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Preface

When asked about software architecture, people think frequently about models—
that is, the representations of the structures that constitute the architecture. Less 
frequently, people think about the thought processes that produce these struc-
tures—that is, the process of design. Design is a complex activity to perform and 
a complex topic to write about, as it involves making a myriad of decisions that 
take into account many aspects of a system. These aspects are oftentimes hard 
to express, particularly when they originate from experience and knowledge that 
is hard-earned in the “battlefield” of previous software development projects. 
Nevertheless, the activity of design is the basis of software architecture and, as 
such, it begs to be explained. Although experience can hardly be communicated 
through a book, what can be shared is a method that can help you perform the 
process of design in a systematic way.

This book is about that design process and about one particular design 
method, called Attribute-Driven Design (ADD). We believe that this method is a 
powerful tool that will help you perform design in a principled, disciplined, and 
repeatable way. In this book, employing ADD and several examples of ADD’s 
use in the real world, we show you how to perform architectural design. Even 
though you may not currently possess sufficient design experience, we illustrate 
how the method promotes reusing design concepts—that is, proven solutions that 
embody the experience of others.

Although ADD has existed for more than a decade, relatively little has been 
written about it and few examples have been provided to explain how it is per-
formed. This lack of published information has made it difficult for people to 
adopt the method or to teach others about it. Furthermore, the documentation 
that has been published about ADD is somewhat “high level” and can be hard to 
relate to the concepts, practices, and technologies that architects use in their day-
to-day activities. 

We have been working with practicing architects for several years, coaching 
them on how to perform design, and learning in the process. We have learned, for 
example, that practicing architects take technologies into consideration early in 
the design process and this is something that was not part of the original version 
of ADD. For this reason, the method felt “disconnected” from reality for many 



xiv Preface 

practitioners. In this book, we provide a revised version of ADD in which we 
have tried to bridge the gap between theory and practice.

We have also been teaching software architecture and software design for 
many years. Along the way, we realized how hard it is for people without any ex-
perience to perform design. This understanding motivated us to create a roadmap 
for design that, we believe, is helpful in guiding people to perform the design 
process. We also created a game that is useful in teaching about software design; 
it can be considered a companion to this book.

The target audience for this book is anyone interested in the design of soft-
ware architectures. We believe it will be particularly useful for practitioners who 
must perform this task but who currently perform it in an ad hoc way. Experi-
enced practitioners who already perform design following an established method 
will also find new ideas—for example, how to track design progress using a Kan-
ban board, how to analyze a design using tactics-based questionnaires, and how 
to incorporate a design method for early estimation. Finally, people who are al-
ready familiar with the other architecture methods from the Software Engineer-
ing Institute will find information about the ways to connect ADD to methods 
such as the Quality Attribute Workshop (QAW), the Architecture Tradeoff Analy-
sis Method (ATAM), and the Cost Benefit Analysis Method (CBAM). This book 
will also be useful to students and teachers of computer science or software engi-
neering programs. We believe that the case studies included here will help them 
understand how to perform the design process more easily. Certainly, we have 
been using similar examples in our courses with great success. As Albert Einstein 
said, “Example isn’t another way to teach; it is the only way to teach.”

Our hope is that this book will help you in understanding that design can be 
performed following a method, and that this realization will help you produce 
better software systems in the future.

The book is structured as follows. 

 ■ In Chapter 1, we briefly introduce software architecture and the Attribute- 
Driven Design method. 

 ■ In Chapter 2, we discuss architecture design in more detail, along with the 
main inputs to the design process—what we call architectural drivers, plus 
the design concepts that will help you satisfy these drivers using proven 
solutions. 

 ■ Chapter 3 presents the ADD method in detail. We discuss each of the steps 
of the method along with various techniques that can be used to perform 
these steps appropriately. 

 ■ Chapter 4 is our first case study, which illustrates the development of a 
greenfield system. For this case study, we have made an effort to show how 
a majority of the concepts described in Chapter 3 are used in the design 
process, so you can think of this case study as being more “academic” in 
nature (although it is derived from a real-world system). 

 ■ Chapter 5 presents our second case study, which was co-written with prac-
ticing software architects and as such is much more technical and detailed 
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in nature. It will show you the nitty-gritty details of how ADD is used in the 
design of a Big Data system that involves many different technologies. This 
example illustrates the development of a system in what we consider to be a 
“novel” domain, as opposed to the more traditional domain used in Chapter 4. 

 ■ Chapter 6 is a shorter case study that illustrates the use of ADD in the 
design of an extension of a legacy (or brownfield) system, which is a com-
mon situation. This example demonstrates that architectural design is not 
something that is performed only once, when the first version of the system 
is developed, but rather is an activity that can be performed at different mo-
ments of the development process. 

 ■ Chapter 7 presents other design methods. In our revision of ADD, we 
adopted ideas from other authors who have also investigated the process of 
design, and here we briefly summarize their approaches both as an homage 
to their work and as a means to compare ADD to these methods. 

 ■ Chapter 8 discusses the topic of analysis in depth, even though this is a book 
on design. Analysis is naturally performed as part of design, so here we de-
scribe techniques that can be used both during the design process or after 
a portion of the design has been completed. In particular, we introduce the 
use of tactics-based questionnaires, which are helpful in understanding, in a 
time-efficient and simple manner, the decisions made in the design process. 

 ■ Chapter 9 describes how the design process fits at an organizational level. 
For instance, performing some amount of architectural design at the earli-
est moments of the project’s life is useful for estimation purposes. We also 
show how ADD can be associated with different software development 
approaches. 

 ■ Chapter 10 concludes the book. 

We also include two appendixes. Appendix A presents A Design Concepts 
Catalog, which, as its name suggests, is a catalog of different types of design 
concepts that can be used to design for a particular application domain. This cat-
alog includes design concepts that we have gathered from different sources, re-
flecting how experienced and disciplined architects work in the real world. In this 
case, our catalog contains a sample of the design concepts used in the case study 
presented in Chapter 4. Appendix B provides a set of tactics-based questionnaires 
(as introduced in Chapter 8) for the seven most common quality attributes and an 
additional questionnaire for DevOps.

Register your copy of Designing Software Architectures at informit.com for 
convenient access to downloads, updates, and corrections as they become 
available. To start the registration process, go to informit.com/register and log 
in or create an account. Enter the product ISBN (9780134390789) and click 
Submit. Once the process is complete, you will find any available bonus con-
tent under “Registered Products.”
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1

1
Introduction

In this chapter we provide an introduction to the topic of software architecture. 
We briefly discuss what architecture is and why it is fundamental to take it into 
account when developing software systems. We also discuss the different activi-
ties that are associated with the development of software architecture so that ar-
chitectural design—which is the primary topic of this book—can be understood 
in the context of these activities. We also briefly discuss the role of the architect, 
who is the person responsible for creating the design. Finally, we introduce the 
Attribute-Driven Design (ADD) method, the architecture design method that we 
will discuss extensively in this book.

1.1 Motivations

Our goal in this book is to teach you how to design software architecture in a 
systematic, predictable, repeatable, and cost-effective way. If you are reading this 
book, then presumably you already have an interest in architecture and aspire to 
be an architect. The good news is that this goal is within your grasp. To convince 
you of that point, we will spend a few moments talking about the idea of de-
sign—the design of anything—and we will see how and why architectural design 
is not so different. In most fields, “design” involves the same sorts of challenges 
and considerations—meeting stakeholder needs, adhering to budgets and sched-
ules, dealing with constraints, and so forth. While the primitives and tools of de-
sign may vary from field to field, the goals and steps of design do not.



2 Chapter 1—Introduction

This is encouraging news, because it means that design is not the sole prov-
ince of wizards. That is, design can be taught, and it can be learned. Most design, 
particularly in engineering, consists of putting known design primitives together 
in (sometimes innovative) ways that achieve predictable outcomes. Of course, the 
devil is in the details, but that is why we have methods. It may seem difficult at 
first to imagine that a creative endeavor such as design can be captured in a step-
by-step method; this, however, is not only possible but also valuable, as Parnas 
and Clements have discussed in their paper “A Rational Design Process: How 
and Why to Fake It”. Of course, not everyone can be a great designer, just as not 
everyone can be a Thomas Edison or a LeBron James or a Ronaldo. What we do 
claim is that everyone can be a much better designer, and that structured methods 
supported by reusable chunks of design knowledge, which we provide in this 
book, can help pave the road from mediocrity to excellence.

Why are we writing a book on software architecture design? While much 
has been written about design in general, and while there have been some writ-
ings on software architecture design, there is no existing book dedicated solely 
to architecture design. Moreover, most of what has been written on architecture 
design is relatively abstract.

Our goal in writing this book was to provide a practical method that can be 
enacted by any competent software engineer, and also (and just as important) 
to provide a set of rich case studies that realize the method. Albert Einstein was 
reputed to have said, “Example isn’t another way to teach, it is the only way to 
teach”. We firmly believe that. Most of us learn better from examples than from 
sets of rules or steps or principles. Of course, we need the steps and rules and 
principles to structure what we do and to create the examples, but the examples 
speak to our day-to-day concerns and help us by making the steps concrete.

This is not to say that architecture design will ever be simple. If you are 
building a complex system, then chances are that you are trying to balance many 
competing forces—things like time to market, cost, performance, evolvability, 
usability, availability, and so on. If you are pushing the boundaries in any of these 
dimensions, then your job as an architect will be even more complex. This is true 
in any engineering discipline, not just software. If you examine the history of 
building large ships or skyscrapers or any other complex “system”, you will see 
how the architects of those systems struggled with making the appropriate deci-
sions and tradeoffs. No, architecture design may never be easy, but our purpose 
is to make it tractable and achievable by well-trained, well-educated software 
engineers.
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1.2 Software Architecture

Much has been written on what software architecture is. We adopt the definition 
of software architecture from Software Architecture in Practice (third edition):

The software architecture of a system is the set of structures needed to 
reason about the system, which comprise software elements, relations 
among them, and properties of both.

As you will see, our design method embodies this definition and helps to 
guide the designer in creating an architecture that has the desired properties.

1.2.1 The Importance of Software Architecture

Much has also been written on why architecture is important. Again, following 
Software Architecture in Practice, we note that architecture is important for a 
wide variety of reasons, and a similarly wide variety of consequences stem from 
those reasons:

§	An architecture will inhibit or enable a system’s driving quality attributes.
§	The decisions made in an architecture allow you to reason about and man-

age change as the system evolves.
§	The analysis of an architecture enables early prediction of a system’s 

qualities.
§	A documented architecture enhances communication among stakeholders.
§	The architecture is a carrier of the earliest and hence most fundamental, 

hardest-to-change design decisions.
§	An architecture defines a set of constraints on subsequent implementation.
§	The architecture influences the structure of an organization, and vice versa.
§	An architecture can provide the basis for evolutionary, or even throwaway, 

prototyping.
§	An architecture is the key artifact that allows the architect and the project 

manager to reason about cost and schedule.
§	An architecture can be created as a transferable, reusable model that forms 

the heart of a product line.
§	Architecture-based development focuses attention on the assembly of com-

ponents, rather than simply on their creation.
§	By restricting design alternatives, architecture channels the creativity of 

developers, reducing design and system complexity.
§	An architecture can be the foundation for training a new team member.

If an architecture is important for all of these reasons—if it affects the struc-
ture of the organization, and the qualities of the system, and the people involved 
in its creation and evolution—then surely great care must be taken in designing 
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this crucial artifact. Sadly, that is most often not the case. Architectures often 
“evolve” or “emerge”. While we have nothing against evolution or emergence, 
and while we emphatically are not arguing for “big design up front”, doing no 
architecture at all is often too risky for anything but the simplest projects. Would 
you want to drive over a bridge or ride in a jet that had not been carefully de-
signed? Of course not. But you use software every day that is buggy, costly, inse-
cure, unreliable, fault prone, and slow—and many of these undesirable character-
istics can be avoided!

The core message of this book is that architecture design does not need to be 
difficult or scary; it is not the sole province of wizards; and it does not have to be 
costly and all done up front. Our job is to show you how and convince you that it 
is within your reach.

1.2.2 Life-Cycle Activities

Software architecture design is one of the software architecture life-cycle activi-
ties (Figure 1.1). As in any software project life cycle, this activity is concerned 
with the translation of requirements into a design into an implementation. Specif-
ically, the architect needs to worry about the following issues:

§	Architectural requirements. Among all the requirements, a few will have 
a particular importance with respect to the software architecture. These 
architecturally significant requirements (ASRs) include not only the most 
important functionality of the system and the constraints that need to be 
taken into account, but also—and most importantly—quality attributes 
such as high performance, high availability, ease of evolution, and iron-clad 
security. These requirements, along with a clear design purpose and other 
architectural concerns that may never be written down or may be invisible 
to external stakeholders, will guide you to choose one set of architectural 
structures and components over another. We will refer to these ASRs and 
concerns as drivers, as they can be said to drive the design.

§	Architectural design. Design is a translation, from the world of needs (re-
quirements) to the world of solutions, in terms of structures composed of 
code, frameworks, and components. A good design is one that satisfies the 
drivers. Architectural design is the focus of this book.
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FIGURE 1.1 Software architecture life-cycle activities

§	Architectural documentation. Some level of preliminary documentation (or 
sketches) of the structures should be created as part of architectural design. 
This activity, however, refers to the creation of a more formal document 
from these sketches. If the project is small and has a precedent, then archi-
tecture documentation may be minimal. In contrast, if the project is large, 
if distributed teams are collaborating, or if significant technical challenges 
exist, then architectural documentation will repay the effort invested in this 
activity. While documentation is often avoided and derided by program-
mers, it is a standard, non-negotiable deliverable in almost every other engi-
neering discipline. If your system is big enough and if it is mission critical, 
it should be documented. In other engineering disciplines, a “blueprint”—
some sort of documented design—is an absolutely essential step in moving 
toward implementation and the commitment of resources.
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§	Architectural evaluation. As with documentation, if your project is non-
trivial, then you owe it to yourself and to your stakeholders to evaluate 
it—that is, to ensure that the decisions made are appropriate to address the 
critical requirements. Would you deliver code without testing it? Of course 
not. Similarly, why would you commit enormous resources to fleshing out 
an architecture if you had not first “tested” the design? You might want to 
do this when first creating the system or when putting it through a major 
refactoring. Typically evaluation is done informally and internally, but for 
truly important projects it is advisable to have a formal evaluation done by 
an external team.

§	Architectural implementation/conformance checking. Finally, you need 
to implement the architecture that you have created (and evaluated). As 
an architect, you may need to tweak the design as the system grows and 
as requirements evolve. This is normal. In addition to this tweaking, your 
major responsibility during implementation is to ensure conformance of 
the code to the design. If developers are not faithfully implementing the 
architecture, they may be undermining the qualities that you have designed 
in. Again, consider what is done in other fields of engineering. When a 
concrete foundation for a new building is poured, the building that rests on 
top of that foundation is not constructed until the foundation has first been 
tested, typically via a core sample, to ensure that it is strong enough, dense 
enough, sufficiently impermeable to water and gases, and so forth. Without 
conformance checking, we have no way of ensuring the quality of what is 
being subsequently constructed.

Note that we are not proposing a specific life-cycle methodology in 
Figure 1.1. The stereotype <<precedes>> simply means that some effort in an 
activity must be performed, and hence precede, effort in a later activity. For ex-
ample, you cannot perform design activities if you have no idea about the re-
quirements, and you cannot evaluate an architecture if you have not first made 
some design decisions.

Today most commercial software is developed using some form of Agile 
methodology. None of these architecture activities is incompatible with Agile prac-
tices. The question for a software architect is not “Should I do Agile or architec-
ture?”, but rather “How much architecture should I do up front versus how much 
should I defer until the project’s requirements have solidified somewhat?” and 
“How much of the architecture should I formally document, and when?” Agile and 
architecture are happy companions for many software projects.

We will discuss the relationship between architecture design and various soft-
ware life-cycle methods and process models, including iterative development, in 
Chapter 9.
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1.3 The Role of the Architect

An architect is much more than “just” a designer. This role, which may be played 
by one or more individuals, has a long list of duties, skills, and knowledge 
that must be satisfied if it is to be successful. These prerequisites include the 
following:

§	Leadership: mentoring, team-building, establishing a vision, coaching
§	Communication: both technical and nontechnical, encouraging 

collaboration
§	Negotiation: dealing with internal and external stakeholders and their con-

flicting needs and expectations
§	Technical skills: life-cycle skills, expertise with technologies, continuous 

learning, coding
§	Project skills: budgeting, personnel, schedule management, risk 

management
§	Analytical skills: architectural analysis, general analysis mindset for project 

management and measurement (see the sidebar “The Meaning of Analysis”)

A successful design is not a static document that is “thrown over the wall”. 
That is, architects must not only design well, but must also be intimately involved 
in every aspect of the project, from conception and business justification to de-
sign and creation, through to operation, maintenance, and eventually retirement.

The Meaning of Analysis

In the Merriam-Webster Dictionary, the word analysis is defined as follows:

§	The careful study of something to learn about its parts, what they do, and 
how they are related to each other

§	An explanation of the nature and meaning of something

In this book we use the word analysis for different purposes, and both 
of these definitions apply. For instance, as part of the architectural evalu-
ation activity, an existing architecture is analyzed to gauge if it is appropri-
ate to satisfy its associated drivers. During the design process, the inputs 
are analyzed to make design decisions. The creation of prototypes is also 
a form of analysis. In fact, analysis is so important to the design process 
that we devote Chapter 8 to just this topic. Here we also discuss, in more 
detail, the relationship between analysis and evaluation. In this book, we 
focus primarily on the design activity, its associated technical skills, and 
its integration into the development life cycle. For a fuller treatment of the 
other aspects of an architect’s life, we invite you to read a more general 
book on software architecture, such as Software Architecture in Practice or 
Just Enough Software Architecture.
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1.4 A Brief History of ADD

While an architect has many duties and responsibilities, in this book we focus 
on what is arguably the single most important skill that a software engineer must 
master to be called “architect”: the process of design. To make architectural de-
sign more tractable and repeatable, in this book we focus most of our attention 
on the Attribute-Driven Design (ADD) method, which provides step-by-step 
guidance on how to iteratively perform the design activity shown in Figure 1.1. 
Chapter 3 describes the most recent version of ADD, version 3.0, in detail, so 
here we provide a bit of background for those who are familiar with previous 
versions of ADD. The first version of ADD (ADD 1.0, originally called ABD, 
for “Architecture-Based Design”) was published in January 2000, and the second 
version (ADD 2.0) was published in November 2006. The third edition of the 
book Software Architecture in Practice presents this method with a reduced num-
ber of steps. This discussion, however, does not introduce a new version of ADD, 
but rather a repackaged version that summarizes the actual steps of the method.

ADD is, to our knowledge, the most comprehensive and most widely used 
documented architecture design method. (We provide an overview of a number 
of alternative design methods in Chapter 7.) When ADD appeared, it was the first 
design method to focus specifically on quality attributes and their achievement 
through the creation of architectural structures and their representation through 
views. Another important contribution of ADD is that it includes architecture 
analysis and documentation as an integral part of the design process. In ADD, de-
sign activities include refining the sketches created during early design iterations 
to produce a more detailed architecture, and continuously evaluating the design.

While ADD 2.0 was useful for linking quality attributes to design choices, it 
had several shortcomings that needed to be addressed:

§	ADD 2.0 guides the architect to use and combine tactics and patterns to 
achieve the satisfaction of quality attribute scenarios. Patterns and tactics 
are abstractions, however, and the method did not explain how to map these 
abstractions to concrete implementation technologies.

§	ADD 2.0 was invented before Agile methods became widely adopted and, 
therefore, did not offer guidance for architecture design in an Agile setting.

§	ADD 2.0 provided no guidance on how to begin the design process. While 
this omission enhanced its generalizability, it presented difficulties for nov-
ice designers, who often do not know where to begin. Specifically, ADD 2.0 
did not explicitly promote the (re)use of reference architectures, which are 
an ideal starting point for many architects, as we will discuss later in this 
book.

§	ADD 2.0 did not explicitly consider different design purposes. For exam-
ple, one might be doing design as part of a pre-sales process or as part of 
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“standard” design for construction. These are very different purposes and 
will result in different uses of ADD.

§	ADD 2.0 did not consider that design requires some architectural concerns 
(i.e., internal requirements) to be addressed whether or not they are ex-
pressed in the list of “traditional” drivers (requirements and constraints). It 
is a rare user who will ask that a system be “testable” or will require that 
the system provide special testing interfaces, but a wise architect might 
choose to include such an infrastructure, particularly if the system is com-
plex and used in contexts that are difficult to control and replicate.

§	ADD 2.0 iterations are always driven by the selection and decomposition 
of architectural elements. This occurs because ADD 2.0 instructs that first 
an element to decompose must be chosen, and then the drivers must be 
identified. In ADD 3.0, we recognize that sometimes a design step is driven 
by the critical architectural requirements, which guides the selection and 
decomposition of elements.

§	ADD 2.0 includes (initial) documentation and analysis, but they are not ex-
plicit steps of the design process.

ADD 3.0 addresses all of these shortcomings. To be sure, ADD 3.0 is evo-
lutionary, not revolutionary. It was catalyzed by the creation of ADD 2.5,1 which 
was itself a reaction to attempting to use ADD in the real world, in many different 
contexts.

We published ADD 2.5 in 2013. In that work, we advocated the use of ap-
plication frameworks such as JSF, Spring, or Hibernate as first-class design con-
cepts. This change was intended to address ADD 2.0’s shortcoming of being too 
abstract to apply easily. ADD starts with drivers, systematically links them to de-
sign decisions, and then links those decisions to the available implementation op-
tions, including externally developed components. For Agile development, ADD 
3.0 promotes quick design iterations in which a small number of design decisions 
are made, potentially followed by an implementation spike. In addition, ADD 
3.0 explicitly promotes the (re)use of reference architectures and is paired with a 
“design concepts catalog”, which includes a broad selection of tactics, patterns, 
frameworks, reference architectures, and technologies (see Appendix A).

1.5 Summary

Having covered our motivations and background, we now move on to the heart 
and soul of this book. In the next few chapters, we describe what we mean by 
design and by architectural design in particular, we discuss ADD, and we provide 
three case studies showing in detail how ADD can be used in the real world. We 

1.  This is our own coding notation; the 2.5 number is not used elsewhere.
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also discuss the critical role that analysis plays in the design process and provide 
examples of how analysis can be performed on design artifacts.

1.6 Further Reading

Fred Brooks has written a thoughtful series of essays on the nature of design, 
reflecting his 50 years of experience as a designer and researcher: F. P. Brooks, Jr. 
The Design of Design: Essays from a Computer Scientist. Addison-Wesley, 2010.

The usefulness of having a documented process for design and other devel-
opment activities is discussed in D. Parnas and P. Clements, “A Rational Design 
Process: How and Why to Fake It”, IEEE Transactions on Software Engineering, 
SE-12, 2, February 1986.

The definition of software architecture used here, as well as the arguments 
for the importance of architecture and the role of the architect, all derive from 
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed., 
Addison-Wesley, 2012.

Several books cover the different activities of the architecture development 
life cycle, including G. Fairbanks, Just Enough Software Architecture: A Risk 
Driven Approach, Marshall & Brainerd, 2010, and the ones whose design ap-
proaches are described in Chapter 7.

An early reference for the first version of ADD can be found in F. Bach-
mann, L. Bass, G. Chastek, P. Donohoe, and F. Peruzzi, The Architecture Based 
Design Method, CMU/SEI-2000-TR-001. The second version of ADD was de-
scribed in R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and 
W. Wood, Attribute-Driven Design (ADD), Version 2.0, CMU/SEI-2006-TR-023. 
The version of ADD that we have referred to here as ADD 2.5 was published in 
H. Cervantes, P. Velasco-Elizondo, and R. Kazman, “A Principled Way of Using 
Frameworks in Architectural Design”, IEEE Software, 46–53, March/April 2013.
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2
Architectural Design

We now dive into the process of architecture design: what it is, why it is impor-
tant, how it works (at an abstract level). and which major concepts and activities 
it involves. We first discuss architectural drivers: the various factors that “drive” 
design decisions, some of which are documented as requirements, but many of 
which are not. In addition, we provide an overview of design concepts—the ma-
jor building blocks that you will select, combine, instantiate, analyze, and docu-
ment as part of your design process.

2.1 Design in General

Design is both a verb and a noun. Design is a process, an activity, and hence a 
verb. The process results in the creation of a design—a description of a desired 
end state. Thus the output of the design process is the thing, the noun, the arti-
fact that you will eventually implement. Designing means making decisions to 
achieve goals and satisfy requirements and constraints. The outputs of the design 
process are a direct reflection of those goals, requirements, and constraints. Think 
about houses, for example. Why do traditional houses in China look different 
from those in Switzerland or Algeria? Why does a yurt look like a yurt, which is 
different from an igloo or a chalet or a longhouse?

The architectures of these styles of houses have evolved over the centuries 
to reflect their unique sets of goals, requirements, and constraints. Houses in 
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China feature symmetric enclosures, sky wells to increase ventilation, south-fac-
ing courtyards to collect sunlight and provide protection from cold north winds, 
and so forth. A-frame houses have steep pitched roofs that extend to the ground, 
meaning minimal painting and protection from heavy snow loads (which just 
slide off to the ground). Igloos are built of ice, reflecting the availability of ice, 
the relative poverty of other building materials, and the constraints of time (a 
small one can be built in an hour).

In each case, the process of design involved the selection and adaptation of a 
number of solution approaches. Even igloo designs can vary. Some are small and 
meant for a temporary travel shelter. Others are large, often connecting several 
structures, meant for entire communities to meet. Some are simple unadorned 
snow huts. Others are lined with furs, with ice “windows”, and doors made of 
animal skin.

The process of design, in each case, balances the various “forces” facing the 
designer. Some designs require considerable skill to execute (such as carving and 
stacking snow blocks in such a way that they produce a self-supporting dome). 
Others require relatively little skill—a lean-to can be constructed from branches 
and bark by almost anyone. But the qualities that these structures exhibit may 
also vary considerably. Lean-tos provide little protection from the elements and 
are easily destroyed, whereas an igloo can withstand Arctic storms and support 
the weight of a person standing on the roof.

Is design “hard”? Well, yes and no. Novel design is hard. It is pretty clear 
how to design a conventional bicycle, but the design for the Segway broke new 
ground. Fortunately, most design is not novel, because most of the time our re-
quirements are not novel. Most people want a bicycle that will reliably convey 
them from place to place. The same holds true in every domain. Consider houses, 
for example. Most people living in Phoenix want a house that can be easily and 
economically kept cool, whereas most people in Edmonton are primarily con-
cerned with a house that can be kept warm. In contrast, people living in Japan and 
Los Angeles are concerned with buildings that can withstand earthquakes.

The good news for you, the architect, is that there are ample proven designs 
and design fragments, or building blocks that we call design concepts, that can 
be reused and combined to reliably achieve these goals. If your design is truly 
novel—if you are designing the next Sydney Opera House—then the design pro-
cess will likely be “hard”. The Sydney Opera House, for example, cost 14 times 
its original budget estimate and was delivered ten years late. So, too, with the 
design of software architectures.



2.2 Design in Software Architecture 13

2.2 Design in Software Architecture

Architectural design for software systems is no different than design in general: It 
involves making decisions, working with available skills and materials, to satisfy 
requirements and constraints. In architectural design, we make decisions to trans-
form our design purpose, requirements, constraints, and architectural concerns—
what we call the architectural drivers—into structures, as shown in Figure 2.1. 
These structures are then used to guide the project. They guide analysis and con-
struction, and serve as the foundation for educating a new project member. They 
also guide cost and schedule estimation, team formation, risk analysis and miti-
gation, and, of course, implementation.

Architectural design is, therefore, a key step to achieving your product and 
project goals. Some of these goals are technical (e.g., achieving low and predict-
able latency in a video game or an e-commerce website), and some are nontech-
nical (e.g., keeping the workforce employed, entering a new market, meeting a 
deadline). The decisions that you, as an architect, make will have implications for 
the achievement of these goals and may, in some cases, be in conflict. The choice
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of a particular reference architecture (e.g., the Rich Client Application) may pro-
vide a good foundation for achieving your latency goals and will keep your work-
force employed because they are already familiar with that reference architecture 
and its supporting technology stack. But this choice may not help you enter a new 
market—mobile games, for example. 

In general, when designing, a change in some structure to achieve one 
quality attribute will have negative effects on other quality attributes. These 
tradeoffs are a fact of life for every practicing architect in every domain. We 
will see this over and over again in the examples and case studies provided in 
this book. Thus the architect’s job is not one of finding an optimal solution, but 
rather one of satisficing—searching through a potentially large space of design 
alternatives and decisions until an acceptable solution is found.

2.2.1 Architectural Design

Grady Booch has said, “All architecture is design, but not all design is archi-
tecture”. What makes a decision “architectural”? A decision is architectural if it 
has non-local consequences and those consequences matter to the achievement 
of an architectural driver. No decision is, therefore, inherently architectural or 
non-architectural. The choice of a buffering strategy within a single element may 
have little effect on the rest of the system, in which case it is an implementation 
detail that is of no concern to anyone except the implementer or maintainer of 
that element. In contrast, the buffering strategy may have enormous implications 
for performance (if the buffering affects the achievement of latency or through-
put or jitter goals) or availability (if the buffers might not be large enough and 
information gets lost) or modifiability (if we wish to flexibly change the buffering 
strategy in different deployments or contexts). The choice of a buffering strat-
egy, like most design choices, is neither inherently architectural nor inherently 
non-architectural. Instead, this distinction is completely dependent on the current 
and anticipated architectural drivers.

2.2.2 Element Interaction Design

Architectural design generally results in the identification of only a subset of the 
elements that are part of the system’s structure. This is to be expected because, 
during initial architectural design, the architect will focus on the primary func-
tionality of the system. What makes a use case primary? A combination of busi-
ness importance, risk, and complexity considerations feed into this designation. 
Of course, to your users, everything is urgent and top priority. More realistically, 
a small number of use cases provide the most fundamental business value or rep-
resent the greatest risk (if they are done wrong), so these are deemed primary.

Every system has many more use cases, beyond the primary ones, that need 
to be satisfied. The elements that support these nonprimary use cases and their 
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interfaces are identified as part of what we call element interaction design. This 
level of design usually follows architectural design. The location and relation-
ships of these elements, however, are constrained by the decisions that were 
made during architectural design. These elements can be units of work (i.e., mod-
ules) assigned to an individual or to a team, so this level of design is important for 
defining not only how nonprimary functionality is allocated, but also for planning 
purposes (e.g., team formation and communication, budgeting, outsourcing, re-
lease planning, unit and integration test planning).

Depending on the scale and complexity of the system, the architect should be 
involved in element interaction design, either directly or in an auditing role. This 
involvement ensures that the system’s important quality attributes are not com-
promised—for example, if the elements are not defined, located, and connected 
correctly. It will also help the architect spot opportunities for generalization.

2.2.3 Element Internals Design

A third level of design follows element interaction design, which we call element 
internals design. In this level of design, which is usually conducted as part of the 
element development activities, the internals of the elements identified in the pre-
vious design level are established, so as to satisfy the element’s interface.

Architectural decisions can and do occur at the three levels of design. More-
over, during architectural design, the architect may need to delve as deeply as 
element internals design to achieve a particular architectural driver. An example 
of this is the selection of a buffering strategy that was previously discussed. In 
this sense, architectural design can involve considerable detail, which explains 
why we do not like to think about it in terms of “high-level design” or “detailed 
design” (see the sidebar “Detailed Design?”).

Architectural design precedes element interaction design, which precedes 
element internals design. This is logically necessary: One cannot design an ele-
ment’s internals until the elements themselves have been defined, and one cannot 
reason about interaction until several elements and some patterns of interactions 
among them have been defined. But as projects grow and evolve, there is, in prac-
tice, considerable iteration between these activities.

Detailed Design?

The term “detailed design” is often used to refer to the design of the inter-
nals of modules. Although it is widely used, we really don’t like this term, 
which is presented as somehow in opposition to “high-level design”. We 
prefer the more precise terms “architectural design”, “element interaction 
design”, and “element internals design”.
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After all, architectural design may be quite detailed, if your system is 
complex. And some design “details” will turn out to be architectural. For the 
same reason, we also don’t like the terms “high-level design” and “low-level 
design”. Who can really know what these terms actually mean? Clearly, 
“high-level design” should be somehow “higher” or more abstract, and cover 
more of the architectural landscape than “low-level design”, but beyond that 
we are at a loss to imbue these terms with any precise meaning.

So here is what we recommend: Just avoid using terms such as “high”, 
“low”, or “detailed” altogether. There is always a better, more precise 
choice, such as “architectural”, “element interaction”, or “element internals” 
design!

Think carefully about the impact of the decisions you are making, the 
information that you are trying to convey in your design documentation, 
and the likely audience for that information, and then give that process an 
appropriate, meaningful name. 

2.3 Why Is Architectural Design So Important?

There is a very high cost to a project of not making certain design decisions, or 
of not making them early enough. This manifests itself in many different ways. 
Early on, an initial architecture is critical for project proposals (or, as it is some-
times called in the consulting world, the pre-sales process). Without doing some 
architectural thinking and some early design work, you cannot confidently pre-
dict project cost, schedule, and quality. Even at this early stage, an architecture 
will determine the key approaches for achieving architectural drivers, the gross 
work-breakdown structure, and the choices of tools, skills, and technologies 
needed to realize the system.

In addition, architecture is a key enabler of agility, as we will discuss in 
Chapter 9. Whether your organization has embraced Agile processes or not, it is 
difficult to imagine anyone who would willingly choose an architecture that is 
brittle and hard to change or extend or tune—and yet it happens all the time. This 
so-called technical debt occurs for a variety of reasons, but paramount among 
these is the combination of a focus on features—typically driven by stakeholder 
demands—and the inability of architects and project managers to measure the 
return on investment of good architectural practices. Features provide immediate 
benefit. Architectural improvement provides immediate costs and long-term ben-
efits. Put this way, why would anyone ever “invest” in architecture? The answer 
is simple: Without architecture, the benefits that the system is supposed to bring 
will be far harder to realize.

Simply put, if you do not make some key architectural decisions early and 
if you allow your architecture to degrade, you will be unable to maintain sprint 
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velocity, because you cannot easily respond to change requests. However, we ve-
hemently disagree with what the original creators of the Agile Manifesto claimed: 
“The best architectures, requirements, and designs emerge from self-organizing 
teams”. Indeed, our demurral with this point is precisely why we have written 
this book. Good architectural design is difficult (and still rare), and it does not 
just “emerge”. This opinion mirrors a growing consensus within the Agile com-
munity. More and more, we see techniques such as “disciplined agility at scale”, 
the “walking skeleton”, and the “scaled Agile framework” embraced by Agile 
thought leaders and practitioners alike. Each of these techniques advocates some 
architectural thinking and design prior to much, if any, development. To reiterate, 
architecture enables agility, and not the other way around.

Furthermore, the architecture will influence, but not determine, other deci-
sions that are not in and of themselves design decisions. These decisions do not 
influence the achievement of quality attributes directly, but they may still need 
to be made by the architect. For example, such decisions may include selection 
of tools; structuring the development environment; supporting releases, deploy-
ment, and operations; and making work assignments.

Finally, a well-designed, properly communicated architecture is key to 
achieving agreements that will guide the team. The most important kinds to make 
are agreements on interfaces and on shared resources. Agreeing on interfaces 
early is important for component-based development, and critically important 
for distributed development. These decisions will be made sooner or later. If you 
don’t make the decisions early, the system will be much more difficult to inte-
grate. In Section 3.6, we will discuss how to define interfaces as part of archi-
tectural design—both the external interfaces to other systems and the internal 
interfaces that mediate your element interactions.

2.4 Architectural Drivers

Before commencing design with ADD (or with any other design method, for 
that matter), you need to think about what you are doing and why. While this 
statement may seem blindingly obvious, the devil is, as usual, in the details. We 
categorize these “what” and “why” questions as architectural drivers. As shown 
in Figure 2.1, these drivers include a design purpose, quality attributes, primary 
functionality, architectural concerns, and constraints. These considerations 
are critical to the success of the system and, as such, they drive and shape the 
architecture.

As with any other important requirements, architectural drivers need to be 
baselined and managed throughout the development life cycle.
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2.4.1 Design Purpose

First, you need to be clear about the purpose of the design that you want to 
achieve. When and why are you doing this architecture design? Which business 
goals is the organization most concerned about at this time?

1. You may be doing architecture design as part of a project proposal (for the 
pre-sales process in a consulting organization, or for internal project selec-
tion and prioritization in a company, as discussed in Section 9.1.1). It is not 
uncommon that, as part of determining project feasibility, schedule, and bud-
get, an initial architecture is created. Such an architecture would not be very 
detailed; its purpose is to understand and break down the architecture in suffi-
cient detail that the units of work are understood and hence may be estimated.

2. You may be doing architecture design as part of the process of creating an 
exploratory prototype. In this case, the purpose of the architecture design 
process is not so much to create a releasable or reusable system, but rather to 
explore the domain, to explore new technology, to place something execut-
able in front of a customer to elicit rapid feedback, or to explore some quality 
attribute (such as performance scalability or failover for availability).

3. You may be designing your architecture during development. This could be 
for an entire new system, for a substantial portion of a new system, or for a 
portion of an existing system that is being refactored or replaced. In this case, 
the purpose is to do enough design work to satisfy requirements, guide sys-
tem construction and work assignments, and prepare for an eventual release.

These purposes may be interpreted and realized differently for greenfield 
systems in mature domains, for greenfield systems in novel domains, and for ex-
isting systems. In a mature domain, the pre-sales process, for example, might be 
relatively straightforward; the architect can reuse existing systems as examples 
and confidently make estimates based on analogy. In novel domains, the pre-sales 
estimation process will be far more complex and risky, and may have highly vari-
able results. In these circumstances, a prototype of the system, or a key part of the 
system, may need to be created to mitigate risk and reduce uncertainty. In many 
cases, this architecture may also need to be quickly adapted as new requirements 
are learned and embraced. In brownfield systems, while the requirements are bet-
ter understood, the existing system is itself a complex object that must be well 
understood for planning to be accurate.

Finally, the development organization’s goals during development or main-
tenance may affect the architecture design process. For example, the organization 
might be interested in designing for reuse, designing for future extension or sub-
setting, designing for scalability, designing for continuous delivery, designing to 
best utilize existing project capabilities and team member skills, and so forth. Or 
the organization might have a strategic relationship with a vendor. Or the CIO 
might have a specific like or dislike and wants to impose it on your project.
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Why do we bother to list these considerations? Because they will affect 
both the process of design and the outputs of design. Architectures exist to help 
achieve business goals. The architect should be clear about these goals and should 
communicate them (and negotiate them!) and establish a clear design purpose be-
fore beginning the design process.

2.4.2 Quality Attributes

In the book Software Architecture in Practice, quality attributes are defined as 
being measurable or testable properties of a system that are used to indicate how 
well the system satisfies the needs of its stakeholders. Because quality tends to 
be a subjective concept in itself, these properties allow quality to be expressed 
succinctly and objectively.

Among the drivers, quality attributes are the ones that shape the architecture 
the most significantly. The critical choices that you make when you are doing ar-
chitectural design determine, in large part, the ways that your system will or will 
not meet these driving quality attribute goals.

Given their importance, you must worry about eliciting, specifying, priori-
tizing, and validating quality attributes. Given that so much depends on getting 
these drivers right, this sounds like a daunting task. Fortunately, a number of 
well-understood, widely disseminated techniques can help you here (see sidebar 
“The Quality Attribute Workshop and the Utility Tree”):

§	Quality Attribute Workshop (QAW) is a facilitated brainstorming session 
involving a group of system stakeholders that covers the bulk of the activi-
ties of eliciting, specifying, prioritizing, and achieving consensus on quality 
attributes.

§	Mission Thread Workshop serves the same purpose as QAW, but for a sys-
tem of systems.

§	The Utility Tree can be used by the architect to prioritize quality attribute 
requirements according to their technical difficulty and risk.

We believe that the best way to discuss, document, and prioritize quality 
attribute requirements is as a set of scenarios. A scenario, in its most basic form, 
describes the system’s response to some stimulus. Why are scenarios the best ap-
proach? Because all other approaches are worse! Endless time may be wasted in 
defining terms such as “performance” or “modifiability” or “configurability”, as 
these discussions tend to shed little light on the real system. It is meaningless to 
say that a system will be “modifiable”, because every system is modifiable with 
respect to some changes and not modifiable with respect to others. One can, how-
ever, specify the modifiability response measure you would like to achieve (say, 
elapsed time or effort) in response to a specific change request. For example, you 
might want to specify that “a change to update shipping rates on the e-commerce 
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website is completed and tested in less than 1 person-day of effort”—an unam-
biguous criterion.

The heart of a quality attribute scenario, therefore, is the pairing of a stim-
ulus with a response. Suppose that you are building a video game and you have 
a functional requirement like this: “The game shall change view modes when 
the user presses the <C> button”. This functional requirement, if it is important, 
needs to be associated with quality attribute requirements. For example:

§	How fast should the function be?
§	How secure should the function be?
§	How modifiable should the function be?

To address this problem, we use a scenario to describe a quality attribute 
requirement. A quality attribute scenario is a short description of how a system is 
required to respond to some stimulus. For example, we might annotate the func-
tional requirement given earlier as follows: “The game shall change view modes 
in < 500 ms when the user presses the <C> button”. A scenario associates a stim-
ulus (in this case, the pressing of the <C> button) with a response (changing the 
view mode) that is measured using a response measure (< 500 ms). A complete 
quality attribute scenario adds three other parts: the source of the stimulus (in 
this case, the user), the artifact affected (in this case, because we are dealing 
with end-to-end latency, the artifact is the entire system) and the environment 
(are we in normal operation, startup, degraded mode, or some other mode?). In 
total, then, there are six parts of a completely well-specified scenario, as shown 
in Figure 2.2.

Stimulus Response

Response
Measure

Source
of Stimulus

Artifact

Environment

3
2

1

4

FIGURE 2.2 The six parts of a quality attribute scenario
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Scenarios are testable, falsifiable hypotheses about the quality attribute be-
havior of the system under consideration. Because they have explicit stimuli and 
responses, we can evaluate a design in terms of how likely it is to support the 
scenario, and we can take measurements and test a prototype or fully fleshed-out 
system for whether it satisfies the scenario in practice. If the analysis (or proto-
typing results) indicates that the scenario’s response goal cannot be met, then the 
hypothesis is deemed falsified.

As with other requirements, scenarios should be prioritized. This can be 
achieved by considering two dimensions that are associated with each scenario 
and that are assigned a rank of importance:

§	The first dimension corresponds to the importance of the scenario with re-
spect to the success of the system. This is ranked by the customer.

§	The second dimension corresponds to the degree of technical risk associ-
ated with the scenario. This is ranked by the architect.

A low/medium/high (L/M/H) scale is used to rank both dimensions. Once 
the dimensions have been ranked, scenarios are prioritized by selecting those that 
have a combination of (H, H), (H, M), or (M, H) rankings.

In addition, some traditional requirements elicitation techniques can be 
modified slightly to focus on quality attribute requirements, such as Joint Re-
quirements Planning (JRP), Joint Application Design (JAD), discovery prototyp-
ing, and accelerated systems analysis.

But whatever technique you use, do not start design without a prioritized list 
of measurable quality attributes! While stakeholders might plead ignorance (“I 
don’t know how fast it needs to be; just make it fast!”), you can almost always 
elicit at least a range of possible responses. Instead of saying the system should 
be “fast”, ask the stakeholder if a 10-second response time is acceptable. If that 
is unacceptable, ask if 5 seconds is OK, or 1 second. You will find that, in most 
cases, users know more than they realize about their requirements, and you can at 
least “box them in” to a range.

The Quality Attribute Workshop and the Utility Tree

The Quality Attribute Workshop (QAW)

The QAW is a facilitated, stakeholder-focused method to generate, pri-
oritize, and refine quality attribute scenarios. A QAW meeting is ideally 
enacted before the software architecture has been defined although, in 
practice, we have seen the QAW being used at all points in the software 
development life cycle. The QAW is focused on system-level concerns 
and specifically the role that software will play in the system. The steps of 
the QAW are as follows:
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1. QAW Presentation and Introductions

The QAW facilitators describe the motivation for the QAW and explain 
each step of the method.

2. Business Goals Presentation

A stakeholder representing the project’s business concerns presents the 
system’s business context, broad functional requirements, constraints, 
and known quality attribute requirements. The quality attributes that 
will be refined in later QAW steps will be derived from, and should be 
traceable to, the business goals presented in this step. For this reason, 
these business goals must be prioritized.

3. Architectural Plan Presentation

The architect presents the system architectural plans as they currently 
exist. Although the architecture has frequently not been defined yet 
(particularly for greenfield systems), the architect often knows quite a lot 
about it even at this early stage. For example, the architect might already 
know about technologies that are mandated, other systems that this 
system must interact with, standards that must be followed, subsystems 
or components that could be reused, and so forth.

4. Identification of Architectural Drivers

The facilitators share their list of key architectural drivers that they 
assembled during steps 2 and 3 and ask the stakeholders for 
clarifications, additions, deletions, and corrections. The idea here is to 
reach a consensus on a distilled list of architectural drivers that covers 
major functional requirements, business drivers, constraints, and quality 
attributes.

5. Scenario Brainstorming

Given this context, each stakeholder now has the opportunity to express 
a scenario representing that stakeholder’s needs and desires with 
respect to the system. The facilitators ensure that each scenario has an 
explicit stimulus and response. The facilitators also ensure traceability 
and completeness: At least one representative scenario should exist for 
each architectural driver listed in step 4 and should cover all the business 
goals listed in step 2.

6. Scenario Consolidation

Similar scenarios are consolidated where reasonable. In step 7, the 
stakeholders vote for their favorite scenarios, and consolidation helps 
to prevent votes from being spread across several scenarios that are 
expressing essentially the same concern.

7. Scenario Prioritization

Prioritization of the scenarios is accomplished by allocating to each 
stakeholder a number of votes equal to 30 percent of the total number of 
scenarios. The stakeholders can distribute these votes to any scenario 
or scenarios. Once all the stakeholders have voted, the results are tallied 
and the scenarios are sorted in order of popularity.
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8. Scenario Refinement

The highest-priority scenarios are refined and elaborated. The facilitators 
help the stakeholders express these in the form of six-part scenarios: 
source, stimulus, artifact, environment, response, and response 
measure.

The output of the QAW is therefore a prioritized list of scenarios, aligned 
with business goals, where the highest-priority scenarios have been 
explored and refined. A QAW can be conducted in as little as 2–3 hours 
for a simple system or as part of an iteration, and as much as 2 days for a 
complex system where requirements completeness is a goal.

Utility Tree

If no stakeholders are readily available to consult, you still need to decide 
what to do and how to prioritize the many challenges facing the system. 
One way to organize your thoughts is to create a Utility Tree. The Utility 
Tree, such as the one shown in the following figure, helps to articulate 
your quality attribute goals in detail, and then to prioritize them.

Utility

Performance

Usability

Availability

Security

Peak 
load

Latency

Feedback

Learnability

SW failure

Network failure

Authentication

Audit trail

Time servers send traps to the management system at peak 
load. 100% of the traps are successfully processed and stored.

The management system collects data from time server during 
peak load. All data collected within 5 minutes.

User displays time server event history. The list of events 
from the last 24 hours is displayed within 1 second.

A failure occurs in the management system. The management 
system resumes operation in less than 30 seconds.

A user changes a system configuration. The change is logged 
100% of the time.

A new user can configure their account and be operating with 
less than 8 hours of training.

Critical events are reported and visible to the user in < 5 
seconds.

Authentication ensures 99.999% of unauthorized login 
attempts can be detected.

(H, H)

(H, H)

(M, M)

(H, L)

(H, M)

(M, H)

(L, L)

(H, L)
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It works as follows. First write the word “Utility” on a sheet of paper. Then 
write the various quality attributes that constitute utility for your system. 
For example, you might know, based on the business goals for the system, 
that the most important qualities for the system are that the system be fast, 
secure, and easy to modify. In turn, you would write these words under-
neath “Utility”. Next, because we don’t really know what any of those terms 
actually means, we describe the aspect of the quality attribute that we are 
most concerned with. For example, while “performance” is vague, “latency 
of database transactions” is a bit less vague. Likewise, while “modifiability” 
is vague, “ease of adding new codecs” is a bit less vague.

The leaves of the tree are expressed as scenarios, which provide con-
crete examples of the quality attribute considerations that you just enumer-
ated. For example, for “latency of database transactions”, you might create 
a scenario such as “1000 users simultaneously update their own customer 
records under normal conditions with an average latency of 1 second”. 
For “ease of adding new codecs”, you might create a scenario such as 
“Customer requests that a new custom codec be added to the system. 
Codec is added with no side effects in 2 person-weeks of effort”.

Finally, the scenarios that you have created must be prioritized. We do 
this prioritization by using the technique of ranking across two dimensions, 
resulting in a priority matrix such as the following (where the numbers in 
the cells are from a set of system scenarios).

Business 
Importance/
Technical Risk L M H

L 5, 6, 17, 20, 22 1, 14 12, 19

M 9, 12, 16 8, 20 3, 13, 15

H 10, 18, 21 4, 7 2, 11

Our job, as architects, is to focus on the lower-right-hand portion of this table (H, 
H): those scenarios that are of high business importance and high risk. Once we 
have satisfactorily addressed those scenarios, we can move to the (M, H) or (H, 
M) ones, and then move up and to the left until all of the system’s scenarios are 
addressed (or perhaps until we run out of time or budget, as is often the case).

It should be noted that the QAW and the Utility Tree are two different 
techniques that are aimed at the same goal—eliciting and prioritizing the 
most important quality attribute requirements, which will be some of your 
most critical architectural drivers. There is no reason, however, to choose 
between these techniques. Both are useful and valuable and, in our 
experience, they have complementary strengths: The QAW tends to focus 
more on the requirements of external stakeholders, whereas the Utility 
Tree tends to excel at eliciting the requirements of internal stakeholders. 
Making all of these stakeholders happy will go a long way toward ensuring 
the success of your architecture. 
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2.4.3 Primary Functionality

Functionality is the ability of the system to do the work for which it was in-
tended. As opposed to quality attributes, the way the system is structured does not 
normally influence functionality. You can have all of the functionality of a given 
system coded in a single enormous module, or you can have it neatly distrib-
uted across many smaller, highly cohesive modules. Externally the system will 
look and work the same way if you consider only functionality. What matters, 
though, is what happens when you want to make changes to such system. In the 
former case, changes will be difficult and costly; in the latter case, they should be 
much easier and cheaper to perform. In terms of architectural design, allocation 
of functionality to elements, rather than the functionality per se, is what matters. 
A good architecture is one in which the most common changes are localized in a 
single or a few elements, and hence easy to make.

When designing an architecture, you need to consider at least the primary 
functionality. Primary functionality is usually defined as functionality that is crit-
ical to achieve the business goals that motivate the development of the system. 
Other criteria for primary functionality might be that it implies a high level of 
technical difficulty or that it requires the interaction of many architectural ele-
ments. As a rule of thumb, approximately 10 percent of your use cases or user 
stories are likely to be primary.

There are two important reasons why you need to consider primary func-
tionality when designing an architecture:

1. You need to think how functionality will be allocated to elements (usually 
modules) to promote modifiability or reusability, and also to plan work 
assignments.

2. Some quality attribute scenarios are directly connected to the primary func-
tionality in the system. For example, in a movie streaming application, one of 
the primary use cases is, of course, to watch a movie. This use case is asso-
ciated with a performance quality attribute scenario such as “Once the user 
presses play, the movie should begin streaming in no more than 5 seconds”. 
In this case, the quality attribute scenario is directly associated with the pri-
mary use case, so making decisions to support this scenario also requires 
making decisions about how its associated functionality will be supported. 
This is not the case for all quality attributes. For example, an availability sce-
nario can involve recovery from a system failure, and this failure may occur 
when any of the system’s use cases are being executed.

Decisions regarding the allocation of functionality that are made during 
architectural design establish a precedent for how the rest of the functionality 
should be allocated to modules as development progresses. This is usually not the 
work of the architect; instead, this activity is typically performed as part of the 
element interaction design process described in Section 2.2.2.
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Finally, bad decisions that are made regarding the allocation of functional-
ity result in the accumulation of technical debt. (Of course, these decisions may 
reveal themselves to be bad only in hindsight.) This debt can be paid through the 
use of refactoring, although this impacts the project’s rate of progress, or velocity 
(see the sidebar “Refactoring”).

Refactoring

If you refactor a software architecture (or part of one), what you are doing 
is maintaining the same functionality but changing some quality attribute 
that you care about. Architects often choose to refactor because a portion 
of the system is difficult to understand, debug, and maintain. Alternatively, 
they may refactor because part of the system is slow, or prone to failure, 
or insecure.

The goal of the refactoring in each case is not to change the func-
tionality, but rather to change the quality attribute response. (Of course, 
additions to functionality are sometimes lumped together with a refactor-
ing exercise, but that is not the core intent of the refactoring.) Clearly, if we 
can maintain the same functionality but change the architecture to achieve 
different quality attribute responses, these requirement types are orthogo-
nal to each other—that is, they can vary independently.

2.4.4 Architectural Concerns

Architectural concerns encompass additional aspects that need to be considered 
as part of architectural design but that are not expressed as traditional require-
ments. There are several different types of concerns:

§	General concerns. These are “broad” issues that one deals with in creating 
the architecture, such as establishing an overall system structure, the allo-
cation of functionality to modules, the allocation of modules to teams, or-
ganization of the code base, startup and shutdown, and supporting delivery, 
deployment, and updates.

§	Specific concerns. These are more detailed system-internal issues such as 
exception management, dependency management, configuration, logging, 
authentication, authorization, caching, and so forth that are common across 
large numbers of applications. Some specific concerns are addressed in refer-
ence architectures (see Section 2.5.1), but others will be unique to your sys-
tem. Specific concerns also result from previous design decisions. For exam-
ple, you may need to address session management if you previously decided 
to use a reference architecture for the development of web applications.
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§	Internal requirements. These requirements are usually not specified ex-
plicitly in traditional requirement documents, as customers usually seldom 
express them. Internal requirements may address aspects that facilitate de-
velopment, deployment, operation, or maintenance of the system. They are 
sometimes called “derived requirements”.

§	Issues. These result from analysis activities, such as a design review (see 
Section 8.6), so they may not be present initially. For instance, an architec-
tural evaluation may uncover a risk that requires some changes to be per-
formed in the current design.

Some of the decisions surrounding architectural concerns might be trivial 
or obvious. For example, your deployment structure might be a single processor 
for an embedded system, or a single cell phone for an app. Your reference archi-
tecture might be constrained by company policy. Your authentication and autho-
rization policies might be dictated by your enterprise architecture and realized 
in a shared framework. In other cases, however, the decisions required to satisfy 
particular concerns may be less obvious—for example, in exception management 
or input validation or structuring the code base.

From their past experience, wise architects are usually aware of the concerns 
that are associated with a particular type of system and the need to make design 
decisions to address them. Inexperienced architects are usually less aware of such 
concerns; because these concerns tend to be tacit rather than explicit, they may 
not consider them as part of the design process, which often results in problems 
later on.

Architectural concerns frequently result in the introduction of new quality 
attribute scenarios. The concern of “supporting logging”, for example, is too 
vague and needs to be made more specific. Like the quality attribute scenarios 
that are provided by the customer, these scenarios need to be prioritized. For 
these scenarios, however, the customer is the development team, operations, or 
other members of the organization. During design, the architect must consider 
both the quality attribute scenarios that are provided by the customer and those 
scenarios that are derived from architectural concerns.

One of the goals of our revision of the ADD method was to elevate the impor-
tance of architectural concerns as explicit inputs to the architecture design process, 
as will be highlighted in our examples and case studies in Chapters 4, 5, and 6.

2.4.5 Constraints

You need to catalog the constraints on development as part of the architectural 
design process. These constraints may take the form of mandated technologies, 
other systems with which your system needs to interoperate or integrate, laws 
and standards that must be complied with, the abilities and availability of your 
developers, deadlines that are non-negotiable, backward compatibility with older 
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versions of systems, and so on. An example of a technical constraint is the use of 
open source technologies, whereas a nontechnical constraint is that the system 
must obey the Sarbanes-Oxley Act or that it must be delivered by December 15.

A constraint is a decision over which you have little or no control as an ar-
chitect. Your job is, as we mentioned in Chapter 1, to satisfice: to design the best 
system that you can, despite the constraints you face. Sometimes you might be 
able to argue for loosening a constraint, but in most cases you have no choice but 
to design around the constraints.

2.5 Design Concepts: The Building Blocks for Creating 
Structures

Design is not random, but rather is planned, intentional, rational, and directed. 
The process of design may seem daunting at first. When facing the “blank page” 
at the beginning of any design activity, the space of possibilities might seem im-
possibly huge and complex. However, there is some help here. The software ar-
chitecture community has created and evolved, over the course of decades, a body 
of generally accepted design principles that can guide us to create high-quality 
designs with predictable outcomes.

For example, some well-documented design principles are oriented toward 
the achievement of specific quality attributes:

§	To help achieve high modifiability, aim for good modularity, which means 
high cohesion and low coupling.

§	To help achieve high availability, avoid having any single point of failure.
§	To help achieve scalability, avoid having any hard-coded limits for critical 

resources.
§	To help achieve security, limit the points of access to critical resources.
§	To help achieve testability, externalize state.
§	. . . and so forth.

In each case, these principles have been evolved over decades of dealing 
with those quality attributes in practice. In addition, we have evolved reusable 
realizations of these abstract approaches in design and, eventually, in code. We 
call these reusable realizations design concepts, and they are the building blocks 
from which the structures that make up the architecture are created. Different 
types of design concepts exist, and here we discuss some of the most commonly 
used, including reference architectures, deployment patterns, architectural pat-
terns, tactics, and externally developed components (such as frameworks). While 
the first four are conceptual in nature, the last one is concrete.
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2.5.1 Reference Architectures

Reference architectures are blueprints that provide an overall logical structure 
for particular types of applications. A reference architecture is a reference model 
mapped onto one or more architectural patterns. It has been proven in business 
and technical contexts, and typically comes with a set of supporting artifacts that 
eases its use.

An example of a reference architecture for the development of web applica-
tions is shown in Figure 2.3 on the next page. This reference architecture estab-
lishes the main layers for this type of application—presentation, business, and 
data—as well as the types of elements that occur within the layers and the re-
sponsibilities of these elements, such as UI components, business components, 
data access components, service agents, and so on. Also, this reference archi-
tecture introduces cross-cutting concerns, such as security and communication, 
that need to be addressed. As this example shows, when you select a reference 
architecture for your application, you also adopt a set of issues that you need to 
address during design. You may not have an explicit requirement related to com-
munications or security, but the fact that these elements are part of the reference 
architecture require you to make design decisions about them.

Reference architectures may be confused with architectural styles, but these 
two concepts are different. Architectural styles (such as “Pipe and Filter” and 
“Client Server”) define types of components and connectors in a specified topol-
ogy that are useful for structuring an application either logically or physically. 
Such styles are technology and domain agnostic. Reference architectures, in 
contrast, provide a structure for applications in specific domains, and they may 
embody different styles. Also, while architectural styles tend to be popular in ac-
ademia, reference architectures seem to be preferred by practitioners—which is 
also why we favor them in our list of design concepts.

While there are many reference architectures, we are not aware of any cata-
log that contains an extensive list of them.

2.5.2 Architectural Design Patterns

Design patterns are conceptual solutions to recurring design problems that exist 
in a defined context. While design patterns originally focused on decisions at the 
object scale, including instantiation, structuring, and behavior, today there are 
catalogs with patterns that address decisions at varying levels of granularity. In 
addition, there are specific patterns to address quality attributes such as security 
or integration.

While some people argue for the differentiation between what they consider 
to be architectural patterns and the more fine-grained design patterns, we believe 
there is no principled difference that can be solely attributed to scale. We consider 
a pattern to be architectural when its use directly and substantially influences the 
satisfaction of some of the architectural drivers (see Section 2.2).
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FIGURE 2.3 Example reference architecture for the development of web 
applications from the Microsoft Application Architecture Guide (Key: UML)

Figure 2.4 shows an example architectural pattern that is useful for struc-
turing the system, the Layers pattern. When you choose a pattern such as this 
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one, you must decide how many layers you will need for your system. Figure 2.5 
shows a pattern to support concurrency, which is useful to increase performance. 
This pattern, too, needs to be instantiated—that is, it needs to be adapted to the 
specific problem and design context. Instantiation is discussed in Chapter 3.

Although reference architectures may be considered as a type of pattern, 
we prefer to consider them separately because of the important role they play 
in structuring an application and because they are more directly connected to 
technology stacks. Also, a reference architecture typically incorporates other 
patterns and often constrains these patterns. For example, the reference archi-
tecture for web applications shown in Figure 2.3 incorporates the Layers pat-
tern but also establishes how many layers need to be used. This reference archi-
tecture also incorporates other patterns such as an Application Facade and Data 
Access Components.

FIGURE 2.4 The Layers pattern for structuring an application from Pattern-
Oriented Software Architecture
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FIGURE 2.5 The Half-Sync/Half-Async pattern to support concurrency from 
Pattern-Oriented Software Architecture (Source: Softserve)

2.5.3 Deployment Patterns

Another type of pattern that we prefer to consider separately is deployment pat-
terns. These patterns provide models on how to physically structure the system to 
deploy it. Some deployment patterns, such as the one shown in Figure 2.6, are use-
ful to establish an initial physical structure of the system in terms of tiers (phys-
ical nodes). More specialized deployment patterns, such as the Load-Balanced 
Cluster in Figure 2.7, are used to satisfy quality attributes such as availability, 
performance, and security.
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FIGURE 2.6 Four-tier deployment pattern from the Microsoft Application 
Architecture Guide (Key: UML)

FIGURE 2.7 Load-Balanced Cluster deployment pattern for performance from the 
Microsoft Application Architecture Guide (Key: UML)

In general, an initial structure for the system is obtained by mapping the log-
ical elements that are obtained from reference architectures (and other patterns) 
into the physical elements defined by deployment patterns.

2.5.4 Tactics

Architects can use collections of fundamental design techniques to achieve a re-
sponse for particular quality attributes. We call these architectural design primitives 
tactics. Tactics, like design patterns, are techniques that architects have been using 
for years. We do not invent tactics, but simply capture what architects actually have 
done in practice, over the decades, to manage quality attribute response goals.
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Events
arrive

Response
generated
within time
constraints

Tactics
to control
performance

FIGURE 2.8 Tactics mediate events and responses.

Tactics are design decisions that influence the control of a quality attribute 
response. For example, if you want to design a system to have low latency or 
high throughput, you could make a set of design decisions that would mediate the 
arrival of events (requests for service), resulting in responses that are produced 
within some time constraints, as shown in Figure 2.8.

Tactics are both simpler and more primitive than patterns. They focus on the 
control of a single quality attribute response (although they may, of course, trade 
off this response with other quality attribute goals). Patterns, in contrast, typi-
cally focus on resolving and balancing multiple forces—that is, multiple quality 
attribute goals. By way of analogy, we can say that a tactic is an atom, whereas a 
pattern is a molecule.

Tactics provide a top-down way of thinking about design. A tactics cate-
gorization begins with a set of design objectives related to the achievement of a 
quality attribute, and presents the architect with a set of options from which to 
choose. These options then need to be further instantiated through some combi-
nation of patterns, frameworks, and code.

For example, in Figure 2.9, the design objectives for performance are “Con-
trol Resource Demand” and “Manage Resources”. An architect who wants to 
create a system with “good” performance needs to choose one or more of these 
options. That is, the architect needs to decide if controlling resource demand is 
feasible, and if managing resources is feasible. In some systems, the events arriv-
ing at the system can be managed, prioritized, or limited in some way. If this is 
not possible, then the architect can manage resources only as part of an attempt 
to generate responses within acceptable time constraints. Within the “Manage 
Resources” category, an architect might choose to increase resources, introduce 
concurrency, maintain multiple copies of computations, maintain multiple copies 
of data, and so forth. These tactics then need to be instantiated. As an example, 
an architect might choose the Half-Sync/Half-Async pattern (see Figure 2.5) as 
a way of introducing (and managing) concurrency, or the Load-Balanced Cluster 
deployment pattern (see Figure 2.7) to maintain multiple copies of computations. 
As we will see in Chapter 3, the choice, combination, and tailoring of tactics and 
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patterns are some of the key steps of the ADD process. There are existing tactics 
categorizations for the quality attributes of availability, interoperability, modifi-
ability, performance, security, testability, and usability.

2.5.5 Externally Developed Components

Patterns and tactics are abstract in nature. However, when you are designing 
a software architecture, you need to make these design concepts concrete and 
closer to the actual implementation. There are two ways to achieve this: You can 
code the elements obtained from tactics and patterns or you can associate tech-
nologies with one or more of these elements in the architecture. This “buy ver-
sus build” choice is one of the most important decisions you will make as an 
architect.

We consider technologies to be externally developed components, because 
they are not created as part of the development project. Several types of exter-
nally developed components exist:

§	Technology families. A technology family represents a group of spe-
cific technologies with common functional purposes. It can serve as a 
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FIGURE 2.9 Performance tactics from Software Architecture in Practice
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placeholder until a specific product or framework is selected. An example is 
a relational database management system (RDBMS) or an object-oriented 
to relational mapper (ORM). Figure 2.10 shows different technology fami-
lies in the Big Data domain (in regular text).

§	Products. A product (or software package) refers to a self-contained func-
tional piece of software that can be integrated into the system that is being 
designed and that requires only minor configuration or coding. An example 
is a relational database management system, such as Oracle or Microsoft 
SQL Server. Figure 2.10 shows different products in the Big Data domain 
(in italics).

§	Application frameworks. An application framework (or just framework) is 
a reusable software element, constructed out of patterns and tactics, that 
provides generic functionality addressing recurring domain and quality 
attribute concerns across a broad range of applications. Frameworks, when 
carefully chosen and properly implemented, increase the productivity of 
programmers. They do so by enabling programmers to focus on business 
logic and end-user value, rather than underlying technologies and their im-
plementations. As opposed to products, framework functions are generally 
invoked from the application code or are “injected” using some type of 
aspect-oriented approach. Frameworks usually require extensive configura-
tion, typically through XML files or other approaches such as annotations 
in Java. A framework example is Hibernate, which is used to perform ob-
ject-oriented to relational mapping in Java. Several types of frameworks 
are available: Full-stack frameworks, such as Spring, are usually associated 
with reference architectures and address general concerns across the differ-
ent elements of the reference architecture, while non-full-stack frameworks, 
such as JSF, address specific functional or quality attribute concerns.

§	Platforms. A platform provides a complete infrastructure upon which to 
build and execute applications. Examples of platforms include Java, .Net, or 
and Google Cloud.

The selection of externally developed components, which is a key aspect of 
the design process, can be a challenging task because of their extensive number. 
Here are a few criteria you should consider when selecting externally developed 
components:

§	Problem that it addresses. Is it something specific, such as a framework for 
object-oriented to relational mapping or something more generic, such as a 
platform?

§	Cost. What is the cost of the license and, if it is free, what is the cost of sup-
port and education?

§	Type of license. Does it have a license that is compatible with the project 
goals?
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§	Support. Is it well supported? Is there extensive documentation about the 
technology? Is there an extensive user or developer community that you can 
turn to for advice?

§	Learning curve. How hard is it to learn this technology? Have others in 
your organization already mastered it? Are there courses available?

§	Maturity. Is it a technology that has just appeared on the market, which may 
be exciting but still relatively unstable or unsupported?

§	Popularity. Is it a relatively widespread technology? Are there positive testi-
monials or adoption by mature organizations? Will it be easy to hire people 
who have deep knowledge of it? Is there an active developer community or 
user group?

§	Compatibility and ease of integration. Is it compatible with other technolo-
gies used in the project? Can it be integrated easily in the project?

§	Support for critical quality attributes. Does it limit attributes such as per-
formance? Is it secure and robust?

§	Size. Will the use of the technology have a negative impact on the size of 
the application under development?

Unfortunately, the answers to these questions are not always easy to find 
and the selection of a particular technology may require you do some research or, 
eventually, to create prototypes that will help you in the selection process. These 
criteria will have a significant effect on your total cost of ownership.

2.6 Architecture Design Decisions

As we said at the beginning of this chapter, design is the process of making de-
cisions. But the act of making a decision is a process, not a moment in time. 
Experienced architects, when faced with a design challenge, typically entertain a 
set of “candidate” decisions (as shown in Figure 2.1); from this set, they choose a 
best candidate and instantiate that. They might select this “best” candidate based 
on experience, constraints, or some form of analysis such as prototyping or sim-
ulation. The reality is that an architect will often make a choice and “ride the 
horse until it drops”—that is, commit to a decision and revisit it only if it ap-
pears to be compromising the success of the project. These decisions have serious 
consequences!

Recall that, in the early stages of design, decisions focus on the biggest, 
most critical choices that will have substantial downstream consequences: refer-
ence architectures, major technologies (such as frameworks), and patterns. Ref-
erence architectures, deployment patterns, and other kinds of patterns have been 
widely discussed—there are many books, websites, and conferences devoted to 
the creation and validation of patterns and pattern languages. Nevertheless, the 
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output of these activities is always a set of documented patterns. Interpreting 
the patterns from a pattern catalog is a critical part of the selection activity for 
an architect. Each candidate pattern must be chosen and its instantiation must 
be analyzed. For example, if you chose the Layers pattern from Figure 2.4, you 
would still have many decisions to make: how many layers there will be, how 
strict the layering will be, which specific services will be placed into each layer, 
what the interfaces between these functions will be, and so forth. If you chose 
the Load-Balanced Cluster deployment pattern from Figure 2.7, you would have 
to decide how many servers will be balanced, how many load balancers you will 
use, where these servers and load balancers will physically reside, which kinds 
of networks will connect these servers, which form of encryption you will use on 
those network connections, which form of health monitoring the load balancers 
will employ, and so forth. These decisions are important and will affect the suc-
cess of the instantiated pattern, so they need to be analyzed. In addition, the qual-
ity of the implementation of these decisions will affect the success of the pattern. 
As we like to quip, the architecture giveth and the implementation taketh away.

Furthermore, the many catalogs and web pages that present design concepts 
use different conventions and notations. The focus of our book is on the design 
method and how it can be used with these external sources. For this reason we 
just take examples from outside sources and show them here as they were origi-
nally presented. This book is not intended to be another design patterns catalog—
we want to alert you to the presence of these catalogs and show how they can be 
an incredibly useful resource for an architect, but they must be interpreted and 
used with care! In fact, one of your many jobs as an architect is to understand and 
interpret these catalogs, with their different notations and conventions. This is the 
reality that you will have to deal with.

Finally, once a design decision has been made, you should think about how 
you will document it. You could, of course, do no documentation. This is, in fact, 
what is most common in practice. Architectural concepts are often vague and 
conveyed informally, in “tribal knowledge”: personal communications, emails, 
naming conventions, and so forth. Alternatively, you could create and maintain 
full, formal documentation, as is done for some projects with demanding qual-
ity attribute requirements, such as safety-critical or high-security systems. If you 
are designing flight-control software, you will probably end up at this end of the 
spectrum. In between these endpoints is a broad set of possibilities, and in this 
space we see less formal (and less costly) forms of architecture documentation, 
such as sketches (as we will discuss in Section 3.7).

The decision of what, when, and how to document should be risk based. You 
should ask yourself: What is the risk of not documenting this decision? Could it 
be misinterpreted and undermined by future developers? Could it contribute to 
near-term or long-term problems in the system? For example, if the rationale for 
layering is not carefully documented, the layering will inevitably break down, 
losing coherence and tending toward increased coupling. Over time, this trend 
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will increase the system’s technical debt, making it harder to find and fix bugs 
or add new features. To take another example, if the rationale for allocation of a 
critical resource is not documented, that resource might become an unintended 
contention area, resulting in bottlenecks and failures.

2.7 Summary

In this chapter, we introduced the idea of design as a set of decisions to satisfy 
requirements and constraints. We also introduced the notion of “architectural” 
design and showed that it does not differ from design in general, other than that it 
addresses the satisfaction of architectural drivers: the purpose, primary function-
ality, quality attribute requirements, architectural concerns, and constraints. What 
makes a decision “architectural”? A decision is architectural if it has nonlocal 
consequences and those consequences matter to the achievement of an architec-
tural driver.

We also discussed why architectural design is so important: because it is 
the embodiment of early, far-reaching, hard-to-change decisions. These decisions 
will help you meet your architectural drivers, will determine much of your proj-
ect’s work-breakdown structure, and will affect the tools, skills, and technologies 
needed to realize the system. Thus architectural design decisions should be scru-
tinized well, as their consequences are profound. In addition, architecture is a key 
enabler of agility.

Architectural design is guided by certain principles. For example, to achieve 
good modularity, high coupling, and low cohesion, the wise architect will prob-
ably include some form of layering in the architecture being designed. Similarly, 
to achieve high availability, an architect will likely choose a pattern involving 
some form of redundancy and failover, such as active–passive redundancy, where 
an active server sends real-time updates to a passive server, so that the passive 
server can replace the active server in case it fails, with no loss of state.

Design concepts, such as reference architectures, deployment patterns, ar-
chitectural patterns, tactics, and externally developed components, are the build-
ing blocks of design, and they form the foundation for architectural design as it is 
performed using ADD. As you will see in our step-by-step explanation of ADD in 
Chapter 3, some of the most important design decisions that an architect makes 
are how design concepts are selected, how they are instantiated, and how they 
are combined. Also, in Appendix A, we present a design concepts catalog that 
includes several instances of the design concepts presented here.

From these foundations, an architecture can be confidently and predictably 
constructed.
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2.8 Further Reading

A more in-depth treatment of scenarios and architectural drivers can be found in 
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed., 
Addison-Wesley, 2012. Also found in this book is an extensive discussion of ar-
chitectural tactics, which are useful in guiding an architecture to achieve quality 
attribute goals. Likewise, this book contains an extensive discussion of QAW and 
Utility Trees.

The Mission Thread Workshop is discussed in R. Kazman, M. Gagliardi, 
and W. Wood, “Scaling Up Software Architecture Analysis”, Journal of Sys-
tems and Software, 85, 1511–1519, 2012; and in M. Gagliardi, W. Wood, and 
T. Morrow, Introduction to the Mission Thread Workshop, Software Engineering 
Institute Technical Report CMU/SEI-2013-TR-003, 2013.

An overview of discovery prototyping, JRP, JAD, and accelerated systems 
analysis can be found in any competent book on systems analysis and design, 
such as J. Whitten and L. Bentley, Systems Analysis and Design Methods, 7th 
ed., McGraw-Hill, 2007. The combination of architectural approaches with Agile 
methods will be discussed in Chapter 9.

A catalog of reference architectures and deployment patterns appears in the 
book by the Microsoft Patterns and Practices Team: Microsoft® Application Ar-
chitecture Guide, 2nd ed., Microsoft Press, 2009. This book also provides an ex-
tensive list of architectural concerns associated with the reference architectures 
that are documented.

An extensive collection of architectural design patterns for the construction 
of distributed systems can be found in F. Buschmann, K. Henney, and D. Schmidt, 
Pattern-Oriented Software Architecture Volume 4: A Pattern Language for Dis-
tributed Computing, Wiley, 2007. Other books in the POSA (Patterns Of Soft-
ware Architecture) series provide additional pattern catalogs. Many other pattern 
catalogs specializing in particular application domains and technologies exist. A 
few examples are listed here:

§	E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

§	M. Fowler. Patterns of Enterprise Application Architecture. Addi-
son-Wesley, 2003.

§	E. Fernandez-Buglioni. Security Patterns in Practice: Designing Secure 
Architectures Using Software Patterns. Wiley, 2013.

§	G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2004.

The evaluation and selection of software packages is discussed in A. Jadhav 
and R. Sonar, “Evaluating and Selecting Software Packages: A Review”, Journal 
of Information and Software Technology, 51, 555–563, 2009.
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The “bible” for software architecture documentation is P. Clements, 
F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and 
J. Stafford, Documenting Software Architectures: Views and Beyond, 2nd ed., 
Addison-Wesley, 2011.

The technology family tree for the Big Data application domain is based on the 
Smart Decisions Game by H. Cervantes, S. Haziyev, O. Hrytsay, and R. Kazman, 
which can be found at http://smartdecisionsgame.com.

../../../../../smartdecisionsgame.com/default.htm
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3
The Architecture Design 
Process

In this chapter we provide a detailed discussion of ADD, the design method 
that is the focus of this book. We begin with an overview of the method and of 
each one of its steps. This overview is followed by more detailed discussions 
of different aspects that need to be considered when performing these steps. 
We suggest different roadmaps that provide guidance on when different types 
of design concepts can be used depending on which type of system is being 
designed. We also discuss the identification and selection of design concepts, 
the production of structures from these design concepts, the definition of inter-
faces, the production of preliminary documentation, and, finally, a technique to 
track design progress.

3.1 The Need for a Principled Method

In Chapter 2, we discussed the various concepts associated with design. The ques-
tion is, how do you actually perform design? Performing design to ensure that the 
drivers are satisfied requires a principled method. By “principled”, we refer to a 
method that takes into account all of the relevant aspects that are needed to pro-
duce an adequate design. Such a method provides guidance that is necessary to 
guarantee that your drivers are satisfied. To achieve this goal in a cost-effective, 
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repeatable way, you need a method that guides you in combining and incorporat-
ing reusable design concepts.

Performing design adequately is important because architecture design de-
cisions have significant consequences at different points in a project’s lifetime. 
For example, during a pre-sales phase, an appropriate design will allow for a 
better estimation of cost, scope, and schedule. During development, an appro-
priate design will be helpful to avoid later rework and facilitate development and 
deployment. Finally, a clear understanding of what architectural design involves 
is necessary to better manage aspects of technical debt.

3.2 Attribute-Driven Design 3.0

Architecture design is performed in a series of rounds across the development of a 
software project. Each design round may take place within a project increment such 
as a sprint. Within these rounds, a series of design iterations is performed. Perhaps 
the most important characteristic of the ADD method is that it provides detailed, 
step-by-step guidance on the tasks that have to be performed inside the design it-
erations (see Chapter 7 for a comparison with other design methods). When ADD 
appeared, it was the first method to focus specifically on quality attributes and their 
achievement through the selection of different types of structures and their repre-
sentation through views. Another important contribution of ADD was that it rec-
ognized that analysis and documentation are an integral part of the design process. 
Although ADD was and is a major contribution in the field of software architecture, 
we believe that its adoption within the practitioner community has been limited by 
a number of inherent weaknesses, as discussed in Section 1.4.

ADD has been used successfully for more than 15 years. The world of soft-
ware has changed dramatically since ADD’s introduction, however, and even 
more since version 2.0 was published in 2006. For this reason, and to address the 
weaknesses of version 2.0, we have decided to create ADD 3.0. Henceforth, we 
will simply refer to this method as ADD. Figure 3.1 shows the steps and artifacts 
associated with ADD and in the following subsections we provide an overview of 
the activities in each of its steps.

3.2.1 Step 1: Review Inputs

Before starting a design round, you need make sure that the inputs to the design 
process are available and correct. First, you need to ensure that you are clear 
about the purpose for the design activities that will ensue. The purpose may be, 
for example, to produce a design for early estimation, to refine an existing design 
to build a new increment of the system, or to design and generate a prototype to 
mitigate certain technical risks (see Section 2.4.1 for a discussion of the design 
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purpose). Also, you need to make sure that the other drivers needed for the design 
activity are available. These include primary functional requirements, quality at-
tribute scenarios, architectural constraints, and concerns. Finally, if this is not the 
first design round, or if this is not greenfield development, an additional input that 
you need to consider is the existing architecture design.

At this point, we assume that primary functionality and quality attribute sce-
narios have been prioritized, ideally by your most important project stakeholders. 
(If not, there are techniques that you can employ to elicit and prioritize them, as 
discussed in Sections 2.4.2 and 2.4.3.) You, as the architect, must now “own” these 
drivers. You need to check, for example, whether any important stakeholders were 
overlooked in the original requirements elicitation process, or whether any business 
conditions have changed since the prioritization was performed. These drivers re-
ally do “drive” design, so getting them right and getting their priority right is cru-
cial. We cannot stress this point strongly enough. Software architecture design, like 

Legend:

FIGURE 3.1 Steps and artifacts of ADD version 3.0
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most activities in software engineering, is a “garbage in, garbage out” process. The 
results of ADD cannot be good if the inputs are poorly formed.

As a rule of thumb, you should be able to start designing if, besides the de-
sign purpose, constraints, and initial architectural concerns, you have established 
the primary use cases and the most important quality attribute scenarios. This, 
of course, does not mean you will make decisions only about these drivers: You 
still need to address other quality attribute scenarios, use cases and architectural 
concerns, but these can be treated later on.

The drivers become part of an architectural design backlog that you should 
use to perform the different design iterations. We discuss this idea in more depth 
in Section 3.8.1.

3.2.2 Step 2: Establish the Iteration Goal by Selecting Drivers

A design round represents the architecture design activities performed within a 
development cycle if an iterative development model is used, or the whole set of 
architecture design activities if a waterfall model is used. Through one or more 
rounds, you produce an architecture that suits the established design purpose.

A design round is generally performed in a series of design iterations, where 
each iteration focuses on achieving a particular goal. Such a goal typically involves 
designing to satisfy a subset of the drivers. For example, an iteration goal could be to 
create structures from elements that will support a particular performance scenario, 
or that will enable a use case to be achieved. For this reason, when performing de-
sign, you need to establish a goal before you start a particular design iteration.

As we will discuss in Section 3.3, depending on the type of system whose 
architecture is being designed, there may be a “best”—or at least strongly sug-
gested—ordering of the iteration goals that need to be addressed. For example, 
for a greenfield system in a mature domain, your initial goal is typically to iden-
tify an overall structure for the system by choosing a reference architecture.

3.2.3 Step 3: Choose One or More Elements of the System to Refine

Satisfying drivers requires you to produce one or more architectural structures. 
These structures are composed of interrelated elements, and those elements are 
generally obtained by refining other elements that you previously identified in an 
earlier iteration. Refinement can mean decomposition into finer-grained elements 
(top-down approach), combination of elements into coarser-grained elements 
(bottom-up approach), or improvement of previously identified elements. For 
greenfield development, you can start by establishing the system context and then 
selecting the only available element—that is, the system itself—for refinement 
by decomposition. For existing systems or for later design iterations in green-
field systems, you normally choose to refine elements that were identified in prior 
iterations.
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The elements that you will select are the ones that are involved in the sat-
isfaction of specific drivers. For this reason, when design is performed for an 
existing system, you need to have a good understanding of the elements that are 
part of the as-built architecture of the system. This may involve some “detective 
work”, reverse engineering, or discussions with developers.

We have presented steps 2 and 3 in the order they appear in the method. That 
is to say, step 2 precedes step 3. However, in some cases you may need to reverse 
this order. For example, when designing a greenfield system or when fleshing out 
certain types of reference architectures (as we will show in Chapter 5), you will, 
at least in the early stages of design, focus on elements of the system and start the 
iteration by selecting a particular element and then consider the drivers that you 
want to address.

3.2.4 Step 4: Choose One or More Design Concepts That Satisfy 
the Selected Drivers

Choosing the design concepts is probably the most difficult decision you will 
face in the design process, because it requires you to identify alternatives among 
design concepts that can be used to achieve your iteration goal, and to make a 
selection from these alternatives. As we saw in Section 2.5, different types of 
design concepts exist, and, for each type, there may be many options. This can 
result in a considerable number of alternatives that need to be analyzed to make a 
choice. In Section 3.4, we discuss the identification and selection of design con-
cepts in more detail.

3.2.5 Step 5: Instantiate Architectural Elements, Allocate 
Responsibilities, and Define Interfaces

Once you have selected one or more design concepts, you must make another 
design decision, which involves instantiating elements out of the design concepts 
that you selected. For example, if you selected the Layers pattern as a design 
concept, you must decide how many layers will be used, since the pattern itself 
does not prescribe a specific number. In this example, the layers are the elements 
that are instantiated. In certain cases, instantiation can mean configuration. For 
example, you may have dedicated an iteration to selecting technologies and as-
sociating them with the elements in your design. In further iterations, you might 
refine these elements by making finer-grained decisions about how they should 
be configured to support a particular driver, such as a quality attribute.

After instantiating the elements, you need to allocate responsibilities to 
each of them. For example, in a typical web-based enterprise system, at least 
three layers are usually present: the presentation layer, the business layer, and 
the data layer. The responsibilities of these layers differ: The responsibilities of 
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the presentation layer include managing all of the user interactions, whereas the 
responsibilities of the data layer include managing the persistence of data.

Instantiating elements is just one of the tasks you need to perform to cre-
ate structures that satisfy a driver or a concern. The elements that have been 
instantiated also need to be connected, to allow them to collaborate with one 
another. This requires the existence of relationships between the elements and 
the exchange of information through some kind of interface. The interface is a 
contractual specification of how information should flow between the elements. 
Section 3.5 provides more details on how the different types of design concepts 
are instantiated and how structures are created, and Section 3.6 discusses how 
interfaces can be defined.

3.2.6 Step 6: Sketch Views and Record Design Decisions

At this point, you have finished performing the design activities for the iteration. 
Nevertheless, you may not have taken any actions to ensure that the views—the 
representations of the structures you created—are preserved. For instance, if you 
performed the previous step in a conference room, you probably ended up with a 
series of diagrams on a whiteboard. This information is essential, and you need to 
capture it so that you can later analyze and communicate it to other stakeholders.

The views that you have created are almost certainly incomplete, so these 
diagrams may need to be revisited and refined in a subsequent iteration. This is 
typically done to accommodate elements resulting from other design decisions 
that you will make to support additional drivers. This factor explains why we 
speak of “sketching” the views in ADD—that is, creating a preliminary type of 
documentation. The more formal, more fully fleshed-out documentation of these 
views—should you choose to produce them—occurs only after a number of de-
sign iterations have been finished (as part of the architectural documentation ac-
tivity discussed in Section 1.2.2).

In addition to storing the sketches of the views, you should record the sig-
nificant decisions that are made in the design iteration, and the reasons that led 
to these decisions (i.e., the rationale), to facilitate later analysis and understand-
ing of the decisions. For example, decisions about important tradeoffs might be 
recorded at this time. During a design iteration, decisions are primarily made in 
steps 4 and 5. Section 3.7 provides further information on how to create prelimi-
nary documentation during design, including creating sketches, recording design 
decisions and their rationale.

3.2.7 Step 7: Perform Analysis of Current Design and Review 
Iteration Goal and Achievement of Design Purpose

By the time you reach step 7, you should have created a partial design that ad-
dresses the goal established for the iteration. Making sure that this is actually the 
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case is a good idea, so as to avoid unhappy stakeholders and later rework. You 
can perform the analysis yourself by reviewing the sketches of the views and 
design decisions that you recorded, but an even better idea is to have someone 
else help you review this design. We do this for the same reason that organiza-
tions frequently have a separate testing/quality assurance group: Another person 
will not share your assumptions, and will have a different experience base and a 
different perspective. Pulling in someone with a different point of view can help 
you find “bugs”, in both code and architecture. We discuss analysis in more depth 
in Chapter 8.

Once the design performed in the iteration has been analyzed, you should 
review the state of your architecture in terms of the established design purpose. 
This means considering if, at this point, you have performed enough design iter-
ations to satisfy the drivers that are associated with the design round as well as 
considering whether the design purpose has been achieved or if additional de-
sign rounds are needed in future project increments. Section 3.8 describes simple 
techniques that allow you to keep track of design progress.

3.2.8 Iterate If Necessary

Ideally, you should perform additional iterations and repeat steps 2 to 7 for every 
driver that was considered as part of the input. More often than not, such itera-
tions are not possible because of time or resource constraints that force you to 
stop the design activities and move on to the next activities in the development 
process—typically implementation.

What are the criteria for evaluating if more design iterations are necessary? 
We let risk be our guide. You should at least have addressed the drivers with the 
highest priorities. Ideally, you should have assured that critical drivers are satis-
fied or, at least, that the design is “good enough” to satisfy them. Finally, when 
performing iterative development, you can choose to perform one design round 
in every project iteration. The first rounds should focus on addressing the driv-
ers, while subsequent rounds focus on making design decisions for other require-
ments that were not selected as drivers but that need to be addressed nonetheless.

3.3 Following a Design Roadmap According  
to System Type

When writing, you might have experienced the much-dreaded “fear of the blank 
page”. Similarly, when you start designing an architecture, you may face a sit-
uation in which you ask yourself, “How do I begin designing?” To answer this 
question, you need to consider which type of system you are designing.
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Design of software systems falls into three broad categories: (1) the design 
of a greenfield system for a mature (i.e., well-known) domain; (2) the design of a 
greenfield system for a domain that is novel (i.e., a domain that has a less estab-
lished infrastructure and knowledge base); and (3) the design for making changes 
to an existing system (brownfield). Each one of these categories involves a differ-
ent roadmap in terms of the sequence of goals that you should perform across the 
design iterations.

3.3.1 Design of Greenfield Systems for Mature Domains

The design of a greenfield system for a mature domain occurs when you are de-
signing an architecture for a system that is built from “scratch” and when this 
type of system is well known and understood—that is, when there is an estab-
lished infrastructure of tools and technologies, and an associated knowledge 
base. Examples of mature domains include the following:

§	Traditional desktop applications
§	Interactive applications that run on a mobile device
§	Enterprise applications accessed from a web browser, which store informa-

tion in a relational database, and which provide support for partially or fully 
automating business processes

Since these types of applications are relatively common, some general archi-
tectural concerns associated with their design are well known, well supported, 
and well documented. If you are designing a new system that falls into this cate-
gory, we recommend the following roadmap (shown in Figure 3.2).

The goal of your initial design iteration(s) should be to address the general 
architectural concern of establishing an initial overall system structure. Is this 
to be a three-tier client-server application, a peer-to-peer application, a mobile 
app connecting to a Big Data back-end, and so on? Each of these options will 
lead you to different architectural solutions, and these solutions will help you to 
achieve your drivers. To achieve this iteration goal, you will select some design 
concepts. Specifically, you will typically choose one or more reference architec-
tures and deployment patterns (see Sections 2.5.1 and 2.5.3). You may also se-
lect some externally developed components, such as frameworks. The types of 
frameworks that are typically chosen in early iterations are either “full-stack” 
frameworks that are associated with the selected reference architectures, or more 
specific frameworks that are associated with elements established by the refer-
ence architecture (see Section 2.5.5). In this first iteration, you should review all 
of your drivers to select the design concepts, but you will probably pay more 
attention to the constraints and to quality attributes that are not associated with 
specific functionalities and that favor particular reference architectures or require 
particular deployment configurations. Consider an example: If you select a ref-
erence architecture for Big Data systems, you have presumably chosen a quality 
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attribute such as low latency with high data volumes as your most important 
driver. Of course, you will make many subsequent decisions to flesh out this early 
choice, but this driver has already exerted a great influence on your design such 
as the selection of a particular reference architecture.

The goal of your next design iteration(s) should be to identify structures 
that support the primary functionality. As noted in Section 2.4.3, allocation of 
functionality (i.e., use cases or user stories) to elements is an important part of 
architectural design because it has critical downstream implications for modifi-
ability and allocation of work to teams. Furthermore, once functionality has been 
allocated, the elements that support it can be refined in later iterations to support 
the quality attributes associated with these functionalities. For example, a per-
formance scenario may be associated with a particular use case. Achieving the 
performance goal may require making design decisions across all of the elements 
that participate in the achievement of this use case. To allocate functionality, you 
usually refine the elements that are associated with the reference architecture by 
decomposing them. A particular use case may require the identification of mul-
tiple elements. For example, if you have selected a web application reference 
architecture, supporting a use case will probably require you to identify modules 
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FIGURE 3.2 Design concept selection roadmap for greenfield systems
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across the different layers associated with this reference architecture. Finally, at 
this point you should also be thinking about allocating functionality—associated 
with modules—to (teams of) developers.

The goal of your subsequent design iterations should be to refine the struc-
tures you have previously created to fully address the remaining drivers. Address-
ing these drivers, and especially quality attributes, will likely require you to use 
the three major categories of design concepts—tactics, patterns, and externally 
developed components such as frameworks—as well as commonly accepted de-
sign best practices such as modularity, low coupling, and high cohesion. For ex-
ample, to (partially) satisfy a performance requirement for the search use case in 
a web application, you might select the “maintain multiple copies of data” tactic 
and implement this tactic by configuring a cache in a framework that is used in-
side an element responsible for persisting data.

This roadmap is appropriate for the initial project iterations, but it is also 
extremely useful for early project estimation activities (see the discussion about 
the architecture design process during pre-sales in Section 9.1.1). Why have we 
created such a roadmap? First, because the process of starting an architectural 
design is always complex. Second, because many of the steps in this roadmap 
are frequently overlooked or done in an intuitive and ad hoc way, rather than in 
a well-considered, reflective way. Third, because different types of design con-
cepts exist, and it is not always clear at which point in the design they should be 
used. This roadmap encapsulates best practices that we have observed in the most 
competent architecture organizations. Simply put, the use of a roadmap results in 
better architectures, particularly for less mature architects.

3.3.2 Design of Greenfield Systems for Novel Domains

In the case of novel domains, it is more challenging to establish a precise road-
map, because reference architectures may not exist and there may be few, if any, 
externally developed components that you can use. You are, more than likely, 
working from first principles and creating your own home-grown solutions. Even 
in this case, however, general-purpose design concepts such as tactics and pat-
terns can guide you, aided by strategic prototyping. In essence, your iteration 
goals will mostly be to continuously refine previously created structures to fully 
address the drivers.

Many times, your design goal will focus on the creation of prototypes so 
that you can explore possible solutions to the challenge that you are facing. In 
particular, you may need to focus on quality attributes and design challenges ori-
ented toward issues such as performance, scalability, or security. We discuss the 
creation of prototypes in Section 3.4.2.

Of course, the notion of “novel” is fluid. Mobile application development 
was a novel domain 10 or 15 years ago, but now it is a well-established field.
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3.3.3 Design for an Existing System (Brownfield)

Architecture design for an existing system may occur for different purposes. The 
most obvious is maintenance—that is, when you need to satisfy new require-
ments or correct issues, and doing so requires changes to the architecture of an 
existing system. You may also be making architectural changes to an existing sys-
tem for the purpose of refactoring. When refactoring, you change the architecture 
of an existing system, without altering its functions, to reduce technical debt, to 
introduce technology updates, or to fix quality attribute problems (e.g., the sys-
tem is too slow, or insecure, or frequently crashes).

To be able to choose elements to decompose as part of the design process 
(step 3 of ADD), you need to first identify which elements are present in the 
architecture of the existing system. In this sense, before starting the design itera-
tions, your first goal should be to make sure that you have a clear understanding 
of the existing architecture of the system.

Once you understand the elements, properties, and relationships that con-
stitute the architecture of the system, and the characteristics of the existing code 
base, you can perform design similar to what is done for greenfield systems after 
the initial design iteration. Your design iteration goals here will be to identify and 
refine structures to satisfy architectural drivers, including new functionality and 
quality attributes, and to address specific architectural concerns. These design 
iterations will typically not involve establishing a new overall system structure 
unless you are dealing with a major refactoring.

It might seem that the preceding discussion of the different contexts of de-
sign is rather abstract and perhaps even confusing. In the next three chapters we 
will be presenting examples of design of a system in a mature domain (Chap-
ter 4), design for a system in a relatively novel domain (Chapter 5), and design to 
modify an existing system (Chapter 6). These extended examples will make the 
previously described concepts clearer and more concrete.

3.4 Identifying and Selecting Design Concepts

Freeman Dyson, the English physicist, once said the following: “A good scientist 
is a person with original ideas. A good engineer is a person who makes a design 
that works with as few original ideas as possible”. This quotation is particularly 
relevant in the context of software architecture design: Most of the time you don’t 
need to, and shouldn’t, reinvent the wheel. Rather, your major design activities are 
to identify and select design concepts to address the challenges and drivers that 
you encounter across the design iterations. Design is still an original and creative 
endeavor, but the creativity resides in the appropriate identification of these existing 
solutions and then on combining and adapting them to the problem at hand.
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3.4.1 Identification of Design Concepts

The identification of design concepts can appear to be daunting, because of the 
vast number of design concepts that exist. There are likely dozens of design pat-
terns and externally developed components that you could use to address any 
particular issue. To make things worse, these design concepts are scattered across 
many different sources: in the popular press, in research literature, in books, and 
on the Internet. Moreover, in many cases, there is no canonical definition of a 
concept. Different sites, for example, will define the Broker pattern in different, 
largely informal, ways. Finally, once you have identified the alternatives that 
might potentially help you achieve the design goals of the iteration, you need to 
select among them.

To identify which design concepts you need at a particular point, you should 
consider what we previously discussed regarding the design roadmap. Different 
points in the design process usually require different types of design concepts. 
For example, when you are designing a greenfield system in a mature domain, 
the types of design concepts that will help you initially structure the system are 
reference architectures and deployment patterns. As you progress in the design 
process, you will use all of the categories of design concepts: tactics, architecture 
and design patterns, and externally developed components. Keep in mind that to 
address a specific design problem, you can and often will use and combine differ-
ent types of design concepts. For example, when addressing a security driver, you 
may employ a security pattern, a security tactic, a security framework, or some 
combination of these.

Once you have more clarity regarding the types of design concepts that you 
wish to use, you still need to identify alternatives—that is, design candidates. 
There are several ways to do so, although you will probably use a combination of 
these techniques rather than a single one:

§	Leverage existing best practices. You can identify alternatives for your 
required design concepts by making use of catalogs that are available in 
printed or online form. Some design concepts, such as patterns, are exten-
sively documented; others, such as externally developed components, are 
documented in a less thorough way. The benefits of this approach are that 
you can identify many alternatives, and that you can leverage the consider-
able knowledge and experience of others. The downsides are that searching 
for and studying the information can require a considerable amount of time, 
the quality of the documented knowledge is often unknown, and the as-
sumptions and biases of the authors are unknown.

§	Leverage your own knowledge and experience. If the system you are de-
signing is similar to other systems you have designed in the past, you will 
probably want to begin with some of the design concepts that you have 
used before. The benefit of this approach is that the identification of al-
ternatives is performed rapidly and confidently. The downside is that you 
may end up using the same ideas repeatedly, even if they are not the most 
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appropriate for all the design problems that you are facing, and if they have 
been superseded by newer, better approaches. As the saying goes, “If you 
give a small child a hammer, all the world looks like a nail”.

§	Leverage the knowledge and experience of others. As an architect, you have 
background and knowledge that you have gained through the years. This 
foundation varies from person to person, especially if the types of design 
problems they have addressed in the past differ. You can leverage this in-
formation by performing the identification and selection of design concepts 
with some of your peers through brainstorming.

3.4.2 Selection of Design Concepts

Once you have identified a list of alternative design concepts, you need to select 
which one is the most appropriate to solve the design problem at hand. You can 
achieve this in a relatively simple way, by creating a table that lists the pros and 
cons associated with each alternative and selecting one of the alternatives based 
on those criteria and your drivers. The table can also include other criteria, such 
as the cost associated with the use of the alternative. Table 3.1 shows an example 
of such a table used to support the selection of different reference architectures.

You may also need to perform a more in-depth analysis to select the alterna-
tive. Methods such as CBAM (cost benefit analysis method) or SWOT (strengths, 
weaknesses, opportunities, threats) can help you to perform this analysis (see the 
sidebar “The Cost Benefit Analysis Method”).

TABLE 3.1 Example of a Table to Support the Selection of Alternatives

Name of 
Alternative Pros Cons Cost

Web 
application

Can be accessed from a 
variety of platforms using 
a standard web browser
Fast page loading
Simple deployment

Does not support “rich” 
interaction

Low

Rich Internet 
application

Supports “rich” user 
interaction
Simple deployment and 
updating

Longer page loading times
Requires a runtime 
environment to be installed 
on the client browser

Medium

Mobile 
application

Supports “rich” user 
interaction

Less portability
Screen limitations

High
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The Cost Benefit Analysis Method

The CBAM is a method that guides the selection of design alternatives 
using a quantitative approach. This method considers that architectural 
strategies (i.e., combinations of design concepts) affect quality attribute 
responses, and that the level of each response in turn provides system 
stakeholders with some benefit called utility. Each architectural strategy 
provides a different level of utility, but also has a cost and takes time to im-
plement. The idea behind the CBAM is that by studying levels of utility and 
costs of implementation, particular architectural strategies can be selected 
based on their associated return on investment (ROI). The CBAM was 
conceived to be performed after an ATAM (architecture tradeoff analysis 
method), but it is possible to use the CBAM during design—that is, prior to 
the moment where the architectural evaluation is performed.

The CBAM takes as its input a collection of prioritized traditional quality 
attribute scenarios, which are then analyzed and refined with additional 
information. The addition is to consider several levels of response for each 
scenario:

§	The worst-case scenario, which represents the minimum threshold at which 
a system must perform (utility = 0)

§	The best-case scenario, which represents the level after which stakehold-
ers foresee no further utility (utility = 100)

§	The current scenario, which represents the level at which the system 
is already performing (the utility of the current scenario is estimated by 
stakeholders)

§	The desired scenario, which represents the level of response that the 
stakeholders are hoping to achieve (the utility of the desired scenario is 
estimated by stakeholders)

Using these data points, we can draw a utility–response curve, as 
shown in the figure. After the utility–response curve is mapped for each 
of the different scenarios, a number of contemplated design alternatives 
may be considered, and their expected response values can be estimated. 
For example, if we are concerned about mean time to failure, we might 
consider three different architectural strategies (i.e., redundancy options)—
for example, no redundancy, cold spare, and hot spare. For each of these 
strategies, we could estimate their expected responses (i.e., their expected 
mean times to failure). In the graph shown here, the “e” represents one 
such option, placed on the curve based on its expected response measure.

Using these response estimates, the utility values of each architectural 
strategy can now be determined via interpolation, which provides its ex-
pected benefit. The costs of each architectural strategy are also elicited—
one would expect hot spare to be the most costly, followed by cold spare 
and no redundancy.

Given all of this information, architectural strategies can now be selected 
based on their expected value for cost.
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Although the CBAM may seem relatively complex and time-consuming 
at first, you need to consider that some design decisions can have enor-
mous economic consequences—in terms of their costs, their benefits, and 
their effects on project schedule. You must decide if you are willing to take 
the chance of making these decisions solely using a gut-feeling approach 
versus this more rational and systematic approach. 

In case the previous analysis techniques do not guide you to make an ap-
propriate selection, you may need to create throwaway prototypes and collect 
measurements from them. The creation of early throwaway prototypes is a useful 
technique to help in the selection of externally developed components. This type 
of prototype is usually created in a “quick and dirty” fashion without too much 
consideration for maintainability or reuse. For these reasons, it is important to 
keep in mind that throwaway prototypes should not be used as a basis for further 
development.

Although the creation of prototypes can be costly compared to analysis (the 
ratio of costs is between 10 and 5 to 1, according to our sources), certain scenar-
ios strongly motivate the creation of prototypes. Aspects that you should consider 
when deciding whether you will create a prototype include the following:

§	Does the project incorporate emerging technologies?
§	Is the technology new in the company?
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§	Are there certain drivers, particularly quality attributes, whose satisfaction 
using the selected technology presents risks (i.e., it is not understood if they 
can be satisfied)?

§	Is there a lack of trusted information, internal or external, that provides 
some degree of certainty that the selected technology will be useful to sat-
isfy the project drivers?

§	Are there configuration options associated with the technology that need to 
be tested or understood?

§	Is it unclear whether the selected technology can be integrated with other 
technologies that are used in the project?

If most of your answers to these questions are “yes”, then you should 
strongly consider the creation of a throwaway prototype.

When identifying and selecting design concepts, you need to keep in mind the 
constraints that are part of the architectural drivers, because some constraints will 
restrict you from selecting particular alternatives. For example, a constraint might 
require that all libraries and frameworks in the system do not use the GPL license; 
thus, even if you have found a framework that could be useful for your needs, you 
may need to discard it if it has a GPL license. Also, you need to keep in mind that 
the decisions regarding the selection of design concepts that you have made in pre-
vious iterations may restrict the design concepts that you can select in the future 
because of incompatibilities. For example, if you selected a web application ref-
erence architecture for use in an initial iteration, you cannot select a user interface 
framework intended for local applications in a subsequent iteration.

Finally, you need to remember that even though ADD provides guidance on 
how to perform the design process, it cannot ensure that you will make appropri-
ate design decisions. Thorough reasoning and considering different alternatives 
(not just the first thing that comes to mind) are the best means to improve the 
odds of finding a good solution. We discuss doing “analysis in the design pro-
cess” in Chapter 8.

3.5 Producing Structures

Design concepts per se won’t help you satisfy your drivers unless you produce 
structures; that is, you need to identify and connect elements that are derived 
from the selected design concepts. This process is the instantiation of architec-
tural elements in ADD: creating elements and relationships between them, and 
associating responsibilities with these elements. It is important to remember that 
the architecture of a software system is composed of a set of structures, which 
can be grouped into three major categories:



3.5 Producing Structures 59

§	Module structures: composed of logical and static elements that exist at 
development time, such as files, modules, and classes

§	Component and connector (C&C) structures: composed of dynamic ele-
ments that exist at runtime, such as processes and threads

§	Allocation structures: composed of both software elements (from a module 
or C&C structure) and non-software elements that may exist both at devel-
opment time and at runtime, such as file systems, hardware, and develop-
ment teams

When you instantiate a design concept, you may actually produce more than 
one structure. For example, in a particular iteration you may instantiate the Lay-
ers pattern, which will result in a Module structure. As part of instantiating this 
pattern, you will need to choose the number of layers, their relationships, and the 
specific responsibilities of each layer. As part of the iteration, you may also study 
how a scenario is supported by the elements that you have just identified. For ex-
ample, you could create instances of the logical elements in a C&C structure and 
model how they exchange messages (see Section 3.6). Finally, you may want to 
decide who will be responsible for implementing the modules inside each of the 
layers, which is an allocation decision.

3.5.1 Instantiating Elements

The instantiation of architectural elements depends on the type of design concept 
that you are working with:

§	Reference architectures. In the case of reference architectures, instantiation 
typically means that you perform some sort of customization. As part of 
this work, you will add or remove elements that are part of the structure that 
is defined by the reference architecture. For example, if you are designing a 
web application that needs to communicate with an external application to 
handle payments, you will probably need an integration layer in addition to 
the traditional presentation, business, and data layers.

§	Architectural and design patterns. These patterns provide a generic structure 
composed of elements, their relationships and their responsibilities. As this 
structure is generic, you will need to adapt it to your specific problem. In-
stantiation usually involves transforming the generic structure defined by the 
pattern into a specific one that is adapted to the needs of the problem that you 
are solving. For example, consider the Pipe and Filters architectural pattern. 
It establishes the basic elements of computation—filters—and their relation-
ships—pipes—but does not specify how many filters you should use for your 
problem or what their relationships should be. You will instantiate this pattern 
by defining how many pipes and filters are needed to solve your problem, by 
establishing the specific responsibilities of each of the filters, and by defining 
their topology.
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§	Deployment patterns. Similar to the case with architectural and design pat-
terns, the instantiation of deployment patterns generally involves the iden-
tification and specification of physical elements. If, for example, you are 
using a Load-Balanced Cluster pattern, instantiation may involve identify-
ing the number of replicas to be included in the cluster, the load-balancing 
algorithm, and the physical location of the replicas.

§	Tactics. This design concept does not prescribe a particular structure, so 
you will need to use other design concepts to instantiate a tactic. For ex-
ample, you may select a security tactic of authenticating actors and instan-
tiate it by creating a custom-coded ad hoc solution, or by using a security 
pattern, or by using an externally developed component such as a security 
framework.

§	Externally developed components. The instantiation of these components 
may or may not imply the creation of new elements. For example, in 
the case of object-oriented frameworks, instantiation may require you 
to create specific classes that inherit from the base classes defined in the 
framework. This will result in new elements. Other approaches, which 
do not involve the creation of new elements, might include choosing a 
specific technology from a technology family that was identified in a pre-
vious iteration, associating a particular framework to elements that were 
identified in a previous iteration, or specifying configuration options for 
an element associated with a particular technology (such as a number of 
threads in a thread pool).

3.5.2 Associating Responsibilities and Identifying Properties

When you are creating elements by instantiating design concepts, you need to 
consider the responsibilities that are allocated to these elements. For example, 
if you instantiate the Layers pattern and decide to use the traditional three-layer 
structure, you might decide that one of the layers will be responsible for manag-
ing the interactions with the users (typically known as the presentation layer). 
When instantiating elements and allocating responsibilities, you should keep in 
mind the high cohesion/low coupling design principle: Elements should have 
high cohesion (internally), defined by a narrow set of responsibilities, and low 
coupling (externally), defined by a lack of knowledge of the implementation de-
tails of other elements.

One additional aspect that you need to consider when instantiating design 
concepts is the properties of the elements. This may involve aspects such as the 
configuration options, statefulness, resource management, priority, or even hard-
ware characteristics (if the elements that you created are physical nodes) of the 
chosen technologies. Identifying these properties supports analysis and the docu-
mentation of the design rationale.
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3.5.3 Establishing Relationships Between the Elements

The creation of structures also requires making decisions with respect to the 
relationships that exist between the elements and their properties. Once again, 
consider the Layers pattern. You may decide that two layers are connected, but 
these layers will eventually be allocated to components that are, in turn, allocated 
to hardware. In such a case, you need to decide how communication will take 
place between these layers, as they have been allocated to components: Is the 
communication synchronous or asynchronous? Does it involve some type of net-
work communication? Which type of protocol is used? How much information is 
transferred and at what rate? These design decisions can have a significant impact 
with respect to achieving certain quality attributes such as performance.

3.6 Defining Interfaces

Interfaces are the externally visible properties of elements that establish a con-
tractual specification that allows elements to collaborate and exchange informa-
tion. There are two categories of interfaces: external and internal.

3.6.1 External Interfaces

External interfaces include interfaces from other systems that are required by the 
system that you are developing and interfaces that are provided by your system 
to other systems. Required interfaces are part of the constraints for your system, 
as you usually cannot influence their specification. Provided interfaces need to be 
formally defined, which can be performed in a similar way to defining internal 
interfaces—that is, by considering interactions between the external systems and 
your system and seeing them as elements of a bigger structure.

Establishing a system context at the beginning of the design process is use-
ful to identify external interfaces. This context can be represented using a system 
context diagram, as shown in Figure 3.3. Given that external entities and the sys-
tem under development interact via interfaces, there should be at least one exter-
nal interface per external system (each relationship in the figure).

3.6.2 Internal Interfaces

Internal interfaces are interfaces between the elements that result from the in-
stantiation of design concepts. To identify the relationships and the interface de-
tails, you generally need to understand how the elements exchange information 
at runtime. You can achieve this with the help of modeling tools such as UML 
sequence diagrams (Figure 3.4), which allow you to model the information that 
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is exchanged between elements during execution to support use cases or quality 
attribute scenarios. This type of analysis is also useful for identifying relation-
ships between elements: If two elements need to exchange information directly, 
then a relationship between these elements must exist. The information that is 
exchanged becomes part of the specification of the interface. Interfaces typically 
consist of a set of operations (such as methods) with specified parameters, return 
values, and possibly, exceptions and pre and post conditions. Some interfaces, 
however, may involve other information exchange mechanisms, such as a compo-
nent that writes information to a file or database and another component that then 
accesses this information. Interfaces may also establish quality of service agree-
ments. For example, the execution of an operation specified in the interface may 
be time-constrained to satisfy a performance quality attribute scenario.

The identification of interfaces is usually not performed equally across all 
design iterations. When you are starting the design of a greenfield system, for 
example, your first iterations will produce only abstract elements such as lay-
ers, with these elements then being refined in later iterations. The interfaces of 
abstract elements such as layers are typically underspecified. For example, in an 
early iteration you might simply specify that the UI layer sends “commands” to 
the business logic layer, with the business logic layer sending “results” back. As 
you advance in the design process and particularly when you create structures to 
address specific use cases and quality attribute scenarios, you will need to refine 
the interfaces of the specific elements that participate in the interaction.

In some special cases, identification of interfaces is greatly simplified. For 
example, in the Big Data case study we present in Chapter 5, interfaces are al-
ready defined by the technologies that are selected. The specification of interfaces 
then becomes a relatively trivial task, as the chosen technologies are designed to 

(continues on p. 64)

Time server

Legend:

FIGURE 3.3 A system context diagram
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The following is an initial sequence diagram for Use Case UC-2 (Detect Fault)1 from the 
FCAPS case study in Chapter 4. This diagram shows the interactions between an actor 
and the five components that participate in UC-2. In creating this diagram, we identify 
the information that is exchanged, the methods that are invoked, and the values that 
are passed and returned.

Time Server

:T imeServerConnector :T imeServerConfigurationControl ler :T imeServerDataMapper :T ime Server :TopologyControl ler

addEventListener(this)

trap()

eventReceived(event)

publish(event)

retrieve(id) :TimeServer

:TimeServer

addEvent()

update(TimeServer)

:true

Key: UML

From this interaction, initial methods for the interfaces of the interacting elements can 
be identified:

Name: TimeServerConnector

Method name Description

boolean addEventListener(:EventListener) This method allows 
components from the 
business logic to register 
themselves as listeners to 
events that are received 
from the TimeServers.

FIGURE 3.4 A sequence diagram used to identify interfaces

1. More detail about this example is presented in Chapter 4.
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interoperate and hence have already “baked in” many interface assumptions and 
decisions.

Finally, you need to consider that not all of the internal interfaces of the 
system element will be identified as part of the design process (see the sidebar 
“Identifying Interfaces in Element Interaction Design”).

Identifying Interfaces in Element Interaction Design

Although defining interfaces is an essential part of the architecture design 
process, it is important to recognize that not all of the internal interfaces 
are identified during architectural design. As part of the architecture design 
process, you typically consider the primary use cases as part of the archi-
tectural drivers, and you identify elements (usually modules) that support 
this primary functionality along with the other drivers. This process will, 
however, not uncover all of the elements and interfaces for the system that 
are required to support the entire set of use cases. This lack of specificity is 
intended: Architecture is about abstraction, so necessarily some information 
is less important, particularly in the earliest stages of design.

Identifying the modules that support the nonprimary use cases is often 
necessary for estimation or work-assignment purposes. Identifying their 
interfaces is also necessary to support the individual development and 
integration of the modules and to perform unit testing. This identification of 
modules may be done early in the project life cycle, but it must not be con-
fused with a big design up front (BDUF) approach. This, at most, is a BDUF 
that, in certain contexts such as early estimation or iteration planning, is 
hard to avoid.

As an architect, you may identify the set of modules that supports the 
complete set of use cases for the system or for a particular release of the 
system, but the identification of the interfaces associated with the modules 
that support the nonprimary use cases is typically not your responsibility, 
as it would require a significant amount of your time and does not usually 
have a major architectural impact. This task, which we call element inter-
action design (see Section 2.2.2), is usually performed after architectural 
design ends but before the development of (most of) the modules begins. 
Although this task should be performed by other members in the develop-
ment team, you play a critical role in it, since these interfaces must adhere 
to the architectural design that you established. You, as the architect, must 
communicate the architecture to the engineers who are responsible for 
identifying the interfaces and ensure that they understand the rationale for 
the existing design decisions.

A good way to achieve this communication is to use the active reviews 
for intermediate design (ARID) method. In this method, the architecture 
design (or part of it) is presented to a group of reviewers—in this case, the 
engineers who will make use of this design. After the design presentation, 
a set of scenarios is selected by the participants. The selected scenarios 

(continued from p. 62)



3.7 Creating Preliminary Documentation During Design 65

are used for the core of the exercise, where the reviewers use the elements 
present in the architecture to satisfy them. In standard ARID, the review-
ers are asked to write code or pseudo-code for the purpose of identifying 
interfaces. Alternatively, the architect can present the architecture, select 
a nonprimary functional scenario and ask the participants to identify the 
interfaces of the components that support the scenario using sequence 
diagrams or a similar method.

Aside from the fact that the architectural design is reviewed in this exer-
cise, there are additional benefits to this approach. Specifically, in a single 
meeting, the architecture design or part of it is presented to the entire 
team, and agreements can be reached with respect to how the interfaces 
should be defined (e.g., the level of detail or aspects such as parameter 
passing, data types, or exception management).

3.7 Creating Preliminary Documentation During Design

A software architecture is typically documented as a set of views, which represent 
the different structures that compose the architecture. The formal documentation 
of these views is not part of the design process. Structures, however, are produced 
as part of design. Capturing them, even in an informal manner (i.e., as sketches), 
along with the design decisions that led you to create these structures, is a task 
that should be performed as part of normal design activities.

3.7.1 Recording Sketches of the Views

When you produce structures by instantiating the design concepts that you have 
selected to address a particular design problem, you will typically not produce 
these structures in your mind, but rather will create some sketches of them. In the 
simplest case, you will produce these sketches on a whiteboard, a flip-chart, or 
even a piece of paper. Otherwise, you may use a modeling tool in which you will 
draw the structures. The sketches that you produce are the initial documentation 
for your architecture that you should capture and may flesh out later, if necessary. 
When you create sketches, you don’t need to always use a more formal language 
such as UML. If you use some informal notation, you should at least be careful in 
maintaining consistency in the use of symbols. Eventually, you will need to add a 
legend to your diagrams to provide clarity and avoid ambiguity.

You should develop discipline in writing down the responsibilities that you 
allocate to the elements as you create the structures. The reasons for this are sim-
ple: As you identify an element, you are determining some responsibilities for that 
element in your mind. Writing it down at that moment ensures that you won’t have 
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to remember it later. Also, it is easier to write down the responsibilities associated 
with your elements gradually, rather than compiling all of them at a later time.

Creating this preliminary documentation as you design requires some disci-
pline. But the benefits are worth the effort—you will be able to produce the more 
detailed architecture documentation relatively easily and quickly at a later point. 
One simple way that you can document responsibilities if you are using a white-
board, a flip-chart, or a PowerPoint slide is to take a photo of the sketch that you 
have produced and paste it in a document, along with a table that summarizes the 
responsibilities of every element depicted in the diagram (Figure 3.5 provides an 
example). If you are using a computer-aided software engineering (CASE) tool, 
you can select an element to create and use the text area that usually appears in 
the properties sheet of the element to document its responsibilities, and then gen-
erate the documentation automatically.

This diagram presents a sketch of a module view depicting the overall system structure 
from the case study in Chapter 5.

Data
Stream

Data
Sources

Raw Data 
Storage

Corporate 
BI Tool

Dashboard/
Visualization

Tool
Real-Time

Views

BATCH Layer SERVING Layer

SPEED Layer

Ad Hoc Views
Precomputing

Ad Hoc 
Batch Views

Static Views
Precomputing

Static Batch
Views

Layer 
Boundary

Data Flow 
(with direction indicated)
Query Results Flow 

Legend:

Element 
Boundary

The diagram is complemented with a table that describes the element’s responsibilities:

Element Responsibility

Data 
stream

This element collects data from all data sources in real time 
and dispatches it to both the batch layer and the speed layer for 
processing.

Batch layer This layer is responsible for storing raw data and precomputing the 
batch views to be stored in the serving layer.

... ...

FIGURE 3.5 Sample preliminary documentation
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Of course, it is not necessary to document everything. The three purposes 
of documentation are analysis, construction, and education. At the moment you 
are designing, you should choose a documentation purpose and then document to 
fulfill that purpose, based on your risk mitigation concerns. For example, if you 
have a critical quality attribute scenario that your architecture design needs to 
satisfy, and if you will need to prove this requirement is met in an analysis, then 
you must take care to document the information that is relevant for the analysis to 
be satisfactory. Alternatively, if you anticipate having to train new team members, 
then you should make a sketch of a C&C view of the system, showing how it 
operates and how the elements interact at runtime, and perhaps construct a crude 
module view of the system, showing at least the major layers or subsystems.

Finally, it is a good idea to remember, as you are documenting, that your design 
may eventually be analyzed. Consequently, you need to think about which informa-
tion should be documented to support this analysis (see the sidebar “Scenario-Based 
Documentation”).

Scenario-Based Documentation

An analysis of an architecture design is based on your most important use 
cases and quality attribute scenarios. Simply put, a scenario is selected 
and you must explain to reviewers how the architecture supports the sce-
nario, and justify your decisions. To start preparing for the analysis while 
you design, it is useful to produce and document structures that contain 
the elements that are involved in the satisfaction of a scenario. This should 
come naturally given that the design process is guided by scenarios, but 
keeping this point firmly in mind is always helpful.

During the design process, you should at least try to capture the follow-
ing elements in a single document:

§	The primary presentation: the diagram that represents the structure that 
you produced

§	The element responsibilities table: it will help you record the responsibilities 
of the elements that are present in the structure

§	The relevant design decisions, and their rationales (see Section 3.7.2)

You might also capture two other pieces of information:

§	A runtime representation of the element’s interaction—for example, a se-
quence diagram

§	The initial interface specifications (which can also be captured in a sepa-
rate document)

As you can see, all of this information needs to be produced as part of 
the design process. One way or another, you need to decide which ele-
ments are present in the system and how they interact. The only question 
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is whether you bother to write this information down, or whether its sole 
representation is in the code.

If you follow the approach that we advocate here, at the end of the 
design you will have a set of preliminary views documented, in which each 
of the views is associated with a particular scenario, and you will have this 
documentation at little cost. This preliminary documentation can be used 
“as is” to analyze the design, and particularly through scenario-based 
evaluations. 

3.7.2 Recording Design Decisions

In each design iteration, you make important design decisions to achieve your it-
eration goal. As we saw previously, these design decisions include the following:

§	Selecting a design concept from several alternatives
§	Creating structures by instantiating the selected design concept
§	Establishing relationships between elements and defining interfaces
§	Allocating resources (e.g., people, hardware, computation)
§	Others

When you study a diagram that represents an architecture, you see the end 
product of a thought process, but it may not be easy to understand the decisions 
that were made to achieve this result. Recording design decisions beyond the rep-
resentation of the chosen elements, relationships, and properties is fundamental 
to help in understanding how you arrived at the result: the design rationale.

When your iteration goal involves satisfying a specific quality attribute sce-
nario, some of the decisions that you make will play significant roles in your 
ability to achieve the scenario response measure. These are, therefore, the deci-
sions that you should take the greatest care in recording. You should record these 
decisions because they are essential to facilitate analysis of the design you cre-
ated; then to facilitate implementation; and, still later, to aid in understanding of 
the architecture (e.g., during maintenance). Also every design decision is “good 
enough” but seldom optimal, so you need to justify the decisions made, and pos-
sibly revisit the remaining risks later.

You might think that recording design decisions is a tedious task. In reality, 
depending on the criticality of the system being developed, you can adjust the 
amount of information that is recorded. For example, to record a minimum of 
information, you can use a simple table such as the one shown in Table 3.2. If you 
decide to record more than this minimum, the following information can prove 
useful:

§	What evidence was produced to justify decisions?
§	Who did what?
§	Why were shortcuts taken?
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§	Why were tradeoffs made?
§	What assumptions did you make?

And, in the same way that we suggest you record responsibilities as you 
identify elements, you should record the design decisions as you make them. The 
reason for this is simple: If you leave it until later, you may not remember why 
you did things.

3.8 Tracking Design Progress

Even though ADD provides clear guidelines to perform design systematically, it 
does not provide a mechanism to track design progress. When you are perform-
ing design, however, there are several questions that you want to answer:

§	How much design do we need to do?
§	How much design has been done so far?
§	Are we finished?

Agile practices such as the use of backlogs and Kanban boards can help you 
track the design progress and answer these questions. These techniques are not 
limited to Agile methods, of course. Any development project using any method-
ology should track progress.

3.8.1 Use of an Architectural Backlog

The concept of an architecture (or design) backlog has been proposed by several 
authors (see Section 7.1). This is similar to what is found in Agile development 
methods such as Scrum. The basic idea is that you need to create a list of the pend-
ing actions that still need to be performed as part of the architecture design process.

TABLE 3.2 Example of a Table to Document Design Decisions

Driver Design Decisions and Location Rationale and Assumptions

QA-1 Introduce concurrency (tactic) 
in the TimeServerConnector 
and FaultDetectionService

Concurrency should be introduced to 
be able to receive and process several 
events (traps) simultaneously.

QA-2 Use of a messaging pattern 
through the introduction of 
a message queue in the 
communications layer

Although the use of a message 
queue may seem to go against the 
performance imposed by the scenario, 
a message queue was chosen 
because some implementations have 
high performance and, furthermore, 
this will be helpful to support QA-3.

... ... ...
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Initially, you should populate the design backlog with your drivers, but other 
activities that support the design of the architecture can also be included. For 
example:

§	Creation of a prototype to test a particular technology or to address a spe-
cific quality attribute risk

§	Exploration and understanding of existing assets (possibly requiring reverse 
engineering)

§	Issues uncovered in a review of the design
§	Review of a partial design that was performed on a previous iteration

For example, when using Scrum, the sprint backlog and the design back-
log are not independent: Some features in the sprint backlog may require ar-
chitecture design to be performed, so they will generate items that go into the 
architectural design backlog. These two backlogs can be managed separately, 
however. The design backlog may even be managed internally, as it contains 
several items that are typically not discussed or prioritized by the customer (or 
product owner).

Also, additional architectural concerns may arise as decisions are made. For 
example, if you choose a reference architecture, you will probably need to add 
specific architectural concerns, or quality attribute scenarios derived from them, 
to the architectural design backlog. An example of such a concern is the manage-
ment of sessions for a web application reference architecture.

3.8.2 Use of a Design Kanban Board

As design is performed in rounds and as a series of iterations within these rounds, 
you need to have a way of tracking the design’s degree of advancement. You must 
also decide whether you need to continue making more design decisions (i.e., 
performing additional iterations). One tool that can be used to facilitate this task 
is a Kanban board, such as the one shown in Figure 3.6

At the beginning of a design round, the inputs to the design process become 
entries in the backlog. Initially, that activity occurs in step 1 of ADD; the differ-
ent entries in your backlog for this design round should be added to the “Not Yet 
Addressed” column of the board (except if you have some entries that were not 
concluded in previous design rounds that you wish to address here). When you 
begin a design iteration, in step 2 of ADD, the backlog entries that correspond 
to the drivers that you plan to address as part of the design iteration goal should 
be moved to the “Partially Addressed” column. Finally, once you finish an itera-
tion and the analysis of your design decisions reveals that a particular driver has 
been addressed (step 7 of ADD), the entry should be moved to the “Completely 
Addressed” column of the board. It is important to establish clear criteria that 
will allow a driver to be moved to the “Completely Addressed” column (think of 
this as the “Definition of Addressed” criteria, similar to the “Definition of Done” 
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criteria used in Scrum). A criterion may be, for example, that the driver has been 
analyzed or that it has been implemented in a prototype. Also, drivers that are se-
lected for a particular iteration may not be completely addressed in that particular 
iteration, in which case they should remain in the “Partially Addressed” column 
and, in preparation for subsequent iterations, you should consider how they can 
be allocated to the elements that exist at this point.

It can be useful to select a technique that will allow you to differentiate the 
entries in the board according to their priority. For example, you might use differ-
ent colors of Post-it notes depending on the priority.

With such a board, it is easy to visually track the advancement of design, 
as you can quickly see how many of the (most important) drivers are being or 
have been addressed in the design round. This technique also helps you decide 
whether you need to perform additional iterations as, ideally, the design round is 
terminated when a majority of your drivers (or at least the ones with the highest 
priority) are located under the “Completely Addressed” column.

Not Yet Addressed 6 Partially Addressed 7 Completely Addressed 1 Discarded

High Priority

High Priority

Medium Priority

Medium Priority

Medium Priority

Low Priority

High Priority

High Priority

High Priority

High Priority

High Priority

QA-8 Test code coverage should be
at least 85% for each CI

QA-3 External user credentials are
verified against user registry

CT-1 MVP release of the solution to
the selected consultants, customers,
and prospective licensees in 9
months, release in 1.5 years

QA-5 Data center infrastructure has
uptime 99.95%

QA-4 User facing parts are available
99.9% - 4 hours in
months (maintenance window)

QA-1 User credentials are verified
against corporate AD

UC4 - As sales person, prepare
proposal plan

CT-8 Infrastructure team is not able
to support large-scale SaaS setup

CN-2 Choose architecture style

QAScenario

QAScenario

QAScenario

QAScenario

QAScenario

Constraint

Constraint

UseCase

Concern

CN-1 Codebase (reuse legacy code if
possible

FIGURE 3.6 A Kanban board used to track design progress
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3.9 Summary

In this chapter, we presented a detailed walk-through of the Attribute-Driven De-
sign method, version 3.0. We also discussed several important aspects that need 
to be considered in the various steps of the design process. These aspects in-
clude the use of a backlog, the various possible design roadmaps (for greenfield, 
brownfield, and novel contexts), the identification and selection of design con-
cepts and their use in producing structures, the definition of interfaces, and the 
production of preliminary documentation.

Even though the overall architecture development life cycle includes docu-
menting and analyzing architecture as activities that are separate from design, we 
have argued that a clean separation of these activities is artificial and harmful. We 
stress that preliminary documentation and analysis activities need to be regularly 
performed as integral parts of the design process.

In Chapters 4, 5, and 6, we will instantiate ADD 3.0 in several extended ex-
amples, showing how the method works in the real world, in both greenfield and 
brownfield contexts.

3.10 Further Reading

Some of the concepts of ADD 3.0 were first introduced in an IEEE Software 
article: H. Cervantes, P. Velasco, and R. Kazman, “A Principled Way of Us-
ing Frameworks in Architectural Design”, IEEE Software, 46–53, March/April 
2013. Version 2.0 of ADD was first documented in the SEI Technical Report: 
R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B. Wood, 
“Attribute-Driven Design (ADD), Version 2.0”, SEI/CMU Technical Report 
CMU/SEI-2006-TR-023, 2006. An extended example of using ADD 2.0 was 
documented in W. Wood, “A Practical Example of Applying Attribute-Driven De-
sign (ADD), Version 2.0”, SEI/CMU Technical Report: CMU/SEI-2007-TR-005.

Several alternative methods exist to support the design of software architec-
tures. These are discussed in more detail and referenced in Chapter 7.

The concept of an architecture backlog is discussed in C. Hofmeister, 
P. Kruchten, R. Nord, H. Obbink, A. Ran, and P. America, “A General Model of 
Software Architecture Design Derived from Five Industrial Approaches”, Journal 
of Systems and Software, 80:106–126, 2007.

The ARID method is discussed in P. Clements, R. Kazman, and M. Klein, 
Evaluating Software Architectures: Methods and Case Studies, Addison-Wesley, 
2002.

The CBAM method is presented in L. Bass, P. Clements, and R. Kazman, 
Software Architecture in Practice, 3rd ed., Addison-Wesley, 2013.
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The ways in which an architecture can be documented are covered exten-
sively in P. Clements et al. Documenting Software Architectures: Views and Be-
yond, 2nd ed., Addison-Wesley, 2011. More Agile approaches to documenting 
are discussed in books such as S. Brown, Software Architecture for Developers. 
Lean Publishing, 2015.

The importance and challenges of capturing design rationale are discussed 
in A. Tang, M. Ali Babar, I. Gorton, and J. Han, “A Survey of Architecture Design 
Rationale”, Journal of Systems and Software, 79(12):1792–1804, 2007. A mini-
malistic technique for capturing rationale is discussed in U. Zdun, R. Capilla,  
H. Tran, and O. Zimmermann, “Sustainable Architectural Design Decisions”, 
IEEE Software, 30(6):46–53, 2013.
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4
Case Study: FCAPS 
System

We now present a case study of using ADD 3.0 for a greenfield system in a ma-
ture domain. This case study details an initial design round composed of three 
iterations and is based on a real-world example. We first present the business con-
text, and then we summarize the requirements for the system. This is followed 
by a step-by-step summary of the activities that are performed during the ADD 
iterations.

4.1 Business Case

In 2006, a large telecommunications company wanted to expand its Internet 
Protocol (IP) network to support “carrier-class services”, and more specifically 
high-quality voice over IP (VOIP) systems. One important aspect to achieve this 
goal was synchronization of the VOIP servers and other equipment. Poor syn-
chronization results in low quality of service (QoS), degraded performance, and 
unhappy customers. To achieve the required level of synchronization, the com-
pany wanted to deploy a network of time servers that support the Network Time 
Protocol (NTP). Time servers are formed into groups that typically correspond 
to geographical regions. Within these regions, time servers are organized hier-
archically in levels or strata, where time servers placed in the upper level of the 
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hierarchy (stratum 1) are equipped with hardware (e.g., Cesium Oscillator, GPS 
signal) that provides precise time. Time servers that are lower in the hierarchy use 
NTP to request time from servers in the upper levels or from their peers.

Many pieces of equipment depend on the time provided by time servers in 
the network, so one priority for the company was to correct any problems that 
occur on the time servers. Such problems may require dispatching a technician 
to perform physical maintenance on the time servers, such as rebooting. Another 
priority for the company was to collect data from the time servers to monitor the 
performance of the synchronization framework.

In the initial deployment plans, the company wanted to field 100 time serv-
ers of a particular model. Besides NTP, time servers support the Simple Network 
Management Protocol (SNMP), which provides three basic operations:

§	set() operations: change configuration variables (e.g., connected peers)
§	get() operations: retrieve configuration variables or performance data
§	trap() operations: notifications of exceptional events such as the loss or 

restoration of the GPS signal or changes in the time reference

To achieve the company’s goals, a management system for the time servers 
needed to be developed. This system needed to conform to the FCAPS model, 
which is a standard model for network management. The letters in the acronym 
stand for:

§	Fault management. The goal of fault management is to recognize, isolate, 
correct, and log faults that occur in the network. In this case, these faults cor-
respond to traps generated by time servers or other problems such as loss of 
communication between the management system and the time servers.

§	Configuration management. This includes gathering and storing config-
urations from network devices, thereby simplifying the configuration of 
devices and tracking changes that are made to device configurations. In this 
system, besides changing individual configuration variables, it is necessary 
to be able to deploy a specific configuration to several time servers.

§	Accounting. The goal here is to gather device information. In this context, 
this includes tracking device hardware and firmware versions, hardware 
equipment, and other components of the system.

§	Performance management. This category focuses on determining the ef-
ficiency of the current network. By collecting and analyzing performance 
data, the network health can be monitored. In this case, delay, offset, and 
jitter measures are collected from the time servers.

§	Security management. This is the process of controlling access to assets in 
the network. In this case, there are two important types of users: technicians 
and administrators. Technicians can visualize trap information and config-
urations but cannot make changes; administrators are technicians who can 
visualize the same information but can also make changes to configura-
tions, including adding and removing time servers from the network.
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Once the initial network was deployed, the company planned to extend it by 
adding time servers from newer models that might potentially support manage-
ment protocols other than SNMP.

The remainder of this chapter describes a design for this system, created 
using ADD 3.0.

4.2 System Requirements

Requirement elicitation activities had been previously performed, and the follow-
ing is a summary of the most relevant requirements collected.

4.2.1 Use Case Model

The use case model in Figure 4.1 presents the most relevant use cases that sup-
port the FCAPS model in the system. Other use cases are not shown.

FIGURE 4.1 Use case model for the FCAPS system
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Each of these use cases is described in the following table:

Use Case Description

UC-1: Monitor 
network status 
 

A user monitors the time servers in a hierarchical representation 
of the whole network. Problematic devices are highlighted, 
along with the logical regions where they are grouped. The 
user can expand and collapse the network representation. This 
representation is updated continuously as faults are detected or 
repaired.

UC-2: Detect 
fault

Periodically the management system contacts the time servers 
to see if they are “alive”. If a time server does not respond, or 
if a trap that signals a problem or a return to a normal state 
of operation is received, the event is stored and the network 
representation observed by the users is updated accordingly.

UC-3: Display 
event history

Stored events associated with a particular time server or group 
of time servers are displayed. These can be filtered by various 
criteria such as type or severity.

UC-4: Manage 
time servers

The administrator adds a time server to, or removes a time server 
from, the network. 

UC-5: Configure 
time server

An administrator changes configuration parameters associated 
with a particular time server. The parameters are sent to the 
device and are also stored locally.

UC-6: Restore 
configuration

A locally stored configuration is sent to one or more time servers.

UC-7: Collect 
performance 
data

Network performance data (delay, offset, and jitter) is collected 
periodically from the time servers.

UC-8: Display 
information

The user displays stored information about the time server—
configuration values and other parameters such as the server 
name.

UC-9: Visualize 
performance 
data

The user displays network performance measures (delay, 
offset, jitter) in a graphical way to view and analyze network 
performance.

UC-10: Log in A user logs into the system through a login/password screen. 
Upon successful login, the user is presented with different 
options according to their role.

U-11: Manage 
users

The administrator adds or removes a user or modifies user 
permissions.

4.2.2 Quality Attribute Scenarios

In addition to these use cases, a number of quality attribute scenarios were elic-
ited and documented. The six most relevant ones are presented in the following 
table. For each scenario, we also identify the use case that it is associated with. 
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ID
Quality 
Attribute Scenario

Associated 
Use Case

QA-1 Performance Several time servers send traps to the 
management system at peak load; 100% of 
the traps are successfully processed and 
stored.

UC-2

QA-2 Modifiability A new time server management protocol 
is introduced to the system as part of an 
update. The protocol is added successfully 
without any changes to the core 
components of the system.

UC-5

QA-3 Availability A failure occurs in the management system 
during normal operation. The management 
system resumes operation in less than 30 
seconds.

All

QA-4 Performance The management system collects 
performance data from a time server 
during peak load. The management system 
collects all performance data within 5 
minutes, while processing all user requests, 
to ensure no loss of data due to CON-5.

UC-7

QA-5 Performance, 
usability

A user displays the event history of a 
particular time server during normal 
operation. The list of events from the last 
24 hours is displayed within 1 second.

UC-3

QA-6 Security A user performs a change in the system 
during normal operation. It is possible to 
know who performed the operation and 
when it was performed 100% of the time.

All

4.2.3 Constraints

Finally, a set of constraints on the system and its implementation were collected. 
These are presented in the following table.

ID Constraint

CON-1 A minimum of 50 simultaneous users must be supported.

CON-2 The system must be accessed through a web browser (Chrome V3.0+, 
Firefox V4+, IE8+) in different platforms: Windows, OSX, and Linux.

CON-3 An existing relational database server must be used. This server cannot be 
used for other purposes than hosting the database.

CON-4 The network connection to user workstations can have low bandwidth but 
is generally reliable.

CON-5 Performance data needs to be collected in intervals of no more than 5 
minutes, as higher intervals result in time servers discarding data.

CON-6 Events from the last 30 days must be stored.
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4.2.4 Architectural Concerns

Given that this is greenfield development, only a few general architectural con-
cerns are identified initially, as shown in the following table.

ID Concern

CRN-1 Establishing an overall initial system structure.

CRN-2 Leverage the team’s knowledge about Java technologies, including 
Spring, JSF, Swing, Hibernate, Java Web Start and JMS frameworks, and 
the Java language.

CRN-3 Allocate work to members of the development team.

Given these sets of inputs, we are now ready to proceed to describe the de-
sign process, as described in Section 3.2. In this chapter, we present only the final 
results of the requirements collection process. The job of collecting these require-
ments is nontrivial, but is beyond the scope of this chapter.

4.3 The Design Process

We now ready to make the leap from the world of requirements and business 
concerns to the world of design. This is perhaps the most important job for an 
architect—translating requirements into design decisions. Of course, many other 
decisions and duties are important, but this is the core of what it means to be an 
architect: making design decisions with far-reaching consequences.

4.3.1 ADD Step 1: Review Inputs

The first step of the ADD method involves reviewing the inputs and identifying 
which requirements will be considered as drivers (i.e., which will be included in 
the design backlog). The inputs are summarized in the following table.

Category Details

Design purpose This is a greenfield system from a mature domain. The purpose 
is to produce a sufficiently detailed design to support the 
construction of the system.

Primary functional 
requirements

From the use cases presented in Section 4.2.1, the primary 
ones were determined to be:
UC-1: Because it directly supports the core business
UC-2: Because it directly supports the core business
UC-7: Because of the technical issues associated with it  
(see QA-4)
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Quality attribute 
scenarios

The scenarios were described in Section 4.2.2. They have now 
been prioritized (as discussed in Section 2.4.2) as follows:

Scenario 
ID

Importance to 
the Customer

Difficulty of Implementation 
According to the Architect

QA-1 High High

QA-2 High Medium

QA-3 High High

QA-4 High High

QA-5 Medium Medium

QA-6 Medium Low

From this list, only QA-1, QA-2, QA-3, and QA-4 are selected as 
drivers.

Constraints All of the constraints discussed in Section 4.2.3 are included as 
drivers.

Architectural 
concerns

All of the architectural concerns discussed in Section 4.2.4 are 
included as drivers.

4.3.2 Iteration 1: Establishing an Overall System Structure

This section presents the results of the activities that are performed in each of the 
steps of ADD in the first iteration of the design process.

4.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers
This is the first iteration in the design of a greenfield system, so the iteration goal 
is to achieve the architectural concern CNR-1 of establishing an overall system 
structure (see Section 3.3.1).

Although this iteration is driven by a general architectural concern, the ar-
chitect must keep in mind all of the drivers that may influence the general struc-
ture of the system. In particular, the architect must be mindful of the following:

§	QA-1: Performance
§	QA-2: Modifiability
§	QA-3: Availability
§	QA-4: Performance
§	CON-2: System must be accessed through a web browser in different 

platforms—Windows, OSX, and Linux
§	CON-3: A relational database server must be used
§	CON-4: Network connection to users workstations can have low bandwidth 

and be unreliable
§	CRN-2: Leverage team’s knowledge about Java technologies
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Time server

Legend:

FIGURE 4.2 Context diagram for the FCAPS system 

4.3.2.2 Step 3: Choose One or More Elements of the System to Refine
This is a greenfield development effort, so in this case the element to refine is the 
entire FCAPS system, which is shown in Figure 4.2. In this case, refinement is 
performed through decomposition.

4.3.2.3 Step 4: Choose One or More Design Concepts That Satisfy the 
Selected Drivers
In this initial iteration, given the goal of structuring the entire system, design 
concepts are selected according to the roadmap presented in Section 3.3.1. The 
following table summarizes the selection of design decisions. Note that all of the 
design concepts used in this case study are also described in Appendix A.

Design Decisions 
and Location Rationale

Logically structure 
the client part of the 
system using the Rich 
Client Application 
reference architecture

The Rich Client Application (RCA) reference architecture 
(see Section A.1.2) supports the development of applica-
tions that are installed in the users’ PC. These applications 
support rich user interface capabilities that are needed for 
displaying the network topology and performance graphs 
(UC-1). These capabilities are also helpful in achieving 
QA-5, even if this design decision is not a driver. Although 
these types of applications do not run in a web browser 
(CON-2), they can be installed from a web browser using a 
technology such as Java Web Start.
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Design Decisions 
and Location Rationale

Discarded alternatives:

Alternative Reason for Discarding

Rich Internet 
applications 
(RIA)

This reference architecture (see Section 
A.1.3) is oriented toward the develop-
ment of applications with a rich user 
interface that runs inside a web browser.
Although this type of application supports 
a rich user interface and can be up-
graded easily, this option was discarded 
because it was believed that plugins for 
executing RIA were less broadly available 
than the Java Virtual Machine.

Web 
applications

This reference architecture (see Section 
A.1.1) is oriented toward the development 
of applications that are accessed from 
a web browser. Although this reference 
architecture facilitates deployment and 
updating, it was discarded because it is 
difficult to provide a rich user interface 
experience.

Mobile 
applications

This reference architecture (see 
Section A.1.4) is oriented toward the 
development of applications that are 
deployed in handheld devices. This 
alternative was discarded because this 
type of device was not considered for 
accessing the system.

Logically structure 
the server part of 
the system using the 
Service Application 
reference architecture

Service applications (see Section A.1.5) do not provide a 
user interface but rather expose services that are consumed 
by other applications.
No other alternatives were considered and discarded, as the 
architect was familiar with this reference architecture and 
considered it fully adequate to meet the requirements.

Physically structure 
the application 
using the three-tier 
deployment pattern

Since the system must be accessed from a web browser 
(CON-2) and an existing database server must also be 
used (CON-3), a three-tier deployment is appropriate (see 
Section A.2.2).
At this point, it is clear that some type of replication will be 
needed on both the web/app tier and the database tier to 
support QA-3, but this will be addressed later (in iteration 3).
Discarded alternatives include other n-tier patterns with 
n != 3. The two-tier alternative is discarded because an 
existing legacy database server needs to be incorporated 
into the system and this cannot be used for any other 
purpose, according to CON-3. All n > 3 alternatives are 
discarded because at this point no other servers are 
necessary for the solution.

(continues)
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Design Decisions 
and Location Rationale

Build the user 
interface of the client 
application using 
the Swing Java 
framework and other 
Java technologies

The standard framework for building Java Rich Clients 
ensures portability (CON-2) and it is what the developers 
were already familiar with (CRN-3).
Discarded alternatives: The Eclipse SWT (Standard Widget 
Toolkit) framework was considered, but the developers were 
not as familiar with it. 

Deploy the application 
using the Java Web 
Start technology

Access to the application is obtained via a web browser, 
which launches the installer (CON-2).
This technology also facilitates updating because client 
code is reloaded only when a new version is available. 
As updates are not expected to occur frequently, this is 
beneficial for low-bandwidth situations (CON-4).
The alternative would be the use of applets, but they need 
to be reloaded every time the web page is loaded, which 
increases the bandwidth requirements.

4.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities, 
and Define Interfaces
The instantiation design decisions considered and made are summarized in the 
following table:

Design Decision and 
Location Rationale

Remove local data sources 
in the rich client application

It is believed that there is no need to store data locally, 
as the network connection is generally reliable.
Also, communication with the server is handled in 
the data layer. Internal communication between 
components in the client is managed through local 
method calls and does not need particular support.

Create a module dedicated 
to accessing the time 
servers in the data layer 
of the Service Application 
reference architecture

The service agents component from the reference 
architecture is adapted to abstract the access to the 
time servers. This will further facilitate the achievement 
of QA-2 and will play a critical role in the achievement 
of UC-2 and UC-7.

The results of these instantiation decisions are recorded in the next step. In 
this initial iteration, it is typically too early to precisely define functionality and 
interfaces. In the next iteration, which is dedicated to defining functionality in 
more detail, interfaces will begin to be defined.

4.3.2.5 Step 6: Sketch Views and Record Design Decisions
The diagram in Figure 4.3 shows the sketch of a module view of the two refer-
ence architectures that were selected for the client and server applications. These 
have now been adapted according to the design decisions we have made.
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«Layer»
Presentation CS

«Layer»
Business logic CS

«Layer»
Data CS

«Swing»
UI Modules

UI Process Modules

Client Side

Server Side

«Layer»
Cross-cutting CS

Business Modules CS Business Entities CS

«Module»
Communication Modules

Security Module CS

Op. Mgmt. Module CS

«Layer»
Services SS

Service Interfaces

«Layer»
Business Logic SS

Business Modules SS Business Entities SS

«Layer»
Data SS

DB Access Module
Time Server Access Module

«Layer»
Cross-cutting SS

Security Module SS

Op. Mgmt. Module SS

Communication Module SS

FIGURE 4.3 Modules obtained from the selected reference architectures (Key: UML)
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This sketch was created using a CASE tool. In the tool, each element is selected 
and a short description of its responsibilities is captured. Note that the descriptions 
at this point are quite crude, just indicating major functional responsibilities, with no 
details. The following table summarizes the information that is captured:

Element Responsibility

Presentation client 
side (CS)

This layer contains modules that control user interaction and 
use case control flow.

Business logic CS This layer contains modules that perform business logic 
operations that can be executed locally on the client side.

Data CS This layer contains modules that are responsible for 
communication with the server.

Cross-cutting CS This “layer” includes modules with functionality that goes 
across different layers, such as security, logging, and I/O. 
This is helpful in achieving QA-6, even if it is not one of the 
drivers.

UI modules These modules render the user interface and receive user 
inputs.

UI process modules These modules are responsible for control flow of all the 
system use cases (including navigation between screens).

Business modules 
CS

These modules either implement business operations that 
can be performed locally or expose business functionality 
from the server side.

Business entities CS These entities make up the domain model. They may be less 
detailed than those on the server side.

Communication 
modules CS

These modules consume the services provided by the 
application running on the server side.

Services server side 
(SS)

This layer contains modules that expose services that are 
consumed by the clients.

Business Logic SS This layer contains modules that perform business logic 
operations that require processing on the server side.

Data SS This layer contains modules that are responsible for data 
persistence and for communication with the time servers.

Cross-cutting SS These modules have functionality that goes across different 
layers, such as security, logging, and I/O.

Service interfaces 
SS

These modules expose services that are consumed by the 
clients.

Business modules 
SS

These modules implement business operations.

Business entities SS These entities make up the domain model. 

DB access module This module is responsible for persistence of business 
entities (objects) into the relational database. It performs 
object-oriented to relational mapping and shields the rest of 
the application from persistence details.
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Element Responsibility

Time server access 
module

This module is responsible for communication with the time 
servers. It isolates and abstracts operations with the time 
servers to support communication with different types of 
time servers (see QA-2).

The deployment diagram in Figure 4.4 sketches an allocation view that illus-
trates where the components associated with the modules in the previous diagram 
will be deployed.

The responsibilities of the elements are summarized here:

Element Responsibility

User workstation The user’s PC, which hosts the client side logic of the 
application

Application server The server that hosts server side logic of the application and 
also serves web pages

Database server The server that hosts the legacy relational database

Time server The set of (external) time servers

Also, information about relationships between some elements in the dia-
gram that is worth recording is summarized in the following table:

Relationship Description

Between web/app server and 
database server

Communication with the database will be 
done using the JDBC protocol.

Between web/app server and time 
server

The SNMP protocol is used (at least initially).

pc :User Workstation «replicated»
:Application Server

«replicated»
database :Database Server

:Time Server

Server-Side Application
«Java Web Start»

Client-Side 
Application

«SNMP»

«JDBC»

FIGURE 4.4 Initial deployment diagram for the FCAPS system (Key: UML)
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4.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration 
Goal and Achievement of Design Purpose
The following table summarizes the design progress using the Kanban board 
technique discussed in Section 3.8.2.

Not 
Addressed

Partially 
Addressed 

Completely
Addressed

Design Decisions Made During 
the Iteration

UC-1 Selected reference architecture 
establishes the modules that will 
support this functionality.

UC-2 Selected reference architecture 
establishes the modules that will 
support this functionality.

UC-7 Selected reference architecture 
establishes the modules that will 
support this functionality.

QA-1 No relevant decisions made, as it is 
necessary to identify the elements 
that participate in the use case that 
is associated with the scenario.

QA-2 Introduction of a time server access 
module in the data layer on the 
server application that encapsulates 
communication with the time serv-
ers. The details of this component 
and its interfaces have not been 
defined yet.

QA-3 Identification of the elements 
derived from the deployment pattern 
that will need to be replicated.

QA-4 No relevant decisions made, as it is 
necessary to identify the elements 
that participate in the use case that 
is associated with the scenario.

CON-1 Structuring the system using 3 tiers 
will allow multiple clients to connect 
to the application server. Decisions 
regarding concurrent access have 
not been made yet.

CON-2 Use of Java Web Start technology 
allows access through a web 
browser to download the Rich 
Client. Since the Rich Client is being 
programmed in Java, this supports 
execution under Windows, OSX, 
and Linux.
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Not 
Addressed

Partially 
Addressed 

Completely
Addressed

Design Decisions Made During 
the Iteration

CON-3 Physically structure the application 
using the 3-tier deployment 
pattern, and isolate the database 
by providing database access 
components in the data layer of the 
application server.

CON-4 Use of Java Web Start technology 
requires the client to be downloaded 
only the first time, and then when 
upgrades occur. This is helpful 
to support limited-bandwidth 
connections. More decisions 
need to be made regarding the 
communication between the 
presentation and the business logic 
layers.

CON-5 No relevant decisions made.

CON-6 No relevant decisions made.

CRN-1 Selection of reference architectures 
and deployment pattern.

CRN-2 Technologies that have been 
considered up to this point take 
into account the knowledge of the 
developers. Other technologies 
still need to be selected (e.g., 
communication with the time 
servers).

CRN-3 No relevant decisions made.

4.3.3 Iteration 2: Identifying Structures to Support 
Primary Functionality

This section presents the results of the activities that are performed in each of the 
steps of ADD in the second iteration of the design process for the FCAPS system. 
In this iteration, we move from the generic and coarse-grained descriptions of 
functionality used in iteration 1 to more detailed decisions that will drive imple-
mentation and hence the formation of development teams.

This movement from the generic to the specific is intentional, and built into 
the ADD method. We cannot design everything up front, so we need to be dis-
ciplined about which decisions we make, and when, to ensure that the design 
is done in a systematic way, addressing the biggest risks first and moving from 
there to ever finer details. Our goal for the first iteration was to establish an over-
all system structure. Now that this goal has been met, our new goal for this sec-
ond iteration is to reason about the units of implementation, which affect team 
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formation, interfaces, and the means by which development tasks may be distrib-
uted, outsourced, and implemented in sprints.

4.3.3.1 Step 2: Establish Iteration Goal by Selecting Drivers
The goal of this iteration is to address the general architectural concern of identify-
ing structures to support primary functionality. Identifying these elements is useful 
not only for understanding how functionality is supported, but also for addressing 
CRN-3—that is, the allocation of work to members of the development team.

In this second iteration, besides CRN-3, the architect considers the system’s 
primary use cases:

§	UC-1
§	UC-2
§	UC-7

4.3.3.2 Step 3: Choose One or More Elements of the System to Refine
The elements that will be refined in this iteration are the modules located in the 
different layers defined by the two reference architectures from the previous 
iteration. In general, the support of functionality in this system requires the 
collaboration of components associated with modules that are located in the 
different layers.

4.3.3.3 Step 4: Choose One or More Design Concepts That Satisfy the 
Selected Drivers
In this iteration, several design concepts—in this case, architectural design pat-
terns—are selected from the book Pattern Oriented Software Architecture, Vol-
ume 4. The following table summarizes the design decisions. The words in bold 
in the following table refer to architectural patterns from this book, and can be 
found in Appendix A.

Design Decisions 
and Location Rationale and Assumptions

Create a Domain 
Model for the 
application

Before starting a functional decomposition, it is necessary to 
create an initial domain model for the system, identifying the 
major entities in the domain, along with their relationships.
There are no good alternatives. A domain model must 
eventually be created, or it will emerge in a suboptimal 
fashion, leading to an ad hoc architecture that is hard to 
understand and maintain.

Identify Domain 
Objects that 
map to functional 
requirements

Each distinct functional element of the application needs 
to be encapsulated in a self-contained building block—a 
domain object.
One possible alternative is to not consider domain objects 
and instead directly decompose layers into modules, but this 
increases the risk of not considering a requirement.
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Design Decisions 
and Location Rationale and Assumptions

Decompose Domain 
Objects into general 
and specialized 
Components 

Domain objects represent complete sets of functionality, 
but this functionality is supported by finer-grained elements 
located within the layers. The “components” in this pattern 
are what we have referred to as modules.
Specialization of modules is associated with the layers where 
they are located (e.g., UI modules).
There are no good alternatives to decomposing the layers 
into modules to support functionality.

Use Spring 
framework and 
Hibernate

Spring is a widely used framework to support enterprise 
application development. Hibernate is an object to relational 
mapping (ORM) framework that integrates well with Spring.
An alternative that was considered for application develop-
ment is JEE. Spring was eventually selected because it was 
considered more “lightweight” and the development team 
was already familiar with it, resulting in greater and earlier 
productivity.
Other ORM frameworks were not considered, as the 
development team already was familiar with, and happy with 
the performance of, Hibernate.

4.3.3.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities, 
and Define Interfaces
The instantiation design decisions made in this iteration are summarized in the 
following table:

Design Decisions 
and Location Rationale

Create only an initial 
domain model

The entities that participate in the primary use cases need to 
be identified and modeled but only an initial domain model is 
created, to accelerate this phase of design.

Map the system use 
cases to domain 
objects

An initial identification of domain objects can be made by an-
alyzing the system’s use cases. To address CRN-3, domain 
objects are identified for all of the use cases in Section 4.2.1.

Decompose the 
domain objects 
across the layers to 
identify layer-specific 
modules with an 
explicit interface

This technique ensures that modules that support all of the 
functionalities are identified.
The architect will perform this task just for the primary use 
cases. This allows another team member to identify the rest of 
the modules, thereby allocating work among team members.
Having established the set of modules, the architect realizes 
the need to test these modules, so a new architectural 
concern is identified here:
CRN-4: A majority of modules shall be unit tested.
Only “a majority of modules” are covered by this concern 
because the modules that implement user interface 
functionality are difficult to test independently.

(continues)
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Design Decisions 
and Location Rationale

Connect components 
associated with 
modules using 
Spring

This framework uses an inversion of control approach that 
allows different aspects to be supported and the modules to 
be unit-tested (CRN-4).

Associate 
frameworks with a 
module in the data 
layer

ORM mapping is encapsulated in the modules that are 
contained in the data layer. The Hibernate framework 
previously selected is associated with these modules.

While the structures and interfaces are identified in this step of the method, 
they are captured in the next step.

4.3.3.5 Step 6: Sketch Views and Record Design Decisions
As a result of the decisions made in step 5, several diagrams are created. 

§	Figure 4.5 shows an initial domain model for the system.
§	Figure 4.6 shows the domain objects that are instantiated for the use case 

model in Section 4.2.1.
§	Figure 4.7 shows a sketch of a module view with modules that are derived 

from the business objects and associated with the primary use cases. Note 
that explicit interfaces are not shown but their existence is assumed.

The responsibilities for the elements identified in Figure 4.7 are summarized 
in the table that begins on page 95.
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Time Server

- deviceName
- ipAddress
- model

Event

- date
- payload
- severity
- type

Region

- name

Configuration

- configurationParameters

Performance Data

- delay:  DataSet
- jitter:  DataSet
- offset:  DataSet

User

- login
- password
- permissions
- type

0..*

-parent

0..*

1

1

generates

0..*

1..*

1

acknowledges

FIGURE 4.5 Initial domain model (Key: UML)

«domain object»
Network Status Monitoring

responsibilities
UC-1

«domain object»
Fault Detection

responsibilities
UC-2

«domain object»
Event history

responsibilities
UC-3

«domain object»
Time Server Management

responsibilities
UC-4

«domain object»
Time Server Configuration

responsibilities
UC-5
UC-6

«domain object»
System Access

responsibilities
UC-10

«domain object»
Performance Data and Information Display

responsibilities
UC-8
UC-9

«domain object»
Performance and Data Collection

responsibilities
UC-7

«domain object»
User Management

responsibilities
UC-11

FIGURE 4.6 Domain objects associated with the use case model (Key: UML)
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Server Side

Client Side«Layer»
Presentation CS

«Layer»
Business logic CS

«Layer»
Data CS

«Layer»
Services SS

«Layer»
Business Logic SS

«Layer»
Data SS

NetworkStatusMonitoringView

NetworkStatusMonitoringController

RequestManager

«facade»
RequestService

TopologyController
DomainEntities

RegionDataMapper TimeServerDataMapper EventDataMapper TimeServerConnector

TimeServerEventsController DataCollectionController

FIGURE 4.7 Modules that support the primary use cases (Key: UML)
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Element Responsibility

NetworkStatusMonitoringView Displays the network representation and 
updates it when events are received. 
This component embodies both UI com-
ponents and UI process components 
from the reference architecture.

NetworkStatusMonitoringController Responsible for providing the necessary 
information to the presentation layer for 
displaying the network representation.

RequestManager Responsible for communication with the 
server-side logic.

RequestService Provides a facade that receives 
requests from the clients.

TopologyController Contains business logic related to the 
topological information.

DomainEntities Contains the entities from the domain 
model (server side).

TimeServerEventsController Contains business logic related to the 
management of events.

DataCollectionController Contains logic to perform data 
collection and storage.

RegionDataMapper Responsible for persistence operations 
(CRUD) related to the regions.

TimeServerDataMapper Responsible for persistence operations 
(CRUD) related to the time servers.

EventDataMapper Responsible for persistence operations 
(CRUD) related to the events.

TimeServerConnector Responsible for communication with the 
time servers. It isolates and abstracts 
operations with the time servers to 
support communication with different 
types of time servers (see QA-2).
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The following sequence diagrams for UC-1 and UC-2 were created in the pre-
vious step of the method to define interfaces (as discussed in Section 3.6). A similar 
diagram was also created for UC-7 but is not shown here due to space limitations.

UC-1: Monitor Network Status
Figure 4.8 shows an initial sequence diagram for UC-1 (monitor network status). It 
shows how the user representation of the topology is displayed on startup (after the 
user has successfully logged into the system). Upon launch, the topology is requested 
from the TopologyController on the server. This element retrieves the root re-
gion through the RegionDataMapper and returns it to the client. The client can 
then populate the view by traversing the relationships within the Region class.

ServerClient

Technician

:NetworkStatusMonitoringView :NetworkStatusMonitoringController :RequestManager :RequestService :TopologyController :RegionDataMapper

launch()

initialize()

requestTopology()

sendRequest(Request)

requestTopology()

retrieve(id) :Region

:Region

:Region

:Response

:Region

:boolean

getRootRegion() :Region

populateView()

interact()

FIGURE 4.8 Sequence diagram for use case UC-1 (Key: UML)

From the interactions identified in the sequence diagram, initial methods for 
the interfaces of the interacting elements can be identified:
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Method Name Description

Element: NetworkStatusMonitoringContoller

boolean initialize() Opens up the network representation so that 
users can interact with it.

Region getRootRegion() Returns a reference to the root region and the 
neighbors of this object (excluding traps).

Element: RequestManager

Region requestTopology() Requests the topology. This method returns a ref-
erence to the root region from which it is possible 
to navigate through the complete topology.

Element: RequestService

Response 
sendRequest(Request req)

This method receives a request. Only this method 
is exposed in the service interface. This simplifies 
the addition of other functionality in the future with-
out having to modify the existing service interface.

Element: TopologyController

Region requestTopology() Requests the topology. This method returns a ref-
erence to the root region from which it is possible 
to navigate through the complete topology.

Element: RegionDataMapper

Region retrieve(int id) Returns a Region from its id.
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Time Server

:T imeServerConnector :T imeServerConfigurationControl ler :T imeServerDataMapper :T ime Server :TopologyControl ler

addEventListener(this)

trap()

eventReceived(event)

publish(event)

retrieve(id) :TimeServer

:TimeServer

addEvent()

update(TimeServer)

:true

FIGURE 4.9 Sequence diagram for use case UC-2 (Key: UML)

UC-2: Detect Fault
Figure 4.9 shows an initial sequence diagram for UC-2 (detect 
fault) shows only the components on the server side. The interac-
tion starts with a TimeServer sending a trap, which is received by the 
TimeServerConnector. The trap is transformed into an Event and sent to 
the TimeServerConfigurationController. The Event is sent asyn-
chronously to the TopologyController for publication to the clients and is 
then persisted.

From this interaction, initial methods for the interfaces of the interacting 
elements can be identified:
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Method Name Description

Element: TimeServerConnector

boolean addEventListener 
(EventListener el)

This method allows components from the 
business logic to register themselves as 
listeners to events that are received from the 
time servers.

Element: TimeServerConfigurationController

boolean eventReceived(Event 
evt)

This callback method is invoked when an 
event is received.

Element: TopologyController

publish(Event evt) This method notifies the clients that a new 
event has occurred.

Element: TimeServerDataMapper

TimeServer retrieve(int id) Retrieves a TimeServer identified by its id.

boolean update(TimeServer 
ts)

Persists changes in a TimeServer.

4.3.3.6 Step 7: Perform Analysis of Current Design and Review Iteration 
Goal and Achievement of Design Purpose
The decisions made in this iteration provided an initial understanding of how 
functionality is supported in the system. The modules associated with the pri-
mary use cases were identified by the architect, and the modules associated with 
the rest of the functionality were identified by another team member. From the 
complete list of modules, a work assignment table was created (not shown here) 
to address CRN-3.

Also, as part of module identification, a new architectural concern was iden-
tified and added to the Kanban board. Drivers that were completely addressed in 
the previous iteration are removed from the table.
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Not 
Addressed

Partially 
Addressed 

Completely
Addressed

Design Decisions Made During the 
Iteration

UC-1 Modules across the layers and 
preliminary interfaces to support this use 
case have been identified.

UC-2 Modules across the layers and 
preliminary interfaces to support this use 
case have been identified.

UC-7 Modules across the layers and 
preliminary interfaces to support this use 
case have been identified.

QA-1 The elements that support the 
associated use case (UC-2) have been 
identified.

QA-2 The elements that support the 
associated use case (UC-5) have been 
identified.

QA-3 No relevant decisions made.

QA-4 The elements that support the 
associated use case (UC-7) have been 
identified.

CON-1 No relevant decisions made.

CON-4 No relevant decisions made.

CON-5 Modules responsible for collecting data 
have been identified.

CON-6 Modules responsible for collecting data 
storage been identified.

CRN-2 Additional technologies were identified 
and selected considering the team’s 
knowledge.

CRN-3 Modules associated with all of the use 
cases have been identified and a work 
assignment matrix has been created (not 
shown).

CRN-4 The architectural concern of unit-testing 
modules, which was introduced in 
this new iteration, is partially solved 
through the use of an inversion of control 
approach to connect the components 
associated with the modules. 
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4.3.4 Iteration 3: Addressing Quality Attribute Scenario 
Driver (QA-3)

This section presents the results of the activities that are performed in each of the 
steps of ADD in the third iteration of the design process. Building on the funda-
mental structural decisions made in iterations 1 and 2, we can now start to reason 
about the fulfillment of some of the more important quality attributes. This itera-
tion focuses on just one of these quality attribute scenarios.

4.3.4.1 Step 2: Establish Iteration Goal by Selecting Drivers
For this iteration, the architect focuses on the QA-3 quality attribute scenario: 
A failure occurs in the management system during operation. The management 
system resumes operation in less than 30 seconds.

4.3.4.2 Step 3: Choose One or More Elements of the System to Refine
For this availability scenario, the elements that will be refined are the physical 
nodes that were identified during the first iteration:

§	Application server
§	Database server

4.3.4.3 Step 4: Choose One or More Design Concepts That Satisfy the 
Selected Drivers
The design concepts used in this iteration are the following:

Design Decisions and Location Rationale and Assumptions

Introduce the active redundancy 
tactic by replicating the application 
server and other critical compo-
nents such as the database

By replicating the critical elements, the system 
can withstand the failure of one of the replicated 
elements without affecting functionality.

Introduce an element from the 
message queue technology 
family

Traps received from the time servers are placed 
in the message queue and then retrieved by 
the application. Use of a queue will guarantee 
that traps are processed and delivered in order 
(QA-1). 

4.3.4.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities, 
and Define Interfaces
The instantiation design decisions are summarized in the following table:
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Design Decisions 
and Location Rationale

Deploy message 
queue on a separate 
node

Deploying the message queue on a separate node will 
guarantee that no traps are lost in case of application 
failure. This node is replicated using the tactic of active 
redundancy, but only one copy receives and treats events 
coming from the network devices.

Use active 
redundancy and 
load balancing in the 
application server

Because two replicas of the application server are active 
at any time, it makes sense to distribute and balance the 
load among the replicas. This tactic can be achieved 
through the use of the Load-Balanced Cluster pattern (see 
Section A.2.3).
This introduces a new architectural concern, CRN-5: 
Manage state in replicas.

Implement load 
balancing and 
redundancy using 
technology support

Many technological options for load balancing and 
redundancy can be implemented without having to develop 
an ad hoc solution that would be less mature and harder to 
support.

The results of these instantiation decisions are recorded in the next step.

4.3.4.5 Step 6: Sketch Views and Record Design Decisions
Figure 4.10 shows a refined deployment diagram that includes the introduction of 
redundancy in the system.

Server1 :ApplicationServer 

pc :UserWorkstation 

Server2 :ApplicationServer 

«replicated»
:Database Server

device1 :TimeServer
Relocatable IP address

«replicated»
:TrapReceiver

«replicated»
:LoadBalancer

«JDBC»

«HTTP»

«JDBC»

«SNMP»

FIGURE 4.10 Refined deployment diagram (Key: UML)
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The following table describes responsibilities for elements that have not 
been listed previously (in iteration 1):

Element Responsibility

LoadBalancer Dispatches (and balances the load of) requests coming from 
clients to the application servers. The load balancer also 
presents a unique IP address to the clients.

TrapReceiver Receives traps from network devices, converts them into events, 
and puts these events into a persistent message queue.

The UML sequence diagram shown in figure 4.11 illustrates how the 
TrapReceiver that was introduced in this iteration exchanges messages with 
other elements shown in the deployment diagram to support UC-2 (detect fault), 
which is associated with both QA-3 (availability) and QA-1 (performance). 

As the purpose of this diagram is to illustrate the communication that occurs 
between the physical nodes, the names of the methods are only preliminary; they 
will be refined in further iterations.

:ApplicationServer pc :UserWorkstation

trap()

transformAndEnqueue(Event)

consume()

event()

publish(Event)

updateView()

:NetworkDevice :TrapReceiver

FIGURE 4.11 Sequence diagram illustrating the messages exchanged between 
the physical nodes to support UC-2 (Key: UML)
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4.3.4.6 Step 7: Perform Analysis of Current Design and Review Iteration 
Goal and Achievement of Design Purpose
In this iteration, important design decisions have been made to address QA-3, 
which also impacted QA-1. The following table summarizes the status of the differ-
ent drivers and the decisions that were made during the iteration. Drivers that were 
completely addressed in the previous iteration have been removed from the table.

Not 
Addressed

Partially 
Addressed 

Completely
Addressed

Design Decisions Made During the 
Iteration

QA-1 The introduction of a separate replicated 
trap receiver node can help ensure 
100% of the traps are processed, even 
in the case of a failure of the application 
server. Furthermore, because trap 
reception is performed in a separate 
node, this approach reduces application 
server processing load, thereby helping 
performance.
Because specific technologies have not 
been chosen, this driver is marked as 
“partially addressed”.

QA-2 No relevant decisions made.

QA-3 By making the application server 
redundant, we reduce the probability of 
failure of the system. Furthermore, if the 
load balancer fails, a passive replica is 
activated within the required time period.
Because specific technologies have not 
been chosen (message queue), this 
driver is marked as “partially addressed”.

QA-4 No relevant decisions made.

CON-1 Replication of the application server and 
the use of a load balancer will help in 
supporting multiple user requests.

CON-4 No relevant decisions made.

CON-5 No relevant decisions made.

CON-6 No relevant decisions made.

CRN-2 No relevant decisions made.

CRN-4 No relevant decisions made.

CRN-5 This new architectural concern is 
introduced in this iteration: manage state 
in replicas. At this point, no relevant 
decisions have been made.
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4.4 Summary

In this chapter, we presented an example of using ADD to design a greenfield 
system in a mature domain. We illustrated three iterations with different foci: 
addressing a general concern, addressing functionality, and addressing one key 
quality attribute scenario.

The example followed the roadmap discussed in Section 3.3.1. It is inter-
esting to observe that in the first iteration, two different reference architectures 
were used to structure the system. Also, the selection of externally developed 
components—in this case, frameworks—was carried out across the different iter-
ations. Finally, the example illustrates how new architectural concerns appear as 
the design progresses.

This example demonstrates how architectural concerns, primary use cases, 
and quality attribute scenarios can be addressed as part of architectural design. In 
a real system, more iterations would be necessary to create a complete architec-
ture design by addressing other scenarios with high priority.

In this example, we assumed that the architect is using a CASE tool during 
design, so diagrams were produced using UML. This is certainly not mandatory, 
as we will see in the case study presented in Chapter 5. Also, note that it is rela-
tively simple to generate preliminary view sketches by using the information that 
is generated as part of the design process.

4.5 Further Reading

Appendix A provides descriptions and bibliographical references of all the de-
sign concepts used in this case study.
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5
Case Study:  
Big Data System

With Serge Haziyev and Olha Hrytsay

We now present an extended design example of using ADD 3.0 in a greenfield 
system for a challenging domain—that of Big Data. As of the time of writing, 
this domain was still relatively new and rapidly evolving. As such, the architects 
could not solely rely on past experience to guide them. They instead comple-
mented the design process with periodic analyses and strategic prototyping, as 
we will now describe.

5.1 Business Case

This case study involves an Internet company that provides popular content and 
online services to millions of web users. Besides providing information exter-
nally, the company collects and analyzes massive logs of data that are generated 
from its infrastructure (e.g., application and server logs, system metrics). Such 
an approach of dealing with computer-generated log messages is also called log 
management (http://en.wikipedia.org/wiki/Log_management_and_intelligence).

Because of very fast infrastructure growth, the company’s IT department re-
alizes that the existing in-house systems can no longer process the required log 
data volume and velocity. Moreover, requests for a new system are coming from 
other company stakeholders, including product managers and data scientists, who 
would like to leverage the various kinds of data that can be collected from multi-
ple data sources, not just logs.

The marketecture diagram (informal depiction of the system’s structure) 
shown in Figure 5.1 represents the desired solution from a functional perspective 
for three major groups of users.

../../../../../en.wikipedia.org/wiki/Log_management_and_intelligence
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24/7 Operations, 
Support Engineers, 

Developers

Real-Time 
Dashboard

Data Scientists/
Analysts

Ad Hoc 
Reports

Management
Static Reports

• Real-time monitoring
• Full-text search
• Anomaly detection

• Raw and aggregated historical data
• Ad  hoc analysis
• Real-time queries

• Near-real-time static reports
• Available through BI corporate tool

Web Servers

• Hundreds of 
servers

• Massive logs 
from 
multiple 
sources

FIGURE 5.1 Marketecture diagram for the Big Data system

5.2 System Requirements

Requirement elicitation activities have been previously performed. The most 
important requirements collected are summarized here. They comprise a set of 
primary use cases, a set of quality attribute scenarios, a set of constraints, and a 
set of architectural concerns.

5.2.1 Use Case Model

The primary use cases for the system are described in the following table.

Use Case Description

UC-1: Monitor 
online services

On-duty operations staff can monitor the current state of 
services and IT infrastructure (such as web server load, 
user activities, and errors) through a real-time operational 
dashboard, which enables them to quickly react to issues.

UC-2: 
Troubleshoot 
online service 
issues

Operations, support engineers, and developers can do 
troubleshooting and root-cause analysis on the latest 
collected logs by searching log patterns and filtering log 
messages.

UC-3: Provide 
management 
reports

Corporate users, such as IT and product managers, can see 
historical information through predefined (static) reports in 
a corporate BI (business intelligence) tool, such as those 
showing system load over time, product usage, service level 
agreement (SLA) violations, and quality of releases.
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Use Case Description

UC-4: Support 
data analytics

Data scientists and analysts can do ad hoc data analysis 
through SQL-like queries to find specific data patterns and 
correlations to improve infrastructure capacity planning and 
customer satisfaction.

UC-5: Anomaly 
detection

The operations team should be notified 24/7 about any 
unusual behavior of the system. To support this notification 
plan, the system shall implement real-time anomaly detection 
and alerting (future requirement).

UC-6: Provide 
security reports

Security analysts should be provided with the ability to 
investigate potential security and compliance issues by 
exploring audit log entries that include destination and source 
addresses, a time stamp, and user login information (future 
requirement). 

5.2.2 Quality Attribute Scenarios

The most relevant quality attribute (raw) scenarios are presented in the following 
table. For each scenario, we also identify the use case that it is associated with.

ID
Quality  
Attribute Scenario

Associated 
Use Case

QA-1 Performance The system shall collect up to 15,000 events/
second from approximately 300 web servers.

UC-1, 2, 5

QA-2 Performance The system shall automatically refresh the 
real-time monitoring dashboard for on-duty 
operations staff with < 1 min latency. 

UC-1

QA-3 Performance The system shall provide real-time search 
queries for emergency troubleshooting with  
< 10 seconds query execution time, for the 
last 2 weeks of data.

UC-2

QA-4 Performance The system shall provide near-real-time 
static reports with per-minute aggregation 
for business users with < 15 min latency, < 5 
seconds report load.

UC-3, 6

QA-5 Performance The system shall provide ad hoc (i.e., non-
predefined) SQL-like human-time queries 
for raw and aggregated historical data, with 
< 2 minutes query execution time. Results 
should be available for query in < 1 hour. 

UC-4

QA-6 Scalability The system shall store raw data for the last 2 
weeks available for emergency troubleshoot-
ing (via full-text search through logs).

UC-2

QA-7 Scalability The system shall store raw data for the last 
60 days (approximately 1 TB of raw data per 
day, approximately 60 TB in total).

UC-4

(continues)
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ID
Quality  
Attribute Scenario

Associated 
Use Case

QA-8 Scalability The system shall store per-minute 
aggregated data for 1 year (approximately 
40 TB) and per-hour aggregated data for 10 
years (approximately 50 TB).

UC-3, 4, 6

QA-9 Extensibility The system shall support adding new data 
sources by just updating a configuration, with 
no interruption of ongoing data collection.

UC-1, 2, 5

QA-10 Availability The system shall continue operating with  
no downtime if any single node or 
component fails.

All use 
cases

QA-11 Deployability The system deployment procedure shall be 
fully automated and support a number of envi-
ronments: development, test, and production.

All use 
cases

5.2.3 Constraints

The constraints associated with the system are presented in the following table.

ID Constraint

CON-1 The system shall be composed primarily of open source technologies 
(for cost reasons). For those components where the value/cost of 
using proprietary technology is much higher, proprietary technology 
may be used.

CON-2 The system shall use the corporate BI tool with a SQL interface for 
static reports (e.g., MicroStrategy, QlikView, Tableau).

CON-3 The system shall support two specific deployment environments: 
private cloud (with VMware vSphere Hypervisor) and public cloud 
(Amazon Web Services). Architecture and technology decisions should 
be made to keep deployment vendor as agnostic as possible.

5.2.4 Architectural Concerns

The initial architectural concerns that are considered are shown in the following table.

ID Concern

CRN-1 Establishing an initial overall structure as this is a greenfield system.

CRN-2 Leverage the team’s knowledge of the Apache Big Data ecosystem.
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5.3 The Design Process

Now that we have enumerated the requirements, we are ready to begin the first it-
eration of ADD. This is a system from a relatively novel domain that is being cre-
ated from scratch. Hence we follow the roadmap of design for greenfield systems 
in mature domains (as discussed in Section 3.3.1), albeit with some modifications 
to address the uncertainties inherent in the Big Data domain, such as the rapid 
emergence and evolution of technologies.

5.3.1 ADD Step 1: Review Inputs

The first step of the method involves reviewing the inputs. They are summarized 
in the following table.

Category Details

Design 
purpose

This is a greenfield system in a relatively novel domain. The organi-
zation will perform development following an Agile process with short 
iterations so that developers can quickly receive real-world feedback 
and continue modifying the system. At the same time, an architectur-
al design is needed to make conscious decisions to satisfy architec-
tural drivers and avoid unnecessary rework.

Primary 
functional 
requirements

From the use cases presented in Section 5.2.1, the following ones 
are designated as primary:

 ■ UC-1
 ■ UC-2
 ■ UC-3
 ■ UC-4

Quality 
attribute 
scenarios

The following table illustrates the priority of the primary quality 
attribute scenarios, as ranked by the customer and architect (as 
discussed in Section 3.3.2). Note that quality attributes scenarios 
with lower priorities exist but are not shown here.

Scenario  
ID

Importance to 
Customer

Difficulty of Implementation 
According to Architect

QA-1 High High

QA-2 High Medium

QA-3 Medium Medium

QA-4 High High

QA-5 Medium High

QA-6 Medium Medium

QA-7 Medium Medium

QA-8 High Medium

QA-9 High Medium

QA-10 High Medium

QA-11 Medium High

(continues)
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Category Details

Constraints See Section 5.2.3.

Architectural 
concerns

All of the architectural concerns presented in Section 5.2.4 are 
included as drivers.

5.3.2 Iteration 1: Reference Architecture and Overall System 
Structure

This section presents the results of the activities that are performed in each of the 
steps of the ADD method in the first iteration of the design process.

5.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers
This is the first iteration in the design of a greenfield system, so the iteration goal 
is to establish an initial overall structure for the system (CRN-1). Even though 
this first iteration is driven by a general architectural concern, the architect must 
keep in mind all of the drivers and, in particular, constraints and quality attributes:

§	CON-1: Leverage open source technologies whenever applicable
§	CON-2: Use corporate BI tool with SQL interface for static reports
§	CON-3: Two deployment environments: private and public clouds
§	QA-1, 2, 3, 4, 5: Performance
§	QA-6, 7, 8: Scalability
§	QA-9: Extensibility
§	QA-10: Availability
§	QA-11: Deployability

5.3.2.2 Step 3: Choose One or More Elements of the System to Refine
Again, as this is greenfield development, and we are in the initial iteration, the 
element to refine is the entire system.

5.3.2.3 Step 4: Choose One or More Design Concepts That Satisfy the 
Selected Drivers
In this iteration, design concepts are selected from a group of data analytics ref-
erence architectures (a list of such reference architectures can be found in the 
design concepts catalog of the Smart Decisions Game; see the Further Reading 
section for more information).
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Design 
Decisions and 
Location Rationale

Build the 
application as 
an instance of 
the Lambda 
(reference) 
architecture

The Lambda architecture, shown in Figure 5.2, is a reference 
architecture that splits the processing of a data stream into two 
streams: the “speed layer”, which supports access to real-time 
data (UC-1, UC-2, UC-5), and a layer that groups the “batch” 
and “serving” layers, which supports access to historical data 
(UC-3, UC-4, UC-6). (The creators of the Lambda architecture 
refer to these as “layers”, but this is different from prior—and 
more standard—usages of this term, which typically refer to 
a grouping of modules. Here the layers are groups of runtime 
components.) While the batch layer is based on immutable 
nonrelational techniques, the speed layer is based on streaming 
techniques to support strict real-time processing requirements.
Immutability in this case means that the data is not updated or 
deleted when it is collected; that is, it can be only appended. 
As all data is collected, no data can be lost and a machine 
or human error can be tolerated. For example, if a software 
engineer made an occasional mistake in processing or viewing 
logic, once that problem is resolved, the collected data can be 
used to replay and recompute the views from scratch.
For the reader’s convenience we describe the basic concepts of 
the Lambda architecture by walking through five steps:

1. All data received from multiple data sources is dispatched 
through the data stream element to both the batch layer and 
the speed layer for processing.

2. The batch layer acts as a landing zone that corresponds to 
the master dataset element (as an immutable, append-only 
set of raw data), and also precomputes information that will 
be used by the batch views.

3. The serving layer contains precalculated and aggregated 
views optimized for querying with low latency, which is often 
required by reporting solutions.

4. The speed layer processes and provides access to recent 
data through real-time views that are not available in the 
serving layer due to the high latency of batch processing.

5. All data in the system is available for querying, whether it is 
historical or recent, representing the key Lambda architec-
ture principle: query = function (batch data + real-time data).

The parallel streams provide “complexity isolation”, meaning that 
design decisions, development, and execution of each stream 
can be done independently, which has been shown to increase 
fault tolerance, scalability, and modifiability (see Table 5.1).
Figure 5.3 depicts the architectural tradeoffs between these 
alternatives, and demonstrates the differences between the 
reference architectures in terms of four quality dimensions: 
scalability, support for ad hoc analysis, unstructured data 
processing capabilities, and real-time analysis capabilities:
As Figure 5.3 shows, the Lambda architecture provides the best 
tradeoff between scalability and ad hoc analysis.

(continues)
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Design 
Decisions and 
Location Rationale

Use fault 
tolerance and no 
single point of 
failure principle 
for all elements 
in the system

Fault tolerance has become a standard for most Big Data 
technologies and the Lambda architecture already implies a 
number of design decisions to build a robust and fault-tolerant 
system, as noted above.
However, we will need to make sure, in all subsequent design 
and deployment decisions, that all candidate technologies 
will support the QA-10 requirement by providing fault-tolerant 
configurations and adhering to the “no single point of failure” 
principle.

TABLE 5.1 Alternatives and Reasons for Discarding

Alternative Reason for Discarding

Traditional relational This reference architecture is based on traditional relational 
model principles and SQL-based DBMSs, which are 
considered highly efficient for complex ad hoc read queries.
This is, however, the least appropriate alternative because 
of scalability and real-time processing limitations.

Extended relational Although this reference architecture is completely based 
on relational model principles and SQL-based DBMSs, it 
intensively uses massive parallel processing (MPP) and in-
memory techniques to improve scalability and extensibility.
It is less appropriate because of its high cost and real-time 
processing limitations.

Pure nonrelational This reference architecture does not rely on relational model 
principles. It is often built on techniques such as NoSQL and 
MapReduce, and is effective for processing semistructured 
and unstructured data.
This alternative is closer to the goal in terms of cost 
economy and scalability, but ad hoc analysis is limited. 

Data refinery A non-relational component performs an extract–transform–
load (ETL) process to refine semistructured/unstructured 
data and load it, cleansed, into a data warehouse (a 
relational database) for further analysis.
It is less appropriate for this solution mostly because of its 
high cost and significant deficiencies in terms of real-time 
processing capabilities.
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5.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,  
and Define Interfaces
The instantiation design decisions considered and made are summarized in the 
following table.

Design Decision and 
Location Rationale

Split the Query and 
Reporting element 
into two subelements 
associated with the 
drivers

The Query and Reporting element in the Lambda 
architecture is divided into the following two sub-elements. 
They are associated with drivers as follows:

 ■ Corporate BI tool (UC-3, UC-4, QA-4, QA-5, CON-2)
 ■ Dashboard/visualization tool (UC-1, UC-2, QA-2, QA-3)

This division is driven by knowledge of the domain and 
the availability of tools. The guiding rationale is to have 
flexibility in selecting appropriate technologies—there could 
not be one single “universal” tool to satisfy all of these use 
cases, constraints, and quality attributes. Thus, we choose 
to separate concerns, which should give us more design 
options. Another difference from the “standard” Lambda 
architecture is that we may not need to merge the results of 
queries: According to our use cases, they can be executed 
independently for batch and real-time views.

Split the Precomputing 
and Batch Views 
elements into 
subelements 
associated with Ad Hoc 
and Static Views

These elements are decomposed into two subelements 
each:

 ■ Ad Hoc Views Precomputing and Ad Hoc Batch Views 
(UC-4, QA-5)

 ■ Static Views Precomputing and Static Batch Views 
(UC-3, QA-4, CON-2)

The reason for this subdivision is the same as with the 
previous case: It gives us more flexibility to select the 
optimal patterns and technologies. If we discover, in 
subsequent design iterations, that there is one approach 
to address these two concerns simultaneously, it will be 
simple to merge these elements.

Change semantics and 
name of the Master 
Dataset to Raw Data 
Storage

This is more than just a name change; it is also a change 
in semantics. According to QA-7, the system shall store 
raw data for least 60 days. Thus older data can be 
archived and stored using other storage technologies 
(or even deleted). The Master Dataset has more 
responsibilities: It includes raw data storage as well as 
archived data. To simplify this case, the study of archived 
data will not be addressed.

In this initial iteration it is typically too early to precisely define functional-
ity and interfaces.

5.3.2.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.4 shows the result of the prior instantiation design decisions. The table 
that begins on the next page summarizes each element’s responsibilities.
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Data
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Raw Data 
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Tool
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Layer 
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Data
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Query Results Flow 

Legend:

Element 
Boundary

FIGURE 5.4 Instantiation of the Lambda architecture

Element Responsibility

Data Sources Web servers that generate logs and system metrics (e.g., 
Apache access and error log, Linux sysstat).

Data Stream This element collects data from all data sources in real-time and 
dispatches it to both the Batch Layer and the Speed Layer for 
processing.

Batch Layer This layer is responsible for storing raw data and precomputing 
the batch views to be stored in the Serving Layer.

Serving Layer This layer exposes the batch views in a data store (with no 
random writes, but batch updates and random reads), so that 
they can be queried with low latency.

Speed Layer This layer processes and provides access to recent data, which 
is not available yet in the serving layer due to the high latency of 
batch processing, through a set of real-time views.

Raw Data Storage This element is a part of the batch layer and is responsible for 
storing raw data (immutable, append only) for a specified period 
of time (QA-7).

Ad Hoc Views 
Precomputing

This element is a part of the Batch Layer and is responsible 
for precomputing the Ad Hoc Batch Views. The precomputing 
represents batch operations over raw data that transform it to a 
state suitable for fast human-time querying.

Static Views 
Precomputing

This element is a part of the Batch Layer and is responsible 
for precomputing the Static Batch Views. The precomputing 
represents batch operations over raw data that transform it to a 
state suitable for fast human-time querying.

(continues)
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Element Responsibility

Ad Hoc Batch 
Views

This element is a part of the Serving Layer and contains 
precalculated and aggregated data optimized for ad hoc low-
latency queries (QA-5) executed by data scientists/analysts.

Static Batch 
Views

This element is a part of the Serving Layer and contains 
precalculated and aggregated data optimized for predefined 
low-latency queries (QA-4) generated by a corporate BI tool.

Real-Time Views This element is a part of the Speed Layer and contains indexed 
logs optimized for ad hoc, low-latency search queries (QA-3) 
executed by operations and engineering staff.

Corporate BI 
Tool

This business intelligence tool is licensed to be used across 
different departments. The tool supports a SQL interface (such 
as ODBC or JDBC) and can be connected to multiple data 
sources, including this system (UC-3, UC-4, CON-2).

Dashboard/
Visualization Tool

The operations team uses this real-time operational dashboard 
to monitor online services, search for important messages in 
logs, and quickly react to potential issues (UC-1, UC-2).

5.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration 
Goal and Achievement of Design Purpose
The decisions made in this iteration address important early considerations af-
fecting the overall system structure. You do not need to start from a “blank page”, 
because the selected reference architecture already offers a proven initial decom-
position and data flow that significantly saves design time and effort. Further de-
sign decisions will need to be made to selected candidate technologies and more 
details provided on how use cases and quality attributes will be supported. 

The following table summarizes the design progress using the Kanban board 
technique discussed in Section 3.8.2.

Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design Decisions Made During the 
Iteration

UC-1 Use Lambda architecture to provide 
access to real-time data. No detailed 
decisions of which dashboard 
technology to use have been made.

UC-2 Use Lambda architecture to provide 
access to real-time data. No detailed 
decisions of which search technology 
to use have been made.

UC-3 Use Lambda architecture to provide 
access to historical data. No detailed 
decisions of which storage and query 
technologies to use have been made.



5.3 The Design Process 119

Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design Decisions Made During the 
Iteration

UC-4 Use Lambda architecture to provide 
access to historical data. No detailed 
decisions of which storage and query 
technologies to use have been made.

UC-5 This use case has been omitted in 
this iteration as nonprimary, although 
the Lambda architecture supports it 
and we will address it in subsequent 
iterations.

UC-6 This use case has been omitted in this 
iteration as nonprimary, although from 
an architectural standpoint it is similar 
to UC-3.

QA-1 Potential data sources for the Data 
Stream element have been identified. 
No detailed decisions of which 
technologies to use for the data 
stream element have been made.

QA-3 The Real-Time Views element 
has been identified. No detailed 
decisions of which storage and query 
technology to use have been made.

QA-4 The Static Batch Views element has 
been identified and its responsibilities 
have been established. No detailed 
decisions of which storage technology 
to use have been made.

QA-5 The Ad Hoc Batch Views element has 
been identified and its responsibilities 
have been established. No detailed 
decisions of which storage and query 
technology to use have been made.

QA-6 The Real-Time Views element’s 
responsibilities have been 
established. No detailed decisions of 
which storage and query technology 
to use have been made.

QA-7 The Raw Data Storage element has 
been identified and its responsibilities 
have been established. No detailed 
decisions of which storage technology 
to use have been made.

(continues)
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Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design Decisions Made During the 
Iteration

QA-8 The Ad Hoc and Static Batch Views 
elements have been identified and 
their responsibilities have been 
established. No detailed decisions 
of which storage technologies to use 
have been made.

QA-10 It has been decided that all 
technologies chosen to implement the 
system elements support QA-10 by 
providing fault-tolerance configuration 
and no single point of failure.

CON-2 The Corporate BI Tool element has 
been identified. No detailed decisions 
on how this constraint will be met have 
been made.

CRN-1 An overall logical structure of the 
system has been established but the 
physical structure still needs to be 
defined.

CRN-2 No relevant decisions made

5.3.3 Iteration 2: Selection of Technologies

This section presents the results of the activities that are performed in each of the 
steps of ADD in the second iteration of the design process.

Technology choices often influence the system architecture, meaning that 
we need to select technologies at the earliest stages of architecture design. 
Choosing technologies starts with the identification and selection of technology 
families that are further instantiated into specific technologies. Starting with tech-
nology families allows us to make specific technologies interchangeable and thus 
keep the right level of technology agnosticism to avoid vendor lock-in (and as a 
result, there is less risk and less cost to change a technology to a better one in the 
future).

In this iteration we will show a technology tree that helps us choose optimal 
building blocks when designing Big Data greenfield systems.
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5.3.3.1 Step 2: Establish Iteration Goal by Selecting Drivers
The goal of this iteration is to address CRN-2 (leverage the team’s knowledge 
of the Apache Big Data ecosystem) by selecting technologies to support system 
requirements defined in Section 5.2, particularly keeping in mind CON-1 (favor 
open source technologies).

5.3.3.2 Step 3: Choose One or More Elements of the System to Refine
The reference architecture selected in the previous iteration (the Lambda archi-
tecture) was decomposed into elements that facilitate the selection of technology 
families and their associated specific technologies. These elements include the 
Data Stream, Raw Data Storage, Ad Hoc and Static Views Precomputing, Ad Hoc 
and Static Batch Views, Real-Time Views, and Dashboard/Visualization Tool.

5.3.3.3 Step 4: Choose One or More Design Concepts That Satisfy the 
Selected Drivers
The design concepts used in this iteration are externally developed components. 
Initially, technology families are selected and associated with the elements to be 
refined. A technology family represents a group of technologies with common 
functional purposes (see Section 2.5.5). The family names are indicative of their 
function, and some specific technologies may belong to several families at the 
same time, but having such a classification helps us make rational design de-
cisions that eventually pay off in less rework and better readiness for changes. 
The history of the software industry shows that technology implementations are 
emerging, evolving, and disappearing much faster than the patterns and princi-
ples represented by their families.

Figure 5.5 illustrates family groups, technology families (in regular text), 
and their associated specific technologies (in italic text) for the Big Data domain. 
Further details about a number of these technologies can be found in the design 
concepts catalog of the Smart Decisions Game (see the Further Reading section).
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Big Data Analytics Catalog

Integration
Messaging

Data Collector

Apache Flume

Logstash

Fluentd

Apache Kafka

RabbitMQ

Amazon SQS

Apache ActiveMQ

HBase

Cassandra

Neo4J

OrientDB

HP Vertica

Teradata

MS PDW

Amazon Redshift

StreamSets

Talend

Informatica

MongoDB

CouchDB

Riak

Redis

Berkeley DB

MS SQL Server

QlikView

Microstrategy

Tableau

Tibco JasperSoft

Pentaho

Oracle RDBMS

IBM DB2

Splunk

Splunk

Kibana

Zoomdata

D3.js

GoJS

Highcharts

Impala

Apache Hive (Stinger)

Apache Solr

Elasticsearch

Hadoop MapReduce

Apache Tez

Apache Spark

Apache Storm

Spark Streaming

Amazon Kinesis

Apache Samza

Cascading

Apache Crunch

Amazon Pig

Apache Hive

Spark SQL

HDFS

CassandraFS

Distributed Message Broker

ETL/Data Integration Engine

Document-Oriented

Key-Value

Graph-Oriented

MPP Analytic RDBMS

Traditional Analytic RDBMS

BI Platform

Interactive Dashboard

Interactive Query Engine

Distributed Search Engine

Distributed Computing Engine

Event Stream Processor

Data Processing Framework

Graphic Library

Column-Family

ETL/ELT

Distributed File System

NoSQL Database

Analytic RDBMS

Visualization & Reporting

Search & Query

Processing

Data Storage

Processing and 
Analytics

Straight text  –  a technology family

Italic text  –  a specific technology 

Legend:

FIGURE 5.5 An example of a Big Data analytics design concepts catalog 
(Source: Softserve)
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The BI Platform family group and related technologies are not considered 
further in this design exercise because the corporate BI tool is external to the 
target system.

Design 
Decisions and 
Location Rationale and Assumptions

Select the Data 
Collector family 
for the Data 
Stream element 

Data Collector is a technology family (and an architectural 
pattern) that collects, aggregates, and transfers log data for 
later use. Usually Data Collector implementations offer out-of-
the-box plug-ins for integrating with popular event sources and 
destinations.
The destinations are the Raw Data Storage and Real-Time 
Views elements, which will also be addressed in this iteration.

Alternative Reason for Discarding

ETL Engine The main purpose of ETL engines is to perform 
batch transformations, rather than per-event 
operations. This means that real-time perfor-
mance and scalability criteria (QA-1, QA-2) will 
be extremely difficult to meet (if it is possible to 
meet them at all).

Distributed 
Message 
Broker

Although this technology family can be solely 
used to implement the Data Stream element, 
it provides less support for extensibility (QA-9) 
and, therefore, is better suited as a complement 
to the data collector. This can be achieved, 
for example, using Flavka—a combination of 
Apache Flume (Data Collector) and Apache 
Kafka (Distributed Message Broker).

Select the 
Distributed File 
System family 
for the Raw Data 
Storage element 

According to the Lambda architecture principles, the Raw Data 
Storage element must be immutable. Thus new data should not 
modify existing data, but just be appended to the dataset. Data 
will be read in batch operations for transforming raw data to 
Batch Views. For these purposes, we can confidently choose a 
Distributed File System. 

Alternative Reason for Discarding

NoSQL 
Database

Although NoSQL databases (especially col-
umn-family and document-oriented) can be used 
for storing raw data, such as logs, this will cause 
unnecessary overhead in resource consumption 
(mostly memory consumption because of cach-
ing mechanisms) and maintainability (because of 
the need of configuring and evolving a schema).

Analytic 
RDBMS

All relational databases including analytic capa-
bilities are based on the relational model, forming 
tables and rows. This works very well for execut-
ing complex queries, but this option is awkward 
(and expensive) for storing semistructured logs 
in their raw format.

(continues)
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Design 
Decisions and 
Location Rationale and Assumptions

Select Interactive 
Query Engine 
family for both 
the Static and Ad 
Hoc Batch Views 
elements 

As we stated in the previous iteration, the Batch Views element 
is refined into two elements, the Static and Ad Hoc Batch 
Views, to support two use cases: the generation of static re-
ports (UC-3, 6) and the support for ad hoc querying (UC-4).
The main design decision is to use the same technology family 
for both Static and Ad Hoc Batch Views—namely, the Interac-
tive Query Engine. These engines allow analytic database ca-
pabilities over data stored in a Distributed File System (thus 
this technology family is also selected implicitly). If we select a 
technology that is fast enough, it can be used for both elements.
The benefit of using a single technology family is that we do not 
need to have separate storage technologies for reporting and 
querying data. 

Alternative Reason for Discarding

NoSQL 
Database

The Static Batch Views element can be imple-
mented with the Materialized View pattern, by 
storing data in a form that is ready for querying 
and displaying in a reporting system (a corporate 
BI tool). The NoSQL Database family is often 
used for this purpose because it provides good 
scalability and, being open source, satisfies 
QA-8 (approximately 90 TB of aggregated data) 
and CON-1 (open source license).
However, NoSQL databases are not good op-
tions to use as data warehouses for ad hoc que-
ries because they were not designed for analytic 
purposes. Although they can be used for this 
purpose, this application will result in significant 
performance penalties.
This alternative is therefore discarded as it can 
be used only for the Static Batch Views, but is 
ineffective for Ad Hoc Batch Views

Analytic 
RDBMS

Ad hoc queries can be any queries that are 
supported by a SQL-like interface. The query 
result must be returned within “human” time 
(QA-5). The described scenario is exactly what 
a data warehouse is used for. This pattern is 
usually implemented with Analytic RDBMS tech-
nologies following the Kimball or Inmon design 
approaches. At the same time, it will be quite 
costly to satisfy the scalability requirement of 
having approximately 90 TB of aggregated data. 
The cost per terabyte in MPP analytic data bases 
is significantly higher (up to 30 times) than the 
same amount of data in a NoSQL database or a 
distributed file system (such as Hadoop).
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Design 
Decisions and 
Location Rationale and Assumptions

Alternative Reason for Discarding

Analytic 
RDBMS

This alternative is rejected because even if it 
can be used for both Static and Ad Hoc Batch 
Views, the technologies associated with this 
family are costly compared to (open source) 
Hadoop-based alternatives.

Use Data 
Processing 
Framework 
for the Views 
Precomputing 
elements

As we have already selected the Distributed File System family 
for Raw Data Storage and Batch Views, the next step is to 
choose a solution for data transformation from the Raw Data 
Storage to the format used in the Batch Views.
The decision is to select Data Processing Framework as 
this technology family allows data processing pipelines to be 
created using abstractions that support faster development and 
better maintainability.

Alternative Reason for Discarding

Distributed 
Computing 
Engine

Most Distributed Computing Engine technologies 
are designed for batch data processing, but 
require substantial knowledge of low-level 
primitives (e.g., for writing MapReduce tasks). 

Event 
Stream 
Processor

This is designed for real-time streaming 
processing; it is ineffective for batch operations.

Select Distributed 
Search Engine 
for the Real-Time 
Views element

The Real-Time Views element is responsible for full-text search 
over recent logs and for feeding an operational dashboard with 
real-time monitoring data (UC-1, UC-2). Distributed Search 
Engine is a technology family that serves just such purposes. 

Alternative Reason for Discarding

NoSQL 
Database

Some NoSQL databases provide keyword 
search or text search, but these are not as 
powerful and fast as search engines that also 
provide text-processing features such as 
stemming and geolocation.

Analytic 
RDBMS

Some databases provide full-text search 
capabilities (e.g., MS SQL Server); however, 
they are less desirable from extensibility, 
maintenance, and cost standpoints.

Distributed 
File System 
and 
Interactive 
Query 
Engine

This approach works well for batch historical 
data; however, the latency of storing and 
processing will be too high for real-time data.

(continues)
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Design 
Decisions and 
Location Rationale and Assumptions

Automate 
deployment of 
the system with 
Puppet scripts

Puppet scripts can be used for both Private Cloud (e.g., VMware) 
and Public Cloud (e.g., AWS) deployments. This supports the 
satisfaction of CON-3. Puppet allows automating the deployment 
process as well as managing the configuration of a system. 
There is a library of predefined scripts written by the Puppet 
community to automate the deployment of many popular open 
source technologies.

5.3.3.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities, 
and Define Interfaces
In this iteration, instantiation is performed by associating specific technologies 
with the technology families that were previously selected. The instantiation de-
sign decisions considered and made are summarized in the following table:

Design Decision 
and Location Rationale

Use Apache 
Flume from the 
Data Collector 
family for the Data 
Stream element

As a primary candidate technology, we will select Apache 
Flume. It provides the required configurability to support QA-9 
(adding new data sources by just updating a configuration at 
run-time).

Alternative Reason for Discarding

Logstash or
Fluentd

Although Logstash and Fluentd are quite 
popular technologies (perhaps as popular as 
Flume) and will satisfy the requirements, we 
have to make a choice and select only one. 
An extra argument for choosing Flume is its 
support by three major Hadoop distribution 
vendors.

Use HDFS from 
the Distributed 
File System family 
for the Raw Data 
Storage element

For this technology, we can confidently choose HDFS, which 
was designed to support exactly this type of usage scenario 
for large data sets (QA-7, storing approximately 60 TB of raw 
data). There are also a number of Hadoop file formats in which 
to store data in HDFS, such as text file, SequenceFile, RCFile, 
ORCFile, Avro, and Parquet. The selection of a file format will be 
addressed in the third iteration.

Alternative Reason for Discarding

CassandraFS This technology is dependent on a NoSQL 
Database (Cassandra), whereas we have 
chosen Distributed File System alone.
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Design Decision 
and Location Rationale

Use Impala from 
the Interactive 
Query Engine 
family for both 
the Static and Ad 
Hoc Batch Views 
elements

We select Impala as a primary candidate technology, as it offers 
competitive performance (although it is still not as fast as the 
top Analytic RDBMS platforms) and an ODBC interface for 
connectivity with a corporate BI tool.
Keeping possible performance issues in mind, we plan a proof-
of-concept in the next iterations to make sure this technology 
selection satisfies QA-4 (less than 5 seconds report load) and 
QA-5 (less than 2 minutes ad hoc query execution time).

Alternative Reason for Discarding

Apache Hive 
(Stinger)

Although Hive improved performance thanks 
to the Stinger initiative, the speed of queries is 
still slow compared to other alternatives such 
as Impala and Spark SQL.

Spark SQL Spark is a very promising technology for Big 
Data analytics, but the use case of serving as a 
SQL adapter for a BI tool might not be optimal 
for Spark SQL. The downside is the high 
memory requirements and long query time of 
noncached data. In contrast, Impala has been 
designed and optimized for this exact scenario.

Use Elasticsearch 
from the Distribu-
ted Search En-
gine family for the 
Real-Time Views 
elements. Use 
Kibana from the 
Interactive Dash-
board family for 
the Dashboard/
Visualization Tool 
element.

As a primary candidate technology, we select Elasticsearch, 
since it also provides a visualization tool: an interactive 
dashboard called Kibana.
Although Kibana is a relatively simple dashboard without 
role-based security (at least, at the moment of designing this 
solution), it satisfies use cases UC-1, 2 and QA-2 (auto-refresh 
dashboard with a less than 1 minute period).
Elasticsearch also provides a domain-specific language (Query 
DSL) that is supported by Kibana to query, filter, and visualize 
time series.

Alternative Reason for Discarding

Splunk Splunk also provides indexing and visualization 
capabilities (offering more features than 
Elasticsearch and Kibana); however, CON-1 
drives us to prefer an open source solution.

Use Hive from the 
Data Processing 
Framework 
for the Views 
Precomputing 
elements

We select Hive as a primary technology candidate, although 
we will need to make sure that QA-4 (less than 15 minutes 
latency) is satisfied by creating a proof-of-concept prototype in a 
subsequent iteration.
Hive provides a SQL-like language, just like Impala (which 
has been already selected in this iteration); thus it allows us to 
leverage the skills of data warehouse designers when writing 
data transformation scripts.

Alternative Reason for Discarding

Cascading or
Apache Pig

We disqualified Cascading and Pig so that we 
can minimize development time by leveraging 
the SQL skills of an existing development team. 
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The data exchanged between the elements will be defined more precisely 
in subsequent iterations. The format of this data constitutes the “interfaces” be-
tween the elements.

5.3.3.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.6 illustrates the result of the instantiation decisions. The responsibilities 
of the elements shown in the diagram were discussed in step 6 of Iteration 1. The 
following table summarizes the technology families and candidate specific tech-
nologies selected for these elements:

Element Technology Family Candidate Technology

Data Stream Data Collector Apache Flume

Raw Data Storage Distributed File System HDFS

Ad Hoc Views 
Precomputing

Data Processing Framework Apache Hive

Static Views 
Precomputing

Data Processing Framework Apache Hive

Ad Hoc Batch Views Interactive Query Engine Impala

Static Batch Views Interactive Query Engine Impala

Real-Time Views Distributed Search Engine Elasticsearch

Dashboard/
Visualization Tool

Interactive Dashboard Kibana

Technology family + (Specific technology)

Layer 
Boundary

Data Flow 
(with direction indicated)

Query Results Flow 

Legend:

Element 
Boundary

Data Stream

Data 
Sources

Data Collector
(Flume)

Raw Data 
Storage

Corporate 
BI Tool

Dashboard/
Visualization

ToolReal-Time Views

BATCH Layer SERVING Layer

SPEED Layer

Ad Hoc Views
Precomputing Ad Hoc 

Batch Views

Static Views
Precomputing

Static 
Batch Views

Distributed 
file system 

(HDFS) 

Distributed 
Search Engine 

(Elasticsearch) 

Data processing
framework (Hive) 

Data processing
framework (Hive) 

(Kibana)

Interactive Query 
Engine (Impala)

Interactive Query 
Engine (Impala)

FIGURE 5.6 Iteration 2 instantiation design decisions
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The next table explains the relationships between elements based on the se-
lected technologies:

Source Element Destination Element Relationship Description

Data Sources (logs) Data Stream (Flume) To be defined in the next iteration 

Data Stream (Flume) Raw Data Storage 
(HDFS)

Network communication (push) 
through Flume HDFS sink

Raw Data Storage 
(HDFS)

Views Precomputing 
(Apache Hive)

Local and network communication 
encapsulated through Hive

Views Precomputing 
(Apache Hive)

Batch Views (Impala) Local and network communication 
encapsulated through Hive

Batch Views (Impala) Corporate BI Tool Network communication (pull) 
through ODBC API

Data Stream (Flume) Real-Time Views 
(Elasticsearch)

Network communication (push) 
through Flume Elasticsearch sink

Real-Time Views 
(Elasticsearch)

Dashboard/
Visualization Tool 
(Kibana)

Network communication (pull) 
through Elasticsearch API

5.3.3.6 Step 7: Perform Analysis of Current Design and Review Iteration 
Goal and Achievement lf Design Purpose
The following Kanban table summarizes the design progress and the decisions 
made during the iteration. Note that drivers that were completely addressed in the 
previous iteration are not shown.

Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design Decisions Made During the 
Iteration

UC-1 Use Distributed Search Engine (Elastic-
search) and Interactive Dashboard 
(Kibana) to display real-time monitoring 
information.
Pending: Model indexes and create UI 
mockup.

UC-2 Use Distributed Search Engine (Elastic-
search) and Interactive Dashboard 
(Kibana) for full-text search over recent 
log data.
Pending: Model indexes and create a 
proof-of-concept.

UC-3 
UC-4

Use Interactive Query Engine (Impala) for 
the Batch Views elements.
Pending: Model data and typical reports.

(continues)
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Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design Decisions Made During the 
Iteration

UC-6 This use case has been omitted in this 
iteration as nonprimary, although it is 
similar to UC-3 from an architectural 
standpoint.

QA-1 Use Data Collector (Apache Flume) for 
the Data Stream element.
Pending: Configuration, proof-of-concept, 
and performance tests.

QA-2
QA-3

Use Distributed Search Engine 
(Elasticsearch) and Interactive 
Dashboard (Kibana).
Pending: Proof-of-concept and 
performance tests.

QA-4 Use Interactive Query Engine (Impala) for 
the Static Batch Views element.
Pending: Model data, proof-of-concept, 
and performance tests.

QA-5 Use Interactive Query Engine (Impala) for 
the Ad Hoc Batch Views element.
Pending: Model data, proof-of-concept, 
and performance tests.

QA-6 Use Distributed Search Engine 
(Elasticsearch) for the Real-Time Views 
element.
Pending: Do capacity planning.

QA-7 Use Distributed File System (HDFS) for 
the Raw Data Storage element.
Pending: Select file format and do 
capacity planning.

QA-8 Use Distributed File System (HDFS) as 
storage for Batch Views.
Pending: Select file format and do 
capacity planning.

QA-9 Use Data Collector (Apache Flume) for 
the Data Stream element.
Pending: Configuration and proof-of-
concept.

QA-10 Use fault tolerance in all system 
elements.
Pending: Stress test.

QA-11 Use Puppet scripts to automate the 
deployment process for different 
environments.
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Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design Decisions Made During the 
Iteration

CON-1 All the selected technologies are open 
source.

CON-2 Use Interactive Query Engine (Impala) 
with ODBC interface.

CON-3 All selected technologies can be 
deployed to both private cloud (VMware) 
and public cloud (AWS) environments 
using Puppet scripts.

CRN-1 No relevant decisions made.

CRN-2 Technologies from the Apache Big Data 
ecosystem were selected and associated 
with the different elements in the 
reference architecture.

5.3.4 Iteration 3: Refinement of the Data Stream Element

This section presents the results of the activities that are performed in each of the 
steps of ADD for the third iteration of the design process.

Some design decisions made in this iteration require the creation of a proof-
of-concept prototype, as they cannot be addressed in a purely conceptual manner. 
Given that the Big Data field is young and technologies are rapidly evolving, 
proofs-of-concepts of key elements are necessary to mitigate technology risks 
(e.g., incompatibility, slow performance, unsatisfactory reliability, limitations 
of claimed features) and to have the option to switch to an alternative early in 
the design and development process, thereby saving overall time and budget by 
avoiding later rework.

5.3.4.1 Step 2: Establish the Iteration Goal by Selecting Drivers
The goal of this iteration is to address several concerns associated with the se-
lection of Apache Flume, as the technology to be used for the Data Collector 
element. Apache Flume provides a reference structure—a data-flow model—de-
picted in the informal diagram shown in Figure 5.7.

The elements in Flume’s structure include:

§	The source: consumes events delivered to it by external data sources such 
as web servers

§	The channel: stores events received by the source
§	The sink: removes events from the channel and puts them in an external 

repository (i.e., destination)

The selection of Apache Flume raises several specific architectural concerns 
that need to be addressed:
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Data
Sources

Source Channel

Flume Agent/Collector

Sink

DestinationsData Flow 
(with direction indicated)

Legend:

FIGURE 5.7 Apache Flume data-flow reference structure

§	Selecting a mechanism for getting data from the external sources
§	Selecting specific input formats in the Source element
§	Selecting a file data format in which to store the events
§	Selecting a mechanism for the channeling events in the channel
§	Establishing a deployment topology for the Data Source elements

Addressing these specific architectural concerns will contribute to the satis-
faction of the following quality attributes:

§	QA-1 (Performance)
§	QA-7 (Scalability)
§	QA-9 (Extensibility)
§	QA-10 (Availability)

5.3.4.2 Step 3: Choose One or More Elements of the System to Refine
In this iteration, the focus is on the elements in Flume’s structure.

5.3.4.3 Step 4: Choose One or More Design Concepts That Satisfy the 
Selected Drivers
In this iteration most of the decisions are about instantiation, since they primarily 
involve configuring the elements that are already established by Flume. The only 
selection design decision involves choosing tactics to satisfy the availability and 
performance quality attributes.
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Design Decisions and 
Location Rationale and Assumptions

Use Flume in agent/
collector configuration. 
Agents are co-located 
on the web servers, and 
the collector runs in the 
Data Stream element.

A Flume instance can run in two modes: as an agent 
(directly co-located in the data sources) or as a collector 
(which combines data streams from multiple agents and 
writes to destinations).
From these two modes, Flume can be used in different 
configurations. The decision is to use Flume in both agent 
and collector configuration: The agents are co-located 
with the data sources and the Collector runs in the Data 
Stream element.

Alternative Reason for Discarding

Flume agents are on 
each web server and 
write events directly to 
sinks (no collectors)

Generates heavy traffic 
from 300-plus simultaneous 
connections to sinks (HDFS 
and Elasticsearch). Produces 
multiple (per web server) files 
in HDFS, which is suboptimal 
for this distributed file system 
(rather than having larger 
files that aggregate data from 
multiple web servers).

Flume collectors 
receive events directly 
from web servers (no 
agents) and write to 
sinks

Does not support failover mode. 
If a collector node fails, the 
connected web servers will lose 
a receiver.

Introduce the tactic of 
“maintaining multiples 
copies of computations” 
by using a load-
balanced, failover tiered 
configuration

Out of the possible topology alternatives, the selected 
one is a load-balanced and failover tiered topology 
based on performance (QA-1, 15,000 events/second) 
and availability (QA-10, no single point of failure) quality 
attribute scenarios. 

Alternative Reason for Discarding

Not replicating the 
collector

This would decrease 
performance and availability.
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5.3.4.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities, 
and Define Interfaces
The instantiation design decisions made in this iteration are summarized in the 
following table:

Design Decisions and 
Location Rationale and Assumptions

Use access and error 
logs from the Apache 
HTTP Server as input 
formats

The system requirements include the collection and 
analysis of logs such as web server load, user activities, 
and errors. In reality, there could be tens (and sometimes 
hundreds) of data source types.
For the development of the proof-of-concept, a single type 
of data source system is considered: an Apache HTTP 
server (“web server”). The data to be collected includes 
user activities that will be tracked through an access log 
and system errors through an error log.
The web server access log records all requests 
processed by the server. A log entry might look like this:
143.21.52.246 - - [19/Jun/2014:12:15:17 
+0000] "GET /test.html HTTP/1.1" 200 341 "-" 
"Mozilla/5.0 (X11; Linux x86_64; rv:6.0a1) 
Gecko/20110421 Firefox/6.0a1".

This example consists of the following data fields: client 
IP address, client identity, user ID, time stamp, request 
method, request URL, request protocol, response code, 
response size, referrer, user agent.
The web server error log sends diagnostic information 
and records any errors that it encounters when 
processing user requests. For example:
[19/Jun/2014:14:23:15 +0000] [error] [client 
50.83.180.156] Directory index forbidden by 
rule: /home/httpd/

This example consists of the following data fields: time 
stamp, severity level, client IP address, message.
Further data modeling and technology configuration will 
be based on these two types of logs and the described 
fields.

Log files are piped 
through an IP port in the 
source element of Flume 
agent

Apache Flume is configured to pipe log data through an 
IP port, such as by using syslog.

Alternative Reason for Discarding

Read from a log file 
(e.g., running the 
UNIX command 
tail -F access_log)

This option looks the simplest 
but does not guarantee event 
delivery (events can be lost), 
which is stated in the Flume 
user guide.
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Design Decisions and 
Location Rationale and Assumptions

Identify event 
channeling methods 
for both the agents and 
the collector; make 
final decision through 
prototyping

The ingested events from the Source element are staged 
in the Channel element. At the moment Flume offers three 
possible options to configure the channel:

1. Memory channel: in-memory queue; faster, but if any 
events are left in the memory queue when a Flume 
process dies, they cannot be recovered.

2. File channel: durable and backed up by the local file 
system.

3. Apache Kafka: an approach in which Kafka serves as 
a distributed and highly available channel.

The selection from these options actually is a “classic” 
tradeoff of performance versus availability (or what is 
sometimes termed durability). Although we do not have 
an explicit durability scenario, we understand that with 
the future system extension (UC-6, security reports), this 
requirement becomes more critical. This is an example 
of an architectural concern, in the sense that it does not 
appear in any requirements document, but the architect 
has to deal with it nonetheless.
Given these options and no publicly available information 
about the performance consequences, this is a good 
candidate for prototyping and making a decision based 
on the results. Another rationale for prototyping and 
performance measurement is the need to calculate the 
required hardware resources. As a consequence, a new 
concern is identified and added to the backlog:

 ■ CRN-3: Data modeling and developing proof-of-concept 
prototypes for key system elements

Select Avro as a specific 
file format for storing raw 
data in the HDFS sink

One decision that needs to be made when designing a 
solution based on Hadoop is the selection of an optimal file 
format. Hadoop supports a variety of formats that provide 
different functionalities, compression, and performance 
results depending on stored data and usage scenarios.
In this case the main scenarios are related to quality 
attributes such as performance (QA-1, 15,000 events/
second), scalability (QA-7, approximately 60 TB of raw 
data), and extensibility (QA-9, adding new data sources). 
When we translate these requirements to file format traits, 
they will be impacted by performance (how fast data can 
be pushed by the Data Stream), a compression factor 
(less space to store), and ease of schema evolution 
(when adding new log formats or changing existing ones).
We select Avro, as it supports rich data structures, 
provides good compression levels (with the Snappy 
compression codec), and is flexible enough to 
accommodate schema changes (employing a self-
describing format where data is stored with its schema).

(continues)
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Design Decisions and 
Location Rationale and Assumptions

Alternative Reason for Discarding

Text file (plain 
text, CSV, 
XML, JSON)

The compression ratio is poor com-
pared with binary file formats (e.g., 
Avro). Also, text files do not support 
block compression, which is necessary 
when storing files larger than the size of 
an HDFS block. 

SequenceFile Does not support flexible schema 
evolution. Consists of binary key/value 
pairs and does not store metadata with 
the data.

RCFile This Hadoop columnar file format does 
not support schema evolution, and 
writing requires more CPU and memory 
compared with non-columnar formats.

ORCFile Optimized RCFile provides better 
compression and faster querying, but 
has the same drawbacks as RCFile 
in terms of schema evolution, at the 
expense of writing performance.

Parquet Parquet is a columnar file format that 
partially supports schema evolution, but 
still is slower for write operations com-
pared with non-columnar file formats.

5.3.4.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.8 illustrates the result of the instantiation decisions.

Element Responsibility

Flume agent Consume log events generated by a web server, split 
text log entries to separate fields, and deliver the parsed 
event records to a collector.

Flume collector Collect event records from multiple agents in a load-
balanced and fault-tolerant manner and deliver them 
to destinations (HDFS and Elasticsearch) for further 
persistency and processing.



5.3 
T

he D
esign P

rocess 
137

replicating

replicating

+ log parsing

+ log parsing

LB
+

failover

…

Collector

SPEED Layer

BATCH Layer

Data Stream

WebServer 1 (Data Source)

Flume Collector Tier Storage Tier

Memory channel
(error)

netcat src
(access)

netcat src
(error)

Memory channel
(access )

avro sink
(access)

avro sink
(error)

HDFS

Elasticsearch

Application Tier

Flume Collector 

Memory channel
ES

avro src
(access)

Memory channel
HDFS

HDFS sink
(access)

ES sink
(access)

Memory channel
ES

avro src
(error)

Memory channel
HDFS

HDFS sink

ES sink
(error)

WebServer 2 (Data Source)

Memory channel
(error)

netcat src
(access)

netcat src
(error)

Memory channel
(access )

avro sink
(access)

avro sink
(error)

WebServer N (Data Source)

Flume Agent 

Flume Agent 

Flume Agent 

Memory channel
(error)

netcat src
(access)

netcat src
(error)

Memory channel
(access )

avro sink
(access)

avro sink
(error)

avro

json

(error)

Data flow between nodes

Data flow between flume 
components within the same node

Legend:

FIGURE 5.8 Iteration 3 instantiation design decisions



138 Chapter 5—Case Study: Big Data System 

5.3.4.6 Step 7: Perform Analysis of Current Design and Review Iteration 
Goal and Achievement of Design Purpose
The following Kanban table summarizes the design progress and the decisions 
made during the iteration. Note that drivers that were completely addressed in the 
previous iteration are not shown.

Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design Decisions Made During the 
Iteration

UC-1
UC-2
UC-3
UC-4

Refinement of the Data Stream element. 
Decisions about other elements that 
participate in these use cases still need to 
be made.

QA-1 Flume load-balanced, failover tiered 
configuration is selected.

QA-9 Usage of Flume and Avro format for 
storing raw data.

QA-10 Flume load-balanced, failover tiered 
configuration is selected.
Decisions on other elements that partici-
pate in this scenario still need to be made.

CRN-1 Tiers were identified for the Flume 
collector and storage.

CRN-3 This is a new architectural concern that 
was introduced in this iteration: data 
modeling and developing proof-of-concept 
prototypes for key system elements. At 
this point, no relevant decisions have 
been made.

5.3.5 Iteration 4: Refinement of the Serving Layer

We now present the results of the activities that are performed in each of the steps 
of ADD in the fourth iteration of the design process.

We selected the Serving Layer for refinement (not the Batch Layer) because 
the risk of not achieving requirements is higher for this layer. This layer is di-
rectly involved in use cases UC-3 and UC-4 and a number of quality attribute 
scenarios in which performance and scalability are critical factors.

As in the previous iteration, design activities involve the creation of pro-
totypes. In this iteration, UI prototypes are also created. There are at least two 
reasons for this:

§	It will facilitate receiving early feedback from users, which can help to up-
date requirements.

§	Data visualization scenarios often have an influence on data modeling.
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5.3.5.1 Step 2: Establish the Iteration Goal by Selecting Drivers
The goal of this iteration is to address the newly identified concern of data 
modeling and developing proof-of-concept prototypes for key system elements 
(CRN-3) so as to satisfy the primary use cases and system requirements associ-
ated with the analysis and visualization of historic data. These use cases include:

§	UC-3
§	UC-4

The quality attribute scenarios associated with these use cases are:

§	QA-4 (Performance)
§	QA-5 (Performance)
§	QA-7 (Scalability)
§	QA-8 (Scalability)

5.3.5.2 Step 3: Choose One or More Elements of the System to Refine
In this iteration, the elements that are refined are the ones that support historical 
data, which include the Serving Layer elements: the Ad Hoc and Static Batch 
Views. Given that both types of elements use the same technology (Impala), the 
decisions made in this iteration affect both types of elements.

5.3.5.3 Step 4: Choose One or More Design Concepts That Satisfy the 
Selected Drivers
As in the previous iteration, the design activities here involve the configuration of the 
technologies that were associated with the elements. For this reason, no new design 
concepts are selected and all of the decisions belong to the instantiation category.

5.3.5.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities, 
and Define Interfaces
In this iteration, design concepts are instantiated based on the best practices of 
using the chosen technologies.

Design Decisions 
and Location Rationale and Assumptions

Select Parquet as a 
file format for Impala 
in the Batch Views

The decision-making process for selecting a file format for 
Batch Views is similar to that in the previous iteration, where 
we selected a format for raw data storage. The data usage 
scenario is somewhat different, however. The previous case 
was about fast writing, effectively storing data, and extending 
data formats. This case is focused on fast querying (QA-4, 
less than 5 seconds report load; QA-5, less than 2 minutes 
ad hoc query execution time), although scalability (QA-8, 
approximately 90 TB of aggregated data) and extensibility 
(QA-9, adding new data sources) drivers are still relevant.
Out of all the available alternatives, the Parquet file format 
looks like the most promising option to satisfy these 
requirements.

(continues)
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Design Decisions 
and Location Rationale and Assumptions

Select Parquet as a 
file format for Impala 
in the Batch Views

In Parquet, a columnar structure represents relational 
tables on computer clusters and is designed for fast query 
processing, which is important for ad hoc data exploration 
and static reports. In addition, Parquet is optimized for Impala, 
which we selected as a primary technology for the interactive 
query engine during the second iteration. Finally, it provides a 
good compression ratio and allows some schema extension, 
by adding new columns at the end of the structure.

Alternative Reason for Discarding

Text file (plain 
text, CSV, XML, 
JSON)

Slow for reads, especially when 
querying individual columns. 
Also does not support block 
compression, which is necessary 
when storing files larger than the 
size of an HDFS block.

SequenceFile Slow for reads, especially when 
querying individual columns.

RCFile The first columnar file format 
adopted in Hadoop. Does not 
support schema evolution.

ORCFile Provides better compression and 
faster querying than RCFile, but has 
the same drawbacks as RCFile in 
terms of schema evolution.
Compared with Parquet, the 
compression ratio is better, but 
query performance is slower.
Another major limitation is that it is 
not supported by Impala.

Avro Although Avro is considered the 
best multipurpose storage format 
for Hadoop, its query performance 
is noticeably slower compared with 
columnar formats, such as RCFile, 
ORCFile, and Parquet. 
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Design Decisions 
and Location Rationale and Assumptions

Use the star schema 
as a data model in 
the Batch Views

In the previous iteration, we selected Impala as a single 
technology for the Batch Views components, which impacts 
both static reports (UC-3, 6) and ad hoc querying (UC-4).
The star schema technique was selected for two reasons:

 ■ Impala was designed for analytical queries, so it naturally 
provides good support for star schema data modeling.

 ■ Ad hoc querying in combination with BI tools requires data 
to be well modeled to simplify query complexity and, as a 
result, allow faster query performance.

In our case, the star schema was designed to have small-
dimension (in terms of number of rows) tables to avoid 
joins between big tables, as this typically consumes large 
amounts of system resources and affects query execution 
performance. Small-dimension tables can fit in memory and 
joins can be performed more effectively.

Alternative Reason for Discarding

Flat tables Flat tables are typically represented in 
the format of wide denormalized tables 
that contain all measures and dimension 
attributes.
Flat tables can cause significant 
performance issues when querying 
against large volumes of data.

5.3.5.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.9 depicts the star schema data model implemented using Impala and 
Parquet.

The screenshot in Figure 5.10 presents a sample static report implemented 
with Tableau to demonstrate a possible view through a corporate BI tool. The re-
port was created using test data stored in Parquet and provided by Impala through 
the ODBC interface.
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dim_request

dim_referrer

request_id <pi> int
request_method string
request_url string
request_protocol string

fact_access
client_ip   string
request_id  <fi5> int
referrer_id  <fi4> int
user_agent_id  <fi1> int
city_id  <fi2> int
zip_code_id  <fi3> int
latitude   string
longitude   string
event_timestamp   Timestamp
server_host   string
requst_time   int
response_code   smallint
response_size   int

referrer_id <pi> int
referrer_url string
referrer_site string

dim_city
city_id <pi> int
city   string
region   string
country   string

dim_user_agent
user_agent_id <pi> int
user_agent_full   string
browser   string
device_type   string
os   string

dim_zip_code
zip_code_id <pi> int
zip_code   string

fact_error
event_timestamp   Timestamp
message_id  <fi1> int
server_host   string
client_ip   string
level   string

dim_message
message_id <pi> int
message_url string

FIGURE 5.9 Star schema implemented in Impala and Parquet

FIGURE 5.10 Sample static report implemented with Tableau
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5.3.5.6 Step 7: Perform Analysis of Current Design and Review Iteration 
Goal and Achievement of Design Purpose
The following Kanban table summarizes the design progress and the decisions 
made during the iteration. Note that drivers that were completely addressed in the 
previous iteration are not shown.

Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design Decisions Made During the 
Iteration

UC-3  
UC-4

Refinement of the Serving Layer, which is 
used in the use case. Decisions on other 
elements that participate in these use 
cases still need to be made.

QA-4  
QA-5  
QA-8

Use Parquet and star schema. 
Performance tests are still required and 
thus a new concern is introduced:

 ■ CRN-4: Develop performance tests.

CRN-1 No relevant decisions made.

CRN-3 Data modeling and proof-of-concept 
prototypes were developed for the 
elements in the Serving Layer, but the 
same activity remains to be completed for 
the elements in the Speed Layer.

5.4 Summary

In this chapter we presented an extended example of using ADD 3.0 in a rela-
tively novel domain, that of Big Data. As this example shows, architectural de-
sign can require many detailed decisions to be made to ensure that the quality 
attributes will be satisfied.

Also, this example shows that a large number of decisions rely on knowledge 
of many different patterns and technologies. The more novel the domain, the more 
likely that preexisting information (e.g., design concepts catalog, books of patterns, 
and reference architectures) will not be available for it. In such a case, you need to 
rely on your own judgment and experience, or you need to perform experiments 
and build prototypes. One way or another, such decisions must be made.

This instance of ADD also differed from the example presented in Chapter 4 
in that we spent relatively little time and effort on building sequence diagrams as 
a means of deriving interface specifications. The example presented here relied on 
a relatively simple data-flow architecture with a modest number of components, 
so sequence diagrams were not needed to understand the relationships between 
the components. The “contracts” between the elements were determined by the 
information exchanged, as exemplified in step 5 of Iteration 3 (Section 5.3.4.4).
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5.5 Further Reading

The design of a data warehouse has been extensively studied. Two good ap-
proaches are documented in R. Kimball and M. Ross, The Data Warehouse Tool-
kit, 3rd ed., Wiley, 2013; and W. Inmon, Building the Data Warehouse, 4th ed., 
Wiley, 2005.

The Lambda architecture was first presented by N. Marz and J. Warren, Big 
Data: Principles and Best Practices of Scalable Realtime Data Systems, Man-
ning, 2015.

A good discussion of how to engineer for scalability can be found in M. Ab-
bott and M. Fisher, The Art of Scalability: Scalable Web Architecture, Processes, 
and Organizations for the Modern Enterprise, Addison-Wesley, 2010.

P. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerging 
World of Polyglot Persistence, Addison-Wesley, 2009.

A discussion of how and when to prototype as part of the architecture design 
process can be found in H-M Chen, R. Kazman, and S. Haziyev, “Strategic Pro-
totyping for Developing Big Data Systems”, IEEE Software, March/April 2016.

A design concepts catalog that includes many of the reference architectures 
and technologies used in this case study is part of the Smart Decisions Game, 
which can be found at H. Cervantes, S. Haziyev, O. Hrytsay, and R. Kazman, 
“Smart Decisions Game”, http://smartdecisionsgame.com.

../../../../../smartdecisionsgame.com/default.htm
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6
Case Study: Banking 
System

Chapters 4 and 5 were both instances of greenfield development. In truth, that 
kind of development is relatively rare. Most of the time you, as an architect, will 
be working on evolving an existing system rather than creating one from scratch. 
In this chapter, we present an example of using ADD 3.0 for a brownfield system 
in a mature domain (as discussed in Section 3.3.3). We first present the business 
context and then examine the project’s existing architectural documentation. This 
is followed by a step-by-step summary of the activities that are performed during 
the ADD iterations to evolve the system. While this is a real system, some of the 
details have been changed to protect the identities of the actors.

6.1 Business Case

In 2010, the government of a Latin American country issued a regulation that re-
quired banking institutions to digitally sign bank statements. To comply with the 
regulation, “ACME Bank” decided to commission the development of a software 
system, which we will call BankStat, whose main purpose was the generation of 
digitally signed bank statements.

Figure 6.1 presents a context diagram that illustrates how the BankStat sys-
tem works. At its core, the system executes a batch process, which retrieves raw 



146 Chapter 6—Case Study: Banking System

bank statement information from a data source (an external database) and then 
performs a series of validations on this data to generate the bank statements and 
prepare them for digital signature by an external provider. The statements are sent 
to the provider, which returns the signed bank statements. These statements are 
then stored by BankStat for further processing, including sending the statements 
to customers. This batch process is triggered automatically once a month and, 
during its execution, approximately 2 million bank statements are processed.

The following quality attributes scenarios are primary for this system:

§	Reliability: Under normal operating conditions, the batch process is execut-
ed in its entirety 100% of the time.

§	Performance: Under normal operating conditions, when the batch process 
starts, 2 million bank statements are read, processed, and sent to the signing 
provider in at most one hour.

§	Availability: During normal processing, a failure may occur when reading 
information from the data source or when sending information for digital 
signature. A notification is then sent to the administrator, who manually 
restarts the process. When it is restarted, only the information that had not 
already been processed is treated.

Due to time constraints imposed by the government, only the core batch pro-
cess for the system was developed and put into production. This initial release, 
however, did not provide a friendly interface with the system, which is necessary 
to monitor the state of the bank statement processing, to request the reprocessing 
of incorrect statements. and to generate reports. In the first release, the process 
could only be started or stopped manually from a console. For a second release 
of the system, the ACME Bank requested an extension of the BankStat system to 
better address these shortcomings.

:

FIGURE 6.1 Context diagram for the BankStat system
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The following subsections present the drivers for this second release of the 
system.

6.1.1 Use Case Model

Figure 6.2 presents the use case model for the second release of BankStat.
These use cases are described in more detail here:

Use Case Description

UC-1: Query 
and reprocess 
statements

The user manually requests the reprocessing of a number 
of statements. The user specifies criteria to query and select 
the statements that must be reprocessed. The user can, for 
example, select a period of interest or status of the statements 
that he is interested in (e.g., processed, signed, non-signed).

UC-2: Log in The user logs in to the system.

UC-3: Generate 
report

The user generates reports regarding the process. 

UC-4: Query 
users log

The administrator queries user logs to display the activities of 
a particular user or groups of users. Information can be filtered 
using criteria such as dates or types of operations.

FIGURE 6.2 Use cases for the BankStat system (Key: UML)
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6.1.2 Quality Attribute Scenarios

The following table presents the new quality attribute scenario that is considered 
for this extension of the system.

ID
Quality 
Attribute Scenario

Associated 
Use Case

QA-1 Security A user performs any operation on the system, 
at any moment, and 100% of the operations 
performed by the user are recorded by the 
system in the operations log.

UC-4

6.1.3 Constraints

The following table presents the constraints that are considered for this extension 
of the system.

ID Constraint

CON-1 The user’s accounts and permissions are handled by an existing user 
directory server that is used by various applications in the bank.

CON-2 Communication with the data source must be realized using JDBC.

CON-3 Communication with the digital signature provider system is 
performed using web services. These web services receive and 
return the information in an XML format that adheres to specifications 
established by the government.

CON-4 The system must be accessed from a web browser, although the 
access is available only from the bank’s intranet.

6.1.4 Architectural Concerns

The following table presents the concerns that are initially considered for this 
extension of the system.

ID Concern

CRN-1 The system shall be programmed using Java and Java-related 
technologies to leverage the expertise of the development team.

CRN-2 The introduction of new functionality must, as far as possible, avoid 
modifications to the existing batch processing core.
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6.2 Existing Architectural Documentation

This section presents a simplified version of the system’s views, which provide 
relevant information for the changes in the architecture.

6.2.1 Module View

The package diagram shown in Figure 6.3 depicts the system layers and the mod-
ules that they contain.

FIGURE 6.3 Existing modules and layers in the BankStat system (Key: UML)
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The responsibilities of the elements depicted in the diagram are described in 
the following table.

Element Responsibility

Batch Processing 
Layer

This layer contains modules that perform the batch process. 
These components are developed using the Spring Batch 
framework.

Data Access Layer This layer contains modules that store and retrieve data 
from a local database, which is used by the modules in the 
Batch Processing Layer.

Communications 
Layer

This layer contains modules that support communication 
with the external digital signature provider and the bank 
statement data source.

Batch Job 
Coordinator

This module is responsible for coordinating the execution 
of the batch process, including launching the process and 
invoking the different steps associated with it.

Job Steps This module contains the “steps” that are part of the batch 
job. These steps perform activities such as validating the 
information retrieved from the data source and generating 
the bank statements. Such steps generally read, process, 
and write data. Data is read from and written to the local 
database.

Local Database 
Connector

This module is responsible for accessing a local database 
used by the job steps to exchange information while 
performing the batch process. We refer to this database 
as “local” to differentiate it from the external data source; 
this database is used only locally (i.e., internally) by the 
application, even if it is deployed in a different node (see the 
next section).

Notifications Manager This module manages logs and sends notifications in case 
of issues such as a communication failure with the external 
system.

Data Source 
Connector

This module is responsible for connecting with the external 
database that provides the raw bank statement information.

Digital Signature 
Provider Connector

This module is responsible for accessing the external 
system that performs the digital signing of the bank 
statements.

6.2.2 Allocation View

The deployment diagram shown in Figure 6.4 presents an allocation view con-
sisting of nodes and their relationships.
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FIGURE 6.4 Existing deployment diagram for the BankStat system (Key: UML)

The responsibilities of the elements depicted in the diagram are described in 
the following table.

Element Responsibility

Data Source 
Server

This server hosts a database that contains the raw data used to 
produce the bank statements.

BankStat 
Server

This server hosts the main batch process that is responsible for 
retrieving information from the Data Source Server, validating the 
information, and sending the information to the Digital Signature 
Server for signing.

Database 
Server

This server hosts a database that is used locally by the batch 
process in the BankStat Server to hold the state and information 
used in the execution of the batch process.

Digital 
Signature 
Server

This server, which is provided by an external entity, is responsible 
receiving, digitally signing, and returning the bank statements. 
The server exposes web services that receive and produce XML 
information.

6.3 The Design Process

We now describe the design process through the different steps of ADD (as dis-
cussed in Section 3.2). As this is not a huge change to the existing system, the ar-
chitect expects that the design activities will require only a single iteration of ADD.
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6.3.1 ADD Step 1: Review Inputs

The first step of the ADD method involves reviewing the inputs. They are sum-
marized in the following table.

Category Details

Design purpose This is a brownfield system in a mature domain. The 
purpose is to design for the next system release.

Primary functional 
requirements

The primary use case for this release is UC-1.

Quality attribute 
scenarios

This extension of the system involves only a few quality 
attribute scenarios, so they are all considered as primary.

Constraints See Section 6.1.3.

Architectural concerns See Section 6.1.4.

Existing architecture 
design

Since this is brownfield development, an additional input 
is the existing architecture design, which was described in 
the previous section.

6.3.2 Iteration 1: Supporting the New Drivers

This section presents the results of the activities that are performed in each of the 
steps of ADD in the single iteration performed in this example.

6.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers
Only a limited number of drivers need to be addressed, so the architect has de-
cided that a single iteration is sufficient. The goal of this iteration is to modify the 
existing design to support all of the new drivers listed in Section 6.1

6.3.2.2 Step 3: Choose One or More Elements of the System to Refine
The elements to refine include the main modules from BankStat and the node 
where the system is deployed (BankStat Server). In addition to refining these 
modules, the physical node where the application is hosted is a candidate for 
refinement.

6.3.2.3 Step 4: Choose One or More Design Concepts That Satisfy the 
Selected Drivers
The following table summarizes the design decisions made with respect to the 
selection of design concepts.
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Design Decisions and 
Location Rationale

Use the Web Application 
Reference architecture

The use cases that are being introduced in the 
system require interaction through a web browser 
(CON-4). Since there are no requirements for rich user 
interaction, the Web Application architecture is selected 
(see Section A.1.1).
Discarded alternatives:

 ■ Rich Internet application (see Section A.1.3), as it 
would require additional development effort and there 
are no requirements for a rich user interface.

Select the Spring Security 
framework to manage 
authorization and 
authentication

Security is a complex topic, and writing ad hoc code 
to support it is difficult and error prone. The needs for 
this application include managing authorization and 
authentication and an activity log. All of these features 
are available in the Spring Security framework, which 
can easily be integrated into the existing user directory 
server (CON-1) and is Java related (CRN-1).
Discarded alternatives:

 ■ Ad hoc code: Challenging, error-prone, takes signifi-
cant time to develop.

 ■ Other frameworks: The first release of the solution 
has already been developed using Spring technolo-
gies. Hence it makes sense to continue using other 
technologies from the Spring platform, as they can be 
easily integrated with the existing frameworks.

Use the Shared Database 
Integration pattern 
to obtain information 
about the state of bank 
statements

The interactive part of the system needs to query the 
database that is used locally by the batch process to 
display the state of bank statement processing. The 
batch and interactive parts of the system can be seen 
as two different applications (or subsystems) that 
share data that is contained in the same database. The 
Shared Database Integration pattern can be used in 
this context to support the interaction between these 
systems. This approach does not require changes to be 
made in the existing parts of the system (CRN-2).
Discarded alternatives:

 ■ Obtaining the information through an API, which 
would require modifications in the existing modules 
and would have a negative impact on performance.

Deploy using a three-tier 
deployment model 

Deploying the web part of the application will be done 
in a separate server. Thus, the deployment of this part 
of the application can be seen as an instance of the 
three-tier deployment model (see Section A.2.2). The 
benefit of this approach is that the server that hosts the 
batch process will not have to process the interactive 
requests, so performance will not be hindered.
Discarded alternatives:

 ■ Hosting the application in the same server where 
the batch process is hosted. This would save some 
server costs, but could limit performance of either the 
batch process or the interactive functions.
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6.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities, 
and Define Interfaces
The instantiated design decisions considered and made are summarized in the 
following table.

Design Decision and Location Rationale

Host the web application in a separate 
server

This choice avoids performance reduc-
tions on the batch server and increases 
security (QA-1).

Configure Spring Security to use an 
external user directory server

This is to address CON-1.

The results of these instantiation decisions are recorded in the next step.

6.3.2.5 Step 6: Sketch Views and Record Design Decisions
The deployment diagram shown in Figure 6.5 depicts the new server that will 
host the application and the external user directory server, along with their con-
nections to the existing nodes.

The responsibilities of the newly introduced elements are described in the 
following table.

Element Responsibility

Web/App Server Hosts the interactive part of the application.

Auth Server Existing server that manages users and permissions for multiple 
applications in the bank (CON-1).

The package diagram shown in Figure 6.6 illustrates how the reference ar-
chitecture is instantiated and identifies the modules that are introduced to support 
the primary use case (UC-1). It also shows how these newly introduced elements 
are integrated with the existing layers and modules from the previous system 
release.
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FIGURE 6.5 Refined deployment diagram (Key: UML)

FIGURE 6.6 Modules introduced to support the use case UC-1 (Key: UML)
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The responsibilities of the newly introduced elements are described in the 
following table.

Element Responsibility

Bank Statement 
Reprocessing View

This module displays a view that allows the user to query 
the state of bank statements that have been processed. It 
also allows the user to select from these statements the 
ones that need to be reprocessed.

Bank Statement 
Reprocessing Service

This module manages requests from the view, which include 
requesting bank statement information, marking bank 
statements that need to be reprocessed, and triggering the 
restart of the batch job.

Security Manager This module, which is implemented using Spring Security, 
handles authentication, authorization, and the activity log 
(QA-1). It is also integrated with the external user directory 
server (CON-1).

The sequence diagram shown in Figure 6.7 illustrates how UC-1 is per-
formed. The user requests the state of bank statements to be displayed. This in-
formation is retrieved from the local database by the Local Database Connector. 
Once displayed, the user selects the statements to reprocess. These bank state-
ments are marked for reprocessing (by changing a flag) and the information is 
updated on the local database. Finally, the batch job is restarted. Note that the 
interactions with the system are recorded by Spring Security in the view. In addi-
tion, the invocation of the Batch Job Coordinator is asynchronous, which avoids 
the problem of blocking the user interface.

From the interactions identified in the sequence diagram, initial methods for 
the interfaces of the interacting elements can be identified.

BankStatementReprocessingService

Method Name Description

BankStatement [] get BSStatus(criteria) Retrieves a collection of bank 
statements according to diverse 
criteria, including periods in 
time or status.

boolean reprocess(BankStatement []) Requests the reprocessing of a 
collection of bank statements.

6.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration 
Goal and Achievement of Design Purpose
The following Kanban table summarizes the status of the various architectural driv-
ers and the decisions that were made during the iteration to address them. As all 
the drivers were completely addressed, just a single iteration of ADD was required.
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FIGURE 6.7 Sequence diagram for use case UC-1 (Key: UML)
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Not 
Addressed

Partially 
Addressed 

Completely
Addressed

Design Decisions Made During the 
Iteration

UC-1 Modules that support the use case 
and their interfaces were identified and 
defined based on the Web Application 
Reference architecture.

QA-1 Security logs are handled by Spring 
Security.

CON-1 Spring Security connects to the existing 
user directory server and uses its 
information to support authorization and 
authentication.

CON-3 No changes have been made to the 
module that connects to the data 
source.

CON-3 No changes have been made to the 
module that connects to the digital 
signature provider.

CON-4 The Web Application Reference 
architecture that was used specifically 
supports access from web browsers.

CRN-1 The technologies that have been 
selected are Java related.

CRN-2 Integration with the existing functionality 
was made through the database (using 
the Database Integration pattern); 
changes to the existing functionality 
were not needed.

6.4 Summary

In this chapter, we presented a simple (but real-world) example of the use of 
ADD in the context of a brownfield system. As this example illustrates, the steps 
of ADD are followed in exactly the same manner as in the context of the design 
of greenfield systems. The main difference is that one of the inputs of the de-
sign process is the existing architecture. This highlights the importance of doc-
umenting the architecture: If this information was not present, a great deal of 
time would need to be spent in understanding and reverse-engineering the code to 
create an appropriate model of the architecture before proceeding with the design 
and eventual implementation process.

Design in the context of brownfield systems usually involves more ex-
tensive changes than the ones illustrated by this example. Such changes often 
require refactoring and modification of the existing architecture to support the 
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introduction of new elements and new relationships that result from the design 
activity. Modifying an existing architecture is oftentimes the most challenging 
aspect of designing in the context of brownfield systems. In brownfield systems, 
it is all too common that detailed knowledge of some parts of the system has been 
lost. Because this process can be complex and some uncertainty exists regarding 
the consequences of changes, we recommend that you perform an analysis of the 
proposed design changes before committing them to code.

6.5 Further Reading

The Shared Database Integration pattern is discussed in G. Hohpe and B. Woolf, 
Enterprise Integration Patterns: Designing, Building and Deploying Messaging 
Solutions, Addison Wesley Professional, 2003.

In-depth discussions of software maintenance and evolution can be found 
in the classic book by F. Brooks, The Mythical Man Month, Addison-Wesley, 
1995, and also in M. M. Lehman, “On Understanding Laws, Evolution, and Con-
servation in the Large-Program Life Cycle”, Journal of Systems and Software, 
1:213–221, 2010.
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7
Other Design Methods

Over the past two decades, a number of architecture design methods have been 
proposed and documented. In this chapter we briefly present some of the most 
well-known methods, which we then relate and compare to ADD. We begin with 
a “general model” of architecture design, then briefly present five other design 
methods. We conclude the chapter with a discussion of how ADD differs from 
these other methods.

7.1 A General Model of Software Architecture Design

In their paper “A General Model of Software Architecture Design Derived from 
Five Industrial Approaches”, Hofmeister and her colleagues compared five indus-
trial software architecture design methods and extracted from their commonalities 
a generic software architecture design approach. The five models they reviewed 
were ADD 2.0, Siemens 4 views, RUP’s 4+1 Views, Business Architecture Process 
and Organization (BAPO), and Architecture Separation of Concerns (ASC).
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The derived general model, shown in Figure 7.1, consists of three main ac-
tivities that are present in all five models reviewed:

§	Architectural analysis. In this activity, requirements (called concerns) and 
the system context are used as inputs to determine a set of architecturally 
significant requirements (ASRs).

§	Architectural synthesis. This activity is described as being the core of ar-
chitecture design. It proposes architecture solutions to a set of ASRs, mov-
ing from the problem to the solution space. The results of this activity are 
candidate architectural solutions, which are partial or complete architecture 
designs and include information about the rationale.

§	Architectural evaluation. This activity ensures that the architectural de-
cisions are the right ones. Candidate architectural solutions are measured 
against ASRs. Several evaluations of different architectural solutions are 
expected, but the eventual result is the validated architecture.

Hofmeister and her colleagues further explain that these activities do not 
proceed sequentially, but rather architects proceed in small “leaps” as they move 
from one activity to another. Progress is driven by an implicit or explicit back-
log of smaller needs, issues, problems, and ideas that architects need to address 
(Figure 7.2).

This general model presented by Hofmeister et al. is not detailed, by in-
tent, because it abstracts the specific techniques found in other design processes, 
including ADD. Thus the model can represent ADD, but also covers a bigger 
scope of architecture development, where architectural requirements gathering 
and analysis are performed using methods such as QAW, architectural synthesis 
is performed using methods such as the ones presented in the paper, and architec-
tural evaluation is performed using methods such as ATAM.
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Data CS
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Business Logic SS
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Data SS

NetworkStatusMonitoringView
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TopologyController
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RegionDataMapper TimeServerDataMapper EventDataMapper TimeServerConnector

TimeServerEventsController DataCollectionController

FIGURE 7.2 Architecture backlog
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7.2 Architecture-Centric Design Method

The Architecture-Centric Design Method (ACDM) is a software architecture de-
velopment method that covers the complete life cycle of the architecture. This 
iterative method consists of 8 stages, as shown in Figure 7.3.

Stage 3 is focused on design; it is where an initial architectural design is 
created or refined. For new systems, the first iteration of this process promotes 
the rapid creation of a “notional” or initial architecture. This iteration proceeds 
by first establishing the system context and then performing decomposition in an

FIGURE 7.3 ACDM stages
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iterative manner to produce structures. In ACDM, decomposition is driven by 
quality attribute scenarios and constraints, but functional requirements are also 
considered. In subsequent iterations, issues uncovered in the architecture re-
view (Stage 4) also serve as inputs. ACDM suggests using patterns to support 
decomposition and using more than one perspective (static, dynamic) during the 
process. After decomposition occurs, responsibilities are associated with the ele-
ments and interfaces are defined.

ACDM has a broader scope than ADD, as it encompasses the whole archi-
tecture development life cycle (requirements, design, evaluation, and documen-
tation) in its 8 stages. Stage 3 of ACDM is the equivalent of ADD. However, 
ACDM provides less detailed guidance than ADD on how to perform this crucial 
step. ADD and ACDM can be used together, however. To do so, you can simply 
use ADD directly in stage 3 of ACDM.

7.3 Architecture Activities in the Rational Unified 
Process

The Rational Unified Process (RUP) has been a popular software development 
process framework for more than a decade. The framework is extensive and the 
version we reviewed (7.0.1) provides two flavors: one for large projects (used 
here for discussion) and one for small projects. Every project in RUP is devel-
oped iteratively and iterations are performed across four sequential phases:

§	Inception. In this phase, the project is conceived and feasibility is evaluated.
§	Elaboration. In this phase, many aspects that are necessary to successfully 

perform the project are handled. One of these aspects is the design of the 
architecture.

§	Construction. In this phase, the system is built iteratively.
§	Transition. In this phase, the completed system is transitioned from the de-

velopment environment to the end-user environment.

For RUP, architecture is a fundamental aspect of system creation, and ac-
tivities are associated with it across the different phases and, in particular, in the 
inception and elaboration phases. In the inception phase, RUP defines an activity 
called “perform architectural synthesis”, whose goal is to construct and assess an 
architectural proof-of-concept to demonstrate the feasibility of the system. This 
activity includes tasks such as defining a system context, performing architectural 
analysis (which actually refers to defining a candidate architecture), constructing 
an architectural proof-of-concept (a prototype), and evaluating the viability of the 
proof-of-concept.

The elaboration phase includes two activities associated with software 
architecture:
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§	Define a candidate architecture. In this activity, an initial sketch of the soft-
ware architecture is created. This includes defining architecturally signifi-
cant elements, identifying a set of analysis mechanisms, defining the initial 
layering and organization of the system, and defining use-case realizations 
for the current iteration. The key tasks are performing architectural analysis 
and use case analysis; other tasks include operation analysis and identifying 
security patterns.

§	Refine the architecture. This activity is focused on completing the architec-
ture for an iteration. It involves making a transition from analysis activities 
to design activities by identifying design elements from analysis elements 
and design mechanisms from analysis mechanisms. In addition, the runtime 
and deployment architecture is described, along with an implementation 
model to facilitate the transition between design and implementation. To 
achieve this, the RUP suggests performing tasks such as identifying design 
mechanisms, identifying design elements, performing operation analysis, 
incorporating existing design elements, structuring the implementation 
model and describing the runtime architecture, describing distribution, and 
reviewing the architecture.

RUP provides an extensive, detailed process for architectural development. 
It also makes clear distinctions between analysis, design, and implementation as-
pects. Initially, the architecture is designed in a conceptual fashion in the analysis 
tasks, and then it is made concrete in the design and implementation tasks. For 
example, initially an analysis mechanism such as persistence can be identified. 
This is refined into a design mechanism such as a DBMS, which is further refined 
into an implementation mechanism such as a specific Oracle or MySQL database.

The process in RUP is iterative by nature, as several iterations of the ar-
chitectural activities defined in the inception and elaboration phases can be per-
formed. A nice aspect of the process defined by RUP is that it provides detailed 
guidance with respect to architectural concerns such as defining the system con-
text and establishing an initial structure for the system both in a logical and a 
physical way. The architecture process in RUP also has a strong focus on use 
cases. Even though quality attributes are mentioned (as “supplementary require-
ments”), they do not drive the architecture design process as much as the use 
cases. Also, this process explicitly considers the creation of an executable archi-
tectural prototype.

Even though the architecture process in RUP is comprehensive, it does not 
give as much detail as ADD in terms of the concrete steps to perform the design. 
In this sense, ADD and RUP can be seen as being complementary methods, and 
ADD can be integrated into RUP (as can other more detailed architecture-based 
methods such as the QAW, ATAM, and CBAM).
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7.4 The Process of Software Architecting

In the book The Process of Software Architecting, Peter Eeles and Peter Cripps, 
who are architects at IBM, describe how they approach architecture. Their pro-
cess covers the entire architecture life cycle and is independent of any software 
development methodology, but the book makes several references to its use with 
RUP.

The process described by Eeles and Cripps includes three major activities: 
“define requirements”, “create logical architecture”, and “create physical archi-
tecture”. The last two are the activities where architectural design is performed. 
According to the authors, the logical architecture is “a stepping stone in getting 
from the requirements to the solution—a first step that considers the architecture 
in a largely technology-independent manner. A physical architecture, on the other 
hand, is more specific—and takes technology into account”. The creation of the 
logical architecture and the physical architecture comprises the same tasks (see 
Figure 7.4), but in the creation of the physical architecture the focus, not surpris-
ingly, is on its physical aspects.

FIGURE 7.4 Tasks in the “create logical architecture” and “create physical 
architecture” activities
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This process acknowledges the existence of different types of architects: 
lead, application, infrastructure, and data architects. Also, it makes a distinction 
between “outlining” tasks, which are associated with the most important archi-
tectural elements and are the responsibility of the lead architect, and “detailing” 
tasks, which are focused on less significant elements and are the responsibility of 
the other architects, depending on the task. For example, whereas outlining tasks 
deal with subsystems and components, detailing tasks deal with interfaces and 
operation signatures.

The method described by Eeles and Cripps also emphasizes two different 
models: (1) the functional model, which is composed of components with re-
sponsibilities and relationships and their collaborations to deliver the required 
functionality, and (2) the deployment model, which shows the configuration of 
nodes, communication links between them, and the components that are de-
ployed on the nodes. Both functional and quality attribute requirements influence 
the functional and deployment models. The authors mention that they adopt the 
“systems engineering philosophy” of treating software and hardware as peers that 
collaborate to achieve system qualities.

The following list summarizes the purposes of the tasks in the create logical 
and physical architecture activities that are related to design. The role that has 
primary responsibility for the task appears in parentheses, while other types of 
architects may take a secondary role:

§	Survey architecture assets (lead architect). Identify reusable architecture 
assets that can be applied to the system under development.

§	Define architecture overview (lead architect). Identify and describe the 
major elements of the system under development from a functional and de-
ployment perspective.

§	Document architecture decisions (lead architect). Capture key decisions 
made in shaping the architecture and the rationale behind them. This step 
includes assessing options and selecting a preferred option.

§	Outline functional elements (application architect). Identify the major function-
al elements (subsystems and components) of the system under development.

§	Outline deployment elements (infrastructure architect). Identify the lo-
cations to which the system under development will be deployed and the 
nodes within each location.

§	Verify architecture (lead architect). Verify that the architecture work prod-
ucts are consistent and ensure that any concerns that cut across the architec-
ture work products have been addressed consistently.

§	Build architecture proof-of-concept (lead architect). Synthesize at least one 
solution (which can be conceptual) that satisfies the architecturally signifi-
cant requirements to determine whether such a solution, as envisaged by the 
architects, exists.

§	Detail functional elements (application architect). Refine the functional 
elements to the point that they can be handed off to detailed design. This 
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includes defining component interfaces in a detailed way (e.g., operation 
signatures, pre and post conditions) using sequence diagrams.

§	Detail deployment elements (infrastructure architect). Refine the deploy-
ment elements to the point they can be handed off to detailed design. This 
includes assigning components to nodes and defining connections between 
nodes and locations.

In a spirit that is similar to RUP, the Process of Software Architecting is a 
framework, and it needs to be adjusted according to the type of project that is 
being tackled. For instance, the amount of logical architecture that needs to be 
established can vary; indeed, in some cases, no logical architecture may be cre-
ated if the system being designed is similar to existing ones. Also, the elaboration 
phase emphasizes the logical architecture, whereas the construction phase em-
phasizes the physical architecture. Finally, the logical and physical architectures 
need not be created sequentially and the process acknowledges that some tech-
nology choices may be made early.

The Process of Software Architecting is a comprehensive framework, and 
this book provides a detailed example of how to execute the different tasks. The 
tasks related to creating the logical/physical architecture are similar to the steps of 
ADD combined with the roadmap discussed in Section 3.3. The Process of Soft-
ware Architecting, however, puts less emphasis on guiding iterations by specific 
scenarios and provides less guidance on how to actually make design decisions.

7.5 A Technique for Architecture and Design

In the book Application Architecture Guide, second edition, Microsoft proposes a 
technique for sketching an architecture. This technique consists of five steps that 
are performed iteratively (Figure 7.5):

1. Identify architecture objectives. These goals and constraints shape the design 
process, provide scope, and help determine when you are finished. Examples 
include building a prototype, exploring technologies, and developing an ar-
chitecture. Also, at this point, the consumers for the architecture are identified 
and the scope, time, and resources that will be dedicated to design activities 
are established.

2. Identify key scenarios. Key scenarios represent issues, architecturally signif-
icant use cases, intersections between quality attributes and functionality, or 
tradeoffs between quality attributes.

3. Create application overview. This step refers to creating an overview of what 
the application will look like when it is complete. At the end of this step, 
the process suggests “whiteboarding” the architecture—that is, creating an 
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informal representation of the architecture. This step is divided into the fol-
lowing set of activities:
a. Determining application type: involves the selection of a reference 

architecture.
b. Identifying deployment constraints: involves the selection of a 

deployment topology.
c. Identifying important architecture design styles.
d. Determining relevant technologies: based on the application type and 

constraints.

4. Identify key issues. Key issues are grouped into quality attributes and cross-
cutting concerns. Crosscutting concerns are features of the design that may 
apply across all layers, components, and tiers, such as the following:
a. Authentication and authorization
b. Caching
c. Communication
d. Configuration management (information that must be configurable)
e. Exception management
f. Logging and instrumentation
g. Validation (of input data)

5. Define candidate solutions. Candidate architectures include an application 
type, deployment architecture, architectural style, technology choices, quality 
attributes, and crosscutting concerns. If a candidate architecture satisfies the 
requirements and issues, then it becomes a baseline architecture and is refined 
in further iterations.

FIGURE 7.5 Iterative steps of the technique for architecture and design
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Besides these five main steps, the technique discussed by the Microsoft 
team suggests performing reviews of the architecture and representing and com-
municating the design. This technique is independent of a particular development 
process and there is only a suggestion that, when using an Agile process, itera-
tions should combine architecture and development activities.

The technique presented by the Microsoft team is not very detailed, but the 
discussion of this technique is only a small part of Microsoft’s book. The rest of 
the book provides pragmatic and detailed information on the considerations that 
must be taken into account for different types of applications, including web, 
rich client, rich internet, and mobile applications, among others. For example, the 
book devotes a chapter to the specific aspects of the design of the business layer. 
Although much of the information is technology agnostic, Microsoft has also 
done an excellent job of showing how its own technologies can be used in this 
process. In addition, the book provides an extensive discussion of the concerns 
that must be addressed for a series of reference architectures.

This technique is similar in purpose to ADD but less detailed in terms of 
how to perform the actual design steps. ADD can be used as an alternative, but 
it is a good idea to keep Microsoft’s book on hand to identify the many specific 
architectural concerns that you will need to address during design and to leverage 
all of the practical advice that is provided, particularly if you are designing one 
of the types of applications discussed in the book. The ideas presented in Micro-
soft’s book inspired us when creating several aspects of this book.

7.6 Viewpoints and Perspectives Method

The viewpoints and perspectives method is described in the book Software Sys-
tems Architecture: Working with Stakeholders Using Viewpoints and Perspec-
tives, by Nick Rozanski and Eoin Woods. Two critical concepts, highlighted in 
the book title, are viewpoints and perspectives, which the authors define in the 
following way:

§	A viewpoint is a collection of patterns, templates, and conventions for con-
structing one type of view. It defines the stakeholders whose concerns are 
reflected in the viewpoint and the guidelines, principles, and template mod-
els for constructing its views. The viewpoints defined include functional, 
information, concurrency, development, deployment, and operational.

§	An architectural perspective is a collection of activities, tactics, and guide-
lines that are used to ensure a system exhibits a set of quality properties that 
must be considered across the system’s architectural views. The primary 
perspectives that are covered in Rozanski and Woods’s book are security, 
performance and scalability, availability and resilience, and evolution.
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Perspectives are orthogonal to viewpoints because a particular perspective 
can be applied across different viewpoints. For example, the security perspective 
involves aspects from the functional, information and operational viewpoints.

The architecture is established in the architecture definition process illus-
trated in Figure 7.6. The steps in this process are outlined here:

1. Consolidate the inputs. Understand, validate, and refine the initial inputs.
2. Identify the scenarios. Identify a set of scenarios that illustrate the system’s 

most important requirements.
3. Identify relevant architectural styles. Identify one or more proven architec-

tural styles that could be used as a basis for the overall organization of the 
system.

4. Produce a candidate architecture. Create a first-cut architecture for the sys-
tem that reflects its primary concerns (requirements and goals) and that can 
act as a basis for further architectural evaluation and refinement.

5. Explore architectural options. Explore various architectural possibilities for 
the system and make the key decisions to choose among them.

6. Evaluate the architecture with stakeholders. Work through an evaluation of 
the architecture with your key stakeholders, capture any problems or deficien-
cies, and gain the stakeholders’ acceptance of the architecture.

7. Two steps are performed in parallel at this point:
A. Rework the architecture. Address any concerns that have emerged during 

the evaluation task.
B. Revisit the requirements. Consider any changes to the system’s original re-

quirements that may have to be made in light of architectural evaluations.

This method suggests the creation of a candidate architecture that is ob-
tained from—or at least based on—architectural styles. This candidate architec-
ture is further refined through a series of iterations until it is deemed acceptable 
after an evaluation is performed.

In comparison with ADD, this method does not provide step-by-step guid-
ance on how to perform steps 4 and 5. One benefit of this approach, however, is 
that the six viewpoints it defines can be related to general architectural concerns 
in our approach. Furthermore, tactics and perspectives are related, and the idea 
of applying perspectives across the different viewpoints is valuable and may be 
a complement to a scenario-based approach. For example, if you have only one 
security scenario in your drivers list, you may consider only elements that sup-
port this particular scenario. Thinking of a security perspective, however, may be 
useful in making design decisions concerning security, which may not be directly 
related to the particular scenario but flow across different areas of concern such 
as deployment or operation.
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FIGURE 7.6 Viewpoints and perspectives method steps

7.7 Summary

In this chapter, we reviewed a number of design methods and compared them to 
ADD. As you can see, there are several methods to choose from. So why should 
you use ADD instead of, or in addition to, these alternatives? Quite simply, ADD 
is more concrete and specific in its steps and guidance for accomplishing the archi-
tecture design activity. Having read this far, you should now be convinced of that.

ADD is focused specifically on design and, as such, provides more detailed 
guidance to an (aspiring) architect. This is not a weakness of ADD. Many other 
methods can guide you in the other phases of the architecture life cycle, such 
as QAW for eliciting and prioritizing architectural requirements, ATAM for 
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analyzing an architecture, the Views and Beyond technique for documenting an 
architecture. In several parts of this book we have discussed how such methods 
can be seamlessly integrated into ADD.

In the interest of full disclosure, ADD 3.0 borrows from, benefits from, and 
owes a debt of gratitude to all of the approaches described in this chapter.

7.8 Further Reading

The architecture design methods discussed in this chapter can be found in the 
following sources:

§	P. Eeles, P. Cripps. The Process of Software Architecting. Addison-Wesley 
Professional, 2009.

§	C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran, P. America. “A 
General Model of Software Architecture Design Derived from Five Indus-
trial Approaches”, Journal of Systems and Software, 80:106–126, 2007.

§	A. Lattanze. Architecting Software Intensive Systems: A Practitioner’s 
Guide. CRC Press, 2009.

§	P. Kruchten. The Rational Unified Process: An Introduction, 3rd ed., 
Addison-Wesley, 2003.

§	Microsoft, Application Architecture Guide, 2nd ed. Microsoft Press, 2009.
§	N. Rozanski, E. Woods. Software Systems Architecture. Addison Wesley, 

2005.
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8
Analysis in the Design 
Process

While this is a book focused on architectural design, we have always believed that 
design and analysis are two sides of the same coin. Design is the process of mak-
ing decisions; analysis is the process of understanding those decisions, so that the 
design may be evaluated. To reflect this intimate relationship, we now turn our at-
tention to why, when, and how to analyze architectural decisions during the design 
process. We look at various techniques for analysis, discuss when they can be done, 
and explore their costs and benefits.

8.1 Analysis and Design

Analysis is the process of breaking a complex entity into its constituent parts as 
a means of understanding it. The opposite of analysis is synthesis. Analysis and 
design are therefore intertwined activities. During the design process, the activity 
of analysis can refer to several aspects:

§	Studying the inputs to the design process to understand the problem whose 
solution you are about to design. This includes giving priority to the drivers 
as discussed in Section 3.2.2. This type of analysis is performed in steps 1 
and 2 of ADD.

§	Studying the alternative design concepts that you identified to solve a de-
sign problem so as to select the most appropriate one. In this situation, 
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analysis forces you to provide concrete evidence for your choices. This ac-
tivity is performed in step 4 of ADD and was discussed in Section 3.2.4.

§	Ensuring the decisions made during the design process (or an iteration) are 
appropriate. This is the type of analysis that you perform in step 7 of ADD.

The decisions that you make when designing the architecture are not only 
critical to achieve the quality attribute responses, but frequently the cost asso-
ciated with correcting them at a later time can be significant, as these decisions 
may affect many parts of the system. For these reasons, it is necessary to perform 
analysis during the design process, so that problems can be identified, possibly 
quantified, and corrected quickly. Remember, being too confident and following 
your gut instincts may not be the best idea (see the sidebar “‘I believe’ Isn’t Good 
Enough”). Fortunately, if you have followed the recommendations that we have 
given up to this point, you should be able to conduct analysis either by yourself 
or with the help of peers by using the preliminary sketches and views that have 
been produced as you perform the design process.

“I Believe” Isn’t Good Enough

Even if you are following a systematic approach to designing your 
architecture and using design concepts from well-established sources, 
and even if you have nice-looking diagrams that represent your structures, 
nothing really guarantees that the decisions you are making will actually 
satisfy a particular quality attribute scenario. Certain quality attributes are 
critical to the success of your system; particularly for these decisions, the 
rationale of “I believe” is not good enough. Studies of practicing software 
architects have shown that most follow an “adequacy” approach to making 
design decisions—that is, they adopt the first decision that appears to 
meet their needs. All too often, they have no rationale to substantiate 
those decisions other than their gut instincts, their beliefs, based on their 
(inevitably limited) experience. Thus important decisions are frequently 
made after insufficient reasoning, which can add risk to a system.

For drivers that are critical to your system, you owe it to yourself and to 
your organization to perform a more detailed analysis rather than just trust-
ing your gut instinct, relying on analogy and history, or performing a couple 
of superficial tests to ensure that your drivers are satisfied. The following 
options will deepen your analysis and hence support your rationale for the 
decisions made:

§	Analytic models. These well-established mathematical models allow you 
to study quality attributes such as performance or availability. They include 
Markov and statistical models for availability, and queuing and real-time 
scheduling theory for performance. Analytic models—particularly those that 
address performance—are highly mature but may require considerable ed-
ucation and training to be used adequately.
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§	Checklists. Checklists are useful tools that allow you to ensure in a systematic 
way that certain decisions that need to be taken into account are not forgotten. 
Checklists are available for particular quality attributes in the public domain—
for example, the OWASP checklist guides you in performing black box security 
testing of web applications. Also, your organization may develop proprietary 
checklists that are specific to the application domains that you are develop-
ing. Tactics-based questionnaires, which we will discuss shortly, are a type of 
checklist for the most important quality attributes, based on the use of tactics.

§	Thought experiments, reflective questions, and back-of-the-envelope analy-
ses. Thought experiments are informal analyses performed by a small group 
of designers in which important scenarios are studied to identify potential 
problems. For example, you might use a sequence diagram produced inside 
step 5 of ADD and perform a walk-through of the interaction of the objects 
that support the scenario modeled in the diagram with a colleague. Reflective 
questions (discussed in depth in Section 8.5) are questions that challenge 
the assumptions included in the decision-making process. Back-of-the-enve-
lope analyses are rough calculations that are less precise than analytic mod-
els, but can be performed quickly. These calculations, which are frequently 
based on analogies to other similar systems or on prior experience, are 
useful to obtain ballpark estimates for desired quality attribute responses. For 
example, by summing the latencies of a number of processes in a pipeline, 
you can derive a crude estimate of the end-to-end latency.

§	Prototypes, simulations, and experiments. Purely conceptual techniques 
for analyzing a design are sometimes inadequate to accurately understand 
whether certain design decisions are appropriate, or whether you should 
favor one particular technology over another. In such situations, the creation 
of prototypes, simulations, or experiments can be an invaluable option to 
obtain a better understanding. For example, in the back-of-the-envelope es-
timate of latency described previously, you may not have taken into account 
that several of the processes are sharing (and hence competing for) the 
same resources; thus we cannot simply sum their individual latencies and 
expect to get accurate results. Prototypes and simulations provide a deeper 
understanding of system dynamics, but may require a significant effort that 
needs to be considered in the project plan.

As always, none of these techniques is inherently better than the others. 
Thought experiments and back-of-the-envelope calculations are inexpen-
sive and can be done early in the design process, but their validity may be 
questionable. Prototypes, simulations, and experiments typically produce 
much higher-fidelity results, but at a far greater cost. The choice of which 
technique to employ depends on the context, the risk involved, and the 
priorities of your quality attributes.

Even so, applying any of these techniques will be helpful in going from 
“I believe” (that my design is appropriate) to an approach that is backed by 
documented evidence and argumentation. 
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8.2 Why Analyze?

Analysis and design are two sides of the same coin. Design is (the process of) 
making decisions. Analysis is (the process of) understanding the consequences—
in terms of cost, schedule, and quality—of those decisions. No sensible archi-
tect would make any decision, or at least any nontrivial decision, without first 
attempting to understand the implications of that decision: its near-term effects 
and possibly its long-term consequences. Architects, of course, make thousands 
of decisions in the course of designing a large project, and clearly not all of them 
matter. Furthermore, not all of the decisions that matter are carriers of quality at-
tributes. Some may deal with which vendor to select, or which coding convention 
to follow, or which programmer to hire or fire, or which IDE to use—important 
decisions, to be sure, but not ones that are directly linked to a quality attribute 
outcome.

Of course, some of these decisions will affect the achievement of quality 
attributes. When the architect breaks down the development into a system of lay-
ers or modules, or both, this decision will affect how a change ripples through 
the code base, who needs to talk to who when adding a feature or fixing a bug, 
how easy or difficult it is to distribute or outsource some of the development, 
how easy it is to port the software to a different platform, and so forth. When the 
architect chooses a distributed resource management system, how it determines 
which services are masters and which are slaves, how it detects failures, and how 
it detects resource starvation will all affect the availability of the system.

So when and why do we analyze during the design process? First, we ana-
lyze because we can. An architecture specification, whether it is just a whiteboard 
sketch or something that has been more formally documented and circulated, is 
the first artifact supporting an analysis that sheds insight into quality attributes. 
Yes, we can analyze requirements, but we mainly analyze them for consistency 
and completeness. Until we translate those requirements into structures resulting 
from design decisions, we will have little to say about the actual consequences of 
those decisions, their costs and benefits, and the tradeoffs among them.

Second, and more to the point, we analyze because it is a prudent way of 
informing decisions and managing risk. No design is completely without risk, 
but we want to ensure that the risks that we take on are commensurate with our 
stakeholders’ expectations and tolerances. For a banking application or a military 
application, our stakeholders will demand low levels of risk, and they should be 
willing to pay accordingly for higher levels of assurance. For a startup company, 
where time to market is of the essence and budgets are tight, we might be pre-
pared to accept far higher levels of risk. As with every important decision in soft-
ware engineering, the answer is clear: It depends.
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Finally, analysis is the key to evaluation. Evaluation is the process of deter-
mining the value of something. Companies are evaluated to determine their share 
price. A company’s employees are evaluated annually to determine their raises. In 
each case, the evaluation is built upon an analysis of the properties of the com-
pany or employee.

8.3 Analysis Techniques

Different projects will demand different responses to risk. Fortunately we, as 
architects, have a wide variety of tools at our disposal to analyze architectures. 
With a bit of planning, we can match our risk tolerance with a set of analysis 
techniques that both meet our budget and schedule constraints and provide rea-
sonable levels of assurance. The point here is that analysis does not need to be 
costly or complex. Just asking thoughtful questions is a form of analysis, and 
that exercise is pretty inexpensive. Building a simple prototype is more expen-
sive, but in the context of a large project this analysis technique may be well 
worth the additional expense owing to how it explores and mitigates risks, as 
we saw in Chapter 5.

Examples of (relatively economical, relatively low ceremony) analysis tech-
niques already in widespread use include design reviews and scenario-based 
analyses, code reviews, pair programming, and Scrum retrospective meetings. 
Other commonly used, albeit somewhat more costly, analysis techniques include 
prototypes (throw-away or evolutionary) and simulations.

At the high end of expense and complexity, we can build formal models of 
our systems and analyze them for properties such as latency or security or safety. 
When a candidate implementation or a fielded system finally exists, we can per-
form experiments, including instrumenting running systems and collecting data, 
ideally from executions of the system that reflect realistic usages.

As indicated in Table 8.1, the cost of these techniques typically increases 
as you proceed through the software development life cycle. A prototype or ex-
periment is more expensive than a checklist, which is more expensive than an 
experience-based analogy. This expected cost correlates fairly strongly with the 
confidence that you can have in the analysis results. Unfortunately, there is no 
free lunch!
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TABLE 8.1 Analysis at Different Stages of the Software Life Cycle

Life-Cycle Stage Form of Analysis Cost Confidence

Requirements Experience-based analogy Low Low–high

Requirements Back-of-the-envelope 
analysis

Low Low–medium

Architecture Thought experiment/
reflective questions

Low Low–medium

Architecture Checklist-based analysis Low Medium

Architecture Tactics-based analysis Low Medium

Architecture Scenario-based analysis Low–medium Medium

Architecture Analytic model Low–medium Medium

Architecture Simulation Medium Medium

Architecture Prototype Medium Medium–high

Implementation Experiment Medium–high Medium–high

Fielded system Instrumentation Medium–high High

8.4 Tactics-Based Analysis

Architectural tactics (discussed in Section 2.5.4) have been presented thus far as 
design primitives. However, because these taxonomies are intended to cover the 
entire space of architectural design possibilities for managing a quality attribute, 
we can use them in an analysis setting as well. Specifically, we can use them as 
guides for interviews or questionnaires. These interviews help you, as an analyst, 
to gain rapid insight into the architectural approaches taken or not taken.

Consider, for example, the tactics for availability, shown in Figure 8.1.
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FIGURE 8.1 Availability tactics

Each of these tactics is a design option for the architect who wants to design 
a highly available system. Used in hindsight, however, they represent a taxonomy 
of the entire design space for availability and hence can be a way of gaining in-
sight into the decisions made, and not made, by the architect. To do this, we sim-
ply turn each tactic into an interview question. For example, consider the (partial) 
set of tactics-inspired availability questions in Table 8.2.
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TABLE 8.2 Example Tactics-Based Availability Questions

Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk Design Decisions and Location

Rationale and 
Assumptions

Detect 
faults

Does the system use ping/
echo to detect a failure of a 
component or connection, or 
network congestion?

Y L The server periodically pings the time 
servers to see if they are “alive”.

It is not possible to modify 
the time servers take to 
implement a heartbeat 
approach.

Does the system use a com-
ponent to monitor the state 
of health of other parts of the 
system? A system monitor can 
detect failure or congestion in 
the network or other shared 
resources, such as from a 
denial-of-service attack.

N N/A This was not implemented in the system. 
We will rely on other techniques to mon-
itor the system. For example, memory 
consumption or processor load informa-
tion can be obtained from the OS. 

We assume that informa-
tion beyond what the OS 
provides is not critical.

Does the system use a heart-
beat—a periodic message 
exchange between a system 
monitor and a process—to 
detect a failure of a compo-
nent or connection, or network 
congestion?

Y L The server periodically sends a 
heartbeat to the clients.

The server does not have 
to process incoming ping 
requests from the clients.

Does the system use a time 
stamp to detect incorrect 
sequences of events in 
distributed systems?

Y M Events sent from the server to the clients 
have a time stamp, as they have to be 
processed in the order that they were 
received. 

We want to ensure that 
clients display an accurate 
representation of the state 
of the network, which 
involves receiving all of 
the notifications from the 
server and processing 
them in the correct order.
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Does the system use vot-
ing to check that replicated 
components are producing the 
same results? The replicated 
components may be identical 
replicas, functionally redun-
dant, or analytically redundant.

N N/A This is not required by the system. 
 
 
 

N/A

Does the system use excep-
tion detection to detect a 
system condition that alters the 
normal flow of execution—for 
example, system exceptions, 
parameter fences, parameter 
typing, timeouts?

Y L Standard Java exception management 
is used and all exceptions are sent to a 
log.
Timeouts are implemented on the client 
side, when requests are sent to the 
server.

The assumption is that 
exceptions in Java and 
using timeouts are all that 
is needed.

Can the system do a self-
test to test itself for correct 
operation?

N N/A This was not considered in our original 
design.

The assumption is that 
monitoring and exception 
management will provide 
enough information to test 
for correct operation. 

Recov-
er from 
faults 
(prepa-
ration 
and 
repair)

Does the system employ ac-
tive redundancy (hot spare)? 
In active redundancy, all nodes 
in a protection group (a group 
of nodes where one or more 
nodes are “active”, with the re-
mainder serving as redundant 
spares) receive and process 
identical inputs in parallel, 
allowing redundant spares to 
maintain synchronous state 
with the active node(s).

Y H Active redundancy is used in the 
application server and the message 
queue.

Active redundancy was 
favored over a passive 
approach to reduce 
the possibility of losing 
information that needs 
to be collected from the 
time servers because of 
server failure. This actually 
exceeds the requirement 
established in QA-3.
Also, we assume there 
will be no common-mode 
failure. 

(continues)
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Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk Design Decisions and Location

Rationale and 
Assumptions

Does the system employ 
passive redundancy (warm 
spare)? In passive redundancy, 
only the active members of the 
protection group process input 
traffic; one of their duties is to 
provide the redundant spare(s) 
with periodic state updates.

N N/A Active redundancy was favored. N/A

Does the system employ 
rollback, so that it can revert to 
a previously saved good state 
(the “rollback line”) in the event 
of a fault?

Y M Transaction management is supported 
through the Spring framework.

Spring provides adequate 
support for the type of 
transactions required by 
this system.
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When the questions in Table 8.2 are used in an interview setting, we can record 
whether each tactic is supported by the system’s architecture, according to the opin-
ions of the architect. For example, in the table, the questions have been answered with 
respect to design decisions made for the FCAPS system presented in Chapter 4. Note 
that the answers shown in the table are rather succinct because this is an example; 
more detailed explanations are encouraged in real-world applications. If we are ana-
lyzing an existing system we can additionally investigate the following issues:

§	Whether there are any obvious risks in the use (or nonuse) of this tactic. If 
the tactic has been used, we can record here how it is realized in the system 
(e.g., via custom code, frameworks, or other externally produced compo-
nents). For example, we might note that the active redundancy tactic has 
been employed by replicating the application server and other critical com-
ponents such as the database (as in the case study presented in Chapter 4).

§	The specific design decisions made to realize the tactic and where in the code 
base the implementation (realization) may be found. This information is useful 
for auditing and architecture reconstruction purposes. Continuing the example 
from the previous bullet, we might probe how many replicas of the application 
server have been created and where these replicas are located (e.g., on the same 
rack in a data center, on different racks, in different data centers).

§	Any rationale or assumptions made in the realization of this tactic. For 
example, we might assume that there will be no common-mode failure, so 
it is acceptable that the replicas are identical virtual machines, running on 
identical hardware.

While this interview-based approach might sound simplistic, it can actually 
be quite powerful and insightful. In your daily activities as an architect, you may 
not always take the time to step back and consider the bigger picture. A set of in-
terview questions such as those shown in Table 8.2 force you to do just that. This 
approach is also quite efficient: A typical interview for a single quality attribute 
takes between 30 and 90 minutes.

A set of tactics-based questionnaires, covering the seven most important sys-
tem quality attributes—availability, interoperability, modifiability, performance, 
security, testability, and usability—can be found in Appendix B. In addition, we 
have included an eighth questionnaire, on DevOps, as an example of how you can 
combine the other (more fundamental) questionnaires to create a new question-
naire to address a new set of quality concerns.

8.5 Reflective Questions

Similar to the tactics-based interviews, a number of researchers have advocated 
the practice of asking (and answering) reflective questions to augment the design 
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process. The idea behind this process is that we actually think differently when 
we are problem-solving and when we are reflecting. For this reason, researchers 
have advocated a separate “reflection” activity in design that both challenges the 
decisions made and challenges us to examine our biases.

Architects, like all humans, are subject to bias. For example, we are subject 
to confirmation bias—the tendency to interpret new information in a way that 
confirms our preconceptions—and we are subject to anchoring bias—the ten-
dency to rely too heavily on the first piece of information that we receive when 
investigating a problem, using this information to filter and judge any subsequent 
information. Reflective questions help to uncover such biases in a systematic 
way, which can lead us to revise our assumptions and hence our designs.

In their research on reflective questions, Razavian et al. have proposed that 
one can and should reflect on context and requirements (Are the contexts and re-
quirements identified relevant, complete, and accurate?), design problems (Have 
they been properly and fully articulated?), design solutions (Are they appropriate 
given the requirements?), and design decisions (Are they principled and justi-
fied?). Examples of reflective questions that they propose include the following:

§	Which assumptions are made? Do the assumptions affect the design prob-
lem? Do the assumptions affect the solution option? Is an assumption ac-
ceptable in a decision?

§	What are the risks that certain events would happen? How do the risks 
cause design problems? How do the risks affect the viability of a solution? 
Is the risk of a decision acceptable? What can be done to mitigate the risks?

§	What are the constraints imposed by the contexts? How do the constraints 
cause design problems? How do the constraints limit the solution options? 
Can any constraints be relaxed when making a decision?

§	What are the contexts and the requirements of this system? What does this 
context mean? What are the design problems? Which are the important 
problems that need to be solved? What does this problem mean? Which po-
tential solutions exist for this problem? Are there other problems to follow 
up in this decision?

§	Which contexts can be compromised? Can a problem be framed differently? 
What are the solution options? Can a solution option be compromised? Are 
the pros and cons of each solution treated fairly? What is an optimal solution 
after tradeoff?

Of course, you might not employ all of these questions, and you would not 
employ this technique for every decision that you make. Used judiciously, how-
ever, these kinds of questions can help you to reflect mindfully on the decisions 
that you are making.
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8.6 Scenario-Based Design Reviews

Comprehensive scenario-based design reviews, such as the ATAM, have typically 
been conducted outside the design process. The ATAM is an example of a com-
prehensive architecture evaluation (see the sidebar “The ATAM”).

An ATAM review, as it was initially conceived, was a “milestone” review. 
When an architect or other key stakeholder believed that there was enough of 
an architecture or architecture description to analyze, an ATAM meeting could 
be convened. This might occur when an architectural design had been done but 
before much, if any, implementation had been completed. More commonly, it 
occurred when an existing system was in place and some stakeholders wanted 
an objective evaluation of the risks of the architecture before committing to it, 
evolving it, acquiring it, and so forth.

The ATAM

The ATAM—Architecture Tradeoff Analysis Method (ATAM) is an estab-
lished method for analyzing architectures, driven by scenarios. Its purpose 
is to assess the consequences of architectural decisions in light of quality 
attribute requirements and business goals.

The ATAM brings together three groups in an evaluation:

§	A trained evaluation team
§	An architecture’s “decision makers”
§	Representatives of the architecture’s stakeholders

The ATAM helps stakeholders ask the right questions to discover poten-
tially problematic architectural decisions—that is, risks. These discovered 
risks can then be made the focus of mitigation activities such as further de-
sign, further analysis, prototyping, and implementation. In addition, design 
tradeoffs are often identified—hence the name of the method. The purpose 
of the ATAM is not to provide precise analyses: This method typically is 
applied in two 2-day meetings and this (relatively) short time frame does 
not permit a deep dive into any specific concern. Those kinds of analyses 
are, however, appropriate as part of the risk mitigation activities that could 
follow and be guided by an ATAM.

The ATAM can be used throughout the software development life cycle. 
For example, it can be used in the following circumstances:

§	After an architecture has been specified but there is little or no code
§	To evaluate potential architectural alternatives
§	To evaluate the architecture of an existing system

The outputs of the ATAM evaluation are as follows:
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§	A concise presentation of the architecture. The architecture is presented in 
one hour.

§	A concise articulation of the business goals for the system under scrutiny. 
Frequently, the business goals presented in the ATAM are being seen by 
some of the assembled participants for the first time and these are cap-
tured in the outputs.

§	A set of prioritized quality attribute requirements, expressed as scenarios.
§	A mapping of architectural decisions to quality requirements. For each 

quality attribute scenario examined, the architectural decisions that help to 
achieve it are identified and recorded.

§	A set of sensitivity and tradeoff points. These architectural decisions have a 
marked effect on one or more quality attributes.

§	A set of risks and non-risks. A risk is defined as an architectural decision 
that may lead to undesirable consequences in light of quality attribute 
requirements. A non-risk is an architectural decision that, upon analysis, 
is deemed safe. The identified risks form the basis of an architectural risk 
mitigation plan.

§	A set of risk themes. The evaluation team examines the full set of discov-
ered risks to identify overarching themes that reveal systemic weaknesses 
in the architecture (or perhaps even in the architecture process and team). 
If left untreated, these weaknesses will threaten the project’s ability to meet 
the business goals.

There are also intangible results of an ATAM-based evaluation: a sense 
of community developed among the stakeholders, open communication 
channels between the architect and the stakeholders, a better overall 
understanding of the architecture and its strengths and weaknesses. While 
these results are difficult to measure, they are no less important than the 
others and often are the longest-lasting artifacts.

An ATAM evaluation takes place in four phases. The first phase (phase 0) 
and the final phase (phase 3) are managerial: setting up the evaluation at 
the start and reporting results and follow-on activities at the end. The middle 
phases (phases 1 and 2) are when the actual analysis takes place. The steps 
enacted in phases 1 and 2 are as follows:

1. Present the ATAM

2. Present the business drivers

3. Present the architecture

4. Identify the architectural approaches

5. Generate a quality attribute utility tree

6. Analyze the architectural approaches

7. Brainstorm and prioritize scenarios

8. Analyze the architectural approaches

9. Present the results
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In phase 1, we enact steps 1–6 with a small, internal group of stake-
holders—typically just the architect, project manager and perhaps one or 
two senior developers. In phase 2, we invite a larger group of stakeholders 
to attend—all the people who attended phase 1 plus external stakehold-
ers, such as customer representatives, end-user representatives, quality 
assurance, operations, and so forth. In phase 2, we review steps 1–6 and 
enact steps 7–9.

The actual analysis takes place in step 6, where we analyze archi-
tectural approaches by asking the architect to map the highest-priority 
scenarios, one at a time, onto the architectural approaches that have been 
described. During this step, the analysts ask probing questions, moti-
vated by a knowledge of quality attributes, and risks are discovered and 
documented. 

The idea of having a separate, distinct evaluation activity once the archi-
tecture is “done” fits poorly with the way that most organizations operate today. 
Today, most software organizations are practicing some form of Agile or iterative 
development. There is no distinct monolithic “architecture phase” in Agile pro-
cesses. Rather, architecture and development are co-created in a series of sprints. 
For example, as discussed in Chapter 2, many Agile thought leaders are promot-
ing practices such as “disciplined agility at scale”, the “walking skeleton”, and 
the “scaled Agile framework”, all of which embrace the idea that architectures 
continuously evolve in relatively small increments, addressing the most critical 
risks. This may be aided by developing a small proof-of-concept or minimum 
viable product (MVP), or doing strategic prototyping.

To better align with this view of software development, a lightweight 
scenario-based peer review method, based on the ATAM, has been promoted. A 
lightweight ATAM evaluation can be conducted in a half-day meeting. It can also 
be carried out internally, using just project members. Of course, an external review 
gives more objectivity and may produce better results, but this exercise may be 
too costly or infeasible due to schedule or intellectual property (IP) constraints. A 
lightweight ATAM therefore provides a reasonable middle ground between a costly 
but more objective and comprehensive ATAM and doing no analysis whatsoever, or 
only doing ad hoc analysis.

An example schedule for a lightweight ATAM evaluation conducted by proj-
ect members on their own project is given in Table 8.3. 
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TABLE 8.3 A Typical Agenda for a Lightweight ATAM Evaluation

Step
Time
Allotted Notes

1. Present 
business 
drivers

0.25 hour The participants are expected to understand the 
system and its business goals and their priorities. 
Fifteen minutes is allocated for a brief review to 
ensure that these are fresh in everyone’s mind and 
that there are no surprises.

2. Present 
architecture

0.5 hour All participants are expected to be familiar with the 
system, so a brief overview of the architecture is 
presented and 1 or 2 scenarios are traced through 
the documented architecture views.

3. Identify 
architectural 
approaches

0.25 hour The architecture approaches for specific quality 
attribute concerns are identified by the architect. 
This may be done as a portion of step 2.

4. Generate 
quality 
attribute 
utility tree

0.5 hour Scenarios might already exist; if so, use them. A 
utility tree might already exist; if so, the team reviews 
it and updates it, if necessary.

5. Analyze 
architectural 
approaches

2.0 hours This step—mapping the highly ranked scenarios 
onto the architecture—consumes the bulk of the 
time and can be expanded or contracted as needed.

6. Present 
results

0.5 hour At the end of the evaluation, the team reviews the 
existing and newly discovered risks and tradeoffs 
and discusses priorities.

TOTAL 4 hours

A half-day review such as this is similar, in terms of effort, to other quality 
assurance efforts that are typically conducted in a development project, such as 
code reviews, inspections, and walk-throughs. For this reason, it is easy to sched-
ule a lightweight ATAM evaluation in a sprint, particularly in those sprints where 
architectural decisions are being made, challenged, or changed.

8.7 Architecture Description Languages

If the application that you are building has stringent quality requirements in the 
areas of runtime performance (latency, throughput), reliability/availability, safety, 
or security, then you might consider documenting your design decisions, in the 
form of architectural structures, in an architecture description language (ADL). 
ADLs lend themselves to formal, automated analysis, which is precisely why we 
include them here. ADLs typically employ both a graphical and a (formally de-
fined) textual notation to describe an architecture—primarily the computational 
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(runtime) components and interactions among them—and its properties. The 
Unified Modeling Language (UML) is the most widely used notation for doc-
umenting architectures in industrial practice, though even it is not universally 
used. Few industrial projects endeavor to describe all, or even most, of their ar-
chitectures in any ADL.

Some ADLs, such as AADL, strive to be formal models that have precise 
and decidable semantics. This regimentation means that they can be automati-
cally checked for properties of interest, typically performance, availability, and 
safety, although in principle other quality attributes can be accommodated. While 
there is an often a steep learning curve for becoming proficient with the language 
and the surrounding tool suite, using a formalized ADL offers several benefits. 
First, an ADL forces you to document your architectural decisions, and hence 
to explicitly acknowledge when and where your architectural understanding is 
incomplete or vague. This benefit accrues with any form of documentation—it 
forces you to be explicit—but is especially true of ADLs. This leads to the second 
benefit of ADLs: They are typically accompanied by a tool suite that can analyze 
the architecture description for various properties at the click of a button.

So why are ADLs seldom used outside of academia? A number of pos-
sible reasons for this reluctance exist. First, it is not in our common practice. 
ADLs—even the UML—are typically not taught in computer science or software 
engineering curricula and are not well supported in most popular IDEs. Second, 
ADLs are perceived as being challenging to use and not user-friendly, requiring 
both a large up-front effort and a large continuing effort to maintain. This point 
is, perhaps, the most significant one: Architects and programmers generally do 
not want to maintain a second, parallel base of knowledge about their systems. 
For some systems, this may be the right choice. For others—typically those with 
stringent and uncompromising quality attribute requirements—having a separate 
and separately analyzable representation of the design might be the most prudent 
course of action. In civil engineering, by way of contrast, no project may be ap-
proved for construction without first being represented in a separate analyzable 
document.

8.8 Summary

No one would consider fielding code that they had not tested—yet architects 
and programmers regularly commit to (implement) architectural decisions that 
have not been analyzed. Why the dichotomy? Surely, if testing code is important, 
then “testing” the design decisions you have made is an order of magnitude more 
important, as these decisions often have long-term, system-wide, and significant 
impacts.
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The most important message of this chapter is that design and analysis are 
not really separate activities. Every important design decision that you make 
should be analyzed. A variety of techniques can be applied to do this continu-
ously, in a relatively disruption-free manner, as part of the process of designing 
and evolving a system.

The interesting questions are not whether to analyze, but rather how much 
to analyze and when. Analysis is inherent in doing good design, and it should be 
a continuous process.

8.9 Further Reading

The sets of architectural tactics used here have been documented in L. Bass, 
P. Clements, and R. Kazman, Software Architecture in Practice (3rd ed.), 
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R. Kazman, “Realizing and Refining Architectural Tactics: Availability”, CMU/
SEI-2009-TR-006, 2009.

The idea of reflective questions was first introduced in M. Razavian, 
A. Tang, R. Capilla, and P. Lago, “In Two Minds: How Reflections Influence 
Software Architecture Design Thinking”, VU University Amsterdam, Tech. Rep. 
2015-001, April 2015. The idea that software designers satisfice—that is, they 
look for a “good enough”, as opposed to an optimal, solution—has been dis-
cussed in A. Tang and H. van Vliet, “Software Designers Satisfice”, European 
Conference on Software Architecture (ECSA 2015), 2015.

The ATAM was comprehensively described in P. Clements, R. Kazman, 
and M. Klein, Evaluating Software Architectures: Methods and Case Studies, 
Addison-Wesley, 2001. The lightweight ATAM was first presented in L. Bass, 
P. Clements, and R. Kazman, Software Architecture in Practice (3rd ed.), 
Addison-Wesley, 2012. In addition, ATAM-style peer reviews have been de-
scribed in F. Bachmann, “Give the Stakeholders What They Want: Design Peer 
Reviews the ATAM Style”, Crosstalk, November/December 2011.

Architecture description languages have a history almost as long as the 
history of software architecture itself. The most widely used ADL in practice 
is AADL (Architecture Analysis and Design Language), which is described in 
P. Feiler and D. Gluch, Model-Based Engineering with AADL: An Introduction 
to the SAE Architecture Analysis & Design Language, Addison-Wesley, 2013. An 
overview of, and analysis of industrial requirements for, ADLs can be found in 
I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What Industry 
Needs from Architectural Languages: A Survey”, IEEE Transactions on Software 
Engineering, 39(6):869–891, June 2013.
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9
The Architecture 
Design Process in the 
Organization

Chapter 1 introduced a set of software architecture life-cycle activities—things 
like collecting requirements, designing the architecture, and evaluating and im-
plementing the architecture. We called these “life-cycle activities” because we 
recognize that not all organizations do all of them; those that do them might do 
them in different ways, and might embed them into different life-cycle models 
and organizational contexts. This chapter takes a closer look at those aspects of 
software development and considers how architecture design fits in with them.

9.1 Architecture Design and the Development Life Cycle

Two important phases that occur in most development projects, as illustrated in 
Figure 9.1, are pre-sales and development and operations.
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Pre-Sales
Architecture Design Architecture Design

FIGURE 9.1 The two major phases of project development

§	During the pre-sales phase, the scope of the project is established and a 
business case is established. Although we call this phase “pre-sales”, it 
occurs in every organization, whether they engage in “sales” or not. One 
frequent and important product of this phase is an estimation of the cost 
and duration of the project. This estimation is used by the customers (or 
funders) to decide if they want to pursue the project.

§	The development and operations phase occurs when the pre-sales proposal 
has been accepted by the customer. Development can be performed follow-
ing different methodologies including Agile, RUP, or TSP. Once the system 
(or part of it) is developed, it is put into operation. Newer approaches such 
as DevOps intend to reduce the gap that is usually present between devel-
opment and operation.

Architectural design plays an important role in these two major phases, as 
we will now discuss.

9.1.1 Architecture Design During Pre-Sales

In many types of development projects, but particularly in the context of custom 
software development, organizations typically need to provide an initial estimate 
of the time and cost of the project during the pre-sales phase. Frequently the pre-
sales activities must be performed in a short time period, and the information that 
is available to inform this process is always limited. For example, typically only 
high-level requirements or features (rather than detailed use cases) are available 
at this phase.

The problem with limited information is that the estimate that is produced 
frequently has a lot of uncertainty, as illustrated by the cone of uncertainty de-
picted in Figure 9.2. The cone of uncertainty refers to the uncertainty surrounding 
estimates in a project, typically those of cost and schedule, but also risk. All of 
these estimates get better as a project progresses, and the cone narrows. When the 
project is done, uncertainty is zero. The issue for any development methodology 
is how to narrow the cone of uncertainty earlier in the project’s life cycle.



9.1 Architecture Design and the Development Life Cycle 195

Initial
Project

Definition

Approved
Project

Definition

Requirements
Specification

Product
Design

Specification

Detailed
Design

Specification

Accepted
Software

1.6x

1.25x

1.15x

1.1x

0.9x

0.85x

0.8x

0.6x

x

FIGURE 9.2 Example cone of uncertainty

Architectural practices can be applied in the pre-sales phase to help reduce 
the cone of uncertainty:

§	Architectural drivers can be identified in the pre-sales phase. Even if it may 
be complicated to describe detailed quality attribute scenarios at this point, 
the most important quality attributes with initial measures and constraints 
should be identified.

§	ADD can be used to produce an initial architecture that is then used as the 
basis for early cost and schedule estimates.

§	Sketches of this initial architecture are useful for communication with the 
customer. They are also useful as a basis to perform lightweight evaluations 
of this initial design.

Generating an initial architecture allows estimation to be performed using 
the “standard components” technique. Standard components are a type of proxy; 
they include web pages, business rules, and reports, among other things. When 
estimating with standard components, companies typically build historic data-
bases that contain, for example, measurements and size data for components that 
have been built into previously developed systems. To estimate with standard 
components, you need to identify the components that will be required for the 
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problem that you are trying to solve, and then use historical data (or some other 
technique such as Wideband Delphi) to estimate the size of these components. 
The total size can then be translated into effort, and these estimates can be rolled 
up to produce a project-level time and cost estimate.

Identifying the components that are required to create estimates with this 
technique can be achieved in a short time frame through the use of ADD. This 
approach is similar to what we just recommended for the design of greenfield 
systems:

§	The goal of your first design iteration should be to address the concern of 
establishing an initial overall structure for the application. The reference 
architecture, if you employ one, dictates the types of standard components 
that will be used in the estimation. At this point, the most relevant technolo-
gies to use in the project can also be selected, particularly if your historical 
data is tied to specific technologies.

§	The goal of your second design iteration should be to identify components 
to support all of the functionality that needs to be considered for the estima-
tion. As opposed to what we discussed for the design of greenfield systems, 
when designing to produce an estimate, you need to consider more than 
just primary functionality. To identify the standard components, you need 
to consider all of the important functional requirements that are part of the 
scope and map them to the structure that you defined in the first iteration. 
Doing so ensures you will have a more accurate estimation.

This technique will help you estimate costs and schedule for meeting the most 
important functional requirements. At this point, however, you will likely not have 
taken quality attributes into account. As a consequence, you should perform a few 
more iterations focusing on where you will make design decisions to address the 
driving quality attributes. If the time available to perform the pre-sales process is 
limited, you will not be able to design it in much detail, so the decisions that you 
should take here are the ones that will have a significant impact in the estimate. Ex-
amples include identifying redundant hardware or additional standard components 
to address quality attributes such as performance, availability, and security.

When this technique is used in the pre-sales process, an initial architecture de-
sign is produced—the pre-sales architecture design (see Figure 9.1). If the project 
proposal is accepted by the customer and the project proceeds, this initial architec-
ture can become one of the bases for a contract. This architecture should be used as 
a starting point in the subsequent architecture design activities that are performed 
during the Development and Operation phase of the project. In this case, the road-
map for designing brownfield systems (discussed in Section 3.3.3) can be used.

The preliminary documentation produced for this initial architecture can 
also be included as part of the technical proposal that is provided to the customer. 
Finally, this initial architecture design can be evaluated, preferably before esti-
mation occurs. This can be performed using a technique such as the lightweight 
ATAM presented in Section 8.6.
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9.1.2 Architecture Design During Development and Operation

The development of a software system can be performed using different method-
ologies. Architectural design, however, is performed independently of the chosen 
development methodology. For this reason, a design method such as ADD can be 
used in conjunction with different development methodologies. We now discuss 
the relationship between architectural design and some development methodolo-
gies that are commonly used in industry.

9.1.2.1 Agile Methods
The relationship between software architecture and agility has been the subject of 
some debate over the past decade. Although we believe, and much research has 
shown, that architectural practices and Agile practices are actually well aligned, 
this position has not always been universally accepted.

Agile practices, according to the original Agile Manifesto emphasize, “Individ-
uals and interactions over processes and tools, working software over comprehen-
sive documentation, customer collaboration over contract negotiation, and respond-
ing to change over following a plan”. None of these values is inherently in conflict 
with architectural practices. So why has the belief arisen—at least in some circles—
that the two sets of practices are somehow incompatible? The crux of the matter is 
the one principle on which Agile practices and architectural practices differ.

The original creators of the Agile Manifesto described 12 principles behind 
the manifesto. While 11 of these are fully compatible with architectural practices, 
one of them is not: “The best architectures, requirements, and designs emerge from 
self-organizing teams”. While this principle may have held true for small and per-
haps even medium-sized projects, we are unaware of any cases where it has been 
successful in large projects, particularly those with complex requirements and dis-
tributed development. The heart of the problem is this: Software architecture design 
is “up-front” work. You could always just start a project by coding and doing mini-
mal or no up-front analysis or design. This is what we call the emergent approach, 
as shown in Figure 9.3b. In some cases—small systems, throw-away prototypes, 
systems where you have little idea of the customer’s requirements—this may, in 
fact, be the optimal decision. At the opposite extreme, you could attempt to col-
lect all the requirements up front, and from that synthesize the ideal architecture, 
which you would then implement, test, and deploy. This so-called Big Design Up 
Front approach (BDUF; Figure 9.3a) is usually associated with the classic Water-
fall model of software development. The Waterfall model has fallen out of favor 
over the past decade due to its complexity and rigidity, which led to many well-doc-
umented cases of cost overruns, schedule overruns, and customer dissatisfaction. 
With respect to architectural design, the downside of the BDUF approach is that it 
can end up producing an extensively documented but untested design that may not 
be appropriate. This occurs because problems in the design are often discovered 
late and may require a lot of rework, or the original design may end up being ig-
nored and the true architecture is not documented.
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(a) BDUF Approach (b) Emergent Approach

(c) Iteration 0 Approach
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FIGURE 9.3 Three approaches to architectural design

Clearly, neither of these extremes makes sense for most real-world projects, 
where some (but not all) of the requirements are well understood up front but 
there is also a risk of doing too much too soon and hence becoming locked in 
to a solution that will inevitably need to be modified, at significant cost. So the 
truly interesting question is this: How much up-front work, in terms of require-
ments analysis, risk mitigation, and architecture, should a project do? Boehm and 
Turner have presented evidence arguing that there is no single right answer to this 
question, but that you can find a “sweet spot” for any given project. The “right” 
amount of project work depends on several factors, with the most dominant be-
ing project size, but other important factors include requirements complexity, re-
quirements volatility (related to the precedentedness of the domain), and degree 
of distribution of development.

So how do architects achieve the right amount of agility? How do they find 
the right balance between up-front work and technical debt leading to rework? 
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For small, simple projects, no up-front work on architecture is justifiable. It is 
easy and relatively inexpensive to turn on a dime and refactor. In projects where 
there is some understanding of the requirements, begin by performing a few 
ADD iterations. These design iterations can focus on choosing the major archi-
tectural patterns (including a reference architecture, if one is appropriate) and 
frameworks. This is the iteration 0 approach depicted in Figure 9.3c. This will 
help to structure the project, define work assignments and team formation, and 
address the most critical quality attributes. If and when requirements change—
particularly if these are driving quality attribute requirements—adopt a practice 
of Agile experimentation, where spikes are used to address new requirements. A 
spike is a time-boxed task that is created to answer a technical question or gather 
information; it is not intended to lead to a finished product. Spikes are developed 
in a separate branch and, if successful, merged into the main branch of the code. 
In this way, emerging requirements can be welcomed and managed without being 
too disruptive to the overall process of development.

Agile architecture practices, however, help to tame some of the complexity, 
narrowing the cone of uncertainty and hence reducing project risk. A reference 
architecture defines families of technology components and their relationships. 
It guides integration and indicates where abstraction should be built into the ar-
chitecture, to help reduce rework when a new technology (from within a family) 
replaces an existing one. Agile spikes allow prototypes to be built quickly and to 
“fail fast”, thereby guiding the eventual selection of technologies to be included 
on the main development branch.

9.1.2.2 Rational Unified Process
The Rational Unified Process (RUP) is a software development process frame-
work that puts a strong emphasis on architecture. In the RUP (which we also 
discussed in Section 7.3), development projects are divided in four major phases, 
which are carried out sequentially; within these phases, a number of iterations are 
performed. The four phases of the RUP are as follows:

§	Inception. In this first phase, the goal is to achieve concurrence among proj-
ect stakeholders. During this phase the scope of the project and a business 
architecture are defined. Also, a candidate architecture is established. This 
phase is the equivalent to the pre-sales phase discussed previously.

§	Elaboration. In the second phase, the goal is to baseline the architecture of 
the system and to produce architectural prototypes.

§	Construction. In the third phase, the goal is to incrementally develop the 
system from the architecture that was defined in the previous phase.

§	Transition. In the fourth phase, the goal is to ensure that the system is ready 
for delivery. The system is transitioned from the development environment 
to its final operation environment.

We could argue that, from the elaboration phase until the end of the project, 
RUP intrinsically follows the iteration 0 approach described earlier. RUP also 
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provides some guidance with respect to architectural design, although this guid-
ance is far less detailed than that offered by ADD. As a consequence, ADD can 
be used as a complement to the RUP. ADD iterations can be performed during 
inception to establish the candidate architecture by following the approach de-
scribed in Section 9.1.1. Furthermore, during the elaboration phase, the initial 
architecture is taken as a starting point for performing additional design iterations 
until an architecture that can be baselined is produced. During construction, ad-
ditional ADD iterations may be performed as part of the development iterations.

9.1.2.3 Team Software Process
The Team Software Process (TSP) is a development process that strongly em-
phasizes quality and measurement. A TSP software project proceeds through a 
series of development cycles, where each cycle begins with a planning process 
called a launch and ends with a closing process called a postmortem. Within each 
development cycle, activities belonging to different phases can be performed. 
These phases include requirements (REQ), high-level design (HLD), implemen-
tation (IMPL), and testing (TEST). The REQ phase of TSP focuses on producing 
a complete system requirements specification (SRS) document. The main goal of 
the HLD phase is to produce a high-level design that will guide product imple-
mentation. This high-level design must define the components (i.e., modules) that 
constitute the system and that have to be designed and developed independently 
following the Personal Software Process (PSP) in the IMPL phase. Finally, the 
TEST phase focuses on performing integration and system testing and on pre-
paring the delivery of the system. Note that the life-cycle model of a particular 
project (Waterfall, incremental) is defined by the phases that are performed in 
each development cycle: An iterative project will typically include activities from 
all four phases in a single development cycle.

The TSP does not give full consideration to software architecture develop-
ment. For instance, none of the roles defined in the TSP is that of software architect. 
There is also no emphasis on quality attributes in the REQ phase. Furthermore, the 
process script for the HLD phase (see Table 9.1) does not provide detailed guidance 
on how to design the system architecture. These issues can, however, be addressed 
by introducing ADD, and other architectural practices, into TSP.

ADD can be used in the context of TSP in a straightforward way. In step 1 of 
the HLD script, ADD can be used to produce the overall product design concept, 
similar to what was discussed for the pre-sales process. Furthermore, in each de-
velopment cycle, one or more ADD iterations can be performed (steps 4 and 5 
of the HLD script). Also, the HLD phase should consider a separation between 
architectural design and element interaction design (discussed in Section 2.2.2). 
A TSP development cycle can involve a few ADD iterations followed by the ele-
ment interaction design activities that include identification of elements and their 
interfaces. These interfaces are later used in the development phase (IMPL) for 
performing detailed design and development of the elements.
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TABLE 9.1 Summary of TSP High-Level Design (HLD) Script Steps

Step Activities Summary

 1 Structural design An overall product design concept is produced. It 
includes the system architectural components and 
the product components, principal functions, and 
interfaces.

 2 Development 
strategy

A development strategy is established. The strategy 
includes the sequence of component development and 
integration and the reuse and testing strategies.

 3 High-level design 
strategy

In this step, a decision is made about whether to design 
the system in a single design cycle or in multiple cycles 
(focusing, for example, on one layer at a time).

 4 First cycle design The requirements are reviewed and the class 
definitions, relationships, and transition diagrams are 
produced.

 5 Subsequent 
design cycles

Design issues from previous cycles are assessed 
and the current design is reviewed. Additional class 
definitions, relationships, and transition diagrams are 
produced.

 6 Integration and 
system test 
strategies

Strategies for testing are established.

 7 System design 
specification 
(SDS)

A design document is produced.

 8 Design 
walkthrough

A walk-through of the high-level design is performed 
with different stakeholders.

 9 Design inspection The materials produced as a result of this phase are 
inspected.

10 SDS baseline The design specification is put into a baseline.

11 Postmortem A postmortem of the phase is performed.

9.1.2.4 DevOps
DevOps is a natural outgrowth of the Agile mindset. DevOps refers to a set of prac-
tices that help achieve continuous delivery of software. Such practices are intended 
to reduce the time between making a change to a system and the change being 
placed into normal production, while ensuring high quality. This term intentionally 
blurs the distinction between “development” and “operations”. While DevOps is 
not inherently tied to architectural practices, if architects do not consider DevOps 
as they design, build, and evolve the system, then critical activities such as con-
tinuous build integration, automated test execution, high availability, and scalable 
performance will be more challenging and less efficient. By embracing DevOps, 
small iterations are supported and encouraged, creating an environment where 
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Agile spikes are easy to create, deploy, and test, thereby providing crucial feedback 
to the architect.

For example, a tightly coupled architecture can become a barrier to contin-
uous integration because even small changes may require a rebuild of the entire 
system, which limits the number of builds possible in a day. To fully automate 
testing, the system needs to provide architectural (system-wide) test capabilities 
such as interfaces to record, play back, and control system state. To support high 
availability, the system must be self-monitoring, requiring architectural capabili-
ties such as self-test, ping/echo, heartbeat, monitor, hot spares, and so forth.

In large-scale systems, DevOps can be achieved only with architectural sup-
port. Any ad hoc or manual process would put the growth and success of such 
a system at risk. Adopting the DevOps approach requires a small change in the 
mindset of an architect. Instead of just designing the system, you now need to 
think about the design of the entire deployment pipeline. Is the pipeline easy to 
change, and can these changes be deployed at the click of a button? Is the pipe-
line easy to scale? Is it easy to test? Fortunately, there are good answers to all of 
these questions, and they do not require a distinct mindset or strategy. ADD can 
help design a system to achieve DevOps goals, in exactly the same ways and 
employing exactly the same design primitives as in design for any other driver. 
The different aspects that need to be considered to allow DevOps to be performed 
successfully can be included as part of the system drivers, either as architectural 
concerns or as quality attributes. The design concepts that help us to achieve 
modifiability or testability or scalability or high availability in a system can also 
be applied to the deployment pipeline. To slightly misquote Gertrude Stein, “Ar-
chitecture is architecture is architecture”.

9.2 Organizational Aspects

In addition to the choice of a specific development method and the introduction 
of a design method such as ADD into this method, other aspects of the design 
process can be supported by a software development organization to facilitate 
design activities. Here we briefly discuss some of these aspects.

9.2.1 Designing as an Individual or as a Team

In large and complex projects, it seems straightforward that an architecture team 
should be responsible for performing the design. Even in smaller projects, how-
ever, you may find that having more than one person participate in the design 
process yields important advantages. You can decide if only one person is the 
architect and the others are observers (as in the practice of pair programming) 
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or if the group actively collaborates on design decisions (although even here we 
recommend that you have one lead architect).

There are various benefits from this approach:

§	Two (or more) heads can be better than one, particularly if the design 
problem that you are trying to solve is different from ones that you have 
addressed before.

§	Different people can have different areas of expertise that are useful in the 
design of the architecture. For example, you might have distinct software 
and infrastructure architects, or people who specialize in different domains 
or different types of design concepts.

§	Design decisions are reflected upon and reviewed as they are being made 
and, as a consequence, can be corrected immediately.

§	Less experienced people can participate in the design process, which can be 
an excellent mentoring practice.

You should, however, be aware of certain difficulties with this approach:

§	Design by committee can be complicated if agreement is not achieved in 
a reasonable time frame. The search for consensus can lead to “analysis 
paralysis”.

§	The cost of design increases and, in many cases, the time for design also 
increases.

§	Managing the logistics can be complex, because this approach requires the 
regular availability of the group of people.

§	You may encounter personality and political conflicts, resulting in resent-
ment or hurt feelings or in design decisions being heavily influenced by the 
person who shouts longest and loudest (“design by bullying”).

9.2.2 Using a Design Concepts Catalog in Your Organization

Design concepts are used in the design process to satisfy drivers (see Section 2.5). 
In general, drivers can be seen as recurring design problems. Whether it is the 
concern of structuring an application, allocating functionality, or satisfying a 
particular quality attribute, these drivers have most certainly been addressed in 
other systems previously. Furthermore, people have taken the time to document 
ways to address these design problems or to develop components that serve this 
purpose. As we saw in Section 3.4, the selection of design concepts is one of the 
most challenging aspects of the design process. This problem is exacerbated by 
the fact that information is scattered in many places: Architects usually need to 
consult several pattern and tactics catalogs and do extensive research to find the 
design concepts that can be considered and used.

One possible way to resolve this issue is the creation of design concepts 
catalogs. These catalogs group collections of design concepts for particular ap-
plication domains. Such catalogs are intended to facilitate the identification and 
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selection of design concepts when performing design. They are also useful in 
enhancing consistency in the designs across the organization. For example, de-
signers may be required to use the technologies in a particular catalog as much 
as possible because this facilitates estimation, reduces learning curves, and may 
lead to opportunities for reuse. Catalogs can also be useful for training purposes.

An example of a design concepts catalog appears in Appendix A. This cata-
log is oriented toward the design of enterprise applications. A similar catalog for 
the Big Data domain could be created from the technology families and specific 
technologies illustrated in Figure 2.10 (Section 2.5.5).

The creation of these catalogs involves considerable effort and, once cre-
ated, they should be maintained as new design concepts, and particularly new 
technologies, are introduced or removed in the organization. This effort is worth-
while, however, as these catalogs are a valuable organizational asset.

9.3 Summary

In this chapter we discussed how ADD can be used in relation to several orga-
nizational aspects. ADD can be used from the project’s inception, when a pre-
sales proposal is developed, to facilitate estimation using standard components. 
As the project evolves, ADD can be used in conjunction with any modern soft-
ware development life-cycle method. In general, ADD is a valuable complement 
to life-cycle methods that do not provide detailed guidance on how to perform 
architectural design.

We also briefly reviewed some related concerns, such as the composition of 
the design team and the development of organizational assets, such as a design 
concepts catalog, that are useful during the design process.

9.4 Further Reading

Organizational structure and its influences on software architecture are addressed 
in the field of enterprise architecture management. Enterprise architecture frame-
works are discussed in F. Ahlemann et al. (Eds.), Strategic Enterprise Archi-
tecture Management: Challenges, Best Practices, and Future Developments, 
Springer-Verlag Berlin Heidelberg, 2012.

A nice set of articles looking at the relationship between architecture and 
Agile methods can be found in the April 2010 IEEE Software magazine special 
issue on this topic.

A number of studies have looked at how architecture and agility meth-
ods complement and support each other, such as S. Bellomo, I. Gorton, and 
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R. Kazman, “Insights from 15 Years of ATAM Data: Towards Agile Architec-
ture”, IEEE Software, September/October 2015, and S. Bellomo, R. Nord, and I. 
Ozkaya, “A Study of Enabling Factors for Rapid Fielding: Combined Practices to 
Balance Speed and Stability”, Proceedings of ICSE 2013, 982–991, 2013.

Barry Boehm and Richard Turner have taken an empirical look at the topic 
of the relationship between agility and “discipline” (not just architecture) in 
their book Balancing Agility and Discipline: A Guide for the Perplexed (Boston: 
Addison-Wesley, 2004).

The practice of creating architectural “spikes” as a means of resolving 
uncertainty in Agile sprints is discussed in T. C. N. Graham, R. Kazman, and 
C. Walmsley, “Agility and Experimentation: Practical Techniques for Resolv-
ing Architectural Tradeoffs”, Proceedings of the 29th International Conference 
on Software Engineering (ICSE 29), (Minneapolis, MN), May 2007. A general 
discussion of spikes can be found at https://www.scrumalliance.org/community/
articles/2013/march/spikes-and-the-effort-to-grief-ratio.

Many practitioners and researchers have thought deeply about how Agile 
methods and architectural practices fit together. Some of the best examples of this 
thinking can be found in the following sources:

§	S. Brown. Software Architecture for the Developers. LeanPub, 2013.
§	J. Bloomberg. The Agile Architecture Revolution. Wiley CIO, 2013.
§	Dean Leffingwell. “Scaled Agile Framework”. http://scaledagileframework.

com/
§	A. Cockburn. “Walking Skeleton”. http://alistair.cockburn.us/

Walking+skeleton
§	“Manifesto for Agile Software Development”. http://agilemanifesto.org/
§	Scott Ambler and Mark Lines. “Scaling Agile Software Development: Dis-

ciplined Agility at Scale”. http://disciplinedagileconsortium.org/Resources/
Documents/ScalingAgileSoftwareDevelopment.pdf

An extensive treatment of estimation techniques, including estimation using 
standard components, is given in S. McConnell, Software Estimation: Demystify-
ing the Black Art, Microsoft Press, 2006.

An overview of the Team Software Process can be found in W. Humphrey, 
The Team Software ProcessSM (TSPSM), Technical Report CMU/SEI-2000-TR-023, 
November 2000. Extensive details about TSP can be found in the different books 
written by Humphrey about this process.

The integration of ADD 2.0 (as well as other architecture development meth-
ods) with RUP, is discussed in R. Kazman, P. Kruchten, R. Nord, and J. Tomayko, 
“Integrating Software-Architecture-Centric Methods into the Rational Unified 
Process”, Technical Report CMU/SEI-2004-TR-011, July 2004.

There are now several excellent books on the topic of DevOps, such 
as L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspec-
tive, Addison-Wesley, 2015. A set of architectural tactics for DevOps was de-
scribed in H-M Chen, R. Kazman, S. Haziyev, V. Kropov, and D. Chtchourov, 
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“Architectural Support for DevOps in a Neo-Metropolis BDaaS Platform”, IEEE 
34th Symposium on Reliable Distributed Systems Workshop (SRDSW), Montreal, 
Canada, September 2015.

Considerable attention has been given to the problem of architecture 
knowledge representation and management. For a good overview of this area, 
see P. Kruchten, P. Lago, and H. Van Vliet, “Building Up and Reasoning About 
Architectural Knowledge”, in Quality of Software Architectures, Springer, 2006. 
For a perspective on tools for architecture knowledge management, see A. Tang, 
P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, “A Comparative Study of 
Architecture Knowledge Management Tools”, Journal of Systems and Software, 
83(3):352–370, 2010.
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10
Final Words

In this chapter we reflect, once again, on the nature of design and why we need 
methods for design. This is, after all, the major point of this book! And we leave 
you with a few words about where to go with the information and skills that you 
have gleaned from reading this book.

10.1 On the Need for Methods

Given that you have prevailed and reached this final chapter, we can assume that 
you are committed to being a professional software architect. Being a profes-
sional means that you can perform (at least) adequately and repeatedly in all sorts 
of contexts. To achieve this level of performance, you need methods.

We all need methods when we are performing complex tasks that have se-
rious consequences if we get them wrong. Consider this: Jet pilots and surgeons 
are two of the most highly trained groups of professionals in the world, and yet 
they use checklists and standardized procedures for every important task that 
they perform. Why? Because the consequences of making a mistake are serious. 
You probably will not be designing the architectures for systems that have life-
and-death consequences. Even so, the systems that you do design, particularly if 
they are large and complex, may very well have consequences for the health and 
well-being of your organization. If you are designing a throwaway prototype or a 
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trivial system, perhaps an explicit architecture design step may be omitted. If you 
are designing the nth variant of a system that you have created over and over in 
the past, perhaps architecture design is little more than a cut-and-paste from your 
prior experiences.

But if the system you are charged with creating or evolving is nontrivial 
and if there is risk associated with its creation, then you owe it to yourself, you 
owe it to your organization, and you owe it to your profession to do the best job 
that you can in this most critical step in the software development life cycle. To 
achieve that goal, you need a method. Methods help to ensure uniformity, consis-
tency, and completeness. Methods help you take the right steps and ask the right 
questions.

Of course, no method can substitute for proper training and education. No one 
would trust a novice pilot at the controls of a 787 or a first-year medical student 
wielding a scalpel in an operating theater, armed only with a method or a checklist. 
A method, however, is a key to producing high-quality results repeatedly. And this 
is, after all, what we all desire as software engineering professionals.

Fred Books, writing about the design process, said:

Any systematization of the design process is a great step forward compared to “Let’s 
just start coding, or building”. It provides clear steps for planning a design project. 
It furnishes clearly definable milestones for planning a schedule and for judging 
progress. It suggests project organization and staffing. It helps communication 
within the design team, giving everyone a single vocabulary for the activities. It 
wonderfully helps communication between the team and its manager, and between 
the manager and other stakeholders. It is readily teachable to novices. It tells novices 
facing their first design assignments where to begin.

Design is just too important to be left to chance. And there needs to be a 
better way of getting good at design than “shoot yourself in the foot repeatedly”. 
As the Nobel Prize–winning scientist Herbert Simon wrote in 1969, “Design . . . 
is the core of all professional training; it is the principal mark that distinguishes 
the professions from the sciences. Schools of engineering, as well as schools of 
architecture, business, education, law, and medicine, are all centrally concerned 
with the process of design”. Simon went on to say that lack of professional com-
petence is caused by the relative neglect of design in universities’ curricula. This 
trend is, we are happy to note, gradually reversing, but nearly 50 years later it is 
still a cause for concern.

In this book we have provided you with a road-tested method—ADD 3.0—
for doing architectural design. Methods are useful in that they provide guidance 
for the novice and reassurance for the expert. Like any good method, ADD 3.0 
has a set of steps, and these steps have been updated somewhat from prior ver-
sions of ADD. But just as important, we have focused on the broader architecture 
life cycle and shown how some changes to the design process can help make your 
life as an architect better, and provide you with better outcomes. For example, we 
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have expanded the set of inputs that you need to think about to include things like 
design purpose and architectural concerns. This broader view helps you create an 
architecture that not only meets your customer’s requirements, but also is aligned 
with the business needs of your team and your organization. In addition, we have 
shown that design can and should be guided by a “design concepts catalog”—a 
corpus of reusable architectural knowledge consisting of reference architectures, 
patterns, tactics, and externally developed components such as frameworks and 
technology families. By cataloging these concepts, design can be made more 
predictable and repeatable. Finally, we have argued that design should be docu-
mented, perhaps informally in sketches, and should be accompanied by a consis-
tent practice of analyzing the decisions made.

If we are to conceive of ourselves as software engineers, we need to take the 
title of “engineer” seriously. No mechanical or electrical or structural engineer 
would commit significant resources to a design that was not based on sound princi-
ples and components, or that was not analyzed and documented. We think that soft-
ware engineering in general, and software architecture specifically, should strive 
for similar goals. We are not “artistes”, for whom creativity is paramount; we are 
engineers, so predictability and repeatability should be our most cherished goal.

10.2 Next Steps

Where should you go from here? We see four answers to this question. One an-
swer focuses on what you can do as an individual to hone your skills and experi-
ence as an architect. The second answer revolves around how you might engage 
your colleagues to think more consciously about architecture design. The third 
answer is where your organization can go with a more explicit commitment to ar-
chitecture design. And the fourth answer is about how you can contribute to your 
community, and to the larger community of software architects.

Our advice to you, as an individual, about how to proceed is simple: prac-
tice. Like any other complex skill worth having, your skill as an architect will not 
come immediately, but your confidence should increase steadily. “Fake it till you 
make it” is the best advice that we can give. Having a method that you can con-
sult, and a ready supply of common design concepts, gives you a solid foundation 
on which to “fake it” and learn.

To help you practice your skills and to engage your colleagues, we have de-
veloped an architecture game. This game, which is called “Smart Decisions”, can 
be found at http://www.smartdecisionsgame.com. It simulates the architecture de-
sign process using ADD 3.0 and promotes learning about it in a fun, pressure-free 
way. The game is currently focused on the Big Data Analytics application domain, 
similar to the extended design example in Chapter 5, but it can be easily adapted 
to other application domains.

../../../../../www.smartdecisionsgame.com/default.htm
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You might also think about next steps to be taken in your organization. 
You can be an agent for change. Even if your company does not “believe in” 
architecture, you can still practice many of the ideas embodied in this book 
and in ADD. Ensure that your requirements are clear by insisting on response 
goals for your requirements. Even when facing tight deadlines and schedule 
pressures, try to get agreement on the major architectural design concepts being 
employed. Do quick, informal design reviews with colleagues, huddled around 
a whiteboard, and ask yourself reflective questions. None of these “next steps” 
needs to be daunting or hugely time-consuming. And we believe—and our in-
dustrial experience has shown—that they will be self-reinforcing. Better de-
signs will lead to better outcomes, which will lead you and your group and your 
organization to want to do more of the same.

Finally, you can contribute to your local software engineering community, 
and even to the worldwide community of software architects. You could, for ex-
ample, play the architecture game in a local software engineering meetup and 
then share your experiences. You could contribute case studies about your suc-
cesses and failures as an architect with real-world projects. We strongly believe 
that example is the best way to teach and while we have provided three case stud-
ies in this book, more is always better. Self-publishing is easy in today’s web.

Happy architecting!

10.3 Further Reading

The long quotation by Fred Books in this chapter comes from his thought-provoking 
book The Design of Design: Essays from a Computer Scientist, Pearson, 2010.

Many of the ideas in this chapter, in this book, and in the field of software 
architecture in general can be traced back to Herbert Simon’s seminal book on 
the science of design: The Sciences of the Artificial, MIT Press, 1969.
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A
A Design Concepts 
Catalog

This chapter presents an excerpt from a catalog that groups design concepts that 
are associated with the domain of enterprise applications, such as the one pre-
sented in the case study in Chapter 4. As opposed to traditional catalogs that list 
just a single type of design concept, such as pattern catalogs, the catalog pre-
sented here groups different varieties of related design concepts. In this case, the 
catalog includes a selection of reference architectures, deployment patterns, de-
sign patterns, tactics, and externally developed components (frameworks). Also, 
the design concepts that are included in this catalog are gathered from different 
sources, reflecting what occurs in real-life design. The design concepts are pre-
sented in a very succinct way, and the reader looking for more detail should refer 
to the original sources using the references provided at the end of the chapter.

A.1 Reference Architectures

Reference architectures provide a blueprint for structuring an application (see 
Section 2.5.1). This section is based on the catalog in the Microsoft Application 
Architecture Guide.
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A.1.1 Web Applications

This web application is typically initiated from a web browser that communicates 
with a server using the HTTP protocol. The bulk of the application resides on the 
server, and its architecture is typically composed of three layers: the presenta-
tion, business, and data layers. The presentation layer contains modules that are 
responsible for managing user interaction. The business layer contains modules 
that handle aspects related to the business logic. The data layer contains mod-
ules that manage data that is stored either locally or remotely. In addition, cer-
tain functionality that is common to modules across the layers is organized as 
cross-cutting concerns. This cross-cutting functionality includes aspects related 
to security, logging, and exception management. Figure A.1 presents the compo-
nents associated with the modules in web applications.

The following table summarizes the responsibilities of the components 
present in this reference architecture:

Component Name Responsibility

Browser A web browser running on the client machine.

User interface These components are responsible for receiving user 
interactions and presenting information to the users. They 
contain UI elements such as buttons and text fields.

UI process logic These components are responsible for managing the control 
flow of the application’s use cases. They are responsible 
for other aspects such as data validation, orchestrating 
interactions with the business logic, and providing data coming 
from the business layer to the user interface components.

Application facade This component is optional. It provides a simplified interface  
(a facade) to the business logic components.

Business workflow These components are responsible for managing (long-
running) business processes, which may involve the execution 
of multiple use cases.

Business logic These components are responsible for retrieving and 
processing application data and applying business rules on 
this data.

Business entities These components represent the entities from the business 
domain and their associated business logic.

Data access These components encapsulate persistence mechanisms 
and provide common operations used to retrieve and store 
information.

Helpers and utilities These components contain functionality common to other 
modules in the data layer but not specific to any of them.

Service agents These components abstract communication mechanisms 
used to transfer data to external services.

Security These components include cross-cutting functionality 
that handles security aspects such as authorization and 
authentication.
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Component Name Responsibility

Operation  
management

These components include cross-cutting functionality such 
as exception management, logging, and instrumentation and 
validation.

Communication These components include cross-cutting functionality that 
handles communication mechanisms across layers and 
physical tiers.

FIGURE A.1 Web Application reference architecture (Key: UML)
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You should consider using this type of application when:

§	You do not require a rich user interface.
§	You do not want to deploy the application by installing anything on the cli-

ent machine
§	You require portability of the user interface.
§	Your application needs to be accessible over the Internet.
§	You want to use a minimum of client-side resources.

A.1.2 Rich Client Applications

Rich client applications are installed and run on a user’s machine. Because 
the application runs on the user’s machine, its user interface can provide a 
high-performance, interactive, and rich user experience. A rich client application 
may operate in stand-alone, connected, occasionally connected, or disconnected 
mode. When connected, it typically communicates with remote services provided 
by other applications.

Rich client application modules are structured in three main layers or in a 
cross-cutting grouping, similar to a web application (see Section A.1.1). Rich 
client applications can be “thin” or “thick.” Thin-client applications consist pri-
marily of presentation logic, which obtains user data and sends it to a server for 
processing. Thick-client applications contain business and data logic and typi-
cally connect to a data storage server only to exchange information that needs to 
be persisted remotely. Figure A.2 presents the components associated with the 
modules in rich client applications.

You should consider using this type of application when:

§	You want to deploy your application on the users’ machines.
§	You want your application to support intermittent or no network 

connectivity.
§	You want your application to be highly interactive and responsible.
§	You want to leverage the user’s machine resources (such as a graphics 

card).

Since these applications are deployed on the user’s machine, they are less 
portable and deployment and updating is more complicated. A range of technolo-
gies to facilitate their installation are available, however.
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FIGURE A.2 Rich Client Application reference architecture (Key: UML)

A.1.3 Rich Internet Applications

Rich Internet applications (RIAs) typically run inside a browser and may be de-
veloped using code that is executed by the browser such as Asynchronous Java-
Script and XML (AJAX). RIAs may also run inside a browser plug-in, such as 
Silverlight. These applications are more complex than standard web applications 
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and support rich user interaction and business logic. They are, however, typically 
restricted with respect to accessing local resources because of security concerns.

Typical RIAs are structured using the same three layers and modules found 
in web applications (see Section A.1.1). In RIAs, some business logic may be 
executed on the client machine, and some data may be stored locally. Like rich 
client applications, RIAs may range from relatively thin to quite thick clients.

The following table summarizes the responsibilities of the components of 
this reference architecture (shown in Figure A.3) that are not present in the Web 
Application reference architecture:

Component 
Name Responsibility

Presentation Responsible for managing user interaction (represents both UI 
components and UI process logic components).

Rich UI engine Responsible for rendering user interface elements inside the 
plug-in execution container.

Business 
processing

Responsible for managing business logic on the client side.

Service interfaces Responsible for exposing services that are consumed by the 
components that run on the browser.

Message types Responsible for managing the types of messages that are 
exchanged between the client part and the server part of the 
application.

You should consider using this type of application when:

§	You want your application to have a rich user interface but still run inside a 
browser.

§	You want to perform some of the processing on the client side.
§	You want to deploy and update your application in a simple manner, with-

out having to perform installations on the user machine.

However, there are some limitations associated with this type of application:

§	Access to local resources can be limited, because the application may run 
in a sandbox.

§	Loading time is non-negligible.
§	Plug-in execution environments may not be available in all platforms.
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FIGURE A.3 Rich Internet Application reference architecture (Key: UML)
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A.1.4 Mobile Applications

A mobile application is typically executed on a handheld device and usually 
works in collaboration with a support infrastructure that resides remotely. These 
applications are structured using modules and layers similar to those found in a 
web application (see Section A.1.1), although many of the components derived 
from these modules may be optional depending on whether a thin-client or a 
thick-client approach is followed. As shown in Figure A.4, at a minimum, the 
components responsible for user interaction are typically present. Communica-
tion with the support infrastructure is frequently unreliable, and these applica-
tions normally include some type of local data store that is periodically synchro-
nized with data in the support infrastructure.

You should consider using this type of application when:

§	You want your application to run in a handheld device.
§	The network connectivity is unreliable, so the application needs to run in 

both offline and occasionally connected modes.

However, there is a substantial limitation associated with this type of application:

§	Resources on the handheld device may be limited.

A.1.5 Service Applications

Service applications are non-interactive applications that expose functionality 
through public interfaces (i.e., services). Services may be invoked by service con-
sumer components remotely or from the same machine in which the service ap-
plication is running. Services can be defined using a description language such as 
the Web Services Description Language (WSDL); operations are invoked using 
XML-based message schemas that are transferred over a transport channel. As a 
consequence, services promote interoperability.

Similar to the other types of reference architectures, service applications are 
structured using layers (Figure A.5). These applications are not interactive, so 
the presentation layer is not needed. It is replaced by a service layer that contains 
components responsible for exposing the services and exchanging information, 
similar to the server part of RIAs (see Section A.1.3).
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FIGURE A.4 Mobile Application reference architecture (Key: UML)
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FIGURE A.5 Service Application reference architecture (Key: UML)
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You should consider using this type of application when:

§	Your application is not used by humans but rather by other systems and, as 
a consequence, does not have a user interface.

§	Your application and the clients should be loosely coupled.

Except in cases where services are consumed by applications that reside in 
the same machine, network connectivity is required for the clients to communi-
cate with the service application.

A.2 Deployment Patterns

Deployment patterns provide guidance on how to structure the system from a phys-
ical standpoint (see Section 2.5.3). Good decisions with respect to the deployment 
of the software system are essential to achieve important quality attributes such as 
performance, usability, availability, and security. This section is a summary from 
the catalog included in the Microsoft Application Architecture Guide.

A.2.1 Nondistributed Deployment

In nondistributed deployment, all of the components from the modules in the 
different layers reside on a single server except for data storage functionality 
(Figure A.6). Because the components communicate locally, this may improve 
performance due to the lack of network communication delays. However, perfor-
mance may be affected by other aspects of the system, such as resource conten-
tion. Also, this type of application must support the peak usage of the largest con-
sumers of system resources. Scalability and maintainability may be negatively 
affected because the same physical hardware is shared by all of the components.

FIGURE A.6 Nondistributed deployment example (Key: UML)
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A.2.2 Distributed Deployment

In a distributed deployment, the components of the application reside on separate 
physical tiers (Figure A.7). Typically, the components associated with specific 
layers are deployed in different tiers. Tiers can be configured differently to best 
meet the requirements of the components that it hosts.

Distributed deployment facilitates scalability but the addition of tiers also 
brings additional costs, network latency, complexity, and deployment effort. 
More tiers may also be added to promote security. Different security policies may 
be applied according to the particular tier, and firewalls may be placed between 
the tiers. The following subsections describe various alternatives of distributed 
deployment that can be used in conjunction with the reference architectures from 
Section A.1.

FIGURE A.7 Distributed deployment example (Key: UML)

Two-Tier Deployment (Client-Server)
Two-tier deployment is the most basic layout for distributed deployment. The 
client and the server are usually deployed on different physical tiers, as shown in 
Figure A.8.

FIGURE A.8 Two-tier deployment pattern (Key: UML)
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Three-Tier Deployment
In three-tier deployment, the application is deployed in a tier that is separate from 
the one that hosts the database, as shown in Figure A.9. This is a very common 
physical layout for web applications.

FIGURE A.9 Three-tier deployment pattern (Key: UML)

Four-Tier Deployment
In four-tier deployment, shown in Figure A.10, the web server and the application 
server are deployed in different tiers. This separation is usually done to improve 
security, as the web server may reside in a publicly accessible network while the 
application resides in a protected network. Additionally, firewalls may be placed 
between the tiers.

FIGURE A.10 Four-tier deployment pattern (Key: UML)

A.2.3 Performance Patterns: Load-Balanced Cluster

In the Load-Balanced Cluster pattern, the application is deployed on multiple 
servers that share the workload, as shown in Figure A.11. Client requests are re-
ceived by a load balancer, which redirects them to the various servers accord-
ing to their current load. The different application servers can process several 
requests concurrently, which results in performance improvements.
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FIGURE A.11 Load-balanced cluster deployment pattern (Key: UML)

A.3 Architectural Design Patterns

This section includes architectural design patterns (see Section 2.5.2) used in the 
case study in Chapter 4. The patterns presented here are based on the book Pat-
tern-Oriented Software Architecture: A Pattern Language for Distributed Com-
puting, Volume 4. The numbers in parentheses [e.g., Domain Model (182)] indi-
cate the page in the book where the pattern is documented.

Note that we are using a home-grown notation for the patterns here, which 
is common in the patterns community. We define the symbols in a legend accom-
panying the first diagram (Layers) and use these symbols throughout this section.

A.3.1 Structural Patterns

These patterns are used to structure the system but they provide less detail than 
the reference architectures.
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Name Layers

Problem and 
context

When transforming a Domain Model (182) into a set of modules 
that can be allocated to teams, [...] we need to support several 
concerns: the independent development of the modules, the 
independent evolution of the modules, the interaction among the 
modules.

Solution Define two or more layers for the software under development, 
where each layer has a distinct and specific responsibility. To make 
the layering more effective, the interactions between the layers 
should be highly constrained. The strictest layering, as shown 
below, allows only unidirectional dependencies and forbids layer-
bridging.

Structure

Consequences 
and related 
patterns

Typically, each self-contained and coherent responsibility within 
a layer is realized as a separate domain object. Domain objects 
are the containers (modules) that can be developed and evolved 
independently. 

Name Domain Object 

Problem and 
context

When realizing a Domain Model (182) in terms of Layers (185), 
a key concern is to decouple self-contained and cohesive 
application responsibilities.

Solution Encapsulate each distinct, nontrivial piece of application 
functionality in a self-contained building block called a domain 
object.

continues
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Name Domain Object 

Structure

Consequences 
and related 
patterns

The partitioning of an application’s responsibilities into domain 
objects is based on one or more granularity criteria. There can 
be different types of domain objects that encapsulate business 
features, domain concepts, or infrastructure elements. For exam-
ple, domain objects might be a function such as an income tax 
calculation or a currency conversion, or a domain concept such 
as a bank account or a user. Domain objects can also aggregate 
other domain objects.
When designing domain objects, you need to distinguish an 
Explicit Interface (281), which exports some functionality, from its 
Encapsulated Implementation (313), which realizes that function-
ality. The separation of interface and implementation is the key 
to modularization. It minimizes coupling—each domain object 
depends only on explicit interfaces, not on encapsulated imple-
mentations. This makes it possible to create and evolve a domain 
object implementation independently from other domain objects. 

A.3.2 Interface Partitioning

Name Explicit Interface

Problem and 
context

When designing Layers (185) and their constituent Domain Ob-
jects (208), an important concern is how to properly create compo-
nent (module) interfaces.
A module is a self-contained unit of functionality (and a self- 
contained unit of deployment) with a published interface. Clients 
can build upon existing modules as building blocks when providing 
their own functionality. Direct access to the module’s implementa-
tion might make clients dependent on the module’s internals, which 
ultimately increases coupling and erodes the ability of the applica-
tion to evolve.

Solution Separate the explicit interface of a module from its implementa-
tion. Export the explicit interface to the clients of the module, but 
keep its implementation private.
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Name Explicit Interface

Structure

Consequences 
and related 
patterns

A call from the client through an explicit interface will be forwarded 
to the implementation, but the client code will depend only on the 
public interface, not on the implementation.
An explicit interface therefore enforces the separation of the 
component’s interface from its implementation. This separation 
means that a component’s implementation may be modified and 
the clients that use it will be unaffected, so long as the interfaces 
are unchanged.

Name Proxy

Problem and 
context

When specifying an Explicit Interface (281), we often want to avoid 
accessing services of a component implementation directly, as 
these services may change or even be unknown until execution 
time.
Most modern software systems consist of cooperating compo-
nents, some of which you create and others that you do not. 
Your components access and use the services provided by other 
components. It may be impractical or even impossible to access 
the services of a component directly—for example, because the 
implementation resides on a remote server. 

Solution Encapsulate all the details of interacting with the component within 
a surrogate—called the proxy—and let clients communicate via 
the proxy rather than directly with the subject component.

Structure

Consequences 
and related 
patterns

A proxy frees both the client and the subjects from implementing 
component-specific housekeeping functionality. It is also transpar-
ent to clients whether they are connected with the real subject com-
ponent or its proxy, because both publish an identical interface. The 
drawbacks of a proxy are additional execution time added to each 
client interaction (although, unless your application is highly sensi-
tive to latency, this additional overhead is likely inconsequential).
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A.3.3 Concurrency

Name Half-Sync/Half-Async

Problem and 
context

When developing concurrent software, a critical concern is to 
ensure that concurrent programming is relatively straightforward 
without sacrificing runtime efficiency.
Concurrent software typically performs both asynchronous and 
synchronous processing of service requests. Asynchrony is used 
to process low-level service requests (such as events) efficiently, 
whereas synchronous processing is used to simplify the processing 
of application services. To benefit from both programming models, it 
is essential to coordinate both kinds of processing.

Solution Decompose the services of concurrent software into two separate 
streams or “layers”—synchronous and asynchronous—and add a 
queueing “layer” to mediate communication between them. 

Structure

Consequences 
and related 
patterns

This pattern allows you to process complex service requests, such 
as domain functionality or database queries, synchronously in 
separate threads. Similarly, lower-level system services, such as 
protocol handlers that respond to hardware interrupts, are handled 
asynchronously. In cases where services in the synchronous layer 
need to communicate with services in the asynchronous layer, 
they may exchange messages via the queueing layer.
The Half-Sync/Half-Async arrangement employs Layers (185) 
to keep the three distinct execution and communication models 
encapsulated and hence independent from one another.
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A.3.4 Database Access

Name Data Mapper (Data Access Object [DAO])

Problem and 
context

When designing a Database Access Layer (538), we need to 
insulate applications from the details of how data is represented in 
persistent storage, such as the specific SQL queries to use.
Object-oriented applications and relational databases use different 
abstractions for representing data. However, many applications 
need to transfer data between these two “worlds.” It is desirable to 
keep the object-oriented domain model ignorant of the relational 
database schema. In this way, changes to one domain model will 
be less likely to ripple to the other. 

Solution Introduce a data mapper for each type of persistent application 
object. The responsibility of this mapper is to transfer data from 
the objects to the database, and vice versa.

Structure

Consequences 
and related 
patterns

A data mapper is a mediator that moves data between an 
object-oriented domain model and a relational database. A client 
can use the data mapper to store or retrieve application data 
in the database. The data mapper performs any needed data 
transformations and maintains consistency between the two 
representations.
When a data mapper is used, in-memory objects do not even need 
to know that a database is present. Hence, they require no SQL 
code and can have complete ignorance of the database schema. 
In addition, the relational database schema and the object-
oriented domain model can evolve independently. This provides 
an additional benefit that accrues to any abstraction interface: It 
simplifies unit testing, by allowing mappers to databases to be 
replaced by mock objects that support in-memory testing.
The data mapper makes application objects simpler and reduces 
their external dependencies, making them easier to evolve. 
There are two potential drawbacks to the Data Mapper pattern, 
however: (1) Changes in either the application object model or the 
database schema may require changes to a data mapper; and (2) 
the additional level of indirection introduces overhead, and hence 
latency, to every data access, which might be problematic for 
systems with hard real-time deadlines, for example. 
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A.4 Tactics

Tactics were presented in Section 2.5.4. Here we present a summarized catalog 
of tactics for seven commonly encountered quality attributes. This catalog comes 
from the book Software Architecture in Practice.

A.4.1 Availability Tactics

Figure A.12 summarizes the tactics to achieve availability.
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FIGURE A.12 Availability tactics
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Detect Faults

§	Ping/echo: An asynchronous request/response message pair exchanged 
between nodes is used to determine reachability and the round-trip delay 
through the associated network path.

§	Monitor: A component is used to monitor the state of health of other parts 
of the system. A system monitor can detect failure or congestion in the net-
work or other shared resources, such as from a denial-of-service attack.

§	Heartbeat: A periodic message exchange occurs between a system monitor 
and a process being monitored.

§	Timestamp: Detect incorrect sequences of events, primarily in distributed 
message-passing systems.

§	Sanity checking: Check the validity or reasonableness of a component’s oper-
ations or outputs; typically based on a knowledge of the internal design, the 
state of the system, or the nature of the information under scrutiny.

§	Condition monitoring: Check conditions in a process or device, or validates 
assumptions made during the design.

§	Voting: Check that replicated components are producing the same results. 
Comes in various flavors, such as replication, functional redundancy, ana-
lytic redundancy.

§	Exception detection: Detect a system condition that alters the normal flow 
of execution, such as a system exception, parameter fence, parameter typ-
ing, or timeout.

§	Self-test: Procedure for a component to test itself for correct operation.

Recover from Faults (Preparation and Repair)

§	Active redundancy (hot spare): All nodes in a protection group receive and 
process identical inputs in parallel, allowing redundant spare(s) to maintain 
synchronous state with the active node(s).

§	Passive redundancy (warm spare): Only the active members of the protec-
tion group process input traffic; one of their duties is to provide the redun-
dant spare(s) with periodic state updates.

§	Spare (cold spare): Redundant spares of a protection group remain out of 
service until a failover occurs, at which point a power-on-reset procedure is 
initiated on the redundant spare prior to its being placed in service.

§	Exception handling: Deal with the exception by reporting it or handling it, 
potentially masking the fault by correcting the cause of the exception and 
retrying.

§	Rollback: Revert to a previous known good state, referred to as the “roll-
back line.”

§	Software upgrade: Perform in-service upgrades to executable code images 
in a non-service-affecting manner.

§	Retry: When a failure is transient, retrying the operation may lead to success.
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§	Ignore faulty behavior: Ignore messages sent from a source when it is de-
termined that those messages are spurious.

§	Degradation: Maintain the most critical system functions in the presence of 
component failures, dropping less critical functions.

§	Reconfiguration: Reassign responsibilities to the resources that continue to 
function, while maintaining as much functionality as possible.

Recover from Faults (Reintroduction)

§	Shadow: Operate a previously failed or in-service upgraded component in a 
“shadow mode” for a predefined time prior to reverting the component back 
to an active role.

§	State resynchronization: Passive redundancy; state information is sent from 
active to standby components, in this partner tactic to active redundancy.

§	Escalating restart: Recover from faults by varying the granularity of the 
component(s) restarted and minimizing the level of service affected.

§	Non-stop forwarding: Functionality is split into supervisory and data 
variants. If a supervisor fails, a router continues forwarding packets along 
known routes while protocol information is recovered and validated.

Prevent Faults

§	Removal from service: Temporarily place a system component in an out-of-
service state for the purpose of mitigating potential system failures.

§	Transactions: Bundle state updates so that asynchronous messages exchanged 
between distributed components are atomic, consistent, isolated, and durable.

§	Predictive model: Monitor the state of health of a process to ensure that the 
system is operating within nominal parameters; take corrective action when 
conditions are detected that are predictive of likely future faults.

§	Exception prevention: Prevent system exceptions from occurring by masking 
a fault, or prevent them via smart pointers, abstract data types, and wrappers.

§	Increase competence set: Design a component to handle more cases—
faults—as part of its normal operation.

A.4.2 Interoperability Tactics

Figure A.13 summarizes the tactics to achieve interoperability.
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Interoperability Tactics
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FIGURE A.13 Interoperability tactics

Locate

§	Discover service: Locate a service by searching a known directory service. 
There may be multiple levels of indirection in this location process—that is, 
a known location may point to another location that in turn can be searched 
for the service.

Manage Interfaces

§	Orchestrate: Use a control mechanism to coordinate, manage, and sequence 
the invocation of services. Orchestration is used when systems must interact 
in a complex fashion to accomplish a complex task.

§	Tailor interface: Add or remove capabilities to an interface such as transla-
tion, buffering, or data smoothing.

A.4.3 Modifiability Tactics

Figure A.14 summarizes the tactics to achieve modifiability.
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Modifiability Tactics
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FIGURE A.14 Modifiability tactics

Reduce Size of a Module

§	Split module: If the module being modified includes a great deal of capa-
bility, the modification costs will likely be high. Refining the module into 
several smaller modules should reduce the average cost of future changes.

Increase Cohesion

§	Increase semantic coherence: If the responsibilities A and B in a module 
do not serve the same purpose, they should be placed in different modules. 
This may involve creating a new module or moving a responsibility to an 
existing module.

Reduce Coupling

§	Encapsulate: Encapsulation introduces an explicit interface to a module. 
This interface includes an API and its associated responsibilities, such as 
“perform a syntactic transformation on an input parameter to an internal 
representation.”

§	Use an intermediary: Given a dependency between responsibility A and 
responsibility B (for example, carrying out A first requires carrying out B), 
the dependency can be broken by using an intermediary.
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§	Restrict dependencies: Restrict the modules that a given module interacts 
with or depends on.

§	Refactor: Refactoring is undertaken when two modules are affected by the 
same change because they are (at least partial) duplicates of each other.

§	Abstract common services: When two modules provide not quite the same 
but similar services, it may be cost-effective to implement the services just 
once in a more general (abstract) form.

Defer Binding
§	Defer binding: Allow decisions to be bound after development time.

A.4.4 Performance Tactics

Figure A.15 summarizes the tactics to achieve performance.
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Control Resource Demand

§	Manage sampling rate: If it is possible to reduce the sampling frequency at 
which a stream of data is captured, then demand can be reduced, albeit typ-
ically with some loss of fidelity.

§	Limit event response: Process events only up to a set maximum rate, there-
by ensuring more predictable processing when the events are actually 
processed.

§	Prioritize events: If not all events are equally important, you can impose a 
priority scheme that ranks events according to how important it is to service 
them.

§	Reduce overhead: The use of intermediaries (important for modifiability) 
increases the resources consumed in processing an event stream; removing 
them improves latency.

§	Bound execution times: Place a limit on how much execution time is used to 
respond to an event.

§	Increase resource efficiency: Improving the algorithms used in critical areas 
will decrease latency.

Manage Resources

§	Increase resources: Faster processors, additional processors, additional 
memory, and faster networks all have the potential to reduce latency.

§	Increase concurrency: If requests can be processed in parallel, the blocked 
time can be reduced. Concurrency can be introduced by processing differ-
ent streams of events on different threads or by creating additional threads 
to process different sets of activities.

§	Maintain multiple copies of computations: The purpose of replicas is to 
reduce the contention that would occur if all computations took place on a 
single server.

§	Maintain multiple copies of data: Keep copies of data (with one potentially 
being a subset of the other) on storage with different access speeds.

§	Bound queue sizes: Control the maximum number of queued arrivals and 
consequently the resources used to process the arrivals.

§	Schedule resources: When there is contention for a resource, the resource 
must be scheduled.

A.4.5 Security Tactics

Figure A.16 summarizes the tactics to achieve security.
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Security Tactics
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Detect Attacks

§	Detect intrusion: Compare network traffic or service request patterns with-
in a system to a set of signatures or known patterns of malicious behavior 
stored in a database.

§	Detect service denial: Compare the pattern or signature of network traffic 
coming into a system to historic profiles of known denial-of-service attacks.

§	Verify message integrity: Use techniques such as checksums or hash values 
to verify the integrity of messages, resource files, deployment files, and 
configuration files.

§	Detect message delay: By checking the time that it takes to deliver a mes-
sage, it is possible to detect suspicious timing behavior.

Resist Attacks

§	Identify actors: Identify the source of any external input to the system.
§	Authenticate actors: Ensure that an actor (user or a remote computer) is 

actually who or what it purports to be.
§	Authorize actors: Ensure that an authenticated actor has the rights to access 

and modify either data or services.
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§	Limit access: Control what and who may access which parts of a system, 
such as processors, memory, and network connections.

§	Limit exposure: Reduce the probability of a successful attack, or restrict 
the amount of potential damage—for example, by concealing facts about 
a system (“security by obscurity”) or by dividing and distributing critical 
resources (“don’t put all your eggs in one basket”).

§	Encrypt data: Apply some form of encryption to data and to 
communication.

§	Validate input: Validate input from a user or an external system before ac-
cepting it in the system.

§	Separate entities: Use physical separation on different servers attached to 
different networks, virtual machines, or an “air gap.”

§	Change default settings: Force the user to change settings assigned by 
default.

React to Attacks

§	Revoke access: Limit access to sensitive resources, even for normally legiti-
mate users and uses, if an attack is suspected.

§	Lock computer: Limit access to a resource if there are repeated failed at-
tempts to access it.

§	Inform actors: Notify operators, other personnel, or cooperating systems 
when an attack is suspected or detected.

Recover from Attacks
In addition to the availability tactics for recovery of failed resources, an audit 
may be performed to recover from attacks.

§	Maintain Audit Trail: Keep a record of user and system actions and their 
effects, to help trace the actions of, and to identify, an attacker.

A.4.6 Testability Tactics

Figure A.17 summarizes the tactics to achieve testability.
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Control and Observe System State

§	Specialized interfaces: Control or capture variable values for a component 
either through a test harness or through normal execution.

§	Record/playback: Capture information crossing an interface and use it as 
input for further testing.

§	Localize state storage: To start a system, subsystem, or module in an arbi-
trary state for a test, it is most convenient if that state is stored in a single 
place.

§	Abstract data sources: Abstracting the interfaces lets you substitute test 
data more easily.

§	Sandbox: Isolate the system from the real world to enable experimentation 
that is unconstrained by the worry about having to undo the consequences 
of the experiment.

§	Executable assertions: Assertions are (usually) hand-coded and placed at 
desired locations to indicate when and where a program is in a faulty state.
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Limit Complexity

§	Limit structural complexity: Avoid or resolve cyclic dependencies between 
components, isolate and encapsulate dependencies on the external environ-
ment, and reduce dependencies between components in general.

§	Limit nondeterminism: Find all the sources of non-determinism, such as 
unconstrained parallelism, and weed them out as far as possible.

A.4.7 Usability Tactics

Figure A.18 summarizes the tactics to achieve usability.
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canceled must be terminated; resources used must be freed; and collaborat-
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Support System Initiative

§	Maintain task model: Determine the context so the system can have some 
idea of what the user is attempting and provide assistance.

§	Maintain user model: Explicitly represent the user’s knowledge of the sys-
tem, the user’s behavior in terms of expected response time, and other char-
acteristics of the system.

§	Maintain system model: The system maintains an explicit model of itself. 
This tactic is used to determine expected system behavior so that appropri-
ate feedback can be given to the user.

A.5 Externally Developed Components

Externally developed components, including frameworks, were discussed in 
Section 2.5.5. Here we present a small sample of Java frameworks used in the 
case study in Chapter 4. Each framework is described very briefly and is associ-
ated with particular technology families, patterns, and tactics. Full details for the 
different frameworks can be found by visiting the URL that is provided.

A.5.1 Spring Framework

Framework 
Name Spring Framework

Technology 
family

Dependency injection and aspect-oriented programming (AOP) 
container

Language Java

URL http://projects.spring.io/spring-framework/

Purpose The application framework allows the objects that form an 
application to be connected. It also supports different concerns 
through AOP.

Overview The Spring container connects standard Java objects, or POJOs 
(Plain Old Java Objects), by using information from an XML file 
called “Application Context” or annotations in the Java code. This is 
the “Inversion of Control and Dependency Injection” pattern, since 
object dependencies are injected by the container.
The framework supports several aspects using AOP which are 
introduced as proxies between the Java objects when the container 
connects them. Supported aspects include:

 ■ Security
 ■ Transaction management
 ■ Publishing object interfaces so the objects can be accessed re-

motely—for example, via Web Services

(continues)

../../../../../projects.spring.io/spring-framework/default.htm
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Framework 
Name Spring Framework

Structure

This diagram represents how two objects are connected by two 
important elements in the framework: the Spring container and the 
application context. (Key: UML)

Implemented 
design 
patterns and 
tactics

Patterns
 ■ Inversion of Control and Dependency Injection
 ■ Factory
 ■ Proxy

Tactics
 ■ Availability: Transactions
 ■ Testability: Abstract data sources (separate interface and 

implementation)

Benefits  ■ Excellent tool support
 ■ Simple integration with other frameworks such as web UI (Spring 

MVC, JSF), and persistence (JPA, Hibernate, iBatis) and integra-
tion (JMS)

Limitations  ■ Apache License 2.0
 ■ Complex framework
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A.5.2 Swing Framework

Framework 
Name Swing Framework

Technology 
family

Local user interface

Language Java

URL http://docs.oracle.com/javase/tutorial/uiswing/index.html

Purpose Framework to support the creation of portable local (non-web) user 
interfaces.

Overview The Swing framework provides a library of user interface 
components, including JFrame (windows), JMenu, JTree, JButton, 
JList, and JTable, among others. These components are built 
around the Model View Controller and Observer patterns.
Components such as JTables are views and controllers, and each 
has a corresponding model class (e.g., TableModel).
Components allow observers (called “listeners”) to be registered 
to manage different events. For example, JButtons allow 
ActionListeners to be registered as observers so that when the 
button is clicked, a callback method (actionPerformed) is 
invoked.

Structure

This diagram represents a small fraction of the framework’s classes (Key: UML)

Implemented 
design 
patterns and 
tactics

Patterns:
 ■ Model View Controller
 ■ Observer
 ■ Others such as Composite and Iterator

Benefits  ■ Portable (can run on any operating system)
 ■ Part of Java API
 ■ Good tool support

Limitations  ■ Slower than using native UI elements
 ■ Not the same look and feel as native UI elements

../../../../../docs.oracle.com/javase/tutorial/uiswing/index.html
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A.5.3 Hibernate Framework

Framework 
Name Hibernate

Technology 
family

Object-oriented to relational mapper

Language Java

URL http://hibernate.org/

Purpose Simplify persistence of objects in a relational database.

Overview Hibernate allows objects to be easily persisted in a relational data-
base (and it supports different dataLLLbase engines). Object-relational 
mapping rules are described declaratively in an XML file called 
hibernate.cfg or using annotations in the classes whose objects 
need to be persisted.
Hibernate supports transactions and provides a query language 
called HQL (Hibernate Query Language) that is used to retrieve 
objects from the database. Hibernate utilizes multilevel caching 
schemes to improve performance. It also provides mechanisms 
to allow lazy acquisition of dependent objects to improve perfor-
mance and reduce resource consumption. These mechanisms are 
configured declaratively in the configuration files.

Structure

This diagram represents an entity that is persisted to a database 
by the Hibernate runtime using the information in the configuration 
file (Key: UML)

Implemented 
design patterns 
and tactics

Patterns:
 ■ Data Mapper
 ■ Resource Cache
 ■ Lazy Acquisition

Tactics:
 ■ Availability: Transactions
 ■ Performance: Maintain multiple copies of data (cache)

../../../../../hibernate.org/default.htm
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Framework 
Name Hibernate

Benefits  ■ Greatly simplifies the persistence of objects in relational 
database

Limitations  ■ Complex API
 ■ Slower than JDBC (Java Database Connectivity)
 ■ Difficult to map to legacy database schemas

A.5.4 Java Web Start Framework

Framework 
Name Java Web Start Framework

Technology 
family

Deployment mechanism

Language Java

URL http://docs.oracle.com/javase/tutorial/deployment/webstart/

Purpose Provide a platform-independent, secure, and robust deployment 
technology. 

Overview By using a web browser, end users can start standard (non-
applet) Java applications, and Java Web Start ensures they are 
running the latest version. To launch an application, users click a 
link on a page. If this is the first time the application is used, Java 
Web Start downloads the application. If the application has been 
previously used, Java Web Start verifies that the local copy is the 
latest version and launches it or downloads the newest version.

Structure Not available

Implemented 
design patterns 
and tactics

Tactics:
 ■ Security: Limit access (sandbox)
 ■ Performance: Maintain multiple copies of data (cache)

Benefits  ■ Applications run in a sandbox but can read and write to local files.
 ■ Because the application is cached, once it has been downloaded 

startup time is greatly reduced.

Limitations  ■ First launch may take some time

A.6 Summary

In this appendix we presented a design concepts catalog for the application do-
main of enterprise applications. Catalogs such as this one can become useful or-
ganizational assets, and we can readily imagine catalogs for other application do-
mains such as Big Data (which we employ in Chapter 5) or mobile development.

../../../../../docs.oracle.com/javase/tutorial/deployment/webstart/default.htm
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The catalog presented here is not intended to be exhaustive, as it contains 
only the design concepts used in the Chapter 4 case study. A real catalog, how-
ever, would contain a larger number of design concepts with more detailed de-
scriptions and would be a valuable asset in a software development organization.

A.7 Further Reading

Reference architectures and deployment patterns are taken from Microsoft, Ap-
plication Architecture Guide (2nd ed.), October 2009.

The tactics catalog is derived primarily from L. Bass, P. Clements, and 
R. Kazman, Software Architecture in Practice (3rd ed.), 2012. Some of these tac-
tics were earlier described in: F. Bachmann, L. Bass, and R. Nord, “Modifiabil-
ity Tactics”, SEI/CMU Technical Report CMU/SEI-2007-TR-002, 2007, and J. 
Scott and R. Kazman, “Realizing and Refining Architectural Tactics: Availabil-
ity”, CMU/SEI-2009-TR-006, 2009.

The architectural patterns are taken from R. Buschmann, K. Henney, and 
D. Schmidt, Pattern-Oriented Software Architecture, Volume 4, Wiley, 2007.

The Spring framework is discussed in C. Walls, Spring in Action (4th ed.), 
Manning Publications, 2014.

The Swing framework is discussed in J. Elliot, R. Eckstein, D. Wood, and 
B. Cole, Java Swing (2nd ed.), O’Reilly Media, 2002.

The Hibernate framework is discussed in C. Bauer and G. King, Java Per-
sistence with Hibernate, Manning Publications, 2015.
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B
Tactics-Based 
Questionnaires

This appendix provides a set of tactics-based questionnaires for the seven most 
important quality attributes: availability, interoperability, modifiability, perfor-
mance, security, testability, and usability. How do we know that these are the 
seven most important ones? This decision was based on an analysis of the qual-
ity attributes that were elicited from stakeholders in more than 15 years of SEI 
ATAM data. 

In addition to these “top seven”, we include a tactics-based questionnaire 
for DevOps, which is a combination of tactics from modifiability, availability, 
performance, and testability, to illustrate how simple it is to tailor such question-
naires for your own use.

B.1 Using the Questionnaires

These questionnaires could be used by an analyst, who poses each question, in turn, 
to the architect and records the responses, as a means of conducting a lightweight 
architecture review. Alternatively, the questionnaires could be employed as a set of 
reflective questions, that you could, on your own, use to examine your architecture.

In either case, to use these questionnaires, simply follow these four steps:
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1. For each tactics question, fill the “Supported” column with Y if the tactic is 
supported in the architecture and with N otherwise. The tactic name in the 
“Tactics Question” column appears in bold.

2. If the answer in the “Supported” column is Y, then in the “Design Decisions 
and Location” column describe the specific design decisions made to support 
the tactic and enumerate where these decisions are manifested (located) in 
the architecture. For example, indicate which code modules, frameworks, or 
packages implement this tactic.

3. In the “Risk” column, indicate the anticipated/experienced difficulty or risk 
of implementing the tactic using a (H = high, M = medium, L = low) scale. 
For example, a tactic that was of medium difficulty or risk to implement (or 
which is anticipated to be of medium difficulty, if it has not yet been imple-
mented) would be labeled M.

4. In the “Rationale” column, describe the rationale for the design decisions made 
(including a decision to not use this tactic). Briefly explain the implications of 
this decision. For example, you might explain the rationale and implications of 
the decision in terms of the effort on cost, schedule, evolution, and so forth.

B.2 Availability

#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

1 Detect 
faults

Does the system use 
ping/echo to detect a 
failure of a component or 
connection, or network 
congestion? 

2 Does the system use a 
component to monitor 
the state of health of other 
parts of the system? A 
system monitor can de-
tect failure or congestion 
in the network or other 
shared resources, such 
as from a denial-of-ser-
vice attack.

3 Does the system use a 
heartbeat—a periodic 
message exchange be-
tween a system monitor 
and a process—to detect 
a failure of a component 
or connection, or network 
congestion?

 
 

4 Does the system use a 
time stamp (as in section 
A.4.1) to detect incorrect 
sequences of events in 
distributed systems?
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

5 Does the system do 
any sanity checking: 
checking the validity or 
reasonableness of a 
component’s operations 
or outputs?

 

6 Does the system do 
condition monitoring, 
checking conditions in a 
process or device, or vali-
dating assumptions made 
during the design?

 

7 Does the system use 
voting to check that 
replicated components 
are producing the same 
results? The replicated 
components may be iden-
tical replicas, functionally 
redundant, or analytically 
redundant.

 

8 Do you use exception de-
tection to detect a system 
condition that alters the 
normal flow of execution 
(e.g., system exception, 
parameter fence, parame-
ter typing, timeout)?

 

9 Can the system do a 
self-test to test itself for 
correct operation?

 

10 Recover 
from faults 
(prepara-
tion and 
repair)

Does the system employ 
active redundancy (hot 
spare)? In active redun-
dancy, all nodes in a pro-
tection group (a group of 
nodes where one or more 
nodes are “active”, with 
the remainder serving as 
redundant spares) receive 
and process identical 
inputs in parallel, allowing 
redundant spares to main-
tain synchronous state 
with the active node(s).

11 Does the system employ 
passive redundancy 
(warm spare)? In passive 
redundancy, only the 
active members of the 
protection group process 
input traffic; one of their 
duties is to provide the 
redundant spare(s) with 
periodic state updates.

(continues)
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

12 Does the system employ 
spares (cold spares)? 
Here redundant spares 
of a protection group 
remain out of service until 
a failover occurs, at which 
point a power-on-reset 
procedure is initiated 
on the redundant spare 
prior to its being placed in 
service.

13 Does the system employ 
exception handling to 
deal with faults? Typically 
the handling involves 
either reporting the fault 
or handling it, potentially 
masking the fault by cor-
recting the cause of the 
exception and retrying.

 

14 Does the system employ 
rollback, so that it can re-
vert to a previously saved 
good state (the “rollback 
line”) in the event of a 
fault?

15 Can the system perform 
in-service software 
upgrades to execut-
able code images in a 
non-service-affecting 
manner?

16 Does the system system-
atically retry in cases 
where the component or 
connection failure may be 
transient?

17 Can the system simply 
ignore faulty behavior 
(e.g., ignore messages 
sent from a source when 
it is determined that those 
messages are spurious)?

18 Does the system have 
a policy of degradation 
when resources are com-
promised, maintaining 
the most critical system 
functions in the presence 
of component failures, 
and dropping less critical 
functions?
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

19 Does the system have 
consistent policies and 
mechanisms for recon-
figuration after failures, 
reassigning responsi-
bilities to the resources 
left functioning, while 
maintaining as much 
functionality as possible?

20 Recover 
from faults 
(reintro-
duction)

Can the system operate 
a previously failed or 
in-service upgraded 
component in a “shadow 
mode” for a predefined 
time prior to reverting the 
component back to an 
active role?

21 If the system uses active 
or passive redundancy, 
does it also employ state 
resynchronization, to 
send state information 
from active to standby 
components?

22 Does the system employ 
escalating restart—
that is, does it recover 
from faults by varying 
the granularity of the 
component(s) restarted 
and minimizing the level 
of service affected?

23 Can message process-
ing and routing portions 
of the system employ 
nonstop (as in section 
A.4.1) forwarding, where 
functionality is split into 
supervisory and data 
planes? In this case, if a 
supervisor fails, a router 
continues forwarding 
packets along known 
routes while protocol 
information is recovered 
and validated.

 

24 Prevent 
faults

Can the system remove 
components from ser-
vice, temporarily placing 
a system component in 
an out-of-service state, 
for the purpose of miti-
gating potential system 
failures? 

(continues)
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

25 Does the system employ 
transactions—bundling 
state updates so that 
asynchronous mes sages 
exchanged between 
distributed components 
are atomic, consistent, 
isolated, and durable?

26 Does the system use 
a predictive model 
to monitor the state of 
health of a component to 
ensure that the system is 
operating within nominal 
parameters? When condi-
tions are detected that are 
predictive of likely future 
faults, the model initiates 
corrective action.

27 Does the system pre-
vent exceptions from 
occurring by, for example, 
masking a fault, using 
smart pointers, abstract 
data types, or wrappers?

28 Has the system been 
designed to increase 
its competence set, for 
example by designing a 
component to handle more 
cases—faults—as part of 
its normal operation?

B.3 Interoperability

#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

1 Locate Does the system have 
a way to discover ser-
vices (typically through 
a directory service)?

2 Manage 
interfaces

Does the system have a 
way to orchestrate the 
activities of services? 
That is, does it have a 
control mechanism to 
coordinate, manage, 
and sequence the invo-
cation of services?
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

3 Does the system have 
a way to tailor inter-
faces? For example, 
can it add or remove 
capabilities to an inter-
face such as transla-
tion, buffering, or data 
smoothing?

 

B.4 Modifiability

#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

1 Reduce 
size of a 
module

Do you make modules 
simpler by splitting the 
module? For example, 
if you have a large, 
complex module, can 
you split it into two (or 
more) smaller, simpler 
modules?

2 Increase 
cohesion

Does the system 
consistently support 
increasing semantic 
coherence? For exam-
ple, if responsibilities in 
a module do not serve 
the same purpose, they 
should be placed in 
different modules. This 
may involve creating a 
new module or moving 
a responsibility to an 
existing module. 

3 Reduce 
coupling

Does the system con-
sistently encapsulate 
functionality? This typ-
ically involves isolating 
the functionality under 
scrutiny and introducing 
an explicit interface to it.

(continues)
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

4 Does the system consis-
tently use an interme-
diary to keep modules 
from being too tightly 
coupled? For example, 
if A calls concrete func-
tionality C, you might in-
troduce an abstraction B 
that mediates between 
A and C. 

5 Do you restrict de-
pendencies between 
modules in a systematic 
way? Or is any system 
module free to interact 
with any other module?

6 When two or more 
unrelated modules 
change together—that 
is, when they are 
regularly affected by the 
same changes—do you 
regularly refactor the 
functionality to isolate 
the shared functionality 
as common code in a 
distinct module?

 

7 Does the system 
abstract common 
services, in cases 
where you are providing 
sev eral similar services? 
For example, this 
technique is often used 
when you want your 
system to be portable 
across operating sys-
tems, hardware, or other 
environment variations.

8 Defer 
binding

Does the system 
regularly defer binding 
of important function-
ality so that it can be 
replaced later in the life 
cycle, perhaps even 
by end users? For 
example, do you use 
plug-ins, add-ons, or 
user scripting to extend 
the functionality of the 
system?
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B.5 Performance

#
Tactics 
Group Tactics Question

Supported? 
(Y/N)

Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

1 Control 
resource 
demand

If your inputs are a 
continuous stream of 
data, does the system 
manage the sampling 
rate? That is, is it pos-
sible to sample the data 
at varying rates (with 
concomitant changes in 
accuracy/fidelity)?

2 Does the system mon-
itor and limit its event 
response? Does the 
system limit the number 
of events it responds 
to in a time period, to 
ensure predictable 
responses for the 
events that are actually 
serviced?

 

3 Given that you may 
have more requests for 
service than available 
resources, does the sys-
tem prioritize events?

4 Does the system 
reduce the overhead 
of responding to service 
requests by, for exam-
ple, removing interme-
diaries or co-locating 
resources?

 

5 Does the system 
monitor and bound 
execution time? 
More generally, do 
you bound the amount 
of any resource (e.g., 
memory, CPU, storage, 
bandwidth, connections, 
locks) expended in 
response to requests for 
services? 

6 Do you increase 
resource efficiency? 
For example, do you 
regularly improve the 
efficiency of algorithms 
in critical areas, to 
decrease latency and 
improve throughput?

(continues)
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N)

Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

7 Manage 
resources

Can the system 
seamlessly increase 
resources (e.g., CPU, 
memory, network band-
width)?

8 Can the system intro-
duce concurrency? 
For example, does it 
support the seamless 
addition of parallel pro-
cessing streams so that 
more requests for ser-
vices can be processed 
concurrently?

 

9 Does the system main-
tain multiple copies of 
data (e.g., by replicating 
databases or using 
caches) to decrease 
contention for frequently 
accessed data?

10 Does the system main-
tain multiple copies of 
computations (e.g., by 
keeping a pool of serv-
ers in a server farm) to 
decrease contention 
for frequently ac-
cessed computational 
resources?

 

11 Does the system bound 
queue sizes? That is, 
do you limit the number 
of events placed in 
a queue, waiting for 
services?

 

12 Does the system sched-
ule resources, particu-
larly scarce resources, 
so that they may be 
allocated according to 
an explicit scheduling 
policy?
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B.6 Security

#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

1 Detecting 
attacks

Does the system sup-
port the detection of 
intrusions? An example 
is comparing network 
traffic or service request 
patterns within a system 
to a set of signatures or 
known patterns of mali-
cious behavior stored in 
a database.

2 Does the system 
support the detection 
of denial-of-service 
attacks? An example is 
the comparison of the 
pattern or signature of 
network traffic coming 
into a system to historic 
profiles of known deni-
al-of-service attacks.

3 Does the system 
support the verification 
of message integrity? 
An example is the use 
of techniques such as 
checksums or hash val-
ues to verify the integrity 
of messages, resource 
files, deployment files, 
and configuration files.

4 Does the system 
support the detection 
of message delays? 
An example is checking 
the time that it takes to 
deliver a message.

5 Resisting 
attacks

Does the system sup-
port the identification 
of actors? An example 
is identifying the source 
of any external input to 
the system.

6 Does the system sup-
port the authentication 
of actors? An example 
is ensuring that an actor 
(a user or a remote com-
puter) is actually who or 
what it purports to be.

(continues)
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

7 Does the system support 
the authorization of 
actors? An example 
is ensuring that an 
authenticated actor has 
the rights to access and 
modify either data or 
services. 

8 Does the system support 
limiting access? An ex-
ample is controlling what 
and who may access 
which parts of a system, 
such as processors, 
memory, and network 
connections.

 

9 Does the system support 
limiting exposure? An 
example is reducing the 
probability of a success-
ful attack, or restricting 
the amount of potential 
damage, by concealing 
facts about a system 
(“security by obscurity”) 
or dividing and distrib-
uting critical resources 
(“don’t put all your eggs 
in one basket”).

10 Does the system sup-
port data encryption? 
An example is to apply 
some form of encryption 
to data and to commu-
nication.

11 Does the system 
validate input in a 
consistent, system-wide 
way? An example is the 
use of a security frame-
work or validation class 
to perform actions such 
as filtering, canonical-
ization, and escaping of 
external input.
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

12 Does the system design 
consider the separation 
of entities? An example 
is the physical separa-
tion of different servers 
attached to different 
networks, the use of 
virtual machines, or an 
“air gap”.

 

13 Does the system 
support changes in the 
default settings? An 
example is forcing the 
user to change settings 
assigned by default.

 

14 Reacting 
to attacks

Does the system sup-
port revoking access? 
An example is limiting 
access to sensitive 
resources, even for nor-
mally legitimate users 
and uses, if an attack is 
suspected.

15 Does the system sup-
port locking access? 
An example is limiting 
access to a resource if 
there are repeated failed 
attempts to access it.

16 Does the system sup-
port informing actors? 
An example is notifying 
operators, other person-
nel, or cooperating sys-
tems when an attack is 
suspected or detected. 

17 Recover-
ing from 
attacks

Does the system 
support maintaining an 
audit trail? An example 
is keeping a record of 
user and system actions 
and their effects, to help 
trace the actions of, and 
to identify, an attacker
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B.7 Testability

#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

1 Control 
and 
observe 
system 
state

Does the system or the 
system components 
provide specialized 
interfaces to facilitate 
testing and monitoring?

2 Does the system 
provide mechanisms 
that allow information 
that crosses an interface 
to be recorded so that 
it can be used later 
for testing purposes 
(record/playback)?

3 Is the state of the 
system, subsystem, 
or modules stored in a 
single place to facilitate 
testing (localized state 
storage)?

4 Can you abstract data 
sources—for example, 
by abstracting inter-
faces? Abstracting 
the interfaces lets you 
substitute test data more 
easily.

5 Can the system be 
executed in isolation (a 
sandbox) to experiment 
or test it without worry-
ing about having to undo 
the consequences of the 
experiment?

 

6 Are executable asser-
tions used in the system 
code to indicate when 
and where a program is 
in a faulty state?

 

7 Limit 
complexity

Is the system designed 
in such a way that 
structural complexity 
is limited? Examples 
include avoiding cyclic 
dependencies, reducing 
dependencies, and us-
ing techniques such as 
dependency injection.
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

8 Does the system include 
few or no (i.e., limited) 
sources of nondeter-
minism? This helps 
to limit the behavioral 
complexity that comes 
with unconstrained par-
allelism, which in turn 
simplifies testing.

B.8 Usability

#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

1 Support-
ing user 
initiative

Does the system 
support operation can-
celing?

2 Does the system 
support operation 
undoing?

3 Does the system 
support operations to 
be paused and later 
resumed? Examples are 
pausing the download of 
a file in a web browser 
and allowing the user to 
retry an incomplete (and 
failed) download.

4 Does the system 
support operations to 
be applied to groups of 
objects (aggregation)? 
For example, does it 
allow you to see the 
cumulative size of a 
number of files that 
are selected in a file 
browser window?

 

(continues)
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale and 
Assumptions

5 Support 
system 
initiative

Does the system 
provide assistance to 
the user based on the 
tasks that he or she is 
performing (by main-
taining a task model)? 
Examples include:

 ■ Validation of input data
 ■ Drawing user attention 

to changes in the UI
 ■ Maintaining UI 

consistency
 ■ Adding toolbars and 

menus to help users 
find functionality pro-
vided by the UI

 ■ Using wizards or other 
techniques to guide 
users in performing 
key user scenarios

6 Does the system 
support adjustments to 
the UI with respect to 
the class of users (by 
maintaining a user 
model)? Examples 
include supporting UI 
customization (including 
localization) and sup-
porting accessibility.

 

7 Does the system 
provide appropriate 
feedback to the user 
based on the system 
characteristics (by 
maintaining a system 
model)? Examples 
include:

 ■ Avoiding blocking the 
user while handling 
long-running requests

 ■ Providing feedback on 
action progress (i.e., 
progress bars)

 ■ Displaying user-
friendly errors without 
exposing sensitive 
data by managing 
exceptions

 ■ Adjusting the UI with 
respect to screen size 
and resolution 
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale 
and 
Assumptions

1 Testability: 
control and 
observe 
system 
state

Does the system or the 
system components 
provide specialized 
interfaces to facilitate 
testing and monitoring?

2 Does the system 
provide mechanisms 
that allow information 
that crosses an interface 
to be recorded so that 
it can be used later 
for testing purposes 
(record/playback)?

3 Can the system be 
executed in isolation (a 
sandbox) to experiment 
or test it without worry-
ing about having to undo 
the consequences of the 
experiment?

 

4 Perfor-
mance: 
manage 
resources 

Can the system 
seamlessly increase 
resources (e.g., CPU, 
memory, network band-
width)?

5 Can the system intro-
duce concurrency? 
For example, does it 
support the seamless 
addition of parallel pro-
cessing streams so that 
more requests for ser-
vices can be processed 
concurrently?

6 Does the system main-
tain multiple copies of 
data (e.g., by replicating 
databases or using 
caches) to decrease 
contention for frequently 
accessed data?

(continues)
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale 
and 
Assumptions

7 Does the system main-
tain multiple copies 
of computations (e.g., 
by keeping a pool of 
servers in a server 
farm) to decrease 
contention for frequently 
accessed computational 
resources?

 

8 Does the system sched-
ule resources, particu-
larly scarce resources, 
so that they may be 
allocated according to 
an explicit scheduling 
policy?

9 Perfor-
mance: 
control 
resource 
demand

Does the system 
reduce overhead of 
responding to service 
requests by, for exam-
ple, removing interme-
diaries or co-locating 
resources?

 

10 If your inputs are a 
continuous stream of 
data, does the system 
manage the sampling 
rate?
That is, is it possible for 
you to sample the data 
at varying rates (with 
concomitant changes in 
accuracy/fidelity)?

11 Does the system 
monitor and limit its 
event response? That 
is, does the system limit 
the number of events 
it responds to in a 
time period, to ensure 
predictable responses 
for the events that are 
actually serviced?

 

12 Given that you may 
have more requests for 
service than available 
resources, does the sys-
tem prioritize events?
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale 
and 
Assumptions

13 Modifiabil-
ity: reduce 
coupling

Does the system con-
sistently encapsulate 
functionality? This typ-
ically involves isolating 
the functionality under 
scrutiny and introducing 
an explicit interface to it.

 

14 Does the system 
abstract common 
services, in cases 
where you are providing 
sev eral similar services? 
For example, this 
technique is often used 
when you want your 
system to be portable 
across operating sys-
tems, hardware, or other 
environment variations.

15 Modifiabil-
ity: defer 
binding

Does the system 
regularly defer binding 
of important function-
ality so that it can be 
replaced later in the life 
cycle, perhaps even 
by end users? For 
example, do you use 
plug-ins, add-ons, or 
user scripting to extend 
the functionality of the 
system?

16 Availability: 
detect 
faults

Does the system use a 
component to moni-
tor the state of health 
of other parts of the 
system? A system mon-
itor can detect failure 
or congestion in the 
network or other shared 
resources, such as 
from a denial-of-service 
attack.

17 Do you use exception 
detection to detect a 
system condition that 
alters the normal flow of 
execution (e.g., system 
exception, parameter 
fence, parameter typing, 
timeout)?

(continues)
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#
Tactics 
Group Tactics Question

Supported? 
(Y/N) Risk

Design 
Decisions 
and 
Location

Rationale 
and 
Assumptions

18 Does the system use 
voting to check that 
replicated components 
are producing the same 
results? The replicated 
components may be 
identical replicas, func-
tionally redundant, or 
analytically redundant.

19 Availability: 
recover 
from faults 
(prepara-
tion and 
repair)

Does the system employ 
rollback, so that it can 
revert to a previously 
saved good state (the 
“rollback line”) in the 
event of a fault?

20 Does the system employ 
active redundancy 
(hot spare)? In active 
redundancy, all nodes 
in a protection group (a 
group of nodes where 
one or more nodes 
are “active”, with the 
remainder serving as re-
dundant spares) receive 
and process identical 
inputs in parallel, allow-
ing redundant spares to 
maintain synchronous 
state with the active 
node(s).

21 Does the system have 
consistent policies 
and mechanisms for 
reconfiguration after 
failures, reassigning 
responsibilities to the 
resources left function-
ing, while maintaining 
as much functionality as 
possible?

22 Does the system employ 
exception handling 
to deal with faults? 
Typically, the handling 
involves either reporting 
the fault or handling it, 
potentially masking the 
fault by correcting the 
cause of the exception 
and retrying.
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B.10 Further Reading

The tactics catalog from which the questionnaires are derived can be found in L. Bass, 
P. Clements, and R. Kazman, Software Architecture in Practice (3rd ed.), 2012.

An analysis of quality attribute data from SEI ATAMs, showing which 
qualities are the most common in practice, can be found in I. Ozkaya, L. Bass, 
R. Sangwan, and R. Nord, “Making Practical Use of Quality Attribute Informa-
tion”, IEEE Software, March/April 2008, and in a later study by S. Bellomo, 
I. Gorton, and R. Kazman, “Insights from 15 Years of ATAM Data: Towards 
Agile Architecture”, IEEE Software, 32:5, 38-45, September/October 2015.

The set of DevOps tactics was developed and presented in H-M Chen, 
R. Kazman, S. Haziyev, V. Kropov, and D. Chtchourov, “Architectural Support for 
DevOps in a Neo-Metropolis BDaaS Platform”, IEEE 34th Symposium on Reliable 
Distributed Systems Workshop (SRDSW), Montreal, Canada, September 2015.
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Glossary

Active Reviews for Intermediate Design (ARID) method A method in 
which the architecture design (or part of it) is presented to a group of review-
ers—typically the engineers who will use the design. After the presentation, a set 
of scenarios is selected. The reviewers attempt to use the elements in the archi-
tecture to satisfy the scenarios. The reviewers are asked to write code or pseudo-
code or to create sequence diagrams for the purpose of identifying interfaces. 
This method can be used in preparation for element interaction design.

ADD See Attribute Driven Design method.

ADL See Architecture Description Language.

Analysis The process of breaking a complex entity into its constituent parts as 
a means of understanding it. Analysis is used at different moments in the design 
process; for example, the inputs are analyzed to make design decisions and the 
resulting architecture is also analyzed to gauge if it is appropriate to satisfy its 
associated drivers.

Application framework A reusable software element, constructed out of pat-
terns and tactics, that provides generic functionality addressing recurring domain 
and quality attribute concerns across a broad range of applications. Also called a 
framework.

Architectural concern An additional aspect that needs to be considered as 
part of architectural design but that is not expressed as a traditional requirement. 
Examples include general concerns, such as creating an overall system structure, 
and more specific concerns, such as managing exceptions or generating logs. 
Other architectural concerns include internal requirements, which are seldom 
expressed by customers, and issues resulting from analysis activities, such as 
architectural evaluations.

Architectural design The activity of making decisions to translate ideas from 
the world of needs (architectural drivers) to the world of solutions, in terms of 
structures.



270 Glossary 

Architectural drivers The design purpose, architecturally significant require-
ments, and architectural concerns that serve as an input to the design process. 
These considerations are critical to the success of the system and, as such, they 
drive and shape the architecture.

Architectural evaluation A technique to analyze and assess the value of 
architectural decisions.

Architectural pattern See Patterns (Architectural and Design).

Architecturally significant requirement (ASR) A system requirement that 
has a particular importance with respect to the software architecture. ASRs in-
clude quality attributes, primary functional requirements, and constraints.

Architecture Description Language (ADL) A notation to document an archi-
tecture. ADLs typically employ both a graphical notation and a (formally defined) 
textual notation to describe an architecture—primarily the computational (runtime) 
components and interactions among them—and its properties.

Architecture Tradeoff Analysis Method (ATAM) An established method for 
analyzing architectures, driven by scenarios. Its purpose is to assess the conse-
quences of architectural decisions in light of quality attribute requirements and 
business goals.

ARID See Active Reviews for Intermediate Design method.

ASR See Architecturally significant requirement.

ATAM See Architecture Tradeoff Analysis Method.

Attribute-Driven Design (ADD) method An iterative architecture design 
method that takes drivers as inputs and produces an architecture. In each iteration, 
structures are produced by refining elements identified in previous iterations. 
These structures are created primarily from design concepts, which are selected 
and instantiated to address a subset of the drivers that are selected for the iteration.

Big Design Up Front (BDUF) The (now largely discredited) practice of at-
tempting to do all of the architectural design at the beginning of a project. It is 
usually associated with a waterfall software development life cycle.

Brownfield development Software development that builds upon an existing 
asset. Contrast with greenfield development.

Constraint A decision over which the architect has little or no control. It may 
be either technical or organizational.

Cost Benefit Analysis Method (CBAM) A method that associates costs, ben-
efits, and schedule implications with strategies chosen to make improvements in 
an architecture. This method is used to rank the strategies, as a means of finding 
an optimal set of strategies to implement in the next iteration.



Glossary 271

Design concept The building blocks from which the structures that make up 
the architecture are created. Different types of design concepts exist, including 
reference architectures, deployment patterns, architectural patterns, tactics, tech-
nology families, and externally developed components (such as frameworks).

Design concepts catalog A collection of design concepts for a particular ap-
plication domain.

Design decision A decision that is made during the design process, including 
the selection of a design concept and the instantiation of the selected design 
concept.

Design iteration A group of design decisions through which a subset of the 
drivers is transformed into structures. One or more design iterations are per-
formed within a design round.

Design pattern See Patterns (Architectural and Design).

Design purpose The reason why the architecture design is performed. For 
example, the design may be performed for estimation during pre-sales, prototyp-
ing, or development purposes.

Design round The architecture design activities performed within a develop-
ment cycle if an iterative development model is used, or the entire set of archi-
tecture design activities if a waterfall model is used.

Deployment pattern A pattern that provides a model for how to physically 
structure the system to deploy it.

Development cycle The development of a project increment (i.e., a project 
iteration).

DevOps A portmanteau word, combining “development” and “operations”. 
DevOps stands in contrast to earlier forms of running a software project, in 
which development teams developed software and then “tossed it over the wall” 
to operations. In DevOps, the two teams work closely together and adopt pro-
cesses, tools, and architectures to make it easier to rapidly modify, build, test, 
release, and monitor software.

Element (in definition of software architecture) One of the parts that com-
pose the structures of the architecture. Elements may exist at runtime or develop-
ment time or they may exist physically. Elements are connected by relations.

Element interaction design The identification of the modules and their as-
sociated interfaces to support the nonprimary use cases. This is typically per-
formed using sequence diagrams according to the decisions made during archi-
tectural design.

Element internals design The internal design of the elements identified as 
part of element interaction design, so as to satisfy the element’s interface.
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Externally developed component A design concept that is concrete in nature 
and that is not built as part of the system development, but rather is acquired 
and reused. Such components include application frameworks, products, and 
platforms.

Greenfield development Software development that begins with little or no 
legacy code base to build upon.

Instantiation The process of adapting a design concept to the particular 
problem being addressed. It involves creating elements and relations, and as-
sociating responsibilities with the elements, from the selected design concept. 
Instantiation can also refer to configuration when design concepts are externally 
developed components.

Interface The externally visible properties of elements that establish a con-
tractual specification that allows elements to collaborate and exchange informa-
tion, via relations.

Marketecture A single-page, typically informal, representation of a software 
system architecture. This representation is aimed primarily at nontechnical 
people, and is used to present a system vision.

Minimum viable product (MVP) An evolutionary prototype with only those 
core features that allow the product to be deployed. It emphasizes hypothesis 
testing by fielding the product with real users and collecting usage data that then 
helps to confirm or reject the hypothesis.

Patterns (architectural and design) Conceptual solutions to recurring design 
problems that exist in a defined context. When they are used to address an archi-
tectural driver, they are “architectural patterns”; when their use has just a local 
influence—for example, when used to perform element internals design—they 
are “design patterns”.

Platform A complete infrastructure upon which to build and execute 
applications.

Pre-sales A phase in project development in which the scope of the project, a 
business case, and an initial plan are established. This phase is used by the cus-
tomers (or funders) to decide whether they want to pursue the project.

Primary functional requirements Functionality is the ability of the system to 
do the work for which it was intended. Primary functionality is usually defined 
as functionality that is critical to achieve the business goals that motivate the 
development of the system.

Product A self-contained functional piece of software that can be integrated 
into the system that is being designed and that requires only minor configuration 
or coding. Also called a software package.
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Proof of concept (PoC) A prototype that is used to quickly evaluate a tech-
nology, thereby determining whether it can satisfy critical architecture scenarios, 
usually related to quality attributes such as performance and scalability.

QAW See Quality Attribute Workshop.

Quality attribute A measurable or testable property of a system that is used to 
indicate how well the system satisfies the needs of its stakeholders. Quality attri-
butes are orthogonal to functionality.

Quality attribute scenario See Scenario.

Quality Attribute Workshop (QAW) A facilitated brainstorming session in-
volving a group of system stakeholders in eliciting, specifying, prioritizing, and 
achieving consensus on quality attributes.

Rationale A line of reasoning and justification that led to a design decision.

Refactoring Changing the system’s architecture or code, without affecting its 
functionality, to achieve different quality attribute responses.

Reference Architecture Blueprints that provide an overall logical structure for 
types of applications, consisting of a reference model that is mapped onto one or 
more architectural patterns. It has been proven in business and technical contexts, 
and typically comes with a set of supporting artifacts that facilitates its use.

Relation (in definition of software architecture) One of the parts that com-
pose the structures of an architecture. Relations may exist at runtime or develop-
ment time or they may exist physically. Relations connect elements.

Scenario A technique to specify quality attributes that describes a stimulus 
received by the system and a measurable response to this stimulus. Scenarios are 
testable, falsifiable hypotheses about the quality attribute behavior of the system 
under consideration. Completely developed scenarios are described using six 
parts, but less elaborate (“raw”) scenarios can also be described.

Sketch of a view A preliminary type of documentation that is created as part 
of the design process. The sketch can be refined to become a full-fledged view, 
typically after the design activity has finished.

Software architecture “The set of structures needed to reason about the system, 
which comprise software elements, relations among them, and properties of both”.

Spike A time-boxed task that is created to answer a technical question or 
gather information.

Structure A coherent set of software elements, relations, and properties. 
Structures are represented in views.

Tactic A proven design strategy that influences the control of a quality attri-
bute response.
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Technical debt The decisions—often called “hacks”—made in a software 
project that trade off short-term gains, such as ease of implementation, at the 
cost of long-term sustainability of the system. By taking such shortcuts, the soft-
ware base “goes into debt”.

Technology family A group of technologies with common functional purposes.

View A representation of an architectural structure. A view usually includes a 
graphical representation of the structure and additional information that comple-
ments the information presented in the diagram.
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Index

A
ABD (Architecture-Based Design). See ADD 

(Attribute-Driven Design).
ACDM (Architecture-Centric Design 

Method), 164–165
Active Reviews for Intermediate Design 

(ARID). See ARID (Active Reviews 
for Intermediate Design).

ADD (Attribute-Driven Design). See also 
Architectural drivers; Methods.

analyzing current design, 48–49
definition, 270
design concepts, selecting, 47, 55
design iterations, 44
history of, 8–9
interfaces, defining, 47–48, 61–64
iterating, 49
overview, 44
recording design decisions, 48, 68
reviewing inputs, 44–46
rounds, 44
sketching views, 48, 65
steps in, 44–49
by system type, 50. See also specific types.

ADD (Attribute-Driven Design), alternatives 
to

ACDM (Architecture-Centric Design 
Method), 164–165

a general model of software architecture 
design, 161–163

Microsoft technique for sketching an ar-
chitecture, 169–171

Process of Software Architecting, 
167–169

RUP (Rational Unified Process), 165–166
viewpoints and perspectives method, 

171–173
ADD (Attribute-Driven Design), design pur-

pose, 18
identifying, 44
reviewing, 48–49

ADD (Attribute-Driven Design), elements
allocating responsibilities to, 47–48, 60
instantiating, 47–48, 58
refining, 46–47

ADD (Attribute-Driven Design), iteration 
goals

establishing, 46
reviewing, 48–49

ADL (Attribute Description Language)
definition, 269
overview, 190–191
UML (Unified Modeling Language), 191

Agile Manifesto, 17, 197–199
Agile processes

in the development lifecycle, 197–199
enabling, 16–17

Agreements, in architectural design, 17
Allocating responsibilities, case studies

greenfield development for mature do-
mains, 84, 91–92, 101–102

greenfield development for novel do-
mains, 116, 126–128, 134–136, 
139–141

Allocation structures, 59
Allocation view, brownfield development 

case study, 150–151
Analysis

analytic models, 176–177
anchoring bias, 186
back-of-the-envelope analyses, 177
checklists, 177
confirmation bias, 186
cost of, 179–180
definition, 7, 175
experiments, 177
overview, 175–176
prototyping, 177
purpose of, 178–179
reflective questions, 177, 186–187
scenario-based design reviews, 187, 189. 

See also ATAM (Architecture 
Tradeoff Analysis Method).

simulation, 177
substantiating your beliefs, 176–177
tactics based, 180–185
techniques, 179–180
thought experiments, 177

Analytic models, 176–177
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Analytical skills among architects
practicing, 209
prerequisites, 7
Smart Decisions game, 209

Analyzing current design, case studies
brownfield development, 156–158
greenfield development for mature do-

mains, 88–89, 99–100, 104
greenfield development for novel domains, 

118–120, 129–131, 138, 143
Analyzing current design, with ADD, 48–49
Anchoring bias, 186
Application frameworks, 36, 269
Architects

role of, 7
skills, 7
skills practice, 209–210

Architectural analysis, 163
Architectural backlogs, 69–70, 163
Architectural concerns, case studies

brownfield development, 148
greenfield development for mature do-

mains, 80
greenfield development for novel do-

mains, 110
Architectural concerns, definition, 26–28, 

269
Architectural design. See also Design.

achieving agreements, 17
definition, 270
detailed, 15–16
importance of, 16–17
low level, 16
in software architecture life-cycle, 4

Architectural design decisions
candidate decisions, 38–40
catalog resources, 39
documenting, 39–40
overview, 38–40
regarding patterns, 38–39
web page resources, 39

Architectural documentation. See 
Documentation.

Architectural drivers
concerns, 26–27
constraints, 27–28
definition, 4, 270
derived requirements, 27
design purpose, 18–19
general concerns, 26
identifying, 45–46
internal requirements, 27

issues, 27
primary functionality, 25–26
quality attributes, 19–25
selecting, 46
in software architecture, 13
specific concerns, 26

Architectural drivers, satisfying. See also 
Structures.

greenfield development for mature do-
mains case study, 82–84, 90, 101

greenfield development for novel domains 
case study, 112–115, 121–126, 
132–133, 139

overview, 46–47
Architectural drivers, selecting

greenfield development for mature do-
mains case study, 81, 90, 101

greenfield development for novel domains 
case study, 112, 121, 131–132, 139

Architectural elements. See Elements.
Architectural evaluation

definition, 270
in a general model of software architec-

ture design, 163
in software architecture life-cycle, 6

Architectural implementation/conformance 
checking, 6

Architectural patterns. See Patterns.
Architectural styles, vs. reference architec-

tures, 29
Architectural synthesis, 163
Architecture design process. See Design 

process.
Architecture-Based Design (ABD). See ADD 

(Attribute-Driven Design).
Architecture-Centric Design Method 

(ACDM), 164–165
ARID (Active Reviews for Intermediate 

Design)
defining interfaces, 64–65
definition, 269

ASRs (architecturally significant require-
ments), 4, 270

ATAM (Architecture Tradeoff Analysis 
Method), 187–190, 270

Attribute Description Language (ADL). See 
ADL (Attribute Description Language).

Attribute-Driven Design (ADD). See ADD 
(Attribute-Driven Design).

Availability
scenarios, brownfield development case 

study, 146
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tactics, 230–232
tactics-based questionnaire, 180–185, 

248–252

B
Backlogs, architectural, 69–70, 163
Back-of-the-envelope analyses, 177
BDUF (Big Design Up Front)

definition, 270
in the development lifecycle, 197–198
identifying modules, 64

Big Data case study. See Greenfield develop-
ment for novel domains case study.

Blueprints. See Documentation; Reference 
architectures; Sketches.

Booch, Grady, on architectural design, 14
Books and publications

“A General Model of Software Architecture 
Design” (Hofmeister et al.), 161

Just Enough Software Architecture 
(Fairbanks), 7

Microsoft Application Architecture Guide 
(Microsoft), 169, 211

Pattern-Oriented Software Architecture: A 
Pattern Language for Distributed 
Computing (Buschmann et al.), 31, 
32, 41, 224

The Process of Software Architecting 
(Eeles and Cripps), 167–169

“A Rational Design Process: How and 
Why to Fake It” (Parnas and 
Clements), 2

Software Architecture in Practice, 3rd ed. 
(Bass et al.), 3, 7, 8, 19, 35, 230

Software Systems Architecture: Working 
with Stakeholders Using View-
points and Perspectives (Rozanski 
and Woods), 171–173

Brooks, Fred, 208
Brownfield development, definition, 50, 270
Brownfield development case study

allocation view, 150–151
architectural concerns, 148
availability scenarios, 146
business case, 145–148
constraints, 148
existing documentation, 149–151
module view, 149–150
performance scenarios, 146
quality attribute scenarios, 146, 148
reliability scenarios, 146
use case model, 147

Brownfield development case study, design 
process

allocating responsibilities, 154
analyzing current design, 156–158
defining interfaces, 154
design purpose, reviewing, 156–158
instantiating elements, 154
iteration goals, establishing, 152
iteration goals, reviewing, 156–158
recording design decisions, 154–156
refining elements, 152
reviewing inputs, 152
selecting design concepts, 152–153
sketching views, 154–156
supporting new drivers, 152–158

Business case, case studies
brownfield development, 145–148
greenfield development for mature do-

mains, 75–77
greenfield development for novel do-

mains, 107–108
Buy vs. build, design concept, 35–38

C
Candidate decisions, 38–40
Case studies

banking systems. See Brownfield devel-
opment case study.

Big Data. See Greenfield development for 
novel domains case study.

development for legacy systems. See 
Brownfield development.

FCAPS model for network management. 
See Greenfield development for 
mature domains case study.

greenfield development. See Greenfield 
development for mature domains 
case study; Greenfield develop-
ment for novel domains case study.

Catalogs of design concepts. See Design con-
cepts catalogs.

CBAM (Cost Benefit Analysis Method), 
55–57, 270

C&C (component and connector) structures, 
59

Checklists, 177
Communication skills, among architects, 7
Compatibility, externally developed compo-

nents, 38
Concurrency, 31, 32, 228
Cone of uncertainty, 194–195
Confirmation bias, 186
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Constraints
on architectural drivers, 27–28
definition, 28, 270
selecting design concepts, 58

Constraints, case studies
brownfield development, 148
greenfield development for mature do-

mains, 79
greenfield development for novel do-

mains, 110
Construction phase of RUP, 165, 199
Cost

of design analysis, 179–180
estimating, 194–196
externally developed components, 36

Cost Benefit Analysis Method (CBAM). 
See CBAM (Cost Benefit Analysis 
Method).

Cripps, Peter, 167

D
Data stream elements, refining, 131–138
Database access patterns, design concepts 

catalog, 229
Deployment patterns

definition, 271
example, 32–33
instantiating elements, 60

Deployment patterns, design concepts 
catalogs

distributed deployment, 222–223
Load-Balanced Cluster patterns, 

223–224
nondistributed deployment, 221
performance patterns, 223–224

Design. See also Architectural design.
definition, 11
element interaction, 14–15
element internals, 15
high level, 16
overview, 11–12
in software architecture, 13–14

Design candidates, identifying, 54–55
Design concepts catalog

example, 211
definition, 271
as resources for architectural design de-

cisions, 39
uses for, 203–204

Design concepts catalogs, architectural de-
sign patterns

concurrency, 228

database access, 229
interface partitioning, 226–227
Load-Balanced Cluster patterns, 224
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