

Designing
Software
Architectures

The SEI Series in Software Engineering is a collaborative undertaking of the
Carnegie Mellon Software Engineering Institute (SEI) and Addison-Wesley to

develop and publish books on software engineering and related topics. The common
goal of the SEI and Addison-Wesley is to provide the most current information on
these topics in a form that is easily usable by practitioners and students.

Titles in the series describe frameworks, tools, methods, and technologies designed
to help organizations, teams, and individuals improve their technical or management
capabilities. Some books describe processes and practices for developing higher-
quality software, acquiring programs for complex systems, or delivering services more
e� ectively. Other books focus on software and system architecture and product-line
development. Still others, from the SEI’s CERT Program, describe technologies and
practices needed to manage software and network security risk. These and all titles
in the series address critical problems in software engineering for which practical
solutions are available.

Visit informit.com/sei for a complete list of available publications.

The SEI Series in Software Engineering
 Software Engineering Institute of Carnegie Mellon University and Addison-Wesley

Make sure to connect with us!
informit.com/socialconnect

../../../../../www.informit.com/sei
../../../../../www.informit.com/socialconnect

Designing
Software
Architectures
A Practical Approach

Humberto Cervantes
Rick Kazman

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon,
CERT, and CERT Coordination Center are registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evalu-
ation; CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework
for Software Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally
Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Per-
sonal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead
Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are
service marks of Carnegie Mellon University.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Names: Cervantes, Humberto, 1974- author. | Kazman, Rick, author.
Title: Designing software architectures : a practical approach / Humberto
 Cervantes, Rick Kazman.
Description: Boston : Addison-Wesley, [2016] | Series: The SEI series in
 software engineering | Includes bibliographical references and index.
Identifiers: LCCN 2016005436| ISBN 9780134390789 (hardcover : alk. paper) |
 ISBN 0134390784 (hardcover : alk. paper)
Subjects: LCSH: Software architecture. | Big data.
Classification: LCC QA76.758 .C44 2016 | DDC 005.1/2—dc23
LC record available at https://lccn.loc.gov/2016005436

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, re-
quest forms and the appropriate contacts within the Pearson Education Global Rights & Permis-
sions Department, please visit www.pearsoned.com/permissions.

ISBN-13: 978-013-439078-9
ISBN-10: 0-13-439078-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2016

../../../../../https@lccn.loc.gov/2016005436
../../../../../www.pearsoned.com/permissions

v

Contents

Preface xiii
Acknowledgments xvii

 CHAPTER 1 Introduction 1

1.1 Motivations 1

1.2 Software Architecture 3
1.2.1 The Importance of Software Architecture 3

1.2.2 Life-Cycle Activities 4

1.3 The Role of the Architect 7

1.4 A Brief History of ADD 8

1.5 Summary 9

1.6 Further Reading 10

 CHAPTER 2 Architectural Design 11

2.1 Design in General 11

2.2 Design in Software Architecture 13
2.2.1 Architectural Design 14

2.2.2 Element Interaction Design 14

2.2.3 Element Internals Design 15

2.3 Why Is Architectural Design So Important? 16

2.4 Architectural Drivers 17
2.4.1 Design Purpose 18

2.4.2 Quality Attributes 19

2.4.3 Primary Functionality 25

2.4.4 Architectural Concerns 26

2.4.5 Constraints 27

2.5 Design Concepts: The Building Blocks for Creating
Structures 28
2.5.1 Reference Architectures 29

2.5.2 Architectural Design Patterns 29

2.5.3 Deployment Patterns 32

vi Contents

2.5.4 Tactics 33

2.5.5 Externally Developed Components 35

2.6 Architecture Design Decisions 38

2.7 Summary 40

2.8 Further Reading 41

 CHAPTER 3 The Architecture Design Process 43

3.1 The Need for a Principled Method 43

3.2 Attribute-Driven Design 3.0 44
3.2.1 Step 1: Review Inputs 44

3.2.2 Step 2: Establish the Iteration Goal by Selecting
Drivers 46

3.2.3 Step 3: Choose One or More Elements of the System
to Refine 46

3.2.4 Step 4: Choose One or More Design Concepts That
Satisfy the Selected Drivers 47

3.2.5 Step 5: Instantiate Architectural Elements, Allocate
Responsibilities, and Define Interfaces 47

3.2.6 Step 6: Sketch Views and Record Design
Decisions 48

3.2.7 Step 7: Perform Analysis of Current Design and
Review Iteration Goal and Achievement of Design
Purpose 48

3.2.8 Iterate If Necessary 49

3.3 Following a Design Roadmap According
to System Type 49
3.3.1 Design of Greenfield Systems for Mature

Domains 50

3.3.2 Design of Greenfield Systems for Novel Domains 52

3.3.3 Design for an Existing System (Brownfield) 53

3.4 Identifying and Selecting Design Concepts 53
3.4.1 Identification of Design Concepts 54

3.4.2 Selection of Design Concepts 55

3.5 Producing Structures 58
3.5.1 Instantiating Elements 59

3.5.2 Associating Responsibilities and Identifying
Properties 60

3.5.3 Establishing Relationships Between the Elements 61

3.6 Defining Interfaces 61
3.6.1 External Interfaces 61

Contents vii

3.6.2 Internal Interfaces 61

3.7 Creating Preliminary Documentation During
Design 65
3.7.1 Recording Sketches of the Views 65

3.7.2 Recording Design Decisions 68

3.8 Tracking Design Progress 69
3.8.1 Use of an Architectural Backlog 69

3.8.2 Use of a Design Kanban Board 70

3.9 Summary 72

3.10 Further Reading 72

 CHAPTER 4 Case Study: FCAPS System 75

4.1 Business Case 75

4.2 System Requirements 77
4.2.1 Use Case Model 77

4.2.2 Quality Attribute Scenarios 78

4.2.3 Constraints 79

4.2.4 Architectural Concerns 80

4.3 The Design Process 80
4.3.1 ADD Step 1: Review Inputs 80

4.3.2 Iteration 1: Establishing an Overall System
Structure 81

4.3.3 Iteration 2: Identifying Structures to Support Primary
Functionality 89

4.3.4 Iteration 3: Addressing Quality Attribute Scenario
Driver (QA-3) 101

4.4 Summary 105

4.5 Further Reading 105

CHAPTER 5 Case Study: Big Data System 107

5.1 Business Case 107

5.2 System Requirements 108
5.2.1 Use Case Model 108

5.2.2 Quality Attribute Scenarios 109

5.2.3 Constraints 110

5.2.4 Architectural Concerns 110

5.3 The Design Process 111
5.3.1 ADD Step 1: Review Inputs 111

5.3.2 Iteration 1: Reference Architecture and Overall
System Structure 112

viii Contents

5.3.3 Iteration 2: Selection of Technologies 120

5.3.4 Iteration 3: Refinement of the Data Stream
Element 131

5.3.5 Iteration 4: Refinement of the Serving Layer 138

5.4 Summary 143

5.5 Further Reading 144

 CHAPTER 6 Case Study: Banking System 145

6.1 Business Case 145
6.1.1 Use Case Model 147

6.1.2 Quality Attribute Scenarios 148

6.1.3 Constraints 148

6.1.4 Architectural Concerns 148

6.2 Existing Architectural Documentation 149
6.2.1 Module View 149

6.2.2 Allocation View 150

6.3 The Design Process 151
6.3.1 ADD Step 1: Review Inputs 152

6.3.2 Iteration 1: Supporting the New Drivers 152

6.4 Summary 158

6.5 Further Reading 159

 CHAPTER 7 Other Design Methods 161

7.1 A General Model of Software Architecture
Design 161

7.2 Architecture-Centric Design Method 164

7.3 Architecture Activities in the Rational Unified
Process 165

7.4 The Process of Software Architecting 167

7.5 A Technique for Architecture and Design 169

7.6 Viewpoints and Perspectives Method 171

7.7 Summary 173

7.8 Further Reading 174

 CHAPTER 8 Analysis in the Design Process 175

8.1 Analysis and Design 175

8.2 Why Analyze? 178

8.3 Analysis Techniques 179

Contents ix

8.4 Tactics-Based Analysis 180

8.5 Reflective Questions 186

8.6 Scenario-Based Design Reviews 187

8.7 Architecture Description Languages 190

8.8 Summary 191

8.9 Further Reading 192

 CHAPTER 9 The Architecture Design Process in the
Organization 193

9.1 Architecture Design and the Development Life
Cycle 193
9.1.1 Architecture Design During

Pre-Sales 194

9.1.2 Architecture Design During Development and
Operation 197

9.2 Organizational Aspects 202
9.2.1 Designing as an Individual or as a Team 202

9.2.2 Using a Design Concepts Catalog in
Your Organization 203

9.3 Summary 204

9.4 Further Reading 204

 CHAPTER 10 Final Words 207

10.1 On the Need for Methods 207

10.2 Next Steps 209

10.3 Further Reading 210

APPENDIX A A Design Concepts Catalog 211

A.1 Reference Architectures 211
A.1.1 Web Applications 212

A.1.2 Rich Client Applications 214

A.1.3 Rich Internet Applications 215

A.1.4 Mobile Applications 218

A.1.5 Service Applications 218

A.2 Deployment Patterns 221
A.2.1 Nondistributed Deployment 221

A.2.2 Distributed Deployment 222

A.2.3 Performance Patterns: Load-Balanced
Cluster 223

x Contents x Contents

A.3 Architectural Design Patterns 224
A.3.1 Structural Patterns 224

A.3.2 Interface Partitioning 226

A.3.3 Concurrency 228

A.3.4 Database Access 229

A.4 Tactics 230
A.4.1 Availability Tactics 230

A.4.2 Interoperability Tactics 232

A.4.3 Modifiability Tactics 233

A.4.4 Performance Tactics 235

A.4.5 Security Tactics 236

A.4.6 Testability Tactics 238

A.4.7 Usability Tactics 240

A.5 Externally Developed Components 241
A.5.1 Spring Framework 241

A.5.2 Swing Framework 243

A.5.3 Hibernate Framework 244

A.5.4 Java Web Start Framework 245

A.6 Summary 245

A.7 Further Reading 246

APPENDIX B Tactics-Based Questionnaires 247

B.1 Using the Questionnaires 247

B.2 Availability 248

B.3 Interoperability 252

B.4 Modifiability 253

B.5 Performance 255

B.6 Security 257

B.7 Testability 260

B.8 Usability 261

B.9 DevOps 263

B.10 Further Reading 267

Glossary 269
About the Authors 275
Index 277

I dedicate this book to my parents, Ilse and Humberto; to my wife, Gabriela;
and to my sons, Julian and Alexis. Thank you for all your love, support, and

inspiration.
H. C.

I dedicate this book to my wife, for her loving support, and to my Grandmasters,
Hee Il Cho and Philip Ameris, for the examples that they set, leading me to

always strive to be my best.
R. K.

This page intentionally left blank

xiii

Preface

When asked about software architecture, people think frequently about models—
that is, the representations of the structures that constitute the architecture. Less
frequently, people think about the thought processes that produce these struc-
tures—that is, the process of design. Design is a complex activity to perform and
a complex topic to write about, as it involves making a myriad of decisions that
take into account many aspects of a system. These aspects are oftentimes hard
to express, particularly when they originate from experience and knowledge that
is hard-earned in the “battlefield” of previous software development projects.
Nevertheless, the activity of design is the basis of software architecture and, as
such, it begs to be explained. Although experience can hardly be communicated
through a book, what can be shared is a method that can help you perform the
process of design in a systematic way.

This book is about that design process and about one particular design
method, called Attribute-Driven Design (ADD). We believe that this method is a
powerful tool that will help you perform design in a principled, disciplined, and
repeatable way. In this book, employing ADD and several examples of ADD’s
use in the real world, we show you how to perform architectural design. Even
though you may not currently possess sufficient design experience, we illustrate
how the method promotes reusing design concepts—that is, proven solutions that
embody the experience of others.

Although ADD has existed for more than a decade, relatively little has been
written about it and few examples have been provided to explain how it is per-
formed. This lack of published information has made it difficult for people to
adopt the method or to teach others about it. Furthermore, the documentation
that has been published about ADD is somewhat “high level” and can be hard to
relate to the concepts, practices, and technologies that architects use in their day-
to-day activities.

We have been working with practicing architects for several years, coaching
them on how to perform design, and learning in the process. We have learned, for
example, that practicing architects take technologies into consideration early in
the design process and this is something that was not part of the original version
of ADD. For this reason, the method felt “disconnected” from reality for many

xiv Preface

practitioners. In this book, we provide a revised version of ADD in which we
have tried to bridge the gap between theory and practice.

We have also been teaching software architecture and software design for
many years. Along the way, we realized how hard it is for people without any ex-
perience to perform design. This understanding motivated us to create a roadmap
for design that, we believe, is helpful in guiding people to perform the design
process. We also created a game that is useful in teaching about software design;
it can be considered a companion to this book.

The target audience for this book is anyone interested in the design of soft-
ware architectures. We believe it will be particularly useful for practitioners who
must perform this task but who currently perform it in an ad hoc way. Experi-
enced practitioners who already perform design following an established method
will also find new ideas—for example, how to track design progress using a Kan-
ban board, how to analyze a design using tactics-based questionnaires, and how
to incorporate a design method for early estimation. Finally, people who are al-
ready familiar with the other architecture methods from the Software Engineer-
ing Institute will find information about the ways to connect ADD to methods
such as the Quality Attribute Workshop (QAW), the Architecture Tradeoff Analy-
sis Method (ATAM), and the Cost Benefit Analysis Method (CBAM). This book
will also be useful to students and teachers of computer science or software engi-
neering programs. We believe that the case studies included here will help them
understand how to perform the design process more easily. Certainly, we have
been using similar examples in our courses with great success. As Albert Einstein
said, “Example isn’t another way to teach; it is the only way to teach.”

Our hope is that this book will help you in understanding that design can be
performed following a method, and that this realization will help you produce
better software systems in the future.

The book is structured as follows.

 ■ In Chapter 1, we briefly introduce software architecture and the Attribute-
Driven Design method.

 ■ In Chapter 2, we discuss architecture design in more detail, along with the
main inputs to the design process—what we call architectural drivers, plus
the design concepts that will help you satisfy these drivers using proven
solutions.

 ■ Chapter 3 presents the ADD method in detail. We discuss each of the steps
of the method along with various techniques that can be used to perform
these steps appropriately.

 ■ Chapter 4 is our first case study, which illustrates the development of a
greenfield system. For this case study, we have made an effort to show how
a majority of the concepts described in Chapter 3 are used in the design
process, so you can think of this case study as being more “academic” in
nature (although it is derived from a real-world system).

 ■ Chapter 5 presents our second case study, which was co-written with prac-
ticing software architects and as such is much more technical and detailed

Preface xv

in nature. It will show you the nitty-gritty details of how ADD is used in the
design of a Big Data system that involves many different technologies. This
example illustrates the development of a system in what we consider to be a
“novel” domain, as opposed to the more traditional domain used in Chapter 4.

 ■ Chapter 6 is a shorter case study that illustrates the use of ADD in the
design of an extension of a legacy (or brownfield) system, which is a com-
mon situation. This example demonstrates that architectural design is not
something that is performed only once, when the first version of the system
is developed, but rather is an activity that can be performed at different mo-
ments of the development process.

 ■ Chapter 7 presents other design methods. In our revision of ADD, we
adopted ideas from other authors who have also investigated the process of
design, and here we briefly summarize their approaches both as an homage
to their work and as a means to compare ADD to these methods.

 ■ Chapter 8 discusses the topic of analysis in depth, even though this is a book
on design. Analysis is naturally performed as part of design, so here we de-
scribe techniques that can be used both during the design process or after
a portion of the design has been completed. In particular, we introduce the
use of tactics-based questionnaires, which are helpful in understanding, in a
time-efficient and simple manner, the decisions made in the design process.

 ■ Chapter 9 describes how the design process fits at an organizational level.
For instance, performing some amount of architectural design at the earli-
est moments of the project’s life is useful for estimation purposes. We also
show how ADD can be associated with different software development
approaches.

 ■ Chapter 10 concludes the book.

We also include two appendixes. Appendix A presents A Design Concepts
Catalog, which, as its name suggests, is a catalog of different types of design
concepts that can be used to design for a particular application domain. This cat-
alog includes design concepts that we have gathered from different sources, re-
flecting how experienced and disciplined architects work in the real world. In this
case, our catalog contains a sample of the design concepts used in the case study
presented in Chapter 4. Appendix B provides a set of tactics-based questionnaires
(as introduced in Chapter 8) for the seven most common quality attributes and an
additional questionnaire for DevOps.

Register your copy of Designing Software Architectures at informit.com for
convenient access to downloads, updates, and corrections as they become
available. To start the registration process, go to informit.com/register and log
in or create an account. Enter the product ISBN (9780134390789) and click
Submit. Once the process is complete, you will find any available bonus con-
tent under “Registered Products.”

This page intentionally left blank

xvii

Acknowledgments

The authors wish to acknowledge our reviewers—Marty Barrett, Roger
Champagne, Siva Muthu, Robert Nord, Vishal Prabhu, Andriy Shapochka, David
Sisk, Perla Velasco-Elizondo, and Olaf Zimmermann—for their generosity in
providing both opinions and comments. We also wish to thank Serge Haziyev
and Olha Hrytsay for their contributions to Chapter 5. In addition, we would be
remiss if we did not thank the many architects at Softserve—Serge, Olha, and
Andriy included—for their overall strong support of our work.

Humberto wishes to thank the directors and the group of architects at Quark-
soft; many ideas for the revision of ADD and one of the case studies presented in
this book originated from putting the method into practice at this company. Thank
you to the architects and developers in other companies with whom I have had the
opportunity to collaborate and exchange ideas—I have learned a lot from them. I
also wish to thank the people at the Software Engineering Institute, who have wel-
comed me and other academics for many years at the ACE Educators Workshop. I
also want to give recognition to my university, Universidad Autónoma Metropoli-
tana Iztapalapa, as it has always supported my work. Thanks to my colleagues Perla
Velasco-Elizondo and Luis Castro, who have accompanied me for several years in
this architectural journey. Thank you to Alonso Leal, who gave me the opportunity
to become a practicing architect many years ago. Thanks to Richard S. Hall, who
taught me many skills that have proved invaluable in writing this book. Finally, I
wish to thank my coauthor Rick, for being such a nice person and colleague; it is
always a pleasure to work and exchange opinions with him.

Rick wishes to thank James Ivers and his research group at the Software En-
gineering Institute. In particular, I would like to thank Rod Nord, for his careful
and insightful review comments and suggestions. I would also like to thank my
long-time collaborator and mentor Len Bass, who got me started on this software
architecture journey many years ago. Without Len, who knows where I would be
today. In addition, I would like to thank Linda Northrop, who vigorously sup-
ported my research for many years and provided many wonderful “opportunities
to excel.” Finally, I would like to thank my coauthor Humberto, who has always
been energetic, positive, and a true pleasure to work with.

This page intentionally left blank

1

1
Introduction

In this chapter we provide an introduction to the topic of software architecture.
We briefly discuss what architecture is and why it is fundamental to take it into
account when developing software systems. We also discuss the different activi-
ties that are associated with the development of software architecture so that ar-
chitectural design—which is the primary topic of this book—can be understood
in the context of these activities. We also briefly discuss the role of the architect,
who is the person responsible for creating the design. Finally, we introduce the
Attribute-Driven Design (ADD) method, the architecture design method that we
will discuss extensively in this book.

1.1 Motivations

Our goal in this book is to teach you how to design software architecture in a
systematic, predictable, repeatable, and cost-effective way. If you are reading this
book, then presumably you already have an interest in architecture and aspire to
be an architect. The good news is that this goal is within your grasp. To convince
you of that point, we will spend a few moments talking about the idea of de-
sign—the design of anything—and we will see how and why architectural design
is not so different. In most fields, “design” involves the same sorts of challenges
and considerations—meeting stakeholder needs, adhering to budgets and sched-
ules, dealing with constraints, and so forth. While the primitives and tools of de-
sign may vary from field to field, the goals and steps of design do not.

2 Chapter 1—Introduction

This is encouraging news, because it means that design is not the sole prov-
ince of wizards. That is, design can be taught, and it can be learned. Most design,
particularly in engineering, consists of putting known design primitives together
in (sometimes innovative) ways that achieve predictable outcomes. Of course, the
devil is in the details, but that is why we have methods. It may seem difficult at
first to imagine that a creative endeavor such as design can be captured in a step-
by-step method; this, however, is not only possible but also valuable, as Parnas
and Clements have discussed in their paper “A Rational Design Process: How
and Why to Fake It”. Of course, not everyone can be a great designer, just as not
everyone can be a Thomas Edison or a LeBron James or a Ronaldo. What we do
claim is that everyone can be a much better designer, and that structured methods
supported by reusable chunks of design knowledge, which we provide in this
book, can help pave the road from mediocrity to excellence.

Why are we writing a book on software architecture design? While much
has been written about design in general, and while there have been some writ-
ings on software architecture design, there is no existing book dedicated solely
to architecture design. Moreover, most of what has been written on architecture
design is relatively abstract.

Our goal in writing this book was to provide a practical method that can be
enacted by any competent software engineer, and also (and just as important)
to provide a set of rich case studies that realize the method. Albert Einstein was
reputed to have said, “Example isn’t another way to teach, it is the only way to
teach”. We firmly believe that. Most of us learn better from examples than from
sets of rules or steps or principles. Of course, we need the steps and rules and
principles to structure what we do and to create the examples, but the examples
speak to our day-to-day concerns and help us by making the steps concrete.

This is not to say that architecture design will ever be simple. If you are
building a complex system, then chances are that you are trying to balance many
competing forces—things like time to market, cost, performance, evolvability,
usability, availability, and so on. If you are pushing the boundaries in any of these
dimensions, then your job as an architect will be even more complex. This is true
in any engineering discipline, not just software. If you examine the history of
building large ships or skyscrapers or any other complex “system”, you will see
how the architects of those systems struggled with making the appropriate deci-
sions and tradeoffs. No, architecture design may never be easy, but our purpose
is to make it tractable and achievable by well-trained, well-educated software
engineers.

1.2 Software Architecture 3

1.2 Software Architecture

Much has been written on what software architecture is. We adopt the definition
of software architecture from Software Architecture in Practice (third edition):

The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations
among them, and properties of both.

As you will see, our design method embodies this definition and helps to
guide the designer in creating an architecture that has the desired properties.

1.2.1 The Importance of Software Architecture

Much has also been written on why architecture is important. Again, following
Software Architecture in Practice, we note that architecture is important for a
wide variety of reasons, and a similarly wide variety of consequences stem from
those reasons:

§	An architecture will inhibit or enable a system’s driving quality attributes.
§	The decisions made in an architecture allow you to reason about and man-

age change as the system evolves.
§	The analysis of an architecture enables early prediction of a system’s

qualities.
§	A documented architecture enhances communication among stakeholders.
§	The architecture is a carrier of the earliest and hence most fundamental,

hardest-to-change design decisions.
§	An architecture defines a set of constraints on subsequent implementation.
§	The architecture influences the structure of an organization, and vice versa.
§	An architecture can provide the basis for evolutionary, or even throwaway,

prototyping.
§	An architecture is the key artifact that allows the architect and the project

manager to reason about cost and schedule.
§	An architecture can be created as a transferable, reusable model that forms

the heart of a product line.
§	Architecture-based development focuses attention on the assembly of com-

ponents, rather than simply on their creation.
§	By restricting design alternatives, architecture channels the creativity of

developers, reducing design and system complexity.
§	An architecture can be the foundation for training a new team member.

If an architecture is important for all of these reasons—if it affects the struc-
ture of the organization, and the qualities of the system, and the people involved
in its creation and evolution—then surely great care must be taken in designing

4 Chapter 1—Introduction

this crucial artifact. Sadly, that is most often not the case. Architectures often
“evolve” or “emerge”. While we have nothing against evolution or emergence,
and while we emphatically are not arguing for “big design up front”, doing no
architecture at all is often too risky for anything but the simplest projects. Would
you want to drive over a bridge or ride in a jet that had not been carefully de-
signed? Of course not. But you use software every day that is buggy, costly, inse-
cure, unreliable, fault prone, and slow—and many of these undesirable character-
istics can be avoided!

The core message of this book is that architecture design does not need to be
difficult or scary; it is not the sole province of wizards; and it does not have to be
costly and all done up front. Our job is to show you how and convince you that it
is within your reach.

1.2.2 Life-Cycle Activities

Software architecture design is one of the software architecture life-cycle activi-
ties (Figure 1.1). As in any software project life cycle, this activity is concerned
with the translation of requirements into a design into an implementation. Specif-
ically, the architect needs to worry about the following issues:

§	Architectural requirements. Among all the requirements, a few will have
a particular importance with respect to the software architecture. These
architecturally significant requirements (ASRs) include not only the most
important functionality of the system and the constraints that need to be
taken into account, but also—and most importantly—quality attributes
such as high performance, high availability, ease of evolution, and iron-clad
security. These requirements, along with a clear design purpose and other
architectural concerns that may never be written down or may be invisible
to external stakeholders, will guide you to choose one set of architectural
structures and components over another. We will refer to these ASRs and
concerns as drivers, as they can be said to drive the design.

§	Architectural design. Design is a translation, from the world of needs (re-
quirements) to the world of solutions, in terms of structures composed of
code, frameworks, and components. A good design is one that satisfies the
drivers. Architectural design is the focus of this book.

1.2 Software Architecture 5

Architectural
Requirements

Architectural
Design

Architectural
Documentation

Architectural
Evaluation

<<precedes>>

<<precedes>>

<<precedes>>

<<precedes>>

<<precedes>>

<<influences>>

Architectural
Implementation

Focus of the
book

FIGURE 1.1 Software architecture life-cycle activities

§	Architectural documentation. Some level of preliminary documentation (or
sketches) of the structures should be created as part of architectural design.
This activity, however, refers to the creation of a more formal document
from these sketches. If the project is small and has a precedent, then archi-
tecture documentation may be minimal. In contrast, if the project is large,
if distributed teams are collaborating, or if significant technical challenges
exist, then architectural documentation will repay the effort invested in this
activity. While documentation is often avoided and derided by program-
mers, it is a standard, non-negotiable deliverable in almost every other engi-
neering discipline. If your system is big enough and if it is mission critical,
it should be documented. In other engineering disciplines, a “blueprint”—
some sort of documented design—is an absolutely essential step in moving
toward implementation and the commitment of resources.

6 Chapter 1—Introduction

§	Architectural evaluation. As with documentation, if your project is non-
trivial, then you owe it to yourself and to your stakeholders to evaluate
it—that is, to ensure that the decisions made are appropriate to address the
critical requirements. Would you deliver code without testing it? Of course
not. Similarly, why would you commit enormous resources to fleshing out
an architecture if you had not first “tested” the design? You might want to
do this when first creating the system or when putting it through a major
refactoring. Typically evaluation is done informally and internally, but for
truly important projects it is advisable to have a formal evaluation done by
an external team.

§	Architectural implementation/conformance checking. Finally, you need
to implement the architecture that you have created (and evaluated). As
an architect, you may need to tweak the design as the system grows and
as requirements evolve. This is normal. In addition to this tweaking, your
major responsibility during implementation is to ensure conformance of
the code to the design. If developers are not faithfully implementing the
architecture, they may be undermining the qualities that you have designed
in. Again, consider what is done in other fields of engineering. When a
concrete foundation for a new building is poured, the building that rests on
top of that foundation is not constructed until the foundation has first been
tested, typically via a core sample, to ensure that it is strong enough, dense
enough, sufficiently impermeable to water and gases, and so forth. Without
conformance checking, we have no way of ensuring the quality of what is
being subsequently constructed.

Note that we are not proposing a specific life-cycle methodology in
Figure 1.1. The stereotype <<precedes>> simply means that some effort in an
activity must be performed, and hence precede, effort in a later activity. For ex-
ample, you cannot perform design activities if you have no idea about the re-
quirements, and you cannot evaluate an architecture if you have not first made
some design decisions.

Today most commercial software is developed using some form of Agile
methodology. None of these architecture activities is incompatible with Agile prac-
tices. The question for a software architect is not “Should I do Agile or architec-
ture?”, but rather “How much architecture should I do up front versus how much
should I defer until the project’s requirements have solidified somewhat?” and
“How much of the architecture should I formally document, and when?” Agile and
architecture are happy companions for many software projects.

We will discuss the relationship between architecture design and various soft-
ware life-cycle methods and process models, including iterative development, in
Chapter 9.

1.3 The Role of the Architect 7

1.3 The Role of the Architect

An architect is much more than “just” a designer. This role, which may be played
by one or more individuals, has a long list of duties, skills, and knowledge
that must be satisfied if it is to be successful. These prerequisites include the
following:

§	Leadership: mentoring, team-building, establishing a vision, coaching
§	Communication: both technical and nontechnical, encouraging

collaboration
§	Negotiation: dealing with internal and external stakeholders and their con-

flicting needs and expectations
§	Technical skills: life-cycle skills, expertise with technologies, continuous

learning, coding
§	Project skills: budgeting, personnel, schedule management, risk

management
§	Analytical skills: architectural analysis, general analysis mindset for project

management and measurement (see the sidebar “The Meaning of Analysis”)

A successful design is not a static document that is “thrown over the wall”.
That is, architects must not only design well, but must also be intimately involved
in every aspect of the project, from conception and business justification to de-
sign and creation, through to operation, maintenance, and eventually retirement.

The Meaning of Analysis

In the Merriam-Webster Dictionary, the word analysis is defined as follows:

§	The careful study of something to learn about its parts, what they do, and
how they are related to each other

§	An explanation of the nature and meaning of something

In this book we use the word analysis for different purposes, and both
of these definitions apply. For instance, as part of the architectural evalu-
ation activity, an existing architecture is analyzed to gauge if it is appropri-
ate to satisfy its associated drivers. During the design process, the inputs
are analyzed to make design decisions. The creation of prototypes is also
a form of analysis. In fact, analysis is so important to the design process
that we devote Chapter 8 to just this topic. Here we also discuss, in more
detail, the relationship between analysis and evaluation. In this book, we
focus primarily on the design activity, its associated technical skills, and
its integration into the development life cycle. For a fuller treatment of the
other aspects of an architect’s life, we invite you to read a more general
book on software architecture, such as Software Architecture in Practice or
Just Enough Software Architecture.

8 Chapter 1—Introduction

1.4 A Brief History of ADD

While an architect has many duties and responsibilities, in this book we focus
on what is arguably the single most important skill that a software engineer must
master to be called “architect”: the process of design. To make architectural de-
sign more tractable and repeatable, in this book we focus most of our attention
on the Attribute-Driven Design (ADD) method, which provides step-by-step
guidance on how to iteratively perform the design activity shown in Figure 1.1.
Chapter 3 describes the most recent version of ADD, version 3.0, in detail, so
here we provide a bit of background for those who are familiar with previous
versions of ADD. The first version of ADD (ADD 1.0, originally called ABD,
for “Architecture-Based Design”) was published in January 2000, and the second
version (ADD 2.0) was published in November 2006. The third edition of the
book Software Architecture in Practice presents this method with a reduced num-
ber of steps. This discussion, however, does not introduce a new version of ADD,
but rather a repackaged version that summarizes the actual steps of the method.

ADD is, to our knowledge, the most comprehensive and most widely used
documented architecture design method. (We provide an overview of a number
of alternative design methods in Chapter 7.) When ADD appeared, it was the first
design method to focus specifically on quality attributes and their achievement
through the creation of architectural structures and their representation through
views. Another important contribution of ADD is that it includes architecture
analysis and documentation as an integral part of the design process. In ADD, de-
sign activities include refining the sketches created during early design iterations
to produce a more detailed architecture, and continuously evaluating the design.

While ADD 2.0 was useful for linking quality attributes to design choices, it
had several shortcomings that needed to be addressed:

§	ADD 2.0 guides the architect to use and combine tactics and patterns to
achieve the satisfaction of quality attribute scenarios. Patterns and tactics
are abstractions, however, and the method did not explain how to map these
abstractions to concrete implementation technologies.

§	ADD 2.0 was invented before Agile methods became widely adopted and,
therefore, did not offer guidance for architecture design in an Agile setting.

§	ADD 2.0 provided no guidance on how to begin the design process. While
this omission enhanced its generalizability, it presented difficulties for nov-
ice designers, who often do not know where to begin. Specifically, ADD 2.0
did not explicitly promote the (re)use of reference architectures, which are
an ideal starting point for many architects, as we will discuss later in this
book.

§	ADD 2.0 did not explicitly consider different design purposes. For exam-
ple, one might be doing design as part of a pre-sales process or as part of

1.5 Summary 9

“standard” design for construction. These are very different purposes and
will result in different uses of ADD.

§	ADD 2.0 did not consider that design requires some architectural concerns
(i.e., internal requirements) to be addressed whether or not they are ex-
pressed in the list of “traditional” drivers (requirements and constraints). It
is a rare user who will ask that a system be “testable” or will require that
the system provide special testing interfaces, but a wise architect might
choose to include such an infrastructure, particularly if the system is com-
plex and used in contexts that are difficult to control and replicate.

§	ADD 2.0 iterations are always driven by the selection and decomposition
of architectural elements. This occurs because ADD 2.0 instructs that first
an element to decompose must be chosen, and then the drivers must be
identified. In ADD 3.0, we recognize that sometimes a design step is driven
by the critical architectural requirements, which guides the selection and
decomposition of elements.

§	ADD 2.0 includes (initial) documentation and analysis, but they are not ex-
plicit steps of the design process.

ADD 3.0 addresses all of these shortcomings. To be sure, ADD 3.0 is evo-
lutionary, not revolutionary. It was catalyzed by the creation of ADD 2.5,1 which
was itself a reaction to attempting to use ADD in the real world, in many different
contexts.

We published ADD 2.5 in 2013. In that work, we advocated the use of ap-
plication frameworks such as JSF, Spring, or Hibernate as first-class design con-
cepts. This change was intended to address ADD 2.0’s shortcoming of being too
abstract to apply easily. ADD starts with drivers, systematically links them to de-
sign decisions, and then links those decisions to the available implementation op-
tions, including externally developed components. For Agile development, ADD
3.0 promotes quick design iterations in which a small number of design decisions
are made, potentially followed by an implementation spike. In addition, ADD
3.0 explicitly promotes the (re)use of reference architectures and is paired with a
“design concepts catalog”, which includes a broad selection of tactics, patterns,
frameworks, reference architectures, and technologies (see Appendix A).

1.5 Summary

Having covered our motivations and background, we now move on to the heart
and soul of this book. In the next few chapters, we describe what we mean by
design and by architectural design in particular, we discuss ADD, and we provide
three case studies showing in detail how ADD can be used in the real world. We

1. This is our own coding notation; the 2.5 number is not used elsewhere.

10 Chapter 1—Introduction

also discuss the critical role that analysis plays in the design process and provide
examples of how analysis can be performed on design artifacts.

1.6 Further Reading

Fred Brooks has written a thoughtful series of essays on the nature of design,
reflecting his 50 years of experience as a designer and researcher: F. P. Brooks, Jr.
The Design of Design: Essays from a Computer Scientist. Addison-Wesley, 2010.

The usefulness of having a documented process for design and other devel-
opment activities is discussed in D. Parnas and P. Clements, “A Rational Design
Process: How and Why to Fake It”, IEEE Transactions on Software Engineering,
SE-12, 2, February 1986.

The definition of software architecture used here, as well as the arguments
for the importance of architecture and the role of the architect, all derive from
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed.,
Addison-Wesley, 2012.

Several books cover the different activities of the architecture development
life cycle, including G. Fairbanks, Just Enough Software Architecture: A Risk
Driven Approach, Marshall & Brainerd, 2010, and the ones whose design ap-
proaches are described in Chapter 7.

An early reference for the first version of ADD can be found in F. Bach-
mann, L. Bass, G. Chastek, P. Donohoe, and F. Peruzzi, The Architecture Based
Design Method, CMU/SEI-2000-TR-001. The second version of ADD was de-
scribed in R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and
W. Wood, Attribute-Driven Design (ADD), Version 2.0, CMU/SEI-2006-TR-023.
The version of ADD that we have referred to here as ADD 2.5 was published in
H. Cervantes, P. Velasco-Elizondo, and R. Kazman, “A Principled Way of Using
Frameworks in Architectural Design”, IEEE Software, 46–53, March/April 2013.

11

2
Architectural Design

We now dive into the process of architecture design: what it is, why it is impor-
tant, how it works (at an abstract level). and which major concepts and activities
it involves. We first discuss architectural drivers: the various factors that “drive”
design decisions, some of which are documented as requirements, but many of
which are not. In addition, we provide an overview of design concepts—the ma-
jor building blocks that you will select, combine, instantiate, analyze, and docu-
ment as part of your design process.

2.1 Design in General

Design is both a verb and a noun. Design is a process, an activity, and hence a
verb. The process results in the creation of a design—a description of a desired
end state. Thus the output of the design process is the thing, the noun, the arti-
fact that you will eventually implement. Designing means making decisions to
achieve goals and satisfy requirements and constraints. The outputs of the design
process are a direct reflection of those goals, requirements, and constraints. Think
about houses, for example. Why do traditional houses in China look different
from those in Switzerland or Algeria? Why does a yurt look like a yurt, which is
different from an igloo or a chalet or a longhouse?

The architectures of these styles of houses have evolved over the centuries
to reflect their unique sets of goals, requirements, and constraints. Houses in

12 Chapter 2—Architectural Design

China feature symmetric enclosures, sky wells to increase ventilation, south-fac-
ing courtyards to collect sunlight and provide protection from cold north winds,
and so forth. A-frame houses have steep pitched roofs that extend to the ground,
meaning minimal painting and protection from heavy snow loads (which just
slide off to the ground). Igloos are built of ice, reflecting the availability of ice,
the relative poverty of other building materials, and the constraints of time (a
small one can be built in an hour).

In each case, the process of design involved the selection and adaptation of a
number of solution approaches. Even igloo designs can vary. Some are small and
meant for a temporary travel shelter. Others are large, often connecting several
structures, meant for entire communities to meet. Some are simple unadorned
snow huts. Others are lined with furs, with ice “windows”, and doors made of
animal skin.

The process of design, in each case, balances the various “forces” facing the
designer. Some designs require considerable skill to execute (such as carving and
stacking snow blocks in such a way that they produce a self-supporting dome).
Others require relatively little skill—a lean-to can be constructed from branches
and bark by almost anyone. But the qualities that these structures exhibit may
also vary considerably. Lean-tos provide little protection from the elements and
are easily destroyed, whereas an igloo can withstand Arctic storms and support
the weight of a person standing on the roof.

Is design “hard”? Well, yes and no. Novel design is hard. It is pretty clear
how to design a conventional bicycle, but the design for the Segway broke new
ground. Fortunately, most design is not novel, because most of the time our re-
quirements are not novel. Most people want a bicycle that will reliably convey
them from place to place. The same holds true in every domain. Consider houses,
for example. Most people living in Phoenix want a house that can be easily and
economically kept cool, whereas most people in Edmonton are primarily con-
cerned with a house that can be kept warm. In contrast, people living in Japan and
Los Angeles are concerned with buildings that can withstand earthquakes.

The good news for you, the architect, is that there are ample proven designs
and design fragments, or building blocks that we call design concepts, that can
be reused and combined to reliably achieve these goals. If your design is truly
novel—if you are designing the next Sydney Opera House—then the design pro-
cess will likely be “hard”. The Sydney Opera House, for example, cost 14 times
its original budget estimate and was delivered ten years late. So, too, with the
design of software architectures.

2.2 Design in Software Architecture 13

2.2 Design in Software Architecture

Architectural design for software systems is no different than design in general: It
involves making decisions, working with available skills and materials, to satisfy
requirements and constraints. In architectural design, we make decisions to trans-
form our design purpose, requirements, constraints, and architectural concerns—
what we call the architectural drivers—into structures, as shown in Figure 2.1.
These structures are then used to guide the project. They guide analysis and con-
struction, and serve as the foundation for educating a new project member. They
also guide cost and schedule estimation, team formation, risk analysis and miti-
gation, and, of course, implementation.

Architectural design is, therefore, a key step to achieving your product and
project goals. Some of these goals are technical (e.g., achieving low and predict-
able latency in a video game or an e-commerce website), and some are nontech-
nical (e.g., keeping the workforce employed, entering a new market, meeting a
deadline). The decisions that you, as an architect, make will have implications for
the achievement of these goals and may, in some cases, be in conflict. The choice

Design Purpose

Primary Functionality

Constraints

Architectural Concerns

Architectural Drivers

Quality Attributes

<<uses>>

(Documented) Structures
resulting from

design decisions

<<produces>>

<<selects and
instantiates>>

The Architect

Candidate
design

decisions

Design Concepts
Server Side

«Layer»
Services SS

«Layer»
Business Logic SS

«Layer»
Data SS

«facade»
RequestService

TopologyController
DomainEntities

RegionDataMapper TimeServerDataMapper EventDataMapper TimeServerConnector

TimeServerEventsController DataCollectionController

ServerClient

Technician

:NetworkStatusMonitoringView :NetworkStatusMonitoringController :RequestManager :RequestService :TopologyController :RegionDataMapper

launch()

initialize()

requestTopology()

sendRequest(Request)

requestTopology()

retrieve(id) :Region

:Region

:Region

:Response

:Region

:boolean

getRootRegion() :Region

populateView()

interact()

pc :User Workstation «replicated»
:Application Server

«replicated»
database :Database Server

:Time Server

Server-Side Application
«Java Web Start»

Client-Side
Application

«SNMP»

«JDBC»

FIGURE 2.1 Overview of the architecture design activity
(Architect image © Brett Lamb | Dreamstime.com)

14 Chapter 2—Architectural Design

of a particular reference architecture (e.g., the Rich Client Application) may pro-
vide a good foundation for achieving your latency goals and will keep your work-
force employed because they are already familiar with that reference architecture
and its supporting technology stack. But this choice may not help you enter a new
market—mobile games, for example.

In general, when designing, a change in some structure to achieve one
quality attribute will have negative effects on other quality attributes. These
tradeoffs are a fact of life for every practicing architect in every domain. We
will see this over and over again in the examples and case studies provided in
this book. Thus the architect’s job is not one of finding an optimal solution, but
rather one of satisficing—searching through a potentially large space of design
alternatives and decisions until an acceptable solution is found.

2.2.1 Architectural Design

Grady Booch has said, “All architecture is design, but not all design is archi-
tecture”. What makes a decision “architectural”? A decision is architectural if it
has non-local consequences and those consequences matter to the achievement
of an architectural driver. No decision is, therefore, inherently architectural or
non-architectural. The choice of a buffering strategy within a single element may
have little effect on the rest of the system, in which case it is an implementation
detail that is of no concern to anyone except the implementer or maintainer of
that element. In contrast, the buffering strategy may have enormous implications
for performance (if the buffering affects the achievement of latency or through-
put or jitter goals) or availability (if the buffers might not be large enough and
information gets lost) or modifiability (if we wish to flexibly change the buffering
strategy in different deployments or contexts). The choice of a buffering strat-
egy, like most design choices, is neither inherently architectural nor inherently
non-architectural. Instead, this distinction is completely dependent on the current
and anticipated architectural drivers.

2.2.2 Element Interaction Design

Architectural design generally results in the identification of only a subset of the
elements that are part of the system’s structure. This is to be expected because,
during initial architectural design, the architect will focus on the primary func-
tionality of the system. What makes a use case primary? A combination of busi-
ness importance, risk, and complexity considerations feed into this designation.
Of course, to your users, everything is urgent and top priority. More realistically,
a small number of use cases provide the most fundamental business value or rep-
resent the greatest risk (if they are done wrong), so these are deemed primary.

Every system has many more use cases, beyond the primary ones, that need
to be satisfied. The elements that support these nonprimary use cases and their

2.2 Design in Software Architecture 15

interfaces are identified as part of what we call element interaction design. This
level of design usually follows architectural design. The location and relation-
ships of these elements, however, are constrained by the decisions that were
made during architectural design. These elements can be units of work (i.e., mod-
ules) assigned to an individual or to a team, so this level of design is important for
defining not only how nonprimary functionality is allocated, but also for planning
purposes (e.g., team formation and communication, budgeting, outsourcing, re-
lease planning, unit and integration test planning).

Depending on the scale and complexity of the system, the architect should be
involved in element interaction design, either directly or in an auditing role. This
involvement ensures that the system’s important quality attributes are not com-
promised—for example, if the elements are not defined, located, and connected
correctly. It will also help the architect spot opportunities for generalization.

2.2.3 Element Internals Design

A third level of design follows element interaction design, which we call element
internals design. In this level of design, which is usually conducted as part of the
element development activities, the internals of the elements identified in the pre-
vious design level are established, so as to satisfy the element’s interface.

Architectural decisions can and do occur at the three levels of design. More-
over, during architectural design, the architect may need to delve as deeply as
element internals design to achieve a particular architectural driver. An example
of this is the selection of a buffering strategy that was previously discussed. In
this sense, architectural design can involve considerable detail, which explains
why we do not like to think about it in terms of “high-level design” or “detailed
design” (see the sidebar “Detailed Design?”).

Architectural design precedes element interaction design, which precedes
element internals design. This is logically necessary: One cannot design an ele-
ment’s internals until the elements themselves have been defined, and one cannot
reason about interaction until several elements and some patterns of interactions
among them have been defined. But as projects grow and evolve, there is, in prac-
tice, considerable iteration between these activities.

Detailed Design?

The term “detailed design” is often used to refer to the design of the inter-
nals of modules. Although it is widely used, we really don’t like this term,
which is presented as somehow in opposition to “high-level design”. We
prefer the more precise terms “architectural design”, “element interaction
design”, and “element internals design”.

16 Chapter 2—Architectural Design

After all, architectural design may be quite detailed, if your system is
complex. And some design “details” will turn out to be architectural. For the
same reason, we also don’t like the terms “high-level design” and “low-level
design”. Who can really know what these terms actually mean? Clearly,
“high-level design” should be somehow “higher” or more abstract, and cover
more of the architectural landscape than “low-level design”, but beyond that
we are at a loss to imbue these terms with any precise meaning.

So here is what we recommend: Just avoid using terms such as “high”,
“low”, or “detailed” altogether. There is always a better, more precise
choice, such as “architectural”, “element interaction”, or “element internals”
design!

Think carefully about the impact of the decisions you are making, the
information that you are trying to convey in your design documentation,
and the likely audience for that information, and then give that process an
appropriate, meaningful name.

2.3 Why Is Architectural Design So Important?

There is a very high cost to a project of not making certain design decisions, or
of not making them early enough. This manifests itself in many different ways.
Early on, an initial architecture is critical for project proposals (or, as it is some-
times called in the consulting world, the pre-sales process). Without doing some
architectural thinking and some early design work, you cannot confidently pre-
dict project cost, schedule, and quality. Even at this early stage, an architecture
will determine the key approaches for achieving architectural drivers, the gross
work-breakdown structure, and the choices of tools, skills, and technologies
needed to realize the system.

In addition, architecture is a key enabler of agility, as we will discuss in
Chapter 9. Whether your organization has embraced Agile processes or not, it is
difficult to imagine anyone who would willingly choose an architecture that is
brittle and hard to change or extend or tune—and yet it happens all the time. This
so-called technical debt occurs for a variety of reasons, but paramount among
these is the combination of a focus on features—typically driven by stakeholder
demands—and the inability of architects and project managers to measure the
return on investment of good architectural practices. Features provide immediate
benefit. Architectural improvement provides immediate costs and long-term ben-
efits. Put this way, why would anyone ever “invest” in architecture? The answer
is simple: Without architecture, the benefits that the system is supposed to bring
will be far harder to realize.

Simply put, if you do not make some key architectural decisions early and
if you allow your architecture to degrade, you will be unable to maintain sprint

2.4 Architectural Drivers 17

velocity, because you cannot easily respond to change requests. However, we ve-
hemently disagree with what the original creators of the Agile Manifesto claimed:
“The best architectures, requirements, and designs emerge from self-organizing
teams”. Indeed, our demurral with this point is precisely why we have written
this book. Good architectural design is difficult (and still rare), and it does not
just “emerge”. This opinion mirrors a growing consensus within the Agile com-
munity. More and more, we see techniques such as “disciplined agility at scale”,
the “walking skeleton”, and the “scaled Agile framework” embraced by Agile
thought leaders and practitioners alike. Each of these techniques advocates some
architectural thinking and design prior to much, if any, development. To reiterate,
architecture enables agility, and not the other way around.

Furthermore, the architecture will influence, but not determine, other deci-
sions that are not in and of themselves design decisions. These decisions do not
influence the achievement of quality attributes directly, but they may still need
to be made by the architect. For example, such decisions may include selection
of tools; structuring the development environment; supporting releases, deploy-
ment, and operations; and making work assignments.

Finally, a well-designed, properly communicated architecture is key to
achieving agreements that will guide the team. The most important kinds to make
are agreements on interfaces and on shared resources. Agreeing on interfaces
early is important for component-based development, and critically important
for distributed development. These decisions will be made sooner or later. If you
don’t make the decisions early, the system will be much more difficult to inte-
grate. In Section 3.6, we will discuss how to define interfaces as part of archi-
tectural design—both the external interfaces to other systems and the internal
interfaces that mediate your element interactions.

2.4 Architectural Drivers

Before commencing design with ADD (or with any other design method, for
that matter), you need to think about what you are doing and why. While this
statement may seem blindingly obvious, the devil is, as usual, in the details. We
categorize these “what” and “why” questions as architectural drivers. As shown
in Figure 2.1, these drivers include a design purpose, quality attributes, primary
functionality, architectural concerns, and constraints. These considerations
are critical to the success of the system and, as such, they drive and shape the
architecture.

As with any other important requirements, architectural drivers need to be
baselined and managed throughout the development life cycle.

18 Chapter 2—Architectural Design

2.4.1 Design Purpose

First, you need to be clear about the purpose of the design that you want to
achieve. When and why are you doing this architecture design? Which business
goals is the organization most concerned about at this time?

1. You may be doing architecture design as part of a project proposal (for the
pre-sales process in a consulting organization, or for internal project selec-
tion and prioritization in a company, as discussed in Section 9.1.1). It is not
uncommon that, as part of determining project feasibility, schedule, and bud-
get, an initial architecture is created. Such an architecture would not be very
detailed; its purpose is to understand and break down the architecture in suffi-
cient detail that the units of work are understood and hence may be estimated.

2. You may be doing architecture design as part of the process of creating an
exploratory prototype. In this case, the purpose of the architecture design
process is not so much to create a releasable or reusable system, but rather to
explore the domain, to explore new technology, to place something execut-
able in front of a customer to elicit rapid feedback, or to explore some quality
attribute (such as performance scalability or failover for availability).

3. You may be designing your architecture during development. This could be
for an entire new system, for a substantial portion of a new system, or for a
portion of an existing system that is being refactored or replaced. In this case,
the purpose is to do enough design work to satisfy requirements, guide sys-
tem construction and work assignments, and prepare for an eventual release.

These purposes may be interpreted and realized differently for greenfield
systems in mature domains, for greenfield systems in novel domains, and for ex-
isting systems. In a mature domain, the pre-sales process, for example, might be
relatively straightforward; the architect can reuse existing systems as examples
and confidently make estimates based on analogy. In novel domains, the pre-sales
estimation process will be far more complex and risky, and may have highly vari-
able results. In these circumstances, a prototype of the system, or a key part of the
system, may need to be created to mitigate risk and reduce uncertainty. In many
cases, this architecture may also need to be quickly adapted as new requirements
are learned and embraced. In brownfield systems, while the requirements are bet-
ter understood, the existing system is itself a complex object that must be well
understood for planning to be accurate.

Finally, the development organization’s goals during development or main-
tenance may affect the architecture design process. For example, the organization
might be interested in designing for reuse, designing for future extension or sub-
setting, designing for scalability, designing for continuous delivery, designing to
best utilize existing project capabilities and team member skills, and so forth. Or
the organization might have a strategic relationship with a vendor. Or the CIO
might have a specific like or dislike and wants to impose it on your project.

2.4 Architectural Drivers 19

Why do we bother to list these considerations? Because they will affect
both the process of design and the outputs of design. Architectures exist to help
achieve business goals. The architect should be clear about these goals and should
communicate them (and negotiate them!) and establish a clear design purpose be-
fore beginning the design process.

2.4.2 Quality Attributes

In the book Software Architecture in Practice, quality attributes are defined as
being measurable or testable properties of a system that are used to indicate how
well the system satisfies the needs of its stakeholders. Because quality tends to
be a subjective concept in itself, these properties allow quality to be expressed
succinctly and objectively.

Among the drivers, quality attributes are the ones that shape the architecture
the most significantly. The critical choices that you make when you are doing ar-
chitectural design determine, in large part, the ways that your system will or will
not meet these driving quality attribute goals.

Given their importance, you must worry about eliciting, specifying, priori-
tizing, and validating quality attributes. Given that so much depends on getting
these drivers right, this sounds like a daunting task. Fortunately, a number of
well-understood, widely disseminated techniques can help you here (see sidebar
“The Quality Attribute Workshop and the Utility Tree”):

§	Quality Attribute Workshop (QAW) is a facilitated brainstorming session
involving a group of system stakeholders that covers the bulk of the activi-
ties of eliciting, specifying, prioritizing, and achieving consensus on quality
attributes.

§	Mission Thread Workshop serves the same purpose as QAW, but for a sys-
tem of systems.

§	The Utility Tree can be used by the architect to prioritize quality attribute
requirements according to their technical difficulty and risk.

We believe that the best way to discuss, document, and prioritize quality
attribute requirements is as a set of scenarios. A scenario, in its most basic form,
describes the system’s response to some stimulus. Why are scenarios the best ap-
proach? Because all other approaches are worse! Endless time may be wasted in
defining terms such as “performance” or “modifiability” or “configurability”, as
these discussions tend to shed little light on the real system. It is meaningless to
say that a system will be “modifiable”, because every system is modifiable with
respect to some changes and not modifiable with respect to others. One can, how-
ever, specify the modifiability response measure you would like to achieve (say,
elapsed time or effort) in response to a specific change request. For example, you
might want to specify that “a change to update shipping rates on the e-commerce

20 Chapter 2—Architectural Design

website is completed and tested in less than 1 person-day of effort”—an unam-
biguous criterion.

The heart of a quality attribute scenario, therefore, is the pairing of a stim-
ulus with a response. Suppose that you are building a video game and you have
a functional requirement like this: “The game shall change view modes when
the user presses the <C> button”. This functional requirement, if it is important,
needs to be associated with quality attribute requirements. For example:

§	How fast should the function be?
§	How secure should the function be?
§	How modifiable should the function be?

To address this problem, we use a scenario to describe a quality attribute
requirement. A quality attribute scenario is a short description of how a system is
required to respond to some stimulus. For example, we might annotate the func-
tional requirement given earlier as follows: “The game shall change view modes
in < 500 ms when the user presses the <C> button”. A scenario associates a stim-
ulus (in this case, the pressing of the <C> button) with a response (changing the
view mode) that is measured using a response measure (< 500 ms). A complete
quality attribute scenario adds three other parts: the source of the stimulus (in
this case, the user), the artifact affected (in this case, because we are dealing
with end-to-end latency, the artifact is the entire system) and the environment
(are we in normal operation, startup, degraded mode, or some other mode?). In
total, then, there are six parts of a completely well-specified scenario, as shown
in Figure 2.2.

Stimulus Response

Response
Measure

Source
of Stimulus

Artifact

Environment

3
2

1

4

FIGURE 2.2 The six parts of a quality attribute scenario

2.4 Architectural Drivers 21

Scenarios are testable, falsifiable hypotheses about the quality attribute be-
havior of the system under consideration. Because they have explicit stimuli and
responses, we can evaluate a design in terms of how likely it is to support the
scenario, and we can take measurements and test a prototype or fully fleshed-out
system for whether it satisfies the scenario in practice. If the analysis (or proto-
typing results) indicates that the scenario’s response goal cannot be met, then the
hypothesis is deemed falsified.

As with other requirements, scenarios should be prioritized. This can be
achieved by considering two dimensions that are associated with each scenario
and that are assigned a rank of importance:

§	The first dimension corresponds to the importance of the scenario with re-
spect to the success of the system. This is ranked by the customer.

§	The second dimension corresponds to the degree of technical risk associ-
ated with the scenario. This is ranked by the architect.

A low/medium/high (L/M/H) scale is used to rank both dimensions. Once
the dimensions have been ranked, scenarios are prioritized by selecting those that
have a combination of (H, H), (H, M), or (M, H) rankings.

In addition, some traditional requirements elicitation techniques can be
modified slightly to focus on quality attribute requirements, such as Joint Re-
quirements Planning (JRP), Joint Application Design (JAD), discovery prototyp-
ing, and accelerated systems analysis.

But whatever technique you use, do not start design without a prioritized list
of measurable quality attributes! While stakeholders might plead ignorance (“I
don’t know how fast it needs to be; just make it fast!”), you can almost always
elicit at least a range of possible responses. Instead of saying the system should
be “fast”, ask the stakeholder if a 10-second response time is acceptable. If that
is unacceptable, ask if 5 seconds is OK, or 1 second. You will find that, in most
cases, users know more than they realize about their requirements, and you can at
least “box them in” to a range.

The Quality Attribute Workshop and the Utility Tree

The Quality Attribute Workshop (QAW)

The QAW is a facilitated, stakeholder-focused method to generate, pri-
oritize, and refine quality attribute scenarios. A QAW meeting is ideally
enacted before the software architecture has been defined although, in
practice, we have seen the QAW being used at all points in the software
development life cycle. The QAW is focused on system-level concerns
and specifically the role that software will play in the system. The steps of
the QAW are as follows:

22 Chapter 2—Architectural Design

1. QAW Presentation and Introductions

The QAW facilitators describe the motivation for the QAW and explain
each step of the method.

2. Business Goals Presentation

A stakeholder representing the project’s business concerns presents the
system’s business context, broad functional requirements, constraints,
and known quality attribute requirements. The quality attributes that
will be refined in later QAW steps will be derived from, and should be
traceable to, the business goals presented in this step. For this reason,
these business goals must be prioritized.

3. Architectural Plan Presentation

The architect presents the system architectural plans as they currently
exist. Although the architecture has frequently not been defined yet
(particularly for greenfield systems), the architect often knows quite a lot
about it even at this early stage. For example, the architect might already
know about technologies that are mandated, other systems that this
system must interact with, standards that must be followed, subsystems
or components that could be reused, and so forth.

4. Identification of Architectural Drivers

The facilitators share their list of key architectural drivers that they
assembled during steps 2 and 3 and ask the stakeholders for
clarifications, additions, deletions, and corrections. The idea here is to
reach a consensus on a distilled list of architectural drivers that covers
major functional requirements, business drivers, constraints, and quality
attributes.

5. Scenario Brainstorming

Given this context, each stakeholder now has the opportunity to express
a scenario representing that stakeholder’s needs and desires with
respect to the system. The facilitators ensure that each scenario has an
explicit stimulus and response. The facilitators also ensure traceability
and completeness: At least one representative scenario should exist for
each architectural driver listed in step 4 and should cover all the business
goals listed in step 2.

6. Scenario Consolidation

Similar scenarios are consolidated where reasonable. In step 7, the
stakeholders vote for their favorite scenarios, and consolidation helps
to prevent votes from being spread across several scenarios that are
expressing essentially the same concern.

7. Scenario Prioritization

Prioritization of the scenarios is accomplished by allocating to each
stakeholder a number of votes equal to 30 percent of the total number of
scenarios. The stakeholders can distribute these votes to any scenario
or scenarios. Once all the stakeholders have voted, the results are tallied
and the scenarios are sorted in order of popularity.

2.4 Architectural Drivers 23

8. Scenario Refinement

The highest-priority scenarios are refined and elaborated. The facilitators
help the stakeholders express these in the form of six-part scenarios:
source, stimulus, artifact, environment, response, and response
measure.

The output of the QAW is therefore a prioritized list of scenarios, aligned
with business goals, where the highest-priority scenarios have been
explored and refined. A QAW can be conducted in as little as 2–3 hours
for a simple system or as part of an iteration, and as much as 2 days for a
complex system where requirements completeness is a goal.

Utility Tree

If no stakeholders are readily available to consult, you still need to decide
what to do and how to prioritize the many challenges facing the system.
One way to organize your thoughts is to create a Utility Tree. The Utility
Tree, such as the one shown in the following figure, helps to articulate
your quality attribute goals in detail, and then to prioritize them.

Utility

Performance

Usability

Availability

Security

Peak
load

Latency

Feedback

Learnability

SW failure

Network failure

Authentication

Audit trail

Time servers send traps to the management system at peak
load. 100% of the traps are successfully processed and stored.

The management system collects data from time server during
peak load. All data collected within 5 minutes.

User displays time server event history. The list of events
from the last 24 hours is displayed within 1 second.

A failure occurs in the management system. The management
system resumes operation in less than 30 seconds.

A user changes a system configuration. The change is logged
100% of the time.

A new user can configure their account and be operating with
less than 8 hours of training.

Critical events are reported and visible to the user in < 5
seconds.

Authentication ensures 99.999% of unauthorized login
attempts can be detected.

(H, H)

(H, H)

(M, M)

(H, L)

(H, M)

(M, H)

(L, L)

(H, L)

24 Chapter 2—Architectural Design

It works as follows. First write the word “Utility” on a sheet of paper. Then
write the various quality attributes that constitute utility for your system.
For example, you might know, based on the business goals for the system,
that the most important qualities for the system are that the system be fast,
secure, and easy to modify. In turn, you would write these words under-
neath “Utility”. Next, because we don’t really know what any of those terms
actually means, we describe the aspect of the quality attribute that we are
most concerned with. For example, while “performance” is vague, “latency
of database transactions” is a bit less vague. Likewise, while “modifiability”
is vague, “ease of adding new codecs” is a bit less vague.

The leaves of the tree are expressed as scenarios, which provide con-
crete examples of the quality attribute considerations that you just enumer-
ated. For example, for “latency of database transactions”, you might create
a scenario such as “1000 users simultaneously update their own customer
records under normal conditions with an average latency of 1 second”.
For “ease of adding new codecs”, you might create a scenario such as
“Customer requests that a new custom codec be added to the system.
Codec is added with no side effects in 2 person-weeks of effort”.

Finally, the scenarios that you have created must be prioritized. We do
this prioritization by using the technique of ranking across two dimensions,
resulting in a priority matrix such as the following (where the numbers in
the cells are from a set of system scenarios).

Business
Importance/
Technical Risk L M H

L 5, 6, 17, 20, 22 1, 14 12, 19

M 9, 12, 16 8, 20 3, 13, 15

H 10, 18, 21 4, 7 2, 11

Our job, as architects, is to focus on the lower-right-hand portion of this table (H,
H): those scenarios that are of high business importance and high risk. Once we
have satisfactorily addressed those scenarios, we can move to the (M, H) or (H,
M) ones, and then move up and to the left until all of the system’s scenarios are
addressed (or perhaps until we run out of time or budget, as is often the case).

It should be noted that the QAW and the Utility Tree are two different
techniques that are aimed at the same goal—eliciting and prioritizing the
most important quality attribute requirements, which will be some of your
most critical architectural drivers. There is no reason, however, to choose
between these techniques. Both are useful and valuable and, in our
experience, they have complementary strengths: The QAW tends to focus
more on the requirements of external stakeholders, whereas the Utility
Tree tends to excel at eliciting the requirements of internal stakeholders.
Making all of these stakeholders happy will go a long way toward ensuring
the success of your architecture.

2.4 Architectural Drivers 25

2.4.3 Primary Functionality

Functionality is the ability of the system to do the work for which it was in-
tended. As opposed to quality attributes, the way the system is structured does not
normally influence functionality. You can have all of the functionality of a given
system coded in a single enormous module, or you can have it neatly distrib-
uted across many smaller, highly cohesive modules. Externally the system will
look and work the same way if you consider only functionality. What matters,
though, is what happens when you want to make changes to such system. In the
former case, changes will be difficult and costly; in the latter case, they should be
much easier and cheaper to perform. In terms of architectural design, allocation
of functionality to elements, rather than the functionality per se, is what matters.
A good architecture is one in which the most common changes are localized in a
single or a few elements, and hence easy to make.

When designing an architecture, you need to consider at least the primary
functionality. Primary functionality is usually defined as functionality that is crit-
ical to achieve the business goals that motivate the development of the system.
Other criteria for primary functionality might be that it implies a high level of
technical difficulty or that it requires the interaction of many architectural ele-
ments. As a rule of thumb, approximately 10 percent of your use cases or user
stories are likely to be primary.

There are two important reasons why you need to consider primary func-
tionality when designing an architecture:

1. You need to think how functionality will be allocated to elements (usually
modules) to promote modifiability or reusability, and also to plan work
assignments.

2. Some quality attribute scenarios are directly connected to the primary func-
tionality in the system. For example, in a movie streaming application, one of
the primary use cases is, of course, to watch a movie. This use case is asso-
ciated with a performance quality attribute scenario such as “Once the user
presses play, the movie should begin streaming in no more than 5 seconds”.
In this case, the quality attribute scenario is directly associated with the pri-
mary use case, so making decisions to support this scenario also requires
making decisions about how its associated functionality will be supported.
This is not the case for all quality attributes. For example, an availability sce-
nario can involve recovery from a system failure, and this failure may occur
when any of the system’s use cases are being executed.

Decisions regarding the allocation of functionality that are made during
architectural design establish a precedent for how the rest of the functionality
should be allocated to modules as development progresses. This is usually not the
work of the architect; instead, this activity is typically performed as part of the
element interaction design process described in Section 2.2.2.

26 Chapter 2—Architectural Design

Finally, bad decisions that are made regarding the allocation of functional-
ity result in the accumulation of technical debt. (Of course, these decisions may
reveal themselves to be bad only in hindsight.) This debt can be paid through the
use of refactoring, although this impacts the project’s rate of progress, or velocity
(see the sidebar “Refactoring”).

Refactoring

If you refactor a software architecture (or part of one), what you are doing
is maintaining the same functionality but changing some quality attribute
that you care about. Architects often choose to refactor because a portion
of the system is difficult to understand, debug, and maintain. Alternatively,
they may refactor because part of the system is slow, or prone to failure,
or insecure.

The goal of the refactoring in each case is not to change the func-
tionality, but rather to change the quality attribute response. (Of course,
additions to functionality are sometimes lumped together with a refactor-
ing exercise, but that is not the core intent of the refactoring.) Clearly, if we
can maintain the same functionality but change the architecture to achieve
different quality attribute responses, these requirement types are orthogo-
nal to each other—that is, they can vary independently.

2.4.4 Architectural Concerns

Architectural concerns encompass additional aspects that need to be considered
as part of architectural design but that are not expressed as traditional require-
ments. There are several different types of concerns:

§	General concerns. These are “broad” issues that one deals with in creating
the architecture, such as establishing an overall system structure, the allo-
cation of functionality to modules, the allocation of modules to teams, or-
ganization of the code base, startup and shutdown, and supporting delivery,
deployment, and updates.

§	Specific concerns. These are more detailed system-internal issues such as
exception management, dependency management, configuration, logging,
authentication, authorization, caching, and so forth that are common across
large numbers of applications. Some specific concerns are addressed in refer-
ence architectures (see Section 2.5.1), but others will be unique to your sys-
tem. Specific concerns also result from previous design decisions. For exam-
ple, you may need to address session management if you previously decided
to use a reference architecture for the development of web applications.

2.4 Architectural Drivers 27

§	Internal requirements. These requirements are usually not specified ex-
plicitly in traditional requirement documents, as customers usually seldom
express them. Internal requirements may address aspects that facilitate de-
velopment, deployment, operation, or maintenance of the system. They are
sometimes called “derived requirements”.

§	Issues. These result from analysis activities, such as a design review (see
Section 8.6), so they may not be present initially. For instance, an architec-
tural evaluation may uncover a risk that requires some changes to be per-
formed in the current design.

Some of the decisions surrounding architectural concerns might be trivial
or obvious. For example, your deployment structure might be a single processor
for an embedded system, or a single cell phone for an app. Your reference archi-
tecture might be constrained by company policy. Your authentication and autho-
rization policies might be dictated by your enterprise architecture and realized
in a shared framework. In other cases, however, the decisions required to satisfy
particular concerns may be less obvious—for example, in exception management
or input validation or structuring the code base.

From their past experience, wise architects are usually aware of the concerns
that are associated with a particular type of system and the need to make design
decisions to address them. Inexperienced architects are usually less aware of such
concerns; because these concerns tend to be tacit rather than explicit, they may
not consider them as part of the design process, which often results in problems
later on.

Architectural concerns frequently result in the introduction of new quality
attribute scenarios. The concern of “supporting logging”, for example, is too
vague and needs to be made more specific. Like the quality attribute scenarios
that are provided by the customer, these scenarios need to be prioritized. For
these scenarios, however, the customer is the development team, operations, or
other members of the organization. During design, the architect must consider
both the quality attribute scenarios that are provided by the customer and those
scenarios that are derived from architectural concerns.

One of the goals of our revision of the ADD method was to elevate the impor-
tance of architectural concerns as explicit inputs to the architecture design process,
as will be highlighted in our examples and case studies in Chapters 4, 5, and 6.

2.4.5 Constraints

You need to catalog the constraints on development as part of the architectural
design process. These constraints may take the form of mandated technologies,
other systems with which your system needs to interoperate or integrate, laws
and standards that must be complied with, the abilities and availability of your
developers, deadlines that are non-negotiable, backward compatibility with older

28 Chapter 2—Architectural Design

versions of systems, and so on. An example of a technical constraint is the use of
open source technologies, whereas a nontechnical constraint is that the system
must obey the Sarbanes-Oxley Act or that it must be delivered by December 15.

A constraint is a decision over which you have little or no control as an ar-
chitect. Your job is, as we mentioned in Chapter 1, to satisfice: to design the best
system that you can, despite the constraints you face. Sometimes you might be
able to argue for loosening a constraint, but in most cases you have no choice but
to design around the constraints.

2.5 Design Concepts: The Building Blocks for Creating
Structures

Design is not random, but rather is planned, intentional, rational, and directed.
The process of design may seem daunting at first. When facing the “blank page”
at the beginning of any design activity, the space of possibilities might seem im-
possibly huge and complex. However, there is some help here. The software ar-
chitecture community has created and evolved, over the course of decades, a body
of generally accepted design principles that can guide us to create high-quality
designs with predictable outcomes.

For example, some well-documented design principles are oriented toward
the achievement of specific quality attributes:

§	To help achieve high modifiability, aim for good modularity, which means
high cohesion and low coupling.

§	To help achieve high availability, avoid having any single point of failure.
§	To help achieve scalability, avoid having any hard-coded limits for critical

resources.
§	To help achieve security, limit the points of access to critical resources.
§	To help achieve testability, externalize state.
§	. . . and so forth.

In each case, these principles have been evolved over decades of dealing
with those quality attributes in practice. In addition, we have evolved reusable
realizations of these abstract approaches in design and, eventually, in code. We
call these reusable realizations design concepts, and they are the building blocks
from which the structures that make up the architecture are created. Different
types of design concepts exist, and here we discuss some of the most commonly
used, including reference architectures, deployment patterns, architectural pat-
terns, tactics, and externally developed components (such as frameworks). While
the first four are conceptual in nature, the last one is concrete.

2.5 Design Concepts: The Building Blocks for Creating Structures 29

2.5.1 Reference Architectures

Reference architectures are blueprints that provide an overall logical structure
for particular types of applications. A reference architecture is a reference model
mapped onto one or more architectural patterns. It has been proven in business
and technical contexts, and typically comes with a set of supporting artifacts that
eases its use.

An example of a reference architecture for the development of web applica-
tions is shown in Figure 2.3 on the next page. This reference architecture estab-
lishes the main layers for this type of application—presentation, business, and
data—as well as the types of elements that occur within the layers and the re-
sponsibilities of these elements, such as UI components, business components,
data access components, service agents, and so on. Also, this reference archi-
tecture introduces cross-cutting concerns, such as security and communication,
that need to be addressed. As this example shows, when you select a reference
architecture for your application, you also adopt a set of issues that you need to
address during design. You may not have an explicit requirement related to com-
munications or security, but the fact that these elements are part of the reference
architecture require you to make design decisions about them.

Reference architectures may be confused with architectural styles, but these
two concepts are different. Architectural styles (such as “Pipe and Filter” and
“Client Server”) define types of components and connectors in a specified topol-
ogy that are useful for structuring an application either logically or physically.
Such styles are technology and domain agnostic. Reference architectures, in
contrast, provide a structure for applications in specific domains, and they may
embody different styles. Also, while architectural styles tend to be popular in ac-
ademia, reference architectures seem to be preferred by practitioners—which is
also why we favor them in our list of design concepts.

While there are many reference architectures, we are not aware of any cata-
log that contains an extensive list of them.

2.5.2 Architectural Design Patterns

Design patterns are conceptual solutions to recurring design problems that exist
in a defined context. While design patterns originally focused on decisions at the
object scale, including instantiation, structuring, and behavior, today there are
catalogs with patterns that address decisions at varying levels of granularity. In
addition, there are specific patterns to address quality attributes such as security
or integration.

While some people argue for the differentiation between what they consider
to be architectural patterns and the more fine-grained design patterns, we believe
there is no principled difference that can be solely attributed to scale. We consider
a pattern to be architectural when its use directly and substantially influences the
satisfaction of some of the architectural drivers (see Section 2.2).

30 Chapter 2—Architectural Design

FIGURE 2.3 Example reference architecture for the development of web
applications from the Microsoft Application Architecture Guide (Key: UML)

Figure 2.4 shows an example architectural pattern that is useful for struc-
turing the system, the Layers pattern. When you choose a pattern such as this

2.5 Design Concepts: The Building Blocks for Creating Structures 31

one, you must decide how many layers you will need for your system. Figure 2.5
shows a pattern to support concurrency, which is useful to increase performance.
This pattern, too, needs to be instantiated—that is, it needs to be adapted to the
specific problem and design context. Instantiation is discussed in Chapter 3.

Although reference architectures may be considered as a type of pattern,
we prefer to consider them separately because of the important role they play
in structuring an application and because they are more directly connected to
technology stacks. Also, a reference architecture typically incorporates other
patterns and often constrains these patterns. For example, the reference archi-
tecture for web applications shown in Figure 2.3 incorporates the Layers pat-
tern but also establishes how many layers need to be used. This reference archi-
tecture also incorporates other patterns such as an Application Facade and Data
Access Components.

FIGURE 2.4 The Layers pattern for structuring an application from Pattern-
Oriented Software Architecture

32 Chapter 2—Architectural Design

FIGURE 2.5 The Half-Sync/Half-Async pattern to support concurrency from
Pattern-Oriented Software Architecture (Source: Softserve)

2.5.3 Deployment Patterns

Another type of pattern that we prefer to consider separately is deployment pat-
terns. These patterns provide models on how to physically structure the system to
deploy it. Some deployment patterns, such as the one shown in Figure 2.6, are use-
ful to establish an initial physical structure of the system in terms of tiers (phys-
ical nodes). More specialized deployment patterns, such as the Load-Balanced
Cluster in Figure 2.7, are used to satisfy quality attributes such as availability,
performance, and security.

2.5 Design Concepts: The Building Blocks for Creating Structures 33

FIGURE 2.6 Four-tier deployment pattern from the Microsoft Application
Architecture Guide (Key: UML)

FIGURE 2.7 Load-Balanced Cluster deployment pattern for performance from the
Microsoft Application Architecture Guide (Key: UML)

In general, an initial structure for the system is obtained by mapping the log-
ical elements that are obtained from reference architectures (and other patterns)
into the physical elements defined by deployment patterns.

2.5.4 Tactics

Architects can use collections of fundamental design techniques to achieve a re-
sponse for particular quality attributes. We call these architectural design primitives
tactics. Tactics, like design patterns, are techniques that architects have been using
for years. We do not invent tactics, but simply capture what architects actually have
done in practice, over the decades, to manage quality attribute response goals.

34 Chapter 2—Architectural Design

Events
arrive

Response
generated
within time
constraints

Tactics
to control
performance

FIGURE 2.8 Tactics mediate events and responses.

Tactics are design decisions that influence the control of a quality attribute
response. For example, if you want to design a system to have low latency or
high throughput, you could make a set of design decisions that would mediate the
arrival of events (requests for service), resulting in responses that are produced
within some time constraints, as shown in Figure 2.8.

Tactics are both simpler and more primitive than patterns. They focus on the
control of a single quality attribute response (although they may, of course, trade
off this response with other quality attribute goals). Patterns, in contrast, typi-
cally focus on resolving and balancing multiple forces—that is, multiple quality
attribute goals. By way of analogy, we can say that a tactic is an atom, whereas a
pattern is a molecule.

Tactics provide a top-down way of thinking about design. A tactics cate-
gorization begins with a set of design objectives related to the achievement of a
quality attribute, and presents the architect with a set of options from which to
choose. These options then need to be further instantiated through some combi-
nation of patterns, frameworks, and code.

For example, in Figure 2.9, the design objectives for performance are “Con-
trol Resource Demand” and “Manage Resources”. An architect who wants to
create a system with “good” performance needs to choose one or more of these
options. That is, the architect needs to decide if controlling resource demand is
feasible, and if managing resources is feasible. In some systems, the events arriv-
ing at the system can be managed, prioritized, or limited in some way. If this is
not possible, then the architect can manage resources only as part of an attempt
to generate responses within acceptable time constraints. Within the “Manage
Resources” category, an architect might choose to increase resources, introduce
concurrency, maintain multiple copies of computations, maintain multiple copies
of data, and so forth. These tactics then need to be instantiated. As an example,
an architect might choose the Half-Sync/Half-Async pattern (see Figure 2.5) as
a way of introducing (and managing) concurrency, or the Load-Balanced Cluster
deployment pattern (see Figure 2.7) to maintain multiple copies of computations.
As we will see in Chapter 3, the choice, combination, and tailoring of tactics and

2.5 Design Concepts: The Building Blocks for Creating Structures 35

patterns are some of the key steps of the ADD process. There are existing tactics
categorizations for the quality attributes of availability, interoperability, modifi-
ability, performance, security, testability, and usability.

2.5.5 Externally Developed Components

Patterns and tactics are abstract in nature. However, when you are designing
a software architecture, you need to make these design concepts concrete and
closer to the actual implementation. There are two ways to achieve this: You can
code the elements obtained from tactics and patterns or you can associate tech-
nologies with one or more of these elements in the architecture. This “buy ver-
sus build” choice is one of the most important decisions you will make as an
architect.

We consider technologies to be externally developed components, because
they are not created as part of the development project. Several types of exter-
nally developed components exist:

§	Technology families. A technology family represents a group of spe-
cific technologies with common functional purposes. It can serve as a

Performance Tactics

Control Resource Demand Manage Resources

Manage sampling rate
Events

Arrive

Response
Generated

within

Time
Constraints

Limit event response

Prioritize events

Reduce overhead

Bound execution times

Increase resource
efficiency

Increase resources

Introduce concurrency

Maintain multiple
copies of computations

Maintain multiple
copies of data

Bound queue sizes

Schedule resources

FIGURE 2.9 Performance tactics from Software Architecture in Practice

36 Chapter 2—Architectural Design

placeholder until a specific product or framework is selected. An example is
a relational database management system (RDBMS) or an object-oriented
to relational mapper (ORM). Figure 2.10 shows different technology fami-
lies in the Big Data domain (in regular text).

§	Products. A product (or software package) refers to a self-contained func-
tional piece of software that can be integrated into the system that is being
designed and that requires only minor configuration or coding. An example
is a relational database management system, such as Oracle or Microsoft
SQL Server. Figure 2.10 shows different products in the Big Data domain
(in italics).

§	Application frameworks. An application framework (or just framework) is
a reusable software element, constructed out of patterns and tactics, that
provides generic functionality addressing recurring domain and quality
attribute concerns across a broad range of applications. Frameworks, when
carefully chosen and properly implemented, increase the productivity of
programmers. They do so by enabling programmers to focus on business
logic and end-user value, rather than underlying technologies and their im-
plementations. As opposed to products, framework functions are generally
invoked from the application code or are “injected” using some type of
aspect-oriented approach. Frameworks usually require extensive configura-
tion, typically through XML files or other approaches such as annotations
in Java. A framework example is Hibernate, which is used to perform ob-
ject-oriented to relational mapping in Java. Several types of frameworks
are available: Full-stack frameworks, such as Spring, are usually associated
with reference architectures and address general concerns across the differ-
ent elements of the reference architecture, while non-full-stack frameworks,
such as JSF, address specific functional or quality attribute concerns.

§	Platforms. A platform provides a complete infrastructure upon which to
build and execute applications. Examples of platforms include Java, .Net, or
and Google Cloud.

The selection of externally developed components, which is a key aspect of
the design process, can be a challenging task because of their extensive number.
Here are a few criteria you should consider when selecting externally developed
components:

§	Problem that it addresses. Is it something specific, such as a framework for
object-oriented to relational mapping or something more generic, such as a
platform?

§	Cost. What is the cost of the license and, if it is free, what is the cost of sup-
port and education?

§	Type of license. Does it have a license that is compatible with the project
goals?

2.5 Design Concepts: The Building Blocks for Creating Structures 37

Big Data Analytics Catalog

Integration
Messaging

Data Collector

Apache Flume

Logstash

Fluentd

Apache Kafka

RabbitMQ

Amazon SQS

Apache ActiveMQ

HBase

Cassandra

Neo4J

OrientDB

HP Vertica

Teradata

MS PDW

Amazon Redshift

StreamSets

Talend

Informatica

MongoDB

CouchDB

Riak

Redis

Berkeley DB

MS SQL Server

QlikView

Microstrategy

Tableau

Tibco JasperSoft

Pentaho

Oracle RDBMS

IBM DB2

Splunk

Splunk

Kibana

Zoomdata

D3.js

GoJS

Highcharts

Impala

Apache Hive (Stinger)

Apache Solr

Elasticsearch

Hadoop MapReduce

Apache Tez

Apache Spark

Apache Storm

Spark Streaming

Amazon Kinesis

Apache Samza

Cascading

Apache Crunch

Amazon Pig

Apache Hive

Spark SQL

HDFS

CassandraFS

Distributed Message Broker

ETL/Data Integration Engine

Document-Oriented

Key-Value

Graph-Oriented

MPP Analytic RDBMS

Traditional Analytic RDBMS

BI Platform

Interactive Dashboard

Interactive Query Engine

Distributed Search Engine

Distributed Computing Engine

Event Stream Processor

Data Processing Framework

Graphic Library

Column-Family

ETL/ELT

Distributed File System

NoSQL Database

Analytic RDBMS

Visualization & Reporting

Search & Query

Processing

Data Storage

Processing and
Analytics

Straight text – a technology family

Italic text – a specific technology

Legend:

FIGURE 2.10 A technology family tree for the Big Data application domain

38 Chapter 2—Architectural Design

§	Support. Is it well supported? Is there extensive documentation about the
technology? Is there an extensive user or developer community that you can
turn to for advice?

§	Learning curve. How hard is it to learn this technology? Have others in
your organization already mastered it? Are there courses available?

§	Maturity. Is it a technology that has just appeared on the market, which may
be exciting but still relatively unstable or unsupported?

§	Popularity. Is it a relatively widespread technology? Are there positive testi-
monials or adoption by mature organizations? Will it be easy to hire people
who have deep knowledge of it? Is there an active developer community or
user group?

§	Compatibility and ease of integration. Is it compatible with other technolo-
gies used in the project? Can it be integrated easily in the project?

§	Support for critical quality attributes. Does it limit attributes such as per-
formance? Is it secure and robust?

§	Size. Will the use of the technology have a negative impact on the size of
the application under development?

Unfortunately, the answers to these questions are not always easy to find
and the selection of a particular technology may require you do some research or,
eventually, to create prototypes that will help you in the selection process. These
criteria will have a significant effect on your total cost of ownership.

2.6 Architecture Design Decisions

As we said at the beginning of this chapter, design is the process of making de-
cisions. But the act of making a decision is a process, not a moment in time.
Experienced architects, when faced with a design challenge, typically entertain a
set of “candidate” decisions (as shown in Figure 2.1); from this set, they choose a
best candidate and instantiate that. They might select this “best” candidate based
on experience, constraints, or some form of analysis such as prototyping or sim-
ulation. The reality is that an architect will often make a choice and “ride the
horse until it drops”—that is, commit to a decision and revisit it only if it ap-
pears to be compromising the success of the project. These decisions have serious
consequences!

Recall that, in the early stages of design, decisions focus on the biggest,
most critical choices that will have substantial downstream consequences: refer-
ence architectures, major technologies (such as frameworks), and patterns. Ref-
erence architectures, deployment patterns, and other kinds of patterns have been
widely discussed—there are many books, websites, and conferences devoted to
the creation and validation of patterns and pattern languages. Nevertheless, the

2.6 Architecture Design Decisions 39

output of these activities is always a set of documented patterns. Interpreting
the patterns from a pattern catalog is a critical part of the selection activity for
an architect. Each candidate pattern must be chosen and its instantiation must
be analyzed. For example, if you chose the Layers pattern from Figure 2.4, you
would still have many decisions to make: how many layers there will be, how
strict the layering will be, which specific services will be placed into each layer,
what the interfaces between these functions will be, and so forth. If you chose
the Load-Balanced Cluster deployment pattern from Figure 2.7, you would have
to decide how many servers will be balanced, how many load balancers you will
use, where these servers and load balancers will physically reside, which kinds
of networks will connect these servers, which form of encryption you will use on
those network connections, which form of health monitoring the load balancers
will employ, and so forth. These decisions are important and will affect the suc-
cess of the instantiated pattern, so they need to be analyzed. In addition, the qual-
ity of the implementation of these decisions will affect the success of the pattern.
As we like to quip, the architecture giveth and the implementation taketh away.

Furthermore, the many catalogs and web pages that present design concepts
use different conventions and notations. The focus of our book is on the design
method and how it can be used with these external sources. For this reason we
just take examples from outside sources and show them here as they were origi-
nally presented. This book is not intended to be another design patterns catalog—
we want to alert you to the presence of these catalogs and show how they can be
an incredibly useful resource for an architect, but they must be interpreted and
used with care! In fact, one of your many jobs as an architect is to understand and
interpret these catalogs, with their different notations and conventions. This is the
reality that you will have to deal with.

Finally, once a design decision has been made, you should think about how
you will document it. You could, of course, do no documentation. This is, in fact,
what is most common in practice. Architectural concepts are often vague and
conveyed informally, in “tribal knowledge”: personal communications, emails,
naming conventions, and so forth. Alternatively, you could create and maintain
full, formal documentation, as is done for some projects with demanding qual-
ity attribute requirements, such as safety-critical or high-security systems. If you
are designing flight-control software, you will probably end up at this end of the
spectrum. In between these endpoints is a broad set of possibilities, and in this
space we see less formal (and less costly) forms of architecture documentation,
such as sketches (as we will discuss in Section 3.7).

The decision of what, when, and how to document should be risk based. You
should ask yourself: What is the risk of not documenting this decision? Could it
be misinterpreted and undermined by future developers? Could it contribute to
near-term or long-term problems in the system? For example, if the rationale for
layering is not carefully documented, the layering will inevitably break down,
losing coherence and tending toward increased coupling. Over time, this trend

40 Chapter 2—Architectural Design

will increase the system’s technical debt, making it harder to find and fix bugs
or add new features. To take another example, if the rationale for allocation of a
critical resource is not documented, that resource might become an unintended
contention area, resulting in bottlenecks and failures.

2.7 Summary

In this chapter, we introduced the idea of design as a set of decisions to satisfy
requirements and constraints. We also introduced the notion of “architectural”
design and showed that it does not differ from design in general, other than that it
addresses the satisfaction of architectural drivers: the purpose, primary function-
ality, quality attribute requirements, architectural concerns, and constraints. What
makes a decision “architectural”? A decision is architectural if it has nonlocal
consequences and those consequences matter to the achievement of an architec-
tural driver.

We also discussed why architectural design is so important: because it is
the embodiment of early, far-reaching, hard-to-change decisions. These decisions
will help you meet your architectural drivers, will determine much of your proj-
ect’s work-breakdown structure, and will affect the tools, skills, and technologies
needed to realize the system. Thus architectural design decisions should be scru-
tinized well, as their consequences are profound. In addition, architecture is a key
enabler of agility.

Architectural design is guided by certain principles. For example, to achieve
good modularity, high coupling, and low cohesion, the wise architect will prob-
ably include some form of layering in the architecture being designed. Similarly,
to achieve high availability, an architect will likely choose a pattern involving
some form of redundancy and failover, such as active–passive redundancy, where
an active server sends real-time updates to a passive server, so that the passive
server can replace the active server in case it fails, with no loss of state.

Design concepts, such as reference architectures, deployment patterns, ar-
chitectural patterns, tactics, and externally developed components, are the build-
ing blocks of design, and they form the foundation for architectural design as it is
performed using ADD. As you will see in our step-by-step explanation of ADD in
Chapter 3, some of the most important design decisions that an architect makes
are how design concepts are selected, how they are instantiated, and how they
are combined. Also, in Appendix A, we present a design concepts catalog that
includes several instances of the design concepts presented here.

From these foundations, an architecture can be confidently and predictably
constructed.

2.8 Further Reading 41

2.8 Further Reading

A more in-depth treatment of scenarios and architectural drivers can be found in
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed.,
Addison-Wesley, 2012. Also found in this book is an extensive discussion of ar-
chitectural tactics, which are useful in guiding an architecture to achieve quality
attribute goals. Likewise, this book contains an extensive discussion of QAW and
Utility Trees.

The Mission Thread Workshop is discussed in R. Kazman, M. Gagliardi,
and W. Wood, “Scaling Up Software Architecture Analysis”, Journal of Sys-
tems and Software, 85, 1511–1519, 2012; and in M. Gagliardi, W. Wood, and
T. Morrow, Introduction to the Mission Thread Workshop, Software Engineering
Institute Technical Report CMU/SEI-2013-TR-003, 2013.

An overview of discovery prototyping, JRP, JAD, and accelerated systems
analysis can be found in any competent book on systems analysis and design,
such as J. Whitten and L. Bentley, Systems Analysis and Design Methods, 7th
ed., McGraw-Hill, 2007. The combination of architectural approaches with Agile
methods will be discussed in Chapter 9.

A catalog of reference architectures and deployment patterns appears in the
book by the Microsoft Patterns and Practices Team: Microsoft® Application Ar-
chitecture Guide, 2nd ed., Microsoft Press, 2009. This book also provides an ex-
tensive list of architectural concerns associated with the reference architectures
that are documented.

An extensive collection of architectural design patterns for the construction
of distributed systems can be found in F. Buschmann, K. Henney, and D. Schmidt,
Pattern-Oriented Software Architecture Volume 4: A Pattern Language for Dis-
tributed Computing, Wiley, 2007. Other books in the POSA (Patterns Of Soft-
ware Architecture) series provide additional pattern catalogs. Many other pattern
catalogs specializing in particular application domains and technologies exist. A
few examples are listed here:

§	E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

§	M. Fowler. Patterns of Enterprise Application Architecture. Addi-
son-Wesley, 2003.

§	E. Fernandez-Buglioni. Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns. Wiley, 2013.

§	G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2004.

The evaluation and selection of software packages is discussed in A. Jadhav
and R. Sonar, “Evaluating and Selecting Software Packages: A Review”, Journal
of Information and Software Technology, 51, 555–563, 2009.

42 Chapter 2—Architectural Design

The “bible” for software architecture documentation is P. Clements,
F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and
J. Stafford, Documenting Software Architectures: Views and Beyond, 2nd ed.,
Addison-Wesley, 2011.

The technology family tree for the Big Data application domain is based on the
Smart Decisions Game by H. Cervantes, S. Haziyev, O. Hrytsay, and R. Kazman,
which can be found at http://smartdecisionsgame.com.

../../../../../smartdecisionsgame.com/default.htm

43

3
The Architecture Design
Process

In this chapter we provide a detailed discussion of ADD, the design method
that is the focus of this book. We begin with an overview of the method and of
each one of its steps. This overview is followed by more detailed discussions
of different aspects that need to be considered when performing these steps.
We suggest different roadmaps that provide guidance on when different types
of design concepts can be used depending on which type of system is being
designed. We also discuss the identification and selection of design concepts,
the production of structures from these design concepts, the definition of inter-
faces, the production of preliminary documentation, and, finally, a technique to
track design progress.

3.1 The Need for a Principled Method

In Chapter 2, we discussed the various concepts associated with design. The ques-
tion is, how do you actually perform design? Performing design to ensure that the
drivers are satisfied requires a principled method. By “principled”, we refer to a
method that takes into account all of the relevant aspects that are needed to pro-
duce an adequate design. Such a method provides guidance that is necessary to
guarantee that your drivers are satisfied. To achieve this goal in a cost-effective,

44 Chapter 3—The Architecture Design Process

repeatable way, you need a method that guides you in combining and incorporat-
ing reusable design concepts.

Performing design adequately is important because architecture design de-
cisions have significant consequences at different points in a project’s lifetime.
For example, during a pre-sales phase, an appropriate design will allow for a
better estimation of cost, scope, and schedule. During development, an appro-
priate design will be helpful to avoid later rework and facilitate development and
deployment. Finally, a clear understanding of what architectural design involves
is necessary to better manage aspects of technical debt.

3.2 Attribute-Driven Design 3.0

Architecture design is performed in a series of rounds across the development of a
software project. Each design round may take place within a project increment such
as a sprint. Within these rounds, a series of design iterations is performed. Perhaps
the most important characteristic of the ADD method is that it provides detailed,
step-by-step guidance on the tasks that have to be performed inside the design it-
erations (see Chapter 7 for a comparison with other design methods). When ADD
appeared, it was the first method to focus specifically on quality attributes and their
achievement through the selection of different types of structures and their repre-
sentation through views. Another important contribution of ADD was that it rec-
ognized that analysis and documentation are an integral part of the design process.
Although ADD was and is a major contribution in the field of software architecture,
we believe that its adoption within the practitioner community has been limited by
a number of inherent weaknesses, as discussed in Section 1.4.

ADD has been used successfully for more than 15 years. The world of soft-
ware has changed dramatically since ADD’s introduction, however, and even
more since version 2.0 was published in 2006. For this reason, and to address the
weaknesses of version 2.0, we have decided to create ADD 3.0. Henceforth, we
will simply refer to this method as ADD. Figure 3.1 shows the steps and artifacts
associated with ADD and in the following subsections we provide an overview of
the activities in each of its steps.

3.2.1 Step 1: Review Inputs

Before starting a design round, you need make sure that the inputs to the design
process are available and correct. First, you need to ensure that you are clear
about the purpose for the design activities that will ensue. The purpose may be,
for example, to produce a design for early estimation, to refine an existing design
to build a new increment of the system, or to design and generate a prototype to
mitigate certain technical risks (see Section 2.4.1 for a discussion of the design

3.2 Attribute-Driven Design 3.0 45

purpose). Also, you need to make sure that the other drivers needed for the design
activity are available. These include primary functional requirements, quality at-
tribute scenarios, architectural constraints, and concerns. Finally, if this is not the
first design round, or if this is not greenfield development, an additional input that
you need to consider is the existing architecture design.

At this point, we assume that primary functionality and quality attribute sce-
narios have been prioritized, ideally by your most important project stakeholders.
(If not, there are techniques that you can employ to elicit and prioritize them, as
discussed in Sections 2.4.2 and 2.4.3.) You, as the architect, must now “own” these
drivers. You need to check, for example, whether any important stakeholders were
overlooked in the original requirements elicitation process, or whether any business
conditions have changed since the prioritization was performed. These drivers re-
ally do “drive” design, so getting them right and getting their priority right is cru-
cial. We cannot stress this point strongly enough. Software architecture design, like

Legend:

FIGURE 3.1 Steps and artifacts of ADD version 3.0

46 Chapter 3—The Architecture Design Process

most activities in software engineering, is a “garbage in, garbage out” process. The
results of ADD cannot be good if the inputs are poorly formed.

As a rule of thumb, you should be able to start designing if, besides the de-
sign purpose, constraints, and initial architectural concerns, you have established
the primary use cases and the most important quality attribute scenarios. This,
of course, does not mean you will make decisions only about these drivers: You
still need to address other quality attribute scenarios, use cases and architectural
concerns, but these can be treated later on.

The drivers become part of an architectural design backlog that you should
use to perform the different design iterations. We discuss this idea in more depth
in Section 3.8.1.

3.2.2 Step 2: Establish the Iteration Goal by Selecting Drivers

A design round represents the architecture design activities performed within a
development cycle if an iterative development model is used, or the whole set of
architecture design activities if a waterfall model is used. Through one or more
rounds, you produce an architecture that suits the established design purpose.

A design round is generally performed in a series of design iterations, where
each iteration focuses on achieving a particular goal. Such a goal typically involves
designing to satisfy a subset of the drivers. For example, an iteration goal could be to
create structures from elements that will support a particular performance scenario,
or that will enable a use case to be achieved. For this reason, when performing de-
sign, you need to establish a goal before you start a particular design iteration.

As we will discuss in Section 3.3, depending on the type of system whose
architecture is being designed, there may be a “best”—or at least strongly sug-
gested—ordering of the iteration goals that need to be addressed. For example,
for a greenfield system in a mature domain, your initial goal is typically to iden-
tify an overall structure for the system by choosing a reference architecture.

3.2.3 Step 3: Choose One or More Elements of the System to Refine

Satisfying drivers requires you to produce one or more architectural structures.
These structures are composed of interrelated elements, and those elements are
generally obtained by refining other elements that you previously identified in an
earlier iteration. Refinement can mean decomposition into finer-grained elements
(top-down approach), combination of elements into coarser-grained elements
(bottom-up approach), or improvement of previously identified elements. For
greenfield development, you can start by establishing the system context and then
selecting the only available element—that is, the system itself—for refinement
by decomposition. For existing systems or for later design iterations in green-
field systems, you normally choose to refine elements that were identified in prior
iterations.

3.2 Attribute-Driven Design 3.0 47

The elements that you will select are the ones that are involved in the sat-
isfaction of specific drivers. For this reason, when design is performed for an
existing system, you need to have a good understanding of the elements that are
part of the as-built architecture of the system. This may involve some “detective
work”, reverse engineering, or discussions with developers.

We have presented steps 2 and 3 in the order they appear in the method. That
is to say, step 2 precedes step 3. However, in some cases you may need to reverse
this order. For example, when designing a greenfield system or when fleshing out
certain types of reference architectures (as we will show in Chapter 5), you will,
at least in the early stages of design, focus on elements of the system and start the
iteration by selecting a particular element and then consider the drivers that you
want to address.

3.2.4 Step 4: Choose One or More Design Concepts That Satisfy
the Selected Drivers

Choosing the design concepts is probably the most difficult decision you will
face in the design process, because it requires you to identify alternatives among
design concepts that can be used to achieve your iteration goal, and to make a
selection from these alternatives. As we saw in Section 2.5, different types of
design concepts exist, and, for each type, there may be many options. This can
result in a considerable number of alternatives that need to be analyzed to make a
choice. In Section 3.4, we discuss the identification and selection of design con-
cepts in more detail.

3.2.5 Step 5: Instantiate Architectural Elements, Allocate
Responsibilities, and Define Interfaces

Once you have selected one or more design concepts, you must make another
design decision, which involves instantiating elements out of the design concepts
that you selected. For example, if you selected the Layers pattern as a design
concept, you must decide how many layers will be used, since the pattern itself
does not prescribe a specific number. In this example, the layers are the elements
that are instantiated. In certain cases, instantiation can mean configuration. For
example, you may have dedicated an iteration to selecting technologies and as-
sociating them with the elements in your design. In further iterations, you might
refine these elements by making finer-grained decisions about how they should
be configured to support a particular driver, such as a quality attribute.

After instantiating the elements, you need to allocate responsibilities to
each of them. For example, in a typical web-based enterprise system, at least
three layers are usually present: the presentation layer, the business layer, and
the data layer. The responsibilities of these layers differ: The responsibilities of

48 Chapter 3—The Architecture Design Process

the presentation layer include managing all of the user interactions, whereas the
responsibilities of the data layer include managing the persistence of data.

Instantiating elements is just one of the tasks you need to perform to cre-
ate structures that satisfy a driver or a concern. The elements that have been
instantiated also need to be connected, to allow them to collaborate with one
another. This requires the existence of relationships between the elements and
the exchange of information through some kind of interface. The interface is a
contractual specification of how information should flow between the elements.
Section 3.5 provides more details on how the different types of design concepts
are instantiated and how structures are created, and Section 3.6 discusses how
interfaces can be defined.

3.2.6 Step 6: Sketch Views and Record Design Decisions

At this point, you have finished performing the design activities for the iteration.
Nevertheless, you may not have taken any actions to ensure that the views—the
representations of the structures you created—are preserved. For instance, if you
performed the previous step in a conference room, you probably ended up with a
series of diagrams on a whiteboard. This information is essential, and you need to
capture it so that you can later analyze and communicate it to other stakeholders.

The views that you have created are almost certainly incomplete, so these
diagrams may need to be revisited and refined in a subsequent iteration. This is
typically done to accommodate elements resulting from other design decisions
that you will make to support additional drivers. This factor explains why we
speak of “sketching” the views in ADD—that is, creating a preliminary type of
documentation. The more formal, more fully fleshed-out documentation of these
views—should you choose to produce them—occurs only after a number of de-
sign iterations have been finished (as part of the architectural documentation ac-
tivity discussed in Section 1.2.2).

In addition to storing the sketches of the views, you should record the sig-
nificant decisions that are made in the design iteration, and the reasons that led
to these decisions (i.e., the rationale), to facilitate later analysis and understand-
ing of the decisions. For example, decisions about important tradeoffs might be
recorded at this time. During a design iteration, decisions are primarily made in
steps 4 and 5. Section 3.7 provides further information on how to create prelimi-
nary documentation during design, including creating sketches, recording design
decisions and their rationale.

3.2.7 Step 7: Perform Analysis of Current Design and Review
Iteration Goal and Achievement of Design Purpose

By the time you reach step 7, you should have created a partial design that ad-
dresses the goal established for the iteration. Making sure that this is actually the

3.3 Following a Design Roadmap According to System Type 49

case is a good idea, so as to avoid unhappy stakeholders and later rework. You
can perform the analysis yourself by reviewing the sketches of the views and
design decisions that you recorded, but an even better idea is to have someone
else help you review this design. We do this for the same reason that organiza-
tions frequently have a separate testing/quality assurance group: Another person
will not share your assumptions, and will have a different experience base and a
different perspective. Pulling in someone with a different point of view can help
you find “bugs”, in both code and architecture. We discuss analysis in more depth
in Chapter 8.

Once the design performed in the iteration has been analyzed, you should
review the state of your architecture in terms of the established design purpose.
This means considering if, at this point, you have performed enough design iter-
ations to satisfy the drivers that are associated with the design round as well as
considering whether the design purpose has been achieved or if additional de-
sign rounds are needed in future project increments. Section 3.8 describes simple
techniques that allow you to keep track of design progress.

3.2.8 Iterate If Necessary

Ideally, you should perform additional iterations and repeat steps 2 to 7 for every
driver that was considered as part of the input. More often than not, such itera-
tions are not possible because of time or resource constraints that force you to
stop the design activities and move on to the next activities in the development
process—typically implementation.

What are the criteria for evaluating if more design iterations are necessary?
We let risk be our guide. You should at least have addressed the drivers with the
highest priorities. Ideally, you should have assured that critical drivers are satis-
fied or, at least, that the design is “good enough” to satisfy them. Finally, when
performing iterative development, you can choose to perform one design round
in every project iteration. The first rounds should focus on addressing the driv-
ers, while subsequent rounds focus on making design decisions for other require-
ments that were not selected as drivers but that need to be addressed nonetheless.

3.3 Following a Design Roadmap According
to System Type

When writing, you might have experienced the much-dreaded “fear of the blank
page”. Similarly, when you start designing an architecture, you may face a sit-
uation in which you ask yourself, “How do I begin designing?” To answer this
question, you need to consider which type of system you are designing.

50 Chapter 3—The Architecture Design Process

Design of software systems falls into three broad categories: (1) the design
of a greenfield system for a mature (i.e., well-known) domain; (2) the design of a
greenfield system for a domain that is novel (i.e., a domain that has a less estab-
lished infrastructure and knowledge base); and (3) the design for making changes
to an existing system (brownfield). Each one of these categories involves a differ-
ent roadmap in terms of the sequence of goals that you should perform across the
design iterations.

3.3.1 Design of Greenfield Systems for Mature Domains

The design of a greenfield system for a mature domain occurs when you are de-
signing an architecture for a system that is built from “scratch” and when this
type of system is well known and understood—that is, when there is an estab-
lished infrastructure of tools and technologies, and an associated knowledge
base. Examples of mature domains include the following:

§	Traditional desktop applications
§	Interactive applications that run on a mobile device
§	Enterprise applications accessed from a web browser, which store informa-

tion in a relational database, and which provide support for partially or fully
automating business processes

Since these types of applications are relatively common, some general archi-
tectural concerns associated with their design are well known, well supported,
and well documented. If you are designing a new system that falls into this cate-
gory, we recommend the following roadmap (shown in Figure 3.2).

The goal of your initial design iteration(s) should be to address the general
architectural concern of establishing an initial overall system structure. Is this
to be a three-tier client-server application, a peer-to-peer application, a mobile
app connecting to a Big Data back-end, and so on? Each of these options will
lead you to different architectural solutions, and these solutions will help you to
achieve your drivers. To achieve this iteration goal, you will select some design
concepts. Specifically, you will typically choose one or more reference architec-
tures and deployment patterns (see Sections 2.5.1 and 2.5.3). You may also se-
lect some externally developed components, such as frameworks. The types of
frameworks that are typically chosen in early iterations are either “full-stack”
frameworks that are associated with the selected reference architectures, or more
specific frameworks that are associated with elements established by the refer-
ence architecture (see Section 2.5.5). In this first iteration, you should review all
of your drivers to select the design concepts, but you will probably pay more
attention to the constraints and to quality attributes that are not associated with
specific functionalities and that favor particular reference architectures or require
particular deployment configurations. Consider an example: If you select a ref-
erence architecture for Big Data systems, you have presumably chosen a quality

3.3 Following a Design Roadmap According to System Type 51

attribute such as low latency with high data volumes as your most important
driver. Of course, you will make many subsequent decisions to flesh out this early
choice, but this driver has already exerted a great influence on your design such
as the selection of a particular reference architecture.

The goal of your next design iteration(s) should be to identify structures
that support the primary functionality. As noted in Section 2.4.3, allocation of
functionality (i.e., use cases or user stories) to elements is an important part of
architectural design because it has critical downstream implications for modifi-
ability and allocation of work to teams. Furthermore, once functionality has been
allocated, the elements that support it can be refined in later iterations to support
the quality attributes associated with these functionalities. For example, a per-
formance scenario may be associated with a particular use case. Achieving the
performance goal may require making design decisions across all of the elements
that participate in the achievement of this use case. To allocate functionality, you
usually refine the elements that are associated with the reference architecture by
decomposing them. A particular use case may require the identification of mul-
tiple elements. For example, if you have selected a web application reference
architecture, supporting a use case will probably require you to identify modules

p

2

1

3..n

Legend:

FIGURE 3.2 Design concept selection roadmap for greenfield systems

52 Chapter 3—The Architecture Design Process

across the different layers associated with this reference architecture. Finally, at
this point you should also be thinking about allocating functionality—associated
with modules—to (teams of) developers.

The goal of your subsequent design iterations should be to refine the struc-
tures you have previously created to fully address the remaining drivers. Address-
ing these drivers, and especially quality attributes, will likely require you to use
the three major categories of design concepts—tactics, patterns, and externally
developed components such as frameworks—as well as commonly accepted de-
sign best practices such as modularity, low coupling, and high cohesion. For ex-
ample, to (partially) satisfy a performance requirement for the search use case in
a web application, you might select the “maintain multiple copies of data” tactic
and implement this tactic by configuring a cache in a framework that is used in-
side an element responsible for persisting data.

This roadmap is appropriate for the initial project iterations, but it is also
extremely useful for early project estimation activities (see the discussion about
the architecture design process during pre-sales in Section 9.1.1). Why have we
created such a roadmap? First, because the process of starting an architectural
design is always complex. Second, because many of the steps in this roadmap
are frequently overlooked or done in an intuitive and ad hoc way, rather than in
a well-considered, reflective way. Third, because different types of design con-
cepts exist, and it is not always clear at which point in the design they should be
used. This roadmap encapsulates best practices that we have observed in the most
competent architecture organizations. Simply put, the use of a roadmap results in
better architectures, particularly for less mature architects.

3.3.2 Design of Greenfield Systems for Novel Domains

In the case of novel domains, it is more challenging to establish a precise road-
map, because reference architectures may not exist and there may be few, if any,
externally developed components that you can use. You are, more than likely,
working from first principles and creating your own home-grown solutions. Even
in this case, however, general-purpose design concepts such as tactics and pat-
terns can guide you, aided by strategic prototyping. In essence, your iteration
goals will mostly be to continuously refine previously created structures to fully
address the drivers.

Many times, your design goal will focus on the creation of prototypes so
that you can explore possible solutions to the challenge that you are facing. In
particular, you may need to focus on quality attributes and design challenges ori-
ented toward issues such as performance, scalability, or security. We discuss the
creation of prototypes in Section 3.4.2.

Of course, the notion of “novel” is fluid. Mobile application development
was a novel domain 10 or 15 years ago, but now it is a well-established field.

3.4 Identifying and Selecting Design Concepts 53

3.3.3 Design for an Existing System (Brownfield)

Architecture design for an existing system may occur for different purposes. The
most obvious is maintenance—that is, when you need to satisfy new require-
ments or correct issues, and doing so requires changes to the architecture of an
existing system. You may also be making architectural changes to an existing sys-
tem for the purpose of refactoring. When refactoring, you change the architecture
of an existing system, without altering its functions, to reduce technical debt, to
introduce technology updates, or to fix quality attribute problems (e.g., the sys-
tem is too slow, or insecure, or frequently crashes).

To be able to choose elements to decompose as part of the design process
(step 3 of ADD), you need to first identify which elements are present in the
architecture of the existing system. In this sense, before starting the design itera-
tions, your first goal should be to make sure that you have a clear understanding
of the existing architecture of the system.

Once you understand the elements, properties, and relationships that con-
stitute the architecture of the system, and the characteristics of the existing code
base, you can perform design similar to what is done for greenfield systems after
the initial design iteration. Your design iteration goals here will be to identify and
refine structures to satisfy architectural drivers, including new functionality and
quality attributes, and to address specific architectural concerns. These design
iterations will typically not involve establishing a new overall system structure
unless you are dealing with a major refactoring.

It might seem that the preceding discussion of the different contexts of de-
sign is rather abstract and perhaps even confusing. In the next three chapters we
will be presenting examples of design of a system in a mature domain (Chap-
ter 4), design for a system in a relatively novel domain (Chapter 5), and design to
modify an existing system (Chapter 6). These extended examples will make the
previously described concepts clearer and more concrete.

3.4 Identifying and Selecting Design Concepts

Freeman Dyson, the English physicist, once said the following: “A good scientist
is a person with original ideas. A good engineer is a person who makes a design
that works with as few original ideas as possible”. This quotation is particularly
relevant in the context of software architecture design: Most of the time you don’t
need to, and shouldn’t, reinvent the wheel. Rather, your major design activities are
to identify and select design concepts to address the challenges and drivers that
you encounter across the design iterations. Design is still an original and creative
endeavor, but the creativity resides in the appropriate identification of these existing
solutions and then on combining and adapting them to the problem at hand.

54 Chapter 3—The Architecture Design Process

3.4.1 Identification of Design Concepts

The identification of design concepts can appear to be daunting, because of the
vast number of design concepts that exist. There are likely dozens of design pat-
terns and externally developed components that you could use to address any
particular issue. To make things worse, these design concepts are scattered across
many different sources: in the popular press, in research literature, in books, and
on the Internet. Moreover, in many cases, there is no canonical definition of a
concept. Different sites, for example, will define the Broker pattern in different,
largely informal, ways. Finally, once you have identified the alternatives that
might potentially help you achieve the design goals of the iteration, you need to
select among them.

To identify which design concepts you need at a particular point, you should
consider what we previously discussed regarding the design roadmap. Different
points in the design process usually require different types of design concepts.
For example, when you are designing a greenfield system in a mature domain,
the types of design concepts that will help you initially structure the system are
reference architectures and deployment patterns. As you progress in the design
process, you will use all of the categories of design concepts: tactics, architecture
and design patterns, and externally developed components. Keep in mind that to
address a specific design problem, you can and often will use and combine differ-
ent types of design concepts. For example, when addressing a security driver, you
may employ a security pattern, a security tactic, a security framework, or some
combination of these.

Once you have more clarity regarding the types of design concepts that you
wish to use, you still need to identify alternatives—that is, design candidates.
There are several ways to do so, although you will probably use a combination of
these techniques rather than a single one:

§	Leverage existing best practices. You can identify alternatives for your
required design concepts by making use of catalogs that are available in
printed or online form. Some design concepts, such as patterns, are exten-
sively documented; others, such as externally developed components, are
documented in a less thorough way. The benefits of this approach are that
you can identify many alternatives, and that you can leverage the consider-
able knowledge and experience of others. The downsides are that searching
for and studying the information can require a considerable amount of time,
the quality of the documented knowledge is often unknown, and the as-
sumptions and biases of the authors are unknown.

§	Leverage your own knowledge and experience. If the system you are de-
signing is similar to other systems you have designed in the past, you will
probably want to begin with some of the design concepts that you have
used before. The benefit of this approach is that the identification of al-
ternatives is performed rapidly and confidently. The downside is that you
may end up using the same ideas repeatedly, even if they are not the most

3.4 Identifying and Selecting Design Concepts 55

appropriate for all the design problems that you are facing, and if they have
been superseded by newer, better approaches. As the saying goes, “If you
give a small child a hammer, all the world looks like a nail”.

§	Leverage the knowledge and experience of others. As an architect, you have
background and knowledge that you have gained through the years. This
foundation varies from person to person, especially if the types of design
problems they have addressed in the past differ. You can leverage this in-
formation by performing the identification and selection of design concepts
with some of your peers through brainstorming.

3.4.2 Selection of Design Concepts

Once you have identified a list of alternative design concepts, you need to select
which one is the most appropriate to solve the design problem at hand. You can
achieve this in a relatively simple way, by creating a table that lists the pros and
cons associated with each alternative and selecting one of the alternatives based
on those criteria and your drivers. The table can also include other criteria, such
as the cost associated with the use of the alternative. Table 3.1 shows an example
of such a table used to support the selection of different reference architectures.

You may also need to perform a more in-depth analysis to select the alterna-
tive. Methods such as CBAM (cost benefit analysis method) or SWOT (strengths,
weaknesses, opportunities, threats) can help you to perform this analysis (see the
sidebar “The Cost Benefit Analysis Method”).

TABLE 3.1 Example of a Table to Support the Selection of Alternatives

Name of
Alternative Pros Cons Cost

Web
application

Can be accessed from a
variety of platforms using
a standard web browser
Fast page loading
Simple deployment

Does not support “rich”
interaction

Low

Rich Internet
application

Supports “rich” user
interaction
Simple deployment and
updating

Longer page loading times
Requires a runtime
environment to be installed
on the client browser

Medium

Mobile
application

Supports “rich” user
interaction

Less portability
Screen limitations

High

56 Chapter 3—The Architecture Design Process

The Cost Benefit Analysis Method

The CBAM is a method that guides the selection of design alternatives
using a quantitative approach. This method considers that architectural
strategies (i.e., combinations of design concepts) affect quality attribute
responses, and that the level of each response in turn provides system
stakeholders with some benefit called utility. Each architectural strategy
provides a different level of utility, but also has a cost and takes time to im-
plement. The idea behind the CBAM is that by studying levels of utility and
costs of implementation, particular architectural strategies can be selected
based on their associated return on investment (ROI). The CBAM was
conceived to be performed after an ATAM (architecture tradeoff analysis
method), but it is possible to use the CBAM during design—that is, prior to
the moment where the architectural evaluation is performed.

The CBAM takes as its input a collection of prioritized traditional quality
attribute scenarios, which are then analyzed and refined with additional
information. The addition is to consider several levels of response for each
scenario:

§	The worst-case scenario, which represents the minimum threshold at which
a system must perform (utility = 0)

§	The best-case scenario, which represents the level after which stakehold-
ers foresee no further utility (utility = 100)

§	The current scenario, which represents the level at which the system
is already performing (the utility of the current scenario is estimated by
stakeholders)

§	The desired scenario, which represents the level of response that the
stakeholders are hoping to achieve (the utility of the desired scenario is
estimated by stakeholders)

Using these data points, we can draw a utility–response curve, as
shown in the figure. After the utility–response curve is mapped for each
of the different scenarios, a number of contemplated design alternatives
may be considered, and their expected response values can be estimated.
For example, if we are concerned about mean time to failure, we might
consider three different architectural strategies (i.e., redundancy options)—
for example, no redundancy, cold spare, and hot spare. For each of these
strategies, we could estimate their expected responses (i.e., their expected
mean times to failure). In the graph shown here, the “e” represents one
such option, placed on the curve based on its expected response measure.

Using these response estimates, the utility values of each architectural
strategy can now be determined via interpolation, which provides its ex-
pected benefit. The costs of each architectural strategy are also elicited—
one would expect hot spare to be the most costly, followed by cold spare
and no redundancy.

Given all of this information, architectural strategies can now be selected
based on their expected value for cost.

3.4 Identifying and Selecting Design Concepts 57

Response

Utility

w

c

e

d

b

b: best
c: current
e: expected
d: desired
w: worst

1 2 3

0

100

Although the CBAM may seem relatively complex and time-consuming
at first, you need to consider that some design decisions can have enor-
mous economic consequences—in terms of their costs, their benefits, and
their effects on project schedule. You must decide if you are willing to take
the chance of making these decisions solely using a gut-feeling approach
versus this more rational and systematic approach.

In case the previous analysis techniques do not guide you to make an ap-
propriate selection, you may need to create throwaway prototypes and collect
measurements from them. The creation of early throwaway prototypes is a useful
technique to help in the selection of externally developed components. This type
of prototype is usually created in a “quick and dirty” fashion without too much
consideration for maintainability or reuse. For these reasons, it is important to
keep in mind that throwaway prototypes should not be used as a basis for further
development.

Although the creation of prototypes can be costly compared to analysis (the
ratio of costs is between 10 and 5 to 1, according to our sources), certain scenar-
ios strongly motivate the creation of prototypes. Aspects that you should consider
when deciding whether you will create a prototype include the following:

§	Does the project incorporate emerging technologies?
§	Is the technology new in the company?

58 Chapter 3—The Architecture Design Process

§	Are there certain drivers, particularly quality attributes, whose satisfaction
using the selected technology presents risks (i.e., it is not understood if they
can be satisfied)?

§	Is there a lack of trusted information, internal or external, that provides
some degree of certainty that the selected technology will be useful to sat-
isfy the project drivers?

§	Are there configuration options associated with the technology that need to
be tested or understood?

§	Is it unclear whether the selected technology can be integrated with other
technologies that are used in the project?

If most of your answers to these questions are “yes”, then you should
strongly consider the creation of a throwaway prototype.

When identifying and selecting design concepts, you need to keep in mind the
constraints that are part of the architectural drivers, because some constraints will
restrict you from selecting particular alternatives. For example, a constraint might
require that all libraries and frameworks in the system do not use the GPL license;
thus, even if you have found a framework that could be useful for your needs, you
may need to discard it if it has a GPL license. Also, you need to keep in mind that
the decisions regarding the selection of design concepts that you have made in pre-
vious iterations may restrict the design concepts that you can select in the future
because of incompatibilities. For example, if you selected a web application ref-
erence architecture for use in an initial iteration, you cannot select a user interface
framework intended for local applications in a subsequent iteration.

Finally, you need to remember that even though ADD provides guidance on
how to perform the design process, it cannot ensure that you will make appropri-
ate design decisions. Thorough reasoning and considering different alternatives
(not just the first thing that comes to mind) are the best means to improve the
odds of finding a good solution. We discuss doing “analysis in the design pro-
cess” in Chapter 8.

3.5 Producing Structures

Design concepts per se won’t help you satisfy your drivers unless you produce
structures; that is, you need to identify and connect elements that are derived
from the selected design concepts. This process is the instantiation of architec-
tural elements in ADD: creating elements and relationships between them, and
associating responsibilities with these elements. It is important to remember that
the architecture of a software system is composed of a set of structures, which
can be grouped into three major categories:

3.5 Producing Structures 59

§	Module structures: composed of logical and static elements that exist at
development time, such as files, modules, and classes

§	Component and connector (C&C) structures: composed of dynamic ele-
ments that exist at runtime, such as processes and threads

§	Allocation structures: composed of both software elements (from a module
or C&C structure) and non-software elements that may exist both at devel-
opment time and at runtime, such as file systems, hardware, and develop-
ment teams

When you instantiate a design concept, you may actually produce more than
one structure. For example, in a particular iteration you may instantiate the Lay-
ers pattern, which will result in a Module structure. As part of instantiating this
pattern, you will need to choose the number of layers, their relationships, and the
specific responsibilities of each layer. As part of the iteration, you may also study
how a scenario is supported by the elements that you have just identified. For ex-
ample, you could create instances of the logical elements in a C&C structure and
model how they exchange messages (see Section 3.6). Finally, you may want to
decide who will be responsible for implementing the modules inside each of the
layers, which is an allocation decision.

3.5.1 Instantiating Elements

The instantiation of architectural elements depends on the type of design concept
that you are working with:

§	Reference architectures. In the case of reference architectures, instantiation
typically means that you perform some sort of customization. As part of
this work, you will add or remove elements that are part of the structure that
is defined by the reference architecture. For example, if you are designing a
web application that needs to communicate with an external application to
handle payments, you will probably need an integration layer in addition to
the traditional presentation, business, and data layers.

§	Architectural and design patterns. These patterns provide a generic structure
composed of elements, their relationships and their responsibilities. As this
structure is generic, you will need to adapt it to your specific problem. In-
stantiation usually involves transforming the generic structure defined by the
pattern into a specific one that is adapted to the needs of the problem that you
are solving. For example, consider the Pipe and Filters architectural pattern.
It establishes the basic elements of computation—filters—and their relation-
ships—pipes—but does not specify how many filters you should use for your
problem or what their relationships should be. You will instantiate this pattern
by defining how many pipes and filters are needed to solve your problem, by
establishing the specific responsibilities of each of the filters, and by defining
their topology.

60 Chapter 3—The Architecture Design Process

§	Deployment patterns. Similar to the case with architectural and design pat-
terns, the instantiation of deployment patterns generally involves the iden-
tification and specification of physical elements. If, for example, you are
using a Load-Balanced Cluster pattern, instantiation may involve identify-
ing the number of replicas to be included in the cluster, the load-balancing
algorithm, and the physical location of the replicas.

§	Tactics. This design concept does not prescribe a particular structure, so
you will need to use other design concepts to instantiate a tactic. For ex-
ample, you may select a security tactic of authenticating actors and instan-
tiate it by creating a custom-coded ad hoc solution, or by using a security
pattern, or by using an externally developed component such as a security
framework.

§	Externally developed components. The instantiation of these components
may or may not imply the creation of new elements. For example, in
the case of object-oriented frameworks, instantiation may require you
to create specific classes that inherit from the base classes defined in the
framework. This will result in new elements. Other approaches, which
do not involve the creation of new elements, might include choosing a
specific technology from a technology family that was identified in a pre-
vious iteration, associating a particular framework to elements that were
identified in a previous iteration, or specifying configuration options for
an element associated with a particular technology (such as a number of
threads in a thread pool).

3.5.2 Associating Responsibilities and Identifying Properties

When you are creating elements by instantiating design concepts, you need to
consider the responsibilities that are allocated to these elements. For example,
if you instantiate the Layers pattern and decide to use the traditional three-layer
structure, you might decide that one of the layers will be responsible for manag-
ing the interactions with the users (typically known as the presentation layer).
When instantiating elements and allocating responsibilities, you should keep in
mind the high cohesion/low coupling design principle: Elements should have
high cohesion (internally), defined by a narrow set of responsibilities, and low
coupling (externally), defined by a lack of knowledge of the implementation de-
tails of other elements.

One additional aspect that you need to consider when instantiating design
concepts is the properties of the elements. This may involve aspects such as the
configuration options, statefulness, resource management, priority, or even hard-
ware characteristics (if the elements that you created are physical nodes) of the
chosen technologies. Identifying these properties supports analysis and the docu-
mentation of the design rationale.

3.6 Defining Interfaces 61

3.5.3 Establishing Relationships Between the Elements

The creation of structures also requires making decisions with respect to the
relationships that exist between the elements and their properties. Once again,
consider the Layers pattern. You may decide that two layers are connected, but
these layers will eventually be allocated to components that are, in turn, allocated
to hardware. In such a case, you need to decide how communication will take
place between these layers, as they have been allocated to components: Is the
communication synchronous or asynchronous? Does it involve some type of net-
work communication? Which type of protocol is used? How much information is
transferred and at what rate? These design decisions can have a significant impact
with respect to achieving certain quality attributes such as performance.

3.6 Defining Interfaces

Interfaces are the externally visible properties of elements that establish a con-
tractual specification that allows elements to collaborate and exchange informa-
tion. There are two categories of interfaces: external and internal.

3.6.1 External Interfaces

External interfaces include interfaces from other systems that are required by the
system that you are developing and interfaces that are provided by your system
to other systems. Required interfaces are part of the constraints for your system,
as you usually cannot influence their specification. Provided interfaces need to be
formally defined, which can be performed in a similar way to defining internal
interfaces—that is, by considering interactions between the external systems and
your system and seeing them as elements of a bigger structure.

Establishing a system context at the beginning of the design process is use-
ful to identify external interfaces. This context can be represented using a system
context diagram, as shown in Figure 3.3. Given that external entities and the sys-
tem under development interact via interfaces, there should be at least one exter-
nal interface per external system (each relationship in the figure).

3.6.2 Internal Interfaces

Internal interfaces are interfaces between the elements that result from the in-
stantiation of design concepts. To identify the relationships and the interface de-
tails, you generally need to understand how the elements exchange information
at runtime. You can achieve this with the help of modeling tools such as UML
sequence diagrams (Figure 3.4), which allow you to model the information that

62 Chapter 3—The Architecture Design Process

is exchanged between elements during execution to support use cases or quality
attribute scenarios. This type of analysis is also useful for identifying relation-
ships between elements: If two elements need to exchange information directly,
then a relationship between these elements must exist. The information that is
exchanged becomes part of the specification of the interface. Interfaces typically
consist of a set of operations (such as methods) with specified parameters, return
values, and possibly, exceptions and pre and post conditions. Some interfaces,
however, may involve other information exchange mechanisms, such as a compo-
nent that writes information to a file or database and another component that then
accesses this information. Interfaces may also establish quality of service agree-
ments. For example, the execution of an operation specified in the interface may
be time-constrained to satisfy a performance quality attribute scenario.

The identification of interfaces is usually not performed equally across all
design iterations. When you are starting the design of a greenfield system, for
example, your first iterations will produce only abstract elements such as lay-
ers, with these elements then being refined in later iterations. The interfaces of
abstract elements such as layers are typically underspecified. For example, in an
early iteration you might simply specify that the UI layer sends “commands” to
the business logic layer, with the business logic layer sending “results” back. As
you advance in the design process and particularly when you create structures to
address specific use cases and quality attribute scenarios, you will need to refine
the interfaces of the specific elements that participate in the interaction.

In some special cases, identification of interfaces is greatly simplified. For
example, in the Big Data case study we present in Chapter 5, interfaces are al-
ready defined by the technologies that are selected. The specification of interfaces
then becomes a relatively trivial task, as the chosen technologies are designed to

(continues on p. 64)

Time server

Legend:

FIGURE 3.3 A system context diagram

3.6 Defining Interfaces 63

The following is an initial sequence diagram for Use Case UC-2 (Detect Fault)1 from the
FCAPS case study in Chapter 4. This diagram shows the interactions between an actor
and the five components that participate in UC-2. In creating this diagram, we identify
the information that is exchanged, the methods that are invoked, and the values that
are passed and returned.

Time Server

:T imeServerConnector :T imeServerConfigurationControl ler :T imeServerDataMapper :T ime Server :TopologyControl ler

addEventListener(this)

trap()

eventReceived(event)

publish(event)

retrieve(id) :TimeServer

:TimeServer

addEvent()

update(TimeServer)

:true

Key: UML

From this interaction, initial methods for the interfaces of the interacting elements can
be identified:

Name: TimeServerConnector

Method name Description

boolean addEventListener(:EventListener) This method allows
components from the
business logic to register
themselves as listeners to
events that are received
from the TimeServers.

FIGURE 3.4 A sequence diagram used to identify interfaces

1. More detail about this example is presented in Chapter 4.

64 Chapter 3—The Architecture Design Process

interoperate and hence have already “baked in” many interface assumptions and
decisions.

Finally, you need to consider that not all of the internal interfaces of the
system element will be identified as part of the design process (see the sidebar
“Identifying Interfaces in Element Interaction Design”).

Identifying Interfaces in Element Interaction Design

Although defining interfaces is an essential part of the architecture design
process, it is important to recognize that not all of the internal interfaces
are identified during architectural design. As part of the architecture design
process, you typically consider the primary use cases as part of the archi-
tectural drivers, and you identify elements (usually modules) that support
this primary functionality along with the other drivers. This process will,
however, not uncover all of the elements and interfaces for the system that
are required to support the entire set of use cases. This lack of specificity is
intended: Architecture is about abstraction, so necessarily some information
is less important, particularly in the earliest stages of design.

Identifying the modules that support the nonprimary use cases is often
necessary for estimation or work-assignment purposes. Identifying their
interfaces is also necessary to support the individual development and
integration of the modules and to perform unit testing. This identification of
modules may be done early in the project life cycle, but it must not be con-
fused with a big design up front (BDUF) approach. This, at most, is a BDUF
that, in certain contexts such as early estimation or iteration planning, is
hard to avoid.

As an architect, you may identify the set of modules that supports the
complete set of use cases for the system or for a particular release of the
system, but the identification of the interfaces associated with the modules
that support the nonprimary use cases is typically not your responsibility,
as it would require a significant amount of your time and does not usually
have a major architectural impact. This task, which we call element inter-
action design (see Section 2.2.2), is usually performed after architectural
design ends but before the development of (most of) the modules begins.
Although this task should be performed by other members in the develop-
ment team, you play a critical role in it, since these interfaces must adhere
to the architectural design that you established. You, as the architect, must
communicate the architecture to the engineers who are responsible for
identifying the interfaces and ensure that they understand the rationale for
the existing design decisions.

A good way to achieve this communication is to use the active reviews
for intermediate design (ARID) method. In this method, the architecture
design (or part of it) is presented to a group of reviewers—in this case, the
engineers who will make use of this design. After the design presentation,
a set of scenarios is selected by the participants. The selected scenarios

(continued from p. 62)

3.7 Creating Preliminary Documentation During Design 65

are used for the core of the exercise, where the reviewers use the elements
present in the architecture to satisfy them. In standard ARID, the review-
ers are asked to write code or pseudo-code for the purpose of identifying
interfaces. Alternatively, the architect can present the architecture, select
a nonprimary functional scenario and ask the participants to identify the
interfaces of the components that support the scenario using sequence
diagrams or a similar method.

Aside from the fact that the architectural design is reviewed in this exer-
cise, there are additional benefits to this approach. Specifically, in a single
meeting, the architecture design or part of it is presented to the entire
team, and agreements can be reached with respect to how the interfaces
should be defined (e.g., the level of detail or aspects such as parameter
passing, data types, or exception management).

3.7 Creating Preliminary Documentation During Design

A software architecture is typically documented as a set of views, which represent
the different structures that compose the architecture. The formal documentation
of these views is not part of the design process. Structures, however, are produced
as part of design. Capturing them, even in an informal manner (i.e., as sketches),
along with the design decisions that led you to create these structures, is a task
that should be performed as part of normal design activities.

3.7.1 Recording Sketches of the Views

When you produce structures by instantiating the design concepts that you have
selected to address a particular design problem, you will typically not produce
these structures in your mind, but rather will create some sketches of them. In the
simplest case, you will produce these sketches on a whiteboard, a flip-chart, or
even a piece of paper. Otherwise, you may use a modeling tool in which you will
draw the structures. The sketches that you produce are the initial documentation
for your architecture that you should capture and may flesh out later, if necessary.
When you create sketches, you don’t need to always use a more formal language
such as UML. If you use some informal notation, you should at least be careful in
maintaining consistency in the use of symbols. Eventually, you will need to add a
legend to your diagrams to provide clarity and avoid ambiguity.

You should develop discipline in writing down the responsibilities that you
allocate to the elements as you create the structures. The reasons for this are sim-
ple: As you identify an element, you are determining some responsibilities for that
element in your mind. Writing it down at that moment ensures that you won’t have

66 Chapter 3—The Architecture Design Process

to remember it later. Also, it is easier to write down the responsibilities associated
with your elements gradually, rather than compiling all of them at a later time.

Creating this preliminary documentation as you design requires some disci-
pline. But the benefits are worth the effort—you will be able to produce the more
detailed architecture documentation relatively easily and quickly at a later point.
One simple way that you can document responsibilities if you are using a white-
board, a flip-chart, or a PowerPoint slide is to take a photo of the sketch that you
have produced and paste it in a document, along with a table that summarizes the
responsibilities of every element depicted in the diagram (Figure 3.5 provides an
example). If you are using a computer-aided software engineering (CASE) tool,
you can select an element to create and use the text area that usually appears in
the properties sheet of the element to document its responsibilities, and then gen-
erate the documentation automatically.

This diagram presents a sketch of a module view depicting the overall system structure
from the case study in Chapter 5.

Data
Stream

Data
Sources

Raw Data
Storage

Corporate
BI Tool

Dashboard/
Visualization

Tool
Real-Time

Views

BATCH Layer SERVING Layer

SPEED Layer

Ad Hoc Views
Precomputing

Ad Hoc
Batch Views

Static Views
Precomputing

Static Batch
Views

Layer
Boundary

Data Flow
(with direction indicated)
Query Results Flow

Legend:

Element
Boundary

The diagram is complemented with a table that describes the element’s responsibilities:

Element Responsibility

Data
stream

This element collects data from all data sources in real time
and dispatches it to both the batch layer and the speed layer for
processing.

Batch layer This layer is responsible for storing raw data and precomputing the
batch views to be stored in the serving layer.

... ...

FIGURE 3.5 Sample preliminary documentation

3.7 Creating Preliminary Documentation During Design 67

Of course, it is not necessary to document everything. The three purposes
of documentation are analysis, construction, and education. At the moment you
are designing, you should choose a documentation purpose and then document to
fulfill that purpose, based on your risk mitigation concerns. For example, if you
have a critical quality attribute scenario that your architecture design needs to
satisfy, and if you will need to prove this requirement is met in an analysis, then
you must take care to document the information that is relevant for the analysis to
be satisfactory. Alternatively, if you anticipate having to train new team members,
then you should make a sketch of a C&C view of the system, showing how it
operates and how the elements interact at runtime, and perhaps construct a crude
module view of the system, showing at least the major layers or subsystems.

Finally, it is a good idea to remember, as you are documenting, that your design
may eventually be analyzed. Consequently, you need to think about which informa-
tion should be documented to support this analysis (see the sidebar “Scenario-Based
Documentation”).

Scenario-Based Documentation

An analysis of an architecture design is based on your most important use
cases and quality attribute scenarios. Simply put, a scenario is selected
and you must explain to reviewers how the architecture supports the sce-
nario, and justify your decisions. To start preparing for the analysis while
you design, it is useful to produce and document structures that contain
the elements that are involved in the satisfaction of a scenario. This should
come naturally given that the design process is guided by scenarios, but
keeping this point firmly in mind is always helpful.

During the design process, you should at least try to capture the follow-
ing elements in a single document:

§	The primary presentation: the diagram that represents the structure that
you produced

§	The element responsibilities table: it will help you record the responsibilities
of the elements that are present in the structure

§	The relevant design decisions, and their rationales (see Section 3.7.2)

You might also capture two other pieces of information:

§	A runtime representation of the element’s interaction—for example, a se-
quence diagram

§	The initial interface specifications (which can also be captured in a sepa-
rate document)

As you can see, all of this information needs to be produced as part of
the design process. One way or another, you need to decide which ele-
ments are present in the system and how they interact. The only question

68 Chapter 3—The Architecture Design Process

is whether you bother to write this information down, or whether its sole
representation is in the code.

If you follow the approach that we advocate here, at the end of the
design you will have a set of preliminary views documented, in which each
of the views is associated with a particular scenario, and you will have this
documentation at little cost. This preliminary documentation can be used
“as is” to analyze the design, and particularly through scenario-based
evaluations.

3.7.2 Recording Design Decisions

In each design iteration, you make important design decisions to achieve your it-
eration goal. As we saw previously, these design decisions include the following:

§	Selecting a design concept from several alternatives
§	Creating structures by instantiating the selected design concept
§	Establishing relationships between elements and defining interfaces
§	Allocating resources (e.g., people, hardware, computation)
§	Others

When you study a diagram that represents an architecture, you see the end
product of a thought process, but it may not be easy to understand the decisions
that were made to achieve this result. Recording design decisions beyond the rep-
resentation of the chosen elements, relationships, and properties is fundamental
to help in understanding how you arrived at the result: the design rationale.

When your iteration goal involves satisfying a specific quality attribute sce-
nario, some of the decisions that you make will play significant roles in your
ability to achieve the scenario response measure. These are, therefore, the deci-
sions that you should take the greatest care in recording. You should record these
decisions because they are essential to facilitate analysis of the design you cre-
ated; then to facilitate implementation; and, still later, to aid in understanding of
the architecture (e.g., during maintenance). Also every design decision is “good
enough” but seldom optimal, so you need to justify the decisions made, and pos-
sibly revisit the remaining risks later.

You might think that recording design decisions is a tedious task. In reality,
depending on the criticality of the system being developed, you can adjust the
amount of information that is recorded. For example, to record a minimum of
information, you can use a simple table such as the one shown in Table 3.2. If you
decide to record more than this minimum, the following information can prove
useful:

§	What evidence was produced to justify decisions?
§	Who did what?
§	Why were shortcuts taken?

3.8 Tracking Design Progress 69

§	Why were tradeoffs made?
§	What assumptions did you make?

And, in the same way that we suggest you record responsibilities as you
identify elements, you should record the design decisions as you make them. The
reason for this is simple: If you leave it until later, you may not remember why
you did things.

3.8 Tracking Design Progress

Even though ADD provides clear guidelines to perform design systematically, it
does not provide a mechanism to track design progress. When you are perform-
ing design, however, there are several questions that you want to answer:

§	How much design do we need to do?
§	How much design has been done so far?
§	Are we finished?

Agile practices such as the use of backlogs and Kanban boards can help you
track the design progress and answer these questions. These techniques are not
limited to Agile methods, of course. Any development project using any method-
ology should track progress.

3.8.1 Use of an Architectural Backlog

The concept of an architecture (or design) backlog has been proposed by several
authors (see Section 7.1). This is similar to what is found in Agile development
methods such as Scrum. The basic idea is that you need to create a list of the pend-
ing actions that still need to be performed as part of the architecture design process.

TABLE 3.2 Example of a Table to Document Design Decisions

Driver Design Decisions and Location Rationale and Assumptions

QA-1 Introduce concurrency (tactic)
in the TimeServerConnector
and FaultDetectionService

Concurrency should be introduced to
be able to receive and process several
events (traps) simultaneously.

QA-2 Use of a messaging pattern
through the introduction of
a message queue in the
communications layer

Although the use of a message
queue may seem to go against the
performance imposed by the scenario,
a message queue was chosen
because some implementations have
high performance and, furthermore,
this will be helpful to support QA-3.

...

70 Chapter 3—The Architecture Design Process

Initially, you should populate the design backlog with your drivers, but other
activities that support the design of the architecture can also be included. For
example:

§	Creation of a prototype to test a particular technology or to address a spe-
cific quality attribute risk

§	Exploration and understanding of existing assets (possibly requiring reverse
engineering)

§	Issues uncovered in a review of the design
§	Review of a partial design that was performed on a previous iteration

For example, when using Scrum, the sprint backlog and the design back-
log are not independent: Some features in the sprint backlog may require ar-
chitecture design to be performed, so they will generate items that go into the
architectural design backlog. These two backlogs can be managed separately,
however. The design backlog may even be managed internally, as it contains
several items that are typically not discussed or prioritized by the customer (or
product owner).

Also, additional architectural concerns may arise as decisions are made. For
example, if you choose a reference architecture, you will probably need to add
specific architectural concerns, or quality attribute scenarios derived from them,
to the architectural design backlog. An example of such a concern is the manage-
ment of sessions for a web application reference architecture.

3.8.2 Use of a Design Kanban Board

As design is performed in rounds and as a series of iterations within these rounds,
you need to have a way of tracking the design’s degree of advancement. You must
also decide whether you need to continue making more design decisions (i.e.,
performing additional iterations). One tool that can be used to facilitate this task
is a Kanban board, such as the one shown in Figure 3.6

At the beginning of a design round, the inputs to the design process become
entries in the backlog. Initially, that activity occurs in step 1 of ADD; the differ-
ent entries in your backlog for this design round should be added to the “Not Yet
Addressed” column of the board (except if you have some entries that were not
concluded in previous design rounds that you wish to address here). When you
begin a design iteration, in step 2 of ADD, the backlog entries that correspond
to the drivers that you plan to address as part of the design iteration goal should
be moved to the “Partially Addressed” column. Finally, once you finish an itera-
tion and the analysis of your design decisions reveals that a particular driver has
been addressed (step 7 of ADD), the entry should be moved to the “Completely
Addressed” column of the board. It is important to establish clear criteria that
will allow a driver to be moved to the “Completely Addressed” column (think of
this as the “Definition of Addressed” criteria, similar to the “Definition of Done”

3.8 Tracking Design Progress 71

criteria used in Scrum). A criterion may be, for example, that the driver has been
analyzed or that it has been implemented in a prototype. Also, drivers that are se-
lected for a particular iteration may not be completely addressed in that particular
iteration, in which case they should remain in the “Partially Addressed” column
and, in preparation for subsequent iterations, you should consider how they can
be allocated to the elements that exist at this point.

It can be useful to select a technique that will allow you to differentiate the
entries in the board according to their priority. For example, you might use differ-
ent colors of Post-it notes depending on the priority.

With such a board, it is easy to visually track the advancement of design,
as you can quickly see how many of the (most important) drivers are being or
have been addressed in the design round. This technique also helps you decide
whether you need to perform additional iterations as, ideally, the design round is
terminated when a majority of your drivers (or at least the ones with the highest
priority) are located under the “Completely Addressed” column.

Not Yet Addressed 6 Partially Addressed 7 Completely Addressed 1 Discarded

High Priority

High Priority

Medium Priority

Medium Priority

Medium Priority

Low Priority

High Priority

High Priority

High Priority

High Priority

High Priority

QA-8 Test code coverage should be
at least 85% for each CI

QA-3 External user credentials are
verified against user registry

CT-1 MVP release of the solution to
the selected consultants, customers,
and prospective licensees in 9
months, release in 1.5 years

QA-5 Data center infrastructure has
uptime 99.95%

QA-4 User facing parts are available
99.9% - 4 hours in
months (maintenance window)

QA-1 User credentials are verified
against corporate AD

UC4 - As sales person, prepare
proposal plan

CT-8 Infrastructure team is not able
to support large-scale SaaS setup

CN-2 Choose architecture style

QAScenario

QAScenario

QAScenario

QAScenario

QAScenario

Constraint

Constraint

UseCase

Concern

CN-1 Codebase (reuse legacy code if
possible

FIGURE 3.6 A Kanban board used to track design progress

72 Chapter 3—The Architecture Design Process

3.9 Summary

In this chapter, we presented a detailed walk-through of the Attribute-Driven De-
sign method, version 3.0. We also discussed several important aspects that need
to be considered in the various steps of the design process. These aspects in-
clude the use of a backlog, the various possible design roadmaps (for greenfield,
brownfield, and novel contexts), the identification and selection of design con-
cepts and their use in producing structures, the definition of interfaces, and the
production of preliminary documentation.

Even though the overall architecture development life cycle includes docu-
menting and analyzing architecture as activities that are separate from design, we
have argued that a clean separation of these activities is artificial and harmful. We
stress that preliminary documentation and analysis activities need to be regularly
performed as integral parts of the design process.

In Chapters 4, 5, and 6, we will instantiate ADD 3.0 in several extended ex-
amples, showing how the method works in the real world, in both greenfield and
brownfield contexts.

3.10 Further Reading

Some of the concepts of ADD 3.0 were first introduced in an IEEE Software
article: H. Cervantes, P. Velasco, and R. Kazman, “A Principled Way of Us-
ing Frameworks in Architectural Design”, IEEE Software, 46–53, March/April
2013. Version 2.0 of ADD was first documented in the SEI Technical Report:
R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B. Wood,
“Attribute-Driven Design (ADD), Version 2.0”, SEI/CMU Technical Report
CMU/SEI-2006-TR-023, 2006. An extended example of using ADD 2.0 was
documented in W. Wood, “A Practical Example of Applying Attribute-Driven De-
sign (ADD), Version 2.0”, SEI/CMU Technical Report: CMU/SEI-2007-TR-005.

Several alternative methods exist to support the design of software architec-
tures. These are discussed in more detail and referenced in Chapter 7.

The concept of an architecture backlog is discussed in C. Hofmeister,
P. Kruchten, R. Nord, H. Obbink, A. Ran, and P. America, “A General Model of
Software Architecture Design Derived from Five Industrial Approaches”, Journal
of Systems and Software, 80:106–126, 2007.

The ARID method is discussed in P. Clements, R. Kazman, and M. Klein,
Evaluating Software Architectures: Methods and Case Studies, Addison-Wesley,
2002.

The CBAM method is presented in L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice, 3rd ed., Addison-Wesley, 2013.

3.10 Further Reading 73

The ways in which an architecture can be documented are covered exten-
sively in P. Clements et al. Documenting Software Architectures: Views and Be-
yond, 2nd ed., Addison-Wesley, 2011. More Agile approaches to documenting
are discussed in books such as S. Brown, Software Architecture for Developers.
Lean Publishing, 2015.

The importance and challenges of capturing design rationale are discussed
in A. Tang, M. Ali Babar, I. Gorton, and J. Han, “A Survey of Architecture Design
Rationale”, Journal of Systems and Software, 79(12):1792–1804, 2007. A mini-
malistic technique for capturing rationale is discussed in U. Zdun, R. Capilla,
H. Tran, and O. Zimmermann, “Sustainable Architectural Design Decisions”,
IEEE Software, 30(6):46–53, 2013.

This page intentionally left blank

75

4
Case Study: FCAPS
System

We now present a case study of using ADD 3.0 for a greenfield system in a ma-
ture domain. This case study details an initial design round composed of three
iterations and is based on a real-world example. We first present the business con-
text, and then we summarize the requirements for the system. This is followed
by a step-by-step summary of the activities that are performed during the ADD
iterations.

4.1 Business Case

In 2006, a large telecommunications company wanted to expand its Internet
Protocol (IP) network to support “carrier-class services”, and more specifically
high-quality voice over IP (VOIP) systems. One important aspect to achieve this
goal was synchronization of the VOIP servers and other equipment. Poor syn-
chronization results in low quality of service (QoS), degraded performance, and
unhappy customers. To achieve the required level of synchronization, the com-
pany wanted to deploy a network of time servers that support the Network Time
Protocol (NTP). Time servers are formed into groups that typically correspond
to geographical regions. Within these regions, time servers are organized hier-
archically in levels or strata, where time servers placed in the upper level of the

76 Chapter 4—Case Study: FCAPS System

hierarchy (stratum 1) are equipped with hardware (e.g., Cesium Oscillator, GPS
signal) that provides precise time. Time servers that are lower in the hierarchy use
NTP to request time from servers in the upper levels or from their peers.

Many pieces of equipment depend on the time provided by time servers in
the network, so one priority for the company was to correct any problems that
occur on the time servers. Such problems may require dispatching a technician
to perform physical maintenance on the time servers, such as rebooting. Another
priority for the company was to collect data from the time servers to monitor the
performance of the synchronization framework.

In the initial deployment plans, the company wanted to field 100 time serv-
ers of a particular model. Besides NTP, time servers support the Simple Network
Management Protocol (SNMP), which provides three basic operations:

§	set() operations: change configuration variables (e.g., connected peers)
§	get() operations: retrieve configuration variables or performance data
§	trap() operations: notifications of exceptional events such as the loss or

restoration of the GPS signal or changes in the time reference

To achieve the company’s goals, a management system for the time servers
needed to be developed. This system needed to conform to the FCAPS model,
which is a standard model for network management. The letters in the acronym
stand for:

§	Fault management. The goal of fault management is to recognize, isolate,
correct, and log faults that occur in the network. In this case, these faults cor-
respond to traps generated by time servers or other problems such as loss of
communication between the management system and the time servers.

§	Configuration management. This includes gathering and storing config-
urations from network devices, thereby simplifying the configuration of
devices and tracking changes that are made to device configurations. In this
system, besides changing individual configuration variables, it is necessary
to be able to deploy a specific configuration to several time servers.

§	Accounting. The goal here is to gather device information. In this context,
this includes tracking device hardware and firmware versions, hardware
equipment, and other components of the system.

§	Performance management. This category focuses on determining the ef-
ficiency of the current network. By collecting and analyzing performance
data, the network health can be monitored. In this case, delay, offset, and
jitter measures are collected from the time servers.

§	Security management. This is the process of controlling access to assets in
the network. In this case, there are two important types of users: technicians
and administrators. Technicians can visualize trap information and config-
urations but cannot make changes; administrators are technicians who can
visualize the same information but can also make changes to configura-
tions, including adding and removing time servers from the network.

4.2 System Requirements 77

Once the initial network was deployed, the company planned to extend it by
adding time servers from newer models that might potentially support manage-
ment protocols other than SNMP.

The remainder of this chapter describes a design for this system, created
using ADD 3.0.

4.2 System Requirements

Requirement elicitation activities had been previously performed, and the follow-
ing is a summary of the most relevant requirements collected.

4.2.1 Use Case Model

The use case model in Figure 4.1 presents the most relevant use cases that sup-
port the FCAPS model in the system. Other use cases are not shown.

FIGURE 4.1 Use case model for the FCAPS system

78 Chapter 4—Case Study: FCAPS System

Each of these use cases is described in the following table:

Use Case Description

UC-1: Monitor
network status

A user monitors the time servers in a hierarchical representation
of the whole network. Problematic devices are highlighted,
along with the logical regions where they are grouped. The
user can expand and collapse the network representation. This
representation is updated continuously as faults are detected or
repaired.

UC-2: Detect
fault

Periodically the management system contacts the time servers
to see if they are “alive”. If a time server does not respond, or
if a trap that signals a problem or a return to a normal state
of operation is received, the event is stored and the network
representation observed by the users is updated accordingly.

UC-3: Display
event history

Stored events associated with a particular time server or group
of time servers are displayed. These can be filtered by various
criteria such as type or severity.

UC-4: Manage
time servers

The administrator adds a time server to, or removes a time server
from, the network.

UC-5: Configure
time server

An administrator changes configuration parameters associated
with a particular time server. The parameters are sent to the
device and are also stored locally.

UC-6: Restore
configuration

A locally stored configuration is sent to one or more time servers.

UC-7: Collect
performance
data

Network performance data (delay, offset, and jitter) is collected
periodically from the time servers.

UC-8: Display
information

The user displays stored information about the time server—
configuration values and other parameters such as the server
name.

UC-9: Visualize
performance
data

The user displays network performance measures (delay,
offset, jitter) in a graphical way to view and analyze network
performance.

UC-10: Log in A user logs into the system through a login/password screen.
Upon successful login, the user is presented with different
options according to their role.

U-11: Manage
users

The administrator adds or removes a user or modifies user
permissions.

4.2.2 Quality Attribute Scenarios

In addition to these use cases, a number of quality attribute scenarios were elic-
ited and documented. The six most relevant ones are presented in the following
table. For each scenario, we also identify the use case that it is associated with.

4.2 System Requirements 79

ID
Quality
Attribute Scenario

Associated
Use Case

QA-1 Performance Several time servers send traps to the
management system at peak load; 100% of
the traps are successfully processed and
stored.

UC-2

QA-2 Modifiability A new time server management protocol
is introduced to the system as part of an
update. The protocol is added successfully
without any changes to the core
components of the system.

UC-5

QA-3 Availability A failure occurs in the management system
during normal operation. The management
system resumes operation in less than 30
seconds.

All

QA-4 Performance The management system collects
performance data from a time server
during peak load. The management system
collects all performance data within 5
minutes, while processing all user requests,
to ensure no loss of data due to CON-5.

UC-7

QA-5 Performance,
usability

A user displays the event history of a
particular time server during normal
operation. The list of events from the last
24 hours is displayed within 1 second.

UC-3

QA-6 Security A user performs a change in the system
during normal operation. It is possible to
know who performed the operation and
when it was performed 100% of the time.

All

4.2.3 Constraints

Finally, a set of constraints on the system and its implementation were collected.
These are presented in the following table.

ID Constraint

CON-1 A minimum of 50 simultaneous users must be supported.

CON-2 The system must be accessed through a web browser (Chrome V3.0+,
Firefox V4+, IE8+) in different platforms: Windows, OSX, and Linux.

CON-3 An existing relational database server must be used. This server cannot be
used for other purposes than hosting the database.

CON-4 The network connection to user workstations can have low bandwidth but
is generally reliable.

CON-5 Performance data needs to be collected in intervals of no more than 5
minutes, as higher intervals result in time servers discarding data.

CON-6 Events from the last 30 days must be stored.

80 Chapter 4—Case Study: FCAPS System

4.2.4 Architectural Concerns

Given that this is greenfield development, only a few general architectural con-
cerns are identified initially, as shown in the following table.

ID Concern

CRN-1 Establishing an overall initial system structure.

CRN-2 Leverage the team’s knowledge about Java technologies, including
Spring, JSF, Swing, Hibernate, Java Web Start and JMS frameworks, and
the Java language.

CRN-3 Allocate work to members of the development team.

Given these sets of inputs, we are now ready to proceed to describe the de-
sign process, as described in Section 3.2. In this chapter, we present only the final
results of the requirements collection process. The job of collecting these require-
ments is nontrivial, but is beyond the scope of this chapter.

4.3 The Design Process

We now ready to make the leap from the world of requirements and business
concerns to the world of design. This is perhaps the most important job for an
architect—translating requirements into design decisions. Of course, many other
decisions and duties are important, but this is the core of what it means to be an
architect: making design decisions with far-reaching consequences.

4.3.1 ADD Step 1: Review Inputs

The first step of the ADD method involves reviewing the inputs and identifying
which requirements will be considered as drivers (i.e., which will be included in
the design backlog). The inputs are summarized in the following table.

Category Details

Design purpose This is a greenfield system from a mature domain. The purpose
is to produce a sufficiently detailed design to support the
construction of the system.

Primary functional
requirements

From the use cases presented in Section 4.2.1, the primary
ones were determined to be:
UC-1: Because it directly supports the core business
UC-2: Because it directly supports the core business
UC-7: Because of the technical issues associated with it
(see QA-4)

4.3 The Design Process 81

Quality attribute
scenarios

The scenarios were described in Section 4.2.2. They have now
been prioritized (as discussed in Section 2.4.2) as follows:

Scenario
ID

Importance to
the Customer

Difficulty of Implementation
According to the Architect

QA-1 High High

QA-2 High Medium

QA-3 High High

QA-4 High High

QA-5 Medium Medium

QA-6 Medium Low

From this list, only QA-1, QA-2, QA-3, and QA-4 are selected as
drivers.

Constraints All of the constraints discussed in Section 4.2.3 are included as
drivers.

Architectural
concerns

All of the architectural concerns discussed in Section 4.2.4 are
included as drivers.

4.3.2 Iteration 1: Establishing an Overall System Structure

This section presents the results of the activities that are performed in each of the
steps of ADD in the first iteration of the design process.

4.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers
This is the first iteration in the design of a greenfield system, so the iteration goal
is to achieve the architectural concern CNR-1 of establishing an overall system
structure (see Section 3.3.1).

Although this iteration is driven by a general architectural concern, the ar-
chitect must keep in mind all of the drivers that may influence the general struc-
ture of the system. In particular, the architect must be mindful of the following:

§	QA-1: Performance
§	QA-2: Modifiability
§	QA-3: Availability
§	QA-4: Performance
§	CON-2: System must be accessed through a web browser in different

platforms—Windows, OSX, and Linux
§	CON-3: A relational database server must be used
§	CON-4: Network connection to users workstations can have low bandwidth

and be unreliable
§	CRN-2: Leverage team’s knowledge about Java technologies

82 Chapter 4—Case Study: FCAPS System

Time server

Legend:

FIGURE 4.2 Context diagram for the FCAPS system

4.3.2.2 Step 3: Choose One or More Elements of the System to Refine
This is a greenfield development effort, so in this case the element to refine is the
entire FCAPS system, which is shown in Figure 4.2. In this case, refinement is
performed through decomposition.

4.3.2.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers
In this initial iteration, given the goal of structuring the entire system, design
concepts are selected according to the roadmap presented in Section 3.3.1. The
following table summarizes the selection of design decisions. Note that all of the
design concepts used in this case study are also described in Appendix A.

Design Decisions
and Location Rationale

Logically structure
the client part of the
system using the Rich
Client Application
reference architecture

The Rich Client Application (RCA) reference architecture
(see Section A.1.2) supports the development of applica-
tions that are installed in the users’ PC. These applications
support rich user interface capabilities that are needed for
displaying the network topology and performance graphs
(UC-1). These capabilities are also helpful in achieving
QA-5, even if this design decision is not a driver. Although
these types of applications do not run in a web browser
(CON-2), they can be installed from a web browser using a
technology such as Java Web Start.

4.3 The Design Process 83

Design Decisions
and Location Rationale

Discarded alternatives:

Alternative Reason for Discarding

Rich Internet
applications
(RIA)

This reference architecture (see Section
A.1.3) is oriented toward the develop-
ment of applications with a rich user
interface that runs inside a web browser.
Although this type of application supports
a rich user interface and can be up-
graded easily, this option was discarded
because it was believed that plugins for
executing RIA were less broadly available
than the Java Virtual Machine.

Web
applications

This reference architecture (see Section
A.1.1) is oriented toward the development
of applications that are accessed from
a web browser. Although this reference
architecture facilitates deployment and
updating, it was discarded because it is
difficult to provide a rich user interface
experience.

Mobile
applications

This reference architecture (see
Section A.1.4) is oriented toward the
development of applications that are
deployed in handheld devices. This
alternative was discarded because this
type of device was not considered for
accessing the system.

Logically structure
the server part of
the system using the
Service Application
reference architecture

Service applications (see Section A.1.5) do not provide a
user interface but rather expose services that are consumed
by other applications.
No other alternatives were considered and discarded, as the
architect was familiar with this reference architecture and
considered it fully adequate to meet the requirements.

Physically structure
the application
using the three-tier
deployment pattern

Since the system must be accessed from a web browser
(CON-2) and an existing database server must also be
used (CON-3), a three-tier deployment is appropriate (see
Section A.2.2).
At this point, it is clear that some type of replication will be
needed on both the web/app tier and the database tier to
support QA-3, but this will be addressed later (in iteration 3).
Discarded alternatives include other n-tier patterns with
n != 3. The two-tier alternative is discarded because an
existing legacy database server needs to be incorporated
into the system and this cannot be used for any other
purpose, according to CON-3. All n > 3 alternatives are
discarded because at this point no other servers are
necessary for the solution.

(continues)

84 Chapter 4—Case Study: FCAPS System

Design Decisions
and Location Rationale

Build the user
interface of the client
application using
the Swing Java
framework and other
Java technologies

The standard framework for building Java Rich Clients
ensures portability (CON-2) and it is what the developers
were already familiar with (CRN-3).
Discarded alternatives: The Eclipse SWT (Standard Widget
Toolkit) framework was considered, but the developers were
not as familiar with it.

Deploy the application
using the Java Web
Start technology

Access to the application is obtained via a web browser,
which launches the installer (CON-2).
This technology also facilitates updating because client
code is reloaded only when a new version is available.
As updates are not expected to occur frequently, this is
beneficial for low-bandwidth situations (CON-4).
The alternative would be the use of applets, but they need
to be reloaded every time the web page is loaded, which
increases the bandwidth requirements.

4.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces
The instantiation design decisions considered and made are summarized in the
following table:

Design Decision and
Location Rationale

Remove local data sources
in the rich client application

It is believed that there is no need to store data locally,
as the network connection is generally reliable.
Also, communication with the server is handled in
the data layer. Internal communication between
components in the client is managed through local
method calls and does not need particular support.

Create a module dedicated
to accessing the time
servers in the data layer
of the Service Application
reference architecture

The service agents component from the reference
architecture is adapted to abstract the access to the
time servers. This will further facilitate the achievement
of QA-2 and will play a critical role in the achievement
of UC-2 and UC-7.

The results of these instantiation decisions are recorded in the next step. In
this initial iteration, it is typically too early to precisely define functionality and
interfaces. In the next iteration, which is dedicated to defining functionality in
more detail, interfaces will begin to be defined.

4.3.2.5 Step 6: Sketch Views and Record Design Decisions
The diagram in Figure 4.3 shows the sketch of a module view of the two refer-
ence architectures that were selected for the client and server applications. These
have now been adapted according to the design decisions we have made.

4.3 The Design Process 85

«Layer»
Presentation CS

«Layer»
Business logic CS

«Layer»
Data CS

«Swing»
UI Modules

UI Process Modules

Client Side

Server Side

«Layer»
Cross-cutting CS

Business Modules CS Business Entities CS

«Module»
Communication Modules

Security Module CS

Op. Mgmt. Module CS

«Layer»
Services SS

Service Interfaces

«Layer»
Business Logic SS

Business Modules SS Business Entities SS

«Layer»
Data SS

DB Access Module
Time Server Access Module

«Layer»
Cross-cutting SS

Security Module SS

Op. Mgmt. Module SS

Communication Module SS

FIGURE 4.3 Modules obtained from the selected reference architectures (Key: UML)

86 Chapter 4—Case Study: FCAPS System

This sketch was created using a CASE tool. In the tool, each element is selected
and a short description of its responsibilities is captured. Note that the descriptions
at this point are quite crude, just indicating major functional responsibilities, with no
details. The following table summarizes the information that is captured:

Element Responsibility

Presentation client
side (CS)

This layer contains modules that control user interaction and
use case control flow.

Business logic CS This layer contains modules that perform business logic
operations that can be executed locally on the client side.

Data CS This layer contains modules that are responsible for
communication with the server.

Cross-cutting CS This “layer” includes modules with functionality that goes
across different layers, such as security, logging, and I/O.
This is helpful in achieving QA-6, even if it is not one of the
drivers.

UI modules These modules render the user interface and receive user
inputs.

UI process modules These modules are responsible for control flow of all the
system use cases (including navigation between screens).

Business modules
CS

These modules either implement business operations that
can be performed locally or expose business functionality
from the server side.

Business entities CS These entities make up the domain model. They may be less
detailed than those on the server side.

Communication
modules CS

These modules consume the services provided by the
application running on the server side.

Services server side
(SS)

This layer contains modules that expose services that are
consumed by the clients.

Business Logic SS This layer contains modules that perform business logic
operations that require processing on the server side.

Data SS This layer contains modules that are responsible for data
persistence and for communication with the time servers.

Cross-cutting SS These modules have functionality that goes across different
layers, such as security, logging, and I/O.

Service interfaces
SS

These modules expose services that are consumed by the
clients.

Business modules
SS

These modules implement business operations.

Business entities SS These entities make up the domain model.

DB access module This module is responsible for persistence of business
entities (objects) into the relational database. It performs
object-oriented to relational mapping and shields the rest of
the application from persistence details.

4.3 The Design Process 87

Element Responsibility

Time server access
module

This module is responsible for communication with the time
servers. It isolates and abstracts operations with the time
servers to support communication with different types of
time servers (see QA-2).

The deployment diagram in Figure 4.4 sketches an allocation view that illus-
trates where the components associated with the modules in the previous diagram
will be deployed.

The responsibilities of the elements are summarized here:

Element Responsibility

User workstation The user’s PC, which hosts the client side logic of the
application

Application server The server that hosts server side logic of the application and
also serves web pages

Database server The server that hosts the legacy relational database

Time server The set of (external) time servers

Also, information about relationships between some elements in the dia-
gram that is worth recording is summarized in the following table:

Relationship Description

Between web/app server and
database server

Communication with the database will be
done using the JDBC protocol.

Between web/app server and time
server

The SNMP protocol is used (at least initially).

pc :User Workstation «replicated»
:Application Server

«replicated»
database :Database Server

:Time Server

Server-Side Application
«Java Web Start»

Client-Side
Application

«SNMP»

«JDBC»

FIGURE 4.4 Initial deployment diagram for the FCAPS system (Key: UML)

88 Chapter 4—Case Study: FCAPS System

4.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose
The following table summarizes the design progress using the Kanban board
technique discussed in Section 3.8.2.

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During
the Iteration

UC-1 Selected reference architecture
establishes the modules that will
support this functionality.

UC-2 Selected reference architecture
establishes the modules that will
support this functionality.

UC-7 Selected reference architecture
establishes the modules that will
support this functionality.

QA-1 No relevant decisions made, as it is
necessary to identify the elements
that participate in the use case that
is associated with the scenario.

QA-2 Introduction of a time server access
module in the data layer on the
server application that encapsulates
communication with the time serv-
ers. The details of this component
and its interfaces have not been
defined yet.

QA-3 Identification of the elements
derived from the deployment pattern
that will need to be replicated.

QA-4 No relevant decisions made, as it is
necessary to identify the elements
that participate in the use case that
is associated with the scenario.

CON-1 Structuring the system using 3 tiers
will allow multiple clients to connect
to the application server. Decisions
regarding concurrent access have
not been made yet.

CON-2 Use of Java Web Start technology
allows access through a web
browser to download the Rich
Client. Since the Rich Client is being
programmed in Java, this supports
execution under Windows, OSX,
and Linux.

4.3 The Design Process 89

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During
the Iteration

CON-3 Physically structure the application
using the 3-tier deployment
pattern, and isolate the database
by providing database access
components in the data layer of the
application server.

CON-4 Use of Java Web Start technology
requires the client to be downloaded
only the first time, and then when
upgrades occur. This is helpful
to support limited-bandwidth
connections. More decisions
need to be made regarding the
communication between the
presentation and the business logic
layers.

CON-5 No relevant decisions made.

CON-6 No relevant decisions made.

CRN-1 Selection of reference architectures
and deployment pattern.

CRN-2 Technologies that have been
considered up to this point take
into account the knowledge of the
developers. Other technologies
still need to be selected (e.g.,
communication with the time
servers).

CRN-3 No relevant decisions made.

4.3.3 Iteration 2: Identifying Structures to Support
Primary Functionality

This section presents the results of the activities that are performed in each of the
steps of ADD in the second iteration of the design process for the FCAPS system.
In this iteration, we move from the generic and coarse-grained descriptions of
functionality used in iteration 1 to more detailed decisions that will drive imple-
mentation and hence the formation of development teams.

This movement from the generic to the specific is intentional, and built into
the ADD method. We cannot design everything up front, so we need to be dis-
ciplined about which decisions we make, and when, to ensure that the design
is done in a systematic way, addressing the biggest risks first and moving from
there to ever finer details. Our goal for the first iteration was to establish an over-
all system structure. Now that this goal has been met, our new goal for this sec-
ond iteration is to reason about the units of implementation, which affect team

90 Chapter 4—Case Study: FCAPS System

formation, interfaces, and the means by which development tasks may be distrib-
uted, outsourced, and implemented in sprints.

4.3.3.1 Step 2: Establish Iteration Goal by Selecting Drivers
The goal of this iteration is to address the general architectural concern of identify-
ing structures to support primary functionality. Identifying these elements is useful
not only for understanding how functionality is supported, but also for addressing
CRN-3—that is, the allocation of work to members of the development team.

In this second iteration, besides CRN-3, the architect considers the system’s
primary use cases:

§	UC-1
§	UC-2
§	UC-7

4.3.3.2 Step 3: Choose One or More Elements of the System to Refine
The elements that will be refined in this iteration are the modules located in the
different layers defined by the two reference architectures from the previous
iteration. In general, the support of functionality in this system requires the
collaboration of components associated with modules that are located in the
different layers.

4.3.3.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers
In this iteration, several design concepts—in this case, architectural design pat-
terns—are selected from the book Pattern Oriented Software Architecture, Vol-
ume 4. The following table summarizes the design decisions. The words in bold
in the following table refer to architectural patterns from this book, and can be
found in Appendix A.

Design Decisions
and Location Rationale and Assumptions

Create a Domain
Model for the
application

Before starting a functional decomposition, it is necessary to
create an initial domain model for the system, identifying the
major entities in the domain, along with their relationships.
There are no good alternatives. A domain model must
eventually be created, or it will emerge in a suboptimal
fashion, leading to an ad hoc architecture that is hard to
understand and maintain.

Identify Domain
Objects that
map to functional
requirements

Each distinct functional element of the application needs
to be encapsulated in a self-contained building block—a
domain object.
One possible alternative is to not consider domain objects
and instead directly decompose layers into modules, but this
increases the risk of not considering a requirement.

4.3 The Design Process 91

Design Decisions
and Location Rationale and Assumptions

Decompose Domain
Objects into general
and specialized
Components

Domain objects represent complete sets of functionality,
but this functionality is supported by finer-grained elements
located within the layers. The “components” in this pattern
are what we have referred to as modules.
Specialization of modules is associated with the layers where
they are located (e.g., UI modules).
There are no good alternatives to decomposing the layers
into modules to support functionality.

Use Spring
framework and
Hibernate

Spring is a widely used framework to support enterprise
application development. Hibernate is an object to relational
mapping (ORM) framework that integrates well with Spring.
An alternative that was considered for application develop-
ment is JEE. Spring was eventually selected because it was
considered more “lightweight” and the development team
was already familiar with it, resulting in greater and earlier
productivity.
Other ORM frameworks were not considered, as the
development team already was familiar with, and happy with
the performance of, Hibernate.

4.3.3.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces
The instantiation design decisions made in this iteration are summarized in the
following table:

Design Decisions
and Location Rationale

Create only an initial
domain model

The entities that participate in the primary use cases need to
be identified and modeled but only an initial domain model is
created, to accelerate this phase of design.

Map the system use
cases to domain
objects

An initial identification of domain objects can be made by an-
alyzing the system’s use cases. To address CRN-3, domain
objects are identified for all of the use cases in Section 4.2.1.

Decompose the
domain objects
across the layers to
identify layer-specific
modules with an
explicit interface

This technique ensures that modules that support all of the
functionalities are identified.
The architect will perform this task just for the primary use
cases. This allows another team member to identify the rest of
the modules, thereby allocating work among team members.
Having established the set of modules, the architect realizes
the need to test these modules, so a new architectural
concern is identified here:
CRN-4: A majority of modules shall be unit tested.
Only “a majority of modules” are covered by this concern
because the modules that implement user interface
functionality are difficult to test independently.

(continues)

92 Chapter 4—Case Study: FCAPS System

Design Decisions
and Location Rationale

Connect components
associated with
modules using
Spring

This framework uses an inversion of control approach that
allows different aspects to be supported and the modules to
be unit-tested (CRN-4).

Associate
frameworks with a
module in the data
layer

ORM mapping is encapsulated in the modules that are
contained in the data layer. The Hibernate framework
previously selected is associated with these modules.

While the structures and interfaces are identified in this step of the method,
they are captured in the next step.

4.3.3.5 Step 6: Sketch Views and Record Design Decisions
As a result of the decisions made in step 5, several diagrams are created.

§	Figure 4.5 shows an initial domain model for the system.
§	Figure 4.6 shows the domain objects that are instantiated for the use case

model in Section 4.2.1.
§	Figure 4.7 shows a sketch of a module view with modules that are derived

from the business objects and associated with the primary use cases. Note
that explicit interfaces are not shown but their existence is assumed.

The responsibilities for the elements identified in Figure 4.7 are summarized
in the table that begins on page 95.

4.3 The Design Process 93

Time Server

- deviceName
- ipAddress
- model

Event

- date
- payload
- severity
- type

Region

- name

Configuration

- configurationParameters

Performance Data

- delay: DataSet
- jitter: DataSet
- offset: DataSet

User

- login
- password
- permissions
- type

0..*

-parent

0..*

1

1

generates

0..*

1..*

1

acknowledges

FIGURE 4.5 Initial domain model (Key: UML)

«domain object»
Network Status Monitoring

responsibilities
UC-1

«domain object»
Fault Detection

responsibilities
UC-2

«domain object»
Event history

responsibilities
UC-3

«domain object»
Time Server Management

responsibilities
UC-4

«domain object»
Time Server Configuration

responsibilities
UC-5
UC-6

«domain object»
System Access

responsibilities
UC-10

«domain object»
Performance Data and Information Display

responsibilities
UC-8
UC-9

«domain object»
Performance and Data Collection

responsibilities
UC-7

«domain object»
User Management

responsibilities
UC-11

FIGURE 4.6 Domain objects associated with the use case model (Key: UML)

94 Chapter 4—Case Study: FCAPS System

Server Side

Client Side«Layer»
Presentation CS

«Layer»
Business logic CS

«Layer»
Data CS

«Layer»
Services SS

«Layer»
Business Logic SS

«Layer»
Data SS

NetworkStatusMonitoringView

NetworkStatusMonitoringController

RequestManager

«facade»
RequestService

TopologyController
DomainEntities

RegionDataMapper TimeServerDataMapper EventDataMapper TimeServerConnector

TimeServerEventsController DataCollectionController

FIGURE 4.7 Modules that support the primary use cases (Key: UML)

4.3 The Design Process 95

Element Responsibility

NetworkStatusMonitoringView Displays the network representation and
updates it when events are received.
This component embodies both UI com-
ponents and UI process components
from the reference architecture.

NetworkStatusMonitoringController Responsible for providing the necessary
information to the presentation layer for
displaying the network representation.

RequestManager Responsible for communication with the
server-side logic.

RequestService Provides a facade that receives
requests from the clients.

TopologyController Contains business logic related to the
topological information.

DomainEntities Contains the entities from the domain
model (server side).

TimeServerEventsController Contains business logic related to the
management of events.

DataCollectionController Contains logic to perform data
collection and storage.

RegionDataMapper Responsible for persistence operations
(CRUD) related to the regions.

TimeServerDataMapper Responsible for persistence operations
(CRUD) related to the time servers.

EventDataMapper Responsible for persistence operations
(CRUD) related to the events.

TimeServerConnector Responsible for communication with the
time servers. It isolates and abstracts
operations with the time servers to
support communication with different
types of time servers (see QA-2).

96 Chapter 4—Case Study: FCAPS System

The following sequence diagrams for UC-1 and UC-2 were created in the pre-
vious step of the method to define interfaces (as discussed in Section 3.6). A similar
diagram was also created for UC-7 but is not shown here due to space limitations.

UC-1: Monitor Network Status
Figure 4.8 shows an initial sequence diagram for UC-1 (monitor network status). It
shows how the user representation of the topology is displayed on startup (after the
user has successfully logged into the system). Upon launch, the topology is requested
from the TopologyController on the server. This element retrieves the root re-
gion through the RegionDataMapper and returns it to the client. The client can
then populate the view by traversing the relationships within the Region class.

ServerClient

Technician

:NetworkStatusMonitoringView :NetworkStatusMonitoringController :RequestManager :RequestService :TopologyController :RegionDataMapper

launch()

initialize()

requestTopology()

sendRequest(Request)

requestTopology()

retrieve(id) :Region

:Region

:Region

:Response

:Region

:boolean

getRootRegion() :Region

populateView()

interact()

FIGURE 4.8 Sequence diagram for use case UC-1 (Key: UML)

From the interactions identified in the sequence diagram, initial methods for
the interfaces of the interacting elements can be identified:

4.3 The Design Process 97

Method Name Description

Element: NetworkStatusMonitoringContoller

boolean initialize() Opens up the network representation so that
users can interact with it.

Region getRootRegion() Returns a reference to the root region and the
neighbors of this object (excluding traps).

Element: RequestManager

Region requestTopology() Requests the topology. This method returns a ref-
erence to the root region from which it is possible
to navigate through the complete topology.

Element: RequestService

Response
sendRequest(Request req)

This method receives a request. Only this method
is exposed in the service interface. This simplifies
the addition of other functionality in the future with-
out having to modify the existing service interface.

Element: TopologyController

Region requestTopology() Requests the topology. This method returns a ref-
erence to the root region from which it is possible
to navigate through the complete topology.

Element: RegionDataMapper

Region retrieve(int id) Returns a Region from its id.

98 Chapter 4—Case Study: FCAPS System

Time Server

:T imeServerConnector :T imeServerConfigurationControl ler :T imeServerDataMapper :T ime Server :TopologyControl ler

addEventListener(this)

trap()

eventReceived(event)

publish(event)

retrieve(id) :TimeServer

:TimeServer

addEvent()

update(TimeServer)

:true

FIGURE 4.9 Sequence diagram for use case UC-2 (Key: UML)

UC-2: Detect Fault
Figure 4.9 shows an initial sequence diagram for UC-2 (detect
fault) shows only the components on the server side. The interac-
tion starts with a TimeServer sending a trap, which is received by the
TimeServerConnector. The trap is transformed into an Event and sent to
the TimeServerConfigurationController. The Event is sent asyn-
chronously to the TopologyController for publication to the clients and is
then persisted.

From this interaction, initial methods for the interfaces of the interacting
elements can be identified:

4.3 The Design Process 99

Method Name Description

Element: TimeServerConnector

boolean addEventListener
(EventListener el)

This method allows components from the
business logic to register themselves as
listeners to events that are received from the
time servers.

Element: TimeServerConfigurationController

boolean eventReceived(Event
evt)

This callback method is invoked when an
event is received.

Element: TopologyController

publish(Event evt) This method notifies the clients that a new
event has occurred.

Element: TimeServerDataMapper

TimeServer retrieve(int id) Retrieves a TimeServer identified by its id.

boolean update(TimeServer
ts)

Persists changes in a TimeServer.

4.3.3.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose
The decisions made in this iteration provided an initial understanding of how
functionality is supported in the system. The modules associated with the pri-
mary use cases were identified by the architect, and the modules associated with
the rest of the functionality were identified by another team member. From the
complete list of modules, a work assignment table was created (not shown here)
to address CRN-3.

Also, as part of module identification, a new architectural concern was iden-
tified and added to the Kanban board. Drivers that were completely addressed in
the previous iteration are removed from the table.

100 Chapter 4—Case Study: FCAPS System

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

UC-1 Modules across the layers and
preliminary interfaces to support this use
case have been identified.

UC-2 Modules across the layers and
preliminary interfaces to support this use
case have been identified.

UC-7 Modules across the layers and
preliminary interfaces to support this use
case have been identified.

QA-1 The elements that support the
associated use case (UC-2) have been
identified.

QA-2 The elements that support the
associated use case (UC-5) have been
identified.

QA-3 No relevant decisions made.

QA-4 The elements that support the
associated use case (UC-7) have been
identified.

CON-1 No relevant decisions made.

CON-4 No relevant decisions made.

CON-5 Modules responsible for collecting data
have been identified.

CON-6 Modules responsible for collecting data
storage been identified.

CRN-2 Additional technologies were identified
and selected considering the team’s
knowledge.

CRN-3 Modules associated with all of the use
cases have been identified and a work
assignment matrix has been created (not
shown).

CRN-4 The architectural concern of unit-testing
modules, which was introduced in
this new iteration, is partially solved
through the use of an inversion of control
approach to connect the components
associated with the modules.

4.3 The Design Process 101

4.3.4 Iteration 3: Addressing Quality Attribute Scenario
Driver (QA-3)

This section presents the results of the activities that are performed in each of the
steps of ADD in the third iteration of the design process. Building on the funda-
mental structural decisions made in iterations 1 and 2, we can now start to reason
about the fulfillment of some of the more important quality attributes. This itera-
tion focuses on just one of these quality attribute scenarios.

4.3.4.1 Step 2: Establish Iteration Goal by Selecting Drivers
For this iteration, the architect focuses on the QA-3 quality attribute scenario:
A failure occurs in the management system during operation. The management
system resumes operation in less than 30 seconds.

4.3.4.2 Step 3: Choose One or More Elements of the System to Refine
For this availability scenario, the elements that will be refined are the physical
nodes that were identified during the first iteration:

§	Application server
§	Database server

4.3.4.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers
The design concepts used in this iteration are the following:

Design Decisions and Location Rationale and Assumptions

Introduce the active redundancy
tactic by replicating the application
server and other critical compo-
nents such as the database

By replicating the critical elements, the system
can withstand the failure of one of the replicated
elements without affecting functionality.

Introduce an element from the
message queue technology
family

Traps received from the time servers are placed
in the message queue and then retrieved by
the application. Use of a queue will guarantee
that traps are processed and delivered in order
(QA-1).

4.3.4.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces
The instantiation design decisions are summarized in the following table:

102 Chapter 4—Case Study: FCAPS System

Design Decisions
and Location Rationale

Deploy message
queue on a separate
node

Deploying the message queue on a separate node will
guarantee that no traps are lost in case of application
failure. This node is replicated using the tactic of active
redundancy, but only one copy receives and treats events
coming from the network devices.

Use active
redundancy and
load balancing in the
application server

Because two replicas of the application server are active
at any time, it makes sense to distribute and balance the
load among the replicas. This tactic can be achieved
through the use of the Load-Balanced Cluster pattern (see
Section A.2.3).
This introduces a new architectural concern, CRN-5:
Manage state in replicas.

Implement load
balancing and
redundancy using
technology support

Many technological options for load balancing and
redundancy can be implemented without having to develop
an ad hoc solution that would be less mature and harder to
support.

The results of these instantiation decisions are recorded in the next step.

4.3.4.5 Step 6: Sketch Views and Record Design Decisions
Figure 4.10 shows a refined deployment diagram that includes the introduction of
redundancy in the system.

Server1 :ApplicationServer

pc :UserWorkstation

Server2 :ApplicationServer

«replicated»
:Database Server

device1 :TimeServer
Relocatable IP address

«replicated»
:TrapReceiver

«replicated»
:LoadBalancer

«JDBC»

«HTTP»

«JDBC»

«SNMP»

FIGURE 4.10 Refined deployment diagram (Key: UML)

4.3 The Design Process 103

The following table describes responsibilities for elements that have not
been listed previously (in iteration 1):

Element Responsibility

LoadBalancer Dispatches (and balances the load of) requests coming from
clients to the application servers. The load balancer also
presents a unique IP address to the clients.

TrapReceiver Receives traps from network devices, converts them into events,
and puts these events into a persistent message queue.

The UML sequence diagram shown in figure 4.11 illustrates how the
TrapReceiver that was introduced in this iteration exchanges messages with
other elements shown in the deployment diagram to support UC-2 (detect fault),
which is associated with both QA-3 (availability) and QA-1 (performance).

As the purpose of this diagram is to illustrate the communication that occurs
between the physical nodes, the names of the methods are only preliminary; they
will be refined in further iterations.

:ApplicationServer pc :UserWorkstation

trap()

transformAndEnqueue(Event)

consume()

event()

publish(Event)

updateView()

:NetworkDevice :TrapReceiver

FIGURE 4.11 Sequence diagram illustrating the messages exchanged between
the physical nodes to support UC-2 (Key: UML)

104 Chapter 4—Case Study: FCAPS System

4.3.4.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose
In this iteration, important design decisions have been made to address QA-3,
which also impacted QA-1. The following table summarizes the status of the differ-
ent drivers and the decisions that were made during the iteration. Drivers that were
completely addressed in the previous iteration have been removed from the table.

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

QA-1 The introduction of a separate replicated
trap receiver node can help ensure
100% of the traps are processed, even
in the case of a failure of the application
server. Furthermore, because trap
reception is performed in a separate
node, this approach reduces application
server processing load, thereby helping
performance.
Because specific technologies have not
been chosen, this driver is marked as
“partially addressed”.

QA-2 No relevant decisions made.

QA-3 By making the application server
redundant, we reduce the probability of
failure of the system. Furthermore, if the
load balancer fails, a passive replica is
activated within the required time period.
Because specific technologies have not
been chosen (message queue), this
driver is marked as “partially addressed”.

QA-4 No relevant decisions made.

CON-1 Replication of the application server and
the use of a load balancer will help in
supporting multiple user requests.

CON-4 No relevant decisions made.

CON-5 No relevant decisions made.

CON-6 No relevant decisions made.

CRN-2 No relevant decisions made.

CRN-4 No relevant decisions made.

CRN-5 This new architectural concern is
introduced in this iteration: manage state
in replicas. At this point, no relevant
decisions have been made.

4.5 Further Reading 105

4.4 Summary

In this chapter, we presented an example of using ADD to design a greenfield
system in a mature domain. We illustrated three iterations with different foci:
addressing a general concern, addressing functionality, and addressing one key
quality attribute scenario.

The example followed the roadmap discussed in Section 3.3.1. It is inter-
esting to observe that in the first iteration, two different reference architectures
were used to structure the system. Also, the selection of externally developed
components—in this case, frameworks—was carried out across the different iter-
ations. Finally, the example illustrates how new architectural concerns appear as
the design progresses.

This example demonstrates how architectural concerns, primary use cases,
and quality attribute scenarios can be addressed as part of architectural design. In
a real system, more iterations would be necessary to create a complete architec-
ture design by addressing other scenarios with high priority.

In this example, we assumed that the architect is using a CASE tool during
design, so diagrams were produced using UML. This is certainly not mandatory,
as we will see in the case study presented in Chapter 5. Also, note that it is rela-
tively simple to generate preliminary view sketches by using the information that
is generated as part of the design process.

4.5 Further Reading

Appendix A provides descriptions and bibliographical references of all the de-
sign concepts used in this case study.

This page intentionally left blank

107

5
Case Study:
Big Data System

With Serge Haziyev and Olha Hrytsay

We now present an extended design example of using ADD 3.0 in a greenfield
system for a challenging domain—that of Big Data. As of the time of writing,
this domain was still relatively new and rapidly evolving. As such, the architects
could not solely rely on past experience to guide them. They instead comple-
mented the design process with periodic analyses and strategic prototyping, as
we will now describe.

5.1 Business Case

This case study involves an Internet company that provides popular content and
online services to millions of web users. Besides providing information exter-
nally, the company collects and analyzes massive logs of data that are generated
from its infrastructure (e.g., application and server logs, system metrics). Such
an approach of dealing with computer-generated log messages is also called log
management (http://en.wikipedia.org/wiki/Log_management_and_intelligence).

Because of very fast infrastructure growth, the company’s IT department re-
alizes that the existing in-house systems can no longer process the required log
data volume and velocity. Moreover, requests for a new system are coming from
other company stakeholders, including product managers and data scientists, who
would like to leverage the various kinds of data that can be collected from multi-
ple data sources, not just logs.

The marketecture diagram (informal depiction of the system’s structure)
shown in Figure 5.1 represents the desired solution from a functional perspective
for three major groups of users.

../../../../../en.wikipedia.org/wiki/Log_management_and_intelligence

108 Chapter 5—Case Study: Big Data System

24/7 Operations,
Support Engineers,

Developers

Real-Time
Dashboard

Data Scientists/
Analysts

Ad Hoc
Reports

Management
Static Reports

• Real-time monitoring
• Full-text search
• Anomaly detection

• Raw and aggregated historical data
• Ad hoc analysis
• Real-time queries

• Near-real-time static reports
• Available through BI corporate tool

Web Servers

• Hundreds of
servers

• Massive logs
from
multiple
sources

FIGURE 5.1 Marketecture diagram for the Big Data system

5.2 System Requirements

Requirement elicitation activities have been previously performed. The most
important requirements collected are summarized here. They comprise a set of
primary use cases, a set of quality attribute scenarios, a set of constraints, and a
set of architectural concerns.

5.2.1 Use Case Model

The primary use cases for the system are described in the following table.

Use Case Description

UC-1: Monitor
online services

On-duty operations staff can monitor the current state of
services and IT infrastructure (such as web server load,
user activities, and errors) through a real-time operational
dashboard, which enables them to quickly react to issues.

UC-2:
Troubleshoot
online service
issues

Operations, support engineers, and developers can do
troubleshooting and root-cause analysis on the latest
collected logs by searching log patterns and filtering log
messages.

UC-3: Provide
management
reports

Corporate users, such as IT and product managers, can see
historical information through predefined (static) reports in
a corporate BI (business intelligence) tool, such as those
showing system load over time, product usage, service level
agreement (SLA) violations, and quality of releases.

5.2 System Requirements 109

Use Case Description

UC-4: Support
data analytics

Data scientists and analysts can do ad hoc data analysis
through SQL-like queries to find specific data patterns and
correlations to improve infrastructure capacity planning and
customer satisfaction.

UC-5: Anomaly
detection

The operations team should be notified 24/7 about any
unusual behavior of the system. To support this notification
plan, the system shall implement real-time anomaly detection
and alerting (future requirement).

UC-6: Provide
security reports

Security analysts should be provided with the ability to
investigate potential security and compliance issues by
exploring audit log entries that include destination and source
addresses, a time stamp, and user login information (future
requirement).

5.2.2 Quality Attribute Scenarios

The most relevant quality attribute (raw) scenarios are presented in the following
table. For each scenario, we also identify the use case that it is associated with.

ID
Quality
Attribute Scenario

Associated
Use Case

QA-1 Performance The system shall collect up to 15,000 events/
second from approximately 300 web servers.

UC-1, 2, 5

QA-2 Performance The system shall automatically refresh the
real-time monitoring dashboard for on-duty
operations staff with < 1 min latency.

UC-1

QA-3 Performance The system shall provide real-time search
queries for emergency troubleshooting with
< 10 seconds query execution time, for the
last 2 weeks of data.

UC-2

QA-4 Performance The system shall provide near-real-time
static reports with per-minute aggregation
for business users with < 15 min latency, < 5
seconds report load.

UC-3, 6

QA-5 Performance The system shall provide ad hoc (i.e., non-
predefined) SQL-like human-time queries
for raw and aggregated historical data, with
< 2 minutes query execution time. Results
should be available for query in < 1 hour.

UC-4

QA-6 Scalability The system shall store raw data for the last 2
weeks available for emergency troubleshoot-
ing (via full-text search through logs).

UC-2

QA-7 Scalability The system shall store raw data for the last
60 days (approximately 1 TB of raw data per
day, approximately 60 TB in total).

UC-4

(continues)

110 Chapter 5—Case Study: Big Data System

ID
Quality
Attribute Scenario

Associated
Use Case

QA-8 Scalability The system shall store per-minute
aggregated data for 1 year (approximately
40 TB) and per-hour aggregated data for 10
years (approximately 50 TB).

UC-3, 4, 6

QA-9 Extensibility The system shall support adding new data
sources by just updating a configuration, with
no interruption of ongoing data collection.

UC-1, 2, 5

QA-10 Availability The system shall continue operating with
no downtime if any single node or
component fails.

All use
cases

QA-11 Deployability The system deployment procedure shall be
fully automated and support a number of envi-
ronments: development, test, and production.

All use
cases

5.2.3 Constraints

The constraints associated with the system are presented in the following table.

ID Constraint

CON-1 The system shall be composed primarily of open source technologies
(for cost reasons). For those components where the value/cost of
using proprietary technology is much higher, proprietary technology
may be used.

CON-2 The system shall use the corporate BI tool with a SQL interface for
static reports (e.g., MicroStrategy, QlikView, Tableau).

CON-3 The system shall support two specific deployment environments:
private cloud (with VMware vSphere Hypervisor) and public cloud
(Amazon Web Services). Architecture and technology decisions should
be made to keep deployment vendor as agnostic as possible.

5.2.4 Architectural Concerns

The initial architectural concerns that are considered are shown in the following table.

ID Concern

CRN-1 Establishing an initial overall structure as this is a greenfield system.

CRN-2 Leverage the team’s knowledge of the Apache Big Data ecosystem.

5.3 The Design Process 111

5.3 The Design Process

Now that we have enumerated the requirements, we are ready to begin the first it-
eration of ADD. This is a system from a relatively novel domain that is being cre-
ated from scratch. Hence we follow the roadmap of design for greenfield systems
in mature domains (as discussed in Section 3.3.1), albeit with some modifications
to address the uncertainties inherent in the Big Data domain, such as the rapid
emergence and evolution of technologies.

5.3.1 ADD Step 1: Review Inputs

The first step of the method involves reviewing the inputs. They are summarized
in the following table.

Category Details

Design
purpose

This is a greenfield system in a relatively novel domain. The organi-
zation will perform development following an Agile process with short
iterations so that developers can quickly receive real-world feedback
and continue modifying the system. At the same time, an architectur-
al design is needed to make conscious decisions to satisfy architec-
tural drivers and avoid unnecessary rework.

Primary
functional
requirements

From the use cases presented in Section 5.2.1, the following ones
are designated as primary:

 ■ UC-1
 ■ UC-2
 ■ UC-3
 ■ UC-4

Quality
attribute
scenarios

The following table illustrates the priority of the primary quality
attribute scenarios, as ranked by the customer and architect (as
discussed in Section 3.3.2). Note that quality attributes scenarios
with lower priorities exist but are not shown here.

Scenario
ID

Importance to
Customer

Difficulty of Implementation
According to Architect

QA-1 High High

QA-2 High Medium

QA-3 Medium Medium

QA-4 High High

QA-5 Medium High

QA-6 Medium Medium

QA-7 Medium Medium

QA-8 High Medium

QA-9 High Medium

QA-10 High Medium

QA-11 Medium High

(continues)

112 Chapter 5—Case Study: Big Data System

Category Details

Constraints See Section 5.2.3.

Architectural
concerns

All of the architectural concerns presented in Section 5.2.4 are
included as drivers.

5.3.2 Iteration 1: Reference Architecture and Overall System
Structure

This section presents the results of the activities that are performed in each of the
steps of the ADD method in the first iteration of the design process.

5.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers
This is the first iteration in the design of a greenfield system, so the iteration goal
is to establish an initial overall structure for the system (CRN-1). Even though
this first iteration is driven by a general architectural concern, the architect must
keep in mind all of the drivers and, in particular, constraints and quality attributes:

§	CON-1: Leverage open source technologies whenever applicable
§	CON-2: Use corporate BI tool with SQL interface for static reports
§	CON-3: Two deployment environments: private and public clouds
§	QA-1, 2, 3, 4, 5: Performance
§	QA-6, 7, 8: Scalability
§	QA-9: Extensibility
§	QA-10: Availability
§	QA-11: Deployability

5.3.2.2 Step 3: Choose One or More Elements of the System to Refine
Again, as this is greenfield development, and we are in the initial iteration, the
element to refine is the entire system.

5.3.2.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers
In this iteration, design concepts are selected from a group of data analytics ref-
erence architectures (a list of such reference architectures can be found in the
design concepts catalog of the Smart Decisions Game; see the Further Reading
section for more information).

5.3 The Design Process 113

Design
Decisions and
Location Rationale

Build the
application as
an instance of
the Lambda
(reference)
architecture

The Lambda architecture, shown in Figure 5.2, is a reference
architecture that splits the processing of a data stream into two
streams: the “speed layer”, which supports access to real-time
data (UC-1, UC-2, UC-5), and a layer that groups the “batch”
and “serving” layers, which supports access to historical data
(UC-3, UC-4, UC-6). (The creators of the Lambda architecture
refer to these as “layers”, but this is different from prior—and
more standard—usages of this term, which typically refer to
a grouping of modules. Here the layers are groups of runtime
components.) While the batch layer is based on immutable
nonrelational techniques, the speed layer is based on streaming
techniques to support strict real-time processing requirements.
Immutability in this case means that the data is not updated or
deleted when it is collected; that is, it can be only appended.
As all data is collected, no data can be lost and a machine
or human error can be tolerated. For example, if a software
engineer made an occasional mistake in processing or viewing
logic, once that problem is resolved, the collected data can be
used to replay and recompute the views from scratch.
For the reader’s convenience we describe the basic concepts of
the Lambda architecture by walking through five steps:

1. All data received from multiple data sources is dispatched
through the data stream element to both the batch layer and
the speed layer for processing.

2. The batch layer acts as a landing zone that corresponds to
the master dataset element (as an immutable, append-only
set of raw data), and also precomputes information that will
be used by the batch views.

3. The serving layer contains precalculated and aggregated
views optimized for querying with low latency, which is often
required by reporting solutions.

4. The speed layer processes and provides access to recent
data through real-time views that are not available in the
serving layer due to the high latency of batch processing.

5. All data in the system is available for querying, whether it is
historical or recent, representing the key Lambda architec-
ture principle: query = function (batch data + real-time data).

The parallel streams provide “complexity isolation”, meaning that
design decisions, development, and execution of each stream
can be done independently, which has been shown to increase
fault tolerance, scalability, and modifiability (see Table 5.1).
Figure 5.3 depicts the architectural tradeoffs between these
alternatives, and demonstrates the differences between the
reference architectures in terms of four quality dimensions:
scalability, support for ad hoc analysis, unstructured data
processing capabilities, and real-time analysis capabilities:
As Figure 5.3 shows, the Lambda architecture provides the best
tradeoff between scalability and ad hoc analysis.

(continues)

114 Chapter 5—Case Study: Big Data System

Design
Decisions and
Location Rationale

Use fault
tolerance and no
single point of
failure principle
for all elements
in the system

Fault tolerance has become a standard for most Big Data
technologies and the Lambda architecture already implies a
number of design decisions to build a robust and fault-tolerant
system, as noted above.
However, we will need to make sure, in all subsequent design
and deployment decisions, that all candidate technologies
will support the QA-10 requirement by providing fault-tolerant
configurations and adhering to the “no single point of failure”
principle.

TABLE 5.1 Alternatives and Reasons for Discarding

Alternative Reason for Discarding

Traditional relational This reference architecture is based on traditional relational
model principles and SQL-based DBMSs, which are
considered highly efficient for complex ad hoc read queries.
This is, however, the least appropriate alternative because
of scalability and real-time processing limitations.

Extended relational Although this reference architecture is completely based
on relational model principles and SQL-based DBMSs, it
intensively uses massive parallel processing (MPP) and in-
memory techniques to improve scalability and extensibility.
It is less appropriate because of its high cost and real-time
processing limitations.

Pure nonrelational This reference architecture does not rely on relational model
principles. It is often built on techniques such as NoSQL and
MapReduce, and is effective for processing semistructured
and unstructured data.
This alternative is closer to the goal in terms of cost
economy and scalability, but ad hoc analysis is limited.

Data refinery A non-relational component performs an extract–transform–
load (ETL) process to refine semistructured/unstructured
data and load it, cleansed, into a data warehouse (a
relational database) for further analysis.
It is less appropriate for this solution mostly because of its
high cost and significant deficiencies in terms of real-time
processing capabilities.

5.3 The Design Process 115

Data Stream

Master
Dataset

Precomputing

Layer
Boundary

Data Flow
(with direction indicated)
Query Results Flow

Legend:

Element
Boundary

Batch
Views

Query &
Reporting

Real-Time
Views

BATCH Layer SERVING Layer

SPEED Layer

1

5

32

4

FIGURE 5.2 Lambda Architecture

Data Refinery

Extended
Relational

Pure
Nonrelational

Traditional
Relational

Lambda
Architecture

Sc
al

ab
ilit

y

Ad Hoc Analysis

Legend:

Unstructured data processing
capabilities (the larger the better)

Real-time analysis capabilities
(the more saturated the better)

FIGURE 5.3 Tradeoffs among data analytics reference architectures

116 Chapter 5—Case Study: Big Data System

5.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces
The instantiation design decisions considered and made are summarized in the
following table.

Design Decision and
Location Rationale

Split the Query and
Reporting element
into two subelements
associated with the
drivers

The Query and Reporting element in the Lambda
architecture is divided into the following two sub-elements.
They are associated with drivers as follows:

 ■ Corporate BI tool (UC-3, UC-4, QA-4, QA-5, CON-2)
 ■ Dashboard/visualization tool (UC-1, UC-2, QA-2, QA-3)

This division is driven by knowledge of the domain and
the availability of tools. The guiding rationale is to have
flexibility in selecting appropriate technologies—there could
not be one single “universal” tool to satisfy all of these use
cases, constraints, and quality attributes. Thus, we choose
to separate concerns, which should give us more design
options. Another difference from the “standard” Lambda
architecture is that we may not need to merge the results of
queries: According to our use cases, they can be executed
independently for batch and real-time views.

Split the Precomputing
and Batch Views
elements into
subelements
associated with Ad Hoc
and Static Views

These elements are decomposed into two subelements
each:

 ■ Ad Hoc Views Precomputing and Ad Hoc Batch Views
(UC-4, QA-5)

 ■ Static Views Precomputing and Static Batch Views
(UC-3, QA-4, CON-2)

The reason for this subdivision is the same as with the
previous case: It gives us more flexibility to select the
optimal patterns and technologies. If we discover, in
subsequent design iterations, that there is one approach
to address these two concerns simultaneously, it will be
simple to merge these elements.

Change semantics and
name of the Master
Dataset to Raw Data
Storage

This is more than just a name change; it is also a change
in semantics. According to QA-7, the system shall store
raw data for least 60 days. Thus older data can be
archived and stored using other storage technologies
(or even deleted). The Master Dataset has more
responsibilities: It includes raw data storage as well as
archived data. To simplify this case, the study of archived
data will not be addressed.

In this initial iteration it is typically too early to precisely define functional-
ity and interfaces.

5.3.2.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.4 shows the result of the prior instantiation design decisions. The table
that begins on the next page summarizes each element’s responsibilities.

5.3 The Design Process 117

Data
Stream

Raw Data
Storage

Corporate
BI Tool

Dashboard/
Visualization

Tool
Real-Time

Views

BATCH Layer SERVING Layer

SPEED Layer

Ad Hoc Views
Precomputing

Ad Hoc
Batch Views

Static Views
Precomputing

Static Batch
Views

Layer
Boundary

Data Flow
(with direction indicated)

Data
Sources

Query Results Flow

Legend:

Element
Boundary

FIGURE 5.4 Instantiation of the Lambda architecture

Element Responsibility

Data Sources Web servers that generate logs and system metrics (e.g.,
Apache access and error log, Linux sysstat).

Data Stream This element collects data from all data sources in real-time and
dispatches it to both the Batch Layer and the Speed Layer for
processing.

Batch Layer This layer is responsible for storing raw data and precomputing
the batch views to be stored in the Serving Layer.

Serving Layer This layer exposes the batch views in a data store (with no
random writes, but batch updates and random reads), so that
they can be queried with low latency.

Speed Layer This layer processes and provides access to recent data, which
is not available yet in the serving layer due to the high latency of
batch processing, through a set of real-time views.

Raw Data Storage This element is a part of the batch layer and is responsible for
storing raw data (immutable, append only) for a specified period
of time (QA-7).

Ad Hoc Views
Precomputing

This element is a part of the Batch Layer and is responsible
for precomputing the Ad Hoc Batch Views. The precomputing
represents batch operations over raw data that transform it to a
state suitable for fast human-time querying.

Static Views
Precomputing

This element is a part of the Batch Layer and is responsible
for precomputing the Static Batch Views. The precomputing
represents batch operations over raw data that transform it to a
state suitable for fast human-time querying.

(continues)

118 Chapter 5—Case Study: Big Data System

Element Responsibility

Ad Hoc Batch
Views

This element is a part of the Serving Layer and contains
precalculated and aggregated data optimized for ad hoc low-
latency queries (QA-5) executed by data scientists/analysts.

Static Batch
Views

This element is a part of the Serving Layer and contains
precalculated and aggregated data optimized for predefined
low-latency queries (QA-4) generated by a corporate BI tool.

Real-Time Views This element is a part of the Speed Layer and contains indexed
logs optimized for ad hoc, low-latency search queries (QA-3)
executed by operations and engineering staff.

Corporate BI
Tool

This business intelligence tool is licensed to be used across
different departments. The tool supports a SQL interface (such
as ODBC or JDBC) and can be connected to multiple data
sources, including this system (UC-3, UC-4, CON-2).

Dashboard/
Visualization Tool

The operations team uses this real-time operational dashboard
to monitor online services, search for important messages in
logs, and quickly react to potential issues (UC-1, UC-2).

5.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose
The decisions made in this iteration address important early considerations af-
fecting the overall system structure. You do not need to start from a “blank page”,
because the selected reference architecture already offers a proven initial decom-
position and data flow that significantly saves design time and effort. Further de-
sign decisions will need to be made to selected candidate technologies and more
details provided on how use cases and quality attributes will be supported.

The following table summarizes the design progress using the Kanban board
technique discussed in Section 3.8.2.

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

UC-1 Use Lambda architecture to provide
access to real-time data. No detailed
decisions of which dashboard
technology to use have been made.

UC-2 Use Lambda architecture to provide
access to real-time data. No detailed
decisions of which search technology
to use have been made.

UC-3 Use Lambda architecture to provide
access to historical data. No detailed
decisions of which storage and query
technologies to use have been made.

5.3 The Design Process 119

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

UC-4 Use Lambda architecture to provide
access to historical data. No detailed
decisions of which storage and query
technologies to use have been made.

UC-5 This use case has been omitted in
this iteration as nonprimary, although
the Lambda architecture supports it
and we will address it in subsequent
iterations.

UC-6 This use case has been omitted in this
iteration as nonprimary, although from
an architectural standpoint it is similar
to UC-3.

QA-1 Potential data sources for the Data
Stream element have been identified.
No detailed decisions of which
technologies to use for the data
stream element have been made.

QA-3 The Real-Time Views element
has been identified. No detailed
decisions of which storage and query
technology to use have been made.

QA-4 The Static Batch Views element has
been identified and its responsibilities
have been established. No detailed
decisions of which storage technology
to use have been made.

QA-5 The Ad Hoc Batch Views element has
been identified and its responsibilities
have been established. No detailed
decisions of which storage and query
technology to use have been made.

QA-6 The Real-Time Views element’s
responsibilities have been
established. No detailed decisions of
which storage and query technology
to use have been made.

QA-7 The Raw Data Storage element has
been identified and its responsibilities
have been established. No detailed
decisions of which storage technology
to use have been made.

(continues)

120 Chapter 5—Case Study: Big Data System

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

QA-8 The Ad Hoc and Static Batch Views
elements have been identified and
their responsibilities have been
established. No detailed decisions
of which storage technologies to use
have been made.

QA-10 It has been decided that all
technologies chosen to implement the
system elements support QA-10 by
providing fault-tolerance configuration
and no single point of failure.

CON-2 The Corporate BI Tool element has
been identified. No detailed decisions
on how this constraint will be met have
been made.

CRN-1 An overall logical structure of the
system has been established but the
physical structure still needs to be
defined.

CRN-2 No relevant decisions made

5.3.3 Iteration 2: Selection of Technologies

This section presents the results of the activities that are performed in each of the
steps of ADD in the second iteration of the design process.

Technology choices often influence the system architecture, meaning that
we need to select technologies at the earliest stages of architecture design.
Choosing technologies starts with the identification and selection of technology
families that are further instantiated into specific technologies. Starting with tech-
nology families allows us to make specific technologies interchangeable and thus
keep the right level of technology agnosticism to avoid vendor lock-in (and as a
result, there is less risk and less cost to change a technology to a better one in the
future).

In this iteration we will show a technology tree that helps us choose optimal
building blocks when designing Big Data greenfield systems.

5.3 The Design Process 121

5.3.3.1 Step 2: Establish Iteration Goal by Selecting Drivers
The goal of this iteration is to address CRN-2 (leverage the team’s knowledge
of the Apache Big Data ecosystem) by selecting technologies to support system
requirements defined in Section 5.2, particularly keeping in mind CON-1 (favor
open source technologies).

5.3.3.2 Step 3: Choose One or More Elements of the System to Refine
The reference architecture selected in the previous iteration (the Lambda archi-
tecture) was decomposed into elements that facilitate the selection of technology
families and their associated specific technologies. These elements include the
Data Stream, Raw Data Storage, Ad Hoc and Static Views Precomputing, Ad Hoc
and Static Batch Views, Real-Time Views, and Dashboard/Visualization Tool.

5.3.3.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers
The design concepts used in this iteration are externally developed components.
Initially, technology families are selected and associated with the elements to be
refined. A technology family represents a group of technologies with common
functional purposes (see Section 2.5.5). The family names are indicative of their
function, and some specific technologies may belong to several families at the
same time, but having such a classification helps us make rational design de-
cisions that eventually pay off in less rework and better readiness for changes.
The history of the software industry shows that technology implementations are
emerging, evolving, and disappearing much faster than the patterns and princi-
ples represented by their families.

Figure 5.5 illustrates family groups, technology families (in regular text),
and their associated specific technologies (in italic text) for the Big Data domain.
Further details about a number of these technologies can be found in the design
concepts catalog of the Smart Decisions Game (see the Further Reading section).

122 Chapter 5—Case Study: Big Data System

Big Data Analytics Catalog

Integration
Messaging

Data Collector

Apache Flume

Logstash

Fluentd

Apache Kafka

RabbitMQ

Amazon SQS

Apache ActiveMQ

HBase

Cassandra

Neo4J

OrientDB

HP Vertica

Teradata

MS PDW

Amazon Redshift

StreamSets

Talend

Informatica

MongoDB

CouchDB

Riak

Redis

Berkeley DB

MS SQL Server

QlikView

Microstrategy

Tableau

Tibco JasperSoft

Pentaho

Oracle RDBMS

IBM DB2

Splunk

Splunk

Kibana

Zoomdata

D3.js

GoJS

Highcharts

Impala

Apache Hive (Stinger)

Apache Solr

Elasticsearch

Hadoop MapReduce

Apache Tez

Apache Spark

Apache Storm

Spark Streaming

Amazon Kinesis

Apache Samza

Cascading

Apache Crunch

Amazon Pig

Apache Hive

Spark SQL

HDFS

CassandraFS

Distributed Message Broker

ETL/Data Integration Engine

Document-Oriented

Key-Value

Graph-Oriented

MPP Analytic RDBMS

Traditional Analytic RDBMS

BI Platform

Interactive Dashboard

Interactive Query Engine

Distributed Search Engine

Distributed Computing Engine

Event Stream Processor

Data Processing Framework

Graphic Library

Column-Family

ETL/ELT

Distributed File System

NoSQL Database

Analytic RDBMS

Visualization & Reporting

Search & Query

Processing

Data Storage

Processing and
Analytics

Straight text – a technology family

Italic text – a specific technology

Legend:

FIGURE 5.5 An example of a Big Data analytics design concepts catalog
(Source: Softserve)

5.3 The Design Process 123

The BI Platform family group and related technologies are not considered
further in this design exercise because the corporate BI tool is external to the
target system.

Design
Decisions and
Location Rationale and Assumptions

Select the Data
Collector family
for the Data
Stream element

Data Collector is a technology family (and an architectural
pattern) that collects, aggregates, and transfers log data for
later use. Usually Data Collector implementations offer out-of-
the-box plug-ins for integrating with popular event sources and
destinations.
The destinations are the Raw Data Storage and Real-Time
Views elements, which will also be addressed in this iteration.

Alternative Reason for Discarding

ETL Engine The main purpose of ETL engines is to perform
batch transformations, rather than per-event
operations. This means that real-time perfor-
mance and scalability criteria (QA-1, QA-2) will
be extremely difficult to meet (if it is possible to
meet them at all).

Distributed
Message
Broker

Although this technology family can be solely
used to implement the Data Stream element,
it provides less support for extensibility (QA-9)
and, therefore, is better suited as a complement
to the data collector. This can be achieved,
for example, using Flavka—a combination of
Apache Flume (Data Collector) and Apache
Kafka (Distributed Message Broker).

Select the
Distributed File
System family
for the Raw Data
Storage element

According to the Lambda architecture principles, the Raw Data
Storage element must be immutable. Thus new data should not
modify existing data, but just be appended to the dataset. Data
will be read in batch operations for transforming raw data to
Batch Views. For these purposes, we can confidently choose a
Distributed File System.

Alternative Reason for Discarding

NoSQL
Database

Although NoSQL databases (especially col-
umn-family and document-oriented) can be used
for storing raw data, such as logs, this will cause
unnecessary overhead in resource consumption
(mostly memory consumption because of cach-
ing mechanisms) and maintainability (because of
the need of configuring and evolving a schema).

Analytic
RDBMS

All relational databases including analytic capa-
bilities are based on the relational model, forming
tables and rows. This works very well for execut-
ing complex queries, but this option is awkward
(and expensive) for storing semistructured logs
in their raw format.

(continues)

124 Chapter 5—Case Study: Big Data System

Design
Decisions and
Location Rationale and Assumptions

Select Interactive
Query Engine
family for both
the Static and Ad
Hoc Batch Views
elements

As we stated in the previous iteration, the Batch Views element
is refined into two elements, the Static and Ad Hoc Batch
Views, to support two use cases: the generation of static re-
ports (UC-3, 6) and the support for ad hoc querying (UC-4).
The main design decision is to use the same technology family
for both Static and Ad Hoc Batch Views—namely, the Interac-
tive Query Engine. These engines allow analytic database ca-
pabilities over data stored in a Distributed File System (thus
this technology family is also selected implicitly). If we select a
technology that is fast enough, it can be used for both elements.
The benefit of using a single technology family is that we do not
need to have separate storage technologies for reporting and
querying data.

Alternative Reason for Discarding

NoSQL
Database

The Static Batch Views element can be imple-
mented with the Materialized View pattern, by
storing data in a form that is ready for querying
and displaying in a reporting system (a corporate
BI tool). The NoSQL Database family is often
used for this purpose because it provides good
scalability and, being open source, satisfies
QA-8 (approximately 90 TB of aggregated data)
and CON-1 (open source license).
However, NoSQL databases are not good op-
tions to use as data warehouses for ad hoc que-
ries because they were not designed for analytic
purposes. Although they can be used for this
purpose, this application will result in significant
performance penalties.
This alternative is therefore discarded as it can
be used only for the Static Batch Views, but is
ineffective for Ad Hoc Batch Views

Analytic
RDBMS

Ad hoc queries can be any queries that are
supported by a SQL-like interface. The query
result must be returned within “human” time
(QA-5). The described scenario is exactly what
a data warehouse is used for. This pattern is
usually implemented with Analytic RDBMS tech-
nologies following the Kimball or Inmon design
approaches. At the same time, it will be quite
costly to satisfy the scalability requirement of
having approximately 90 TB of aggregated data.
The cost per terabyte in MPP analytic data bases
is significantly higher (up to 30 times) than the
same amount of data in a NoSQL database or a
distributed file system (such as Hadoop).

5.3 The Design Process 125

Design
Decisions and
Location Rationale and Assumptions

Alternative Reason for Discarding

Analytic
RDBMS

This alternative is rejected because even if it
can be used for both Static and Ad Hoc Batch
Views, the technologies associated with this
family are costly compared to (open source)
Hadoop-based alternatives.

Use Data
Processing
Framework
for the Views
Precomputing
elements

As we have already selected the Distributed File System family
for Raw Data Storage and Batch Views, the next step is to
choose a solution for data transformation from the Raw Data
Storage to the format used in the Batch Views.
The decision is to select Data Processing Framework as
this technology family allows data processing pipelines to be
created using abstractions that support faster development and
better maintainability.

Alternative Reason for Discarding

Distributed
Computing
Engine

Most Distributed Computing Engine technologies
are designed for batch data processing, but
require substantial knowledge of low-level
primitives (e.g., for writing MapReduce tasks).

Event
Stream
Processor

This is designed for real-time streaming
processing; it is ineffective for batch operations.

Select Distributed
Search Engine
for the Real-Time
Views element

The Real-Time Views element is responsible for full-text search
over recent logs and for feeding an operational dashboard with
real-time monitoring data (UC-1, UC-2). Distributed Search
Engine is a technology family that serves just such purposes.

Alternative Reason for Discarding

NoSQL
Database

Some NoSQL databases provide keyword
search or text search, but these are not as
powerful and fast as search engines that also
provide text-processing features such as
stemming and geolocation.

Analytic
RDBMS

Some databases provide full-text search
capabilities (e.g., MS SQL Server); however,
they are less desirable from extensibility,
maintenance, and cost standpoints.

Distributed
File System
and
Interactive
Query
Engine

This approach works well for batch historical
data; however, the latency of storing and
processing will be too high for real-time data.

(continues)

126 Chapter 5—Case Study: Big Data System

Design
Decisions and
Location Rationale and Assumptions

Automate
deployment of
the system with
Puppet scripts

Puppet scripts can be used for both Private Cloud (e.g., VMware)
and Public Cloud (e.g., AWS) deployments. This supports the
satisfaction of CON-3. Puppet allows automating the deployment
process as well as managing the configuration of a system.
There is a library of predefined scripts written by the Puppet
community to automate the deployment of many popular open
source technologies.

5.3.3.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces
In this iteration, instantiation is performed by associating specific technologies
with the technology families that were previously selected. The instantiation de-
sign decisions considered and made are summarized in the following table:

Design Decision
and Location Rationale

Use Apache
Flume from the
Data Collector
family for the Data
Stream element

As a primary candidate technology, we will select Apache
Flume. It provides the required configurability to support QA-9
(adding new data sources by just updating a configuration at
run-time).

Alternative Reason for Discarding

Logstash or
Fluentd

Although Logstash and Fluentd are quite
popular technologies (perhaps as popular as
Flume) and will satisfy the requirements, we
have to make a choice and select only one.
An extra argument for choosing Flume is its
support by three major Hadoop distribution
vendors.

Use HDFS from
the Distributed
File System family
for the Raw Data
Storage element

For this technology, we can confidently choose HDFS, which
was designed to support exactly this type of usage scenario
for large data sets (QA-7, storing approximately 60 TB of raw
data). There are also a number of Hadoop file formats in which
to store data in HDFS, such as text file, SequenceFile, RCFile,
ORCFile, Avro, and Parquet. The selection of a file format will be
addressed in the third iteration.

Alternative Reason for Discarding

CassandraFS This technology is dependent on a NoSQL
Database (Cassandra), whereas we have
chosen Distributed File System alone.

5.3 The Design Process 127

Design Decision
and Location Rationale

Use Impala from
the Interactive
Query Engine
family for both
the Static and Ad
Hoc Batch Views
elements

We select Impala as a primary candidate technology, as it offers
competitive performance (although it is still not as fast as the
top Analytic RDBMS platforms) and an ODBC interface for
connectivity with a corporate BI tool.
Keeping possible performance issues in mind, we plan a proof-
of-concept in the next iterations to make sure this technology
selection satisfies QA-4 (less than 5 seconds report load) and
QA-5 (less than 2 minutes ad hoc query execution time).

Alternative Reason for Discarding

Apache Hive
(Stinger)

Although Hive improved performance thanks
to the Stinger initiative, the speed of queries is
still slow compared to other alternatives such
as Impala and Spark SQL.

Spark SQL Spark is a very promising technology for Big
Data analytics, but the use case of serving as a
SQL adapter for a BI tool might not be optimal
for Spark SQL. The downside is the high
memory requirements and long query time of
noncached data. In contrast, Impala has been
designed and optimized for this exact scenario.

Use Elasticsearch
from the Distribu-
ted Search En-
gine family for the
Real-Time Views
elements. Use
Kibana from the
Interactive Dash-
board family for
the Dashboard/
Visualization Tool
element.

As a primary candidate technology, we select Elasticsearch,
since it also provides a visualization tool: an interactive
dashboard called Kibana.
Although Kibana is a relatively simple dashboard without
role-based security (at least, at the moment of designing this
solution), it satisfies use cases UC-1, 2 and QA-2 (auto-refresh
dashboard with a less than 1 minute period).
Elasticsearch also provides a domain-specific language (Query
DSL) that is supported by Kibana to query, filter, and visualize
time series.

Alternative Reason for Discarding

Splunk Splunk also provides indexing and visualization
capabilities (offering more features than
Elasticsearch and Kibana); however, CON-1
drives us to prefer an open source solution.

Use Hive from the
Data Processing
Framework
for the Views
Precomputing
elements

We select Hive as a primary technology candidate, although
we will need to make sure that QA-4 (less than 15 minutes
latency) is satisfied by creating a proof-of-concept prototype in a
subsequent iteration.
Hive provides a SQL-like language, just like Impala (which
has been already selected in this iteration); thus it allows us to
leverage the skills of data warehouse designers when writing
data transformation scripts.

Alternative Reason for Discarding

Cascading or
Apache Pig

We disqualified Cascading and Pig so that we
can minimize development time by leveraging
the SQL skills of an existing development team.

128 Chapter 5—Case Study: Big Data System

The data exchanged between the elements will be defined more precisely
in subsequent iterations. The format of this data constitutes the “interfaces” be-
tween the elements.

5.3.3.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.6 illustrates the result of the instantiation decisions. The responsibilities
of the elements shown in the diagram were discussed in step 6 of Iteration 1. The
following table summarizes the technology families and candidate specific tech-
nologies selected for these elements:

Element Technology Family Candidate Technology

Data Stream Data Collector Apache Flume

Raw Data Storage Distributed File System HDFS

Ad Hoc Views
Precomputing

Data Processing Framework Apache Hive

Static Views
Precomputing

Data Processing Framework Apache Hive

Ad Hoc Batch Views Interactive Query Engine Impala

Static Batch Views Interactive Query Engine Impala

Real-Time Views Distributed Search Engine Elasticsearch

Dashboard/
Visualization Tool

Interactive Dashboard Kibana

Technology family + (Specific technology)

Layer
Boundary

Data Flow
(with direction indicated)

Query Results Flow

Legend:

Element
Boundary

Data Stream

Data
Sources

Data Collector
(Flume)

Raw Data
Storage

Corporate
BI Tool

Dashboard/
Visualization

ToolReal-Time Views

BATCH Layer SERVING Layer

SPEED Layer

Ad Hoc Views
Precomputing Ad Hoc

Batch Views

Static Views
Precomputing

Static
Batch Views

Distributed
file system

(HDFS)

Distributed
Search Engine

(Elasticsearch)

Data processing
framework (Hive)

Data processing
framework (Hive)

(Kibana)

Interactive Query
Engine (Impala)

Interactive Query
Engine (Impala)

FIGURE 5.6 Iteration 2 instantiation design decisions

5.3 The Design Process 129

The next table explains the relationships between elements based on the se-
lected technologies:

Source Element Destination Element Relationship Description

Data Sources (logs) Data Stream (Flume) To be defined in the next iteration

Data Stream (Flume) Raw Data Storage
(HDFS)

Network communication (push)
through Flume HDFS sink

Raw Data Storage
(HDFS)

Views Precomputing
(Apache Hive)

Local and network communication
encapsulated through Hive

Views Precomputing
(Apache Hive)

Batch Views (Impala) Local and network communication
encapsulated through Hive

Batch Views (Impala) Corporate BI Tool Network communication (pull)
through ODBC API

Data Stream (Flume) Real-Time Views
(Elasticsearch)

Network communication (push)
through Flume Elasticsearch sink

Real-Time Views
(Elasticsearch)

Dashboard/
Visualization Tool
(Kibana)

Network communication (pull)
through Elasticsearch API

5.3.3.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement lf Design Purpose
The following Kanban table summarizes the design progress and the decisions
made during the iteration. Note that drivers that were completely addressed in the
previous iteration are not shown.

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

UC-1 Use Distributed Search Engine (Elastic-
search) and Interactive Dashboard
(Kibana) to display real-time monitoring
information.
Pending: Model indexes and create UI
mockup.

UC-2 Use Distributed Search Engine (Elastic-
search) and Interactive Dashboard
(Kibana) for full-text search over recent
log data.
Pending: Model indexes and create a
proof-of-concept.

UC-3
UC-4

Use Interactive Query Engine (Impala) for
the Batch Views elements.
Pending: Model data and typical reports.

(continues)

130 Chapter 5—Case Study: Big Data System

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

UC-6 This use case has been omitted in this
iteration as nonprimary, although it is
similar to UC-3 from an architectural
standpoint.

QA-1 Use Data Collector (Apache Flume) for
the Data Stream element.
Pending: Configuration, proof-of-concept,
and performance tests.

QA-2
QA-3

Use Distributed Search Engine
(Elasticsearch) and Interactive
Dashboard (Kibana).
Pending: Proof-of-concept and
performance tests.

QA-4 Use Interactive Query Engine (Impala) for
the Static Batch Views element.
Pending: Model data, proof-of-concept,
and performance tests.

QA-5 Use Interactive Query Engine (Impala) for
the Ad Hoc Batch Views element.
Pending: Model data, proof-of-concept,
and performance tests.

QA-6 Use Distributed Search Engine
(Elasticsearch) for the Real-Time Views
element.
Pending: Do capacity planning.

QA-7 Use Distributed File System (HDFS) for
the Raw Data Storage element.
Pending: Select file format and do
capacity planning.

QA-8 Use Distributed File System (HDFS) as
storage for Batch Views.
Pending: Select file format and do
capacity planning.

QA-9 Use Data Collector (Apache Flume) for
the Data Stream element.
Pending: Configuration and proof-of-
concept.

QA-10 Use fault tolerance in all system
elements.
Pending: Stress test.

QA-11 Use Puppet scripts to automate the
deployment process for different
environments.

5.3 The Design Process 131

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

CON-1 All the selected technologies are open
source.

CON-2 Use Interactive Query Engine (Impala)
with ODBC interface.

CON-3 All selected technologies can be
deployed to both private cloud (VMware)
and public cloud (AWS) environments
using Puppet scripts.

CRN-1 No relevant decisions made.

CRN-2 Technologies from the Apache Big Data
ecosystem were selected and associated
with the different elements in the
reference architecture.

5.3.4 Iteration 3: Refinement of the Data Stream Element

This section presents the results of the activities that are performed in each of the
steps of ADD for the third iteration of the design process.

Some design decisions made in this iteration require the creation of a proof-
of-concept prototype, as they cannot be addressed in a purely conceptual manner.
Given that the Big Data field is young and technologies are rapidly evolving,
proofs-of-concepts of key elements are necessary to mitigate technology risks
(e.g., incompatibility, slow performance, unsatisfactory reliability, limitations
of claimed features) and to have the option to switch to an alternative early in
the design and development process, thereby saving overall time and budget by
avoiding later rework.

5.3.4.1 Step 2: Establish the Iteration Goal by Selecting Drivers
The goal of this iteration is to address several concerns associated with the se-
lection of Apache Flume, as the technology to be used for the Data Collector
element. Apache Flume provides a reference structure—a data-flow model—de-
picted in the informal diagram shown in Figure 5.7.

The elements in Flume’s structure include:

§	The source: consumes events delivered to it by external data sources such
as web servers

§	The channel: stores events received by the source
§	The sink: removes events from the channel and puts them in an external

repository (i.e., destination)

The selection of Apache Flume raises several specific architectural concerns
that need to be addressed:

132 Chapter 5—Case Study: Big Data System

Data
Sources

Source Channel

Flume Agent/Collector

Sink

DestinationsData Flow
(with direction indicated)

Legend:

FIGURE 5.7 Apache Flume data-flow reference structure

§	Selecting a mechanism for getting data from the external sources
§	Selecting specific input formats in the Source element
§	Selecting a file data format in which to store the events
§	Selecting a mechanism for the channeling events in the channel
§	Establishing a deployment topology for the Data Source elements

Addressing these specific architectural concerns will contribute to the satis-
faction of the following quality attributes:

§	QA-1 (Performance)
§	QA-7 (Scalability)
§	QA-9 (Extensibility)
§	QA-10 (Availability)

5.3.4.2 Step 3: Choose One or More Elements of the System to Refine
In this iteration, the focus is on the elements in Flume’s structure.

5.3.4.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers
In this iteration most of the decisions are about instantiation, since they primarily
involve configuring the elements that are already established by Flume. The only
selection design decision involves choosing tactics to satisfy the availability and
performance quality attributes.

5.3 The Design Process 133

Design Decisions and
Location Rationale and Assumptions

Use Flume in agent/
collector configuration.
Agents are co-located
on the web servers, and
the collector runs in the
Data Stream element.

A Flume instance can run in two modes: as an agent
(directly co-located in the data sources) or as a collector
(which combines data streams from multiple agents and
writes to destinations).
From these two modes, Flume can be used in different
configurations. The decision is to use Flume in both agent
and collector configuration: The agents are co-located
with the data sources and the Collector runs in the Data
Stream element.

Alternative Reason for Discarding

Flume agents are on
each web server and
write events directly to
sinks (no collectors)

Generates heavy traffic
from 300-plus simultaneous
connections to sinks (HDFS
and Elasticsearch). Produces
multiple (per web server) files
in HDFS, which is suboptimal
for this distributed file system
(rather than having larger
files that aggregate data from
multiple web servers).

Flume collectors
receive events directly
from web servers (no
agents) and write to
sinks

Does not support failover mode.
If a collector node fails, the
connected web servers will lose
a receiver.

Introduce the tactic of
“maintaining multiples
copies of computations”
by using a load-
balanced, failover tiered
configuration

Out of the possible topology alternatives, the selected
one is a load-balanced and failover tiered topology
based on performance (QA-1, 15,000 events/second)
and availability (QA-10, no single point of failure) quality
attribute scenarios.

Alternative Reason for Discarding

Not replicating the
collector

This would decrease
performance and availability.

134 Chapter 5—Case Study: Big Data System

5.3.4.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces
The instantiation design decisions made in this iteration are summarized in the
following table:

Design Decisions and
Location Rationale and Assumptions

Use access and error
logs from the Apache
HTTP Server as input
formats

The system requirements include the collection and
analysis of logs such as web server load, user activities,
and errors. In reality, there could be tens (and sometimes
hundreds) of data source types.
For the development of the proof-of-concept, a single type
of data source system is considered: an Apache HTTP
server (“web server”). The data to be collected includes
user activities that will be tracked through an access log
and system errors through an error log.
The web server access log records all requests
processed by the server. A log entry might look like this:
143.21.52.246 - - [19/Jun/2014:12:15:17
+0000] "GET /test.html HTTP/1.1" 200 341 "-"
"Mozilla/5.0 (X11; Linux x86_64; rv:6.0a1)
Gecko/20110421 Firefox/6.0a1".

This example consists of the following data fields: client
IP address, client identity, user ID, time stamp, request
method, request URL, request protocol, response code,
response size, referrer, user agent.
The web server error log sends diagnostic information
and records any errors that it encounters when
processing user requests. For example:
[19/Jun/2014:14:23:15 +0000] [error] [client
50.83.180.156] Directory index forbidden by
rule: /home/httpd/

This example consists of the following data fields: time
stamp, severity level, client IP address, message.
Further data modeling and technology configuration will
be based on these two types of logs and the described
fields.

Log files are piped
through an IP port in the
source element of Flume
agent

Apache Flume is configured to pipe log data through an
IP port, such as by using syslog.

Alternative Reason for Discarding

Read from a log file
(e.g., running the
UNIX command
tail -F access_log)

This option looks the simplest
but does not guarantee event
delivery (events can be lost),
which is stated in the Flume
user guide.

5.3 The Design Process 135

Design Decisions and
Location Rationale and Assumptions

Identify event
channeling methods
for both the agents and
the collector; make
final decision through
prototyping

The ingested events from the Source element are staged
in the Channel element. At the moment Flume offers three
possible options to configure the channel:

1. Memory channel: in-memory queue; faster, but if any
events are left in the memory queue when a Flume
process dies, they cannot be recovered.

2. File channel: durable and backed up by the local file
system.

3. Apache Kafka: an approach in which Kafka serves as
a distributed and highly available channel.

The selection from these options actually is a “classic”
tradeoff of performance versus availability (or what is
sometimes termed durability). Although we do not have
an explicit durability scenario, we understand that with
the future system extension (UC-6, security reports), this
requirement becomes more critical. This is an example
of an architectural concern, in the sense that it does not
appear in any requirements document, but the architect
has to deal with it nonetheless.
Given these options and no publicly available information
about the performance consequences, this is a good
candidate for prototyping and making a decision based
on the results. Another rationale for prototyping and
performance measurement is the need to calculate the
required hardware resources. As a consequence, a new
concern is identified and added to the backlog:

 ■ CRN-3: Data modeling and developing proof-of-concept
prototypes for key system elements

Select Avro as a specific
file format for storing raw
data in the HDFS sink

One decision that needs to be made when designing a
solution based on Hadoop is the selection of an optimal file
format. Hadoop supports a variety of formats that provide
different functionalities, compression, and performance
results depending on stored data and usage scenarios.
In this case the main scenarios are related to quality
attributes such as performance (QA-1, 15,000 events/
second), scalability (QA-7, approximately 60 TB of raw
data), and extensibility (QA-9, adding new data sources).
When we translate these requirements to file format traits,
they will be impacted by performance (how fast data can
be pushed by the Data Stream), a compression factor
(less space to store), and ease of schema evolution
(when adding new log formats or changing existing ones).
We select Avro, as it supports rich data structures,
provides good compression levels (with the Snappy
compression codec), and is flexible enough to
accommodate schema changes (employing a self-
describing format where data is stored with its schema).

(continues)

136 Chapter 5—Case Study: Big Data System

Design Decisions and
Location Rationale and Assumptions

Alternative Reason for Discarding

Text file (plain
text, CSV,
XML, JSON)

The compression ratio is poor com-
pared with binary file formats (e.g.,
Avro). Also, text files do not support
block compression, which is necessary
when storing files larger than the size of
an HDFS block.

SequenceFile Does not support flexible schema
evolution. Consists of binary key/value
pairs and does not store metadata with
the data.

RCFile This Hadoop columnar file format does
not support schema evolution, and
writing requires more CPU and memory
compared with non-columnar formats.

ORCFile Optimized RCFile provides better
compression and faster querying, but
has the same drawbacks as RCFile
in terms of schema evolution, at the
expense of writing performance.

Parquet Parquet is a columnar file format that
partially supports schema evolution, but
still is slower for write operations com-
pared with non-columnar file formats.

5.3.4.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.8 illustrates the result of the instantiation decisions.

Element Responsibility

Flume agent Consume log events generated by a web server, split
text log entries to separate fields, and deliver the parsed
event records to a collector.

Flume collector Collect event records from multiple agents in a load-
balanced and fault-tolerant manner and deliver them
to destinations (HDFS and Elasticsearch) for further
persistency and processing.

5.3
T

he D
esign P

rocess
137

replicating

replicating

+ log parsing

+ log parsing

LB
+

failover

…

Collector

SPEED Layer

BATCH Layer

Data Stream

WebServer 1 (Data Source)

Flume Collector Tier Storage Tier

Memory channel
(error)

netcat src
(access)

netcat src
(error)

Memory channel
(access)

avro sink
(access)

avro sink
(error)

HDFS

Elasticsearch

Application Tier

Flume Collector

Memory channel
ES

avro src
(access)

Memory channel
HDFS

HDFS sink
(access)

ES sink
(access)

Memory channel
ES

avro src
(error)

Memory channel
HDFS

HDFS sink

ES sink
(error)

WebServer 2 (Data Source)

Memory channel
(error)

netcat src
(access)

netcat src
(error)

Memory channel
(access)

avro sink
(access)

avro sink
(error)

WebServer N (Data Source)

Flume Agent

Flume Agent

Flume Agent

Memory channel
(error)

netcat src
(access)

netcat src
(error)

Memory channel
(access)

avro sink
(access)

avro sink
(error)

avro

json

(error)

Data flow between nodes

Data flow between flume
components within the same node

Legend:

FIGURE 5.8 Iteration 3 instantiation design decisions

138 Chapter 5—Case Study: Big Data System

5.3.4.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose
The following Kanban table summarizes the design progress and the decisions
made during the iteration. Note that drivers that were completely addressed in the
previous iteration are not shown.

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

UC-1
UC-2
UC-3
UC-4

Refinement of the Data Stream element.
Decisions about other elements that
participate in these use cases still need to
be made.

QA-1 Flume load-balanced, failover tiered
configuration is selected.

QA-9 Usage of Flume and Avro format for
storing raw data.

QA-10 Flume load-balanced, failover tiered
configuration is selected.
Decisions on other elements that partici-
pate in this scenario still need to be made.

CRN-1 Tiers were identified for the Flume
collector and storage.

CRN-3 This is a new architectural concern that
was introduced in this iteration: data
modeling and developing proof-of-concept
prototypes for key system elements. At
this point, no relevant decisions have
been made.

5.3.5 Iteration 4: Refinement of the Serving Layer

We now present the results of the activities that are performed in each of the steps
of ADD in the fourth iteration of the design process.

We selected the Serving Layer for refinement (not the Batch Layer) because
the risk of not achieving requirements is higher for this layer. This layer is di-
rectly involved in use cases UC-3 and UC-4 and a number of quality attribute
scenarios in which performance and scalability are critical factors.

As in the previous iteration, design activities involve the creation of pro-
totypes. In this iteration, UI prototypes are also created. There are at least two
reasons for this:

§	It will facilitate receiving early feedback from users, which can help to up-
date requirements.

§	Data visualization scenarios often have an influence on data modeling.

5.3 The Design Process 139

5.3.5.1 Step 2: Establish the Iteration Goal by Selecting Drivers
The goal of this iteration is to address the newly identified concern of data
modeling and developing proof-of-concept prototypes for key system elements
(CRN-3) so as to satisfy the primary use cases and system requirements associ-
ated with the analysis and visualization of historic data. These use cases include:

§	UC-3
§	UC-4

The quality attribute scenarios associated with these use cases are:

§	QA-4 (Performance)
§	QA-5 (Performance)
§	QA-7 (Scalability)
§	QA-8 (Scalability)

5.3.5.2 Step 3: Choose One or More Elements of the System to Refine
In this iteration, the elements that are refined are the ones that support historical
data, which include the Serving Layer elements: the Ad Hoc and Static Batch
Views. Given that both types of elements use the same technology (Impala), the
decisions made in this iteration affect both types of elements.

5.3.5.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers
As in the previous iteration, the design activities here involve the configuration of the
technologies that were associated with the elements. For this reason, no new design
concepts are selected and all of the decisions belong to the instantiation category.

5.3.5.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces
In this iteration, design concepts are instantiated based on the best practices of
using the chosen technologies.

Design Decisions
and Location Rationale and Assumptions

Select Parquet as a
file format for Impala
in the Batch Views

The decision-making process for selecting a file format for
Batch Views is similar to that in the previous iteration, where
we selected a format for raw data storage. The data usage
scenario is somewhat different, however. The previous case
was about fast writing, effectively storing data, and extending
data formats. This case is focused on fast querying (QA-4,
less than 5 seconds report load; QA-5, less than 2 minutes
ad hoc query execution time), although scalability (QA-8,
approximately 90 TB of aggregated data) and extensibility
(QA-9, adding new data sources) drivers are still relevant.
Out of all the available alternatives, the Parquet file format
looks like the most promising option to satisfy these
requirements.

(continues)

140 Chapter 5—Case Study: Big Data System

Design Decisions
and Location Rationale and Assumptions

Select Parquet as a
file format for Impala
in the Batch Views

In Parquet, a columnar structure represents relational
tables on computer clusters and is designed for fast query
processing, which is important for ad hoc data exploration
and static reports. In addition, Parquet is optimized for Impala,
which we selected as a primary technology for the interactive
query engine during the second iteration. Finally, it provides a
good compression ratio and allows some schema extension,
by adding new columns at the end of the structure.

Alternative Reason for Discarding

Text file (plain
text, CSV, XML,
JSON)

Slow for reads, especially when
querying individual columns.
Also does not support block
compression, which is necessary
when storing files larger than the
size of an HDFS block.

SequenceFile Slow for reads, especially when
querying individual columns.

RCFile The first columnar file format
adopted in Hadoop. Does not
support schema evolution.

ORCFile Provides better compression and
faster querying than RCFile, but has
the same drawbacks as RCFile in
terms of schema evolution.
Compared with Parquet, the
compression ratio is better, but
query performance is slower.
Another major limitation is that it is
not supported by Impala.

Avro Although Avro is considered the
best multipurpose storage format
for Hadoop, its query performance
is noticeably slower compared with
columnar formats, such as RCFile,
ORCFile, and Parquet.

5.3 The Design Process 141

Design Decisions
and Location Rationale and Assumptions

Use the star schema
as a data model in
the Batch Views

In the previous iteration, we selected Impala as a single
technology for the Batch Views components, which impacts
both static reports (UC-3, 6) and ad hoc querying (UC-4).
The star schema technique was selected for two reasons:

 ■ Impala was designed for analytical queries, so it naturally
provides good support for star schema data modeling.

 ■ Ad hoc querying in combination with BI tools requires data
to be well modeled to simplify query complexity and, as a
result, allow faster query performance.

In our case, the star schema was designed to have small-
dimension (in terms of number of rows) tables to avoid
joins between big tables, as this typically consumes large
amounts of system resources and affects query execution
performance. Small-dimension tables can fit in memory and
joins can be performed more effectively.

Alternative Reason for Discarding

Flat tables Flat tables are typically represented in
the format of wide denormalized tables
that contain all measures and dimension
attributes.
Flat tables can cause significant
performance issues when querying
against large volumes of data.

5.3.5.5 Step 6: Sketch Views and Record Design Decisions
Figure 5.9 depicts the star schema data model implemented using Impala and
Parquet.

The screenshot in Figure 5.10 presents a sample static report implemented
with Tableau to demonstrate a possible view through a corporate BI tool. The re-
port was created using test data stored in Parquet and provided by Impala through
the ODBC interface.

142 Chapter 5—Case Study: Big Data System

dim_request

dim_referrer

request_id <pi> int
request_method string
request_url string
request_protocol string

fact_access
client_ip string
request_id <fi5> int
referrer_id <fi4> int
user_agent_id <fi1> int
city_id <fi2> int
zip_code_id <fi3> int
latitude string
longitude string
event_timestamp Timestamp
server_host string
requst_time int
response_code smallint
response_size int

referrer_id <pi> int
referrer_url string
referrer_site string

dim_city
city_id <pi> int
city string
region string
country string

dim_user_agent
user_agent_id <pi> int
user_agent_full string
browser string
device_type string
os string

dim_zip_code
zip_code_id <pi> int
zip_code string

fact_error
event_timestamp Timestamp
message_id <fi1> int
server_host string
client_ip string
level string

dim_message
message_id <pi> int
message_url string

FIGURE 5.9 Star schema implemented in Impala and Parquet

FIGURE 5.10 Sample static report implemented with Tableau

5.4 Summary 143

5.3.5.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose
The following Kanban table summarizes the design progress and the decisions
made during the iteration. Note that drivers that were completely addressed in the
previous iteration are not shown.

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

UC-3
UC-4

Refinement of the Serving Layer, which is
used in the use case. Decisions on other
elements that participate in these use
cases still need to be made.

QA-4
QA-5
QA-8

Use Parquet and star schema.
Performance tests are still required and
thus a new concern is introduced:

 ■ CRN-4: Develop performance tests.

CRN-1 No relevant decisions made.

CRN-3 Data modeling and proof-of-concept
prototypes were developed for the
elements in the Serving Layer, but the
same activity remains to be completed for
the elements in the Speed Layer.

5.4 Summary

In this chapter we presented an extended example of using ADD 3.0 in a rela-
tively novel domain, that of Big Data. As this example shows, architectural de-
sign can require many detailed decisions to be made to ensure that the quality
attributes will be satisfied.

Also, this example shows that a large number of decisions rely on knowledge
of many different patterns and technologies. The more novel the domain, the more
likely that preexisting information (e.g., design concepts catalog, books of patterns,
and reference architectures) will not be available for it. In such a case, you need to
rely on your own judgment and experience, or you need to perform experiments
and build prototypes. One way or another, such decisions must be made.

This instance of ADD also differed from the example presented in Chapter 4
in that we spent relatively little time and effort on building sequence diagrams as
a means of deriving interface specifications. The example presented here relied on
a relatively simple data-flow architecture with a modest number of components,
so sequence diagrams were not needed to understand the relationships between
the components. The “contracts” between the elements were determined by the
information exchanged, as exemplified in step 5 of Iteration 3 (Section 5.3.4.4).

144 Chapter 5—Case Study: Big Data System

5.5 Further Reading

The design of a data warehouse has been extensively studied. Two good ap-
proaches are documented in R. Kimball and M. Ross, The Data Warehouse Tool-
kit, 3rd ed., Wiley, 2013; and W. Inmon, Building the Data Warehouse, 4th ed.,
Wiley, 2005.

The Lambda architecture was first presented by N. Marz and J. Warren, Big
Data: Principles and Best Practices of Scalable Realtime Data Systems, Man-
ning, 2015.

A good discussion of how to engineer for scalability can be found in M. Ab-
bott and M. Fisher, The Art of Scalability: Scalable Web Architecture, Processes,
and Organizations for the Modern Enterprise, Addison-Wesley, 2010.

P. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence, Addison-Wesley, 2009.

A discussion of how and when to prototype as part of the architecture design
process can be found in H-M Chen, R. Kazman, and S. Haziyev, “Strategic Pro-
totyping for Developing Big Data Systems”, IEEE Software, March/April 2016.

A design concepts catalog that includes many of the reference architectures
and technologies used in this case study is part of the Smart Decisions Game,
which can be found at H. Cervantes, S. Haziyev, O. Hrytsay, and R. Kazman,
“Smart Decisions Game”, http://smartdecisionsgame.com.

../../../../../smartdecisionsgame.com/default.htm

145

6
Case Study: Banking
System

Chapters 4 and 5 were both instances of greenfield development. In truth, that
kind of development is relatively rare. Most of the time you, as an architect, will
be working on evolving an existing system rather than creating one from scratch.
In this chapter, we present an example of using ADD 3.0 for a brownfield system
in a mature domain (as discussed in Section 3.3.3). We first present the business
context and then examine the project’s existing architectural documentation. This
is followed by a step-by-step summary of the activities that are performed during
the ADD iterations to evolve the system. While this is a real system, some of the
details have been changed to protect the identities of the actors.

6.1 Business Case

In 2010, the government of a Latin American country issued a regulation that re-
quired banking institutions to digitally sign bank statements. To comply with the
regulation, “ACME Bank” decided to commission the development of a software
system, which we will call BankStat, whose main purpose was the generation of
digitally signed bank statements.

Figure 6.1 presents a context diagram that illustrates how the BankStat sys-
tem works. At its core, the system executes a batch process, which retrieves raw

146 Chapter 6—Case Study: Banking System

bank statement information from a data source (an external database) and then
performs a series of validations on this data to generate the bank statements and
prepare them for digital signature by an external provider. The statements are sent
to the provider, which returns the signed bank statements. These statements are
then stored by BankStat for further processing, including sending the statements
to customers. This batch process is triggered automatically once a month and,
during its execution, approximately 2 million bank statements are processed.

The following quality attributes scenarios are primary for this system:

§	Reliability: Under normal operating conditions, the batch process is execut-
ed in its entirety 100% of the time.

§	Performance: Under normal operating conditions, when the batch process
starts, 2 million bank statements are read, processed, and sent to the signing
provider in at most one hour.

§	Availability: During normal processing, a failure may occur when reading
information from the data source or when sending information for digital
signature. A notification is then sent to the administrator, who manually
restarts the process. When it is restarted, only the information that had not
already been processed is treated.

Due to time constraints imposed by the government, only the core batch pro-
cess for the system was developed and put into production. This initial release,
however, did not provide a friendly interface with the system, which is necessary
to monitor the state of the bank statement processing, to request the reprocessing
of incorrect statements. and to generate reports. In the first release, the process
could only be started or stopped manually from a console. For a second release
of the system, the ACME Bank requested an extension of the BankStat system to
better address these shortcomings.

:

FIGURE 6.1 Context diagram for the BankStat system

6.1 Business Case 147

The following subsections present the drivers for this second release of the
system.

6.1.1 Use Case Model

Figure 6.2 presents the use case model for the second release of BankStat.
These use cases are described in more detail here:

Use Case Description

UC-1: Query
and reprocess
statements

The user manually requests the reprocessing of a number
of statements. The user specifies criteria to query and select
the statements that must be reprocessed. The user can, for
example, select a period of interest or status of the statements
that he is interested in (e.g., processed, signed, non-signed).

UC-2: Log in The user logs in to the system.

UC-3: Generate
report

The user generates reports regarding the process.

UC-4: Query
users log

The administrator queries user logs to display the activities of
a particular user or groups of users. Information can be filtered
using criteria such as dates or types of operations.

FIGURE 6.2 Use cases for the BankStat system (Key: UML)

148 Chapter 6—Case Study: Banking System

6.1.2 Quality Attribute Scenarios

The following table presents the new quality attribute scenario that is considered
for this extension of the system.

ID
Quality
Attribute Scenario

Associated
Use Case

QA-1 Security A user performs any operation on the system,
at any moment, and 100% of the operations
performed by the user are recorded by the
system in the operations log.

UC-4

6.1.3 Constraints

The following table presents the constraints that are considered for this extension
of the system.

ID Constraint

CON-1 The user’s accounts and permissions are handled by an existing user
directory server that is used by various applications in the bank.

CON-2 Communication with the data source must be realized using JDBC.

CON-3 Communication with the digital signature provider system is
performed using web services. These web services receive and
return the information in an XML format that adheres to specifications
established by the government.

CON-4 The system must be accessed from a web browser, although the
access is available only from the bank’s intranet.

6.1.4 Architectural Concerns

The following table presents the concerns that are initially considered for this
extension of the system.

ID Concern

CRN-1 The system shall be programmed using Java and Java-related
technologies to leverage the expertise of the development team.

CRN-2 The introduction of new functionality must, as far as possible, avoid
modifications to the existing batch processing core.

6.2 Existing Architectural Documentation 149

6.2 Existing Architectural Documentation

This section presents a simplified version of the system’s views, which provide
relevant information for the changes in the architecture.

6.2.1 Module View

The package diagram shown in Figure 6.3 depicts the system layers and the mod-
ules that they contain.

FIGURE 6.3 Existing modules and layers in the BankStat system (Key: UML)

150 Chapter 6—Case Study: Banking System

The responsibilities of the elements depicted in the diagram are described in
the following table.

Element Responsibility

Batch Processing
Layer

This layer contains modules that perform the batch process.
These components are developed using the Spring Batch
framework.

Data Access Layer This layer contains modules that store and retrieve data
from a local database, which is used by the modules in the
Batch Processing Layer.

Communications
Layer

This layer contains modules that support communication
with the external digital signature provider and the bank
statement data source.

Batch Job
Coordinator

This module is responsible for coordinating the execution
of the batch process, including launching the process and
invoking the different steps associated with it.

Job Steps This module contains the “steps” that are part of the batch
job. These steps perform activities such as validating the
information retrieved from the data source and generating
the bank statements. Such steps generally read, process,
and write data. Data is read from and written to the local
database.

Local Database
Connector

This module is responsible for accessing a local database
used by the job steps to exchange information while
performing the batch process. We refer to this database
as “local” to differentiate it from the external data source;
this database is used only locally (i.e., internally) by the
application, even if it is deployed in a different node (see the
next section).

Notifications Manager This module manages logs and sends notifications in case
of issues such as a communication failure with the external
system.

Data Source
Connector

This module is responsible for connecting with the external
database that provides the raw bank statement information.

Digital Signature
Provider Connector

This module is responsible for accessing the external
system that performs the digital signing of the bank
statements.

6.2.2 Allocation View

The deployment diagram shown in Figure 6.4 presents an allocation view con-
sisting of nodes and their relationships.

6.3 The Design Process 151

FIGURE 6.4 Existing deployment diagram for the BankStat system (Key: UML)

The responsibilities of the elements depicted in the diagram are described in
the following table.

Element Responsibility

Data Source
Server

This server hosts a database that contains the raw data used to
produce the bank statements.

BankStat
Server

This server hosts the main batch process that is responsible for
retrieving information from the Data Source Server, validating the
information, and sending the information to the Digital Signature
Server for signing.

Database
Server

This server hosts a database that is used locally by the batch
process in the BankStat Server to hold the state and information
used in the execution of the batch process.

Digital
Signature
Server

This server, which is provided by an external entity, is responsible
receiving, digitally signing, and returning the bank statements.
The server exposes web services that receive and produce XML
information.

6.3 The Design Process

We now describe the design process through the different steps of ADD (as dis-
cussed in Section 3.2). As this is not a huge change to the existing system, the ar-
chitect expects that the design activities will require only a single iteration of ADD.

152 Chapter 6—Case Study: Banking System

6.3.1 ADD Step 1: Review Inputs

The first step of the ADD method involves reviewing the inputs. They are sum-
marized in the following table.

Category Details

Design purpose This is a brownfield system in a mature domain. The
purpose is to design for the next system release.

Primary functional
requirements

The primary use case for this release is UC-1.

Quality attribute
scenarios

This extension of the system involves only a few quality
attribute scenarios, so they are all considered as primary.

Constraints See Section 6.1.3.

Architectural concerns See Section 6.1.4.

Existing architecture
design

Since this is brownfield development, an additional input
is the existing architecture design, which was described in
the previous section.

6.3.2 Iteration 1: Supporting the New Drivers

This section presents the results of the activities that are performed in each of the
steps of ADD in the single iteration performed in this example.

6.3.2.1 Step 2: Establish Iteration Goal by Selecting Drivers
Only a limited number of drivers need to be addressed, so the architect has de-
cided that a single iteration is sufficient. The goal of this iteration is to modify the
existing design to support all of the new drivers listed in Section 6.1

6.3.2.2 Step 3: Choose One or More Elements of the System to Refine
The elements to refine include the main modules from BankStat and the node
where the system is deployed (BankStat Server). In addition to refining these
modules, the physical node where the application is hosted is a candidate for
refinement.

6.3.2.3 Step 4: Choose One or More Design Concepts That Satisfy the
Selected Drivers
The following table summarizes the design decisions made with respect to the
selection of design concepts.

6.3 The Design Process 153

Design Decisions and
Location Rationale

Use the Web Application
Reference architecture

The use cases that are being introduced in the
system require interaction through a web browser
(CON-4). Since there are no requirements for rich user
interaction, the Web Application architecture is selected
(see Section A.1.1).
Discarded alternatives:

 ■ Rich Internet application (see Section A.1.3), as it
would require additional development effort and there
are no requirements for a rich user interface.

Select the Spring Security
framework to manage
authorization and
authentication

Security is a complex topic, and writing ad hoc code
to support it is difficult and error prone. The needs for
this application include managing authorization and
authentication and an activity log. All of these features
are available in the Spring Security framework, which
can easily be integrated into the existing user directory
server (CON-1) and is Java related (CRN-1).
Discarded alternatives:

 ■ Ad hoc code: Challenging, error-prone, takes signifi-
cant time to develop.

 ■ Other frameworks: The first release of the solution
has already been developed using Spring technolo-
gies. Hence it makes sense to continue using other
technologies from the Spring platform, as they can be
easily integrated with the existing frameworks.

Use the Shared Database
Integration pattern
to obtain information
about the state of bank
statements

The interactive part of the system needs to query the
database that is used locally by the batch process to
display the state of bank statement processing. The
batch and interactive parts of the system can be seen
as two different applications (or subsystems) that
share data that is contained in the same database. The
Shared Database Integration pattern can be used in
this context to support the interaction between these
systems. This approach does not require changes to be
made in the existing parts of the system (CRN-2).
Discarded alternatives:

 ■ Obtaining the information through an API, which
would require modifications in the existing modules
and would have a negative impact on performance.

Deploy using a three-tier
deployment model

Deploying the web part of the application will be done
in a separate server. Thus, the deployment of this part
of the application can be seen as an instance of the
three-tier deployment model (see Section A.2.2). The
benefit of this approach is that the server that hosts the
batch process will not have to process the interactive
requests, so performance will not be hindered.
Discarded alternatives:

 ■ Hosting the application in the same server where
the batch process is hosted. This would save some
server costs, but could limit performance of either the
batch process or the interactive functions.

154 Chapter 6—Case Study: Banking System

6.3.2.4 Step 5: Instantiate Architectural Elements, Allocate Responsibilities,
and Define Interfaces
The instantiated design decisions considered and made are summarized in the
following table.

Design Decision and Location Rationale

Host the web application in a separate
server

This choice avoids performance reduc-
tions on the batch server and increases
security (QA-1).

Configure Spring Security to use an
external user directory server

This is to address CON-1.

The results of these instantiation decisions are recorded in the next step.

6.3.2.5 Step 6: Sketch Views and Record Design Decisions
The deployment diagram shown in Figure 6.5 depicts the new server that will
host the application and the external user directory server, along with their con-
nections to the existing nodes.

The responsibilities of the newly introduced elements are described in the
following table.

Element Responsibility

Web/App Server Hosts the interactive part of the application.

Auth Server Existing server that manages users and permissions for multiple
applications in the bank (CON-1).

The package diagram shown in Figure 6.6 illustrates how the reference ar-
chitecture is instantiated and identifies the modules that are introduced to support
the primary use case (UC-1). It also shows how these newly introduced elements
are integrated with the existing layers and modules from the previous system
release.

6.3 The Design Process 155

FIGURE 6.5 Refined deployment diagram (Key: UML)

FIGURE 6.6 Modules introduced to support the use case UC-1 (Key: UML)

156 Chapter 6—Case Study: Banking System

The responsibilities of the newly introduced elements are described in the
following table.

Element Responsibility

Bank Statement
Reprocessing View

This module displays a view that allows the user to query
the state of bank statements that have been processed. It
also allows the user to select from these statements the
ones that need to be reprocessed.

Bank Statement
Reprocessing Service

This module manages requests from the view, which include
requesting bank statement information, marking bank
statements that need to be reprocessed, and triggering the
restart of the batch job.

Security Manager This module, which is implemented using Spring Security,
handles authentication, authorization, and the activity log
(QA-1). It is also integrated with the external user directory
server (CON-1).

The sequence diagram shown in Figure 6.7 illustrates how UC-1 is per-
formed. The user requests the state of bank statements to be displayed. This in-
formation is retrieved from the local database by the Local Database Connector.
Once displayed, the user selects the statements to reprocess. These bank state-
ments are marked for reprocessing (by changing a flag) and the information is
updated on the local database. Finally, the batch job is restarted. Note that the
interactions with the system are recorded by Spring Security in the view. In addi-
tion, the invocation of the Batch Job Coordinator is asynchronous, which avoids
the problem of blocking the user interface.

From the interactions identified in the sequence diagram, initial methods for
the interfaces of the interacting elements can be identified.

BankStatementReprocessingService

Method Name Description

BankStatement [] get BSStatus(criteria) Retrieves a collection of bank
statements according to diverse
criteria, including periods in
time or status.

boolean reprocess(BankStatement []) Requests the reprocessing of a
collection of bank statements.

6.3.2.6 Step 7: Perform Analysis of Current Design and Review Iteration
Goal and Achievement of Design Purpose
The following Kanban table summarizes the status of the various architectural driv-
ers and the decisions that were made during the iteration to address them. As all
the drivers were completely addressed, just a single iteration of ADD was required.

6.3
T

he D
esign P

rocess
157

FIGURE 6.7 Sequence diagram for use case UC-1 (Key: UML)

158 Chapter 6—Case Study: Banking System

Not
Addressed

Partially
Addressed

Completely
Addressed

Design Decisions Made During the
Iteration

UC-1 Modules that support the use case
and their interfaces were identified and
defined based on the Web Application
Reference architecture.

QA-1 Security logs are handled by Spring
Security.

CON-1 Spring Security connects to the existing
user directory server and uses its
information to support authorization and
authentication.

CON-3 No changes have been made to the
module that connects to the data
source.

CON-3 No changes have been made to the
module that connects to the digital
signature provider.

CON-4 The Web Application Reference
architecture that was used specifically
supports access from web browsers.

CRN-1 The technologies that have been
selected are Java related.

CRN-2 Integration with the existing functionality
was made through the database (using
the Database Integration pattern);
changes to the existing functionality
were not needed.

6.4 Summary

In this chapter, we presented a simple (but real-world) example of the use of
ADD in the context of a brownfield system. As this example illustrates, the steps
of ADD are followed in exactly the same manner as in the context of the design
of greenfield systems. The main difference is that one of the inputs of the de-
sign process is the existing architecture. This highlights the importance of doc-
umenting the architecture: If this information was not present, a great deal of
time would need to be spent in understanding and reverse-engineering the code to
create an appropriate model of the architecture before proceeding with the design
and eventual implementation process.

Design in the context of brownfield systems usually involves more ex-
tensive changes than the ones illustrated by this example. Such changes often
require refactoring and modification of the existing architecture to support the

6.5 Further Reading 159

introduction of new elements and new relationships that result from the design
activity. Modifying an existing architecture is oftentimes the most challenging
aspect of designing in the context of brownfield systems. In brownfield systems,
it is all too common that detailed knowledge of some parts of the system has been
lost. Because this process can be complex and some uncertainty exists regarding
the consequences of changes, we recommend that you perform an analysis of the
proposed design changes before committing them to code.

6.5 Further Reading

The Shared Database Integration pattern is discussed in G. Hohpe and B. Woolf,
Enterprise Integration Patterns: Designing, Building and Deploying Messaging
Solutions, Addison Wesley Professional, 2003.

In-depth discussions of software maintenance and evolution can be found
in the classic book by F. Brooks, The Mythical Man Month, Addison-Wesley,
1995, and also in M. M. Lehman, “On Understanding Laws, Evolution, and Con-
servation in the Large-Program Life Cycle”, Journal of Systems and Software,
1:213–221, 2010.

This page intentionally left blank

161

7
Other Design Methods

Over the past two decades, a number of architecture design methods have been
proposed and documented. In this chapter we briefly present some of the most
well-known methods, which we then relate and compare to ADD. We begin with
a “general model” of architecture design, then briefly present five other design
methods. We conclude the chapter with a discussion of how ADD differs from
these other methods.

7.1 A General Model of Software Architecture Design

In their paper “A General Model of Software Architecture Design Derived from
Five Industrial Approaches”, Hofmeister and her colleagues compared five indus-
trial software architecture design methods and extracted from their commonalities
a generic software architecture design approach. The five models they reviewed
were ADD 2.0, Siemens 4 views, RUP’s 4+1 Views, Business Architecture Process
and Organization (BAPO), and Architecture Separation of Concerns (ASC).

162
C

hapter 7—
O

ther D
esign M

ethods

Architectural
Synthesis

Architecturally
significant

requirements

Architecturally
significant

requirements

Candidate
architectural

solutions

Architectural
Analysis

Architectural
concerns

Context

Architectural
Evaluation

Key:

Activity

Data flow

Validated
architecture

FIGURE 7.1 Architectural design activities

7.1 A General Model of Software Architecture Design 163

The derived general model, shown in Figure 7.1, consists of three main ac-
tivities that are present in all five models reviewed:

§	Architectural analysis. In this activity, requirements (called concerns) and
the system context are used as inputs to determine a set of architecturally
significant requirements (ASRs).

§	Architectural synthesis. This activity is described as being the core of ar-
chitecture design. It proposes architecture solutions to a set of ASRs, mov-
ing from the problem to the solution space. The results of this activity are
candidate architectural solutions, which are partial or complete architecture
designs and include information about the rationale.

§	Architectural evaluation. This activity ensures that the architectural de-
cisions are the right ones. Candidate architectural solutions are measured
against ASRs. Several evaluations of different architectural solutions are
expected, but the eventual result is the validated architecture.

Hofmeister and her colleagues further explain that these activities do not
proceed sequentially, but rather architects proceed in small “leaps” as they move
from one activity to another. Progress is driven by an implicit or explicit back-
log of smaller needs, issues, problems, and ideas that architects need to address
(Figure 7.2).

This general model presented by Hofmeister et al. is not detailed, by in-
tent, because it abstracts the specific techniques found in other design processes,
including ADD. Thus the model can represent ADD, but also covers a bigger
scope of architecture development, where architectural requirements gathering
and analysis are performed using methods such as QAW, architectural synthesis
is performed using methods such as the ones presented in the paper, and architec-
tural evaluation is performed using methods such as ATAM.

Server Side

Client Side«Layer»
Presentation CS

«Layer»
Business logic CS

«Layer»
Data CS

«Layer»
Services SS

«Layer»
Business Logic SS

«Layer»
Data SS

NetworkStatusMonitoringView

NetworkStatusMonitoringController

RequestManager

«facade»
RequestService

TopologyController
DomainEntities

RegionDataMapper TimeServerDataMapper EventDataMapper TimeServerConnector

TimeServerEventsController DataCollectionController

FIGURE 7.2 Architecture backlog

164 Chapter 7—Other Design Methods

7.2 Architecture-Centric Design Method

The Architecture-Centric Design Method (ACDM) is a software architecture de-
velopment method that covers the complete life cycle of the architecture. This
iterative method consists of 8 stages, as shown in Figure 7.3.

Stage 3 is focused on design; it is where an initial architectural design is
created or refined. For new systems, the first iteration of this process promotes
the rapid creation of a “notional” or initial architecture. This iteration proceeds
by first establishing the system context and then performing decomposition in an

FIGURE 7.3 ACDM stages

7.3 Architecture Activities in the Rational Unified Process 165

iterative manner to produce structures. In ACDM, decomposition is driven by
quality attribute scenarios and constraints, but functional requirements are also
considered. In subsequent iterations, issues uncovered in the architecture re-
view (Stage 4) also serve as inputs. ACDM suggests using patterns to support
decomposition and using more than one perspective (static, dynamic) during the
process. After decomposition occurs, responsibilities are associated with the ele-
ments and interfaces are defined.

ACDM has a broader scope than ADD, as it encompasses the whole archi-
tecture development life cycle (requirements, design, evaluation, and documen-
tation) in its 8 stages. Stage 3 of ACDM is the equivalent of ADD. However,
ACDM provides less detailed guidance than ADD on how to perform this crucial
step. ADD and ACDM can be used together, however. To do so, you can simply
use ADD directly in stage 3 of ACDM.

7.3 Architecture Activities in the Rational Unified
Process

The Rational Unified Process (RUP) has been a popular software development
process framework for more than a decade. The framework is extensive and the
version we reviewed (7.0.1) provides two flavors: one for large projects (used
here for discussion) and one for small projects. Every project in RUP is devel-
oped iteratively and iterations are performed across four sequential phases:

§	Inception. In this phase, the project is conceived and feasibility is evaluated.
§	Elaboration. In this phase, many aspects that are necessary to successfully

perform the project are handled. One of these aspects is the design of the
architecture.

§	Construction. In this phase, the system is built iteratively.
§	Transition. In this phase, the completed system is transitioned from the de-

velopment environment to the end-user environment.

For RUP, architecture is a fundamental aspect of system creation, and ac-
tivities are associated with it across the different phases and, in particular, in the
inception and elaboration phases. In the inception phase, RUP defines an activity
called “perform architectural synthesis”, whose goal is to construct and assess an
architectural proof-of-concept to demonstrate the feasibility of the system. This
activity includes tasks such as defining a system context, performing architectural
analysis (which actually refers to defining a candidate architecture), constructing
an architectural proof-of-concept (a prototype), and evaluating the viability of the
proof-of-concept.

The elaboration phase includes two activities associated with software
architecture:

166 Chapter 7—Other Design Methods

§	Define a candidate architecture. In this activity, an initial sketch of the soft-
ware architecture is created. This includes defining architecturally signifi-
cant elements, identifying a set of analysis mechanisms, defining the initial
layering and organization of the system, and defining use-case realizations
for the current iteration. The key tasks are performing architectural analysis
and use case analysis; other tasks include operation analysis and identifying
security patterns.

§	Refine the architecture. This activity is focused on completing the architec-
ture for an iteration. It involves making a transition from analysis activities
to design activities by identifying design elements from analysis elements
and design mechanisms from analysis mechanisms. In addition, the runtime
and deployment architecture is described, along with an implementation
model to facilitate the transition between design and implementation. To
achieve this, the RUP suggests performing tasks such as identifying design
mechanisms, identifying design elements, performing operation analysis,
incorporating existing design elements, structuring the implementation
model and describing the runtime architecture, describing distribution, and
reviewing the architecture.

RUP provides an extensive, detailed process for architectural development.
It also makes clear distinctions between analysis, design, and implementation as-
pects. Initially, the architecture is designed in a conceptual fashion in the analysis
tasks, and then it is made concrete in the design and implementation tasks. For
example, initially an analysis mechanism such as persistence can be identified.
This is refined into a design mechanism such as a DBMS, which is further refined
into an implementation mechanism such as a specific Oracle or MySQL database.

The process in RUP is iterative by nature, as several iterations of the ar-
chitectural activities defined in the inception and elaboration phases can be per-
formed. A nice aspect of the process defined by RUP is that it provides detailed
guidance with respect to architectural concerns such as defining the system con-
text and establishing an initial structure for the system both in a logical and a
physical way. The architecture process in RUP also has a strong focus on use
cases. Even though quality attributes are mentioned (as “supplementary require-
ments”), they do not drive the architecture design process as much as the use
cases. Also, this process explicitly considers the creation of an executable archi-
tectural prototype.

Even though the architecture process in RUP is comprehensive, it does not
give as much detail as ADD in terms of the concrete steps to perform the design.
In this sense, ADD and RUP can be seen as being complementary methods, and
ADD can be integrated into RUP (as can other more detailed architecture-based
methods such as the QAW, ATAM, and CBAM).

7.4 The Process of Software Architecting 167

7.4 The Process of Software Architecting

In the book The Process of Software Architecting, Peter Eeles and Peter Cripps,
who are architects at IBM, describe how they approach architecture. Their pro-
cess covers the entire architecture life cycle and is independent of any software
development methodology, but the book makes several references to its use with
RUP.

The process described by Eeles and Cripps includes three major activities:
“define requirements”, “create logical architecture”, and “create physical archi-
tecture”. The last two are the activities where architectural design is performed.
According to the authors, the logical architecture is “a stepping stone in getting
from the requirements to the solution—a first step that considers the architecture
in a largely technology-independent manner. A physical architecture, on the other
hand, is more specific—and takes technology into account”. The creation of the
logical architecture and the physical architecture comprises the same tasks (see
Figure 7.4), but in the creation of the physical architecture the focus, not surpris-
ingly, is on its physical aspects.

FIGURE 7.4 Tasks in the “create logical architecture” and “create physical
architecture” activities

168 Chapter 7—Other Design Methods

This process acknowledges the existence of different types of architects:
lead, application, infrastructure, and data architects. Also, it makes a distinction
between “outlining” tasks, which are associated with the most important archi-
tectural elements and are the responsibility of the lead architect, and “detailing”
tasks, which are focused on less significant elements and are the responsibility of
the other architects, depending on the task. For example, whereas outlining tasks
deal with subsystems and components, detailing tasks deal with interfaces and
operation signatures.

The method described by Eeles and Cripps also emphasizes two different
models: (1) the functional model, which is composed of components with re-
sponsibilities and relationships and their collaborations to deliver the required
functionality, and (2) the deployment model, which shows the configuration of
nodes, communication links between them, and the components that are de-
ployed on the nodes. Both functional and quality attribute requirements influence
the functional and deployment models. The authors mention that they adopt the
“systems engineering philosophy” of treating software and hardware as peers that
collaborate to achieve system qualities.

The following list summarizes the purposes of the tasks in the create logical
and physical architecture activities that are related to design. The role that has
primary responsibility for the task appears in parentheses, while other types of
architects may take a secondary role:

§	Survey architecture assets (lead architect). Identify reusable architecture
assets that can be applied to the system under development.

§	Define architecture overview (lead architect). Identify and describe the
major elements of the system under development from a functional and de-
ployment perspective.

§	Document architecture decisions (lead architect). Capture key decisions
made in shaping the architecture and the rationale behind them. This step
includes assessing options and selecting a preferred option.

§	Outline functional elements (application architect). Identify the major function-
al elements (subsystems and components) of the system under development.

§	Outline deployment elements (infrastructure architect). Identify the lo-
cations to which the system under development will be deployed and the
nodes within each location.

§	Verify architecture (lead architect). Verify that the architecture work prod-
ucts are consistent and ensure that any concerns that cut across the architec-
ture work products have been addressed consistently.

§	Build architecture proof-of-concept (lead architect). Synthesize at least one
solution (which can be conceptual) that satisfies the architecturally signifi-
cant requirements to determine whether such a solution, as envisaged by the
architects, exists.

§	Detail functional elements (application architect). Refine the functional
elements to the point that they can be handed off to detailed design. This

7.5 A Technique for Architecture and Design 169

includes defining component interfaces in a detailed way (e.g., operation
signatures, pre and post conditions) using sequence diagrams.

§	Detail deployment elements (infrastructure architect). Refine the deploy-
ment elements to the point they can be handed off to detailed design. This
includes assigning components to nodes and defining connections between
nodes and locations.

In a spirit that is similar to RUP, the Process of Software Architecting is a
framework, and it needs to be adjusted according to the type of project that is
being tackled. For instance, the amount of logical architecture that needs to be
established can vary; indeed, in some cases, no logical architecture may be cre-
ated if the system being designed is similar to existing ones. Also, the elaboration
phase emphasizes the logical architecture, whereas the construction phase em-
phasizes the physical architecture. Finally, the logical and physical architectures
need not be created sequentially and the process acknowledges that some tech-
nology choices may be made early.

The Process of Software Architecting is a comprehensive framework, and
this book provides a detailed example of how to execute the different tasks. The
tasks related to creating the logical/physical architecture are similar to the steps of
ADD combined with the roadmap discussed in Section 3.3. The Process of Soft-
ware Architecting, however, puts less emphasis on guiding iterations by specific
scenarios and provides less guidance on how to actually make design decisions.

7.5 A Technique for Architecture and Design

In the book Application Architecture Guide, second edition, Microsoft proposes a
technique for sketching an architecture. This technique consists of five steps that
are performed iteratively (Figure 7.5):

1. Identify architecture objectives. These goals and constraints shape the design
process, provide scope, and help determine when you are finished. Examples
include building a prototype, exploring technologies, and developing an ar-
chitecture. Also, at this point, the consumers for the architecture are identified
and the scope, time, and resources that will be dedicated to design activities
are established.

2. Identify key scenarios. Key scenarios represent issues, architecturally signif-
icant use cases, intersections between quality attributes and functionality, or
tradeoffs between quality attributes.

3. Create application overview. This step refers to creating an overview of what
the application will look like when it is complete. At the end of this step,
the process suggests “whiteboarding” the architecture—that is, creating an

170 Chapter 7—Other Design Methods

informal representation of the architecture. This step is divided into the fol-
lowing set of activities:
a. Determining application type: involves the selection of a reference

architecture.
b. Identifying deployment constraints: involves the selection of a

deployment topology.
c. Identifying important architecture design styles.
d. Determining relevant technologies: based on the application type and

constraints.

4. Identify key issues. Key issues are grouped into quality attributes and cross-
cutting concerns. Crosscutting concerns are features of the design that may
apply across all layers, components, and tiers, such as the following:
a. Authentication and authorization
b. Caching
c. Communication
d. Configuration management (information that must be configurable)
e. Exception management
f. Logging and instrumentation
g. Validation (of input data)

5. Define candidate solutions. Candidate architectures include an application
type, deployment architecture, architectural style, technology choices, quality
attributes, and crosscutting concerns. If a candidate architecture satisfies the
requirements and issues, then it becomes a baseline architecture and is refined
in further iterations.

FIGURE 7.5 Iterative steps of the technique for architecture and design

7.6 Viewpoints and Perspectives Method 171

Besides these five main steps, the technique discussed by the Microsoft
team suggests performing reviews of the architecture and representing and com-
municating the design. This technique is independent of a particular development
process and there is only a suggestion that, when using an Agile process, itera-
tions should combine architecture and development activities.

The technique presented by the Microsoft team is not very detailed, but the
discussion of this technique is only a small part of Microsoft’s book. The rest of
the book provides pragmatic and detailed information on the considerations that
must be taken into account for different types of applications, including web,
rich client, rich internet, and mobile applications, among others. For example, the
book devotes a chapter to the specific aspects of the design of the business layer.
Although much of the information is technology agnostic, Microsoft has also
done an excellent job of showing how its own technologies can be used in this
process. In addition, the book provides an extensive discussion of the concerns
that must be addressed for a series of reference architectures.

This technique is similar in purpose to ADD but less detailed in terms of
how to perform the actual design steps. ADD can be used as an alternative, but
it is a good idea to keep Microsoft’s book on hand to identify the many specific
architectural concerns that you will need to address during design and to leverage
all of the practical advice that is provided, particularly if you are designing one
of the types of applications discussed in the book. The ideas presented in Micro-
soft’s book inspired us when creating several aspects of this book.

7.6 Viewpoints and Perspectives Method

The viewpoints and perspectives method is described in the book Software Sys-
tems Architecture: Working with Stakeholders Using Viewpoints and Perspec-
tives, by Nick Rozanski and Eoin Woods. Two critical concepts, highlighted in
the book title, are viewpoints and perspectives, which the authors define in the
following way:

§	A viewpoint is a collection of patterns, templates, and conventions for con-
structing one type of view. It defines the stakeholders whose concerns are
reflected in the viewpoint and the guidelines, principles, and template mod-
els for constructing its views. The viewpoints defined include functional,
information, concurrency, development, deployment, and operational.

§	An architectural perspective is a collection of activities, tactics, and guide-
lines that are used to ensure a system exhibits a set of quality properties that
must be considered across the system’s architectural views. The primary
perspectives that are covered in Rozanski and Woods’s book are security,
performance and scalability, availability and resilience, and evolution.

172 Chapter 7—Other Design Methods

Perspectives are orthogonal to viewpoints because a particular perspective
can be applied across different viewpoints. For example, the security perspective
involves aspects from the functional, information and operational viewpoints.

The architecture is established in the architecture definition process illus-
trated in Figure 7.6. The steps in this process are outlined here:

1. Consolidate the inputs. Understand, validate, and refine the initial inputs.
2. Identify the scenarios. Identify a set of scenarios that illustrate the system’s

most important requirements.
3. Identify relevant architectural styles. Identify one or more proven architec-

tural styles that could be used as a basis for the overall organization of the
system.

4. Produce a candidate architecture. Create a first-cut architecture for the sys-
tem that reflects its primary concerns (requirements and goals) and that can
act as a basis for further architectural evaluation and refinement.

5. Explore architectural options. Explore various architectural possibilities for
the system and make the key decisions to choose among them.

6. Evaluate the architecture with stakeholders. Work through an evaluation of
the architecture with your key stakeholders, capture any problems or deficien-
cies, and gain the stakeholders’ acceptance of the architecture.

7. Two steps are performed in parallel at this point:
A. Rework the architecture. Address any concerns that have emerged during

the evaluation task.
B. Revisit the requirements. Consider any changes to the system’s original re-

quirements that may have to be made in light of architectural evaluations.

This method suggests the creation of a candidate architecture that is ob-
tained from—or at least based on—architectural styles. This candidate architec-
ture is further refined through a series of iterations until it is deemed acceptable
after an evaluation is performed.

In comparison with ADD, this method does not provide step-by-step guid-
ance on how to perform steps 4 and 5. One benefit of this approach, however, is
that the six viewpoints it defines can be related to general architectural concerns
in our approach. Furthermore, tactics and perspectives are related, and the idea
of applying perspectives across the different viewpoints is valuable and may be
a complement to a scenario-based approach. For example, if you have only one
security scenario in your drivers list, you may consider only elements that sup-
port this particular scenario. Thinking of a security perspective, however, may be
useful in making design decisions concerning security, which may not be directly
related to the particular scenario but flow across different areas of concern such
as deployment or operation.

7.7 Summary 173

FIGURE 7.6 Viewpoints and perspectives method steps

7.7 Summary

In this chapter, we reviewed a number of design methods and compared them to
ADD. As you can see, there are several methods to choose from. So why should
you use ADD instead of, or in addition to, these alternatives? Quite simply, ADD
is more concrete and specific in its steps and guidance for accomplishing the archi-
tecture design activity. Having read this far, you should now be convinced of that.

ADD is focused specifically on design and, as such, provides more detailed
guidance to an (aspiring) architect. This is not a weakness of ADD. Many other
methods can guide you in the other phases of the architecture life cycle, such
as QAW for eliciting and prioritizing architectural requirements, ATAM for

174 Chapter 7—Other Design Methods

analyzing an architecture, the Views and Beyond technique for documenting an
architecture. In several parts of this book we have discussed how such methods
can be seamlessly integrated into ADD.

In the interest of full disclosure, ADD 3.0 borrows from, benefits from, and
owes a debt of gratitude to all of the approaches described in this chapter.

7.8 Further Reading

The architecture design methods discussed in this chapter can be found in the
following sources:

§	P. Eeles, P. Cripps. The Process of Software Architecting. Addison-Wesley
Professional, 2009.

§	C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran, P. America. “A
General Model of Software Architecture Design Derived from Five Indus-
trial Approaches”, Journal of Systems and Software, 80:106–126, 2007.

§	A. Lattanze. Architecting Software Intensive Systems: A Practitioner’s
Guide. CRC Press, 2009.

§	P. Kruchten. The Rational Unified Process: An Introduction, 3rd ed.,
Addison-Wesley, 2003.

§	Microsoft, Application Architecture Guide, 2nd ed. Microsoft Press, 2009.
§	N. Rozanski, E. Woods. Software Systems Architecture. Addison Wesley,

2005.

175

8
Analysis in the Design
Process

While this is a book focused on architectural design, we have always believed that
design and analysis are two sides of the same coin. Design is the process of mak-
ing decisions; analysis is the process of understanding those decisions, so that the
design may be evaluated. To reflect this intimate relationship, we now turn our at-
tention to why, when, and how to analyze architectural decisions during the design
process. We look at various techniques for analysis, discuss when they can be done,
and explore their costs and benefits.

8.1 Analysis and Design

Analysis is the process of breaking a complex entity into its constituent parts as
a means of understanding it. The opposite of analysis is synthesis. Analysis and
design are therefore intertwined activities. During the design process, the activity
of analysis can refer to several aspects:

§	Studying the inputs to the design process to understand the problem whose
solution you are about to design. This includes giving priority to the drivers
as discussed in Section 3.2.2. This type of analysis is performed in steps 1
and 2 of ADD.

§	Studying the alternative design concepts that you identified to solve a de-
sign problem so as to select the most appropriate one. In this situation,

176 Chapter 8—Analysis in the Design Process

analysis forces you to provide concrete evidence for your choices. This ac-
tivity is performed in step 4 of ADD and was discussed in Section 3.2.4.

§	Ensuring the decisions made during the design process (or an iteration) are
appropriate. This is the type of analysis that you perform in step 7 of ADD.

The decisions that you make when designing the architecture are not only
critical to achieve the quality attribute responses, but frequently the cost asso-
ciated with correcting them at a later time can be significant, as these decisions
may affect many parts of the system. For these reasons, it is necessary to perform
analysis during the design process, so that problems can be identified, possibly
quantified, and corrected quickly. Remember, being too confident and following
your gut instincts may not be the best idea (see the sidebar “‘I believe’ Isn’t Good
Enough”). Fortunately, if you have followed the recommendations that we have
given up to this point, you should be able to conduct analysis either by yourself
or with the help of peers by using the preliminary sketches and views that have
been produced as you perform the design process.

“I Believe” Isn’t Good Enough

Even if you are following a systematic approach to designing your
architecture and using design concepts from well-established sources,
and even if you have nice-looking diagrams that represent your structures,
nothing really guarantees that the decisions you are making will actually
satisfy a particular quality attribute scenario. Certain quality attributes are
critical to the success of your system; particularly for these decisions, the
rationale of “I believe” is not good enough. Studies of practicing software
architects have shown that most follow an “adequacy” approach to making
design decisions—that is, they adopt the first decision that appears to
meet their needs. All too often, they have no rationale to substantiate
those decisions other than their gut instincts, their beliefs, based on their
(inevitably limited) experience. Thus important decisions are frequently
made after insufficient reasoning, which can add risk to a system.

For drivers that are critical to your system, you owe it to yourself and to
your organization to perform a more detailed analysis rather than just trust-
ing your gut instinct, relying on analogy and history, or performing a couple
of superficial tests to ensure that your drivers are satisfied. The following
options will deepen your analysis and hence support your rationale for the
decisions made:

§	Analytic models. These well-established mathematical models allow you
to study quality attributes such as performance or availability. They include
Markov and statistical models for availability, and queuing and real-time
scheduling theory for performance. Analytic models—particularly those that
address performance—are highly mature but may require considerable ed-
ucation and training to be used adequately.

8.1 Analysis and Design 177

§	Checklists. Checklists are useful tools that allow you to ensure in a systematic
way that certain decisions that need to be taken into account are not forgotten.
Checklists are available for particular quality attributes in the public domain—
for example, the OWASP checklist guides you in performing black box security
testing of web applications. Also, your organization may develop proprietary
checklists that are specific to the application domains that you are develop-
ing. Tactics-based questionnaires, which we will discuss shortly, are a type of
checklist for the most important quality attributes, based on the use of tactics.

§	Thought experiments, reflective questions, and back-of-the-envelope analy-
ses. Thought experiments are informal analyses performed by a small group
of designers in which important scenarios are studied to identify potential
problems. For example, you might use a sequence diagram produced inside
step 5 of ADD and perform a walk-through of the interaction of the objects
that support the scenario modeled in the diagram with a colleague. Reflective
questions (discussed in depth in Section 8.5) are questions that challenge
the assumptions included in the decision-making process. Back-of-the-enve-
lope analyses are rough calculations that are less precise than analytic mod-
els, but can be performed quickly. These calculations, which are frequently
based on analogies to other similar systems or on prior experience, are
useful to obtain ballpark estimates for desired quality attribute responses. For
example, by summing the latencies of a number of processes in a pipeline,
you can derive a crude estimate of the end-to-end latency.

§	Prototypes, simulations, and experiments. Purely conceptual techniques
for analyzing a design are sometimes inadequate to accurately understand
whether certain design decisions are appropriate, or whether you should
favor one particular technology over another. In such situations, the creation
of prototypes, simulations, or experiments can be an invaluable option to
obtain a better understanding. For example, in the back-of-the-envelope es-
timate of latency described previously, you may not have taken into account
that several of the processes are sharing (and hence competing for) the
same resources; thus we cannot simply sum their individual latencies and
expect to get accurate results. Prototypes and simulations provide a deeper
understanding of system dynamics, but may require a significant effort that
needs to be considered in the project plan.

As always, none of these techniques is inherently better than the others.
Thought experiments and back-of-the-envelope calculations are inexpen-
sive and can be done early in the design process, but their validity may be
questionable. Prototypes, simulations, and experiments typically produce
much higher-fidelity results, but at a far greater cost. The choice of which
technique to employ depends on the context, the risk involved, and the
priorities of your quality attributes.

Even so, applying any of these techniques will be helpful in going from
“I believe” (that my design is appropriate) to an approach that is backed by
documented evidence and argumentation.

178 Chapter 8—Analysis in the Design Process

8.2 Why Analyze?

Analysis and design are two sides of the same coin. Design is (the process of)
making decisions. Analysis is (the process of) understanding the consequences—
in terms of cost, schedule, and quality—of those decisions. No sensible archi-
tect would make any decision, or at least any nontrivial decision, without first
attempting to understand the implications of that decision: its near-term effects
and possibly its long-term consequences. Architects, of course, make thousands
of decisions in the course of designing a large project, and clearly not all of them
matter. Furthermore, not all of the decisions that matter are carriers of quality at-
tributes. Some may deal with which vendor to select, or which coding convention
to follow, or which programmer to hire or fire, or which IDE to use—important
decisions, to be sure, but not ones that are directly linked to a quality attribute
outcome.

Of course, some of these decisions will affect the achievement of quality
attributes. When the architect breaks down the development into a system of lay-
ers or modules, or both, this decision will affect how a change ripples through
the code base, who needs to talk to who when adding a feature or fixing a bug,
how easy or difficult it is to distribute or outsource some of the development,
how easy it is to port the software to a different platform, and so forth. When the
architect chooses a distributed resource management system, how it determines
which services are masters and which are slaves, how it detects failures, and how
it detects resource starvation will all affect the availability of the system.

So when and why do we analyze during the design process? First, we ana-
lyze because we can. An architecture specification, whether it is just a whiteboard
sketch or something that has been more formally documented and circulated, is
the first artifact supporting an analysis that sheds insight into quality attributes.
Yes, we can analyze requirements, but we mainly analyze them for consistency
and completeness. Until we translate those requirements into structures resulting
from design decisions, we will have little to say about the actual consequences of
those decisions, their costs and benefits, and the tradeoffs among them.

Second, and more to the point, we analyze because it is a prudent way of
informing decisions and managing risk. No design is completely without risk,
but we want to ensure that the risks that we take on are commensurate with our
stakeholders’ expectations and tolerances. For a banking application or a military
application, our stakeholders will demand low levels of risk, and they should be
willing to pay accordingly for higher levels of assurance. For a startup company,
where time to market is of the essence and budgets are tight, we might be pre-
pared to accept far higher levels of risk. As with every important decision in soft-
ware engineering, the answer is clear: It depends.

8.3 Analysis Techniques 179

Finally, analysis is the key to evaluation. Evaluation is the process of deter-
mining the value of something. Companies are evaluated to determine their share
price. A company’s employees are evaluated annually to determine their raises. In
each case, the evaluation is built upon an analysis of the properties of the com-
pany or employee.

8.3 Analysis Techniques

Different projects will demand different responses to risk. Fortunately we, as
architects, have a wide variety of tools at our disposal to analyze architectures.
With a bit of planning, we can match our risk tolerance with a set of analysis
techniques that both meet our budget and schedule constraints and provide rea-
sonable levels of assurance. The point here is that analysis does not need to be
costly or complex. Just asking thoughtful questions is a form of analysis, and
that exercise is pretty inexpensive. Building a simple prototype is more expen-
sive, but in the context of a large project this analysis technique may be well
worth the additional expense owing to how it explores and mitigates risks, as
we saw in Chapter 5.

Examples of (relatively economical, relatively low ceremony) analysis tech-
niques already in widespread use include design reviews and scenario-based
analyses, code reviews, pair programming, and Scrum retrospective meetings.
Other commonly used, albeit somewhat more costly, analysis techniques include
prototypes (throw-away or evolutionary) and simulations.

At the high end of expense and complexity, we can build formal models of
our systems and analyze them for properties such as latency or security or safety.
When a candidate implementation or a fielded system finally exists, we can per-
form experiments, including instrumenting running systems and collecting data,
ideally from executions of the system that reflect realistic usages.

As indicated in Table 8.1, the cost of these techniques typically increases
as you proceed through the software development life cycle. A prototype or ex-
periment is more expensive than a checklist, which is more expensive than an
experience-based analogy. This expected cost correlates fairly strongly with the
confidence that you can have in the analysis results. Unfortunately, there is no
free lunch!

180 Chapter 8—Analysis in the Design Process

TABLE 8.1 Analysis at Different Stages of the Software Life Cycle

Life-Cycle Stage Form of Analysis Cost Confidence

Requirements Experience-based analogy Low Low–high

Requirements Back-of-the-envelope
analysis

Low Low–medium

Architecture Thought experiment/
reflective questions

Low Low–medium

Architecture Checklist-based analysis Low Medium

Architecture Tactics-based analysis Low Medium

Architecture Scenario-based analysis Low–medium Medium

Architecture Analytic model Low–medium Medium

Architecture Simulation Medium Medium

Architecture Prototype Medium Medium–high

Implementation Experiment Medium–high Medium–high

Fielded system Instrumentation Medium–high High

8.4 Tactics-Based Analysis

Architectural tactics (discussed in Section 2.5.4) have been presented thus far as
design primitives. However, because these taxonomies are intended to cover the
entire space of architectural design possibilities for managing a quality attribute,
we can use them in an analysis setting as well. Specifically, we can use them as
guides for interviews or questionnaires. These interviews help you, as an analyst,
to gain rapid insight into the architectural approaches taken or not taken.

Consider, for example, the tactics for availability, shown in Figure 8.1.

8.4 Tactics-Based Analysis 181

Detect Faults Prevent Faults

Ping / Echo Removal from
Service

Monitor
Transactions

Predictive
Model

Recover from Faults

Heartbeat

Preparation
and Repair

Reintroduction

Active
Redundancy

Passive
Redundancy

Spare
Escalating
Restart

Exception
Handling

Shadow

Non-Stop
Forwarding

State
Resynchronization

Exception
Prevention

Fault

Fault
Masked
or
Repair
Made

Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Increase
Competence Set

Availability Tactics

FIGURE 8.1 Availability tactics

Each of these tactics is a design option for the architect who wants to design
a highly available system. Used in hindsight, however, they represent a taxonomy
of the entire design space for availability and hence can be a way of gaining in-
sight into the decisions made, and not made, by the architect. To do this, we sim-
ply turn each tactic into an interview question. For example, consider the (partial)
set of tactics-inspired availability questions in Table 8.2.

182
C

hapter 8—
A

nalysis in the D
esign P

rocess

TABLE 8.2 Example Tactics-Based Availability Questions

Tactics
Group Tactics Question

Supported?
(Y/N) Risk Design Decisions and Location

Rationale and
Assumptions

Detect
faults

Does the system use ping/
echo to detect a failure of a
component or connection, or
network congestion?

Y L The server periodically pings the time
servers to see if they are “alive”.

It is not possible to modify
the time servers take to
implement a heartbeat
approach.

Does the system use a com-
ponent to monitor the state
of health of other parts of the
system? A system monitor can
detect failure or congestion in
the network or other shared
resources, such as from a
denial-of-service attack.

N N/A This was not implemented in the system.
We will rely on other techniques to mon-
itor the system. For example, memory
consumption or processor load informa-
tion can be obtained from the OS.

We assume that informa-
tion beyond what the OS
provides is not critical.

Does the system use a heart-
beat—a periodic message
exchange between a system
monitor and a process—to
detect a failure of a compo-
nent or connection, or network
congestion?

Y L The server periodically sends a
heartbeat to the clients.

The server does not have
to process incoming ping
requests from the clients.

Does the system use a time
stamp to detect incorrect
sequences of events in
distributed systems?

Y M Events sent from the server to the clients
have a time stamp, as they have to be
processed in the order that they were
received.

We want to ensure that
clients display an accurate
representation of the state
of the network, which
involves receiving all of
the notifications from the
server and processing
them in the correct order.

8.4
Tactics-B

ased A
nalysis

183
Does the system use vot-
ing to check that replicated
components are producing the
same results? The replicated
components may be identical
replicas, functionally redun-
dant, or analytically redundant.

N N/A This is not required by the system.

N/A

Does the system use excep-
tion detection to detect a
system condition that alters the
normal flow of execution—for
example, system exceptions,
parameter fences, parameter
typing, timeouts?

Y L Standard Java exception management
is used and all exceptions are sent to a
log.
Timeouts are implemented on the client
side, when requests are sent to the
server.

The assumption is that
exceptions in Java and
using timeouts are all that
is needed.

Can the system do a self-
test to test itself for correct
operation?

N N/A This was not considered in our original
design.

The assumption is that
monitoring and exception
management will provide
enough information to test
for correct operation.

Recov-
er from
faults
(prepa-
ration
and
repair)

Does the system employ ac-
tive redundancy (hot spare)?
In active redundancy, all nodes
in a protection group (a group
of nodes where one or more
nodes are “active”, with the re-
mainder serving as redundant
spares) receive and process
identical inputs in parallel,
allowing redundant spares to
maintain synchronous state
with the active node(s).

Y H Active redundancy is used in the
application server and the message
queue.

Active redundancy was
favored over a passive
approach to reduce
the possibility of losing
information that needs
to be collected from the
time servers because of
server failure. This actually
exceeds the requirement
established in QA-3.
Also, we assume there
will be no common-mode
failure.

(continues)

184
C

hapter 8—
A

nalysis in the D
esign P

rocess

Tactics
Group Tactics Question

Supported?
(Y/N) Risk Design Decisions and Location

Rationale and
Assumptions

Does the system employ
passive redundancy (warm
spare)? In passive redundancy,
only the active members of the
protection group process input
traffic; one of their duties is to
provide the redundant spare(s)
with periodic state updates.

N N/A Active redundancy was favored. N/A

Does the system employ
rollback, so that it can revert to
a previously saved good state
(the “rollback line”) in the event
of a fault?

Y M Transaction management is supported
through the Spring framework.

Spring provides adequate
support for the type of
transactions required by
this system.

8.5 Reflective Questions 185

When the questions in Table 8.2 are used in an interview setting, we can record
whether each tactic is supported by the system’s architecture, according to the opin-
ions of the architect. For example, in the table, the questions have been answered with
respect to design decisions made for the FCAPS system presented in Chapter 4. Note
that the answers shown in the table are rather succinct because this is an example;
more detailed explanations are encouraged in real-world applications. If we are ana-
lyzing an existing system we can additionally investigate the following issues:

§	Whether there are any obvious risks in the use (or nonuse) of this tactic. If
the tactic has been used, we can record here how it is realized in the system
(e.g., via custom code, frameworks, or other externally produced compo-
nents). For example, we might note that the active redundancy tactic has
been employed by replicating the application server and other critical com-
ponents such as the database (as in the case study presented in Chapter 4).

§	The specific design decisions made to realize the tactic and where in the code
base the implementation (realization) may be found. This information is useful
for auditing and architecture reconstruction purposes. Continuing the example
from the previous bullet, we might probe how many replicas of the application
server have been created and where these replicas are located (e.g., on the same
rack in a data center, on different racks, in different data centers).

§	Any rationale or assumptions made in the realization of this tactic. For
example, we might assume that there will be no common-mode failure, so
it is acceptable that the replicas are identical virtual machines, running on
identical hardware.

While this interview-based approach might sound simplistic, it can actually
be quite powerful and insightful. In your daily activities as an architect, you may
not always take the time to step back and consider the bigger picture. A set of in-
terview questions such as those shown in Table 8.2 force you to do just that. This
approach is also quite efficient: A typical interview for a single quality attribute
takes between 30 and 90 minutes.

A set of tactics-based questionnaires, covering the seven most important sys-
tem quality attributes—availability, interoperability, modifiability, performance,
security, testability, and usability—can be found in Appendix B. In addition, we
have included an eighth questionnaire, on DevOps, as an example of how you can
combine the other (more fundamental) questionnaires to create a new question-
naire to address a new set of quality concerns.

8.5 Reflective Questions

Similar to the tactics-based interviews, a number of researchers have advocated
the practice of asking (and answering) reflective questions to augment the design

186 Chapter 8—Analysis in the Design Process

process. The idea behind this process is that we actually think differently when
we are problem-solving and when we are reflecting. For this reason, researchers
have advocated a separate “reflection” activity in design that both challenges the
decisions made and challenges us to examine our biases.

Architects, like all humans, are subject to bias. For example, we are subject
to confirmation bias—the tendency to interpret new information in a way that
confirms our preconceptions—and we are subject to anchoring bias—the ten-
dency to rely too heavily on the first piece of information that we receive when
investigating a problem, using this information to filter and judge any subsequent
information. Reflective questions help to uncover such biases in a systematic
way, which can lead us to revise our assumptions and hence our designs.

In their research on reflective questions, Razavian et al. have proposed that
one can and should reflect on context and requirements (Are the contexts and re-
quirements identified relevant, complete, and accurate?), design problems (Have
they been properly and fully articulated?), design solutions (Are they appropriate
given the requirements?), and design decisions (Are they principled and justi-
fied?). Examples of reflective questions that they propose include the following:

§	Which assumptions are made? Do the assumptions affect the design prob-
lem? Do the assumptions affect the solution option? Is an assumption ac-
ceptable in a decision?

§	What are the risks that certain events would happen? How do the risks
cause design problems? How do the risks affect the viability of a solution?
Is the risk of a decision acceptable? What can be done to mitigate the risks?

§	What are the constraints imposed by the contexts? How do the constraints
cause design problems? How do the constraints limit the solution options?
Can any constraints be relaxed when making a decision?

§	What are the contexts and the requirements of this system? What does this
context mean? What are the design problems? Which are the important
problems that need to be solved? What does this problem mean? Which po-
tential solutions exist for this problem? Are there other problems to follow
up in this decision?

§	Which contexts can be compromised? Can a problem be framed differently?
What are the solution options? Can a solution option be compromised? Are
the pros and cons of each solution treated fairly? What is an optimal solution
after tradeoff?

Of course, you might not employ all of these questions, and you would not
employ this technique for every decision that you make. Used judiciously, how-
ever, these kinds of questions can help you to reflect mindfully on the decisions
that you are making.

8.6 Scenario-Based Design Reviews 187

8.6 Scenario-Based Design Reviews

Comprehensive scenario-based design reviews, such as the ATAM, have typically
been conducted outside the design process. The ATAM is an example of a com-
prehensive architecture evaluation (see the sidebar “The ATAM”).

An ATAM review, as it was initially conceived, was a “milestone” review.
When an architect or other key stakeholder believed that there was enough of
an architecture or architecture description to analyze, an ATAM meeting could
be convened. This might occur when an architectural design had been done but
before much, if any, implementation had been completed. More commonly, it
occurred when an existing system was in place and some stakeholders wanted
an objective evaluation of the risks of the architecture before committing to it,
evolving it, acquiring it, and so forth.

The ATAM

The ATAM—Architecture Tradeoff Analysis Method (ATAM) is an estab-
lished method for analyzing architectures, driven by scenarios. Its purpose
is to assess the consequences of architectural decisions in light of quality
attribute requirements and business goals.

The ATAM brings together three groups in an evaluation:

§	A trained evaluation team
§	An architecture’s “decision makers”
§	Representatives of the architecture’s stakeholders

The ATAM helps stakeholders ask the right questions to discover poten-
tially problematic architectural decisions—that is, risks. These discovered
risks can then be made the focus of mitigation activities such as further de-
sign, further analysis, prototyping, and implementation. In addition, design
tradeoffs are often identified—hence the name of the method. The purpose
of the ATAM is not to provide precise analyses: This method typically is
applied in two 2-day meetings and this (relatively) short time frame does
not permit a deep dive into any specific concern. Those kinds of analyses
are, however, appropriate as part of the risk mitigation activities that could
follow and be guided by an ATAM.

The ATAM can be used throughout the software development life cycle.
For example, it can be used in the following circumstances:

§	After an architecture has been specified but there is little or no code
§	To evaluate potential architectural alternatives
§	To evaluate the architecture of an existing system

The outputs of the ATAM evaluation are as follows:

188 Chapter 8—Analysis in the Design Process

§	A concise presentation of the architecture. The architecture is presented in
one hour.

§	A concise articulation of the business goals for the system under scrutiny.
Frequently, the business goals presented in the ATAM are being seen by
some of the assembled participants for the first time and these are cap-
tured in the outputs.

§	A set of prioritized quality attribute requirements, expressed as scenarios.
§	A mapping of architectural decisions to quality requirements. For each

quality attribute scenario examined, the architectural decisions that help to
achieve it are identified and recorded.

§	A set of sensitivity and tradeoff points. These architectural decisions have a
marked effect on one or more quality attributes.

§	A set of risks and non-risks. A risk is defined as an architectural decision
that may lead to undesirable consequences in light of quality attribute
requirements. A non-risk is an architectural decision that, upon analysis,
is deemed safe. The identified risks form the basis of an architectural risk
mitigation plan.

§	A set of risk themes. The evaluation team examines the full set of discov-
ered risks to identify overarching themes that reveal systemic weaknesses
in the architecture (or perhaps even in the architecture process and team).
If left untreated, these weaknesses will threaten the project’s ability to meet
the business goals.

There are also intangible results of an ATAM-based evaluation: a sense
of community developed among the stakeholders, open communication
channels between the architect and the stakeholders, a better overall
understanding of the architecture and its strengths and weaknesses. While
these results are difficult to measure, they are no less important than the
others and often are the longest-lasting artifacts.

An ATAM evaluation takes place in four phases. The first phase (phase 0)
and the final phase (phase 3) are managerial: setting up the evaluation at
the start and reporting results and follow-on activities at the end. The middle
phases (phases 1 and 2) are when the actual analysis takes place. The steps
enacted in phases 1 and 2 are as follows:

1. Present the ATAM

2. Present the business drivers

3. Present the architecture

4. Identify the architectural approaches

5. Generate a quality attribute utility tree

6. Analyze the architectural approaches

7. Brainstorm and prioritize scenarios

8. Analyze the architectural approaches

9. Present the results

8.6 Scenario-Based Design Reviews 189

In phase 1, we enact steps 1–6 with a small, internal group of stake-
holders—typically just the architect, project manager and perhaps one or
two senior developers. In phase 2, we invite a larger group of stakeholders
to attend—all the people who attended phase 1 plus external stakehold-
ers, such as customer representatives, end-user representatives, quality
assurance, operations, and so forth. In phase 2, we review steps 1–6 and
enact steps 7–9.

The actual analysis takes place in step 6, where we analyze archi-
tectural approaches by asking the architect to map the highest-priority
scenarios, one at a time, onto the architectural approaches that have been
described. During this step, the analysts ask probing questions, moti-
vated by a knowledge of quality attributes, and risks are discovered and
documented.

The idea of having a separate, distinct evaluation activity once the archi-
tecture is “done” fits poorly with the way that most organizations operate today.
Today, most software organizations are practicing some form of Agile or iterative
development. There is no distinct monolithic “architecture phase” in Agile pro-
cesses. Rather, architecture and development are co-created in a series of sprints.
For example, as discussed in Chapter 2, many Agile thought leaders are promot-
ing practices such as “disciplined agility at scale”, the “walking skeleton”, and
the “scaled Agile framework”, all of which embrace the idea that architectures
continuously evolve in relatively small increments, addressing the most critical
risks. This may be aided by developing a small proof-of-concept or minimum
viable product (MVP), or doing strategic prototyping.

To better align with this view of software development, a lightweight
scenario-based peer review method, based on the ATAM, has been promoted. A
lightweight ATAM evaluation can be conducted in a half-day meeting. It can also
be carried out internally, using just project members. Of course, an external review
gives more objectivity and may produce better results, but this exercise may be
too costly or infeasible due to schedule or intellectual property (IP) constraints. A
lightweight ATAM therefore provides a reasonable middle ground between a costly
but more objective and comprehensive ATAM and doing no analysis whatsoever, or
only doing ad hoc analysis.

An example schedule for a lightweight ATAM evaluation conducted by proj-
ect members on their own project is given in Table 8.3.

190 Chapter 8—Analysis in the Design Process

TABLE 8.3 A Typical Agenda for a Lightweight ATAM Evaluation

Step
Time
Allotted Notes

1. Present
business
drivers

0.25 hour The participants are expected to understand the
system and its business goals and their priorities.
Fifteen minutes is allocated for a brief review to
ensure that these are fresh in everyone’s mind and
that there are no surprises.

2. Present
architecture

0.5 hour All participants are expected to be familiar with the
system, so a brief overview of the architecture is
presented and 1 or 2 scenarios are traced through
the documented architecture views.

3. Identify
architectural
approaches

0.25 hour The architecture approaches for specific quality
attribute concerns are identified by the architect.
This may be done as a portion of step 2.

4. Generate
quality
attribute
utility tree

0.5 hour Scenarios might already exist; if so, use them. A
utility tree might already exist; if so, the team reviews
it and updates it, if necessary.

5. Analyze
architectural
approaches

2.0 hours This step—mapping the highly ranked scenarios
onto the architecture—consumes the bulk of the
time and can be expanded or contracted as needed.

6. Present
results

0.5 hour At the end of the evaluation, the team reviews the
existing and newly discovered risks and tradeoffs
and discusses priorities.

TOTAL 4 hours

A half-day review such as this is similar, in terms of effort, to other quality
assurance efforts that are typically conducted in a development project, such as
code reviews, inspections, and walk-throughs. For this reason, it is easy to sched-
ule a lightweight ATAM evaluation in a sprint, particularly in those sprints where
architectural decisions are being made, challenged, or changed.

8.7 Architecture Description Languages

If the application that you are building has stringent quality requirements in the
areas of runtime performance (latency, throughput), reliability/availability, safety,
or security, then you might consider documenting your design decisions, in the
form of architectural structures, in an architecture description language (ADL).
ADLs lend themselves to formal, automated analysis, which is precisely why we
include them here. ADLs typically employ both a graphical and a (formally de-
fined) textual notation to describe an architecture—primarily the computational

8.8 Summary 191

(runtime) components and interactions among them—and its properties. The
Unified Modeling Language (UML) is the most widely used notation for doc-
umenting architectures in industrial practice, though even it is not universally
used. Few industrial projects endeavor to describe all, or even most, of their ar-
chitectures in any ADL.

Some ADLs, such as AADL, strive to be formal models that have precise
and decidable semantics. This regimentation means that they can be automati-
cally checked for properties of interest, typically performance, availability, and
safety, although in principle other quality attributes can be accommodated. While
there is an often a steep learning curve for becoming proficient with the language
and the surrounding tool suite, using a formalized ADL offers several benefits.
First, an ADL forces you to document your architectural decisions, and hence
to explicitly acknowledge when and where your architectural understanding is
incomplete or vague. This benefit accrues with any form of documentation—it
forces you to be explicit—but is especially true of ADLs. This leads to the second
benefit of ADLs: They are typically accompanied by a tool suite that can analyze
the architecture description for various properties at the click of a button.

So why are ADLs seldom used outside of academia? A number of pos-
sible reasons for this reluctance exist. First, it is not in our common practice.
ADLs—even the UML—are typically not taught in computer science or software
engineering curricula and are not well supported in most popular IDEs. Second,
ADLs are perceived as being challenging to use and not user-friendly, requiring
both a large up-front effort and a large continuing effort to maintain. This point
is, perhaps, the most significant one: Architects and programmers generally do
not want to maintain a second, parallel base of knowledge about their systems.
For some systems, this may be the right choice. For others—typically those with
stringent and uncompromising quality attribute requirements—having a separate
and separately analyzable representation of the design might be the most prudent
course of action. In civil engineering, by way of contrast, no project may be ap-
proved for construction without first being represented in a separate analyzable
document.

8.8 Summary

No one would consider fielding code that they had not tested—yet architects
and programmers regularly commit to (implement) architectural decisions that
have not been analyzed. Why the dichotomy? Surely, if testing code is important,
then “testing” the design decisions you have made is an order of magnitude more
important, as these decisions often have long-term, system-wide, and significant
impacts.

192 Chapter 8—Analysis in the Design Process

The most important message of this chapter is that design and analysis are
not really separate activities. Every important design decision that you make
should be analyzed. A variety of techniques can be applied to do this continu-
ously, in a relatively disruption-free manner, as part of the process of designing
and evolving a system.

The interesting questions are not whether to analyze, but rather how much
to analyze and when. Analysis is inherent in doing good design, and it should be
a continuous process.

8.9 Further Reading

The sets of architectural tactics used here have been documented in L. Bass,
P. Clements, and R. Kazman, Software Architecture in Practice (3rd ed.),
Addison-Wesley, 2012. The availability tactics were first created in J. Scott and
R. Kazman, “Realizing and Refining Architectural Tactics: Availability”, CMU/
SEI-2009-TR-006, 2009.

The idea of reflective questions was first introduced in M. Razavian,
A. Tang, R. Capilla, and P. Lago, “In Two Minds: How Reflections Influence
Software Architecture Design Thinking”, VU University Amsterdam, Tech. Rep.
2015-001, April 2015. The idea that software designers satisfice—that is, they
look for a “good enough”, as opposed to an optimal, solution—has been dis-
cussed in A. Tang and H. van Vliet, “Software Designers Satisfice”, European
Conference on Software Architecture (ECSA 2015), 2015.

The ATAM was comprehensively described in P. Clements, R. Kazman,
and M. Klein, Evaluating Software Architectures: Methods and Case Studies,
Addison-Wesley, 2001. The lightweight ATAM was first presented in L. Bass,
P. Clements, and R. Kazman, Software Architecture in Practice (3rd ed.),
Addison-Wesley, 2012. In addition, ATAM-style peer reviews have been de-
scribed in F. Bachmann, “Give the Stakeholders What They Want: Design Peer
Reviews the ATAM Style”, Crosstalk, November/December 2011.

Architecture description languages have a history almost as long as the
history of software architecture itself. The most widely used ADL in practice
is AADL (Architecture Analysis and Design Language), which is described in
P. Feiler and D. Gluch, Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language, Addison-Wesley, 2013. An
overview of, and analysis of industrial requirements for, ADLs can be found in
I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What Industry
Needs from Architectural Languages: A Survey”, IEEE Transactions on Software
Engineering, 39(6):869–891, June 2013.

193

9
The Architecture
Design Process in the
Organization

Chapter 1 introduced a set of software architecture life-cycle activities—things
like collecting requirements, designing the architecture, and evaluating and im-
plementing the architecture. We called these “life-cycle activities” because we
recognize that not all organizations do all of them; those that do them might do
them in different ways, and might embed them into different life-cycle models
and organizational contexts. This chapter takes a closer look at those aspects of
software development and considers how architecture design fits in with them.

9.1 Architecture Design and the Development Life Cycle

Two important phases that occur in most development projects, as illustrated in
Figure 9.1, are pre-sales and development and operations.

194 Chapter 9—The Architecture Design Process in the Organization

Pre-Sales
Architecture Design Architecture Design

FIGURE 9.1 The two major phases of project development

§	During the pre-sales phase, the scope of the project is established and a
business case is established. Although we call this phase “pre-sales”, it
occurs in every organization, whether they engage in “sales” or not. One
frequent and important product of this phase is an estimation of the cost
and duration of the project. This estimation is used by the customers (or
funders) to decide if they want to pursue the project.

§	The development and operations phase occurs when the pre-sales proposal
has been accepted by the customer. Development can be performed follow-
ing different methodologies including Agile, RUP, or TSP. Once the system
(or part of it) is developed, it is put into operation. Newer approaches such
as DevOps intend to reduce the gap that is usually present between devel-
opment and operation.

Architectural design plays an important role in these two major phases, as
we will now discuss.

9.1.1 Architecture Design During Pre-Sales

In many types of development projects, but particularly in the context of custom
software development, organizations typically need to provide an initial estimate
of the time and cost of the project during the pre-sales phase. Frequently the pre-
sales activities must be performed in a short time period, and the information that
is available to inform this process is always limited. For example, typically only
high-level requirements or features (rather than detailed use cases) are available
at this phase.

The problem with limited information is that the estimate that is produced
frequently has a lot of uncertainty, as illustrated by the cone of uncertainty de-
picted in Figure 9.2. The cone of uncertainty refers to the uncertainty surrounding
estimates in a project, typically those of cost and schedule, but also risk. All of
these estimates get better as a project progresses, and the cone narrows. When the
project is done, uncertainty is zero. The issue for any development methodology
is how to narrow the cone of uncertainty earlier in the project’s life cycle.

9.1 Architecture Design and the Development Life Cycle 195

Initial
Project

Definition

Approved
Project

Definition

Requirements
Specification

Product
Design

Specification

Detailed
Design

Specification

Accepted
Software

1.6x

1.25x

1.15x

1.1x

0.9x

0.85x

0.8x

0.6x

x

FIGURE 9.2 Example cone of uncertainty

Architectural practices can be applied in the pre-sales phase to help reduce
the cone of uncertainty:

§	Architectural drivers can be identified in the pre-sales phase. Even if it may
be complicated to describe detailed quality attribute scenarios at this point,
the most important quality attributes with initial measures and constraints
should be identified.

§	ADD can be used to produce an initial architecture that is then used as the
basis for early cost and schedule estimates.

§	Sketches of this initial architecture are useful for communication with the
customer. They are also useful as a basis to perform lightweight evaluations
of this initial design.

Generating an initial architecture allows estimation to be performed using
the “standard components” technique. Standard components are a type of proxy;
they include web pages, business rules, and reports, among other things. When
estimating with standard components, companies typically build historic data-
bases that contain, for example, measurements and size data for components that
have been built into previously developed systems. To estimate with standard
components, you need to identify the components that will be required for the

196 Chapter 9—The Architecture Design Process in the Organization

problem that you are trying to solve, and then use historical data (or some other
technique such as Wideband Delphi) to estimate the size of these components.
The total size can then be translated into effort, and these estimates can be rolled
up to produce a project-level time and cost estimate.

Identifying the components that are required to create estimates with this
technique can be achieved in a short time frame through the use of ADD. This
approach is similar to what we just recommended for the design of greenfield
systems:

§	The goal of your first design iteration should be to address the concern of
establishing an initial overall structure for the application. The reference
architecture, if you employ one, dictates the types of standard components
that will be used in the estimation. At this point, the most relevant technolo-
gies to use in the project can also be selected, particularly if your historical
data is tied to specific technologies.

§	The goal of your second design iteration should be to identify components
to support all of the functionality that needs to be considered for the estima-
tion. As opposed to what we discussed for the design of greenfield systems,
when designing to produce an estimate, you need to consider more than
just primary functionality. To identify the standard components, you need
to consider all of the important functional requirements that are part of the
scope and map them to the structure that you defined in the first iteration.
Doing so ensures you will have a more accurate estimation.

This technique will help you estimate costs and schedule for meeting the most
important functional requirements. At this point, however, you will likely not have
taken quality attributes into account. As a consequence, you should perform a few
more iterations focusing on where you will make design decisions to address the
driving quality attributes. If the time available to perform the pre-sales process is
limited, you will not be able to design it in much detail, so the decisions that you
should take here are the ones that will have a significant impact in the estimate. Ex-
amples include identifying redundant hardware or additional standard components
to address quality attributes such as performance, availability, and security.

When this technique is used in the pre-sales process, an initial architecture de-
sign is produced—the pre-sales architecture design (see Figure 9.1). If the project
proposal is accepted by the customer and the project proceeds, this initial architec-
ture can become one of the bases for a contract. This architecture should be used as
a starting point in the subsequent architecture design activities that are performed
during the Development and Operation phase of the project. In this case, the road-
map for designing brownfield systems (discussed in Section 3.3.3) can be used.

The preliminary documentation produced for this initial architecture can
also be included as part of the technical proposal that is provided to the customer.
Finally, this initial architecture design can be evaluated, preferably before esti-
mation occurs. This can be performed using a technique such as the lightweight
ATAM presented in Section 8.6.

9.1 Architecture Design and the Development Life Cycle 197

9.1.2 Architecture Design During Development and Operation

The development of a software system can be performed using different method-
ologies. Architectural design, however, is performed independently of the chosen
development methodology. For this reason, a design method such as ADD can be
used in conjunction with different development methodologies. We now discuss
the relationship between architectural design and some development methodolo-
gies that are commonly used in industry.

9.1.2.1 Agile Methods
The relationship between software architecture and agility has been the subject of
some debate over the past decade. Although we believe, and much research has
shown, that architectural practices and Agile practices are actually well aligned,
this position has not always been universally accepted.

Agile practices, according to the original Agile Manifesto emphasize, “Individ-
uals and interactions over processes and tools, working software over comprehen-
sive documentation, customer collaboration over contract negotiation, and respond-
ing to change over following a plan”. None of these values is inherently in conflict
with architectural practices. So why has the belief arisen—at least in some circles—
that the two sets of practices are somehow incompatible? The crux of the matter is
the one principle on which Agile practices and architectural practices differ.

The original creators of the Agile Manifesto described 12 principles behind
the manifesto. While 11 of these are fully compatible with architectural practices,
one of them is not: “The best architectures, requirements, and designs emerge from
self-organizing teams”. While this principle may have held true for small and per-
haps even medium-sized projects, we are unaware of any cases where it has been
successful in large projects, particularly those with complex requirements and dis-
tributed development. The heart of the problem is this: Software architecture design
is “up-front” work. You could always just start a project by coding and doing mini-
mal or no up-front analysis or design. This is what we call the emergent approach,
as shown in Figure 9.3b. In some cases—small systems, throw-away prototypes,
systems where you have little idea of the customer’s requirements—this may, in
fact, be the optimal decision. At the opposite extreme, you could attempt to col-
lect all the requirements up front, and from that synthesize the ideal architecture,
which you would then implement, test, and deploy. This so-called Big Design Up
Front approach (BDUF; Figure 9.3a) is usually associated with the classic Water-
fall model of software development. The Waterfall model has fallen out of favor
over the past decade due to its complexity and rigidity, which led to many well-doc-
umented cases of cost overruns, schedule overruns, and customer dissatisfaction.
With respect to architectural design, the downside of the BDUF approach is that it
can end up producing an extensively documented but untested design that may not
be appropriate. This occurs because problems in the design are often discovered
late and may require a lot of rework, or the original design may end up being ig-
nored and the true architecture is not documented.

198 Chapter 9—The Architecture Design Process in the Organization

(a) BDUF Approach (b) Emergent Approach

(c) Iteration 0 Approach

Project Iterations
Design Effort

Time

TimeTime

Project Iterations
Design EffortDesign Effort

FIGURE 9.3 Three approaches to architectural design

Clearly, neither of these extremes makes sense for most real-world projects,
where some (but not all) of the requirements are well understood up front but
there is also a risk of doing too much too soon and hence becoming locked in
to a solution that will inevitably need to be modified, at significant cost. So the
truly interesting question is this: How much up-front work, in terms of require-
ments analysis, risk mitigation, and architecture, should a project do? Boehm and
Turner have presented evidence arguing that there is no single right answer to this
question, but that you can find a “sweet spot” for any given project. The “right”
amount of project work depends on several factors, with the most dominant be-
ing project size, but other important factors include requirements complexity, re-
quirements volatility (related to the precedentedness of the domain), and degree
of distribution of development.

So how do architects achieve the right amount of agility? How do they find
the right balance between up-front work and technical debt leading to rework?

9.1 Architecture Design and the Development Life Cycle 199

For small, simple projects, no up-front work on architecture is justifiable. It is
easy and relatively inexpensive to turn on a dime and refactor. In projects where
there is some understanding of the requirements, begin by performing a few
ADD iterations. These design iterations can focus on choosing the major archi-
tectural patterns (including a reference architecture, if one is appropriate) and
frameworks. This is the iteration 0 approach depicted in Figure 9.3c. This will
help to structure the project, define work assignments and team formation, and
address the most critical quality attributes. If and when requirements change—
particularly if these are driving quality attribute requirements—adopt a practice
of Agile experimentation, where spikes are used to address new requirements. A
spike is a time-boxed task that is created to answer a technical question or gather
information; it is not intended to lead to a finished product. Spikes are developed
in a separate branch and, if successful, merged into the main branch of the code.
In this way, emerging requirements can be welcomed and managed without being
too disruptive to the overall process of development.

Agile architecture practices, however, help to tame some of the complexity,
narrowing the cone of uncertainty and hence reducing project risk. A reference
architecture defines families of technology components and their relationships.
It guides integration and indicates where abstraction should be built into the ar-
chitecture, to help reduce rework when a new technology (from within a family)
replaces an existing one. Agile spikes allow prototypes to be built quickly and to
“fail fast”, thereby guiding the eventual selection of technologies to be included
on the main development branch.

9.1.2.2 Rational Unified Process
The Rational Unified Process (RUP) is a software development process frame-
work that puts a strong emphasis on architecture. In the RUP (which we also
discussed in Section 7.3), development projects are divided in four major phases,
which are carried out sequentially; within these phases, a number of iterations are
performed. The four phases of the RUP are as follows:

§	Inception. In this first phase, the goal is to achieve concurrence among proj-
ect stakeholders. During this phase the scope of the project and a business
architecture are defined. Also, a candidate architecture is established. This
phase is the equivalent to the pre-sales phase discussed previously.

§	Elaboration. In the second phase, the goal is to baseline the architecture of
the system and to produce architectural prototypes.

§	Construction. In the third phase, the goal is to incrementally develop the
system from the architecture that was defined in the previous phase.

§	Transition. In the fourth phase, the goal is to ensure that the system is ready
for delivery. The system is transitioned from the development environment
to its final operation environment.

We could argue that, from the elaboration phase until the end of the project,
RUP intrinsically follows the iteration 0 approach described earlier. RUP also

200 Chapter 9—The Architecture Design Process in the Organization

provides some guidance with respect to architectural design, although this guid-
ance is far less detailed than that offered by ADD. As a consequence, ADD can
be used as a complement to the RUP. ADD iterations can be performed during
inception to establish the candidate architecture by following the approach de-
scribed in Section 9.1.1. Furthermore, during the elaboration phase, the initial
architecture is taken as a starting point for performing additional design iterations
until an architecture that can be baselined is produced. During construction, ad-
ditional ADD iterations may be performed as part of the development iterations.

9.1.2.3 Team Software Process
The Team Software Process (TSP) is a development process that strongly em-
phasizes quality and measurement. A TSP software project proceeds through a
series of development cycles, where each cycle begins with a planning process
called a launch and ends with a closing process called a postmortem. Within each
development cycle, activities belonging to different phases can be performed.
These phases include requirements (REQ), high-level design (HLD), implemen-
tation (IMPL), and testing (TEST). The REQ phase of TSP focuses on producing
a complete system requirements specification (SRS) document. The main goal of
the HLD phase is to produce a high-level design that will guide product imple-
mentation. This high-level design must define the components (i.e., modules) that
constitute the system and that have to be designed and developed independently
following the Personal Software Process (PSP) in the IMPL phase. Finally, the
TEST phase focuses on performing integration and system testing and on pre-
paring the delivery of the system. Note that the life-cycle model of a particular
project (Waterfall, incremental) is defined by the phases that are performed in
each development cycle: An iterative project will typically include activities from
all four phases in a single development cycle.

The TSP does not give full consideration to software architecture develop-
ment. For instance, none of the roles defined in the TSP is that of software architect.
There is also no emphasis on quality attributes in the REQ phase. Furthermore, the
process script for the HLD phase (see Table 9.1) does not provide detailed guidance
on how to design the system architecture. These issues can, however, be addressed
by introducing ADD, and other architectural practices, into TSP.

ADD can be used in the context of TSP in a straightforward way. In step 1 of
the HLD script, ADD can be used to produce the overall product design concept,
similar to what was discussed for the pre-sales process. Furthermore, in each de-
velopment cycle, one or more ADD iterations can be performed (steps 4 and 5
of the HLD script). Also, the HLD phase should consider a separation between
architectural design and element interaction design (discussed in Section 2.2.2).
A TSP development cycle can involve a few ADD iterations followed by the ele-
ment interaction design activities that include identification of elements and their
interfaces. These interfaces are later used in the development phase (IMPL) for
performing detailed design and development of the elements.

9.1 Architecture Design and the Development Life Cycle 201

TABLE 9.1 Summary of TSP High-Level Design (HLD) Script Steps

Step Activities Summary

 1 Structural design An overall product design concept is produced. It
includes the system architectural components and
the product components, principal functions, and
interfaces.

 2 Development
strategy

A development strategy is established. The strategy
includes the sequence of component development and
integration and the reuse and testing strategies.

 3 High-level design
strategy

In this step, a decision is made about whether to design
the system in a single design cycle or in multiple cycles
(focusing, for example, on one layer at a time).

 4 First cycle design The requirements are reviewed and the class
definitions, relationships, and transition diagrams are
produced.

 5 Subsequent
design cycles

Design issues from previous cycles are assessed
and the current design is reviewed. Additional class
definitions, relationships, and transition diagrams are
produced.

 6 Integration and
system test
strategies

Strategies for testing are established.

 7 System design
specification
(SDS)

A design document is produced.

 8 Design
walkthrough

A walk-through of the high-level design is performed
with different stakeholders.

 9 Design inspection The materials produced as a result of this phase are
inspected.

10 SDS baseline The design specification is put into a baseline.

11 Postmortem A postmortem of the phase is performed.

9.1.2.4 DevOps
DevOps is a natural outgrowth of the Agile mindset. DevOps refers to a set of prac-
tices that help achieve continuous delivery of software. Such practices are intended
to reduce the time between making a change to a system and the change being
placed into normal production, while ensuring high quality. This term intentionally
blurs the distinction between “development” and “operations”. While DevOps is
not inherently tied to architectural practices, if architects do not consider DevOps
as they design, build, and evolve the system, then critical activities such as con-
tinuous build integration, automated test execution, high availability, and scalable
performance will be more challenging and less efficient. By embracing DevOps,
small iterations are supported and encouraged, creating an environment where

202 Chapter 9—The Architecture Design Process in the Organization

Agile spikes are easy to create, deploy, and test, thereby providing crucial feedback
to the architect.

For example, a tightly coupled architecture can become a barrier to contin-
uous integration because even small changes may require a rebuild of the entire
system, which limits the number of builds possible in a day. To fully automate
testing, the system needs to provide architectural (system-wide) test capabilities
such as interfaces to record, play back, and control system state. To support high
availability, the system must be self-monitoring, requiring architectural capabili-
ties such as self-test, ping/echo, heartbeat, monitor, hot spares, and so forth.

In large-scale systems, DevOps can be achieved only with architectural sup-
port. Any ad hoc or manual process would put the growth and success of such
a system at risk. Adopting the DevOps approach requires a small change in the
mindset of an architect. Instead of just designing the system, you now need to
think about the design of the entire deployment pipeline. Is the pipeline easy to
change, and can these changes be deployed at the click of a button? Is the pipe-
line easy to scale? Is it easy to test? Fortunately, there are good answers to all of
these questions, and they do not require a distinct mindset or strategy. ADD can
help design a system to achieve DevOps goals, in exactly the same ways and
employing exactly the same design primitives as in design for any other driver.
The different aspects that need to be considered to allow DevOps to be performed
successfully can be included as part of the system drivers, either as architectural
concerns or as quality attributes. The design concepts that help us to achieve
modifiability or testability or scalability or high availability in a system can also
be applied to the deployment pipeline. To slightly misquote Gertrude Stein, “Ar-
chitecture is architecture is architecture”.

9.2 Organizational Aspects

In addition to the choice of a specific development method and the introduction
of a design method such as ADD into this method, other aspects of the design
process can be supported by a software development organization to facilitate
design activities. Here we briefly discuss some of these aspects.

9.2.1 Designing as an Individual or as a Team

In large and complex projects, it seems straightforward that an architecture team
should be responsible for performing the design. Even in smaller projects, how-
ever, you may find that having more than one person participate in the design
process yields important advantages. You can decide if only one person is the
architect and the others are observers (as in the practice of pair programming)

9.2 Organizational Aspects 203

or if the group actively collaborates on design decisions (although even here we
recommend that you have one lead architect).

There are various benefits from this approach:

§	Two (or more) heads can be better than one, particularly if the design
problem that you are trying to solve is different from ones that you have
addressed before.

§	Different people can have different areas of expertise that are useful in the
design of the architecture. For example, you might have distinct software
and infrastructure architects, or people who specialize in different domains
or different types of design concepts.

§	Design decisions are reflected upon and reviewed as they are being made
and, as a consequence, can be corrected immediately.

§	Less experienced people can participate in the design process, which can be
an excellent mentoring practice.

You should, however, be aware of certain difficulties with this approach:

§	Design by committee can be complicated if agreement is not achieved in
a reasonable time frame. The search for consensus can lead to “analysis
paralysis”.

§	The cost of design increases and, in many cases, the time for design also
increases.

§	Managing the logistics can be complex, because this approach requires the
regular availability of the group of people.

§	You may encounter personality and political conflicts, resulting in resent-
ment or hurt feelings or in design decisions being heavily influenced by the
person who shouts longest and loudest (“design by bullying”).

9.2.2 Using a Design Concepts Catalog in Your Organization

Design concepts are used in the design process to satisfy drivers (see Section 2.5).
In general, drivers can be seen as recurring design problems. Whether it is the
concern of structuring an application, allocating functionality, or satisfying a
particular quality attribute, these drivers have most certainly been addressed in
other systems previously. Furthermore, people have taken the time to document
ways to address these design problems or to develop components that serve this
purpose. As we saw in Section 3.4, the selection of design concepts is one of the
most challenging aspects of the design process. This problem is exacerbated by
the fact that information is scattered in many places: Architects usually need to
consult several pattern and tactics catalogs and do extensive research to find the
design concepts that can be considered and used.

One possible way to resolve this issue is the creation of design concepts
catalogs. These catalogs group collections of design concepts for particular ap-
plication domains. Such catalogs are intended to facilitate the identification and

204 Chapter 9—The Architecture Design Process in the Organization

selection of design concepts when performing design. They are also useful in
enhancing consistency in the designs across the organization. For example, de-
signers may be required to use the technologies in a particular catalog as much
as possible because this facilitates estimation, reduces learning curves, and may
lead to opportunities for reuse. Catalogs can also be useful for training purposes.

An example of a design concepts catalog appears in Appendix A. This cata-
log is oriented toward the design of enterprise applications. A similar catalog for
the Big Data domain could be created from the technology families and specific
technologies illustrated in Figure 2.10 (Section 2.5.5).

The creation of these catalogs involves considerable effort and, once cre-
ated, they should be maintained as new design concepts, and particularly new
technologies, are introduced or removed in the organization. This effort is worth-
while, however, as these catalogs are a valuable organizational asset.

9.3 Summary

In this chapter we discussed how ADD can be used in relation to several orga-
nizational aspects. ADD can be used from the project’s inception, when a pre-
sales proposal is developed, to facilitate estimation using standard components.
As the project evolves, ADD can be used in conjunction with any modern soft-
ware development life-cycle method. In general, ADD is a valuable complement
to life-cycle methods that do not provide detailed guidance on how to perform
architectural design.

We also briefly reviewed some related concerns, such as the composition of
the design team and the development of organizational assets, such as a design
concepts catalog, that are useful during the design process.

9.4 Further Reading

Organizational structure and its influences on software architecture are addressed
in the field of enterprise architecture management. Enterprise architecture frame-
works are discussed in F. Ahlemann et al. (Eds.), Strategic Enterprise Archi-
tecture Management: Challenges, Best Practices, and Future Developments,
Springer-Verlag Berlin Heidelberg, 2012.

A nice set of articles looking at the relationship between architecture and
Agile methods can be found in the April 2010 IEEE Software magazine special
issue on this topic.

A number of studies have looked at how architecture and agility meth-
ods complement and support each other, such as S. Bellomo, I. Gorton, and

9.4 Further Reading 205

R. Kazman, “Insights from 15 Years of ATAM Data: Towards Agile Architec-
ture”, IEEE Software, September/October 2015, and S. Bellomo, R. Nord, and I.
Ozkaya, “A Study of Enabling Factors for Rapid Fielding: Combined Practices to
Balance Speed and Stability”, Proceedings of ICSE 2013, 982–991, 2013.

Barry Boehm and Richard Turner have taken an empirical look at the topic
of the relationship between agility and “discipline” (not just architecture) in
their book Balancing Agility and Discipline: A Guide for the Perplexed (Boston:
Addison-Wesley, 2004).

The practice of creating architectural “spikes” as a means of resolving
uncertainty in Agile sprints is discussed in T. C. N. Graham, R. Kazman, and
C. Walmsley, “Agility and Experimentation: Practical Techniques for Resolv-
ing Architectural Tradeoffs”, Proceedings of the 29th International Conference
on Software Engineering (ICSE 29), (Minneapolis, MN), May 2007. A general
discussion of spikes can be found at https://www.scrumalliance.org/community/
articles/2013/march/spikes-and-the-effort-to-grief-ratio.

Many practitioners and researchers have thought deeply about how Agile
methods and architectural practices fit together. Some of the best examples of this
thinking can be found in the following sources:

§	S. Brown. Software Architecture for the Developers. LeanPub, 2013.
§	J. Bloomberg. The Agile Architecture Revolution. Wiley CIO, 2013.
§	Dean Leffingwell. “Scaled Agile Framework”. http://scaledagileframework.

com/
§	A. Cockburn. “Walking Skeleton”. http://alistair.cockburn.us/

Walking+skeleton
§	“Manifesto for Agile Software Development”. http://agilemanifesto.org/
§	Scott Ambler and Mark Lines. “Scaling Agile Software Development: Dis-

ciplined Agility at Scale”. http://disciplinedagileconsortium.org/Resources/
Documents/ScalingAgileSoftwareDevelopment.pdf

An extensive treatment of estimation techniques, including estimation using
standard components, is given in S. McConnell, Software Estimation: Demystify-
ing the Black Art, Microsoft Press, 2006.

An overview of the Team Software Process can be found in W. Humphrey,
The Team Software ProcessSM (TSPSM), Technical Report CMU/SEI-2000-TR-023,
November 2000. Extensive details about TSP can be found in the different books
written by Humphrey about this process.

The integration of ADD 2.0 (as well as other architecture development meth-
ods) with RUP, is discussed in R. Kazman, P. Kruchten, R. Nord, and J. Tomayko,
“Integrating Software-Architecture-Centric Methods into the Rational Unified
Process”, Technical Report CMU/SEI-2004-TR-011, July 2004.

There are now several excellent books on the topic of DevOps, such
as L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspec-
tive, Addison-Wesley, 2015. A set of architectural tactics for DevOps was de-
scribed in H-M Chen, R. Kazman, S. Haziyev, V. Kropov, and D. Chtchourov,

../../../../../https@www.scrumalliance.org/community/articles/2013/march/spikes-and-the-effort-to-grief-ratio
../../../../../https@www.scrumalliance.org/community/articles/2013/march/spikes-and-the-effort-to-grief-ratio
../../../../../scaledagileframework.com/default.htm
../../../../../scaledagileframework.com/default.htm
../../../../../alistair.cockburn.us/Walking+skeleton
../../../../../alistair.cockburn.us/Walking+skeleton
../../../../../agilemanifesto.org/default.htm
../../../../../disciplinedagileconsortium.org/Resources/Documents/ScalingAgileSoftwareDevelopment.pdf
../../../../../disciplinedagileconsortium.org/Resources/Documents/ScalingAgileSoftwareDevelopment.pdf

206 Chapter 9—The Architecture Design Process in the Organization

“Architectural Support for DevOps in a Neo-Metropolis BDaaS Platform”, IEEE
34th Symposium on Reliable Distributed Systems Workshop (SRDSW), Montreal,
Canada, September 2015.

Considerable attention has been given to the problem of architecture
knowledge representation and management. For a good overview of this area,
see P. Kruchten, P. Lago, and H. Van Vliet, “Building Up and Reasoning About
Architectural Knowledge”, in Quality of Software Architectures, Springer, 2006.
For a perspective on tools for architecture knowledge management, see A. Tang,
P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, “A Comparative Study of
Architecture Knowledge Management Tools”, Journal of Systems and Software,
83(3):352–370, 2010.

207

10
Final Words

In this chapter we reflect, once again, on the nature of design and why we need
methods for design. This is, after all, the major point of this book! And we leave
you with a few words about where to go with the information and skills that you
have gleaned from reading this book.

10.1 On the Need for Methods

Given that you have prevailed and reached this final chapter, we can assume that
you are committed to being a professional software architect. Being a profes-
sional means that you can perform (at least) adequately and repeatedly in all sorts
of contexts. To achieve this level of performance, you need methods.

We all need methods when we are performing complex tasks that have se-
rious consequences if we get them wrong. Consider this: Jet pilots and surgeons
are two of the most highly trained groups of professionals in the world, and yet
they use checklists and standardized procedures for every important task that
they perform. Why? Because the consequences of making a mistake are serious.
You probably will not be designing the architectures for systems that have life-
and-death consequences. Even so, the systems that you do design, particularly if
they are large and complex, may very well have consequences for the health and
well-being of your organization. If you are designing a throwaway prototype or a

208 Chapter 10—Final Words

trivial system, perhaps an explicit architecture design step may be omitted. If you
are designing the nth variant of a system that you have created over and over in
the past, perhaps architecture design is little more than a cut-and-paste from your
prior experiences.

But if the system you are charged with creating or evolving is nontrivial
and if there is risk associated with its creation, then you owe it to yourself, you
owe it to your organization, and you owe it to your profession to do the best job
that you can in this most critical step in the software development life cycle. To
achieve that goal, you need a method. Methods help to ensure uniformity, consis-
tency, and completeness. Methods help you take the right steps and ask the right
questions.

Of course, no method can substitute for proper training and education. No one
would trust a novice pilot at the controls of a 787 or a first-year medical student
wielding a scalpel in an operating theater, armed only with a method or a checklist.
A method, however, is a key to producing high-quality results repeatedly. And this
is, after all, what we all desire as software engineering professionals.

Fred Books, writing about the design process, said:

Any systematization of the design process is a great step forward compared to “Let’s
just start coding, or building”. It provides clear steps for planning a design project.
It furnishes clearly definable milestones for planning a schedule and for judging
progress. It suggests project organization and staffing. It helps communication
within the design team, giving everyone a single vocabulary for the activities. It
wonderfully helps communication between the team and its manager, and between
the manager and other stakeholders. It is readily teachable to novices. It tells novices
facing their first design assignments where to begin.

Design is just too important to be left to chance. And there needs to be a
better way of getting good at design than “shoot yourself in the foot repeatedly”.
As the Nobel Prize–winning scientist Herbert Simon wrote in 1969, “Design . . .
is the core of all professional training; it is the principal mark that distinguishes
the professions from the sciences. Schools of engineering, as well as schools of
architecture, business, education, law, and medicine, are all centrally concerned
with the process of design”. Simon went on to say that lack of professional com-
petence is caused by the relative neglect of design in universities’ curricula. This
trend is, we are happy to note, gradually reversing, but nearly 50 years later it is
still a cause for concern.

In this book we have provided you with a road-tested method—ADD 3.0—
for doing architectural design. Methods are useful in that they provide guidance
for the novice and reassurance for the expert. Like any good method, ADD 3.0
has a set of steps, and these steps have been updated somewhat from prior ver-
sions of ADD. But just as important, we have focused on the broader architecture
life cycle and shown how some changes to the design process can help make your
life as an architect better, and provide you with better outcomes. For example, we

10.2 Next Steps 209

have expanded the set of inputs that you need to think about to include things like
design purpose and architectural concerns. This broader view helps you create an
architecture that not only meets your customer’s requirements, but also is aligned
with the business needs of your team and your organization. In addition, we have
shown that design can and should be guided by a “design concepts catalog”—a
corpus of reusable architectural knowledge consisting of reference architectures,
patterns, tactics, and externally developed components such as frameworks and
technology families. By cataloging these concepts, design can be made more
predictable and repeatable. Finally, we have argued that design should be docu-
mented, perhaps informally in sketches, and should be accompanied by a consis-
tent practice of analyzing the decisions made.

If we are to conceive of ourselves as software engineers, we need to take the
title of “engineer” seriously. No mechanical or electrical or structural engineer
would commit significant resources to a design that was not based on sound princi-
ples and components, or that was not analyzed and documented. We think that soft-
ware engineering in general, and software architecture specifically, should strive
for similar goals. We are not “artistes”, for whom creativity is paramount; we are
engineers, so predictability and repeatability should be our most cherished goal.

10.2 Next Steps

Where should you go from here? We see four answers to this question. One an-
swer focuses on what you can do as an individual to hone your skills and experi-
ence as an architect. The second answer revolves around how you might engage
your colleagues to think more consciously about architecture design. The third
answer is where your organization can go with a more explicit commitment to ar-
chitecture design. And the fourth answer is about how you can contribute to your
community, and to the larger community of software architects.

Our advice to you, as an individual, about how to proceed is simple: prac-
tice. Like any other complex skill worth having, your skill as an architect will not
come immediately, but your confidence should increase steadily. “Fake it till you
make it” is the best advice that we can give. Having a method that you can con-
sult, and a ready supply of common design concepts, gives you a solid foundation
on which to “fake it” and learn.

To help you practice your skills and to engage your colleagues, we have de-
veloped an architecture game. This game, which is called “Smart Decisions”, can
be found at http://www.smartdecisionsgame.com. It simulates the architecture de-
sign process using ADD 3.0 and promotes learning about it in a fun, pressure-free
way. The game is currently focused on the Big Data Analytics application domain,
similar to the extended design example in Chapter 5, but it can be easily adapted
to other application domains.

../../../../../www.smartdecisionsgame.com/default.htm

210 Chapter 10—Final Words

You might also think about next steps to be taken in your organization.
You can be an agent for change. Even if your company does not “believe in”
architecture, you can still practice many of the ideas embodied in this book
and in ADD. Ensure that your requirements are clear by insisting on response
goals for your requirements. Even when facing tight deadlines and schedule
pressures, try to get agreement on the major architectural design concepts being
employed. Do quick, informal design reviews with colleagues, huddled around
a whiteboard, and ask yourself reflective questions. None of these “next steps”
needs to be daunting or hugely time-consuming. And we believe—and our in-
dustrial experience has shown—that they will be self-reinforcing. Better de-
signs will lead to better outcomes, which will lead you and your group and your
organization to want to do more of the same.

Finally, you can contribute to your local software engineering community,
and even to the worldwide community of software architects. You could, for ex-
ample, play the architecture game in a local software engineering meetup and
then share your experiences. You could contribute case studies about your suc-
cesses and failures as an architect with real-world projects. We strongly believe
that example is the best way to teach and while we have provided three case stud-
ies in this book, more is always better. Self-publishing is easy in today’s web.

Happy architecting!

10.3 Further Reading

The long quotation by Fred Books in this chapter comes from his thought-provoking
book The Design of Design: Essays from a Computer Scientist, Pearson, 2010.

Many of the ideas in this chapter, in this book, and in the field of software
architecture in general can be traced back to Herbert Simon’s seminal book on
the science of design: The Sciences of the Artificial, MIT Press, 1969.

211

A
A Design Concepts
Catalog

This chapter presents an excerpt from a catalog that groups design concepts that
are associated with the domain of enterprise applications, such as the one pre-
sented in the case study in Chapter 4. As opposed to traditional catalogs that list
just a single type of design concept, such as pattern catalogs, the catalog pre-
sented here groups different varieties of related design concepts. In this case, the
catalog includes a selection of reference architectures, deployment patterns, de-
sign patterns, tactics, and externally developed components (frameworks). Also,
the design concepts that are included in this catalog are gathered from different
sources, reflecting what occurs in real-life design. The design concepts are pre-
sented in a very succinct way, and the reader looking for more detail should refer
to the original sources using the references provided at the end of the chapter.

A.1 Reference Architectures

Reference architectures provide a blueprint for structuring an application (see
Section 2.5.1). This section is based on the catalog in the Microsoft Application
Architecture Guide.

212 Appendix A—A Design Concepts Catalog

A.1.1 Web Applications

This web application is typically initiated from a web browser that communicates
with a server using the HTTP protocol. The bulk of the application resides on the
server, and its architecture is typically composed of three layers: the presenta-
tion, business, and data layers. The presentation layer contains modules that are
responsible for managing user interaction. The business layer contains modules
that handle aspects related to the business logic. The data layer contains mod-
ules that manage data that is stored either locally or remotely. In addition, cer-
tain functionality that is common to modules across the layers is organized as
cross-cutting concerns. This cross-cutting functionality includes aspects related
to security, logging, and exception management. Figure A.1 presents the compo-
nents associated with the modules in web applications.

The following table summarizes the responsibilities of the components
present in this reference architecture:

Component Name Responsibility

Browser A web browser running on the client machine.

User interface These components are responsible for receiving user
interactions and presenting information to the users. They
contain UI elements such as buttons and text fields.

UI process logic These components are responsible for managing the control
flow of the application’s use cases. They are responsible
for other aspects such as data validation, orchestrating
interactions with the business logic, and providing data coming
from the business layer to the user interface components.

Application facade This component is optional. It provides a simplified interface
(a facade) to the business logic components.

Business workflow These components are responsible for managing (long-
running) business processes, which may involve the execution
of multiple use cases.

Business logic These components are responsible for retrieving and
processing application data and applying business rules on
this data.

Business entities These components represent the entities from the business
domain and their associated business logic.

Data access These components encapsulate persistence mechanisms
and provide common operations used to retrieve and store
information.

Helpers and utilities These components contain functionality common to other
modules in the data layer but not specific to any of them.

Service agents These components abstract communication mechanisms
used to transfer data to external services.

Security These components include cross-cutting functionality
that handles security aspects such as authorization and
authentication.

A.1 Reference Architectures 213

Component Name Responsibility

Operation
management

These components include cross-cutting functionality such
as exception management, logging, and instrumentation and
validation.

Communication These components include cross-cutting functionality that
handles communication mechanisms across layers and
physical tiers.

FIGURE A.1 Web Application reference architecture (Key: UML)

214 Appendix A—A Design Concepts Catalog

You should consider using this type of application when:

§	You do not require a rich user interface.
§	You do not want to deploy the application by installing anything on the cli-

ent machine
§	You require portability of the user interface.
§	Your application needs to be accessible over the Internet.
§	You want to use a minimum of client-side resources.

A.1.2 Rich Client Applications

Rich client applications are installed and run on a user’s machine. Because
the application runs on the user’s machine, its user interface can provide a
high-performance, interactive, and rich user experience. A rich client application
may operate in stand-alone, connected, occasionally connected, or disconnected
mode. When connected, it typically communicates with remote services provided
by other applications.

Rich client application modules are structured in three main layers or in a
cross-cutting grouping, similar to a web application (see Section A.1.1). Rich
client applications can be “thin” or “thick.” Thin-client applications consist pri-
marily of presentation logic, which obtains user data and sends it to a server for
processing. Thick-client applications contain business and data logic and typi-
cally connect to a data storage server only to exchange information that needs to
be persisted remotely. Figure A.2 presents the components associated with the
modules in rich client applications.

You should consider using this type of application when:

§	You want to deploy your application on the users’ machines.
§	You want your application to support intermittent or no network

connectivity.
§	You want your application to be highly interactive and responsible.
§	You want to leverage the user’s machine resources (such as a graphics

card).

Since these applications are deployed on the user’s machine, they are less
portable and deployment and updating is more complicated. A range of technolo-
gies to facilitate their installation are available, however.

A.1 Reference Architectures 215

FIGURE A.2 Rich Client Application reference architecture (Key: UML)

A.1.3 Rich Internet Applications

Rich Internet applications (RIAs) typically run inside a browser and may be de-
veloped using code that is executed by the browser such as Asynchronous Java-
Script and XML (AJAX). RIAs may also run inside a browser plug-in, such as
Silverlight. These applications are more complex than standard web applications

216 Appendix A—A Design Concepts Catalog

and support rich user interaction and business logic. They are, however, typically
restricted with respect to accessing local resources because of security concerns.

Typical RIAs are structured using the same three layers and modules found
in web applications (see Section A.1.1). In RIAs, some business logic may be
executed on the client machine, and some data may be stored locally. Like rich
client applications, RIAs may range from relatively thin to quite thick clients.

The following table summarizes the responsibilities of the components of
this reference architecture (shown in Figure A.3) that are not present in the Web
Application reference architecture:

Component
Name Responsibility

Presentation Responsible for managing user interaction (represents both UI
components and UI process logic components).

Rich UI engine Responsible for rendering user interface elements inside the
plug-in execution container.

Business
processing

Responsible for managing business logic on the client side.

Service interfaces Responsible for exposing services that are consumed by the
components that run on the browser.

Message types Responsible for managing the types of messages that are
exchanged between the client part and the server part of the
application.

You should consider using this type of application when:

§	You want your application to have a rich user interface but still run inside a
browser.

§	You want to perform some of the processing on the client side.
§	You want to deploy and update your application in a simple manner, with-

out having to perform installations on the user machine.

However, there are some limitations associated with this type of application:

§	Access to local resources can be limited, because the application may run
in a sandbox.

§	Loading time is non-negligible.
§	Plug-in execution environments may not be available in all platforms.

A.1 Reference Architectures 217

FIGURE A.3 Rich Internet Application reference architecture (Key: UML)

218 Appendix A—A Design Concepts Catalog

A.1.4 Mobile Applications

A mobile application is typically executed on a handheld device and usually
works in collaboration with a support infrastructure that resides remotely. These
applications are structured using modules and layers similar to those found in a
web application (see Section A.1.1), although many of the components derived
from these modules may be optional depending on whether a thin-client or a
thick-client approach is followed. As shown in Figure A.4, at a minimum, the
components responsible for user interaction are typically present. Communica-
tion with the support infrastructure is frequently unreliable, and these applica-
tions normally include some type of local data store that is periodically synchro-
nized with data in the support infrastructure.

You should consider using this type of application when:

§	You want your application to run in a handheld device.
§	The network connectivity is unreliable, so the application needs to run in

both offline and occasionally connected modes.

However, there is a substantial limitation associated with this type of application:

§	Resources on the handheld device may be limited.

A.1.5 Service Applications

Service applications are non-interactive applications that expose functionality
through public interfaces (i.e., services). Services may be invoked by service con-
sumer components remotely or from the same machine in which the service ap-
plication is running. Services can be defined using a description language such as
the Web Services Description Language (WSDL); operations are invoked using
XML-based message schemas that are transferred over a transport channel. As a
consequence, services promote interoperability.

Similar to the other types of reference architectures, service applications are
structured using layers (Figure A.5). These applications are not interactive, so
the presentation layer is not needed. It is replaced by a service layer that contains
components responsible for exposing the services and exchanging information,
similar to the server part of RIAs (see Section A.1.3).

A.1 Reference Architectures 219

FIGURE A.4 Mobile Application reference architecture (Key: UML)

220 Appendix A—A Design Concepts Catalog

FIGURE A.5 Service Application reference architecture (Key: UML)

A.2 Deployment Patterns 221

You should consider using this type of application when:

§	Your application is not used by humans but rather by other systems and, as
a consequence, does not have a user interface.

§	Your application and the clients should be loosely coupled.

Except in cases where services are consumed by applications that reside in
the same machine, network connectivity is required for the clients to communi-
cate with the service application.

A.2 Deployment Patterns

Deployment patterns provide guidance on how to structure the system from a phys-
ical standpoint (see Section 2.5.3). Good decisions with respect to the deployment
of the software system are essential to achieve important quality attributes such as
performance, usability, availability, and security. This section is a summary from
the catalog included in the Microsoft Application Architecture Guide.

A.2.1 Nondistributed Deployment

In nondistributed deployment, all of the components from the modules in the
different layers reside on a single server except for data storage functionality
(Figure A.6). Because the components communicate locally, this may improve
performance due to the lack of network communication delays. However, perfor-
mance may be affected by other aspects of the system, such as resource conten-
tion. Also, this type of application must support the peak usage of the largest con-
sumers of system resources. Scalability and maintainability may be negatively
affected because the same physical hardware is shared by all of the components.

FIGURE A.6 Nondistributed deployment example (Key: UML)

222 Appendix A—A Design Concepts Catalog

A.2.2 Distributed Deployment

In a distributed deployment, the components of the application reside on separate
physical tiers (Figure A.7). Typically, the components associated with specific
layers are deployed in different tiers. Tiers can be configured differently to best
meet the requirements of the components that it hosts.

Distributed deployment facilitates scalability but the addition of tiers also
brings additional costs, network latency, complexity, and deployment effort.
More tiers may also be added to promote security. Different security policies may
be applied according to the particular tier, and firewalls may be placed between
the tiers. The following subsections describe various alternatives of distributed
deployment that can be used in conjunction with the reference architectures from
Section A.1.

FIGURE A.7 Distributed deployment example (Key: UML)

Two-Tier Deployment (Client-Server)
Two-tier deployment is the most basic layout for distributed deployment. The
client and the server are usually deployed on different physical tiers, as shown in
Figure A.8.

FIGURE A.8 Two-tier deployment pattern (Key: UML)

A.2 Deployment Patterns 223

Three-Tier Deployment
In three-tier deployment, the application is deployed in a tier that is separate from
the one that hosts the database, as shown in Figure A.9. This is a very common
physical layout for web applications.

FIGURE A.9 Three-tier deployment pattern (Key: UML)

Four-Tier Deployment
In four-tier deployment, shown in Figure A.10, the web server and the application
server are deployed in different tiers. This separation is usually done to improve
security, as the web server may reside in a publicly accessible network while the
application resides in a protected network. Additionally, firewalls may be placed
between the tiers.

FIGURE A.10 Four-tier deployment pattern (Key: UML)

A.2.3 Performance Patterns: Load-Balanced Cluster

In the Load-Balanced Cluster pattern, the application is deployed on multiple
servers that share the workload, as shown in Figure A.11. Client requests are re-
ceived by a load balancer, which redirects them to the various servers accord-
ing to their current load. The different application servers can process several
requests concurrently, which results in performance improvements.

224 Appendix A—A Design Concepts Catalog

FIGURE A.11 Load-balanced cluster deployment pattern (Key: UML)

A.3 Architectural Design Patterns

This section includes architectural design patterns (see Section 2.5.2) used in the
case study in Chapter 4. The patterns presented here are based on the book Pat-
tern-Oriented Software Architecture: A Pattern Language for Distributed Com-
puting, Volume 4. The numbers in parentheses [e.g., Domain Model (182)] indi-
cate the page in the book where the pattern is documented.

Note that we are using a home-grown notation for the patterns here, which
is common in the patterns community. We define the symbols in a legend accom-
panying the first diagram (Layers) and use these symbols throughout this section.

A.3.1 Structural Patterns

These patterns are used to structure the system but they provide less detail than
the reference architectures.

A.3 Architectural Design Patterns 225

Name Layers

Problem and
context

When transforming a Domain Model (182) into a set of modules
that can be allocated to teams, [...] we need to support several
concerns: the independent development of the modules, the
independent evolution of the modules, the interaction among the
modules.

Solution Define two or more layers for the software under development,
where each layer has a distinct and specific responsibility. To make
the layering more effective, the interactions between the layers
should be highly constrained. The strictest layering, as shown
below, allows only unidirectional dependencies and forbids layer-
bridging.

Structure

Consequences
and related
patterns

Typically, each self-contained and coherent responsibility within
a layer is realized as a separate domain object. Domain objects
are the containers (modules) that can be developed and evolved
independently.

Name Domain Object

Problem and
context

When realizing a Domain Model (182) in terms of Layers (185),
a key concern is to decouple self-contained and cohesive
application responsibilities.

Solution Encapsulate each distinct, nontrivial piece of application
functionality in a self-contained building block called a domain
object.

continues

226 Appendix A—A Design Concepts Catalog

Name Domain Object

Structure

Consequences
and related
patterns

The partitioning of an application’s responsibilities into domain
objects is based on one or more granularity criteria. There can
be different types of domain objects that encapsulate business
features, domain concepts, or infrastructure elements. For exam-
ple, domain objects might be a function such as an income tax
calculation or a currency conversion, or a domain concept such
as a bank account or a user. Domain objects can also aggregate
other domain objects.
When designing domain objects, you need to distinguish an
Explicit Interface (281), which exports some functionality, from its
Encapsulated Implementation (313), which realizes that function-
ality. The separation of interface and implementation is the key
to modularization. It minimizes coupling—each domain object
depends only on explicit interfaces, not on encapsulated imple-
mentations. This makes it possible to create and evolve a domain
object implementation independently from other domain objects.

A.3.2 Interface Partitioning

Name Explicit Interface

Problem and
context

When designing Layers (185) and their constituent Domain Ob-
jects (208), an important concern is how to properly create compo-
nent (module) interfaces.
A module is a self-contained unit of functionality (and a self-
contained unit of deployment) with a published interface. Clients
can build upon existing modules as building blocks when providing
their own functionality. Direct access to the module’s implementa-
tion might make clients dependent on the module’s internals, which
ultimately increases coupling and erodes the ability of the applica-
tion to evolve.

Solution Separate the explicit interface of a module from its implementa-
tion. Export the explicit interface to the clients of the module, but
keep its implementation private.

A.3 Architectural Design Patterns 227

Name Explicit Interface

Structure

Consequences
and related
patterns

A call from the client through an explicit interface will be forwarded
to the implementation, but the client code will depend only on the
public interface, not on the implementation.
An explicit interface therefore enforces the separation of the
component’s interface from its implementation. This separation
means that a component’s implementation may be modified and
the clients that use it will be unaffected, so long as the interfaces
are unchanged.

Name Proxy

Problem and
context

When specifying an Explicit Interface (281), we often want to avoid
accessing services of a component implementation directly, as
these services may change or even be unknown until execution
time.
Most modern software systems consist of cooperating compo-
nents, some of which you create and others that you do not.
Your components access and use the services provided by other
components. It may be impractical or even impossible to access
the services of a component directly—for example, because the
implementation resides on a remote server.

Solution Encapsulate all the details of interacting with the component within
a surrogate—called the proxy—and let clients communicate via
the proxy rather than directly with the subject component.

Structure

Consequences
and related
patterns

A proxy frees both the client and the subjects from implementing
component-specific housekeeping functionality. It is also transpar-
ent to clients whether they are connected with the real subject com-
ponent or its proxy, because both publish an identical interface. The
drawbacks of a proxy are additional execution time added to each
client interaction (although, unless your application is highly sensi-
tive to latency, this additional overhead is likely inconsequential).

228 Appendix A—A Design Concepts Catalog

A.3.3 Concurrency

Name Half-Sync/Half-Async

Problem and
context

When developing concurrent software, a critical concern is to
ensure that concurrent programming is relatively straightforward
without sacrificing runtime efficiency.
Concurrent software typically performs both asynchronous and
synchronous processing of service requests. Asynchrony is used
to process low-level service requests (such as events) efficiently,
whereas synchronous processing is used to simplify the processing
of application services. To benefit from both programming models, it
is essential to coordinate both kinds of processing.

Solution Decompose the services of concurrent software into two separate
streams or “layers”—synchronous and asynchronous—and add a
queueing “layer” to mediate communication between them.

Structure

Consequences
and related
patterns

This pattern allows you to process complex service requests, such
as domain functionality or database queries, synchronously in
separate threads. Similarly, lower-level system services, such as
protocol handlers that respond to hardware interrupts, are handled
asynchronously. In cases where services in the synchronous layer
need to communicate with services in the asynchronous layer,
they may exchange messages via the queueing layer.
The Half-Sync/Half-Async arrangement employs Layers (185)
to keep the three distinct execution and communication models
encapsulated and hence independent from one another.

A.3 Architectural Design Patterns 229

A.3.4 Database Access

Name Data Mapper (Data Access Object [DAO])

Problem and
context

When designing a Database Access Layer (538), we need to
insulate applications from the details of how data is represented in
persistent storage, such as the specific SQL queries to use.
Object-oriented applications and relational databases use different
abstractions for representing data. However, many applications
need to transfer data between these two “worlds.” It is desirable to
keep the object-oriented domain model ignorant of the relational
database schema. In this way, changes to one domain model will
be less likely to ripple to the other.

Solution Introduce a data mapper for each type of persistent application
object. The responsibility of this mapper is to transfer data from
the objects to the database, and vice versa.

Structure

Consequences
and related
patterns

A data mapper is a mediator that moves data between an
object-oriented domain model and a relational database. A client
can use the data mapper to store or retrieve application data
in the database. The data mapper performs any needed data
transformations and maintains consistency between the two
representations.
When a data mapper is used, in-memory objects do not even need
to know that a database is present. Hence, they require no SQL
code and can have complete ignorance of the database schema.
In addition, the relational database schema and the object-
oriented domain model can evolve independently. This provides
an additional benefit that accrues to any abstraction interface: It
simplifies unit testing, by allowing mappers to databases to be
replaced by mock objects that support in-memory testing.
The data mapper makes application objects simpler and reduces
their external dependencies, making them easier to evolve.
There are two potential drawbacks to the Data Mapper pattern,
however: (1) Changes in either the application object model or the
database schema may require changes to a data mapper; and (2)
the additional level of indirection introduces overhead, and hence
latency, to every data access, which might be problematic for
systems with hard real-time deadlines, for example.

230 Appendix A—A Design Concepts Catalog

A.4 Tactics

Tactics were presented in Section 2.5.4. Here we present a summarized catalog
of tactics for seven commonly encountered quality attributes. This catalog comes
from the book Software Architecture in Practice.

A.4.1 Availability Tactics

Figure A.12 summarizes the tactics to achieve availability.

Detect Faults Prevent Faults

Ping / Echo Removal from
Service

Monitor
Transactions

Predictive
Model

Recover from Faults

Heartbeat

Preparation
and Repair

Reintroduction

Active
Redundancy

Passive
Redundancy

Spare
Escalating
Restart

Exception
Handling

Shadow

Non-Stop
Forwarding

State
Resynchronization

Exception
Prevention

Fault

Fault
Masked
or
Repair
Made

Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Increase
Competence Set

Availability Tactics

FIGURE A.12 Availability tactics

A.4 Tactics 231

Detect Faults

§	Ping/echo: An asynchronous request/response message pair exchanged
between nodes is used to determine reachability and the round-trip delay
through the associated network path.

§	Monitor: A component is used to monitor the state of health of other parts
of the system. A system monitor can detect failure or congestion in the net-
work or other shared resources, such as from a denial-of-service attack.

§	Heartbeat: A periodic message exchange occurs between a system monitor
and a process being monitored.

§	Timestamp: Detect incorrect sequences of events, primarily in distributed
message-passing systems.

§	Sanity checking: Check the validity or reasonableness of a component’s oper-
ations or outputs; typically based on a knowledge of the internal design, the
state of the system, or the nature of the information under scrutiny.

§	Condition monitoring: Check conditions in a process or device, or validates
assumptions made during the design.

§	Voting: Check that replicated components are producing the same results.
Comes in various flavors, such as replication, functional redundancy, ana-
lytic redundancy.

§	Exception detection: Detect a system condition that alters the normal flow
of execution, such as a system exception, parameter fence, parameter typ-
ing, or timeout.

§	Self-test: Procedure for a component to test itself for correct operation.

Recover from Faults (Preparation and Repair)

§	Active redundancy (hot spare): All nodes in a protection group receive and
process identical inputs in parallel, allowing redundant spare(s) to maintain
synchronous state with the active node(s).

§	Passive redundancy (warm spare): Only the active members of the protec-
tion group process input traffic; one of their duties is to provide the redun-
dant spare(s) with periodic state updates.

§	Spare (cold spare): Redundant spares of a protection group remain out of
service until a failover occurs, at which point a power-on-reset procedure is
initiated on the redundant spare prior to its being placed in service.

§	Exception handling: Deal with the exception by reporting it or handling it,
potentially masking the fault by correcting the cause of the exception and
retrying.

§	Rollback: Revert to a previous known good state, referred to as the “roll-
back line.”

§	Software upgrade: Perform in-service upgrades to executable code images
in a non-service-affecting manner.

§	Retry: When a failure is transient, retrying the operation may lead to success.

232 Appendix A—A Design Concepts Catalog

§	Ignore faulty behavior: Ignore messages sent from a source when it is de-
termined that those messages are spurious.

§	Degradation: Maintain the most critical system functions in the presence of
component failures, dropping less critical functions.

§	Reconfiguration: Reassign responsibilities to the resources that continue to
function, while maintaining as much functionality as possible.

Recover from Faults (Reintroduction)

§	Shadow: Operate a previously failed or in-service upgraded component in a
“shadow mode” for a predefined time prior to reverting the component back
to an active role.

§	State resynchronization: Passive redundancy; state information is sent from
active to standby components, in this partner tactic to active redundancy.

§	Escalating restart: Recover from faults by varying the granularity of the
component(s) restarted and minimizing the level of service affected.

§	Non-stop forwarding: Functionality is split into supervisory and data
variants. If a supervisor fails, a router continues forwarding packets along
known routes while protocol information is recovered and validated.

Prevent Faults

§	Removal from service: Temporarily place a system component in an out-of-
service state for the purpose of mitigating potential system failures.

§	Transactions: Bundle state updates so that asynchronous messages exchanged
between distributed components are atomic, consistent, isolated, and durable.

§	Predictive model: Monitor the state of health of a process to ensure that the
system is operating within nominal parameters; take corrective action when
conditions are detected that are predictive of likely future faults.

§	Exception prevention: Prevent system exceptions from occurring by masking
a fault, or prevent them via smart pointers, abstract data types, and wrappers.

§	Increase competence set: Design a component to handle more cases—
faults—as part of its normal operation.

A.4.2 Interoperability Tactics

Figure A.13 summarizes the tactics to achieve interoperability.

A.4 Tactics 233

Interoperability Tactics

Locate Manage Interfaces

Discover
Service

Orchestrate

Tailor Interface

Request
Correctly
Handled

Information
Exchange
Request

FIGURE A.13 Interoperability tactics

Locate

§	Discover service: Locate a service by searching a known directory service.
There may be multiple levels of indirection in this location process—that is,
a known location may point to another location that in turn can be searched
for the service.

Manage Interfaces

§	Orchestrate: Use a control mechanism to coordinate, manage, and sequence
the invocation of services. Orchestration is used when systems must interact
in a complex fashion to accomplish a complex task.

§	Tailor interface: Add or remove capabilities to an interface such as transla-
tion, buffering, or data smoothing.

A.4.3 Modifiability Tactics

Figure A.14 summarizes the tactics to achieve modifiability.

234 Appendix A—A Design Concepts Catalog

Modifiability Tactics

Increase
Cohesion

Reduce
Coupling

Split Module
Encapsulate

Use an
Intermediary

Change
Arrives

Change Made

within Time
and Budget

Reduce Size
of a Module

Increase
Semantic
Coherence

Restrict
Dependencies

Refactor

Abstract Common
Services

Defer
Binding

FIGURE A.14 Modifiability tactics

Reduce Size of a Module

§	Split module: If the module being modified includes a great deal of capa-
bility, the modification costs will likely be high. Refining the module into
several smaller modules should reduce the average cost of future changes.

Increase Cohesion

§	Increase semantic coherence: If the responsibilities A and B in a module
do not serve the same purpose, they should be placed in different modules.
This may involve creating a new module or moving a responsibility to an
existing module.

Reduce Coupling

§	Encapsulate: Encapsulation introduces an explicit interface to a module.
This interface includes an API and its associated responsibilities, such as
“perform a syntactic transformation on an input parameter to an internal
representation.”

§	Use an intermediary: Given a dependency between responsibility A and
responsibility B (for example, carrying out A first requires carrying out B),
the dependency can be broken by using an intermediary.

A.4 Tactics 235

§	Restrict dependencies: Restrict the modules that a given module interacts
with or depends on.

§	Refactor: Refactoring is undertaken when two modules are affected by the
same change because they are (at least partial) duplicates of each other.

§	Abstract common services: When two modules provide not quite the same
but similar services, it may be cost-effective to implement the services just
once in a more general (abstract) form.

Defer Binding
§	Defer binding: Allow decisions to be bound after development time.

A.4.4 Performance Tactics

Figure A.15 summarizes the tactics to achieve performance.

Performance Tactics

Control Resource Demand Manage Resources

Manage sampling rate
Events

Arrive

Response
Generated

within

Time
Constraints

Limit event response

Prioritize events

Reduce overhead

Bound execution times

Increase resource
efficiency

Increase resources

Introduce concurrency

Maintain multiple
copies of computations

Maintain multiple
copies of data

Bound queue sizes

Schedule resources

FIGURE A.15 Performance tactics

236 Appendix A—A Design Concepts Catalog

Control Resource Demand

§	Manage sampling rate: If it is possible to reduce the sampling frequency at
which a stream of data is captured, then demand can be reduced, albeit typ-
ically with some loss of fidelity.

§	Limit event response: Process events only up to a set maximum rate, there-
by ensuring more predictable processing when the events are actually
processed.

§	Prioritize events: If not all events are equally important, you can impose a
priority scheme that ranks events according to how important it is to service
them.

§	Reduce overhead: The use of intermediaries (important for modifiability)
increases the resources consumed in processing an event stream; removing
them improves latency.

§	Bound execution times: Place a limit on how much execution time is used to
respond to an event.

§	Increase resource efficiency: Improving the algorithms used in critical areas
will decrease latency.

Manage Resources

§	Increase resources: Faster processors, additional processors, additional
memory, and faster networks all have the potential to reduce latency.

§	Increase concurrency: If requests can be processed in parallel, the blocked
time can be reduced. Concurrency can be introduced by processing differ-
ent streams of events on different threads or by creating additional threads
to process different sets of activities.

§	Maintain multiple copies of computations: The purpose of replicas is to
reduce the contention that would occur if all computations took place on a
single server.

§	Maintain multiple copies of data: Keep copies of data (with one potentially
being a subset of the other) on storage with different access speeds.

§	Bound queue sizes: Control the maximum number of queued arrivals and
consequently the resources used to process the arrivals.

§	Schedule resources: When there is contention for a resource, the resource
must be scheduled.

A.4.5 Security Tactics

Figure A.16 summarizes the tactics to achieve security.

A.4 Tactics 237

Security Tactics

Resist Attacks

Attack
System
Detects,

Resists,
Reacts,

or Recovers

Detect Attacks Recover
from Attacks

React to
Attacks

Detect
Intrusion

Detect Service
Denial

Verify Message
Integrity

Detect Message
Delay

Maintain
Audit Trail

Restore

See
Availability

Revoke
Access

ck
tmpu

Lo
Co er

Inform
Actors

Encrypt Data

Limit Exposure

Change Default
Settings

Separate
Entities

Identify
Actors

Authenticate
Actors

Authorize
Actors

Limit Access

Validate Input

FIGURE A.16 Security tactics

Detect Attacks

§	Detect intrusion: Compare network traffic or service request patterns with-
in a system to a set of signatures or known patterns of malicious behavior
stored in a database.

§	Detect service denial: Compare the pattern or signature of network traffic
coming into a system to historic profiles of known denial-of-service attacks.

§	Verify message integrity: Use techniques such as checksums or hash values
to verify the integrity of messages, resource files, deployment files, and
configuration files.

§	Detect message delay: By checking the time that it takes to deliver a mes-
sage, it is possible to detect suspicious timing behavior.

Resist Attacks

§	Identify actors: Identify the source of any external input to the system.
§	Authenticate actors: Ensure that an actor (user or a remote computer) is

actually who or what it purports to be.
§	Authorize actors: Ensure that an authenticated actor has the rights to access

and modify either data or services.

238 Appendix A—A Design Concepts Catalog

§	Limit access: Control what and who may access which parts of a system,
such as processors, memory, and network connections.

§	Limit exposure: Reduce the probability of a successful attack, or restrict
the amount of potential damage—for example, by concealing facts about
a system (“security by obscurity”) or by dividing and distributing critical
resources (“don’t put all your eggs in one basket”).

§	Encrypt data: Apply some form of encryption to data and to
communication.

§	Validate input: Validate input from a user or an external system before ac-
cepting it in the system.

§	Separate entities: Use physical separation on different servers attached to
different networks, virtual machines, or an “air gap.”

§	Change default settings: Force the user to change settings assigned by
default.

React to Attacks

§	Revoke access: Limit access to sensitive resources, even for normally legiti-
mate users and uses, if an attack is suspected.

§	Lock computer: Limit access to a resource if there are repeated failed at-
tempts to access it.

§	Inform actors: Notify operators, other personnel, or cooperating systems
when an attack is suspected or detected.

Recover from Attacks
In addition to the availability tactics for recovery of failed resources, an audit
may be performed to recover from attacks.

§	Maintain Audit Trail: Keep a record of user and system actions and their
effects, to help trace the actions of, and to identify, an attacker.

A.4.6 Testability Tactics

Figure A.17 summarizes the tactics to achieve testability.

A.4 Tactics 239

Testability Tactics

Control and Observe
System State

Limit Complexity

Specialized
Interfaces

Limit Structural
Complexity

Limit
Nondeterminism

Tests

Executed

Faults

Detected

Record/
Playback

Localize State
Storage

Sandbox

Executable
Assertions

Abstract Data
Sources

FIGURE A.17 Testability tactics

Control and Observe System State

§	Specialized interfaces: Control or capture variable values for a component
either through a test harness or through normal execution.

§	Record/playback: Capture information crossing an interface and use it as
input for further testing.

§	Localize state storage: To start a system, subsystem, or module in an arbi-
trary state for a test, it is most convenient if that state is stored in a single
place.

§	Abstract data sources: Abstracting the interfaces lets you substitute test
data more easily.

§	Sandbox: Isolate the system from the real world to enable experimentation
that is unconstrained by the worry about having to undo the consequences
of the experiment.

§	Executable assertions: Assertions are (usually) hand-coded and placed at
desired locations to indicate when and where a program is in a faulty state.

240 Appendix A—A Design Concepts Catalog

Limit Complexity

§	Limit structural complexity: Avoid or resolve cyclic dependencies between
components, isolate and encapsulate dependencies on the external environ-
ment, and reduce dependencies between components in general.

§	Limit nondeterminism: Find all the sources of non-determinism, such as
unconstrained parallelism, and weed them out as far as possible.

A.4.7 Usability Tactics

Figure A.18 summarizes the tactics to achieve usability.

Support User Initiative

§	Cancel: The system must listen for the cancel request; the command being
canceled must be terminated; resources used must be freed; and collaborat-
ing components must be informed.

§	Pause/resume: Temporarily free resources so that they may be reallocated
to other tasks.

§	Undo: Maintain a sufficient amount of information about system state so
that an earlier state may be restored at the user’s request.

§	Aggregate: Aggregate lower-level objects into a group, so that a user opera-
tion may be applied to the group, freeing the user from the drudgery.

User

Request

User Given
Appropriate

Feedback and
Assistance

Usability Tactics

Support User
Initiative

Support System
Initiative

Cancel

Maintain User Model

Maintain System Model

Undo

Pause/Resume

Aggregate

Maintain Task Model

FIGURE A.18 Usability tactics

A.5 Externally Developed Components 241

Support System Initiative

§	Maintain task model: Determine the context so the system can have some
idea of what the user is attempting and provide assistance.

§	Maintain user model: Explicitly represent the user’s knowledge of the sys-
tem, the user’s behavior in terms of expected response time, and other char-
acteristics of the system.

§	Maintain system model: The system maintains an explicit model of itself.
This tactic is used to determine expected system behavior so that appropri-
ate feedback can be given to the user.

A.5 Externally Developed Components

Externally developed components, including frameworks, were discussed in
Section 2.5.5. Here we present a small sample of Java frameworks used in the
case study in Chapter 4. Each framework is described very briefly and is associ-
ated with particular technology families, patterns, and tactics. Full details for the
different frameworks can be found by visiting the URL that is provided.

A.5.1 Spring Framework

Framework
Name Spring Framework

Technology
family

Dependency injection and aspect-oriented programming (AOP)
container

Language Java

URL http://projects.spring.io/spring-framework/

Purpose The application framework allows the objects that form an
application to be connected. It also supports different concerns
through AOP.

Overview The Spring container connects standard Java objects, or POJOs
(Plain Old Java Objects), by using information from an XML file
called “Application Context” or annotations in the Java code. This is
the “Inversion of Control and Dependency Injection” pattern, since
object dependencies are injected by the container.
The framework supports several aspects using AOP which are
introduced as proxies between the Java objects when the container
connects them. Supported aspects include:

 ■ Security
 ■ Transaction management
 ■ Publishing object interfaces so the objects can be accessed re-

motely—for example, via Web Services

(continues)

../../../../../projects.spring.io/spring-framework/default.htm

242 Appendix A—A Design Concepts Catalog

Framework
Name Spring Framework

Structure

This diagram represents how two objects are connected by two
important elements in the framework: the Spring container and the
application context. (Key: UML)

Implemented
design
patterns and
tactics

Patterns
 ■ Inversion of Control and Dependency Injection
 ■ Factory
 ■ Proxy

Tactics
 ■ Availability: Transactions
 ■ Testability: Abstract data sources (separate interface and

implementation)

Benefits ■ Excellent tool support
 ■ Simple integration with other frameworks such as web UI (Spring

MVC, JSF), and persistence (JPA, Hibernate, iBatis) and integra-
tion (JMS)

Limitations ■ Apache License 2.0
 ■ Complex framework

A.5 Externally Developed Components 243

A.5.2 Swing Framework

Framework
Name Swing Framework

Technology
family

Local user interface

Language Java

URL http://docs.oracle.com/javase/tutorial/uiswing/index.html

Purpose Framework to support the creation of portable local (non-web) user
interfaces.

Overview The Swing framework provides a library of user interface
components, including JFrame (windows), JMenu, JTree, JButton,
JList, and JTable, among others. These components are built
around the Model View Controller and Observer patterns.
Components such as JTables are views and controllers, and each
has a corresponding model class (e.g., TableModel).
Components allow observers (called “listeners”) to be registered
to manage different events. For example, JButtons allow
ActionListeners to be registered as observers so that when the
button is clicked, a callback method (actionPerformed) is
invoked.

Structure

This diagram represents a small fraction of the framework’s classes (Key: UML)

Implemented
design
patterns and
tactics

Patterns:
 ■ Model View Controller
 ■ Observer
 ■ Others such as Composite and Iterator

Benefits ■ Portable (can run on any operating system)
 ■ Part of Java API
 ■ Good tool support

Limitations ■ Slower than using native UI elements
 ■ Not the same look and feel as native UI elements

../../../../../docs.oracle.com/javase/tutorial/uiswing/index.html

244 Appendix A—A Design Concepts Catalog

A.5.3 Hibernate Framework

Framework
Name Hibernate

Technology
family

Object-oriented to relational mapper

Language Java

URL http://hibernate.org/

Purpose Simplify persistence of objects in a relational database.

Overview Hibernate allows objects to be easily persisted in a relational data-
base (and it supports different dataLLLbase engines). Object-relational
mapping rules are described declaratively in an XML file called
hibernate.cfg or using annotations in the classes whose objects
need to be persisted.
Hibernate supports transactions and provides a query language
called HQL (Hibernate Query Language) that is used to retrieve
objects from the database. Hibernate utilizes multilevel caching
schemes to improve performance. It also provides mechanisms
to allow lazy acquisition of dependent objects to improve perfor-
mance and reduce resource consumption. These mechanisms are
configured declaratively in the configuration files.

Structure

This diagram represents an entity that is persisted to a database
by the Hibernate runtime using the information in the configuration
file (Key: UML)

Implemented
design patterns
and tactics

Patterns:
 ■ Data Mapper
 ■ Resource Cache
 ■ Lazy Acquisition

Tactics:
 ■ Availability: Transactions
 ■ Performance: Maintain multiple copies of data (cache)

../../../../../hibernate.org/default.htm

A.6 Summary 245

Framework
Name Hibernate

Benefits ■ Greatly simplifies the persistence of objects in relational
database

Limitations ■ Complex API
 ■ Slower than JDBC (Java Database Connectivity)
 ■ Difficult to map to legacy database schemas

A.5.4 Java Web Start Framework

Framework
Name Java Web Start Framework

Technology
family

Deployment mechanism

Language Java

URL http://docs.oracle.com/javase/tutorial/deployment/webstart/

Purpose Provide a platform-independent, secure, and robust deployment
technology.

Overview By using a web browser, end users can start standard (non-
applet) Java applications, and Java Web Start ensures they are
running the latest version. To launch an application, users click a
link on a page. If this is the first time the application is used, Java
Web Start downloads the application. If the application has been
previously used, Java Web Start verifies that the local copy is the
latest version and launches it or downloads the newest version.

Structure Not available

Implemented
design patterns
and tactics

Tactics:
 ■ Security: Limit access (sandbox)
 ■ Performance: Maintain multiple copies of data (cache)

Benefits ■ Applications run in a sandbox but can read and write to local files.
 ■ Because the application is cached, once it has been downloaded

startup time is greatly reduced.

Limitations ■ First launch may take some time

A.6 Summary

In this appendix we presented a design concepts catalog for the application do-
main of enterprise applications. Catalogs such as this one can become useful or-
ganizational assets, and we can readily imagine catalogs for other application do-
mains such as Big Data (which we employ in Chapter 5) or mobile development.

../../../../../docs.oracle.com/javase/tutorial/deployment/webstart/default.htm

246 Appendix A—A Design Concepts Catalog

The catalog presented here is not intended to be exhaustive, as it contains
only the design concepts used in the Chapter 4 case study. A real catalog, how-
ever, would contain a larger number of design concepts with more detailed de-
scriptions and would be a valuable asset in a software development organization.

A.7 Further Reading

Reference architectures and deployment patterns are taken from Microsoft, Ap-
plication Architecture Guide (2nd ed.), October 2009.

The tactics catalog is derived primarily from L. Bass, P. Clements, and
R. Kazman, Software Architecture in Practice (3rd ed.), 2012. Some of these tac-
tics were earlier described in: F. Bachmann, L. Bass, and R. Nord, “Modifiabil-
ity Tactics”, SEI/CMU Technical Report CMU/SEI-2007-TR-002, 2007, and J.
Scott and R. Kazman, “Realizing and Refining Architectural Tactics: Availabil-
ity”, CMU/SEI-2009-TR-006, 2009.

The architectural patterns are taken from R. Buschmann, K. Henney, and
D. Schmidt, Pattern-Oriented Software Architecture, Volume 4, Wiley, 2007.

The Spring framework is discussed in C. Walls, Spring in Action (4th ed.),
Manning Publications, 2014.

The Swing framework is discussed in J. Elliot, R. Eckstein, D. Wood, and
B. Cole, Java Swing (2nd ed.), O’Reilly Media, 2002.

The Hibernate framework is discussed in C. Bauer and G. King, Java Per-
sistence with Hibernate, Manning Publications, 2015.

247

B
Tactics-Based
Questionnaires

This appendix provides a set of tactics-based questionnaires for the seven most
important quality attributes: availability, interoperability, modifiability, perfor-
mance, security, testability, and usability. How do we know that these are the
seven most important ones? This decision was based on an analysis of the qual-
ity attributes that were elicited from stakeholders in more than 15 years of SEI
ATAM data.

In addition to these “top seven”, we include a tactics-based questionnaire
for DevOps, which is a combination of tactics from modifiability, availability,
performance, and testability, to illustrate how simple it is to tailor such question-
naires for your own use.

B.1 Using the Questionnaires

These questionnaires could be used by an analyst, who poses each question, in turn,
to the architect and records the responses, as a means of conducting a lightweight
architecture review. Alternatively, the questionnaires could be employed as a set of
reflective questions, that you could, on your own, use to examine your architecture.

In either case, to use these questionnaires, simply follow these four steps:

248 Appendix B—Tactics-Based Questionnaires

1. For each tactics question, fill the “Supported” column with Y if the tactic is
supported in the architecture and with N otherwise. The tactic name in the
“Tactics Question” column appears in bold.

2. If the answer in the “Supported” column is Y, then in the “Design Decisions
and Location” column describe the specific design decisions made to support
the tactic and enumerate where these decisions are manifested (located) in
the architecture. For example, indicate which code modules, frameworks, or
packages implement this tactic.

3. In the “Risk” column, indicate the anticipated/experienced difficulty or risk
of implementing the tactic using a (H = high, M = medium, L = low) scale.
For example, a tactic that was of medium difficulty or risk to implement (or
which is anticipated to be of medium difficulty, if it has not yet been imple-
mented) would be labeled M.

4. In the “Rationale” column, describe the rationale for the design decisions made
(including a decision to not use this tactic). Briefly explain the implications of
this decision. For example, you might explain the rationale and implications of
the decision in terms of the effort on cost, schedule, evolution, and so forth.

B.2 Availability

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

1 Detect
faults

Does the system use
ping/echo to detect a
failure of a component or
connection, or network
congestion?

2 Does the system use a
component to monitor
the state of health of other
parts of the system? A
system monitor can de-
tect failure or congestion
in the network or other
shared resources, such
as from a denial-of-ser-
vice attack.

3 Does the system use a
heartbeat—a periodic
message exchange be-
tween a system monitor
and a process—to detect
a failure of a component
or connection, or network
congestion?

4 Does the system use a
time stamp (as in section
A.4.1) to detect incorrect
sequences of events in
distributed systems?

B.2 Availability 249

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

5 Does the system do
any sanity checking:
checking the validity or
reasonableness of a
component’s operations
or outputs?

6 Does the system do
condition monitoring,
checking conditions in a
process or device, or vali-
dating assumptions made
during the design?

7 Does the system use
voting to check that
replicated components
are producing the same
results? The replicated
components may be iden-
tical replicas, functionally
redundant, or analytically
redundant.

8 Do you use exception de-
tection to detect a system
condition that alters the
normal flow of execution
(e.g., system exception,
parameter fence, parame-
ter typing, timeout)?

9 Can the system do a
self-test to test itself for
correct operation?

10 Recover
from faults
(prepara-
tion and
repair)

Does the system employ
active redundancy (hot
spare)? In active redun-
dancy, all nodes in a pro-
tection group (a group of
nodes where one or more
nodes are “active”, with
the remainder serving as
redundant spares) receive
and process identical
inputs in parallel, allowing
redundant spares to main-
tain synchronous state
with the active node(s).

11 Does the system employ
passive redundancy
(warm spare)? In passive
redundancy, only the
active members of the
protection group process
input traffic; one of their
duties is to provide the
redundant spare(s) with
periodic state updates.

(continues)

250 Appendix B—Tactics-Based Questionnaires

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

12 Does the system employ
spares (cold spares)?
Here redundant spares
of a protection group
remain out of service until
a failover occurs, at which
point a power-on-reset
procedure is initiated
on the redundant spare
prior to its being placed in
service.

13 Does the system employ
exception handling to
deal with faults? Typically
the handling involves
either reporting the fault
or handling it, potentially
masking the fault by cor-
recting the cause of the
exception and retrying.

14 Does the system employ
rollback, so that it can re-
vert to a previously saved
good state (the “rollback
line”) in the event of a
fault?

15 Can the system perform
in-service software
upgrades to execut-
able code images in a
non-service-affecting
manner?

16 Does the system system-
atically retry in cases
where the component or
connection failure may be
transient?

17 Can the system simply
ignore faulty behavior
(e.g., ignore messages
sent from a source when
it is determined that those
messages are spurious)?

18 Does the system have
a policy of degradation
when resources are com-
promised, maintaining
the most critical system
functions in the presence
of component failures,
and dropping less critical
functions?

B.2 Availability 251

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

19 Does the system have
consistent policies and
mechanisms for recon-
figuration after failures,
reassigning responsi-
bilities to the resources
left functioning, while
maintaining as much
functionality as possible?

20 Recover
from faults
(reintro-
duction)

Can the system operate
a previously failed or
in-service upgraded
component in a “shadow
mode” for a predefined
time prior to reverting the
component back to an
active role?

21 If the system uses active
or passive redundancy,
does it also employ state
resynchronization, to
send state information
from active to standby
components?

22 Does the system employ
escalating restart—
that is, does it recover
from faults by varying
the granularity of the
component(s) restarted
and minimizing the level
of service affected?

23 Can message process-
ing and routing portions
of the system employ
nonstop (as in section
A.4.1) forwarding, where
functionality is split into
supervisory and data
planes? In this case, if a
supervisor fails, a router
continues forwarding
packets along known
routes while protocol
information is recovered
and validated.

24 Prevent
faults

Can the system remove
components from ser-
vice, temporarily placing
a system component in
an out-of-service state,
for the purpose of miti-
gating potential system
failures?

(continues)

252 Appendix B—Tactics-Based Questionnaires

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

25 Does the system employ
transactions—bundling
state updates so that
asynchronous mes sages
exchanged between
distributed components
are atomic, consistent,
isolated, and durable?

26 Does the system use
a predictive model
to monitor the state of
health of a component to
ensure that the system is
operating within nominal
parameters? When condi-
tions are detected that are
predictive of likely future
faults, the model initiates
corrective action.

27 Does the system pre-
vent exceptions from
occurring by, for example,
masking a fault, using
smart pointers, abstract
data types, or wrappers?

28 Has the system been
designed to increase
its competence set, for
example by designing a
component to handle more
cases—faults—as part of
its normal operation?

B.3 Interoperability

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

1 Locate Does the system have
a way to discover ser-
vices (typically through
a directory service)?

2 Manage
interfaces

Does the system have a
way to orchestrate the
activities of services?
That is, does it have a
control mechanism to
coordinate, manage,
and sequence the invo-
cation of services?

B.4 Modifiability 253

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

3 Does the system have
a way to tailor inter-
faces? For example,
can it add or remove
capabilities to an inter-
face such as transla-
tion, buffering, or data
smoothing?

B.4 Modifiability

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

1 Reduce
size of a
module

Do you make modules
simpler by splitting the
module? For example,
if you have a large,
complex module, can
you split it into two (or
more) smaller, simpler
modules?

2 Increase
cohesion

Does the system
consistently support
increasing semantic
coherence? For exam-
ple, if responsibilities in
a module do not serve
the same purpose, they
should be placed in
different modules. This
may involve creating a
new module or moving
a responsibility to an
existing module.

3 Reduce
coupling

Does the system con-
sistently encapsulate
functionality? This typ-
ically involves isolating
the functionality under
scrutiny and introducing
an explicit interface to it.

(continues)

254 Appendix B—Tactics-Based Questionnaires

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

4 Does the system consis-
tently use an interme-
diary to keep modules
from being too tightly
coupled? For example,
if A calls concrete func-
tionality C, you might in-
troduce an abstraction B
that mediates between
A and C.

5 Do you restrict de-
pendencies between
modules in a systematic
way? Or is any system
module free to interact
with any other module?

6 When two or more
unrelated modules
change together—that
is, when they are
regularly affected by the
same changes—do you
regularly refactor the
functionality to isolate
the shared functionality
as common code in a
distinct module?

7 Does the system
abstract common
services, in cases
where you are providing
sev eral similar services?
For example, this
technique is often used
when you want your
system to be portable
across operating sys-
tems, hardware, or other
environment variations.

8 Defer
binding

Does the system
regularly defer binding
of important function-
ality so that it can be
replaced later in the life
cycle, perhaps even
by end users? For
example, do you use
plug-ins, add-ons, or
user scripting to extend
the functionality of the
system?

B.5 Performance 255

B.5 Performance

#
Tactics
Group Tactics Question

Supported?
(Y/N)

Risk

Design
Decisions
and
Location

Rationale and
Assumptions

1 Control
resource
demand

If your inputs are a
continuous stream of
data, does the system
manage the sampling
rate? That is, is it pos-
sible to sample the data
at varying rates (with
concomitant changes in
accuracy/fidelity)?

2 Does the system mon-
itor and limit its event
response? Does the
system limit the number
of events it responds
to in a time period, to
ensure predictable
responses for the
events that are actually
serviced?

3 Given that you may
have more requests for
service than available
resources, does the sys-
tem prioritize events?

4 Does the system
reduce the overhead
of responding to service
requests by, for exam-
ple, removing interme-
diaries or co-locating
resources?

5 Does the system
monitor and bound
execution time?
More generally, do
you bound the amount
of any resource (e.g.,
memory, CPU, storage,
bandwidth, connections,
locks) expended in
response to requests for
services?

6 Do you increase
resource efficiency?
For example, do you
regularly improve the
efficiency of algorithms
in critical areas, to
decrease latency and
improve throughput?

(continues)

256 Appendix B—Tactics-Based Questionnaires

#
Tactics
Group Tactics Question

Supported?
(Y/N)

Risk

Design
Decisions
and
Location

Rationale and
Assumptions

7 Manage
resources

Can the system
seamlessly increase
resources (e.g., CPU,
memory, network band-
width)?

8 Can the system intro-
duce concurrency?
For example, does it
support the seamless
addition of parallel pro-
cessing streams so that
more requests for ser-
vices can be processed
concurrently?

9 Does the system main-
tain multiple copies of
data (e.g., by replicating
databases or using
caches) to decrease
contention for frequently
accessed data?

10 Does the system main-
tain multiple copies of
computations (e.g., by
keeping a pool of serv-
ers in a server farm) to
decrease contention
for frequently ac-
cessed computational
resources?

11 Does the system bound
queue sizes? That is,
do you limit the number
of events placed in
a queue, waiting for
services?

12 Does the system sched-
ule resources, particu-
larly scarce resources,
so that they may be
allocated according to
an explicit scheduling
policy?

B.6 Security 257

B.6 Security

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

1 Detecting
attacks

Does the system sup-
port the detection of
intrusions? An example
is comparing network
traffic or service request
patterns within a system
to a set of signatures or
known patterns of mali-
cious behavior stored in
a database.

2 Does the system
support the detection
of denial-of-service
attacks? An example is
the comparison of the
pattern or signature of
network traffic coming
into a system to historic
profiles of known deni-
al-of-service attacks.

3 Does the system
support the verification
of message integrity?
An example is the use
of techniques such as
checksums or hash val-
ues to verify the integrity
of messages, resource
files, deployment files,
and configuration files.

4 Does the system
support the detection
of message delays?
An example is checking
the time that it takes to
deliver a message.

5 Resisting
attacks

Does the system sup-
port the identification
of actors? An example
is identifying the source
of any external input to
the system.

6 Does the system sup-
port the authentication
of actors? An example
is ensuring that an actor
(a user or a remote com-
puter) is actually who or
what it purports to be.

(continues)

258 Appendix B—Tactics-Based Questionnaires

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

7 Does the system support
the authorization of
actors? An example
is ensuring that an
authenticated actor has
the rights to access and
modify either data or
services.

8 Does the system support
limiting access? An ex-
ample is controlling what
and who may access
which parts of a system,
such as processors,
memory, and network
connections.

9 Does the system support
limiting exposure? An
example is reducing the
probability of a success-
ful attack, or restricting
the amount of potential
damage, by concealing
facts about a system
(“security by obscurity”)
or dividing and distrib-
uting critical resources
(“don’t put all your eggs
in one basket”).

10 Does the system sup-
port data encryption?
An example is to apply
some form of encryption
to data and to commu-
nication.

11 Does the system
validate input in a
consistent, system-wide
way? An example is the
use of a security frame-
work or validation class
to perform actions such
as filtering, canonical-
ization, and escaping of
external input.

B.6 Security 259

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

12 Does the system design
consider the separation
of entities? An example
is the physical separa-
tion of different servers
attached to different
networks, the use of
virtual machines, or an
“air gap”.

13 Does the system
support changes in the
default settings? An
example is forcing the
user to change settings
assigned by default.

14 Reacting
to attacks

Does the system sup-
port revoking access?
An example is limiting
access to sensitive
resources, even for nor-
mally legitimate users
and uses, if an attack is
suspected.

15 Does the system sup-
port locking access?
An example is limiting
access to a resource if
there are repeated failed
attempts to access it.

16 Does the system sup-
port informing actors?
An example is notifying
operators, other person-
nel, or cooperating sys-
tems when an attack is
suspected or detected.

17 Recover-
ing from
attacks

Does the system
support maintaining an
audit trail? An example
is keeping a record of
user and system actions
and their effects, to help
trace the actions of, and
to identify, an attacker

260 Appendix B—Tactics-Based Questionnaires

B.7 Testability

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

1 Control
and
observe
system
state

Does the system or the
system components
provide specialized
interfaces to facilitate
testing and monitoring?

2 Does the system
provide mechanisms
that allow information
that crosses an interface
to be recorded so that
it can be used later
for testing purposes
(record/playback)?

3 Is the state of the
system, subsystem,
or modules stored in a
single place to facilitate
testing (localized state
storage)?

4 Can you abstract data
sources—for example,
by abstracting inter-
faces? Abstracting
the interfaces lets you
substitute test data more
easily.

5 Can the system be
executed in isolation (a
sandbox) to experiment
or test it without worry-
ing about having to undo
the consequences of the
experiment?

6 Are executable asser-
tions used in the system
code to indicate when
and where a program is
in a faulty state?

7 Limit
complexity

Is the system designed
in such a way that
structural complexity
is limited? Examples
include avoiding cyclic
dependencies, reducing
dependencies, and us-
ing techniques such as
dependency injection.

B.8 Usability 261

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

8 Does the system include
few or no (i.e., limited)
sources of nondeter-
minism? This helps
to limit the behavioral
complexity that comes
with unconstrained par-
allelism, which in turn
simplifies testing.

B.8 Usability

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

1 Support-
ing user
initiative

Does the system
support operation can-
celing?

2 Does the system
support operation
undoing?

3 Does the system
support operations to
be paused and later
resumed? Examples are
pausing the download of
a file in a web browser
and allowing the user to
retry an incomplete (and
failed) download.

4 Does the system
support operations to
be applied to groups of
objects (aggregation)?
For example, does it
allow you to see the
cumulative size of a
number of files that
are selected in a file
browser window?

(continues)

262 Appendix B—Tactics-Based Questionnaires

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale and
Assumptions

5 Support
system
initiative

Does the system
provide assistance to
the user based on the
tasks that he or she is
performing (by main-
taining a task model)?
Examples include:

 ■ Validation of input data
 ■ Drawing user attention

to changes in the UI
 ■ Maintaining UI

consistency
 ■ Adding toolbars and

menus to help users
find functionality pro-
vided by the UI

 ■ Using wizards or other
techniques to guide
users in performing
key user scenarios

6 Does the system
support adjustments to
the UI with respect to
the class of users (by
maintaining a user
model)? Examples
include supporting UI
customization (including
localization) and sup-
porting accessibility.

7 Does the system
provide appropriate
feedback to the user
based on the system
characteristics (by
maintaining a system
model)? Examples
include:

 ■ Avoiding blocking the
user while handling
long-running requests

 ■ Providing feedback on
action progress (i.e.,
progress bars)

 ■ Displaying user-
friendly errors without
exposing sensitive
data by managing
exceptions

 ■ Adjusting the UI with
respect to screen size
and resolution

B.9 DevOps 263

B.9 DevOps

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale
and
Assumptions

1 Testability:
control and
observe
system
state

Does the system or the
system components
provide specialized
interfaces to facilitate
testing and monitoring?

2 Does the system
provide mechanisms
that allow information
that crosses an interface
to be recorded so that
it can be used later
for testing purposes
(record/playback)?

3 Can the system be
executed in isolation (a
sandbox) to experiment
or test it without worry-
ing about having to undo
the consequences of the
experiment?

4 Perfor-
mance:
manage
resources

Can the system
seamlessly increase
resources (e.g., CPU,
memory, network band-
width)?

5 Can the system intro-
duce concurrency?
For example, does it
support the seamless
addition of parallel pro-
cessing streams so that
more requests for ser-
vices can be processed
concurrently?

6 Does the system main-
tain multiple copies of
data (e.g., by replicating
databases or using
caches) to decrease
contention for frequently
accessed data?

(continues)

264 Appendix B—Tactics-Based Questionnaires

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale
and
Assumptions

7 Does the system main-
tain multiple copies
of computations (e.g.,
by keeping a pool of
servers in a server
farm) to decrease
contention for frequently
accessed computational
resources?

8 Does the system sched-
ule resources, particu-
larly scarce resources,
so that they may be
allocated according to
an explicit scheduling
policy?

9 Perfor-
mance:
control
resource
demand

Does the system
reduce overhead of
responding to service
requests by, for exam-
ple, removing interme-
diaries or co-locating
resources?

10 If your inputs are a
continuous stream of
data, does the system
manage the sampling
rate?
That is, is it possible for
you to sample the data
at varying rates (with
concomitant changes in
accuracy/fidelity)?

11 Does the system
monitor and limit its
event response? That
is, does the system limit
the number of events
it responds to in a
time period, to ensure
predictable responses
for the events that are
actually serviced?

12 Given that you may
have more requests for
service than available
resources, does the sys-
tem prioritize events?

B.9 DevOps 265

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale
and
Assumptions

13 Modifiabil-
ity: reduce
coupling

Does the system con-
sistently encapsulate
functionality? This typ-
ically involves isolating
the functionality under
scrutiny and introducing
an explicit interface to it.

14 Does the system
abstract common
services, in cases
where you are providing
sev eral similar services?
For example, this
technique is often used
when you want your
system to be portable
across operating sys-
tems, hardware, or other
environment variations.

15 Modifiabil-
ity: defer
binding

Does the system
regularly defer binding
of important function-
ality so that it can be
replaced later in the life
cycle, perhaps even
by end users? For
example, do you use
plug-ins, add-ons, or
user scripting to extend
the functionality of the
system?

16 Availability:
detect
faults

Does the system use a
component to moni-
tor the state of health
of other parts of the
system? A system mon-
itor can detect failure
or congestion in the
network or other shared
resources, such as
from a denial-of-service
attack.

17 Do you use exception
detection to detect a
system condition that
alters the normal flow of
execution (e.g., system
exception, parameter
fence, parameter typing,
timeout)?

(continues)

266 Appendix B—Tactics-Based Questionnaires

#
Tactics
Group Tactics Question

Supported?
(Y/N) Risk

Design
Decisions
and
Location

Rationale
and
Assumptions

18 Does the system use
voting to check that
replicated components
are producing the same
results? The replicated
components may be
identical replicas, func-
tionally redundant, or
analytically redundant.

19 Availability:
recover
from faults
(prepara-
tion and
repair)

Does the system employ
rollback, so that it can
revert to a previously
saved good state (the
“rollback line”) in the
event of a fault?

20 Does the system employ
active redundancy
(hot spare)? In active
redundancy, all nodes
in a protection group (a
group of nodes where
one or more nodes
are “active”, with the
remainder serving as re-
dundant spares) receive
and process identical
inputs in parallel, allow-
ing redundant spares to
maintain synchronous
state with the active
node(s).

21 Does the system have
consistent policies
and mechanisms for
reconfiguration after
failures, reassigning
responsibilities to the
resources left function-
ing, while maintaining
as much functionality as
possible?

22 Does the system employ
exception handling
to deal with faults?
Typically, the handling
involves either reporting
the fault or handling it,
potentially masking the
fault by correcting the
cause of the exception
and retrying.

B.10 Further Reading 267

B.10 Further Reading

The tactics catalog from which the questionnaires are derived can be found in L. Bass,
P. Clements, and R. Kazman, Software Architecture in Practice (3rd ed.), 2012.

An analysis of quality attribute data from SEI ATAMs, showing which
qualities are the most common in practice, can be found in I. Ozkaya, L. Bass,
R. Sangwan, and R. Nord, “Making Practical Use of Quality Attribute Informa-
tion”, IEEE Software, March/April 2008, and in a later study by S. Bellomo,
I. Gorton, and R. Kazman, “Insights from 15 Years of ATAM Data: Towards
Agile Architecture”, IEEE Software, 32:5, 38-45, September/October 2015.

The set of DevOps tactics was developed and presented in H-M Chen,
R. Kazman, S. Haziyev, V. Kropov, and D. Chtchourov, “Architectural Support for
DevOps in a Neo-Metropolis BDaaS Platform”, IEEE 34th Symposium on Reliable
Distributed Systems Workshop (SRDSW), Montreal, Canada, September 2015.

This page intentionally left blank

269

Glossary

Active Reviews for Intermediate Design (ARID) method A method in
which the architecture design (or part of it) is presented to a group of review-
ers—typically the engineers who will use the design. After the presentation, a set
of scenarios is selected. The reviewers attempt to use the elements in the archi-
tecture to satisfy the scenarios. The reviewers are asked to write code or pseudo-
code or to create sequence diagrams for the purpose of identifying interfaces.
This method can be used in preparation for element interaction design.

ADD See Attribute Driven Design method.

ADL See Architecture Description Language.

Analysis The process of breaking a complex entity into its constituent parts as
a means of understanding it. Analysis is used at different moments in the design
process; for example, the inputs are analyzed to make design decisions and the
resulting architecture is also analyzed to gauge if it is appropriate to satisfy its
associated drivers.

Application framework A reusable software element, constructed out of pat-
terns and tactics, that provides generic functionality addressing recurring domain
and quality attribute concerns across a broad range of applications. Also called a
framework.

Architectural concern An additional aspect that needs to be considered as
part of architectural design but that is not expressed as a traditional requirement.
Examples include general concerns, such as creating an overall system structure,
and more specific concerns, such as managing exceptions or generating logs.
Other architectural concerns include internal requirements, which are seldom
expressed by customers, and issues resulting from analysis activities, such as
architectural evaluations.

Architectural design The activity of making decisions to translate ideas from
the world of needs (architectural drivers) to the world of solutions, in terms of
structures.

270 Glossary

Architectural drivers The design purpose, architecturally significant require-
ments, and architectural concerns that serve as an input to the design process.
These considerations are critical to the success of the system and, as such, they
drive and shape the architecture.

Architectural evaluation A technique to analyze and assess the value of
architectural decisions.

Architectural pattern See Patterns (Architectural and Design).

Architecturally significant requirement (ASR) A system requirement that
has a particular importance with respect to the software architecture. ASRs in-
clude quality attributes, primary functional requirements, and constraints.

Architecture Description Language (ADL) A notation to document an archi-
tecture. ADLs typically employ both a graphical notation and a (formally defined)
textual notation to describe an architecture—primarily the computational (runtime)
components and interactions among them—and its properties.

Architecture Tradeoff Analysis Method (ATAM) An established method for
analyzing architectures, driven by scenarios. Its purpose is to assess the conse-
quences of architectural decisions in light of quality attribute requirements and
business goals.

ARID See Active Reviews for Intermediate Design method.

ASR See Architecturally significant requirement.

ATAM See Architecture Tradeoff Analysis Method.

Attribute-Driven Design (ADD) method An iterative architecture design
method that takes drivers as inputs and produces an architecture. In each iteration,
structures are produced by refining elements identified in previous iterations.
These structures are created primarily from design concepts, which are selected
and instantiated to address a subset of the drivers that are selected for the iteration.

Big Design Up Front (BDUF) The (now largely discredited) practice of at-
tempting to do all of the architectural design at the beginning of a project. It is
usually associated with a waterfall software development life cycle.

Brownfield development Software development that builds upon an existing
asset. Contrast with greenfield development.

Constraint A decision over which the architect has little or no control. It may
be either technical or organizational.

Cost Benefit Analysis Method (CBAM) A method that associates costs, ben-
efits, and schedule implications with strategies chosen to make improvements in
an architecture. This method is used to rank the strategies, as a means of finding
an optimal set of strategies to implement in the next iteration.

Glossary 271

Design concept The building blocks from which the structures that make up
the architecture are created. Different types of design concepts exist, including
reference architectures, deployment patterns, architectural patterns, tactics, tech-
nology families, and externally developed components (such as frameworks).

Design concepts catalog A collection of design concepts for a particular ap-
plication domain.

Design decision A decision that is made during the design process, including
the selection of a design concept and the instantiation of the selected design
concept.

Design iteration A group of design decisions through which a subset of the
drivers is transformed into structures. One or more design iterations are per-
formed within a design round.

Design pattern See Patterns (Architectural and Design).

Design purpose The reason why the architecture design is performed. For
example, the design may be performed for estimation during pre-sales, prototyp-
ing, or development purposes.

Design round The architecture design activities performed within a develop-
ment cycle if an iterative development model is used, or the entire set of archi-
tecture design activities if a waterfall model is used.

Deployment pattern A pattern that provides a model for how to physically
structure the system to deploy it.

Development cycle The development of a project increment (i.e., a project
iteration).

DevOps A portmanteau word, combining “development” and “operations”.
DevOps stands in contrast to earlier forms of running a software project, in
which development teams developed software and then “tossed it over the wall”
to operations. In DevOps, the two teams work closely together and adopt pro-
cesses, tools, and architectures to make it easier to rapidly modify, build, test,
release, and monitor software.

Element (in definition of software architecture) One of the parts that com-
pose the structures of the architecture. Elements may exist at runtime or develop-
ment time or they may exist physically. Elements are connected by relations.

Element interaction design The identification of the modules and their as-
sociated interfaces to support the nonprimary use cases. This is typically per-
formed using sequence diagrams according to the decisions made during archi-
tectural design.

Element internals design The internal design of the elements identified as
part of element interaction design, so as to satisfy the element’s interface.

272 Glossary

Externally developed component A design concept that is concrete in nature
and that is not built as part of the system development, but rather is acquired
and reused. Such components include application frameworks, products, and
platforms.

Greenfield development Software development that begins with little or no
legacy code base to build upon.

Instantiation The process of adapting a design concept to the particular
problem being addressed. It involves creating elements and relations, and as-
sociating responsibilities with the elements, from the selected design concept.
Instantiation can also refer to configuration when design concepts are externally
developed components.

Interface The externally visible properties of elements that establish a con-
tractual specification that allows elements to collaborate and exchange informa-
tion, via relations.

Marketecture A single-page, typically informal, representation of a software
system architecture. This representation is aimed primarily at nontechnical
people, and is used to present a system vision.

Minimum viable product (MVP) An evolutionary prototype with only those
core features that allow the product to be deployed. It emphasizes hypothesis
testing by fielding the product with real users and collecting usage data that then
helps to confirm or reject the hypothesis.

Patterns (architectural and design) Conceptual solutions to recurring design
problems that exist in a defined context. When they are used to address an archi-
tectural driver, they are “architectural patterns”; when their use has just a local
influence—for example, when used to perform element internals design—they
are “design patterns”.

Platform A complete infrastructure upon which to build and execute
applications.

Pre-sales A phase in project development in which the scope of the project, a
business case, and an initial plan are established. This phase is used by the cus-
tomers (or funders) to decide whether they want to pursue the project.

Primary functional requirements Functionality is the ability of the system to
do the work for which it was intended. Primary functionality is usually defined
as functionality that is critical to achieve the business goals that motivate the
development of the system.

Product A self-contained functional piece of software that can be integrated
into the system that is being designed and that requires only minor configuration
or coding. Also called a software package.

Glossary 273

Proof of concept (PoC) A prototype that is used to quickly evaluate a tech-
nology, thereby determining whether it can satisfy critical architecture scenarios,
usually related to quality attributes such as performance and scalability.

QAW See Quality Attribute Workshop.

Quality attribute A measurable or testable property of a system that is used to
indicate how well the system satisfies the needs of its stakeholders. Quality attri-
butes are orthogonal to functionality.

Quality attribute scenario See Scenario.

Quality Attribute Workshop (QAW) A facilitated brainstorming session in-
volving a group of system stakeholders in eliciting, specifying, prioritizing, and
achieving consensus on quality attributes.

Rationale A line of reasoning and justification that led to a design decision.

Refactoring Changing the system’s architecture or code, without affecting its
functionality, to achieve different quality attribute responses.

Reference Architecture Blueprints that provide an overall logical structure for
types of applications, consisting of a reference model that is mapped onto one or
more architectural patterns. It has been proven in business and technical contexts,
and typically comes with a set of supporting artifacts that facilitates its use.

Relation (in definition of software architecture) One of the parts that com-
pose the structures of an architecture. Relations may exist at runtime or develop-
ment time or they may exist physically. Relations connect elements.

Scenario A technique to specify quality attributes that describes a stimulus
received by the system and a measurable response to this stimulus. Scenarios are
testable, falsifiable hypotheses about the quality attribute behavior of the system
under consideration. Completely developed scenarios are described using six
parts, but less elaborate (“raw”) scenarios can also be described.

Sketch of a view A preliminary type of documentation that is created as part
of the design process. The sketch can be refined to become a full-fledged view,
typically after the design activity has finished.

Software architecture “The set of structures needed to reason about the system,
which comprise software elements, relations among them, and properties of both”.

Spike A time-boxed task that is created to answer a technical question or
gather information.

Structure A coherent set of software elements, relations, and properties.
Structures are represented in views.

Tactic A proven design strategy that influences the control of a quality attri-
bute response.

274 Glossary

Technical debt The decisions—often called “hacks”—made in a software
project that trade off short-term gains, such as ease of implementation, at the
cost of long-term sustainability of the system. By taking such shortcuts, the soft-
ware base “goes into debt”.

Technology family A group of technologies with common functional purposes.

View A representation of an architectural structure. A view usually includes a
graphical representation of the structure and additional information that comple-
ments the information presented in the diagram.

275

About the Authors

Humberto Cervantes is a professor at Universidad Autónoma Metropolitana Iz-
tapalapa in Mexico City. His primary research interest is software architecture
and, more specifically, the development of methods and tools to aid in the design
process. He is active in promoting the adoption of these methods and tools in the
software industry. Since 2006, Cervantes has been a consultant for software de-
velopment companies in topics related to software architecture. He has authored
numerous research papers and popularization articles, and has also coauthored
one of the few books in Spanish on the topic of software architecture.

Cervantes received a master’s degree and a Ph.D. from Université Joseph
Fourier in Grenoble, France. He holds the Software Architecture Professional and
ATAM Evaluator certificates from SEI. Besides software engineering, Cervantes
enjoys spending time with his family and friends, exercising, and traveling.

Rick Kazman is a professor at the University of Hawaii and a research scien-
tist at the Software Engineering Institute of Carnegie Mellon University. His
primary research interests are software architecture, design and analysis tools,
software visualization, and software engineering economics. Kazman has created
several highly influential methods and tools for architecture analysis, including
SAAM (Software Architecture Analysis Method), ATAM (Architecture Tradeoff
Analysis Method), CBAM (Cost–Benefit Analysis Method), and the Dali and
Titan tools. He is the author of more than one hundred fifty peer-reviewed pa-
pers, and is coauthor of several books, including Software Architecture in Prac-
tice, Third Edition (Addison-Wesley, 2013), Evaluating Software Architectures
(Addison-Wesley, 2002), and Ultra-Large-Scale Systems (Software Engineering
Institute, 2006).

Kazman received a B.A. (English/music) and M.Math. (computer science)
from the University of Waterloo, an M.A. (English) from York University, and
a Ph.D. (computational linguistics) from Carnegie Mellon University. How he
ever became a software engineering researcher is anybody’s guess. When not ar-
chitecting or writing about architecture, Kazman may be found cycling, playing
the piano, practicing Tae Kwon Do and Jiu Jitsu, or (more often) flying back and
forth between Hawaii and Pittsburgh.

This page intentionally left blank

277

Index

A
ABD (Architecture-Based Design). See ADD

(Attribute-Driven Design).
ACDM (Architecture-Centric Design

Method), 164–165
Active Reviews for Intermediate Design

(ARID). See ARID (Active Reviews
for Intermediate Design).

ADD (Attribute-Driven Design). See also
Architectural drivers; Methods.

analyzing current design, 48–49
definition, 270
design concepts, selecting, 47, 55
design iterations, 44
history of, 8–9
interfaces, defining, 47–48, 61–64
iterating, 49
overview, 44
recording design decisions, 48, 68
reviewing inputs, 44–46
rounds, 44
sketching views, 48, 65
steps in, 44–49
by system type, 50. See also specific types.

ADD (Attribute-Driven Design), alternatives
to

ACDM (Architecture-Centric Design
Method), 164–165

a general model of software architecture
design, 161–163

Microsoft technique for sketching an ar-
chitecture, 169–171

Process of Software Architecting,
167–169

RUP (Rational Unified Process), 165–166
viewpoints and perspectives method,

171–173
ADD (Attribute-Driven Design), design pur-

pose, 18
identifying, 44
reviewing, 48–49

ADD (Attribute-Driven Design), elements
allocating responsibilities to, 47–48, 60
instantiating, 47–48, 58
refining, 46–47

ADD (Attribute-Driven Design), iteration
goals

establishing, 46
reviewing, 48–49

ADL (Attribute Description Language)
definition, 269
overview, 190–191
UML (Unified Modeling Language), 191

Agile Manifesto, 17, 197–199
Agile processes

in the development lifecycle, 197–199
enabling, 16–17

Agreements, in architectural design, 17
Allocating responsibilities, case studies

greenfield development for mature do-
mains, 84, 91–92, 101–102

greenfield development for novel do-
mains, 116, 126–128, 134–136,
139–141

Allocation structures, 59
Allocation view, brownfield development

case study, 150–151
Analysis

analytic models, 176–177
anchoring bias, 186
back-of-the-envelope analyses, 177
checklists, 177
confirmation bias, 186
cost of, 179–180
definition, 7, 175
experiments, 177
overview, 175–176
prototyping, 177
purpose of, 178–179
reflective questions, 177, 186–187
scenario-based design reviews, 187, 189.

See also ATAM (Architecture
Tradeoff Analysis Method).

simulation, 177
substantiating your beliefs, 176–177
tactics based, 180–185
techniques, 179–180
thought experiments, 177

Analytic models, 176–177

278 Index

Analytical skills among architects
practicing, 209
prerequisites, 7
Smart Decisions game, 209

Analyzing current design, case studies
brownfield development, 156–158
greenfield development for mature do-

mains, 88–89, 99–100, 104
greenfield development for novel domains,

118–120, 129–131, 138, 143
Analyzing current design, with ADD, 48–49
Anchoring bias, 186
Application frameworks, 36, 269
Architects

role of, 7
skills, 7
skills practice, 209–210

Architectural analysis, 163
Architectural backlogs, 69–70, 163
Architectural concerns, case studies

brownfield development, 148
greenfield development for mature do-

mains, 80
greenfield development for novel do-

mains, 110
Architectural concerns, definition, 26–28,

269
Architectural design. See also Design.

achieving agreements, 17
definition, 270
detailed, 15–16
importance of, 16–17
low level, 16
in software architecture life-cycle, 4

Architectural design decisions
candidate decisions, 38–40
catalog resources, 39
documenting, 39–40
overview, 38–40
regarding patterns, 38–39
web page resources, 39

Architectural documentation. See
Documentation.

Architectural drivers
concerns, 26–27
constraints, 27–28
definition, 4, 270
derived requirements, 27
design purpose, 18–19
general concerns, 26
identifying, 45–46
internal requirements, 27

issues, 27
primary functionality, 25–26
quality attributes, 19–25
selecting, 46
in software architecture, 13
specific concerns, 26

Architectural drivers, satisfying. See also
Structures.

greenfield development for mature do-
mains case study, 82–84, 90, 101

greenfield development for novel domains
case study, 112–115, 121–126,
132–133, 139

overview, 46–47
Architectural drivers, selecting

greenfield development for mature do-
mains case study, 81, 90, 101

greenfield development for novel domains
case study, 112, 121, 131–132, 139

Architectural elements. See Elements.
Architectural evaluation

definition, 270
in a general model of software architec-

ture design, 163
in software architecture life-cycle, 6

Architectural implementation/conformance
checking, 6

Architectural patterns. See Patterns.
Architectural styles, vs. reference architec-

tures, 29
Architectural synthesis, 163
Architecture design process. See Design

process.
Architecture-Based Design (ABD). See ADD

(Attribute-Driven Design).
Architecture-Centric Design Method

(ACDM), 164–165
ARID (Active Reviews for Intermediate

Design)
defining interfaces, 64–65
definition, 269

ASRs (architecturally significant require-
ments), 4, 270

ATAM (Architecture Tradeoff Analysis
Method), 187–190, 270

Attribute Description Language (ADL). See
ADL (Attribute Description Language).

Attribute-Driven Design (ADD). See ADD
(Attribute-Driven Design).

Availability
scenarios, brownfield development case

study, 146

Index 279

tactics, 230–232
tactics-based questionnaire, 180–185,

248–252

B
Backlogs, architectural, 69–70, 163
Back-of-the-envelope analyses, 177
BDUF (Big Design Up Front)

definition, 270
in the development lifecycle, 197–198
identifying modules, 64

Big Data case study. See Greenfield develop-
ment for novel domains case study.

Blueprints. See Documentation; Reference
architectures; Sketches.

Booch, Grady, on architectural design, 14
Books and publications

“A General Model of Software Architecture
Design” (Hofmeister et al.), 161

Just Enough Software Architecture
(Fairbanks), 7

Microsoft Application Architecture Guide
(Microsoft), 169, 211

Pattern-Oriented Software Architecture: A
Pattern Language for Distributed
Computing (Buschmann et al.), 31,
32, 41, 224

The Process of Software Architecting
(Eeles and Cripps), 167–169

“A Rational Design Process: How and
Why to Fake It” (Parnas and
Clements), 2

Software Architecture in Practice, 3rd ed.
(Bass et al.), 3, 7, 8, 19, 35, 230

Software Systems Architecture: Working
with Stakeholders Using View-
points and Perspectives (Rozanski
and Woods), 171–173

Brooks, Fred, 208
Brownfield development, definition, 50, 270
Brownfield development case study

allocation view, 150–151
architectural concerns, 148
availability scenarios, 146
business case, 145–148
constraints, 148
existing documentation, 149–151
module view, 149–150
performance scenarios, 146
quality attribute scenarios, 146, 148
reliability scenarios, 146
use case model, 147

Brownfield development case study, design
process

allocating responsibilities, 154
analyzing current design, 156–158
defining interfaces, 154
design purpose, reviewing, 156–158
instantiating elements, 154
iteration goals, establishing, 152
iteration goals, reviewing, 156–158
recording design decisions, 154–156
refining elements, 152
reviewing inputs, 152
selecting design concepts, 152–153
sketching views, 154–156
supporting new drivers, 152–158

Business case, case studies
brownfield development, 145–148
greenfield development for mature do-

mains, 75–77
greenfield development for novel do-

mains, 107–108
Buy vs. build, design concept, 35–38

C
Candidate decisions, 38–40
Case studies

banking systems. See Brownfield devel-
opment case study.

Big Data. See Greenfield development for
novel domains case study.

development for legacy systems. See
Brownfield development.

FCAPS model for network management.
See Greenfield development for
mature domains case study.

greenfield development. See Greenfield
development for mature domains
case study; Greenfield develop-
ment for novel domains case study.

Catalogs of design concepts. See Design con-
cepts catalogs.

CBAM (Cost Benefit Analysis Method),
55–57, 270

C&C (component and connector) structures,
59

Checklists, 177
Communication skills, among architects, 7
Compatibility, externally developed compo-

nents, 38
Concurrency, 31, 32, 228
Cone of uncertainty, 194–195
Confirmation bias, 186

280 Index

Constraints
on architectural drivers, 27–28
definition, 28, 270
selecting design concepts, 58

Constraints, case studies
brownfield development, 148
greenfield development for mature do-

mains, 79
greenfield development for novel do-

mains, 110
Construction phase of RUP, 165, 199
Cost

of design analysis, 179–180
estimating, 194–196
externally developed components, 36

Cost Benefit Analysis Method (CBAM).
See CBAM (Cost Benefit Analysis
Method).

Cripps, Peter, 167

D
Data stream elements, refining, 131–138
Database access patterns, design concepts

catalog, 229
Deployment patterns

definition, 271
example, 32–33
instantiating elements, 60

Deployment patterns, design concepts
catalogs

distributed deployment, 222–223
Load-Balanced Cluster patterns,

223–224
nondistributed deployment, 221
performance patterns, 223–224

Design. See also Architectural design.
definition, 11
element interaction, 14–15
element internals, 15
high level, 16
overview, 11–12
in software architecture, 13–14

Design candidates, identifying, 54–55
Design concepts catalog

example, 211
definition, 271
as resources for architectural design de-

cisions, 39
uses for, 203–204

Design concepts catalogs, architectural de-
sign patterns

concurrency, 228

database access, 229
interface partitioning, 226–227
Load-Balanced Cluster patterns, 224
Pattern-Oriented Software Architecture:

A Pattern Language for Distrib-
uted Computing (Buschmann et
al.), 224

structural patterns, 224–226
Design concepts catalogs, deployment

patterns
distributed deployment, 222–223
Load-Balanced Cluster patterns,

223–224
nondistributed deployment, 221
performance patterns, 223–224

Design concepts catalogs, externally devel-
oped components

Hibernate framework, 244–245
Java Web Start framework, 245
Spring framework, 241–242
Swing framework, 243

Design concepts catalogs, reference
architectures

Microsoft Application Architecture
Guide, 211

mobile applications, 218
RIAs (rich Internet applications),

215–217
rich client applications, 214–215
service applications, 218–221
web applications, 212–214

Design concepts catalogs, tactics
availability, 230–232
interoperability, 232–233
modifiability, 233–235
performance, 235–236
security, 236–238
testability, 238–240
usability, 240–241

Design concepts. See also, Reference archi-
tectures, Design patterns, Deploy-
ment patterns, Tactics, and Externally
developed components.

buy vs. build, 35–38
definition, 12, 271
design primitives. See Tactics.
design principles, 28
externally developed components,

35–38
identifying design candidates, 54–55
overview, 28
reference architectures, 29, 30

Index 281

types of, 59–60
Design concepts, selecting

CBAM (Cost Benefit Analysis Method),
55–57

constraints, 58
greenfield development for mature do-

mains, 51
greenfield development for mature

domains case study, 82–84,
90–91, 101

greenfield development for novel do-
mains case study, 112–115,
121–126, 132–133, 139

overview, 47, 55
prototyping, 57–58
stakeholder benefits, 56
utility, 56

Design decisions, recording. See Recording
design decisions.

Design iteration goals, establishing
brownfield development case study, 152
greenfield development for mature do-

mains case study, 90, 101
greenfield development for novel do-

mains case study, 112, 121,
131–132, 139

Design iteration goals, reviewing
brownfield development case study,

156–158
greenfield development for mature

domains case study, 88–89,
99–100, 104

greenfield development for novel do-
mains case study, 118–120,
129–131, 138, 143

Design iterations
definition, 271
in the design process, 44, 49
purpose of, 50–52

Design patterns. See Patterns.
Design primitives. See Tactics.
Design principles, 28
Design process, alternative methods

ACDM (Architecture-Centric Design
Method), 164–165

a general model of software architecture
design, 161–163

Microsoft technique for architecture and
design, 169–171

Process of Software Architecting,
167–169

RUP (Rational Unified Process), 165–166

viewpoints and perspectives method,
171–173

Design process, case studies. See Brown-
field development case study, design
process; Greenfield development for
mature domains case study, design
process; Greenfield development for
novel domains case study, design
process.

Design process, elements in
allocating responsibilities to, 47–48
instantiating, 47–48, 58
refining, 46–47

Design process, need for, 43–44
Design process, organizational aspects

design concepts catalogs, 203–204
individual effort vs. team effort,

202–203
Design process in the development lifecycle

major phases, 193–194
preliminary documentation, 196

Design process in the development lifecycle,
development and operations phase

Agile methods, 197–199
BDUF (Big Design Up Front), 197–198
DevOps, 201–202
emergent approach, 197–198
HLD (high-level design) phase of TSP,

200–201
IMPL (implementation) phase of TSP,

200–201
iteration 0 approach, 199
launch phase, 200
postmortem phase, 200
PSP (Personal Software Process), 200
REQ (requirements) phase of TSP,

200–201
RUP (Rational Unified Process),

199–200
spikes, 199
TEST (testing) phase, 200–201
TSP (Team Software Process), 200–201
Waterfall model, 197–198

Design purpose, definition, 271
Design purpose, overview, 18
Design purpose, reviewing

greenfield development for mature do-
mains case study, 88–89

greenfield development for novel do-
mains case study, 118–120,
129–131, 138, 143

Design rounds, 44, 271

282 Index

Designing
for existing systems. See Brownfield

development.
for legacy systems. See Brownfield

development.
for mature domains. See Greenfield de-

velopment for mature domains.
for novel domains. See Greenfield devel-

opment for novel domains.
from scratch. See Greenfield develop-

ment for mature domains.
Detailed design, 15–16
Development cycle, definition, 271
DevOps

definition, 271
in the development lifecycle, 201–202
tactics-based questionnaire, 263–266

Distributed deployment patterns, design
concepts catalog, 222–223

Documentation. See also Recording design
decisions.

architectural design decisions, 39–40
for legacy systems, 149–151
purposes of, 67
scenario based, 67–68
in software architecture life-cycle, 5

Documentation, preliminary. See also
Sketches; Views.

in the development lifecycle, 196
recording design decisions, 68–69
sketching views, 65–68

Drivers. See Architectural drivers.
Dyson, Freeman, on good engineers, 53

E
Eeles, Peter, 167
Einstein, Albert, on teaching by example, 2
Elaboration phase of RUP, 165–166, 199
Element interaction design

defining interfaces, 64–65
definition, 271
overview, 14–15

Element internals design, 15, 271
Elements (in software architecture)

definition, 271
instantiating. See Instantiating elements.
properties, 60
relationships, 61
responsibilities, 60

Elements (in software architecture), in the
design process

allocating responsibilities to, 47–48

instantiating, 47–48, 58
refining, 46–47

Elements (in software architecture), refining
greenfield development for mature do-

mains case study, 82, 90, 101
greenfield development for novel domains

case study, 112, 121, 132, 139
Emergent approach in the development life-

cycle, 197–198
Estimation in the development lifecycle

cone of uncertainty, 194–195
cost, 194–196
identifying components of, 196
pre-sales phase, 194–196
risk, 194–195
schedules, 194–196
standard components technique, 195–196

Evaluating architecture. See Architectural
evaluation.

Experiments, 177
External interfaces, defining, 61
Externally developed components

application frameworks, 36
compatibility, 38
cost, 36
definition, 35, 272
integration, 38
learning curve, 38
licensing, 36
maturity, 38
overview, 35–38
platforms, 36
popularity, 38
problem addressed by, 36
products, 36
selecting, 36–38
size, 38
in structures, 60
support for, 38
technology families, 35–36, 37
types of, 35–36

Externally developed components, design
concepts catalog

Hibernate framework, 244–245
Java Web Start framework, 245
Spring framework, 241–242
Swing framework, 243

F
Falsifiability of scenarios, 21
FCAPS

accounting management, 76

Index 283

configuration management, 76
fault management, 76
performance management, 76
security management, case study, 76

FCAPS model for network management. See
Greenfield development for mature
domains case study.

Frameworks, choosing for greenfield devel-
opment for mature domains, 50

G
“A General Model of Software Architecture

Design” (Hofmeister et al.), 161
General model of software architecture

design, 161–163
architectural analysis, 163
architectural evaluation, 163
architectural synthesis, 163
flowchart of activities, 162
overview, 161

Greenfield development, definition, 272
Greenfield development for mature

domains
definition, 50
design concepts, selecting, 51
design iterations, purpose of, 50–52
designing, 50–52
frameworks, choosing, 50
identifying structures to support primary

functionality, 51–52
mature domains, examples, 50
refining structures, 52
roadmap for, 50–52

Greenfield development for mature domains
case study

accounting management, 76
architectural concerns, 80
business case, 75–77
configuration management, 76
constraints, 79
fault management, 76
FCAPS model for network management,

75–77
performance management, 76
quality attribute scenarios, 78–79
security management, 76
system requirements, 77–80
use case model, 77–80

Greenfield development for mature domains
case study, design process

allocating responsibilities, 84, 91–92,
101–102

analyzing current design, 88–89,
99–100, 104

architectural drivers, selecting, 81, 90, 101
defining interfaces, 84, 101–102
design concepts, selecting, 82–84,

90–91, 101
design purpose, reviewing, 88–89
identifying structures to support primary

functionality, 89–99
inputs, reviewing, 80–81
instantiating elements, 84, 91–92, 101–102
iteration goals, establishing, 90, 101
iteration goals, reviewing, 88–89
iterations, reviewing, 99–100, 104
overall system structure, establishing,

81–89
quality attribute scenarios, 101–104
recording design decisions, 84–87,

92–99, 102–103
refining elements, 82, 90, 101
satisfying architectural drivers, 82–84,

90, 101
sketching views, 84–87, 92–99, 102–103

Greenfield development for novel domains
definition, 50
novel domains, definition, 52
roadmap for, 52

Greenfield development for novel domains
case study

business case, 107–108
reviewing inputs, 111–112

Greenfield development for novel domains
case study, design process

allocating responsibilities, 116, 126–128,
134–136, 139–141

analyzing current design, 118–120,
129–131, 138, 143

data stream elements, refining, 131–138
defining interfaces, 116, 126–128, 134–

136, 139–141
design concepts, selecting, 112–115,

121–126, 132–133, 139
design purpose, reviewing, 118–120,

129–131, 138, 143
drivers, satisfying, 112–115, 121–126,

132–133, 139
drivers, selecting, 112, 121, 131–132, 139
elements, refining, 112, 121, 132, 139
instantiating architectural elements, 116,

126–128, 134–136, 139–141
iteration goals, establishing, 112, 121,

131–132, 139

284 Index

Greenfield development for novel domains
case study, design process (cont.)

iteration goals, reviewing, 118–120,
129–131, 138, 143

recording design decisions, 116–118,
128–129, 136–137, 141–142

reference architecture, 112–120
server layer, refining, 138–143
sketching views, 116–118, 128–129,

136–137, 141–142
structure of overall system, 112–120
technologies, selecting, 120–131

Greenfield development for novel domains
case study, system requirements

architectural concerns, 110
constraints, 110
quality attribute scenarios, 109–110
use case model, 108–109

H
Hacks. See Technical debt.
Half Sync/Half Async, pattern example, 32,

228
Help

registering Designing Software Architec-
ture, xiii

skills practice, 209–210
Hibernate framework, design concepts cata-

log, 244–245
High-level design, 16
HLD (high-level design) phase, 200–201

I
IMPL (implementation) phase of TSP,

200–201
Inception phase of RUP, 165, 199
Instantiating elements

in ADD (Attribute-Driven Design), 47–48
overview, 59–60
producing structures, 58

Instantiating elements, case studies
greenfield development for mature do-

mains, 84, 91–92, 101–102
greenfield development for novel do-

mains, 116, 126–128, 134–136,
139–141

Instantiation, definition, 272
Integration, externally developed compo-

nents, 38
Interface partitioning, design concepts cata-

log, 226–227
Interfaces, defining

ARID (Active Reviews for Intermediate
Design), 64–65

communicating with engineers, 64–65
in element interaction design, 64–65
external, 61
greenfield development for mature do-

mains case study, 84, 101–102
greenfield development for novel do-

mains case study, 116, 126–128,
134–136, 139–141

internal, 61–64
Interfaces, definition, 61, 272
Internal interfaces, defining, 61–64
Interoperability, tactics-based questionnaire,

252
Interoperability tactics, design concepts

catalog, 232–233
Interviews. See Tactics-based questionnaires.
Iteration. See Design iteration.
Iteration 0 approach, 199

J
Java Web Start framework, design concepts

catalog, 245
Just Enough Software Architecture (Fair-

banks), 7

K
Kanban boards, 70–71

L
Lambda (reference) architecure, 113
Launch phase of the TSP (Team Software

Process), 200
Layers, pattern example, 30–31, 225
Leadership skills, among architects, 7
Learning curve, externally developed com-

ponents, 38
Licensing, externally developed compo-

nents, 36
Load-Balanced Cluster patterns

design concepts catalog, 223–224
example, 32–33

Low-level design, 16

M
Marketecture, definition, 272
Mature domains, examples, 50
Maturity, externally developed components, 38
Methods, 207–209
Microsoft Application Architecture Guide

(Microsoft), 211

Index 285

Microsoft technique for architecture and
design

application overview, creating, 169–170
architectural objectives, identifying, 169
candidate solutions, defining, 170
key issues, identifying, 170
key scenarios, identifying, 169
overview, 169–171

Mission Thread Workshop, 19
Mobile applications, design concepts cata-

log, 218
Modifiability

tactics, design concepts catalog, 233–235
tactics-based questionnaire, 253–254

Module structures, 59
Module view, brownfield development case

study, 149–150
MVP (minimum viable product), 189, 272

N
Negotiation skills, among architects, 7
Nondistributed deployment patterns, design

concepts catalog, 221
Non-risks, definition, 188
Novel domains, definition, 52

O
Optimal solutions vs. satisficing, 14

P
Pattern-Oriented Software Architecture: A

Pattern Language for Distributed
Computing (Buschmann et al.), 224

Patterns
architectural design decisions, 38–39, 59
concurrency, 228
database access, 229
definition, 29, 272
interface partitioning, 226–227
overview, 29–32
structural, design concepts catalog,

224–226
vs. tactics, 34

Patterns, examples
concurrency, 31, 32
deployment, 32–33
Half Sync/Half Async, 32
Layers, 30–31
Load Balanced Cluster, 32–33

Patterns for architectural design, design con-
cepts catalogs

concurrency, 228

database access, 229
interface partitioning, 226–227
Load-Balanced Cluster patterns, 224
Pattern-Oriented Software Architecture: A

Pattern Language for Distributed
Computing (Buschmann et al.), 224

structural patterns, 224–226
Patterns for deployment

definition, 271
example, 32–33
instantiating elements, 60
Load-Balanced Cluster patterns, 224

Patterns for deployment, design concepts
catalogs

distributed deployment, 222–223
Load-Balanced Cluster patterns, 223–224
nondistributed deployment, 221
performance patterns, 223–224

Performance
patterns, design concepts catalog,

223–224
scenarios, brownfield development case

study, 146
tactics, design concepts catalog, 235–236
tactics example, 34–35
tactics-based questionnaire, 185,

255–256
Personal Software Process (PSP), 200
Perspectives, definition, 171–172
Platform, definition, 272
Platforms, externally developed compo-

nents, 36
POC (proof-of-concept). See Proof-of-concept.
Popularity, externally developed compo-

nents, 38
Postmortem phase of the TSP (Team Soft-

ware Process), 200
Preliminary documentation. See also

Sketches; Views.
in the development lifecycle, 196
recording design decisions, 68–69
sketching views, 65–68

Pre-sales process
definition, 16, 272
in the development lifecycle, 194–196

Primary functional requirements, definition,
272

Primary functionality
architectural drivers, 25–26
definition, 25
identifying supporting structures, 51–52
importance of, 25–26

286 Index

Prioritizing quality attributes, 19, 21, 81,
152, 188–190. See also Utility Tree.

Process of Software Architecting
building a proof-of-concept, 168
defining architecture overview, 168
defining requirements, 167
deployment elements, outlining, 168
deployment models, 168
documenting architecture decisions, 168
function models, 168
functional elements, outlining, 168
functional elements, refining, 169
identifying reusable architecture, 168
logical architecture, creating, 167
overview, 167–169
physical architecture, creating, 167
surveying architecture assets, 168
tasks, outlining vs. detailing, 168
tasks, purposes of, 168–169
verifying architecture, 168

The Process of Software Architecting (Eeles
and Cripps), 167–169

Product, definition, 272
Products, externally developed components, 36
Progress, tracking. See Tracking design

progress.
Project proposals. See Pre-sales process.
Project skills, among architects, 7
Proof-of-concept

in ATAM analysis, 189
definition, 273
Process of Software Architecting, 168
RUP, 165

Prototyping
analyzing the design process, 177
in ATAM analysis, 189
selecting design concepts, 57–58

PSP (Personal Software Process), 200

Q
QAW (Quality Attribute Workshop)

definition, 19, 273
output of, 23
purpose of, 21
steps in, 21–22
vs. Utility Tree, 24

Quality attribute scenarios. See also
Scenarios.

components of, 20
definition, 273
overview, 20–21

Quality attribute scenarios, case studies

brownfield development case study,
146, 148

greenfield development for mature do-
mains, 78–79, 101–104

greenfield development for novel do-
mains, 109–110

Quality attributes
in architectural drivers, 19–21
changing, 26
definition, 19, 273
externally developed components for, 38
prioritizing, 19, 21, 81, 152, 188–190.

See also Utility Tree.
refactoring, 26

Questionnaires. See Tactics-based
questionnaires.

R
“A Rational Design Process: How and Why

to Fake It” (Parnas and Clements), 2
Rational Unified Process (RUP). See RUP

(Rational Unified Process).
Rationale, definition, 273
Recording design decisions

creating preliminary documentation,
68–69

overview, 48
Recording design decisions, case studies

brownfield development case study,
154–156

greenfield development for mature do-
mains, 84–87, 92–99, 102–103

greenfield development for novel do-
mains, 116–118, 128–129, 136–
137, 141–142

Refactoring
brownfield development, 53
definition, 273
quality attributes, 26

Reference architectures
vs. architectural styles, 29
brownfield development case study, 153
definition, 29, 273
designing structures, 59
greenfield development for novel do-

mains case study, 112–120
Lambda (reference) architecture, 113
overview, 29

Reference architectures, design concepts
catalog

Microsoft Application Architecture Guide
(Microsoft), 211

Index 287

mobile applications, 218
RIAs (rich Internet applications), 215–217
rich client applications, 214–215
service applications, 218–221
web applications, 212–214

Refining elements, case studies
brownfield development case study, 152
greenfield development for mature do-

mains, 82, 90, 101
greenfield development for novel do-

mains, 112, 121, 132, 139
Refining elements, overview, 46–47
Refining structures for greenfield develop-

ment for mature domains, 52
Reflective questions, 177, 186–187
Relation (in software architecture), defini-

tion, 273
Reliability scenarios, brownfield develop-

ment case study, 146
REQ (requirements) phase of TSP, 200–201
Requirements. See also ASRs (architectur-

ally significant requirements).
derived, for architectural drivers, 27
internal, for architectural drivers, 27
primary functional requirements, 272

Responsibilities, allocating
brownfield development case study, 154
to elements, 47–48
greenfield development for mature

domains case study, 84, 91–92,
101–102

greenfield development for novel do-
mains case study, 116, 126–128,
134–136, 139–141

Reusing architecture or code. See
Refactoring.

Reviewing design inputs, case studies
brownfield development case study, 152
greenfield development for mature do-

mains, 80–81
greenfield development for novel do-

mains, 111–112
Reviewing design inputs, overview, 44–46
Reviewing iterations,

brownfield development case study,
156–158

greenfield development for mature do-
mains case study, 99–100, 104

greenfield development for novel domains,
118–120, 129–131, 138, 143

RIAs (Rich Internet Applications), design
concepts catalog, 215–217

Rich client applications, design concepts
catalog, 214–215

Risk, definition, 188
Risk management

analyzing, 178
ATAM analysis, 188
estimating, 194–195
non-risks, definition, 188

Rounds, development, 44, 271
Rozanski, Nick, 171
RUP (Rational Unified Process)

construction phase, 165, 199
defining candidate architecture, 165–166
in the development lifecycle, 199–200
elaboration phase, 165–166, 199
inception phase, 165, 199
overview, 165–166
proof-of-concept, 165
refining candidate architecture, 166
transition phase, 165, 199

S
Satisficing vs. optimal solutions, 14
Satisfying architectural drivers. See Archi-

tectural drivers, satisfying.
Scenario-based design reviews, 187, 189.

See also ATAM (Architecture
Tradeoff Analysis Method).

Scenario-based documentation, 67–68
Scenarios. See also Quality attribute

scenarios.
definition, 19, 273
falsifiability, 21
prioritizing. See Utility Tree.
testability, 21

Scenarios, quality attribute, 101–104
Schedules, estimating, 194–196
Security, tactics-based questionnaire,

257–259
Security tactics, design concepts catalog,

236–238
Service applications, design concepts cata-

log, 218–221
Simon, Herbert, 208
Simulation, 177
Sketches, definition, 273. See also Prelimi-

nary documentation.
Sketching an architecture, 169–171
Sketching views

creating preliminary documentation,
65–68

overview, 48

288 Index

Sketching views, case studies
brownfield development case study,

154–156
greenfield development for mature do-

mains, 84–87, 92–99, 102–103
greenfield development for novel do-

mains, 116–118, 128–129, 136–
137, 141–142

Skills practice, 209–210
Smart Decisions game, 112, 121, 209
Software architecture

common issues, 4–6
definition, 3, 273
importance of, 3–4

Software architecture, life-cycle activities.
See also specific activities.

architectural design, 4
architectural documentation, 5
architectural evaluation, 6
architectural implementation/

conformance checking, 6
ASRs (architecturally significant require-

ments), 4
Software Architecture in Practice, 3rd ed.

(Bass et al.), 3, 7, 8, 19, 35, 230
Software Systems Architecture: Working with

Stakeholders Using Viewpoints and
Perspectives (Rozanski and Woods),
171–173

Spikes, 199, 273
Spring framework, design concepts catalog,

241–242
Stakeholder benefits, selecting design con-

cepts, 56
Standard components technique for estima-

tion, 195–196
Structural patterns, design concepts catalog,

224–226
Structure of overall system, establishing

greenfield development for mature do-
mains case study, 81–89

greenfield development for novel do-
mains case study, 112–120

Structures
allocation, 59
architectural and design patterns, 59
categories of, 58–59
C&C (component and connector), 59
definition, 273
deployment patterns, 60
design concept types, 59–60
element properties, 60
element relationships, 61

element responsibilities, 60
externally developed components, 60
greenfield development for mature do-

mains case study, 89–99
identifying to support primary function-

ality, 51–52
instantiating elements, 59–60
module, 59
reference architectures, 59
refining for greenfield development for

mature domains, 52
tactics, 60

Surveys. See Tactics-based questionnaires.
Swing framework, design concepts

catalog, 243
System requirements, case study, 77–80

T
Tactic, definition, 273
Tactics

definition, 33–34
designing structures, 60
overview, 33–34
vs. patterns, 34
for performance, example, 34–35

Tactics, design concepts catalog
availability, 230–232
interoperability, 232–233
modifiability, 233–235
performance, 235–236
security, 236–238
testability, 238–240
usability, 240–241

Tactics-based analysis, 180–185
Tactics-based questionnaires

availability, 248–252
availability, example, 180–185
DevOps, 263–266
interoperability, 252
modifiability, 253–254
overview, 247–248
performance, 255–256
security, 257–259
testability, 260–261
usability, 261–262

Team Software Process (TSP), 200–201
Teams, vs. individual efforts, 202–203
Technical debt, 16, 274
Technical skills, among architects, 7,

209–210
Technologies, selecting in a greenfield de-

velopment for novel domains case
study, 120–131

Index 289

Technology families, 35–36, 37, 274
TEST (testing) phase of TSP, 200–201
Testability

of scenarios, 21
tactics, design concepts catalog, 238–240
tactics-based questionnaire, 260–261

Thought experiments, 177
Tracking design progress

architectural backlogs, 69–70
Kanban boards, 70–71
overview, 69

Transition phase of RUP, 165, 199
TSP (Team Software Process), 200–201

U
UML (Unified Modeling Language), 191
Usability

tactics, design concepts catalog, 240–241
tactics-based questionnaire, 261–262

Use case model, case studies
brownfield development, 147
greenfield development for mature do-

mains, 77–80
greenfield development for novel do-

mains, 108–109
Utility, selecting design concepts, 56
Utility Tree

definition, 19
prioritizing quality attributes, 23–24
vs. QAW, 24

V
Viewpoints, definition, 171
Viewpoints and perspectives method

flowchart of steps, 173
overview, 171–173
perspectives, definition, 171–172
steps involved, 172–173
viewpoints, definition, 171

Views, definition, 65, 274
Views, sketching

creating preliminary documentation, 65–68
brownfield development case study,

154–156
greenfield development for mature do-

mains case study, 84–87, 92–99,
102–103

greenfield development for mature do-
mains case study, 84–87, 92–99,
102–103

overview, 48

W
Waterfall model, 197–198
Web applications, design concepts catalog,

212–214
Web pages, as resources for architectural

design decisions, 39
Woods, Eoin, 171

This page intentionally left blank

SATURN Conference

The Software Engineering
Institute (SEI) Architecture
Technology User Network
(SATURN) Conference is
designed for practitioners who
are responsible for producing
robust software architectures
and those who view software
architecture as a critical element
of achieving their business goals.

As the premier architecture
conference for senior engineers,
SATURN offers keynotes and
sessions on both essential
skills and cutting-edge methods
for software architects.

To learn more about SATURN,
see www.sei.cmu.edu/saturn.

Learn More About Software
Architecture from the SEI

SATURN and the SEI Architecture Curriculum

SEI Architecture Curriculum

Based on decades of experience
architecting software-reliant
systems and supported by four
widely acclaimed books, this
curriculum equips software
professionals with state-of-
the-art practices, so they can
efficiently design, evolve, and
maintain software-reliant
systems that meet their
intended business goals.

To learn more about this
curriculum, see www.sei.cmu.
edu/training/find/courses.

../../../../../www.sei.cmu.edu/saturn
../../../../../www.sei.cmu.edu/training/find/courses
../../../../../www.sei.cmu.edu/training/find/courses

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • VMware Press

REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com–The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (informit.com/promotions).
• Sign up for special offers and content newsletters (informit.com/newsletters).
• Read free articles and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Connect with InformIT–Visit informit.com/community
Learn about InformIT community events and programs.

../../../../../www.informit.com/register
../../../../../www.informit.com/default.htm
../../../../../www.informit.com/promotions
../../../../../www.informit.com/newsletters
../../../../../www.informit.com/community
../../../../../www.informit.com/default.htm
../../../../../www.informit.com/default.htm

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	CHAPTER 1 Introduction
	1.1 Motivations
	1.2 Software Architecture
	1.2.1 The Importance of Software Architecture
	1.2.2 Life-Cycle Activities

	1.3 The Role of the Architect
	1.4 A Brief History of ADD
	1.5 Summary
	1.6 Further Reading

	CHAPTER 2 Architectural Design
	2.1 Design in General
	2.2 Design in Software Architecture
	2.2.1 Architectural Design
	2.2.2 Element Interaction Design
	2.2.3 Element Internals Design

	2.3 Why Is Architectural Design So Important?
	2.4 Architectural Drivers
	2.4.1 Design Purpose
	2.4.2 Quality Attributes
	2.4.3 Primary Functionality
	2.4.4 Architectural Concerns
	2.4.5 Constraints

	2.5 Design Concepts: The Building Blocks for Creating Structures
	2.5.1 Reference Architectures
	2.5.2 Architectural Design Patterns
	2.5.3 Deployment Patterns
	2.5.4 Tactics
	2.5.5 Externally Developed Components

	2.6 Architecture Design Decisions
	2.7 Summary
	2.8 Further Reading

	CHAPTER 3 The Architecture Design Process
	3.1 The Need for a Principled Method
	3.2 Attribute-Driven Design 3.0
	3.2.1 Step 1: Review Inputs
	3.2.2 Step 2: Establish the Iteration Goal by Selecting Drivers
	3.2.3 Step 3: Choose One or More Elements of the System to Refine
	3.2.4 Step 4: Choose One or More Design Concepts That Satisfy the Selected Drivers
	3.2.5 Step 5: Instantiate Architectural Elements, Allocate Responsibilities, and Define Interfaces
	3.2.6 Step 6: Sketch Views and Record Design Decisions
	3.2.7 Step 7: Perform Analysis of Current Design and Review Iteration Goal and Achievement of Design Purpose
	3.2.8 Iterate If Necessary

	3.3 Following a Design Roadmap According to System Type
	3.3.1 Design of Greenfield Systems for Mature Domains
	3.3.2 Design of Greenfield Systems for Novel Domains
	3.3.3 Design for an Existing System (Brownfield)

	3.4 Identifying and Selecting Design Concepts
	3.4.1 Identification of Design Concepts
	3.4.2 Selection of Design Concepts

	3.5 Producing Structures
	3.5.1 Instantiating Elements
	3.5.2 Associating Responsibilities and Identifying Properties
	3.5.3 Establishing Relationships Between the Elements

	3.6 Defining Interfaces
	3.6.1 External Interfaces
	3.6.2 Internal Interfaces

	3.7 Creating Preliminary Documentation During Design
	3.7.1 Recording Sketches of the Views
	3.7.2 Recording Design Decisions

	3.8 Tracking Design Progress
	3.8.1 Use of an Architectural Backlog
	3.8.2 Use of a Design Kanban Board

	3.9 Summary
	3.10 Further Reading

	CHAPTER 4 Case Study: FCAPS System
	4.1 Business Case
	4.2 System Requirements
	4.2.1 Use Case Model
	4.2.2 Quality Attribute Scenarios
	4.2.3 Constraints
	4.2.4 Architectural Concerns

	4.3 The Design Process
	4.3.1 ADD Step 1: Review Inputs
	4.3.2 Iteration 1: Establishing an Overall System Structure
	4.3.3 Iteration 2: Identifying Structures to Support Primary Functionality
	4.3.4 Iteration 3: Addressing Quality Attribute Scenario Driver (QA-3)

	4.4 Summary
	4.5 Further Reading

	CHAPTER 5 Case Study: Big Data System
	5.1 Business Case
	5.2 System Requirements
	5.2.1 Use Case Model
	5.2.2 Quality Attribute Scenarios
	5.2.3 Constraints
	5.2.4 Architectural Concerns

	5.3 The Design Process
	5.3.1 ADD Step 1: Review Inputs
	5.3.2 Iteration 1: Reference Architecture and Overall System Structure
	5.3.3 Iteration 2: Selection of Technologies
	5.3.4 Iteration 3: Refinement of the Data Stream Element
	5.3.5 Iteration 4: Refinement of the Serving Layer

	5.4 Summary
	5.5 Further Reading

	CHAPTER 6 Case Study: Banking System
	6.1 Business Case
	6.1.1 Use Case Model
	6.1.2 Quality Attribute Scenarios
	6.1.3 Constraints
	6.1.4 Architectural Concerns

	6.2 Existing Architectural Documentation
	6.2.1 Module View
	6.2.2 Allocation View

	6.3 The Design Process
	6.3.1 ADD Step 1: Review Inputs
	6.3.2 Iteration 1: Supporting the New Drivers

	6.4 Summary
	6.5 Further Reading

	CHAPTER 7 Other Design Methods
	7.1 A General Model of Software Architecture Design
	7.2 Architecture-Centric Design Method
	7.3 Architecture Activities in the Rational Unified Process
	7.4 The Process of Software Architecting
	7.5 A Technique for Architecture and Design
	7.6 Viewpoints and Perspectives Method
	7.7 Summary
	7.8 Further Reading

	CHAPTER 8 Analysis in the Design Process
	8.1 Analysis and Design
	8.2 Why Analyze?
	8.3 Analysis Techniques
	8.4 Tactics-Based Analysis
	8.5 Reflective Questions
	8.6 Scenario-Based Design Reviews
	8.7 Architecture Description Languages
	8.8 Summary
	8.9 Further Reading

	CHAPTER 9 The Architecture Design Process in the Organization
	9.1 Architecture Design and the Development Life Cycle
	9.1.1 Architecture Design During Pre-Sales
	9.1.2 Architecture Design During Development and Operation

	9.2 Organizational Aspects
	9.2.1 Designing as an Individual or as a Team
	9.2.2 Using a Design Concepts Catalog in Your Organization

	9.3 Summary
	9.4 Further Reading

	CHAPTER 10 Final Words
	10.1 On the Need for Methods
	10.2 Next Steps
	10.3 Further Reading

	APPENDIX A: A Design Concepts Catalog
	A.1 Reference Architectures
	A.1.1 Web Applications
	A.1.2 Rich Client Applications
	A.1.3 Rich Internet Applications
	A.1.4 Mobile Applications
	A.1.5 Service Applications

	A.2 Deployment Patterns
	A.2.1 Nondistributed Deployment
	A.2.2 Distributed Deployment
	A.2.3 Performance Patterns: Load-Balanced Cluster

	A.3 Architectural Design Patterns
	A.3.1 Structural Patterns
	A.3.2 Interface Partitioning
	A.3.3 Concurrency
	A.3.4 Database Access

	A.4 Tactics
	A.4.1 Availability Tactics
	A.4.2 Interoperability Tactics
	A.4.3 Modifiability Tactics
	A.4.4 Performance Tactics
	A.4.5 Security Tactics
	A.4.6 Testability Tactics
	A.4.7 Usability Tactics

	A.5 Externally Developed Components
	A.5.1 Spring Framework
	A.5.2 Swing Framework
	A.5.3 Hibernate Framework
	A.5.4 Java Web Start Framework

	A.6 Summary
	A.7 Further Reading

	APPENDIX B: Tactics-Based Questionnaires
	B.1 Using the Questionnaires
	B.2 Availability
	B.3 Interoperability
	B.4 Modifiability
	B.5 Performance
	B.6 Security
	B.7 Testability
	B.8 Usability
	B.9 DevOps
	B.10 Further Reading

	Glossary
	About the Authors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

