quantamagazine.org/finally-a-problem-that-only-quantum-computers-will-ever-be-able-to-solve-20180621/
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