
ptg

ptg

Software
Architecture
Document

Structures Designed
into the Architecture

Meeting
Documentation
Stakeholders’ Needs
(Chapter 9)

Set of Relevant
Views

View

View Packets
(Section 10.1.2)

1. Primary Presentation
2. Element Catalog

a. Elements and Their Properties (Chapters 1–5)

b. Relations and Their Properties (Chapters 1–5)

c. Element Interfaces (Chapter 7)

d. Element Behavior (Chapter 8)

3. Context Diagram (Section 6.3)

4. Variability Guide (Section 6.4)

5. Rationale (Section 6.5)

View Template
(Section 10.1)

(see inside back
cover)

Information That
Applies to More
Than One View
(Section 10.2)

Template for
Information Beyond
Views
(Section 10.2)

(see inside back
cover)

1. Documentation
Roadmap

2. How a View Is
Documented

3. System Overview
4. Mapping

Between Views
5. Rationale
6. Directory

is documented

using

consists ofconsists of

consists of

consists of

includes
one or
more

is chosen
to document
based on

is chosen
to document
based on

may be
divided
into

is documented
using

Key

Concept A has relationship “label” with Concept B.

A Blabel

ptg

such as

chosen for
use by
architect to
achieve

View
(Prologue Section P.3)

Style
(Prologue Section P.4)

Hybrid Style
(Section 6.6)

Allocation Style
(Chapter 5)

Component-and-
Connector Style
(Chapters 3 and 4)

Module Style
(Chapters 1 and 2)

Uses Style
(Section 2.2)

Generalization
Style
(Section 2.3)

Layered Style
(Section 2.4)

Aspects Style
(Section 2.5)

Decomposition
Style
(Section 2.1)

Data Model
Style
(Section 2.6)

Multi-tier Style
(Section 4.6.2)

Shared-Data
Style
(Section 4.5.1)

Pipe-and-Filter
Style
(Section 4.2.1)

Client-Server
Style
(Section 4.3.1)

Service-Oriented
Architecture
Style
(Section 4.3.3)

Peer-to-Peer
Style
(Section 4.3.2)

Publish-
Subscribe Style
(Section 4.4.1)

Quality Attributes

combines
one or
more

when applied to a
system, yields a

may

be

may

be

may

be

may

be

Work
Assignment
Style
(Section 5.4)

Deployment
Style
(Section 5.2)

Other Allocations
Styles
(Section 5.5)

Install Style
(Section 5.3)

such assuch as

Key

Concept A has relationship “label” with Concept B.

A Blabel

ptg

Praise for the First Edition of Documenting Software Architectures

“For many years, box and line diagrams have decorated the text that describes system
implementations. These diagrams can be evocative, sometimes inspirational, occasionally
informative, but are rarely precise and never complete. Recent years have brought appreci-
ation for the importance of a deliberate structural design, or architecture, for a system. Now,
in Documenting Software Architectures, we have guidance for capturing that knowledge,
both to aid design and—perhaps more significantly—to inform subsequent maintainers,
who hold over half the total cost of a system’s software in their hands. Half of this cost goes
into figuring out how the system is organized and where to make the change. A documented
architecture is the essential roadmap for the system, leading the maintainer through the
implementation jungle.”

—Mary Shaw, Alan J. Perlis Professor of Computer Science, Carnegie Mellon University
Coauthor of Software Architecture: Perspectives on an Emerging Discipline

“Multiple software architecture views are essential because of the diverse set of stakeholders
(users, acquirers, developers, testers, maintainers, inter-operators, and others) needing to
understand and use the architecture from their viewpoint. Achieving consistency among
such views is one of the most challenging and difficult problems in the software architecture
field. This book is a tremendously valuable first step in defining analyzable software architec-
ture views and frameworks for integrating them.”

—Barry Boehm, TRW Professor of Software Engineering
Director, USC Center for Software Engineering

“There is probably no better set of authors to write this book. The material is readable. It uses
humor effectively. It is nicely introspective when appropriate, and yet in the end it is forthright
and decisive. The philosophical elements of the book are fascinating. The authors consider
concepts that few others even are aware of, present the issues related to those concepts,
and then resolve them! This is a tour de force on the subject of architectural documentation.”

—Robert Glass, Editor-in-Chief, Journal of Systems and Software
Editor/Publisher, The Software Practitioner

“We found this book highly valuable for our work with our business units and would recom-
mend it to anyone who wants to understand the needs for and improve their skills in describ-
ing software architectures for complex systems.”

—Steffen Thiel, Robert Bosch Corporation

ptg

“Since our projects involve numerous stakeholders, documenting the architecture from var-
ious views is of particular importance. For this task, this book provides pragmatic and well-
structured guidance and will be an important reference for industrial practice.”

—Martin Simons, Daimler Chrysler Research and Technology

“Software architecture is an abstract representation of the most essential design decisions.
It is expressed using concepts that are not directly visible in software implementation. How
to identify these decisions? How to represent them? How to find the concepts that make
complex software understandable? This excellent book is written by a group of expert archi-
tects sharing their experience and understanding of useful architectural concepts, essential
design decisions, and practical ways to represent architectural views of complex software.”

—Alexander Ran, Principal Scientist of Software Architecture, Nokia

“I particularly appreciate the major theme of the book: that a software architecture consists
of a variety of different structures, each defined by a set of elements and a relationship
among those elements. I further appreciate the authors pointing out why the diagrams that
seem so beloved by today’s software designers are often deceptive and of little value. (I fre-
quently say that in software engineering every diagram takes a thousand words to explain
it.) It was also refreshing to see an explanation of why ‘levels of abstraction,’ a favorite term
of many software designers, is an empty phrase. These are just a few of the elements that
made me impatient to see this book published.”

—David Weiss, Director of Software Technology Research, Avaya Laboratories

“The authors have written a solid book that discusses many of the most important issues
facing software designers. They point out many decisions that can be considered, dis-
cussed, and made before coding begins to provide guidance for the programmers. These
issues are far more important than most of the decisions that programmers focus on. Prop-
erly made and documented, the decisions discussed in this book will guide programmers
throughout the remainder of the software development process.”

—David Parnas, Director of the Software Engineering Programme, McMaster University

ptg

Documenting Software Architectures
Second Edition

ptg

Documenting Software Architectures
Views and Beyond

Second Edition

Paul Clements
Felix Bachmann

Len Bass
David Garlan
James Ivers

Reed Little
Paulo Merson

Robert Nord
Judith Stafford

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.
CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordination Cen-
ter are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolutionary
Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Soft-
ware Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE;
SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.
IEEE Std 1471 is a trademark of the Institute of Electrical and Electronics Engineers, Inc.
Special permission to reproduce portions of the following is granted by the Software Engineering Institute:
• Robert L. Nord, Paul C. Clements, David Emery, and Rich Hilliard, “A Structured Approach for Reviewing Architecture Doc-

umentation” (CMU/SEI-2009-TN-030). Copyright © 2009 by Carnegie Mellon University.
• Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Little, Robert Nord, and Judith Stafford, “Doc-

umenting Software Architecture: Documenting Behavior” (CMU/SEI-2002-TN-001). Copyright © 2002 by Carnegie Mellon
University.

• Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Little, Robert Nord, and Judy Stafford, “Doc-
umenting Software Architectures: Organization of Documentation Package” (CMU/SEI-2001-TN-010). Copyright © 2001
by Carnegie Mellon University.

• Felix Bachmann, Len Bass, Jeromy Carriere, Paul Clements, David Garlan, James Ivers, Robert Nord, and Reed Little,
“Software Architecture Documentation in Practice: Documenting Architectural Layers” (CMU/SEI-2000-SR-004). Copy-
right © 2000 by Carnegie Mellon University.

• Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Robert Nord, Reed Little, and Judith Stafford, “Soft-
ware Architecture Documentation in Practice: Documenting Software Interfaces” (CMU/SEI-2002-TN-015). Copyright ©
2002 by Carnegie Mellon University.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:
International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data
Documenting software architectures : views and beyond / Paul Clements
... [et al.]. — 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-55268-6 (hardcover : alk. paper)

1. Computer architecture. 2. Software documentation. I. Clements,
Paul, 1955– II. Title.

QA76.9.A73D63 2010
005.1'5—dc22

2010024318
Copyright © 2011 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-55268-6
ISBN-10: 0-321-55268-7
Text printed in the United States on Recycled paper at Courier in Westford, Massachusetts.
First printing, October 2010

ptg

These pictures are meant to entertain you. There is
no significant meaning to the arrows between the boxes.

—A speaker at a recent software architecture conference, coming to a
complex but ultimately inadequate boxes-and-lines-everywhere
viewgraph of her system’s architecture and deciding that trying to
explain it in front of a crowd would not be a good idea

I’d like to start with a diagram. It’s a bunch of shapes
connected by lines. Now I will say some impressive words:
synchronized digital integrated dynamic e-commerce space.
Any questions?

—Dilbert, making a viewgraph presentation

At the end of the day, I want my artifacts to be enduring.
My goal is to create a prescriptive, semi-formal architectural
description that can be used as a basis for setting
department priorities, parallelizing development, [managing]
legacy migration, etc.

—A software architect for a major financial services firm

ptg

This page intentionally left blank

ptg

ix

Contents

About the Cover xxi
Foreword to the Second Edition xxiii
Foreword to the First Edition xxv
Preface xxix
Acknowledgments xxxiii
Reader’s Guide xxxv

Prologue: Software Architectures and Documentation 1
The prologue establishes the necessary concepts and vocabulary for the
remainder of the book. It discusses how software architecture docu-
mentation is used and why it is important. It defines the concepts that
provide the foundation of the book’s approach to documentation. It also
contains seven basic rules for sound documentation.

P.1 A Short Overview of Software Architecture 1
P.1.1 Overview 1
P.1.2 Architecture and Quality Attributes 2

Coming to Terms: What Is Software Architecture? 3
Perspectives: What’s the Difference Between Architecture and Design? 6

P.2 A Short Overview of Architecture Documentation 9
P.2.1 Why Document Software Architecture? 9

Coming to Terms: Specification, Representation, Description, Documentation 10
P.2.2 Uses and Audiences for Architecture

Documentation 12
P.2.3 Architecture Documentation and Quality

Attributes 17
P.2.4 Economics of Architecture Documentation 18
P.2.5 The Views and Beyond “Method” 19
P.2.6 Views and Beyond in an Agile Environment 20
P.2.7 Architectures That Change Faster Than You

Can Document Them 20

ptg

x ■ Contents

P.3 Architecture Views 22

Coming to Terms: A Short History of Architecture Views 23

P.4 Architecture Styles 25
P.4.1 Three Categories of Styles 29

Coming to Terms: Module, Component 29
Coming to Terms: “Architecture Style” and “Architecture Pattern” 32

P.5 Seven Rules for Sound Documentation 36

Perspectives: Beware Notations Everyone “Just Knows” 38
Perspectives: Quivering at Arrows 41

P.6 Summary Checklist 45

P.7 Discussion Questions 46

P.8 For Further Reading 47

Part I A Collection of Software Architecture Styles 49
Part I introduces the basic tools for software architecture documentation: archi-
tecture styles. A style is a specialization of element and relationship types,
together with constraints on how they may be used. By identifying element and
relationship types, styles identify the architecture structures that architects design
to achieve the system’s quality and behavioral goals. There are three fundamental
kinds of structures: module structures, component-and-connector structures,
and allocation structures. Within each category reside a number of architecture
styles. The introduction to Part I includes a brief catalog of the styles that are
described in Chapters 1–5.

I.1 Three Categories of Styles 49

I.2 Style Guides: A Standard Organization for Explaining
a Style 50

I.3 Choosing Which Element and Relation Properties to
Document 52

I.4 Notations for Architecture Views 53

I.5 Examples 54

Chapter 1 Module Views 55
A module is an implementation unit of software that provides a coherent
unit of functionality. Modules form the basis of many standard architec-
ture views. This chapter defines modules and outlines the information
required for documenting module views.

1.1 Overview 55

1.2 Elements, Relations, and Properties of Module Views 56
1.2.1 Elements 56
1.2.2 Relations 57
1.2.3 Properties 57

1.3 What Module Views Are For 59

ptg

Contents ■ xi

1.4 Notations for Module Views 60
1.4.1 Informal Notations 60
1.4.2 Unified Modeling Language 61
1.4.3 Dependency Structure Matrix 62
1.4.4 Entity-Relationship Diagram 62

1.5 Relation to Other Views 63

1.6 Summary Checklist 63

1.7 Discussion Questions 64

1.8 For Further Reading 64

Chapter 2 A Tour of Some Module Styles 65
This chapter introduces some common and important styles in the
module category. Each style is presented in terms of how it specializes
the overall elements and relations found in module styles.

2.1 Decomposition Style 65
2.1.1 Overview 65
2.1.2 Elements, Relations, and Properties 66
2.1.3 What the Decomposition Style Is For 67
2.1.4 Notations for the Decomposition Style 67
2.1.5 Relation to Other Styles 68
2.1.6 Examples Using the Decomposition Style 69
Coming to Terms: Subsystem 73

2.2 Uses Style 74
2.2.1 Overview 74
2.2.2 Elements, Relations, and Properties 75
2.2.3 What the Uses Style Is For 75
2.2.4 Notations for the Uses Style 76
2.2.5 Relation to Other Styles 79
2.2.6 Examples Showing the Uses Style 79
Coming to Terms: Uses 81

2.3 Generalization Style 82
2.3.1 Overview 82
2.3.2 Elements, Relations, and Properties 83
2.3.3 What the Generalization Style Is For 84
2.3.4 Notations for the Generalization Style 84
2.3.5 Relation to Other Styles 84
2.3.6 Examples Using the Generalization Style 85

2.4 Layered Style 87
2.4.1 Overview 87
2.4.2 Elements, Relations, and Properties 89
2.4.3 What the Layered Style Is For 90
2.4.4 Notations for the Layered Style 92
2.4.5 Relation to Other Styles 96

ptg

xii ■ Contents

2.4.6 Examples Using the Layered Style 97
Coming to Terms: Virtual Machines 99
Perspectives: Calling Higher Layers 100
Perspectives: Using a DSM to Maintain a Layered Architecture 101

2.5 Aspects Style 104
2.5.1 Overview 104
2.5.2 Elements, Relations, and Properties 104
2.5.3 What the Aspects Style Is For 105
2.5.4 Notations for the Aspects Style 105
2.5.5 Relation to Other Styles 106
2.5.6 Examples Using the Aspects Style 106
Coming to Terms: Aspect-Oriented Programming 107

2.6 Data Model 109
2.6.1 Overview 109
2.6.2 Elements, Relations, and Properties 111
2.6.3 What the Data Model Is For 114
2.6.4 Notations for the Data Model Style 116
2.6.5 Relations to Other Styles 117
2.6.6 Examples 118
Coming to Terms: Entity 118

2.7 Summary Checklist 120

2.8 Discussion Questions 120

2.9 For Further Reading 121

Chapter 3 Component-and-Connector Views 123
Component-and-connector views represent units of execution plus the
pathways and protocols of their interaction. This chapter defines com-
ponents and connectors and describes the rules for documenting them.

3.1 Overview 123

3.2 Elements, Relations, and Properties of C&C Views 126
3.2.1 Elements 127
3.2.2 Component-and-Connector Types and

Instances 129
3.2.3 Relations 131
3.2.4 Properties 133
Perspectives: Are Complex Connectors Necessary? 135

3.3 What C&C Views Are For 136

Perspectives: Choosing Connector Abstractions 137

3.4 Notations for C&C Views 139
3.4.1 Informal Notations 139
3.4.2 Formal Notations 139
3.4.3 Semiformal Notations: UML 139

Perspectives: Data Flow and Control Flow Models 146

ptg

Contents ■ xiii

3.5 Relation to Other Kinds of Views 148

3.6 Summary Checklist 150

3.7 Discussion Questions 151

3.8 For Further Reading 152

Chapter 4 A Tour of Some Component-and-Connector Styles 155
This chapter introduces some important component-and-connector
(C&C) styles. The chapter describes how each style is a specialization of
the generic elements and relations of C&C styles, discusses what makes
each style useful, and explains how each style is documented.

4.1 An Introduction to C&C Styles 155

4.2 Data Flow Styles 157
4.2.1 Pipe-and-Filter Style 158

4.3 Call-Return Styles 161
4.3.1 Client-Server Style 162
4.3.2 Peer-to-Peer Style 166
4.3.3 Service-Oriented Architecture Style 169

4.4 Event-Based Styles 172
4.4.1 Publish-Subscribe Style 174

4.5 Repository Styles 178
4.5.1 Shared-Data Style 178

4.6 Crosscutting Issues for C&C Styles 182
4.6.1 Communicating Processes 182
4.6.2 Tiers 183
4.6.3 Dynamic Creation and Destruction 184

4.7 Summary Checklist 185

4.8 Discussion Questions 186

4.9 For Further Reading 187

Chapter 5 Allocation Views and a Tour of Some
Allocation Styles 189

Software architects are often obliged to document nonsoftware struc-
tures and show how the software designs are mapped to the structures:
the computing environment in which their software will run, the organi-
zational environment in which it will be developed, and so on. This chap-
ter introduces the allocation view category, which is used to express the
allocation of software elements to nonsoftware structures, and three major
allocation styles.

5.1 Overview 189

5.2 Deployment Style 191
5.2.1 Overview 191
5.2.2 Elements, Relations, and Properties 192
5.2.3 What the Deployment Style Is For 194

ptg

xiv ■ Contents

5.2.4 Notation for the Deployment Style 196
5.2.5 Relation to Other Styles 197

5.3 Install Style 198
5.3.1 Overview 198
5.3.2 Elements, Relations, and Properties 199
5.3.3 What the Install Style Is For 200
5.3.4 Notations for the Install Style 200
5.3.5 Relation to Other Styles 202

5.4 Work Assignment Style 202
5.4.1 Overview 202
5.4.2 Elements, Relations, and Properties 202
5.4.3 What a Work Assignment Style Is For 203
5.4.4 Notations for the Work Assignment Style 203
5.4.5 Relation to Other Styles 204
Perspectives: Why Is a Work Assignment View Architectural? 205

5.5 Other Allocation Styles 206

Perspectives: Coordination Views 209

5.6 Summary Checklist 213

5.7 Discussion Questions 213

5.8 For Further Reading 214

Part II Beyond Structure: Completing the
Documentation 215

Part II concentrates on the rest of the information an architect should include in
architecture documentation, such as context diagrams, variation points, inter-
faces, and software behavior.

Chapter 6 Beyond the Basics 217
This chapter introduces documentation approaches to handle some spe-
cial architecture issues and situations, such as breaking a view into chunks,
documenting context and variation points, and combining views.

6.1 Refinement 218
6.1.1 Decomposition Refinement 218
6.1.2 Implementation Refinement 219
6.1.3 Spectrum of Design 220
6.1.4 Style Specialization 221

6.2 Descriptive Completeness 222

6.3 Documenting Context Diagrams 225
6.3.1 Create Context Diagrams Using the

Vocabulary of the View 226
6.3.2 Content of a Context Diagram 228
6.3.3 Context Diagrams and Other Supporting

Documentation 229
6.3.4 Notations for Context Diagrams 229

ptg

Contents ■ xv

6.4 Documenting Variation Points 231
6.4.1 What Are Variation Points? 231
6.4.2 Variation Mechanisms 232
Coming to Terms: Product-Line Architectures 234
6.4.3 Dynamism and Dynamic Architectures 234
6.4.4 Documenting Variation Points 235

6.5 Documenting Architectural Decisions 239
6.5.1 Why Document Architectural Decisions? 239
6.5.2 A Template for Documenting Architectural

Decisions 239
6.5.3 Documenting Alternatives 242
6.5.4 Which Decisions to Document 242
Perspectives: “It may sound like a lot of effort to do this, but here’s how
we do it in the trenches.” 244
6.5.5 The Payback for Documenting Architectural

Decisions 245
Perspectives: From Documenting Architectures to Architecting As
Decision Making 246
Perspectives: An Ontology of Architecture Decisions 247

6.6 Combining Views 250
6.6.1 Types of Associations Between Views 251
6.6.2 Combined Views 252
6.6.3 When to Combine Views 254
6.6.4 Examples of Combined Views 255

6.7 Summary Checklist 258

6.8 Discussion Questions 259

6.9 For Further Reading 260

Chapter 7 Documenting Software Interfaces 261
The interfaces of the elements are critical parts of any architecture, and
documenting them is an important responsibility for the architect. This
chapter tells you how to specify an interface.

7.1 Overview 261

Coming to Terms: Provided vs. Required Interfaces 264

7.2 Interface Documentation 265
7.2.1 Showing the Existence of Interfaces in

Diagrams 268

7.3 A Standard Organization for Interface Documentation 271
Coming to Terms: Error Handling 277

7.4 Stakeholders of Interface Documentation 278

7.5 Conveying Syntactic Information 279

7.6 Conveying Semantic Information 280
Coming to Terms: Signature, Interface, API 280

ptg

xvi ■ Contents

7.7 Examples of Interface Documentation 281
7.7.1 Zip Component API 281
7.7.2 Interface to a SOAP Web Service 285

7.8 Summary Checklist 285

7.9 Discussion Questions 286

7.10 For Further Reading 286

Chapter 8 Documenting Behavior 289
Documenting behavior is an essential counterpoint to documenting
structure. This chapter covers the techniques and notations available for
expressing the behavior of elements, groups of elements, and the sys-
tem as a whole.

8.1 Beyond Structure 289

8.2 How to Document Behavior 290
8.2.1 Step 1: Decide What Kinds of Questions

You Need to Answer 290
8.2.2 Step 2: Determine What Types of

Information Are Available or Can Be
Constrained 291

8.2.3 Step 3: Choose a Notation 293

8.3 Notations for Documenting Behavior 295
8.3.1 Notations for Capturing Traces 295
8.3.2 Notations for Capturing Comprehensive

Models 303

8.4 Where to Document Behavior 306

8.5 Why to Document Behavior 306
8.5.1 Driving Development Activities 306
8.5.2 Analysis 307

8.6 Summary Checklist 308

8.7 Discussion Questions 309

8.8 For Further Reading 311

Part III Building the Architecture Documentation 313
Part III covers what you have to do to create and maintain the documentation
artifacts: choosing views to include, laying out and packaging the information,
and reviewing the document.

Chapter 9 Choosing the Views 315
This chapter provides guidance for selecting views, given the intended use
of an architecture: analysis, reconstruction, achieving common under-
standing, the basis for deriving code, and so on.

9.1 Stakeholders and Their Documentation Needs 316

ptg

Contents ■ xvii

9.2 A Method for Choosing the Views 326
Perspectives: Listening to the Stakeholders 327

9.3 Example 329
Perspectives: How Not to Introduce an Architecture 333

9.4 Summary Checklist 335

9.5 Discussion Questions 335

9.6 For Further Reading 335

Chapter 10 Building the Documentation Package 337
This chapter explains how the documentation is organized to serve its
stakeholders. The chapter shows how the elements discussed in the
prior chapters fit together to produce usable documentation. The chap-
ter includes templates for architecture documentation.

10.1 Documenting a View 337
10.1.1 A Standard Organization for Documenting

a View 337
Perspectives: From Context Diagrams to a Context View 341
10.1.2 Useful Variations in the Standard Organization

for a View 344
10.1.3 Avoiding Unnecessary Repetition Across

Views or View Packets 349

10.2 Documentation Beyond Views 350
10.2.1 A Standard Organization for Documenting

Information Beyond Views 351
10.2.2 Useful Variations in the Standard Organization

for Documentation Beyond Views 356

10.3 Documenting a Mapping to Requirements 357
Perspectives: A Mapping to Requirements: You Might Already Have It 362

10.4 Packaging the Architecture Documentation 362
10.4.1 Packaging Schemes 362
10.4.2 Online Documentation, Hypertext, and Wikis 365

Coming to Terms: Wiki 366
10.4.3 Configuration Management 368
10.4.4 Follow a Release Strategy 368
Perspectives: Presentation Is Also Important 369
Perspectives: Tooling Requirements 370

10.5 Summary Checklist 372

10.6 For Further Reading 373

Chapter 11 Reviewing an Architecture Document 375
This chapter describes a step-by-step approach for conducting a struc-
tured review of an architecture document, and it includes a large selection
of review questions.

11.1 Steps of the Procedure 376
Coming to Terms: Active Design Reviews 380

ptg

xviii ■ Contents

11.2 Sample Question Sets for Reviewing the
Architecture Document 382
11.2.1 Example Question Set for Capturing the

Right Stakeholders and Concerns 385
11.2.2 Example Question Set for Supporting

Evaluation 386
11.2.3 Example Question Set for Supporting

Development 389
11.2.4 Example Question Set for Reviewing for

Conformance to ISO/IEC 42010 391

11.3 An Example of Constructing and Conducting a Review 393

11.4 Summary Checklist 395

11.5 Discussion Questions 396

11.6 For Further Reading 396

Epilogue: Using Views and Beyond with Other Approaches 399
The epilogue compares the “Views and Beyond” approach to other doc-
umentation approaches. It ties related work to the prescriptions given in
this book.

E.1 ISO/IEC 42010, née ANSI/IEEE Std 1471-2000 400
E.1.1 Overview 400
E.1.2 42010 and Views and Beyond 404

E.2 Rational Unified Process/Kruchten 4+1 406
E.2.1 RUP/4+1 and Views and Beyond 406

E.3 Using the Rozanski and Woods Viewpoint Set 408

Coming to Terms: Architecture Perspectives 410
E.3.1 Rozanski and Woods Viewpoints and Views

and Beyond 411

E.4 Documenting Architecture in an Agile Development
Project 414
E.4.1 Overview 414
E.4.2 Agile Development and Views and Beyond 415

E.5 U.S. Department of Defense Architecture Framework 419
E.5.1 Overview of DoDAF 419
E.5.2 DoDAF and Software Architecture 421
E.5.3 DoDAF and Views and Beyond 421
E.5.4 A Strategy to Use DoDAF to Document

Software Architecture 426

E.6 Where Architecture Documentation Ends 428

E.7 A Final Word 429

E.8 For Further Reading 429

ptg

Contents ■ xix

Appendix A UML—Unified Modeling Language 431
This appendix gives an overview of the Unified Modeling Language and
tells how it should be used to document the architecture constructs
described in this book.

A.1 Introduction 431

A.2 Documenting a Module View 433
A.2.1 Decomposition Style 433
A.2.2 Uses Style 433
A.2.3 Generalization Style 434
A.2.4 Layered Style 434
A.2.5 Aspects Style 434
A.2.6 Data Model Style 435

Perspectives: UML Class Diagrams: Too Much, Too Little 436

A.3 Documenting a Component-and-Connector View 438

A.4 Documenting an Allocation View 443
A.4.1 Deployment Style 443
A.4.2 Install and Implementation Styles 445
A.4.3 Work Assignment Style 446

A.5 Documenting Behavior 449
A.5.1 Activity Diagram 450
A.5.2 Sequence Diagram 450
A.5.3 Communication Diagram 453
A.5.4 Timing Diagram 454
A.5.5 Interaction Overview Diagram 455
A.5.6 State Machine Diagram 457
A.5.7 Use Case Diagram 458

A.6 Documenting Interfaces 460
Perspectives: UML Tools 461

Appendix B SysML—Systems Modeling Language 465
The Systems Modeling Language (SysML) is a general-purpose systems
modeling language intended to support a broad range of analysis and
design activities for systems engineering applications. This appendix
gives a short overview of using SysML to represent an architecture.

B.1 Architecture Documentation 466

B.2 Requirements 466

B.3 Documenting a Module View 468

B.4 Documenting a Component-and-Connector View 469

B.5 Documenting an Allocation View 470

B.6 Documenting Behavior 471

B.7 Documenting Interfaces 472

B.8 Summary 472

ptg

xx ■ Contents

Appendix C AADL—The SAE Architecture Analysis and
Design Language 473

The Architecture Analysis and Design Language (AADL) provides a tex-
tual and graphical language to represent the runtime architecture of soft-
ware systems as a component-based model in terms of tasks and their
interactions, the hardware platform on which the system executes, and the
physical environment with which it interfaces. This appendix summarizes
AADL and briefly describes how it can be used to document architectures.

C.1 Introduction 473

C.2 Documenting a Module Style 475

C.3 Documenting a Component-and-Connector View 478

C.4 Documenting a Deployment View 481

C.5 Documenting Behavior 482

C.6 Documenting Interfaces 484

C.7 Summary 484

Acronyms 487
Glossary 491
References 497
About the Authors 509
About the Contributors 513
Index 517

ptg

xxi

About the Cover

The cover shows a bird’s wing, a motif chosen because it has
much in common with software architecture. Rather than
appeal to the overused analogy of house architectures, we find
physiological systems to be a richer metaphor for software and
system architectures. Among such systems, a bird’s wing is one
of the most compelling examples.

How would you “document” a bird’s wing for someone who
did not know what it was? A bird’s wing, like a software system,
can be shown by emphasizing any of a number of structures—
nerves, feathers, bones, blood vessels, muscles; each structure
must be compatible with the others and must work toward ful-
filling a common purpose. Feathers are elements that, at a
glance, appear to be replicated countless times across the wing;
on closer inspection, however, the feathers reveal a rich sub-
structure of their own and small but systematic variations. All
feathers are almost alike, but no two are identical.

The wing exhibits strong quality attributes: lightness in
weight, aerodynamic sophistication, outstanding thermal pro-
tection. The wing’s reliability, cycling through millions of
beats, is unparalleled. Unlike a house, which mostly just sits
there, the essence of a wing is in its dynamic behavior. In coarse
terms, the wing extends, flaps, and retracts; in finer terms, the
bird commands movements almost too subtle to see, control-
ling pitch, roll, and yaw with exquisite finesse. For millennia,
humans have tried to comprehend the wing by examining its
parts and from different points of view. But the whole wing is
much more than the sum of its elements and structures: It is in
the whole that beauty and grace emerge alongside breathtak-
ing performance. Falcon wings deliver so much speed that fal-
cons have evolved thick tears that won’t evaporate during a

ptg

xxii ■ About the Cover

200-mph dive, and they have developed a special structure just
inside their nostrils to keep the slipstream from ramming into
their lungs. Insect eaters such as swallows routinely endure 14
times the pull of gravity, and they do it dozens of times a day.
The common starling, merely an average flier, can slip through
the air at 120 body lengths per second; by comparison, the fast-
est known aircraft, the SR-71 “Blackbird,” can manage only
about 32 (Wright 2003).

Structure, substructure, replication with variation, dynamic
behavior, critical quality attributes, and emergent properties of
the entire system: All these aspects are important to capture
when documenting a software architecture. We haven’t learned
how to document beauty and grace yet, but for that we substi-
tute the documentation of what the designer had in mind. For
software, we can do this. For the wing of a bird, we can only
admire the result.

ptg

xxiii

Foreword to the
Second Edition

A colleague of mine, in the market for a home, fell in love with
an older property that had been designed by a student of
Frank Lloyd Wright himself. Curious about its history, its struc-
ture, its evolution, he contacted the local planning office,
which happily and quickly provided him with a copy of the
original blueprints.

Why, my friend asked me, can we get the drawings for a
house that’s several decades old, but we are unable to see the
architecture of software written last year?

In this book, the authors offer some pragmatic wisdom that
helps attend to my friend’s lament.

The theory and the practice of the architecture of software-
intensive systems are in a very vibrant phase. The early work of
Mary Shaw and David Garlan in particular gave rise to software
architecture as an identifiable domain of study, and in the
years since, we’ve seen the emergence of architecture-as-an-
artifact as a mainstream concern for the development and evo-
lution of systems. This has manifest itself in notations such as
the Unified Modeling Language (which was explicitly influ-
enced by Philippe Kruchten’s 4+1 model view of software archi-
tecture) as well as a panoply of architectural frameworks, such
as The Open Group Architecture Framework and the Depart-
ment of Defense Architecture Framework. Add to these meth-
ods such as IBM’s Unified Process and, at another extreme, the
Federal Segment Architecture Methodology, and it is clear that
architecture-as-an-artifact has found an important role in the
reasoning about and governing of software-intensive systems.

There are some things we can say with confidence. Every sys-
tem has an architecture. All complex systems are hierarchical
in nature, but also exhibit other patterns of regularity. There’s

ptg

xxiv ■ Foreword to the Second Edition

an intimate dance that occurs between the processes of archi-
tecting and of implementation. And, to understand and rea-
son about the architecture of a software-intensive system, one
has to consider multiple views from the perspectives of specific
concerns from multiple classes of stakeholders.

The most commonly used notation and tool for describing a
system’s architecture is a boxes-and-lines sketch created on a
whiteboard. Such documentation is both expeditious and use-
ful, but it is neither enduring nor rigorous nor complete. In
this book the authors offer the definitive reference on the doc-
umenting of the architecture of software-intensive systems, in
ways that are enduring and rigorous and complete. And useful,
by the way!

I remember reading the first edition of this book, and
e-mailing my compliments to the authors for producing such a
comprehensive reference. Well, they’ve outdone themselves.
This new edition is brighter, shinier, more complete, more
pragmatic, more focused than the previous one, and I wouldn’t
have thought it possible to improve on the original. As the field
of software architecture has grown over these past decades,
there is much more to be said, much more that we know, and
much more that we can reflect upon of what’s worked and
what hasn’t—and the authors here do all that, and more.

So, my hope for you, dear reader, is this: May the software
you write today have an architecture that your children’s chil-
dren may discern and celebrate.

—Grady Booch
IBM Fellow

ptg

xxv

Foreword to the
First Edition

Ten years ago, I was brought in to lead the architecture team
of a new and rather ambitious command-and-control system.
After some rocky beginnings, the architectural design work
started to proceed full speed, and the architects were finally
forging ahead, inventing and resolving and designing and try-
ing, almost in a euphoric state. We had many brainstorming
sessions, filling whiteboards with design fragments and note-
books with scribblings; various prototypes validated or invali-
dated our reasoning. As the development team grew in size,
the architects had to explain the principles of the nascent
architecture to a wider and wider audience, consisting of not
only new developers but also many parties external to the
development group. Some were intrigued by this new concept
of a software architecture. Some wanted to know how this
architecture would impact them: for planning, for organizing
the teams and the contractors, for delivery of the system, for
acquisition of some of the system parts. Some parties wanted to
influence the design of this architecture. Further removed
from development, customers and prospects wanted a peek,
too. So the architects had to spend hours and days describing
the architecture in various forms and levels and tones to varied
audiences, so that each party could better understand it.

Becoming this center of communication slowly stretched
our capacity. On the one hand, we were busy designing the
architecture and validating it; on the other hand, and at the
same time, we were communicating to a large audience what it
was and why it was that way and why we did not choose some
other solution. A few months into the project, overwhelmed,
we even began having a difficult time agreeing among our-
selves about what it was we had actually decided.

ptg

xxvi ■ Foreword to the First Edition

This led me to the conclusion that “if it is not written down,
it does not exist.” This became sort of a leitmotiv in the archi-
tecture team for the following two years. As the ancient Chi-
nese poet Lao-Tsu says in the Tao Te Ching:

Let your workings remain a mystery.
Just show people the results.

(Tablet #36)

The architecture could be whatever we had talked about,
argued, imagined, or even drafted on a board, and so on. But
the architecture of this system was only what was described in
one major document: the Software Architecture Document (SAD).
Architectural elements and architectural decisions not cap-
tured in this document simply did not exist. This one rule—“If
it is not in the SAD, it does not exist.”—became our incentive to
evolve and to keep the document up-to-date, almost to the
week; there was also an incentive to not include anything and
everything and untried ideas, as this was the project’s definite
arbiter.

The SAD rapidly became a central element in the life of the
project. It became our best display window for showing off our
stuff, our comfort when we were down, and our shield when
attacked.

The key problem we faced at the time was: What do we doc-
ument for a software architecture? How do we document it?
What outline do we use? What notation? How much or how lit-
tle? There were few exemplars of architectural description for
systems as ambitious as ours. Driven by necessity, we improvised.
We made some mistakes and corrected some. We discovered
rapidly that architecture is not flat but rather a multidimen-
sional reality, with several intertwined facets, and some facets—
or views—of interest to only a few parties. We found out that
many readers would not even open a document that weighed
more than a pound, and we would have a difficult time updat-
ing it anyhow. We realized that without capturing the reasons
for our choices, we were doomed to reconstruct them again
and again, every time a new stakeholder with a sharp mind
came around. We picked a visual notation, not too vague and
fuzzy but not too esoteric and convoluted, either, in order to
not discourage most parties.

Today, software architects have a great starting point for
deciding how to document their software architectures. You
have it in your hands. The authors went through many experi-
ences similar to mine and extracted the important lessons
learned. They read many software architecture documents.

ptg

Foreword to the First Edition ■ xxvii

They reviewed the academic literature, studied all the pub-
lished books, checked the standards, and synthesized all this
wisdom in this handbook: the essential things you need to
know to define your own software architecture document. You
will find guidance for the scope of software architecture; its
organization; the techniques, tools, and notation to use or not
to use; and comparisons, advice, and rules of thumb. In here,
you’ll find the templates to get you started and the continuing
guidance for when you get lost or despairing on the way.

This book is of immense value. The description and commu-
nication of software architecture is quite crucial to its many
stakeholders, and this handbook should save you months of tri-
als and errors, lots of undeserved hassle, and many costly mis-
takes that could potentially jeopardize the whole endeavor. It
will become an important reference on the shelf of the soft-
ware architect.

—Philippe Kruchten
Director of Process Development
Rational Software Canada, Vancouver

ptg

This page intentionally left blank

ptg

xxix

Preface

The purpose of this book is to answer the following question:

How do you document an architecture so that others can success-
fully use it, maintain it, and build a system from it?

The audience for this book includes all the people involved
in the production and consumption of architecture documen-
tation. The goal of this book is to help you decide what infor-
mation about an architecture is important to capture and to
provide guidelines, notations, and examples for capturing it.
We intend this book to be a practitioner-oriented guide to the
various kinds of information that constitute an architecture.
We give practical guidance for choosing what information
should be documented and show—with examples in various
notations, including but not limited to the Unified Modeling
Language (UML)—how to describe that information in writ-
ing so that others can use it to carry out their architecture-
based work: implementation, analysis, and recovery. We also
show how to create a comprehensive software architecture doc-
ument that others can use.

Although piles of books exist about how to use a particular
notation (UML comes to mind), we believe what an architect
really needs is guidance in which architecture and its stake-
holders are the first-class citizens, and language is relegated
more appropriately to a supporting role. That’s what we’ve
tried to provide with this book.

Languages and Tools for Architecture
Commercial languages and tool suites are available for capturing
design information, especially in the realm of object-oriented

ptg

xxx ■ Preface

systems. Some of these tools are bound up with associated
design methods, notations, and commercial products. Some
tools are aimed at points in the design space other than archi-
tecture. If you have decided to adopt one of these tools and/
or notations, will this book relate to you?

Very few things become obsolete faster than references to
specific tools, so we’ve avoided those. Instead, we have concen-
trated on the information you should capture about an archi-
tecture. We believe that is the approach you should take, too:
Concentrate on the information you need to capture, and then
figure out how to capture it using an available tool. Almost all
tools provide ways to add free-form annotations to the building
blocks they provide; if all else fails, these annotations will let
you capture and record information in ways you see fit.
Remember that not all the people for whom architecture doc-
umentation is prepared will be able to use the tool environ-
ment you’ve chosen or understand the commercial notation
you’ve adopted.

Having said that, however, we acknowledge that a few stan-
dard languages and notations have come to dominate, chief
among them UML. And so this book provides a plethora of
examples showing UML 2 representing the architecture views
we cover, as well as other concepts such as refinement and
behavior. If you have chosen UML as your modeling language,
you’ll feel at home.

Appendix A contains a summary of UML’s visual notation
and its applicability to document the concepts in this book.
Appendices B and C summarize the Systems Modeling Lan-
guage (SysML) and the Architecture Analysis and Design
Language (AADL), respectively. Our purpose is not to teach
these languages, but to offer a quick refresher for those famil-
iar with them and a flavor-providing introduction for every-
one else.

What’s New in the Second Edition
• A number of new architecture styles have entered the main-

stream, and this edition talks about documenting those.
These include service-oriented architectures, multi-tier
architectures, and architectures for aspect-oriented systems.
We also treat the architecture-level documentation of a soft-
ware system’s data model, as well as its installation and pro-
duction environment, as first-class styles.

ptg

Preface ■ xxxi

• This edition is much more Agile-friendly, orienting its
advice to be consistent with the Agile Manifesto’s entreaty to
value working software over comprehensive documentation.

• We treat the systematic documentation of rationale with
much greater depth, reflecting best industrial practices.
We’ve added a new chapter about reviewing an architecture
document to make sure it’s serving its stakeholders as
intended.

• The suggested templates for architecture documentation
have several improvements, reflecting years of use and feed-
back. They are also more flexible, and we lay out different
options for arranging your documentation.

• We have replaced the comprehensive example of a docu-
mented software architecture with a new one. The architec-
ture is for a Web-based service-oriented system, more in
today’s industrial mainstream. To make the book smaller
and allow us to maintain the example over time, we put the
example online. And many of our in-line examples have
been replaced or updated.

• Since the first edition was published, the Unified Modeling
Language has graduated to version 2.0 and beyond. That
opened up new possibilities for more straightforwardly doc-
umenting various architecture constructs, especially compo-
nents and connectors. Where necessary, our figures are
updated to reflect the new constructs.

• This edition has concise appendices summarizing three
important languages and notations useful for documenting
architectures: UML, AADL, and SysML. Each appendix con-
stitutes a mini-reference guide on the language.

• Finally, this edition reflects the experience we’ve gained
with Views and Beyond in the intervening years since the
first edition was published. This experience has come from
creating documented architectures for very challenging sys-
tems, and helping other people do so. It also comes from
using architecture documentation in practice, such as when
we evaluate other organizations’ software architectures.
Finally, it has come from interacting with more than a thou-
sand participants in our two-day industrial course based on
the book. These interactions with practicing software archi-
tects have let us make our advice more prescriptive and
crisp and reflect the problems and situations that architects
face daily.

ptg

xxxii ■ Preface

Complete Example of a Software Architecture Document
Online
You can see a fully worked-out example of a software architec-
ture document using the approaches and templates described
in this book at wiki.sei.cmu.edu/sad.

—P.C.
Austin, Texas

—F.B., L.B., D.G., J.I., R.L., R.N.
Pittsburgh, Pennsylvania

—P.M.
Brasilia, Brazil

—J.S.
Boston, Massachusetts

ptg

xxxiii

Acknowledgments

We would like to thank a number of people for making this
book a reality.

There wouldn’t be a second edition without a first edition,
and all of the people whose help and support we acknowl-
edged there deserve a thank you here as well.

At the Software Engineering Institute, Linda Northrop pro-
vided unstinting support (for the second time) for this effort.
Mark Klein, head of the SEI’s Architecture-Centric Engineer-
ing initiative, made this book part of that initiative’s transition
efforts. Many thanks to Barbara White, who was invaluable in
helping to deal with thorny word-processing issues. Thanks to
Kurt Hess for creating the cover, producing many of the fig-
ures in the book, and keeping all of the figures and graphics
organized. Rob Wojcik reviewed a complete early draft and
made many helpful suggestions, especially in the “patterns ver-
sus styles” sidebar in the prologue. Thanks to John Morley for
his help in editing the book.

At Addison Wesley, Peter Gordon did his usual wonderful
job of nudging this book along. Thanks to Kim Boedigheimer
for always having the right answers to our many questions. Our
thanks also go the production professionals who contributed
their superb talents to produce the result you see, especially
Anna Popick, Christopher Keane, and John Fuller.

Special thanks to Grady Booch for writing a splendid fore-
word for this edition. Grady also provided helpful and directed
comments about the first edition that guided our thinking for
the second edition. Our continued thanks go to Philippe
Kruchten for writing the first edition’s foreword, which we’ve
proudly retained.

ptg

xxxiv ■ Acknowledgments

Thanks to the distinguished experts in the architecture com-
munity who participated in our online discussion about the dif-
ference between an architecture pattern and an architecture
style. These include Alexander Wolf, Frank Buschmann, Celso
Gonzalez, David Emery, Eoin Woods, Grady Booch, Hans van
Vliet, Kurt Wallnau, Maarten Boasson, Mary Shaw, Morven
Gentleman, Neno Medvidovic, Rich Hilliard, Rick Kazman,
and Ruth Malan.

Thanks go to T.V. Prabhakar, who had the idea for the con-
cept map that adorns the inside cover. The concept map was
rendered using Cmap, available from cmap.ihmc.us.

Thanks to Larry Jones for summarizing a tutorial by Philippe
Kruchten on capturing architecture decisions, and thanks to
Philippe for giving us the notes from that tutorial. Thanks to
Peter Eirich for bringing the IEEE draft standard 1175-4 on
specifying behavior to our attention. Thanks to Phil Taylor for
suggesting the title “Beyond the Basics” for Chapter 6 to
replace an unsatisfactory chapter name from the first edition.
Thanks to Joe Batman for his discussion of event-driven versus
enterprise systems. Several quotes in the book pertain to adver-
tising, and we co-opted those for architecture. We found them
on zagstudios.com; thanks go to Kimberley Freeman, the site’s
proprietor.

Heartfelt thanks go to Jan Bosch, Stefan Ferber, Robert
Glass, and Eoin Woods for thorough and very helpful reviews
of an early draft.

Special thanks to the thousand-plus attendees of the SEI’s
“Documenting Software Architectures” course who over the
years have provided insightful comments that helped us to
improve the course material and gave us motivation to pro-
duce a revised edition of the book.

The rules for sound documentation cited in the prologue
are based on those in “A Rational Design Process: How and
Why to Fake It” (Parnas and Clements 1986). Figures 2.36 and
2.37 are adapted from a 2004 presentation by Ramnivas Laddad.

Finally, we were privileged to have a select group of architec-
ture experts contribute their experience and energy to various
sections of this book. We acknowledge their contributions in
the chapters or sections in which they contributed material by
giving them a “With” byline. Our distinguished list of contrib-
uting authors can be found in “About the Contributors,” on
page 513.

ptg

xxxv

Reader’s Guide

Audience
There are three primary audiences for this book.

1. Software architects who are charged with producing archi-
tecture documentation for software projects. For these peo-
ple we tried to answer the question “What information do I
need to capture about my architecture, and what notations
and techniques are available for communicating it clearly
and usefully in a timely fashion?”

2. Stakeholders of an architecture who must digest and use
the documentation they receive from the architect or archi-
tecture team. A software architect can provide this book as
a companion to his or her documentation, pointing con-
sumers to specific sections that explain documentation-
organizing principles, notations, concepts, or conventions.

3. People who wish to learn introductory concepts about soft-
ware architecture. By establishing the purposes and uses of
software architecture (and hence, its documentation), and
by establishing a basic set of concepts important in the cre-
ation and communication of architecture, this book serves
as an introduction to the subject.

We assume basic familiarity with the concepts of software
engineering. In many cases, we will sharpen and solidify basic
concepts that you already know, such as architecture views, archi-
tecture styles, and interfaces.

Stylistic Conventions
The book’s core message is contained in the main flow of the text.
But we also provide extra information in the margins, including

ptg

xxxvi ■ Reader’s Guide

• Definitions: Where we introduce a term such as view, we
make it bold and underlined; a margin note adjacent to that
line gives the definition. These terms are also listed in the
glossary at the end.

• Nuggets of practical advice.

• Pointers to sources of additional information, either within
this book or outside.

• Illuminating quotes that we hope will add to the fullness of
the message.

Advice that won’t fit into a margin note will be called out in
the body of the text. Longer diversions occur as sidebars,
which are visually distinguished passages that appear at the
end of a section. “Coming to Terms” sidebars tackle issues of

A view is a represen-
tation of a set of
system elements
and relationships
among them.

Every graphical presen-
tation should include a
key that explains the
notation used.

The prologue contains
an introduction to the
basic architecture con-
cepts used in this book.

A good notation should
embody characteristics
familiar to any user of
mathematical notation:
Ease of expressing con-
structs arising in prob-
lems, suggestivity,
ability to subordinate
detail, economy, ame-
nability to formal proofs.

—Ken Iverson (1987,
p. 341)

ptg

Reader’s Guide ■ xxxvii

terminology, while “Perspectives” sidebars are observations or
background information written and signed by one or more of
the authors.

At the end of each chapter, you can find

• A summary checklist that highlights the main points and
prescriptive guidance of the chapter

• A set of discussion questions that can serve as the basis for
classroom or brown-bag-lunch-group conversation

• “For Further Reading,” a section that offers references for
more in-depth treatment of related topics

A glossary appears at the end of the book.

How to Read and Use This Book
All architects should

• Read the introduction to Part I, to gain an understanding of
styles and views, and to get a glimpse of the collection of
styles discussed in this book.

• Browse Chapters 1–5 to gain a deeper understanding of the
views that might be used in your documentation. Later,
once you’ve chosen a set of views to document, you can read
about them in more depth as needed.

• Read Chapter 10, to learn the organizational scheme for a
documentation package.

• Read Chapter 9, to learn how to choose the important views
for a particular system. This will let you plan your documen-
tation package, matching your stakeholders and the uses
your documentation will support with the kind of informa-
tion you need to provide.

• Browse the sections in Chapter 6 to learn about document-
ing variability, context diagrams, and other helpful con-
cepts. Come back and concentrate on these as needed.

• Read Chapters 7 and 8 to learn about documenting software
interfaces and documenting behavior of a system.

• Consult Chapter 11 to see how your architecture document
should be reviewed, so that you can better position it for a
successful review by giving reviewers the information they
need.

• If you are interested in making your documentation compli-
ant with other prescriptive methods, such as IBM Rational’s
4+1 approach or ISO/IEC 42010, consult the epilogue.

ptg

xxxviii ■ Reader’s Guide

An architecture stakeholder using an architecture docu-
ment written with the precepts of this book may wish to consult
this book to gain a deeper understanding. You should

• Read Chapter 10 to gain a better understanding of the lay-
out of the document, and how the layout achieves coverage
of the architectural information being conveyed.

• Consult other chapters as necessary to provide more insight
into specific parts of the architecture document. For exam-
ple, you may wish to read the introduction to Part I to learn
about module, component-and-connector, and allocation
styles, and then consult the chapter on a specific style.

• Read Chapter 11 if your job is to conduct or participate in a
review of the architecture document.

Pr
ol

og
ue

In
tr

o
to

 P
ar

t I

C
ha

pt
er

 1

C
ha

pt
er

 2

C
ha

pt
er

 3

C
ha

pt
er

 4

C
ha

pt
er

 5

C
ha

pt
er

 6

C
ha

pt
er

 7

C
ha

pt
er

 8

C
ha

pt
er

 9

C
ha

pt
er

 1
0

C
ha

pt
er

 1
1

A
pp

en
di

ce
s

E
pi

lo
gu

e

Architects

browse

consult

read

Pr
ol

og
ue

In
tr

o
to

 P
ar

t I

C
ha

pt
er

 1

C
ha

pt
er

 2

C
ha

pt
er

 3

C
ha

pt
er

 4

C
ha

pt
er

 5

C
ha

pt
er

 6

C
ha

pt
er

 7

C
ha

pt
er

 8

C
ha

pt
er

 9

C
ha

pt
er

 1
0

C
ha

pt
er

 1
1

A
pp

en
di

ce
s

E
pi

lo
gu

e

Stakeholders

browse

consult

read

ptg

Reader’s Guide ■ xxxix

Readers who wish to learn introductory concepts about soft-
ware architecture should

• Read the prologue to learn what software architecture is,
why it is important, and the critical role of documentation
in a development project.

• Read the introduction to Part I, to gain an understanding of
styles and views, and to get a glimpse of the collection of
styles discussed in this book.

• Read Chapters 1–5 to become familiar with some architec-
ture styles that are widely used in modern software systems.

• Browse Chapters 7 and 8 to learn about the important archi-
tecture concepts of interfaces and behavior.

• Consult Chapter 10 to see a format for an architecture
document.

• Browse the appendices to help you understand the exam-
ples in the book if you’re not familiar with the notations.

Pr
ol

og
ue

In
tr

o
to

 P
ar

t I

C
ha

pt
er

 1

C
ha

pt
er

 2

C
ha

pt
er

 3

C
ha

pt
er

 4

C
ha

pt
er

 5

C
ha

pt
er

 6

C
ha

pt
er

 7

C
ha

pt
er

 8

C
ha

pt
er

 9

C
ha

pt
er

 1
0

C
ha

pt
er

 1
1

A
pp

en
di

ce
s

E
pi

lo
gu

e

Novices

browse

consult

read

ptg

This page intentionally left blank

ptg

1

PPrologue:
Software Architectures and

Documentation

The prologue establishes a small but fundamental set of con-
cepts that will be used throughout the book. We begin with
short overviews of software architecture (Section P.1) and
architecture documentation (Section P.2), and then we go on
to discuss the following topics:

• Section P.3: Architecture views

• Section P.4: Architecture styles (and their relation to archi-
tecture patterns) and the classification of styles into three
categories: module styles, component-and-connector styles,
and allocation styles

• Section P.5: Rules for sound documentation

P.1 A Short Overview of Software Architecture
P.1.1 Overview

Software architecture has emerged as an important subdisci-
pline of software engineering. Architecture is roughly the pru-
dent partitioning of a whole into parts, with specific relations
among the parts. This partitioning is what allows groups of
people—often separated by organizational, geographical, and
even time-zone boundaries—to work cooperatively and pro-
ductively together to solve a much larger problem than any of
them could solve individually. Each group writes software that
interacts with the other groups’ software through carefully
crafted interfaces that reveal the minimal and most stable
information necessary for interaction. From that interaction
emerges the functionality and quality attributes—security,
modifiability, performance, and so forth—that the system’s
stakeholders demand. The larger and more complex the sys-

The software architec-
ture of a computing
system is the set of
structures needed to
reason about the sys-
tem, which comprise
software elements, rela-
tions among them, and
properties of both.

ptg

2 ■ Prologue: Software Architectures and Documentation

tem, the more critical is this partitioning—and hence, archi-
tecture. And as we will see, the more demanding those quality
attributes are, the more critical the architecture is.

A single system is almost inevitably partitioned simulta-
neously in a number of different ways. Each partitioning
results in the creation of an architectural structure: different
sets of parts and different relations among the parts. Each is
the result of careful design, carried out to satisfy the driving
quality attribute requirements and the most important busi-
ness goals behind the system.

Architecture is what makes the sets of parts work together as
a coherent and successful whole. Architecture documentation
help architects make the right decisions; it tells developers how
to carry them out; and it records those decisions to give a sys-
tem’s future caretakers insight into the architect’s solution.

P.1.2 Architecture and Quality Attributes

For nearly all systems, quality attributes such as performance,
reliability, security, and modifiability are every bit as important
as making sure that the software computes the correct answer.
A software system’s ability to produce correct results isn’t help-
ful if it takes too long doing it, or the system doesn’t stay up
long enough to deliver it, or the system reveals the results to
your competition or your enemy. Architecture is where these
concerns are addressed. For example:

• If you require high performance, you need to

– Exploit potential parallelism by decomposing the work
into cooperating or synchronizing processes.

– Manage the interprocess and network communication
volume and data access frequencies.

– Be able to estimate expected latencies and throughputs.

– Identify potential performance bottlenecks.

• If your system needs high accuracy, you must pay attention
to how the data elements are defined and used and how
their values flow throughout the system.

• If security is important, you need to

– Legislate usage relationships and communication restric-
tions among the parts.

– Identify parts of the system where an unauthorized intru-
sion will do the most damage.

– Possibly introduce special elements that have earned a
high degree of trust.

Many projects make the
mistake of trying to
impose a single parti-
tion in multiple compo-
nent domains, such as
equating threads with
objects, which are
equated with modules,
which in turn are
equated with files. Such
an approach never suc-
ceeds fully, and adjust-
ments eventually must
be made, but the dam-
age of the initial intent is
often hard to repair. This
invariably leads to prob-
lems in development
and occasionally in final
products.

—Jazayeri, Ran, and
van der Linden (2000,
pp. 16–17)

ptg

P.1 A Short Overview of Software Architecture ■ 3

• If you need to support modifiability and portability, you
must carefully separate concerns among the parts of the sys-
tem, so that when a change affects one element, that change
does not ripple across the system.

• If you want to deploy the system incrementally, by releasing
successively larger subsets, you have to keep the dependency
relationships among the pieces untangled, to avoid the
“nothing works until everything works” syndrome.

The solutions to these concerns are purely architectural in
nature. It is up to architects to find those solutions and com-
municate them effectively to those who will carry them out.
Architecture documentation has three obligations related to
quality attributes. First, it should indicate which quality attribute
requirements drove the design. Second, it should capture the
solutions chosen to satisfy the quality attribute requirements.
Finally, it should capture a convincing argument why the solu-
tions provide the necessary quality attributes. The goal is to
capture enough information so that the architecture can be
analyzed to see if, in fact, the system(s) derived from it will pos-
sess the necessary quality attributes.

COMING TO TERMS

What Is Software Architecture?

If we are to agree on what it means to document a soft-
ware architecture, we should establish a common basis
for what it is we’re documenting. No universal definition
of software architecture exists. The Software Engineering
Institute’s Web site collects definitions from the literature
and from practitioners around the world; so far, more
than 150 definitions have been collected.

It seems that new fields try to nail down standard defini-
tions or their key terms as soon as they can. As the field
matures, basic concepts become more important than
ironclad definitions, and this urge seems to fade. When
object-oriented development was in its infancy, you
could bring any OO meeting to a screeching halt by put-
ting on your best innocent face and asking, “What
exactly is an object?” This largely ended when people
realized that the scatter plot of definitions had an appar-
ent (if unarticulated) centroid, from which very useful
progress could be made. Sometimes “close enough” is,
well, close enough.

Chapter 10 will show
where in the documen-
tation to record the driv-
ing quality attribute
requirements, the solu-
tions chosen, and the
rationale for those
solutions.

Software architecture is
the set of design deci-
sions which, if made
incorrectly, may cause
your project to be
cancelled.

—Eoin Woods (SEI
2010)

You can read the SEI
collection of definitions,
or contribute your own,
at www.sei.cmu.edu/
architecture.

www.sei.cmu.edu/architecture
www.sei.cmu.edu/architecture

ptg

4 ■ Prologue: Software Architectures and Documentation

This seems to be the case with software architecture.
Looking at the major attempts to nail down its definition
gives us a good glimpse at our own centroid. With that in
mind, here are a few influential definitions:

By analogy to building architecture, we propose the follow-
ing model of software architecture: Software Architecture =
{Elements, Form, Rationale}. That is, a software architec-
ture is a set of architectural (or, if you will, design) elements
that have a particular form. We distinguish three different
classes of architectural elements: processing elements;
data elements; and connecting elements. The processing
elements are those components that supply the transfor-
mation on the data elements; the data elements are those
that contain the information that is used and transformed;
the connecting elements (which at times may be either
processing or data elements, or both) are the glue that
holds the different pieces of the architecture together.
(Perry and Wolf 1992, p. 44)

 . . . beyond the algorithms and data structures of the com-
putation; designing and specifying the overall system
structure emerges as a new kind of problem. Structural
issues include gross organization and global control struc-
ture; protocols for communication, synchronization, and
data access; assignment of functionality to design ele-
ments; physical distribution; composition of design ele-
ments; scaling and performance; and selection among
design alternatives. (Garlan and Shaw 1993, p. 1)

The structure of the components of a program/system,
their interrelationships, and principles and guidelines gov-
erning their design and evolution over time. (Garlan and
Perry 1995, p. 269)

An architecture is the set of significant decisions about the
organization of a software system, the selection of the
structural elements and their interfaces by which the sys-
tem is composed, together with their behavior as specified
in the collaborations among those elements, the composi-
tion of these structural and behavioral elements into pro-
gressively larger subsystems, and the architecture style
that guides this organization—these elements and their
interfaces, their collaborations, and their composition.
(Booch, Rumbaugh, and Jacobson 1999, p. 31)

The fundamental organization of a system embodied in its
components, their relations to each other, and to the envi-
ronment, and the principles guiding its design and evolu-
tion. (IEEE 1471 2000, p. 9)

The software architecture of a program or computing sys-
tem is the structure or structures of the system, which

ptg

P.1 A Short Overview of Software Architecture ■ 5

comprise software elements, the externally visible proper-
ties of those elements, and the relations among them. By
“externally visible properties,” we are referring to those
assumptions other components can make of a compo-
nent, such as its provided services, performance charac-
teristics, fault handling, shared resource usage, and so on.
(Bass, Clements, and Kazman 2003, p. 27)

The set of principal design decisions governing a system.
(Taylor, Medvidovic, and Dashofy 2009, p. xv)

A few other “mainstream” definitions have emerged
since then, but they are largely restatements and recom-
binations of the ones we just listed. The centroid seems
to have stabilized.

That centroid takes a largely structural perspective on
software architecture: Software architecture is com-
posed of elements, connections or relations among
them, and, usually, some other aspect or aspects, such
as (take your pick) configuration; constraints or seman-
tics; analyses or properties; or rationale, requirements, or
stakeholders’ needs.

These perspectives do not preclude one another, nor do
they represent a fundamental conflict about what soft-
ware architecture is. Instead, they represent a spectrum
in the software architecture community about the empha-
sis that should be placed on architecture: its constituent
parts, the whole entity, the way it behaves once built, or
the building of it. Taken together, they form a consensus
view of software architecture.

In this book we use a definition similar to the one from
Bass, Clements, and Kazman (2003). We chose it
because it helps us know what to document about an
architecture. The definition emphasizes the plurality of
structures present in every software system. These
structures, carefully chosen and designed by the archi-
tect, are the key to achieving and reasoning about the
system’s design goals. And those structures are the key
to understanding the architecture. Therefore, they are the
focus of our approach to documenting a software archi-
tecture. Structures consist of elements, relations among
the elements, and the important properties of both. So
documenting a structure entails documenting those
things.

ptg

6 ■ Prologue: Software Architectures and Documentation

PERSPECTIVES

What’s the Difference Between Architecture and
Design?

The question of how architecture is different from design
has nipped at the heels of the software development
community for years. It is a question I often hear when
teaching an introductory course on architecture. It mat-
ters here because the question deals with what we
should put in an architecture document and what we
should put somewhere else.

The first thing we can say is that clearly architecture is
design, but not all design is architecture. That is, many
design decisions are left unbound by the architecture
and are happily left to the discretion and good judgment
of downstream designers and even implementers. The
architecture establishes constraints on downstream
activities, and those activities must produce artifacts—
finer-grained designs and code—that comply with the
architecture.

It’s tempting to stop there, but if you’re paying attention
you’ve seen that we’ve just translated the question: Archi-
tecture consists of architectural design decisions, and all
others are nonarchitectural. So what decisions are
nonarchitectural? That is, what design decisions does the
architect leave to the discretion of others?

To answer this question, we return to the primary pur-
pose of architecture, which is to assure the satisfaction
of the system’s quality and behavioral requirements and
business goals. The architect does this by making design
decisions that manifest themselves in the system’s archi-
tectural structures.

Thus, architectural decisions are ones that permit a sys-
tem to meet its quality attribute and behavioral require-
ments. All other decisions are nonarchitectural.

Clearly any design decisions resulting in element proper-
ties that are not visible—that is, make no difference out-
side the element—are nonarchitectural. A typical example
is the selection of a data structure, along with the algo-
rithms to manage and access that data structure.

You may have been hoping for a more concrete answer,
such as “the first three levels of module decomposition

ptg

P.1 A Short Overview of Software Architecture ■ 7

are architectural, but any subsequent decomposition is
not.” Or, “the classes, packages and their relations in a
UML class diagram are architectural, but sequence dia-
grams are not.” Or “defining the services of an SOA sys-
tem is architectural, but designing the internal structure
of each service provider component is not.”

But those don’t work because they draw arbitrary and
artificial boundaries. Attempts like that to be practical
end up being impractical because true architecture bleeds
across those boundaries.

Here are some more sometimes-heard artificial definitions.

First, “architecture is the small set of big design deci-
sions.” Some people define “small set” by insisting that
an architecture document should be no more than 50
pages. Or 80. Or 30. Their feeling, apparently, is that
architecture is the set of design decisions that you can
squeeze into a given page quota, and everything beyond
that is not. This is, of course, utter nonsense.

Another oft-heard nonanswer is “architecture is what you
get before you start adding detail to the design.” Termi-
nology often directs our thinking, rather than serves it. A
pernicious example that puts us in the wrong mind set is
“detailed design.” Detailed design is what many people
say follows architecture. The term is everywhere, and
needs to be stamped out. It implies that the difference
between architectural and nonarchitectural design is
something called “detail.” Architecture is apparently not
allowed to be detailed, because if it is, well, you’re doing
detailed design then, aren’t you? Never mind that we
have no idea how to measure “detail” nor to set a thresh-
old for when there is too much of it to be architectural. If
your design starts to look “detailed” then you aren’t doing
architecture and you’ll be reported to the Detailed Design
Police for overstepping your authority. More utter nonsense.

It’s true that some architectural design decisions may
lack much specificity; that is, they preserve freedom of
choice for downstream designers. Some architectural
design decisions may not be “decisions” at all, but broad
constraints. Plug-ins that populate your Web browser are
an example. No architecture nails down the complete set,
but the architecture does constrain new ones to meet
certain standards and interfaces. Or the architect might
describe an element by saying, “The element delivers its
computational result through this published interface, is

Don’t use the term
“detailed design”! Use
“nonarchitectural
design” instead.

ptg

8 ■ Prologue: Software Architectures and Documentation

thread-safe, puts no more than three messages on the
network per invocation, and returns its answer in less
than 20 ms.” The team implementing that element is free
to make whatever design decisions they wish as long as
they satisfy the architect’s prescription for it.

On the other hand, some architectural decisions can be
quite “detailed,” such as the adoption of specific proto-
cols, an XML schema, or communication or technology
standards. Such decisions are usually made for pur-
poses of interoperability or various flavors of modifiability
(such as scalability or extensibility).

Even interfaces of elements, which some decry as “obvi-
ously” outside the realm of architecture, can be supremely
architectural. For instance, in a service-oriented architec-
ture (SOA), components interact through published inter-
faces. Important design decisions made when defining
these interfaces include the granularity of the operations,
the data format, and the type of interaction (synchronous
or asynchronous) for each operation. Or consider an ele-
ment that processes data from a real-time sensor. Mak-
ing this element’s interface process a stream as opposed
to individual data elements will make an enormous differ-
ence in the ability of the element (and hence the system)
to meet real-time performance requirements. This deci-
sion cannot be left up to the element’s development
team; everything depends on it.

A legitimate question about detail does arise when con-
sidering modules and other hierarchical elements:
When do you stop? When have you designed enough
levels in the hierarchy? Are submodules enough, or does
the architect need to design sub-sub-sub-submodules?
Here’s a good test of our claim for when architecture
stops. Module decomposition is about achieving inde-
pendent development and modifiability. Both are achieved
by carefully assigning coherent responsibilities to each
module. When the modules you’ve designed are fine-
grained enough to satisfy the system’s modifiability and
independent development requirements, you’ve dis-
charged your obligation as an architect.

Finally, what is architectural is sensitive to context. Sup-
pose the architect identifies an element but is content to
sketch the element’s interface and behavior in broad
terms. If the element being prescribed is very large and
complex, the team developing it may choose to give it an

A hierarchical element
is any kind of element
that can consist of like-
kind elements. A module
is a hierarchical element
because modules consist
of submodules, which
are themselves modules.
A task or a process is not
a hierarchical element.

ptg

P.2 A Short Overview of Architecture Documentation ■ 9

internal substructure of its own, which for all the world
looks like an architecture. And within the context of that
element, it is. But in the context of the overall system, the
substructure is not architectural but merely an internal
design decision made by the development team for that
element.

To summarize, architecture is design, but not all design is
architectural. The architect draws the boundary between
architectural and nonarchitectural design by making
those decisions that need to be bound in order for the
system to meet its development, behavioral, and quality
goals. All other decisions can be left to downstream
designers and implementers. Decisions are architectural
or not, according to context. If structure is important to
achieve your system’s goals, that structure is architec-
tural. But designers of elements, or subsystems, that you
assign may have to introduce structure of their own to
meet their goals, in which case such structures are archi-
tectural: to them but not to you.

And (repeat after me) we all promise to stop using the
phrase “detailed design.” Try “nonarchitectural design”
instead.

—P.C.

P.2 A Short Overview of Architecture Documentation
P.2.1 Why Document Software Architecture?

Even the best architecture, most perfectly suited for the job,
will be essentially useless if the people who need to use it do
not know what it is, cannot understand it well enough to apply
it, or (worst of all) misunderstand it and apply it incorrectly. All
of the effort, analysis, hard work, and insightful design on the
part of the architecture team will have been wasted. They
might as well have gone on vacation for all the good their
architecture will do.

Creating an architecture isn’t enough. It has to be commu-
nicated in a way to let its stakeholders use it properly to do
their jobs. If you go to the trouble of creating a strong architec-
ture, you must go to the trouble of describing it in enough
detail, without ambiguity, and organized so that others can
quickly find needed information.

Documentation speaks for the architect. It speaks for the
architect today, when the architect should be doing other things
besides answering a hundred questions about the architecture.

Doing business without
advertising [or design-
ing an architecture with-
out documenting it] is
like winking at a girl in
the dark. You know
what you’re doing, but
nobody else does.

—Steuart Henderson
Britt

ptg

10 ■ Prologue: Software Architectures and Documentation

And it speaks for the architect tomorrow, when he or she has
left the project and now someone else is in charge of its evolu-
tion and maintenance.

Documentation is often treated as an afterthought, some-
thing people do because they have to. Maybe a contract
requires it. Maybe a customer demands it. Maybe a company’s
standard process calls for it. In fact, these may be legitimate
reasons. But none of them are compelling enough to produce
high-quality documentation. Why should the architect spend
valuable time and energy just so a manager can check off a
deliverable?

The best architects produce the best documentation not
because it’s “required,” but because they see that it is essential
to the matter at hand: producing a high-quality product, pre-
dictably and with as little rework as possible. They see their
immediate stakeholders as the people most intimately involved
in this undertaking: developers, deployers, testers, and analysts.

But the best architects also see documentation as delivering
value to themselves. Documentation serves as the receptacle to
hold the results of design decisions as they are made. A well-
thought-out documentation scheme can make the process of
design go much more smoothly and systematically. Documen-
tation helps the architect while the architecting is in progress,
whether in a six-month design phase or a six-day Agile sprint.

COMING TO TERMS

Specification, Representation, Description,
Documentation

What shall we call the activity of writing down a software
architecture for the benefit of others or for our own ben-
efit at a later time? Leading contenders are documenta-
tion, representation, description, and specification. None
of these terms has a standardized meaning in our field:
the difference between them is unclear. For the most
part, we use documentation throughout this book, and
we want to explain why.

Specification tends to connote an architecture rendered
in a formal language. Now, we are all for formal specs.
But formal specs are not always practical, nor are they
always necessary. Sometimes, they aren’t even useful:
How, for example, do you capture in a formal language
the rationale behind your architectural decisions, and
why would you try?

ptg

P.2 A Short Overview of Architecture Documentation ■ 11

Representation connotes a model, an abstraction, a rendi-
tion of a thing that is separate or different from the thing
itself. Is architecture something more than what some-
one writes down about it? Arguably yes, but it’s certainly
pretty intangible in any case. We felt that raising the issue
of a model versus the thing being modeled would only
elicit needlessly diverting questions best left to those
whose hobby, or calling, is philosophy: Does an abstrac-
tion of a tree falling in a model of a forest make a repre-
sentation of a sound? This does not seem like the start of
a productive conversation.

Description has been staked out by the architecture
description language (ADL) community, and more
recently by the standards community coming up with
mandates for how to write down an architecture. It’s curi-
ous that the people you’d think would be the most formal
snagged the least rigorous sounding term of the bunch.
(The next time you board a jet, sit in front of a computer-
controlled X-ray machine, or watch the launch of a billion-
dollar space vehicle your tax dollars paid for, ask yourself
whether you hope the control software has been speci-
fied to the implementers, or merely described.) We
eschewed description, then, because it all at once
sounds too formal—we didn’t want people to think that
writing down an architecture requires an architecture
description language—and too informal. Descriptions
can be notoriously vague, such as when your friends
describe the blind date they set you up with. Sometimes
we need a little more specificity in our lives, and certainly
we need it in our architectures.

That leaves documentation. Documentation connotes
the creation of an artifact: namely, a document, which
may of course consist of electronic files, Web pages, a
snapshot of a whiteboard, or paper. Thus, documenting
a software architecture becomes a concrete task: pro-
ducing a software architecture document. Viewing the
activity as creating a tangible product has advantages.
We can describe good architecture documents and bad
ones. We can use completeness criteria to judge how
much work is left in producing this artifact and determin-
ing when the task is done. Planning or tracking a project’s
progress around the creation of artifacts, or documents,
is an excellent way to manage. Making the architecture
information available to its consumers and keeping it up
to date reduces to a solved problem of configuration

ADLs are discussed in
Section 3.4.2 and in the
For Further Reading
section of Chapter 8.
For an overview of
ADLs, see the work by
Stafford and Wolf
(2001).

ptg

12 ■ Prologue: Software Architectures and Documentation

control. Documentation can be formal or not, as appro-
priate, and may contain models or not, as appropriate.
Documents may describe, or they may specify. Hence,
the term is appropriately general.

No matter what you call it, the essence of the activity is
writing down—and keeping current—the results of architec-
tural decisions so that the stakeholders of the architecture—
people who need to know what it is to do their job—have
the information they need in an accessible, nonambigu-
ous form.

P.2.2 Uses and Audiences for Architecture Documentation

Architecture documentation must serve varied purposes. It
should be sufficiently abstract to be quickly understood by new
employees. It should be sufficiently concrete to serve as a blue-
print for construction. It should have enough information to
serve as a basis for analysis.

Architecture documentation is both prescriptive and
descriptive. For some audiences, it prescribes what should be
true, placing constraints on decisions yet to be made. For other
audiences, it describes what is true, recounting decisions
already made about a system’s design.

The best architecture documentation for, say, performance
analysis may well be different from the best architecture docu-
mentation we would wish to hand to an implementer. And
both of these will be different from what we put in a new hire’s
“welcome aboard” package or a briefing we put together for an
executive. The process of documentation planning and review
needs to ensure support for all the relevant needs.

We can see that many different kinds of people are going to
have a vested interest in an architecture document. They hope
and expect that the architecture document will help them do
their respective jobs. Understanding their uses of architecture
documentation is essential, as those uses determine the impor-
tant forms.

Fundamentally, architecture documentation has three uses.

1. Architecture serves as a means of education. The educational
use consists of introducing people to the system. The peo-
ple may be new members of the team, external analysts, or
even a new architect. In many cases, the “new” person is the
customer to whom you’re showing your solution for the
first time, a presentation you hope will result in funding or
go-ahead approval.

Section 6.1.3 (“Spec-
trum of Design”)
discusses how archi-
tecture documentation
captures the very
abstract to the very
detailed.

In Chapter 9, the docu-
mentation’s expected
uses, along with the
documentation obliga-
tions each use imparts,
become the basis for
helping an architect
plan the documentation
package.

Chapter 9 discusses
planning the contents
of a documentation
package. Chapter 11
discusses reviewing
documentation.

ptg

P.2 A Short Overview of Architecture Documentation ■ 13

2. Architecture serves as a primary vehicle for communication among
stakeholders. An architecture’s precise use as a communica-
tion vehicle depends on which stakeholders are doing the
communicating. Some examples are described in Table P.1.

Perhaps one of the most avid consumers of architecture
documentation is none other than the architect in the
project’s future. The future architect may be the same person
as the present one, or he or she may be a replacement, but
in either case he or she is guaranteed to have an enormous
stake in the documentation. New architects are interested
in learning how their predecessors tackled the difficult
issues of the system and why particular decisions were made.
Even if the future architect is the same person, he or she will
use the documentation as a repository of thought, a store-
house of design decisions too numerous and hopelessly
intertwined ever to be reproducible from memory alone.

Even in the short term, documenting an architecture
helps in the process of designing the architecture. First, the
documentation provides dedicated compartments for
recording various kinds of design decisions as soon as they
are made. Second, the documentation gives you a rough
but helpful way to gauge progress and the work remaining:
As “TBD”s disappear from the document, completion
draws near. Finally, documentation provides a framework
for systematic attack on designing the architecture. Key
design decisions, usually made early, should be written
down so that the shadow they cast on subsequent design
decisions is explicit and remembered.

QUOTE

In our organization, a development group writes design
documents to communicate with other developers, exter-
nal test organizations, performance analysts, the techni-
cal writers of manuals and product helps, the separate
installation package developers, the usability team, and
the people who manage translation testing for interna-
tionalization. Each of these groups has specific ques-
tions in mind that are very different from the ones that
other groups ask:

• What test cases will be needed to flush out functional
errors?

• Where is this design likely to break down?

• Can the design be made easier to test?

A stakeholder of an
architecture is someone
who has a vested interest
in it. (Many of an archi-
tecture’s stakeholders
are listed in Table P.1.)

Chapter 9 is about how
stakeholders’ needs will
help determine the con-
tents of the architecture
documentation.

Stakeholders (explicitly or
implicitly) drive the whole
shape and direction of the
architecture, which is
developed solely for their
benefit and to serve their
needs. . . . Without stake-
holders, there would be
no point in developing the
architecture because
there would be no need
for the system it will turn
into, nor would there be
anyone to build it, deploy
it, run it, or pay for it. . . .
Architectures are created
solely to meet stake-
holder needs.

—Rozanski and Woods
(2005, p. 21)

ptg

14 ■ Prologue: Software Architectures and Documentation

• How will this design affect the response of the system
to heavy loads?

• Are there aspects of this design that will affect its per-
formance or ability to scale to many users?

• What information will users or administrators need to
use this system, and can I imagine writing it from the
information in this design?

• Does this design require users to answer configuration
questions that they won’t know how to answer?

• Does it create restrictions that users will find onerous?

• How much translatable text will this design require?

• Does the design account for the problems of dealing
with double-byte character sets or bi-directional
presentation?

—Kathryn Heninger Britton (Hoffman and Weiss 2001,
pp. 337–338)

3. Architecture serves as the basis for system analysis and construction.

– Architecture tells implementers what to implement.

– For those interested in the ability of the design to meet
the system’s quality objectives, the architecture docu-
mentation serves as the fodder for evaluation. The archi-
tecture documentation must contain the information
necessary to evaluate a variety of attributes, such as secu-
rity, performance, usability, availability, and modifiability.
Analyses of each one of these attributes have their own
information needs.

– For system builders who use automatic code-generation
tools, the documentation may incorporate the models
used for generation.

Get the habit of analysis—
analysis will in time
enable synthesis to
become your habit of
mind.

—Frank Lloyd Wright

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they
might use it

Name Description Use for Architecture Documentation

Analyst Responsible for analyzing the
architecture to make sure it meets
certain critical quality attribute
requirements. Analysts are often
specialized; for instance, perfor-
mance analysts, safety analysts,
and security analysts may have
well-defined positions in a project.

Analyzing satisfaction of quality
attribute requirements of the system
based on its architecture.

ptg

P.2 A Short Overview of Architecture Documentation ■ 15

Architect Responsible for the development
of the architecture and its docu-
mentation. Focus and responsibil-
ity is on the system.

Negotiating and making trade-offs
among competing requirements and
design approaches. A vessel for
recording design decisions. Provid-
ing evidence that the architecture
satisfies its requirements.

Business
manager

Responsible for the functioning of
the business/organizational entity
that owns the system. Includes
managerial/executive responsibil-
ity, responsibility for defining busi-
ness processes, and more.

Understanding the ability of the
architecture to meet business goals.

Conformance
checker

Responsible for assuring con-
formance to standards and pro-
cesses to provide confidence in a
product’s suitability.

Basis for conformance checking, for
assurance that implementations
have been faithful to the architectural
prescriptions.

Customer Pays for the system and ensures
its delivery. The customer often
speaks for or represents the end
user, especially in a government
acquisition context.

Assuring required functionality and
quality will be delivered, gauging
progress, estimating cost, and set-
ting expectations for what will be
delivered, when, and for how much.

Database
administrator

Involved in many aspects of the
data stores, including database
design, data analysis, data model-
ing and optimization, installation
of database software, and moni-
toring and administration of data-
base security.

Understanding how data is created,
used, and updated by other archi-
tectural elements, and what proper-
ties the data and database must
have for the overall system to meet
its quality goals.

Deployer Responsible for accepting the
completed system from the devel-
opment effort and deploying it,
making it operational, and fulfilling
its allocated business function.

Understanding the architectural ele-
ments that are delivered and to be
installed at the customer’s or end
user’s site, and their overall respon-
sibility toward system function.

Designer Responsible for systems and/or
software design downstream of
the architecture, applying the
architecture to meet specific
requirements of the parts for
which they are responsible.

Resolving resource contention and
establishing performance and other
kinds of runtime resource consump-
tion budgets. Understanding how
their part will communicate and inter-
act with other parts of the system.

Evaluator Responsible for conducting a for-
mal evaluation of the architecture
(and its documentation) against
some clearly defined criteria.

Evaluating the architecture’s ability
to deliver required behavior and
quality attributes.

Implementer Responsible for the development
of specific elements according to
designs, requirements, and the
architecture.

Understanding inviolable constraints
and exploitable freedoms on devel-
opment activities.

continues

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they
might use it (continued)

Name Description Use for Architecture Documentation

ptg

16 ■ Prologue: Software Architectures and Documentation

Integrator Responsible for taking individual
components and integrating them,
according to the architecture and
system designs.

Producing integration plans and pro-
cedures, and locating the source of
integration failures.

Maintainer Responsible for fixing bugs and
providing enhancements to the
system throughout its life (includ-
ing adaptation of the system for
uses not originally envisioned).

Understanding the ramifications of a
change.

Network
administrator

Responsible for the maintenance
and oversight of computer hard-
ware and software in a computer
network. This may include the
deployment, configuration, main-
tenance, and monitoring of net-
work components.

Determining network loads during
various use profiles and understand-
ing uses of the network.

Product line
manager

Responsible for development of
an entire family of products, all
built using the same core assets
(including the architecture).

Determining whether a potential new
member of a product family is in or
out of scope and, if out, by how
much.

Project
manager

Responsible for planning,
sequencing, scheduling, and allo-
cating resources to develop soft-
ware components and deliver
components to integration and
test activities.

Helping to set budget and schedule,
gauging progress against estab-
lished budget and schedule, and
identifying and resolving develop-
ment-time resource contention.

Representative
of external
systems

Responsible for managing a sys-
tem with which this one must
interoperate, and its interface with
our system.

Defining the set of agreement
between the systems.

System
engineer

Responsible for design and devel-
opment of systems or system
components in which software
plays a role.

Assuring that the system environ-
ment provided for the software is
sufficient.

Tester Responsible for the (independent)
test and verification of the system
or its elements against the formal
requirements and the architecture.

Creating tests based on the behavior
and interaction of the software ele-
ments.

User The actual end users of the sys-
tem. There may be distinct kinds
of users, such as administrators,
superusers, and so on.

Users, in the role of reviewers, might
rely on architecture documentation
to check whether desired functional-
ity is being delivered. Users might
also refer to the documentation to
understand what the major system
elements are, which can aid them in
emergency field maintenance.

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they
might use it (continued)

Name Description Use for Architecture Documentation

ptg

P.2 A Short Overview of Architecture Documentation ■ 17

P.2.3 Architecture Documentation and Quality Attributes

If architecture is largely about the achievement of quality
attributes, and if one of the main uses of architecture docu-
mentation is to serve as a basis for analysis (to make sure the
architecture will achieve its required quality attributes), where
do quality attributes show up in the documentation? There are
five major ways:

1. Any major design approach (such as an architecture pat-
tern or style) chosen by the architect will have quality
attribute properties associated with it. Client-server is good
for scalability, layering is good for portability, an informa-
tion-hiding-based decomposition is good for modifiability,
services are good for interoperability, and so forth. Explain-
ing the choice of approach is likely to include a discussion
about the satisfaction of quality attribute requirements and
trade-offs incurred. Look for the place in the documenta-
tion where such an explanation occurs. In our approach,
we call that rationale.

2. Individual architectural elements that provide a service
often have quality attribute bounds assigned to them. Con-
sumers of the services need to know how fast, secure, or
reliable those services are. These quality attribute bounds
are defined in the interface documentation for the ele-
ments, sometimes in the form of a Quality of Service con-
tract. Or they may simply be recorded as properties that the
elements exhibit.

3. Quality attributes often impart a “language” of things that
you would look for. Security involves things like security lev-
els, authenticated users, audit trails, firewalls, and the like.
Performance brings to mind buffer capacities, deadlines,
periods, event rates and distributions, clocks and timers,
and so on. Availability conjures up mean time between fail-
ure, failover mechanisms, primary and secondary function-
ality, critical and noncritical processes, and redundant
elements. Someone fluent in the “language” of a quality
attribute can search for the kinds of architectural elements
(and properties of those elements) that were put in place
precisely to satisfy that quality attribute requirement.

4. Architecture documentation often contains a mapping to
requirements that shows how requirements (including quality
attribute requirements) are satisfied. If your requirements
document establishes a requirement for availability, for
instance, then you should be able to look up that require-
ment by name or reference in your architecture document
to see the place(s) where that requirement is satisfied.

For more on styles and
patterns, see “Coming
to Terms: ‘Architecture
Style’ and ‘Architecture
Pattern’ ” on page 32, in
this chapter.

Documenting rationale
is covered in Section 6.5.

Interface documentation
is covered in Chapter 7.

Properties are discussed
in Section I.3, in the
introduction to Part I.

Documenting a map-
ping to requirements is
covered in Section 10.3.

ptg

18 ■ Prologue: Software Architectures and Documentation

5. Every quality attribute requirement will have a constituency
of stakeholders who want to know that that quality attribute
requirement is going to be satisfied. For these stakeholders,
the architect should provide a special place in the docu-
mentation’s introduction that either provides what the
stakeholder is looking for or tells the stakeholder where in
the document to find it. It would say something like “If you
are a performance analyst, you should pay attention to the
processes and threads and their properties (defined
[here]), and their deployment on the underlying hardware
platform (defined [here]).” In our documentation approach,
we put this here’s-what-you’re-looking-for information in a
section called the documentation roadmap.

P.2.4 Economics of Architecture Documentation

We’d all like to make our stakeholders happy, of course. Giddy,
in fact. So why is producing high-quality architecture docu-
mentation often relegated to the “I’ll do it if I have time” cate-
gory of an architect’s many tasks? Why do project managers
often fail to insist that architecture documentation accompany
the other archival artifacts produced during development?
The answer, of course, is that an architecture document, let
alone one that induces giddiness, costs time and money.

Project managers are, by and large, rational people. (No,
seriously, they are.) They are willing to invest resources in activ-
ities that yield demonstrable benefit, and not so much other-
wise. As architects, we should be able to make a business case
for producing and maintaining architecture documentation.
And here it is: Activities that the project manager is going to
have to fund will be less costly in the presence of high-quality,
up-to-date documentation than they would otherwise.

A formula to show the savings looks like this:

over all activities A(Cost of A without AD – Cost of A with AD) > Cost of AD,

where “Cost of A without AD” and “Cost of A with AD” are the
cost of performing activity A without and with (respectively) an
architecture document. “Cost of AD” is the cost of producing
and maintaining the architecture documentation. In other
words, the payback from good architecture documentation
should exceed the effort to create it. Payback is measured in
terms of effort saved.

This formula gives us a way to think about documentation,
its effort, and its payoff. When deciding whether you should
produce a particular piece of documentation, ask yourself how

The documentation
roadmap is described in
Section 10.2.

The man who stops
advertising to save
money is like the man
who stops the clock to
save time. [The same
could be said for the
architect who stops
documenting.]

—Thomas Jefferson

ptg

P.2 A Short Overview of Architecture Documentation ■ 19

much effort it will take to do so, and what activities will be
cheaper as a result. By choosing even a small number of key
activities that will benefit from the presence of documentation,
you should be able to make a convincing back-of-the-envelope
argument that the effort invested will more than pay for itself.

And if you can’t—that is, if the effort doesn’t pay for itself—
then you shouldn’t expend it. Put your resources elsewhere.

The formula is nicely general; it does not require that you
actually enumerate all the activities involved. The ones that are
not affected by the presence or absence of architecture docu-
mentation at all simply wash out of the formula. But other
activities such as coding, re-engineering, launching a change
effort, and so on should have significant cost savings.

P.2.5 The Views and Beyond “Method”

We call our approach to documentation Views and Beyond.
This is to emphasize that we use the concept of a view—
explained in the next section—as the fundamental organizing
principle for architecture documentation, but also because we
go beyond views to include additional information that
belongs in an architecture document.

Views and Beyond is not actually a method. It does not have
a sequence of steps, with entry and exit criteria for each.
Rather, it is more a collection of techniques that carry out an
underlying philosophy. The philosophy is that an architecture
document should be helpful to the people who depend on it
to do their work (far from least of which is the architect). The
techniques can be bundled into a few categories:

1. Finding out what stakeholders need. If you don’t do this,
you’re going to end up with documentation that may serve
no one.

2. Providing the information to satisfy those needs by record-
ing design decisions according to a variety of views, plus the
beyond-view information.

3. Checking the resulting documentation to see if it satisfied
the needs.

4. Packaging the information in a useful form to its stakeholders.

While items 3 and 4 denote document-centric activities,
items 1 and 2 denote activities that should be carried out in
conjunction with performing the architecture design. That is,
we don’t want Views and Beyond to be an architecture documen-
tation method; rather, we want it to help the architect identify
and record the necessary design decisions as they are made.
Documentation should be the helpful result of making an

Chapter 9 covers a way
to use stakeholder
needs to determine the
views you include in your
architecture document.

Chapter 11 covers
reviewing documentation.

Chapter 10 covers
packaging and organiza-
tion of documentation.

Don’t consider architec-
ture documentation as a
task separate from
design; rather, make it
an essential part of the
architecture design pro-
cess, serving as a ready
vessel for holding the
output of architectural
decisions as soon as
those decisions are made.

ptg

20 ■ Prologue: Software Architectures and Documentation

architecture decision, not a separate step in the architecture
process. The more that documentation is treated like a follow-
on to design, with its own separate method, the less likely it is
to be done at all.

P.2.6 Views and Beyond in an Agile Environment

It is an unfortunate myth that Agile development and docu-
mentation (particularly architecture documentation) are at
odds with each other. They aren’t, and there are many exam-
ples of Agile leaders saying exactly that. Nevertheless, it is pos-
sible to interpret the advice in this book as prescribing a
heavyweight and cumbersome approach to documentation.
You can imagine an architect lagging hopelessly behind the
project, which has gone on to deliver the product while he or
she is still struggling to complete a Views-and-Beyond-style doc-
umentation package from six iterations ago. Neither the archi-
tect (nor this book) would likely be invited back to the next
project.

Here is some advice that applies to all projects but especially
to Agile projects: The Views and Beyond approach provides
guidance for documenting many kinds of architecture infor-
mation: structures, elements, relations, behavior, interfaces,
rationale, traces to requirements, style guides, system context,
and a whole lot more. But nowhere is it written that you have
to do all of that. Decide what is useful (you can use the formula
in Section P.2.4 to help you decide). Then, for example, if you
decide that documenting the rationale behind a certain design
decision is going to pay off in the future, then you can use the
available guidance to help you do it. If you decide that docu-
menting certain views is useful, then you can use the available
guidance to help you do it. And so forth.

Choose what’s useful and cost-effective to document. Docu-
ment that. Period.

P.2.7 Architectures That Change Faster Than You Can Document
Them

When your Web browser encounters a file type it’s never seen
before, odds are that it will go to the Internet, download the
appropriate plug-in to handle the file, install it, and reconfig-
ure itself to use it. Without even needing to shut down, let
alone go through the code-integrate-test development cycle,
the browser is able to change its own architecture by adding a
new component.

Service-oriented systems that utilize dynamic service discov-
ery and binding also exhibit these properties. More challenging
systems that are highly dynamic, self-organizing, and reflective

[W]e have come to value
. . . working software
over comprehensive
documentation.

—The Agile Manifesto
(Agile Alliance 2002)

Section E.4 in the
epilogue elaborates on
architecture documen-
tation in an Agile
environment.

ptg

P.2 A Short Overview of Architecture Documentation ■ 21

(meaning self-aware) are on the horizon. In these cases, the
identities of the components interacting with each other can-
not be pinned down, let alone their interactions, in any static
architecture document.

Another kind of architectural dynamism, equally challeng-
ing from a documentation perspective, is found in systems that
are rebuilt and redeployed with great rapidity. Some develop-
ment shops, such as those responsible for commercial Web
sites, build and “go live” with their system many dozens of times
every single day.

Whether an architecture changes at runtime, or as a result
of a high-frequency release-and-deploy cycle, both share some-
thing in common with respect to documentation: They change
much faster than the documentation cycle. In either case,
nobody is going to hold up things until a new architecture doc-
ument is produced, reviewed, and released.

But knowing the architecture of these systems is every bit as
important, and arguably more so, than for systems in the world
of more traditional life cycles. Here’s what you can do if you’re
an architect in a highly dynamic environment:

1. Document what is true about all versions of your system.
Your Web browser doesn’t go out and grab just any piece of
software when it needs a new plug-in; a plug-in must have
specific properties and a specific interface. And it doesn’t
just plug in anywhere, but in a predetermined location in the
architecture. Record those invariants as you would for any
architecture. This may make your documented architecture
more a description of constraints or guidelines that any
compliant version of the system must follow. That’s fine.

2. Document the ways the architecture is allowed to change.
In the previous examples, this will usually mean adding new
components and/or replacing components with new
implementations. In the Views and Beyond approach, the
place to do this is called the variability guide.

3. Make your system capture its own architecture-of-the-
moment automatically. When your Web browser or SOA sys-
tem crashes, your recovery team is going to want to know
exactly what configuration was running when the problem
occurred. This ability can run the spectrum from primitive
(write changes in a log file) to sophisticated (drive a real-
time display of the components and their interactions,
much like what is found in network service centers).

Using a variability guide
to document an archi-
tecture’s variation
points is covered in
Section 6.4.

ptg

22 ■ Prologue: Software Architectures and Documentation

P.3 Architecture Views
Perhaps the most important concept associated with software
architecture documentation is that of the view. A software
architecture is a complex entity that cannot be described in a
simple one-dimensional fashion. Our analogy with the bird
wing proves illuminating. If you are interested in any but the
most superficial understanding, then no single rendition of a
bird wing will do. Instead, you need many: feathers, skeleton,
circulation, muscular views, and many others. Which of these
views is the “architecture” of the wing? None of them. Which
views convey the architecture? All of them.

In this book, we use the concept of views to give us the most
fundamental principle of architecture documentation, illus-
trated in Figure P.1:

Documenting an architecture is a matter of documenting
the relevant views and then adding documentation that
applies to more than one view.

What are the relevant views? It depends on your goals. As we
saw previously, architecture documentation can serve many
purposes: a mission statement for implementers, a basis for
analysis, the specification for automatic code generation, the
starting point for system understanding and asset recovery, or
the blueprint for project planning.

Different views also expose different quality attributes to dif-
ferent degrees. Therefore, the quality attributes that are of
most concern to you and the other stakeholders in the system’s
development will affect the choice of what views to document.
For instance, a layered view will tell you about your system’s port-
ability, a deployment view will let you reason about your system’s
performance and reliability, and so forth.

Different views support different goals and uses. This is funda-
mentally why we do not advocate a particular view or collection

A view is a representa-
tion of a set of system
elements and the rela-
tionships associated
with them.

For more information
about the bird wing
analogy, see “About the
Cover” on page xxi.

Chapter 9 shows how to
choose the relevant
views. Section 10.1
shows how to document
a view, and Section 10.2
shows how to docu-
ment the information
that applies to more
than one view.

Layered views are cov-
ered in Section 2.4.
Deployment views are
covered in Section 5.2.

Figure P.1
A documentation package
for a software architecture
can be composed of one or
more view documents and
documentation that
explains how the views
relate to one another,
introduces the package to
its readers, and guides
them through it.

S
o

ftw
are

A
rch

itectu
re

Softw
are

Arch
ite

cture

for

Syste
m XYZ

P
art n

+
1

:
D

o
cu

m
en

tatio
n

B
eyo

n
d

 V
iew

s Documentatio
n

Beyond Views

P
art 1

: V
iew

P
art 2

: V
iew

•••

P
art n

: V
iew

ptg

P.3 Architecture Views ■ 23

of views. The views you should document depend on the uses
you expect to make of the documentation. Different views will
highlight different system elements and/or relations.

It may be disconcerting that no single view can fully repre-
sent an architecture. Additionally, it feels somehow inadequate
to see the system only through discrete, multiple views that may
or may not relate to one another in any straightforward way.
The essence of architecture is the suppression of information
not necessary to the task at hand, and so it is somehow fitting
that the very nature of architecture is such that it never pre-
sents its whole self to us but only a facet or two at a time. This is
its strength: Each view emphasizes certain aspects of the system
while deemphasizing or ignoring other aspects, all in the inter-
est of making the problem at hand tractable. Nevertheless, no
one of these individual views adequately documents the software
architecture for the system. That is accomplished by the com-
plete set of views along with information that transcends them.

The documentation for a view contains

• A primary presentation, usually graphical, that depicts the
primary elements and relations of the view

• An element catalog that explains and defines the elements
shown in the view and lists their properties

• A specification of the elements’ interfaces and behavior

• A variability guide explaining any built-in mechanisms avail-
able for tailoring the architecture

• Rationale and design information

The documentation that applies to all of the views contains

• An introduction to the entire package, including a reader’s
guide that helps a stakeholder find a desired piece of infor-
mation quickly

• Information describing how the views relate to one another,
and to the system as a whole

• Constraints and rationale for the overall architecture

• Such management information as may be required to effec-
tively maintain the whole package

COMING TO TERMS

A Short History of Architecture Views

Nearly all modern approaches to designing and docu-
menting architectures rely on the concept of an architec-
tural view. Where did this concept come from?

An object-oriented pro-
gram’s runtime struc-
ture often bears little
resemblance to its code
structure. The code
structure is frozen at
compile-time; it con-
sists of classes in fixed
inheritance relation-
ships. A program’s run-
time structure consists
of rapidly changing net-
works of communicat-
ing objects. In fact, the
two structures are
largely independent.
Trying to understand
one from the other is
like trying to understand
the dynamism of living
ecosystems from the
static taxonomy of
plants and animals, and
vice versa.

—Gamma et al. (1995,
p. 22)

Section 10.1 substan-
tially elaborates this
outline.

Section 10.2 substan-
tially elaborates this
outline.

ptg

24 ■ Prologue: Software Architectures and Documentation

More than three decades ago, David Parnas
(1974) observed that software consists of many
structures, which he defined as partial descrip-
tions showing a system as a collection of parts

and showing some relations among the parts. This defi-
nition largely survives in architecture papers today. Par-
nas identified several structures prevalent in software. A
few were fairly specific to operating systems, such as the
structure that defines what process owns what memory
segment, but others are more generic and broadly appli-
cable. These include the module structure, in which the
units are work assignments and the relation is is-a-part-
of or shares-part-of-the-same-secret-as; the uses struc-
ture, in which the units are programs, and the relation is
depends on the correctness of; and the process struc-
ture, in which the units are processes, and the relation is
gives computational work to.

Quite a bit later, DeWayne Perry and
Alexander Wolf recognized that, sim-
ilar to building architecture, a variety
of views of a system are required.

Each view emphasizes certain architectural aspects that
are useful to different stakeholders or for different pur-
poses (Perry and Wolf 1992).

Later, Philippe Kruchten (1995) of the Rational
Software Corporation wrote an influential paper
describing four main views of software archi-
tecture (logical, process, development, physi-

cal) that can be used to great advantage in system
building, along with a distinguished fifth view that ties the
other four together by showing how they satisfy key use
cases: the “4+1” approach to architecture. The 4+1
approach has since been embraced as a foundation
piece of the Rational Unified Process.

At about the same time,
Dilip Soni, Robert Nord, and
Christine Hofmeister of Sie-
mens Corporate Research

made a similar observation about views of architecture
they found in use in industrial practice (Soni, Nord, and
Hofmeister 1995). They wrote about the conceptual view,
module interconnection view, execution view, and code
view. These views, which correspond more or less to
Kruchten’s four views, have become known as the Sie-
mens Four View model for architecture.

To see how the 4+1
views correspond to
views described in this
book, see Section E.2 of
the epilogue.

The Siemens Four View
model is explained in
the book by Hofmeister,
Nord, and Soni (2000).

ptg

P.4 Architecture Styles ■ 25

Other “view sets” have emerged since these. In their
book Software Systems Architecture, Rozanski and
Woods (2005) advocate using functional, information,
concurrency, development, deployment, and operational
views. Philips Research, the R&D arm of the giant Dutch
electronics company, has created the “CAFCR” model of
architecture, which calls for five views: the customer,
application, functional, conceptual, and realization views.

In the year 2000, the IEEE adopted a standard (IEEE
1471-2000) for architecture descriptions. Unlike approaches
that prescribe a fixed set of views, this standard advo-
cates creating your own views that best serve the stake-
holders and their concerns associated with your system.
(The Views and Beyond approach also advises flexibility
in choosing your view set.)

P.4 Architecture Styles
Recurring forms have been widely observed, even if written for
completely different systems. These forms occur often enough
that they are worth writing and learning about in their own
right. We call these forms architecture styles. (In this book, we
usually just say styles.) Styles have implications for architecture
documentation and deserve definition and discussion in their
own right.

Styles allow one to apply specialized design knowledge to a
particular class of systems and to support that class of system
design with style-specific tools, analysis, and implementations.
The literature is replete with a number of styles, and most
architects have a wide selection in their repertoires.

For example, we’ll see that modules can be arranged into a
useful configuration by restricting what each one is allowed to
use. The result is a layered style that imparts to systems that use
it qualities of modifiability and portability. Different systems
will have a different number of layers, different contents in
each layer, and different rules for what each layer is allowed to
use. However, the layered style is abstract with respect to these
options and can be studied and analyzed without binding them.

For another example, we’ll see that client-server is a com-
mon architecture style. The elements in this style are clients,
servers, and the protocol connectors that depict their interaction.
When used in a system, the client-server style imparts desirable

IEEE 1471-2000 is
now known as ISO/IEC
42010:2007. We
describe this standard
in Section E.1 of the
epilogue.

An architecture style is
a specialization of ele-
ment and relation types,
together with a set of
constraints on how they
can be used.

In all processes of life
people imitate, and so
must artists. They are
influenced by their peers
as by their antecedents
because this is the way
of organic development.
Late Beethoven and early
Schubert, for instance,
are almost indistinguish-
able; while Brahms took
certain themes, note for
note, from Beethoven;
and Shakespeare stole
nearly all of his plots—all
the good ones certainly.

—Agnes de Mille, Amer-
ican dancer and cho-
reographer (Atlantic
1956)

ptg

26 ■ Prologue: Software Architectures and Documentation

properties to the system, such as the ability to add clients with
little effort. Different systems will have different protocols, dif-
ferent numbers of servers, and different numbers of clients
each can support. However, the client-server style is abstract
with respect to these options and can be studied and analyzed
without binding them.

Some styles are applicable in every software system. For
example, every system is decomposed into modules to divide
the work; hence, the decomposition style applies everywhere.
Other examples of “universal styles” are uses, deployment, and
work assignment. Some styles occur only in systems in which
they were explicitly chosen and designed in by the architect:
layered, service oriented, and multi-tier, for example.

Choosing a style, whether it’s one covered in this book or
somewhere else, imparts a documentation obligation to record
the specializations and constraints that the style imposes and
the characteristics that the style imparts to the system. We call
this piece of documentation a style guide. The obligation to
document a style can usually be discharged by citing a descrip-
tion of the style in the literature: this book, for example. If you
invent your own style, however, you should write a style guide
for it because it will help you and your peers to apply that style
in other systems.

No system is built exclusively from a single style. On the con-
trary, every system can be seen to be an amalgamation of many
different styles. Some (such as decomposition and work assign-
ment) occur in every system, but in addition to these, systems
can exhibit a combination of one or more “chosen” styles as
well.

Even restricting our attention to component-and-connector
styles, it’s possible for one system to exhibit several styles in the
following ways:

• Different “areas” of the system might exhibit different styles.
For example, a system might use a pipe-and-filter style to
process input data but route the result to a database that is
accessed by many elements. This system would be a blend of
pipe-and-filter and shared-data styles. Documentation for
this system would include (1) a pipe-and-filter view that
showed one part of the system and (2) a shared-data view
that showed the other part. In a case like this, one or more
elements must occur in both views and have properties of
both kinds of elements. (Otherwise, the two parts of the sys-
tem could not communicate with each other.) These bridging
elements provide the continuity of understanding from one
view to the next. They likely have multiple interfaces, each

The layered style is
described in Section 2.4.

The client-server style is
described in Section 4.3.1.

A style guide is the
description of an archi-
tecture style that speci-
fies the vocabulary of
design (sets of element
and relationship types)
and the rules (sets of
topological and semantic
constraints) for how that
vocabulary can be used.

The contents of a style
guide are given in Sec-
tion I.2, in the introduc-
tion to Part I. Section
6.1.4 discusses how to
create and document a
new style.

Combining views is an
important concept cov-
ered in Section 6.6.

A bridging element is
an element that is com-
mon to two views and is
used to provide the
continuity of under-
standing from one view
to the other. A bridging
element appears in both
views and has support-
ing documentation,
usually a mapping
between views, that
makes the correspon-
dence clear, perhaps by
showing the combined
picture.

ptg

P.4 Architecture Styles ■ 27

providing the mechanisms for letting the element work with
other elements in each of the views to which it belongs. The
filter/database connector in Figure P.2 is an example.

• An element playing a part in one style may itself be com-
posed of elements arranged in another style. For example,
a service provider in an SOA system might, unknown to
other service providers or its own service users, be imple-
mented using a multi-tier style. Documentation for this sys-
tem would include an SOA view showing the overall system,
as well as a multi-tier view documenting that server, as illus-
trated in Figure P.3.

• Finally, the same system might simply be seen in different
lights, as though you were looking at it through filtered
glasses. For example, a system featuring a database reposi-
tory, as in Figure P.4, may be seen as embodying either a
shared-data style or a client-server style. The glasses you
choose will determine the style that you “see.”

In the last case, your choice of style-filtered glasses depends,
once again, on the uses to which you and your stakeholders
intend to put the documentation. For instance, if the shared-
data style is more easily understood by the stakeholders that
will consume that view, you might choose it. If you need the
perspective afforded by more than one style, however, you have
a choice. You can document the corresponding views separately,
or you can combine them into a single view that is, roughly
speaking, the union of what the separate views would be.

This combined view is
called an overlay. Over-
lays are discussed in
Section 6.6.

Figure P.2
A system combining a
pipe-and-filter style with a
shared-data style. The
“filter/database connector”
is a bridging element.

Key

Filter

Pipe

Database

Filter/
database
connector

Accessor

Accessor
connector

ptg

28 ■ Prologue: Software Architectures and Documentation

Figure P.3
A system combining two
styles. Here a service
provider is composed
internally in a multi-tier
style.

Key

Key

SOAP call

http REST

SOA participant (service
consumer or provider)

Interface of service provider

Client tier

Client
component

Web
component

Business
component

Database

http/https Method call Database
access

Tier

Web tier Business logic tier Back end

Figure P.4
This system could be in the
shared-data style, or the
client-server style,
depending on your
perspective.

Action
handler 1

Action
handler 3

Action
handler 2

File server

Request-reply
Key

ptg

P.4 Architecture Styles ■ 29

P.4.1 Three Categories of Styles

Although no fixed set of views is appropriate for every system,
broad guidelines can help us gain a footing. Architects need to
think about their software in three ways simultaneously:

1. How it is structured as a set of implementation units

2. How it is structured as a set of elements that have runtime
behavior and interactions

3. How it relates to nonsoftware structures in its environment

Each style we present in this book falls into one of these
three categories:

1. Module styles

2. Component-and-connector (C&C) styles

3. Allocation styles

When we apply a style to a system, the result is a view. Module
views document a system’s principal units of implementation.
C&C views document the system’s units of execution. And allo-
cation views document the relations between a system’s soft-
ware and nonsoftware resources of the development and
execution environments.

COMING TO TERMS

Module, Component

In this book, we rely on three categories of styles: mod-
ule, component-and-connector, and allocation. This three-
way distinction allows us to structure the information
we’re presenting in an orderly way and, we hope, allows
you to recall it and access it in an orderly way, so that you
can write an architecture document that presents its
information in an orderly way. But for this strategy to suc-
ceed, the distinctions have to be meaningful. Two of the
categories rely on words for which we give precise
meanings, but which are not historically well differenti-
ated: module and component.

Like many words in computing, these two have mean-
ings outside our field. Furthermore, both terms have
come to be associated with movements in software engi-
neering that have overlapping goals.

During the 1960s and 1970s, software systems increased
in size and were no longer able to be produced by one

A selection of module
styles is presented in
Chapter 2. A selection
of C&C styles is pre-
sented in Chapter 4. A
selection of allocation
styles is presented in
Chapter 5.

One of the best ways to
avoid confusion in your
architecture is to be
meticulous about
making it clear whether
each architecture ele-
ment is a module or a
component.

ptg

30 ■ Prologue: Software Architectures and Documentation

person. It became clear that new techniques were
needed to manage software complexity and to partition
work among programmers. To address such issues of
“programming in the large,” various criteria were intro-
duced to help programmers decide how to partition their
software. Encapsulation, information hiding, and abstract
data types became the dominant design paradigms of
the day. Until this movement, computer programs were
largely about calculating the correct answer, but thought
leaders were now saying that how you structure your
code determines other important properties of the system.
Module became the carrier of their meaning. The 1970s
and 1980s saw the advent of “module interconnection
languages” and features of new programming languages
such as Modula modules, Smalltalk classes, and Ada
packages. Today’s dominant design paradigm—object-
oriented programming—has these module concepts at
its heart. Components, by contrast, are in the limelight
with component-based software engineering and the
component-and-connector perspective in the software
architecture field.

Both movements aspire to achieve rapid system con-
struction and evolution through the selection, assembly,
and wholesale replacement of independent subpieces.
Both modules and components are about the decompo-
sition of a whole software system into constituent parts.
But beyond that, the two terms take on different shades
of meaning.

• A module refers first and foremost to a unit of imple-
mentation. Parnas’s foundational work in module
design (Parnas 1972) used information hiding as the
criterion for allocating responsibility to a module.
Information that was likely to change over the lifetime
of a system, such as the choice of data structures or
algorithms, was assigned to a module, which had an
interface through which its facilities were accessed.
Modules have long been associated with source code,
but information models, XML files, config files, BNF
files for parsers, and other implementation artifacts
are all perfectly fine modules.

• A component refers to a runtime entity. Szyperski says
that a component “can be deployed independently
and is subject to composition by third parties”
(Szyperski 1998, p. 30). The emphasis is clearly on the
finished product and not on the implementation con-
siderations that went into it. Indeed, the operative

ptg

P.4 Architecture Styles ■ 31

model is that a component is delivered in the form of
an executable binary only: Nothing upstream from that
is available to the system builder.

In short, a module suggests implementation units and
artifacts, with less emphasis on the delivery medium and
what goes on at runtime. A component is about units of
software active at runtime with no visibility into the imple-
mentation structure.

Who cares? If every module turned into exactly one com-
ponent at runtime, it would be easy to sweep the differ-
ence under the rug. But this is often far from reality! In
many systems, a single module might turn into many
components, or it might take many modules to turn into
a single component. An easy way to see this is to imag-
ine a trivially simple client-server system. Suppose our
system has a single server, which at runtime serves up
some interesting piece of data to ten interested clients,
all of which do the same thing. This system has eleven
components but only two modules. The server module
maps 1:1 onto the server component S1. The client mod-
ule maps 1:10 to the client components C1–C10. Failing
to distinguish between modules and components makes
it too easy to blithely assume that every unit of implemen-
tation turns into exactly one unit of execution. It isn’t so.

Our use of the terms in this book reflects their pedigrees.
Module styles described in this book reflect implementa-
tion artifact considerations: decompositions that assign
parts of the problem to units of design and implementation,

Figure P.5
A client-server system
might consist of two
modules but eleven
components.

Key Key

Decomposition view

System

Client-server view

Client

Server

Module
Component
Request-reply

S1

C10

C5

C9

C8

C7

C2

C3

C1

C6 C4

ptg

32 ■ Prologue: Software Architectures and Documentation

layers that reflect what uses are allowed when software
is being written, and classes that factor out commonality
from a set of instances. Modules in these styles are often
units of source code, but there’s also the data model
style, where the module is a model of the data that the
system manipulates. Of course, all these module styles
have runtime implications; that’s the end game of soft-
ware design, after all. C&C styles described in this book
focus on how processes interact and data travels around
the system during execution.

In many architectures, there is a one-to-one mapping
between modules and components. Further, the module
and its component counterpart are usually given the same
name in this case. This makes it tempting to believe that
the modules and components are the same, which in
turn makes it tempting to believe there is no difference.
Don’t be tempted. Although a one-to-one mapping does
no harm, the truth is that the module and component are
different elements sharing the same name. In such an
architecture, the module will show up in a module view,
and a component with the same name will show up in
one or more component-and-connector views.

Modules and components represent the current bedrock of
the software engineering approach to rapidly constructed,
easily changeable software systems. As such, modules
and components serve as fundamental building blocks
for creating and documenting software architectures.

COMING TO TERMS

“Architecture Style” and “Architecture Pattern”

What do the two terms mean?

In this book we use “architecture style” as the term for a
package of design decisions that explains a generic design
approach for a software system. Another term for a similar
concept, used by many architects and authors, is “architec-
ture pattern.” What is the difference between these two
concepts and why did we choose style over pattern?

An architecture style is a “specialization of element and
relation types, together with a set of constraints on how
they can be used” (Bass, Clements, and Kazman 2003).

Section 10.2 describes
how to document the
mapping between a
system’s modules and
its components. Sec-
tions 1.5 and 3.5 dis-
cuss how modules and
components relate to
each other.

ptg

P.4 Architecture Styles ■ 33

An architecture pattern “expresses a fundamental
structural organization schema for software systems”
(Buschmann et al. 1996, p. 12). It is, above all, a pattern,
which in the context of architecture “describes a partic-
ular recurring design problem that arises in specific
design contexts, and presents a well-proven generic
scheme for its solution. The solution scheme is specified
by describing its constituent components, their respon-
sibilities and relations, and the ways in which they collab-
orate” (Buschmann et al. 1996, p. 8).

An essential part of an architecture pattern is its focus on
the problem and context as well as how to solve the
problem in that context. That last part we’ll call the archi-
tecture approach. An architecture style focuses on the
architecture approach, with more lightweight guidance
on when a particular style may or may not be useful. Very
informally, we can put it this way (where the arrow means
“suggests”):

• Architecture pattern: {problem, context}
architecture approach

• Architecture style: architecture approach

How did these two terms come about?

“Architecture style” as we use it today traces to some
early writing from the formative days of software archi-
tecture study.

In 1990 and 1991, Mary Shaw was noticing and
describing recurring architecture concepts she
found in many systems. She called these
“elements of a design language for software

architecture” or “design idioms” (Shaw 1990, 1991). In
1992 Dewayne Perry and Alexander Wolf wanted to
“build an intuition” about the still-new field of software
architecture (Perry and Wolf 1992). Looking around at
other kinds of architecture—network architecture, com-
puter architecture, and others—they hit upon building
architecture as rich in fertile (and borrowable) concepts.
One of those concepts was architecture style. Like
Shaw before them, they were also noticing recurring
design forms in software architectures, and they saw that
this would be a useful term to appropriate to describe
those forms. Styles, then, were observed phenomena,
approaches (manifest in the kinds of elements and rela-
tions employed) that the authors noticed were being

Q UO TE S

Thus, we find in building
architecture some fun-
damental insights about
software architecture:
multiple views are
needed to emphasize
and to understand dif-
ferent aspects of the
architecture; styles are a
cogent and important
form of codification that
can be used both
descriptively and pre-
scriptively; and, engi-
neering principles and
material properties are
of fundamental impor-
tance in the develop-
ment and support of a
particular architecture
and architectural style.

—Perry and Wolf (1992)

[In building architecture,]
architectural styles
classify architecture in
terms of form, tech-
niques, materials, time
period, region, etc. . . .
leading to a terminology
such as Gothic “style.”

—Wikipedia (2010a)

ptg

34 ■ Prologue: Software Architectures and Documentation

used over and over. The emphasis was on discovery and
categorization of utilized forms.

In 1996 Frank Buschmann and his colleagues
at Siemens made the inevitable connection
between two powerful concepts: software
architecture and design patterns (the latter hav-

ing electrified software engineering the previous year).
Their book, Pattern-Oriented Software Architecture, Vol-
ume 1: A System of Patterns (Buschmann et al. 1996;
PoSA, for short), is where the term architectural pattern
was first used. Followed over the years by (at this writing)
four sequels, the PoSA series does for architects what
Design Patterns (Gamma et al. 1995) did for designers
and programmers.

Both design patterns and (software) architec-
ture patterns owe their meaning to the building
architect Christopher Alexander, who in the
1970s wrote several books detailing architec-

ture approaches to solve common building design prob-
lems. People love to sit next to windows, he wrote, so
make every room have a place where they can comfort-
ably do so. People love balconies, he wrote, but obser-
vations show they won’t spend time on a balcony less
than 10 feet wide. So make your balconies at least 10
feet wide. People love outdoor spaces, he wrote, but not
if they’re in the shadow of a building. So in the northern
hemisphere put your courtyards on the south side. He
called these design nuggets patterns: “a three-part rule,
which expresses a relation between a certain context, a
problem, and a solution” (Alexander 1979, p. 247). The
patterns community (of whatever flavor) has tried to
remain faithful to his meaning.

Why do patterns seem more specific?

It has turned out, not as a matter of the intrinsic nature of
these things but rather as a matter of practice, that the
published architecture patterns tend to be more con-
straining—that is, they embed more design decisions—
than the published architecture styles. Patterns often
look “more detailed” or “less abstract” than styles. Styles
tend to tell people what the element and relation types of
interest are, and give topological constraints: Put layers
on top of layers; pipes connect to filters, not pipes; and
so on. Patterns tend to be more specific, showing
instances of the element type interacting with each other.

“Anarchitectural pattern
expresses a fundamental
structural organization
schema for software
systems. It provides a
set of predefined sub-
systems, specifies their
responsibilities, and
includes rules and
guidelines for organiz-
ing the relationships
between them.”
(Buschmann et al. 1996,
p. 12)

We must not forget that
the wheel is reinvented
so often because it is a
very good idea; I've
learned to worry more
about the soundness of
ideas that were
invented only once.

—D. L. Parnas (1996)

ptg

P.4 Architecture Styles ■ 35

That’s because the collectors of styles were motivated to
find commonality where none had been observed before.
Broad categories are more inclusive. Pattern writers have
tended to record very specific and context-dependent prob-
lems; hence their solutions are correspondingly specific.

Architects can use this de facto distinction to their
advantage. For instance, if you’re handling a lot of data
in your system, you might want to consider a style (the
shared-data style is a good candidate) and ask yourself
if the element and relation types are what you need: That
is, do you really need a database? Yes? OK, now go look
for a more constrained architecture approach (which
might very well be given as a pattern).

Why did we use “architecture style” in this book?

In this book, which is about documenting software architec-
tures and not so much about designing them, we concen-
trate on presenting a variety of solution approaches—
architecture styles—so that we can show how to document
systems built using them. In a software architecture docu-
ment, one doesn’t document a pattern, one documents an
application of it—that is, the instantiated solution approach.

How do I document the use of a style or pattern in a software
architecture document?

Architects can use either patterns or styles as a starting
point for their design. They might be published in existing
catalogs, stored in an organization’s proprietary repository
of standard designs, or created specifically for the prob-
lem at hand by the architect. In either case, they provide
a generic (that is, incomplete) solution approach that the
architect will have to refine and instantiate.

First, record the fact that the given style or pattern is
being used. Then say why this solution approach was
chosen—why it is a good fit to the problem at hand. If the
chosen approach comes from a pattern, show that the
problem at hand fits the problem and context of the pat-
tern. If the chosen approach comes from a style, explain
why the style does the needed job.

Using a pattern or a style means making successive
design decisions that eventually result in an architecture.
These design decisions manifest themselves as newly
instantiated elements and relations among them. The
architect can document a snapshot of the architecture at

The shared-data style is
described in Section
4.5.1.

The software architec-
ture document tem-
plates in Chapter 10 will
provide a place for all of
this information.

The concept of making
successively more
constrained design
decisions is called a
“spectrum of design”
and is discussed in Sec-
tion 6.1.3.

ptg

36 ■ Prologue: Software Architectures and Documentation

each stage. How many stages there are depends on
many things, not the least of which is the ability of read-
ers to follow the design process in case they have to
revisit it in the future.

Summary

Architecture styles represent observed architecture
approaches. A style description does not generally include
detailed problem/context information. Architecture pat-
terns do. An architecture approach might be docu-
mented (and several are) as an architecture style and an
architecture pattern. Both styles and patterns are a set of
prepackaged design decisions involving the choice of
element types, relation types, properties, and constraints
on the topology and interaction among the elements via
the relations. Both provide vocabularies that shortcut
explanation and allow greatly facilitated communication
(“My system is layered.” “Ah, I understand. What are the
layers?”), and help chart a course to the satisfaction of
specific quality attribute requirements. Both can be used
in combination—it is a rare system that uses only one
style or one architecture pattern. And both represent
essential elements of an architect’s vocabulary.

P.5 Seven Rules for Sound Documentation
Architecture documentation is much like the documentation
we write in other facets of our software development projects.
As such, it obeys the same fundamental rules for what distin-
guishes good, usable documentation from poor, ignored doc-
umentation. We close the prologue with seven rules for sound
software documentation. Use this checklist when you write
technical documentation. (You can also use it when you read
technical documentation: the rules provide objective criteria
for judging a document’s quality, and they let you say some-
thing constructive in a critical review.)

Rule 1: Write Documentation from the Reader’s Point of View

This rule simply reminds us to keep the end game in mind as
we produce our documentation: Make your document serve its
stakeholders and their intended uses of it. It is surprisingly easy
to forget that rule in the midst of looming deadlines, an over-
flowing e-mail queue, and a cell phone that won’t shut up.

The great computing scientist Edsger Dijkstra (1930–2002),
the inventor of many of the software engineering principles we

Styles are described
using a common set of
information; this layout
is called a style guide.
The style guide we use
to describe the styles
covered in this book is
explained in the intro-
duction to Part I.

These are the rules for
any technical documen-
tation, including soft-
ware architecture
documentation:

1. Write documentation
from the reader’s
point of view.

2. Avoid unnecessary
repetition.

3. Avoid ambiguity.
4. Use a standard

organization.
5. Record rationale.
6. Keep documentation

current but not too
current.

7. Review documentation
for fitness of purpose.

The consumer isn’t a
moron. She is your wife.

—David Ogilvy, writing
about advertising

ptg

P.5 Seven Rules for Sound Documentation ■ 37

now take for granted, once said that he would happily spend
two hours pondering how to make a single sentence clearer.
He reasoned that if the paper were read by a couple of hun-
dred people—a decidedly modest estimate for someone of
Dijkstra’s caliber—and he could save each reader a minute or
two of confusion, it was well worth the effort. Professor Dijk-
stra’s consideration for the reader reflects his classic manners,
but it also gives us a new and useful concept of the effort asso-
ciated with a document. Usually we just count how long it takes
to write. Dijkstra taught us to be concerned with how long it
takes to use. Writing a document that a reader finds easy to use
will help tilt the economics of documentation in our favor, as
defined in the formula in Section P.2.4.

Writing for the reader is just plain polite, but it has a practi-
cal advantage as well. A reader who feels that the document
was written with him or her in mind appreciates the effort but,
more to the point, will come back to the document again and
again in the future. Documents written for the reader will be
read; documents written for the convenience of the writer will
not. All of us like to shop at stores that seem to want our busi-
ness, and we avoid stores that do not. This is no different.

Tips on how to write for the reader include:

• Find out who your readers are, what they know, and what
they expect of the document. Have an informal chat with
some representatives of various kinds of readers and see
what their expectations are. Don’t make uninformed
assumptions about what your readers know.

• Avoid stream of consciousness writing. If you find yourself
writing things down in the order they occur to you, without
an overall organizational plan, stop. Work out where spe-
cific kinds of information should go and put them where
they belong. Make sure that you know what question(s) are
being answered by each section of a document.

• Avoid unnecessary insider jargon. The documentation may
be read by someone new to the field or from a company that
does not share the same jargon. Add a glossary to define
specialized terms.

• Avoid overuse of acronyms. Resist using an acronym when
the spelled-out phrase is short or it appears only a few times.
Always provide a dictionary that decodes whatever acronyms
you do use.

Rule 2: Avoid Unnecessary Repetition

Each kind of information should be recorded in exactly one
place. This makes documentation easier to use and much easier

I have made this letter
rather long only
because I have not had
time to make it shorter.

—Blaise Pascal, French
mathematician, phys-
icist, and moralist

The true measure of a
man is how he treats
someone who can do
him absolutely no good.

—Attributed to Samuel
Johnson

Rozanski and Woods’s
book Software Systems
Architecture (2005) lists
the following properties
of an “effective archi-
tectural description”:
correctness, sufficiency,
conciseness, clarity,
currency, and precision.

ptg

38 ■ Prologue: Software Architectures and Documentation

to change as it evolves. It also avoids confusion: information
that is repeated is likely to be in a slightly different form, and
now the reader must wonder “Was the difference intentional?
If so, what is the meaning of the difference? Did the author
change one place and forget to update the other?”

It should be a goal that information never be repeated. How-
ever, at times the cost to the reader of not repeating informa-
tion in the other places where it’s needed is high. Readers
don’t like to flip pages or click hyperlinks unnecessarily. The
information may be repeated in two or more different places
for clarity or to make different points. Also, expressing the
same idea in different forms is often useful for achieving a
thorough understanding. If keeping the information separate
comes at too high a cost to the reader, repeat the information.

In a document maintained and viewed online, hyperlinks
make this rule easier to follow. For example, each term can be
hyperlinked to its definition; a concept can be hyperlinked to
an explanation or elaboration.

PERSPECTIVES

Beware Notations Everyone “Just Knows”

Rule 3 admonishes us to avoid ambiguity. “A well-
defined notation with precise semantics,” we say, “goes
a long way toward eliminating whole classes of linguistic
ambiguity from a document.” Here we want to empha-
size the part about “precise semantics.” Just having a
well-defined notation is not enough.

Consider data flow diagrams. Years ago Michael Jackson
wrote a wonderful Socratic dialogue that showed how a
data flow diagram is largely incapable of conveying use-
ful information about a software design unless you
already have a pretty good idea what the design is by the
time you start looking at it (Jackson 1995, pp. 42–47; we
reprinted the dialogue in Chapter 11 of the first edition of
this book [Clements et al. 2003]). Data flow diagrams, for
heaven’s sake! They’ve been around for decades. Can it
really be that nobody understands what they mean?
Jackson was able to show convincingly how easily they
can be misinterpreted.

Consider layer diagrams. Layered systems were first
described more than four decades ago. We’ve all seen
them; we’ve all written them. Yet how many times have

The data flow diagrams
. . . don’t seem to be
much use. They’re just
vague pictures suggest-
ing what someone
thinks might be the
shape of a system to
solve a problem, and no
one’s saying what the
problem is. [T]he big
picture isn’t much use if
it doesn’t say anything
you can understand.
You’re all just guessing
what Fred’s diagram
means. It wouldn’t
mean anything at all to
you if you didn’t already
have a pretty good idea
of what the problem is
and how to solve it.

—A character in a
parable about data
flow diagrams written
by Michael Jackson
(1995)

ptg

P.5 Seven Rules for Sound Documentation ■ 39

we stopped to ask exactly what they mean? A layer dia-
gram is about the only graphical representation of archi-
tecture in which position is significant. Box 1 on top of
Box 2 is quite a different system than Box 2 on top of Box
1. What does it mean, exactly, that some rectangles are
stacked up on top of each other? “Oh, the programs on
top can call programs below” is an answer I often get
when I ask this question in class. Well, can programs at
the top call any programs below, or just the programs in
the next lower layer? Ask this question in a room full of
professional software engineers, and (if my experience
teaching to these groups is any measure) you’ll usually
get one-third nods, one-third head shakes, and one-third
looking as though you just told them the sun is made of
really shiny cheese. Can programs in a layer call other
programs in the same layer? Generally the same
response. And everyone, absolutely everyone, forgets to
tell me that programs below are not allowed to call pro-
grams above, which is a rather important thing to
remember about layers.

So, surprise: Simple layer diagrams are inherently ambig-
uous. Common variants, such as what I call “layers with
a sidecar,” where a vertical box is smooshed up against
the stack on one side, are even more ambiguous. (The
good news is that they can be easily disambiguated.)

A well-defined notation is one in which you can look at an
example and tell whether it’s a legal example of using the
notation or not. Layers and data flow diagrams both have
this property. But neither, traditionally presented, have
precise enough semantics to be unambiguous.

Notations like this, where software engineers “just know”
what they mean, are the most dangerous. We all might
“know” what a layer diagram means. The problem is that
what I “know” it means will be different from what you
“know” it means, and different still from what the archi-
tect meant. So we’ll all go merrily along with no hint of a
problem until late in the project when our errors in under-
standing may cause us to miss a deadline or suffer an
operating failure.

—P.C.

ptg

40 ■ Prologue: Software Architectures and Documentation

Rule 3: Avoid Ambiguity

Ambiguity occurs when documentation can be interpreted in
more than one way and at least one of those ways is incorrect.
The most dangerous kind of ambiguity is undetected ambigu-
ity. Here, each reader will think he or she understands the doc-
ument, but unwittingly each reader will come to different
conclusions about what it is saying.

Following two of the other rules will help you avoid ambiguity:

• By avoiding needless repetition (rule 2), you avoid the
“almost but not quite alike” form of ambiguity.

• Reviewing the document with members of its intended audi-
ence (rule 7) will help spot and weed out ambiguities.

A well-defined notation with precise semantics goes a long
way toward eliminating whole classes of linguistic ambiguity
from a document. This is one area where standard languages
and notations help a great deal, but using a formal language
isn’t always necessary. Simply adopting a set of notational con-
ventions and then using them consistently and rigorously will
help eliminate many sources of ambiguity. But if you do adopt
a notation, then the following corollary applies:

ADVICE

We have several things to say about box-and-line dia-
grams masquerading as architecture documentation.

• Don’t be guilty of drawing one and claiming that
it’s anything more than a start at an architecture
description.

• If you draw one yourself, make sure that you explain
precisely what the boxes and lines mean.

• If you see one, ask its author what the boxes mean
and what, precisely, the arrows connote. The result is
usually illuminating, even if the only thing illuminated is
the author’s confusion.

Rule 3a: Explain Your Notation

The ubiquitous box-and-line diagrams that people always draw
on whiteboards are one of the greatest sources of ambiguity in
architecture documentation. Although not a bad starting
point, these diagrams are certainly not good architecture doc-
umentation. First, most such diagrams suffer from ambiguity.

Q UO TE

It is far better to be
explicit and wrong than
to be vague.

—Frederick Brooks, Jr.
(1995, p. 259)

Clarity is our only
defense against the
embarrassment felt on
completion of a large
project when it is dis-
covered that the wrong
problem has been
solved.

—C. A. R. Hoare (1985,
p. 85)

ptg

P.5 Seven Rules for Sound Documentation ■ 41

Are the boxes supposed to be modules, objects, classes, ser-
vices, clients, servers, databases, processes, functions, tiers, pro-
cedures, processors, or something else? Do the arrows mean
calls, uses, data flow, I/O, inheritance, communication, pro-
cessor migration, or something else?

Make it as easy as possible for your reader to determine the
meaning of the notation. The best way to do this is always to
include a key in your diagrams. If you’re using a standard visual
language defined elsewhere, the key can simply name it or
refer readers to the source of the language’s semantics. Even if
the language is standard or widely used, different versions
often exist. Let your reader know, by citation, which one you’re
using. For example, “Key: UML 2.0” is a perfectly fine key, and
it puts readers and authors on the same page. For a home-
grown informal notation, include a key to the symbology. This
is good practice because it compels you to understand what the
pieces of your system are and how they relate to one another;
it’s also courteous to your readers.

PERSPECTIVES

Quivering at Arrows

Many architecture diagrams with an informal notation
use arrows to indicate a directional relationship among
architecture elements. Although this might seem like a
good and innocuous way to indicate that two elements
interact, it creates a great source of confusion in many
cases. What do the arrows mean?

Consider the following architecture snippet:

What does the arrow mean? Here are some possibilities:

• C1 calls C2.

• Data flows from C1 to C2.

• C1 instantiates C2.

• C1 sends a message to C2.

• C1 is a subtype of C2. (Usually C2 would be posi-
tioned above C1, but that is not mandatory.)

Every diagram in the
architecture documen-
tation should include a
key that explains the
meaning of every sym-
bol used. The key
should identify the nota-
tion. If a predefined
notation is being used
(such as UML), the key
should name it and if
necessary cite the doc-
ument that defines the
version being used.
Otherwise, the key
should define the sym-
bology and the mean-
ing, if any, of colors,
shapes, position, and
other information-carry-
ing aspects of the dia-
gram. If your diagram
uses color but the color
has no particular mean-
ing or is only there to
enhance readability, say
so in the key.

If you define an informal
notation for your dia-
grams, try to use the
same notation consis-
tently across diagrams
of the same type. Use
different symbols for
different types of ele-
ments and relations. For
example, if you used a
rounded rectangle for
Web components in a
diagram, avoid using a
different shape for Web
components in other
diagrams.C1 C2

ptg

42 ■ Prologue: Software Architectures and Documentation

• C2 is a data repository and C1 is writing data to C2.

• Conversely, C1 is a repository and C2 is reading data
from C1.

Any of these might make sense, and people use arrows
to mean all these things and more, often using multiple
interpretations in the same diagram.

Suppose we know the arrow indicates that component
C1 calls component C2. If your system uses different
kinds of calls, it’s a good idea to differentiate them in the
diagrams. In particular, it is important to distinguish syn-
chronous from asynchronous calls, and local from
remote calls. Both aspects may have implications for
behavior, performance, modifiability, and reliability of the
interaction. It may also be useful to differentiate the tech-
nology used to implement the call when the solution will
accommodate different ones. For example, a synchro-
nous remote call can be implemented via a Web service
such as SOAP, REST, Java RMI, or .NET remoting,
among other options. To differentiate the types of inter-
action in the diagram, use distinct arrowheads (open,
closed, solid, hollow) and lines (solid, dotted, dashed,
double).

Suppose that we know that C1 calls C2. Sometimes we
feel tempted to also show a data flow between the two.
We could use the preceding figure and assume the arrow
indicates data flow (instead of “calls”), but if C2 returns a
value to C1, shouldn’t an arrow go both ways? Or should
a single arrow have two arrowheads? These two options
are not interchangeable. A double-headed arrow typi-
cally denotes a symmetric relationship between two ele-
ments, whereas two single-headed arrows suggest two
asymmetric relationships at work. In either case, the dia-
gram will lose the information that C1 initiated the inter-
action. Suppose that C2 also invokes C1. Would we need
to put two double-headed arrows between C1 and C2?
When a component C1 calls a component C2, C1 may
pass data as arguments to C2 and C2 may return data
back to C1. Therefore, it’s often a better idea to use the
arrow to indicate the call’s relation rather than data flow;
otherwise the diagram may easily end up full of double-
headed arrows that don’t tell much.

Although arrows are often used to indicate interactions,
often one can avoid confusion by not using them where
they are likely to be misinterpreted. For example, one can

SOAP and REST are
defined in Section 4.3.3.
In previous versions of
the SOAP specification,
SOAP was an acronym,
but this is no longer the
case. See www.w3.org/
TR/soap12-part1/#intro.

www.w3.org/TR/soap12-part1/#intro
www.w3.org/TR/soap12-part1/#intro

ptg

P.5 Seven Rules for Sound Documentation ■ 43

use lines without arrowheads. Sometimes physical
placement, rather than lines, can convey the same infor-
mation. For example, a layer A on top of a layer B indi-
cates that modules in A can use modules in B. Nesting
one element inside another often means “is part of.”

Finally, a good key is essential for understanding the
meaning of arrows, even ones that represent “simple”
interactions such as “calls.” A useful arrow, suitably
explained in the key, will leave no doubt as to which is the
calling end and which is the called end of a call-return
connector, and which way the data flows.

—D.G. and P.M.

Rule 4: Use a Standard Organization

Establish a standard, planned organization scheme, make your
documents adhere to it, and ensure that readers know about it.
A standard organization, also called a template, offers many
benefits.

• It helps the reader navigate the document and find specific
information quickly. Thus, this benefit is also related to the
write-for-the-reader rule.

• It also helps the document writer plan and organize the con-
tents. The writer doesn’t have to start with a blank page
when answering the question “What topics and in what
order should I have in this document?” The template
already provides an outline of the important topics to cover.

• It allows the writer to record information as soon as it’s
known. For example, pieces of section 4 may be written
before sections 1–3 are there.

• It reveals what work remains to be done by the number of
sections labeled “TBD” (to be determined) or “To Do.”

• It embodies completeness rules for the information; the sec-
tions of the document constitute the set of important aspects
that need to be conveyed. Hence, the standard organization
can form the basis for a first-order validation check of the
document at review time.

Corollaries to this rule are these:

1. Organize documentation for ease of reference. Software docu-
mentation may be read from cover to cover at most once,
probably never. But a document is likely to be referenced
hundreds or thousands of times. Do what you can to make
it easy to find information quickly. Adding a table of contents,

Section I.2, in the intro-
duction to Part I, con-
tains a standard
organization for a style
guide. Sections 10.1
and 10.2 contain a stan-
dard organization that
we recommend for doc-
umenting views and
information beyond
views. Chapter 7 contains
a standard organization
for the documentation
of a software interface.

Take any long explana-
tions of figures that are
in the main text and
move these to the fig-
ures’ captions. In-text
explanations would
serve first-time readers
well, but putting expla-
nations in captions will
serve second-time
readers better: When
they see a figure they’re
looking for they won’t
have to go search the
text for its explanation.

—Instructions to the
editors of this book,
explaining one way in
which we tried to
organize the book for
ease of reference

ptg

44 ■ Prologue: Software Architectures and Documentation

an index, a glossary, and an acronym list are all good ways
to help readers look up specific information.

2. Don’t leave any section blank; mark as “TBD” what you don’t yet
know or “NA” what you know is not applicable. Many times, we
can’t fill in a document completely because we don’t yet
know the information, or because decisions have not been
made, or because we didn’t yet have time to do it. In that
case, mark the document accordingly (for example, “TBD”
or “To Do”). Templates are by nature generic and hence
comprehensive. If a given section of the template does not
apply for the document you’re creating, mark it as “NA.” If
the section is blank, the reader will wonder whether the
information is coming later or whether it is indeed sup-
posed to be blank. Thus this advice is related to the rule
about avoiding ambiguity.

Rule 5: Record Rationale

Architecture is the result of making a set of important design
decisions, and architecture documentation records the out-
comes of those decisions. For the most important decisions,
you should record why you made them the way you did. You
should also record the important or most likely alternatives
you rejected and state why. Later, when those decisions come
under scrutiny or pressure to change, you will find yourself
revisiting the same arguments and wondering why you didn’t
take another path. Recording your rationale will save you enor-
mous time in the long run, although it requires discipline to
record your rationale in the heat of the moment.

Of course, not every single design decision should have the
rationale captured in the architecture documentation. If a
design decision is key to achieve a quality requirement of the
system, its rationale is probably worth capturing. If a design
decision required a long meeting with stakeholders, that’s a
good decision to capture. If you conducted technical experi-
ments and studies or created prototypes to evaluate design
alternatives, the conclusions of this effort should be captured
as rationale for the chosen alternative. Keep in mind that one
week, one month, or one year from now, you may not remem-
ber why you did things that way, and other people will not
know either.

Rule 6: Keep Documentation Current but Not Too Current

Documentation that is incomplete or out of date does not
reflect truth, does not obey its own rules for form and internal
consistency, and is not used. Documentation that is kept cur-
rent and accurate is used. Why? Because questions about the

Don’t leave sections
blank. Mark them as
“not applicable” or “to
be determined,” as
appropriate. Better:
“Not applicable
because [reason]” and
“To be determined by
[date or milestone].”

“Well, it’s an idea, and
even a bad idea is better
than none,” said Master
Li. “Error can point the
way to truth, while
empty-headedness can
only lead to more
empty-headedness or
to a career in politics.”

—Barry Hughart, Bridge
of Birds (1984)

Section 6.5 discusses
the documentation of
rationale.

ptg

P.6 Summary Checklist ■ 45

software can be most easily and most efficiently answered by
referring to the appropriate document. Documentation that is
somehow inadequate to answer the question needs to be fixed.
Updating it and then referring the questioner to it will deliver
a strong message that the documentation is the final, authori-
tative source for information.

During the design process, on the other hand, decisions are
made and reconsidered with great frequency. Revising docu-
mentation to reflect decisions that will not persist is an unnec-
essary expense.

Your development plan should specify particular points at
which the documentation is brought up to date or the process
for keeping the documentation current. For example, the end
of each iteration or sprint, or each incremental release, could
be associated with providing revised documentation. Every
design decision should not be recorded and distributed the
instant it is made; rather, the document should be subject to
version control and have a release strategy, just as every other
artifact does.

Rule 7: Review Documentation for Fitness of Purpose

Only the intended users of a document will be able to tell you
whether it contains the right information presented in the
right way. Enlist their aid. Before a document is released, have
it reviewed by representatives of the community or communi-
ties for which it was written.

P.6 Summary Checklist
• The goal of documenting an architecture is to write it down

so that others can successfully use it, maintain it, and build
a system from it.

• Documentation exists to further architecture’s uses as a
means of education, as a vehicle for communication among
stakeholders, and as the basis for analysis.

• Documenting an architecture is a matter of documenting
the relevant views and then adding documentation that
applies to more than one view.

• Documentation should pay for itself by making develop-
ment activities less costly.

• Module styles help architects think about their software as a
set of implementation units. C&C views help architects
think about their software as a set of elements that have
runtime behavior and interactions. Allocation views help
architects think about how their software relates to the non-
software structures in its environment.

Even with the best
intentions, sometimes
budget and schedule
preclude conscientious
updating of an architec-
ture document as the
system undergoes
change. In that case, as
happens all too often,
the code becomes the
final source of authority.
Try to use the formula in
Section P.2.4 to justify
maintaining the docu-
ment by making a case
that doing so is worth
the investment. If that
fails, then at least mark
the sections of the doc-
ument that are out of
date so that readers can
still have confidence in
the remainder.

Chapter 11 covers
reviewing architecture
documents.

ptg

46 ■ Prologue: Software Architectures and Documentation

• An architecture style is a specialization of elements and rela-
tions, together with a set of constraints on how they can be
used. A style defines a family of architectures that satisfy the
constraints.

• Some styles are applicable in every software system. Other
styles occur only in systems in which they were explicitly cho-
sen and designed in by the architect.

• Follow the seven rules for sound documentation.

1. Write documentation from the point of view of the
reader, not the writer.

2. Avoid unnecessary repetition.

3. Avoid ambiguity. Always explain your notation.

4. Use a standard organization.

5. Record rationale.

6. Keep documentation current but not too current.

7. Review documentation for fitness of purpose.

P.7 Discussion Questions
1. Think of a technical document that you remember as being

exceptionally useful. What made it so?

2. Think of a technical document that you remember as being
dreadful. What made it so?

3. List several architectural aspects of a system you’re familiar
with, and state why they are. List several aspects that are not
architectural, and state why they are not. List several
aspects that are “on the cusp,” and make a compelling argu-
ment for putting each into “architectural” or “nonarchitec-
tural” categories.

4. If you visit Seoul, Korea, you might see the following sign
presiding over one of the busy downtown thoroughfares:

1

2

3

4

5

ptg

P.8 For Further Reading ■ 47

What does it mean? Is the information this sign conveys
structural, behavioral, or both? What are the elements in
this system? Are they more like modules or like compo-
nents? What qualities about the notation make this sign
understandable or not understandable? Does the sign con-
vey a dynamic architecture, or dynamic behavior within a
static architecture? Who are the stakeholders of this sign?
What quality attributes is it attempting to achieve? How
would you validate it, to assure yourself that it was satisfying
its requirements?

5. How much of a project’s budget would you devote to soft-
ware architecture documentation? Why? How would you
measure the cost and the benefit?

P.8 For Further Reading
The full treatment of software architecture—how to build one,
how to evaluate one to make sure it’s a good one, how to
recover one from a jumble of legacy code, and how to drive a
development effort once you have one—is beyond the scope of
this book. However, general books on software architecture are
plentiful. Several authors provide good coverage: Bass, Clem-
ents, and Kazman (2003); Hofmeister, Nord, and Soni (2000);
Shaw and Garlan (1996); Bosch (2000); and Gorton (2006).
Also, Jeff Garland and Richard Anthony’s Large-Scale Software
Architecture: A Practical Guide Using UML is a good resource
(Garland and Anthony 2003).

The Software Engineering Institute’s software architecture
Web page—at www.sei.cmu.edu/architecture—provides a wide
variety of software architecture resources and links, including
a broad collection of definitions of the term (SEI 2010).

One of the goals of documentation is to provide sufficient
information so that an architecture can be analyzed for fitness
of purpose. For more about analysis and evaluation of software
architectures, see the book by Clements, Kazman, and Klein
(2002).

The seven rules of sound documentation are adapted from
a paper by Parnas and Clements (1986), which also espouses a
philosophy directly relevant to this book. That paper holds
that although system design is almost always subject to errors,
false starts, and resource-constrained compromises, systems
should be documented as though they were the product of an
idealized, step-by-step, smoothly executed design process. That
is the documentation that will be the most helpful in the long
run. This book is consistent with that philosophy, in that it lays
out what the end state of your documentation should be.

www.sei.cmu.edu/architecture

ptg

48 ■ Prologue: Software Architectures and Documentation

If you want a deeper appreciation of the field of architecture
and its roots, then diving into some of the early papers will be
worth your time:

David Parnas (1974) first made the observation that software
can be described by many structures, not just one. This insight
led directly to the concept of views that we use today. Architec-
ture views in general, and “4+1 views” in particular, are a fun-
damental aspect of the Rational (now IBM Rational) Unified
Process for object-oriented software (Kruchten 1995).

An early paper on software architecture that tied us to build-
ing architecture and our “architecture styles” to the architec-
ture styles of buildings is by Perry and Wolf (1992).

A tour de force in style comparison is found in the paper by
Shaw (1995), in which the author examines 11 different previ-
ously published solutions to the automobile cruise-control
problem and compares each solution through the lens of
architecture style. Chapter 3 of the book by Shaw and Garlan
(1996) continues the theme. A number of example problems
are presented. For each one, several architecture solutions are
presented, each based on the choice of a different style. These
side-by-side comparisons not only reveal qualities of the styles
themselves, but also richly illustrate the overall concept.

For encyclopedic catalogs of architecture patterns, see the
Pattern-Oriented Software Architecture series of books by the fol-
lowing authors: Buschmann et al. (1996); Schmidt et al.
(2000); Kircher and Jain (2004); and Buschmann, Henney,
and Schmidt (2007a and 2007b). Also see Martin Fowler’s
book Patterns of Enterprise Application Architecture (2002).

Smith and Williams (2002) include three chapters of princi-
ples and guidance for architecting systems in which perfor-
mance is an overriding concern.

ptg

49

P A R T

A Collection of Software
Architecture Styles

The starting point of architecture design is most often a preex-
isting package of design decisions. Very few architects design
systems completely by closing their eyes, thinking hard, and
conjuring up a brand-new design.

A most useful package of design decisions is the architecture
style. Chapters 1–5 present a range of important and widely
used architecture styles. The emphasis here is on how to docu-
ment a view that results from the use of a style.

I.1 Three Categories of Styles
Chapters 1–5 are organized along the lines of the three catego-
ries of styles we discussed in the prologue: module styles
(Chapters 1 and 2), component-and-connector (C&C) styles
(Chapters 3 and 4), and allocation styles (Chapter 5). Plan for
your documentation package to include at least one module
view, at least one component-and-connector view, and at least
one allocation view.

Modules are the primary elements of module styles. A mod-
ule is an implementation unit that provides a coherent set of
responsibilities. A module might take the form of a class, a col-
lection of classes, a layer, an aspect, or any decomposition of
the implementation unit. Every module has a collection of
properties assigned to it. These properties are intended to
express the important information associated with the mod-
ule, as well as constraints on the module. Sample properties
are responsibilities, visibility information, and author or
owner. The relations that modules have to one another include
is part of, depends on, and is a.

A module style is a kind
of style that introduces
a specific set of module
types and specifies
rules about how ele-
ments of those types
can be combined.

Module styles are
described in Chapters 1
and 2.

ptg

50 ■ Part I: A Collection of Software Architecture Styles

Component-and-connector styles express runtime behavior.
They are described in terms of components and connectors. A
component is one of the principal processing units of the exe-
cuting system. Components might be services, processes,
threads, filters, repositories, peers, or clients and servers, to
name a few. A connector is the interaction mechanism among
components. Connectors include pipes, queues, request/reply
protocols, direct invocation, event-driven invocation, and so
forth. Components and connectors can be decomposed into
other components and connectors. The decomposition of a
component may include connectors and vice versa.

Allocation styles describe the mapping of software units to
elements of an environment in which the software is developed
or executes. The environment might be the hardware, the file
systems supporting development or deployment, or the devel-
opment organization(s).

I.2 Style Guides: A Standard Organization for Explaining
a Style

Styles presented together for comparison and selection should
be described consistently with each other. In this way, an archi-
tect can better make an informed decision about which one(s)
to use. This is an application of the fourth rule for sound doc-
umentation: Use a standard organization. The outline used for
describing a style is called a style guide.

The styles in Chapters 1–5 are presented using the form of a
style guide. Below is the outline for that style guide.

OUTL INE FOR A STYLE GUIDE

1. Overview. The overview in a style guide explains why
this style is useful. It discusses what it is about a system
that the style addresses and how it supports reasoning
about systems.

2. Element types, relation types, and properties.

a. Elements are the architecture building blocks
native to the style. A style guide defines one or
more element types, instances of which will popu-
late an architecture that uses that style.

b. Relations determine how the elements work
together to accomplish the work of the system. A
style guide defines one or more relation types that

A component-and-
connector style is a
kind of style that intro-
duces a specific set of
component and con-
nector types and speci-
fies rules about how
elements of those types
can be combined. Addi-
tionally, given that C&C
views capture runtime
aspects of a system, a
C&C style is typically
also associated with a
computational model
that prescribes how
data and control flow
through systems
designed in that style.

C&C styles are described
in Chapters 3 and 4.

An allocation style is a
kind of style that
describes the mapping
of software units to ele-
ments of an environment
in which the software is
developed or executes.

Allocation styles are
described in Chapter 5.

A style guide is the
description of an archi-
tecture style that speci-
fies the vocabulary of
design (sets of element
and relationship types)
and rules (sets of topo-
logical and semantic
constraints) for how that
vocabulary can be used.

ptg

I.2 Style Guides: A Standard Organization for Explaining a Style ■ 51

apply to the style’s element types. An architecture
using the style will describe the relations (instances
of the relation type) that determine how the ele-
ments can work together, and any important prop-
erties of those relations. The style guide provides
rules on how elements can and cannot be related.

3. Constraints. This section of the style guide lists the rules
for putting the elements and relations together to
form a valid instance of the style. For example, in a
pipe-and-filter style, a pipe is allowed to attach to a fil-
ter, but not to another pipe. In a layered style, the lay-
ers are laid out adjacently in a stack, not scattered
about randomly. In a work-assignment style, every soft-
ware unit has to be allocated to at least one organiza-
tional element.

4. What it’s for. This section of the style guide describes the
kind of reasoning supported by views in the style. The
intent is to help the architect understand to what pur-
pose(s) a view in this style may be put. This might be
how using the style helps in the development process
(for example, the “uses” style is good for reasoning
about modifiability). Or it might be about how the style
helps the product (for instance, pipe-and-filter yields
good performance when processing a series of data
elements).

5. Notations. This section of the style guide will give
descriptions of graphical and/or textual representa-
tions that are available and useful to document views in
the style. Different notations will also support the con-
veyance of different kinds of information in the view.

6. Relation to other styles. This section of the style guide
describes how views derived from this style might be
related to views derived from different styles. For exam-
ple, views from two different styles might convey different
but related information about a system, and the archi-
tect would like a way to choose which one to use. This
section might also include warnings about other views
with which a particular view is often confused, to the
detriment of the system and its stakeholders. (Layers and
tiers are a good example of this. They are fundamen-
tally different, but are often [mis]used interchangeably.)

7. Examples. This section provides or points to an example
of a documented view derived from the given style.

An element is an archi-
tecture building block
native to the style. An
element can be a mod-
ule, a component or
connector, or an ele-
ment in the environment
of the system whose
architecture we are doc-
umenting. The descrip-
tion of an element tells
what role it plays in an
architecture, lists its
important properties,
and furnishes guide-
lines for effective docu-
mentation of the
element in a view.

A relation defines how
elements cooperate to
accomplish the work of
the system. The
description of a relation
names the relations
among elements and
provides rules on how
elements can and can-
not be related.

A property contains
additional information
about elements and
relations. A style defini-
tion includes the prop-
erty name and
description. When an
architect documents a
view based on that
style, the properties will
be given values. Prop-
erty values are often
used to analyze an
architecture for its abil-
ity to meet quality
attribute requirements.

ptg

52 ■ Part I: A Collection of Software Architecture Styles

I.3 Choosing Which Element and Relation Properties to
Document

The discussion in Chapters 1–5 heavily emphasizes styles,
which are documented in published style guides. But as you
read about the styles in Part I, remember that the end game is
to produce views based on the chosen style. Recall that a view
is a representation of a style applied to a particular system—in
this case the system whose architecture is being documented.

One of the tasks in documenting a view is deciding which
properties of elements to document. Recall from our preced-
ing discussion of style guides that properties are additional
information about the elements and their relations that are
useful to document. The styles of Chapters 1–5 are each
described with a set of properties likely to be useful; consider
them suggestions.

Properties almost always include the name of the element as
well as some description of its role or responsibility in the
architecture. For example, properties of a layer—an element
of the layered style, which is one of the module styles—should
include the layer’s name, the units of software the layer con-
tains, and the nature of the capabilities that the layer provides.
A layered view will then, for each layer, specify its name, the
units of software it contains, and the capabilities it provides.

Beyond these basic properties, however, are properties that
will support architecture-based analysis. If you want to analyze
an architecture for performance, then properties in some
views probably should include an element’s best- and worst-
case response times, or the maximum number of events an ele-
ment can service per time unit. If you want to analyze an archi-
tecture for security, then you probably want to document
properties that explain levels of encryption and authorization
rules for different elements and relations.

So: If you care about quality attribute x, then define proper-
ties that will let you analyze for x in the views that are related to
achieving x.

Also as you read Chapters 1–5, remember that a view may
represent more than one style. In fact, this is the norm. Since
all nontrivial software systems employ many styles at once,
mandating that each view come from just one style would
result in a plethora of views and a very thick architecture doc-
ument. Some styles can be fruitfully combined, and that com-
bination used to create a view. Component-and-connector styles
in particular tend to combine well, and many architects pro-
duce a single component-and-connector view for their system
that reflects all of the C&C styles they used.

When documenting a
view, decide on the list
of properties to docu-
ment about the elements
in that view. Choose
properties that will aid
the analysis you wish
the documentation to
support. Documenting a
view, then, includes
documenting the values
for the properties you
chose.

Section 6.6 discusses
which styles go together
well to produce com-
bined views.

ptg

I.4 Notations for Architecture Views ■ 53

By learning the “pure” (uncombined) styles, however, you
can make more informed choices about which ones to com-
bine. Each comes with its own vocabulary (of element and rela-
tion types); you can use these vocabularies to build meaningful
combined views that carry forward the pedigree of each of
their constituent styles.

I.4 Notations for Architecture Views
Notations for documenting views differ considerably in their
degree of formality. Roughly speaking, there are three main
categories of notation:

1. Informal notations. Views are depicted (often graphically)
using general-purpose diagramming and editing tools and
visual conventions chosen for the system at hand. The
semantics of the description are characterized in natural
language and cannot be formally analyzed.

2. Semiformal notations. Views are expressed in a standardized
notation that prescribes graphical elements and rules of
construction, but does not provide a complete semantic
treatment of the meaning of those elements. Rudimentary
analysis can be applied to determine if a description satis-
fies syntactic properties. Unified Modeling Language (UML)
is a semiformal notation in this sense.

3. Formal notations. Views are described in a notation that has
a precise (usually mathematically based) semantics. Formal
analysis of both syntax and semantics is possible. There are
a variety of formal notations for software architecture avail-
able, although none of them can be said to be in wide-
spread use. Generally referred to as architecture description
languages (ADLs), they typically provide both a graphical
vocabulary and an underlying semantics for architecture
representation. In some cases these notations are special-
ized to particular styles. In others they allow many styles, or
even provide the ability to formally define new styles. The
usefulness of ADLs lies in their ability to support automa-
tion through associated tools—automation to provide use-
ful analysis of the architecture, or automation to assist in
code generation.

Determining which form of notation to use involves making
several trade-offs. Typically more-formal notations take more
time and effort to create, but they repay this effort in reduced
ambiguity and better opportunities for analysis. Conversely,
more-informal notations are easier to create, but they provide
fewer guarantees.

Think carefully about
the choice of design
notation for each dia-
gram in your architec-
ture documentation.
Consider available tool
support, the knowledge
and the needs of the
documentation stake-
holders, and the pur-
pose of the diagrams
(for example, imple-
mentation guidance,
analysis, or model and
code generation). Some
architecture informa-
tion can be docu-
mented more effectively
with other notations.

DE F IN IT IO N

An architecture
description language
is a language for repre-
senting a software and/
or system architecture.
ADLs are usually graph-
ical languages that pro-
vide semantics that
enable analysis and rea-
soning about architec-
tures, often using
associated tools.

Appendix C describes
one particular architec-
ture description lan-
guage, called AADL, in
depth. The “For Further
Reading” section of
Chapter 3 provides
resources for learning
about other ADLs.

ptg

54 ■ Part I: A Collection of Software Architecture Styles

We’ll see examples of views rendered in these different kinds
of notations throughout Part I.

I.5 Examples
Throughout this book, but especially in Part I, we will present
many examples of architecture documentation fragments
extracted from real systems. When you look at these examples,
please keep in mind the following notes:

• The goal is for you to understand the kinds of information
the example conveys and how the chosen notation is used
to depict different types of elements and relations.

• The goal is usually not for you to understand the meaning of
the specific elements and relations, that is, the responsibilities
they satisfy. Any software system uses acronyms and internal
jargon that become part of the vocabulary of the stakehold-
ers familiar with that system. The examples in the book should
allow you to recognize what information the architect wanted
to capture without knowing the meaning of these terms.

• For each example, the piece extracted from the original
architecture documentation is typically just a diagram. To
that diagram we add a brief description with information
that can’t really be inferred by the diagram alone. This
information comes from other parts of each system’s archi-
tecture documentation that are not reproduced in the book.
A diagram is not enough to document a view!

• We chose diagrams that we think are good examples of dif-
ferent styles and notations. However, they may not be perfect
with respect to notation choice and usage, diagramming
aesthetics, and quality of the design itself.

• Very often architecture diagrams do not show a single style
in its pure form. In many of our examples, you will be able
to find vestiges of styles other than the one the diagram is
illustrating. That’s normal.

• The example does not necessarily show the latest version of
the design.

There is no greater
impediment to the
advancement of knowl-
edge than the ambiguity
of words.

—Thomas Reid, Scot-
tish philosopher

ptg

55

1
Module Views

In this chapter, we look at these aspects of module views:

• Elements, relations, and properties

• Purpose

• Notation

• Relation to other views

1.1 Overview
In this chapter and the next, we look at ways to document the
module structures of a system’s software. Such documentation
enumerates the principal implementation units, or modules,
of a system, together with the relations among these units. We
refer to these descriptions as module views. As we will see, these
views can be used for each of the purposes outlined in the pro-
logue: education, communication among stakeholders, and
the basis for construction and analysis.

The way in which a system’s software is decomposed into
manageable units remains one of the important forms of sys-
tem structure. At a minimum, it determines how a system’s
source code is decomposed into units, what kinds of assump-
tions each unit can make about services provided by other
units, and how those units are aggregated into larger ensem-
bles. It also includes global data structures that impact and are
impacted by multiple units. Module structures often deter-
mine how changes to one part of a system might affect other
parts and hence the ability of a system to support modifiability,
portability, and reuse.

It is unlikely that the documentation of any software archi-
tecture can be complete without at least one module view.

The architect must be a
prophet . . . a prophet in
the true sense of the
term . . . if he can’t see
at least ten years ahead
don’t call him an
architect.

—Frank Lloyd Wright

ptg

56 ■ Chapter 1: Module Views

We begin by considering module views in the general form.
Table 1.1 summarizes the discussion in the following sections
about the elements, relations, constraints, and purpose of the
module views. In Chapter 2 we provide this information specific
to each of a number of often used module styles.

1.2 Elements, Relations, and Properties of Module
Views

1.2.1 Elements

System designers use the term module to refer to a wide variety
of software structures, including programming language
units—such as C programs, Java or C# classes, Delphi units,
and PL/SQL stored procedures—or simply general groupings
of source code units—such as Java packages or C# namespaces.
In this book, we adopt a much broader definition.

We characterize a module by enumerating its set of respon-
sibilities, which are foremost among a module’s properties.
This broad notion of responsibilities is meant to encompass
the kinds of features that a unit of software might provide: that
is, its functionality and the knowledge it maintains.

Modules can be aggregated and decomposed. Each of the
various module styles identifies a different set of modules and
relations, and then aggregates or decomposes these modules
based on relevant style criteria. For example, the layered style

Table 1.1 Summary of the module views

Elements Modules, which are implementation units of software that provide a coherent
set of responsibilities.

Relations • Is part of, which defines a part/whole relationship between the submodule—
the part—and the aggregate module—the whole.

• Depends on, which defines a dependency relationship between two mod-
ules. Specific module styles elaborate what dependency is meant.

• Is a, which defines a generalization/specialization relationship between a
more specific module—the child—and a more general module—the parent.

Constraints Different module views may impose specific topological constraints.

What It’s For • Providing a blueprint for construction of the code
• Facilitating impact analysis
• Planning incremental development
• Supporting requirements traceability analysis
• Explaining the functionality of the system and the structure of the code base
• Supporting the definition of work assignments, implementation schedules,

and budget information
• Showing the structure of information to be persisted

A module is an imple-
mentation unit of
software that provides
a coherent set of
responsibilities.

A responsibility is a
general statement
about an architecture
element and what it is
expected to contribute
to the architecture. This
includes the actions
that it performs, the
knowledge it maintains,
the decisions it makes,
or the role it plays in
achieving the system’s
overall quality attributes
or functionality.

ptg

1.2 Elements, Relations, and Properties of Module Views ■ 57

identifies modules and aggregates them based on an allowed-to-
use relation, whereas the generalization style identifies and
aggregates modules based on what they have in common.

1.2.2 Relations

Module views have the following types of relations:

• Is part of. The is-part-of relation defines a part/whole rela-
tionship between the submodule—the part—and the aggre-
gate module—the whole. In its most general form, the is-
part-of relation simply indicates aggregation, with little
implied semantics.

• Depends on. A depends on B defines a dependency relation
between A and B. Many different specific forms of depen-
dency can be used in module views. Later, we look at four in
particular: uses, allowed to use, crosscuts, and data entity rela-
tionships, in the module uses, layered, aspect, and data
model styles, respectively. The logical association between
classes (in a UML class diagram, for example) also depicts a
dependency between the classes.

• Is a. The is-a relation defines a generalization/specialization
relationship between a more specific module—the child—
and a more general module—the parent. The child is able
to be used in contexts in which the parent is used. Later, we
look at this relation in more detail in the generalization
style. Object-oriented inheritance and interface realization
are special cases of the is-a relation.

1.2.3 Properties

Properties of modules that help to guide implementation or
are input to analysis should be recorded as part of the support-
ing documentation for a module view. The list of properties
may vary but is likely to include the following:

• Name. A module’s name is, of course, the primary means to
refer to it. A module’s name often suggests something about
its role in the system: a module called “account_mgr,” for
instance, probably has little to do with numeric simulations
of chemical reactions. In addition, a module’s name may
reflect its position in a decomposition hierarchy; the name
“A.B.C,” for example, refers to a module C that is a submod-
ule of a module B, itself a submodule of A.

• Responsibility. The responsibility property of a module is a
way to identify its role in the overall system and establishes
an identity for it beyond the name. Whereas a module’s
name may suggest its role, a statement of responsibility

In Chapter 2, the is-
part-of relation is
refined to a decomposi-
tion relation in the
decomposition style.

In Chapter 2, the
depends-on relation is
refined to “uses” in the
uses style, “allowed to
use” in the layered style,
and “crosscut” in the
aspect style.

In Chapter 2, the is-a
relation is refined to
generalization in the
generalization style.

ptg

58 ■ Chapter 1: Module Views

establishes it with much more certainty. Responsibilities
should be described in sufficient detail to make clear to the
reader what each module does.

• Visibility of interface(s). When a module has submodules,
some interfaces of the submodules may have internal pur-
poses; that is, the interfaces are used only by the submod-
ules within the enclosing parent module. These interfaces
are not visible outside that context and therefore do not
have a direct relationship to the parent interfaces. Different
strategies can be used for those interfaces that have a direct
relationship to the parent interfaces. The strategy shown in
Figure 1.1(a) is encapsulation. The parent module provides
its own interfaces and maps all requests to the capabilities
provided by the submodules. The facilities of the enclosed
modules are not available outside the parent. Alternatively,
the interfaces of an aggregate module can be a subset of the
interfaces of its submodules. The aggregate module selec-
tively exposes some of the interfaces of the submodules.
Layers and subsystems are often defined in this way. For
example, if module C is an aggregate of modules A and B,
C’s implicit interface will be a subset of the interfaces of
modules A and B (see Figure 1.1(b)).

• Implementation information. Because modules are units of
implementation, it is useful to record information related to
their implementation from the point of view of managing
their development and building the system that contains
them. Although this information is not, strictly speaking,
architectural, it may be useful to record it in the architec-

Documenting software
interfaces is discussed
in Chapter 7.

Figure 1.1
(a) Module C provides its
own interface, hiding the
interfaces of modules A
and B. (b) Module C
exposes a subset of the
interfaces of modules A
and B as its interface.

C

A B

C

A B

Key
Module Module interface

(b)(a)

ptg

1.3 What Module Views Are For ■ 59

ture documentation where the module is defined. Imple-
mentation information might include

– Mapping to source code units. This identifies the files that
constitute the implementation of a module. For example,
a module named Account, if implemented in Java, might
have several files that constitute its implementation:
IAccount.java (an interface), AccountImpl.java (an imple-
mentation of Account functionality), AccountBean.java
(a class to hold the state of an account in memory),
AccountOrmMapping.xml (a file that defines the map-
ping between AccountBean and a database table—
object-relational mapping), and perhaps even a unit test
AccountTest.java.

– Test information. The module’s test plan, test cases, test
scaffolding, and test data are important to store.

– Management information. A manager may need informa-
tion about the module’s predicted schedule and budget.

– Implementation constraints. In many cases, the architect will
have a certain implementation strategy in mind for a
module or may know of constraints that the implementa-
tion must follow. This information is private to the mod-
ule and hence will not appear, for example, in the
module’s interface.

Module styles may have properties of their own in addition to
these. Also, you may find other properties useful that are not listed.

1.3 What Module Views Are For
Expect to use module views for

• Construction. A module view can provide a blueprint for the
source code and the data store. In this case, the modules
and physical structures, such as source code files and direc-
tories, often have a close mapping.

• Analysis. Two important analysis techniques are require-
ments traceability and impact analysis. Because modules
partition the system, it should be possible to determine how
the functional requirements of a system are supported by
module responsibilities. Some functional requirements will
be met by a sequence of invocations among modules. Docu-
menting such sequences shows how the system is meeting its
requirements and identifies any unaddressed requirements.
Impact analysis, by contrast, helps to predict the effect of
modifying the system. Module views that show dependen-
cies among modules or layers provide a good basis for

In addition to identifying
the implementation
units, one also needs to
identify where they
reside in a project’s fil-
ing scheme: a directory
or folder in a file system,
a URL in an intranet, or
a location in a configu-
ration management
system’s storage space.
This information is in the
purview of the imple-
mentation style, dis-
cussed in Section 5.5.

Section 10.3 discusses
documenting the map-
ping between require-
ments and architecture.

ptg

60 ■ Chapter 1: Module Views

impact analysis. Modules are modified as a result of prob-
lem reports or change requests. Impact analysis requires a
certain degree of design completeness and integrity of the
module description. In particular, dependency information
has to be available and correct in order to create useful
results.

• Communication. A module view can be used to explain the
system’s functionality to someone not familiar with the sys-
tem. The various levels of granularity of the module decom-
position provide a top-down presentation of the system’s
responsibilities and therefore can guide the learning pro-
cess. For a system whose implementation is already in place,
module views, if kept up to date, are very helpful, as they
explain the structure of the code base to a new developer on
the team—much more effective than providing the URL to
the version management system repository and asking him
or her to browse the source files and read the code. Thus,
up-to-date module views are very useful during system main-
tenance.

On the other hand, it is difficult to use the module views to
make inferences about runtime behavior, because these views
are just a static partition of the functions of the software. Thus,
a module view is not typically used for analysis of performance,
reliability, or many other runtime qualities. For those, we typi-
cally rely on component-and-connector and allocation views.

1.4 Notations for Module Views
1.4.1 Informal Notations

A number of notations can be used to present a module view.
One common informal notation uses boxes to represent the
modules, with different kinds of lines between them represent-
ing the relations. Nesting is used to depict aggregation, and
arrows typically represent a depends-on relation. In Figure 1.1
(in Section 1.2.3), for example, nesting represents aggrega-
tion, and lollipops indicate interfaces.

A second common form of informal notation is a simple tex-
tual listing of the modules with descriptions of the responsibil-
ities. Various textual schemes can be used to represent the is-
part-of relation, such as indentation, outline numbering, and
parenthetical nesting. Other relations may be indicated by key-
words. For example, the description of module A might
include the line “Imports modules B, C,” indicating a depen-
dency between module A and modules B and C.

Expect to use compo-
nent-and-connector
and allocation views,
not module views, to
analyze performance,
reliability, and other
runtime qualities.

Figure 2.4 is an example
of a textual notation for
modules, using indenta-
tion to indicate is part of.

ptg

1.4 Notations for Module Views ■ 61

1.4.2 Unified Modeling Language

Software modeling notations, such as UML, provide a variety of
constructs that can be used to represent modules. Figure 1.2
shows some examples for modules using UML notation. Figure
1.3 shows how the three basic relations native to module views
are denoted using UML.

UML has a class construct, which is the object-oriented spe-
cialization of a module as described here. UML packages are
used to represent an aggregation of modules. UML packages

Appendix A describes
how UML can be used
to show different mod-
ule views, as well as
C&C and allocation
styles.

Figure 1.2
Examples of module
notation in UML. A module
may be represented as a
class or a package. More
specific types of modules
can be indicated with
stereotypes (as in
Figure 1.4).

System.IO.Log
CommonDialog abstract class

(italics)

class with provided
interface

IAnimatable
UIElement

«interface»
IAnimatable

interface not
shown as
lollipop

package

class

SaveFileDialog

FileName
Filter

ShowDialog()
OnFileOk(…)

class showing
attribute and
operation
compartments

SaveFileDialog

Figure 1.3
Examples of module
relations in UML

depends-on
relation«use»

is-part-of
relation

com.sun.ebank.web
Dispatcher

Dispatcher Context
Listener

Account «interface»
Observer

Checking
Account

Savings
Account

Admin
AccountView

BeanManager

com.sun.ebank.web.taglib

two forms of
is-a relation (class
inheritance and
interface realization)

ptg

62 ■ Chapter 1: Module Views

can represent, for example, layers, subsystems, and collections
of implementation units that live together in the implementa-
tion namespace.

UML was originally created to model object-oriented systems.
It is now considered a general-purpose modeling language. As
a result, UML elements and relations are generic; that is, they
are not specific to implementation technologies or platforms.
But you can define stereotypes to specialize the UML symbols.
A stereotype is a UML extension mechanism and is repre-
sented in diagrams as a label in guillemets («stereotype label»).
Figure 1.4 shows some examples. If used correctly, stereotypes
make your UML diagrams more expressive. The UML specifi-
cation provides a number of standard stereotypes, but you can
also create your own.

1.4.3 Dependency Structure Matrix

A dependency structure matrix (DSM) is a table that shows
modules as the column and row headings and dependencies as
the table cells. The DSM is built as a square matrix (that is, a
matrix with same number of rows and columns) where ele-
ment ij is nonzero if there is a dependency between module i
and module j in the architecture.

Some tools that create DSMs can automatically interchange
between class diagrams or box-and-line diagrams and DSMs.
DSM-based tools are more commonly used for architecture
management and enforcement for systems that are already
implemented—the DSM is obtained by reverse-engineering
the code.

1.4.4 Entity-Relationship Diagram

An entity-relationship diagram (ERD) is a notation specifically
used for data modeling. It shows data entities that require a rep-
resentation in the system and their relationships. These rela-
tionships can be one-to-one, one-to-many, or many-to-many.

Stereotype is a UML
extension mechanism
that allows the definition
of a new type of model-
ing element or relation
based on an existing
UML element or relation.

Try to become familiar
with UML standard ste-
reotypes, as well as
other stereotypes com-
monly used in your
organization.

A dependency struc-
ture matrix is a table
that shows modules as
the row and column
headers; a cell is non-
zero if and only if there
is a dependency
between the row’s mod-
ule and the column’s
module.

Section 2.2.4 has exam-
ples and more informa-
tion about DSMs.

Section 2.6.4 has exam-
ples and more informa-
tion about ERDs.

Figure 1.4
Examples of UML elements
and relations with
stereotypes «subsystem»

Communication
«view»

AccountForm
«layer»

Presentation

«interface»
IAnimatable «model»

AccountEntity

«layer»
BusinessLogic

«allowed to use»
«sends event to»

ptg

1.6 Summary Checklist ■ 63

1.5 Relation to Other Views
Module views are commonly mapped to component-and-con-
nector views. The implementation units shown in module
views have a mapping to components that execute at runtime.
Sometimes, the mapping is quite straightforward, even one-to-
one. More often, a single module will be replicated as part of
many runtime components and a given component could map
to several modules.

Module views also provide the software elements that are
mapped to the diverse nonsoftware elements of the system
environment in the various allocation views.

A common problem is the overloading of module views with
information pertaining to other views. This can be quite useful
when done in a disciplined fashion but can also lead to confu-
sion. For example, showing a remote procedure call connec-
tion in a module view is implicitly introducing the “connector”
concept from a component-and-connector view. The module
views are often confused with views that demonstrate runtime
relations. A module view represents a static partitioning of the
software implementation units; therefore, multiple instances
of objects—data repositories and networks, for example—are
not shown in this view.

1.6 Summary Checklist
• Modules pertain to the way in which a system’s software is

decomposed into manageable units of responsibilities,
which is one of the important forms of system structure.

• Modules are related to one another by forms of is-part-of,
depends-on, and is-a relations.

• A module view provides a blueprint for the source code and
the data model.

• Expect to have at least one module view in your documenta-
tion package.

• You should not depend on a module name to define the
functional duties of the module: use the responsibility prop-
erty.

• Document module interface(s) to establish a module’s role
in the system.

• Module views are commonly mapped to component-and-
connector views. In general, a module may participate in
many runtime components.

Components are dis-
cussed at length in
Section 3.2.

Allocation views are
described in Chapter 5.

ptg

64 ■ Chapter 1: Module Views

1.7 Discussion Questions
1. What is it possible and not possible to say about data flow

by looking at a module view? What about control flow?
What can you say about which modules interact with which
other modules?

2. Which properties of a module might you think of as worthy
of having special notational conventions to express them,
and why? For example, you might want to color a commer-
cial-off-the-shelf module differently from modules devel-
oped in-house.

3. The depends-on relation among modules is very general.
What specific types of dependencies might be reflected in
a module view?

4. A primary property of a module is its set of responsibilities.
How do a module’s responsibilities differ from the require-
ments that it must satisfy?

5. When documenting a particular system, you might wish to
combine modules into an aggregate, to market them as a
combined package, for example. Would this package itself
be a module? That is, are all aggregates of modules them-
selves modules?

6. Would you show libraries or frameworks on which your sys-
tem depends as modules in your module views?

1.8 For Further Reading
DeRemer and Kron (1976) describe programming-in-the-
small languages for writing modules and a “module intercon-
nection language” for knitting those modules together. Prieto-
Diaz and Neighbors (1986) present a survey of module inter-
connection languages that are specifically designed to support
module interconnection, and they include brief descriptions
of some software development systems that support module
interconnection.

The chapter on the Module Architecture View in the book
by Hofmeister, Nord, and Soni (2000) describes a view of a sys-
tem in terms of modules and layers and how to represent them
in UML.

ptg

65

2A Tour of Some
Module Styles

In this chapter, we look at six important module styles:

• The decomposition style, used to show the structure of mod-
ules and submodules (that is, containment relations among
modules)

• The uses style, used to indicate functional dependency rela-
tions among modules

• The generalization style, used to indicate specialization rela-
tions among modules

• The layered style, used to describe the allowed-to-use relation in
a restricted fashion between groups of modules called layers

• The aspects style, used to describe particular modules called
aspects that are responsible for crosscutting concerns

• The data model style, used to show the relations among data
entities

2.1 Decomposition Style
2.1.1 Overview

By taking the elements and the properties of module views and
focusing on the is-part-of relation, we get the decomposition
style. A decomposition view describes the organization of the
code as modules and submodules and shows how system respon-
sibilities are partitioned across them. Almost all architects begin
with the decomposition style. Architects tend to attack a prob-
lem with divide-and-conquer techniques, and a decomposition
view records their campaign.

ptg

66 ■ Chapter 2: A Tour of Some Module Styles

The criteria used for decomposing a module into smaller
modules include:

• Achievement of certain quality attributes. For example, to support
modifiability, the information-hiding design principle calls
for encapsulating changeable aspects of a system in separate
modules, so that the impact of any one change is localized.

• Build-versus-buy decisions. Some modules may be bought in
the commercial marketplace, reused intact from a previous
project, or obtained as open-source software. These mod-
ules already have a set of responsibilities implemented. The
remaining responsibilities then must be decomposed around
those established modules.

• Product line implementation. To support the efficient implemen-
tation of products of a product family, it is essential to distin-
guish between common modules, used in every or most
products, and variable modules, which differ across products.

• Team allocation. To allow implementation of different respon-
sibilities in parallel, separate modules that can be allocated
to different teams should be defined. The skills of develop-
ers also influence the decomposition. For example, if spe-
cialized Web developers are available, modules that handle
the Web UI should be kept separate.

A useful design heuristic holds that a module is small
enough if it could be discarded and begun again if the pro-
grammer(s) assigned to implement it left the project.

A decomposition view may represent the first pass at a
detailed architecture design; the architect may subsequently
introduce other types of relations and module specializations.
The decomposition view defines the modules that may appear
in uses, layered, generalization, and other module-based views.

2.1.2 Elements, Relations, and Properties

Table 2.1 summarizes the characteristics of the decomposition
style. Elements of the decomposition style are modules, as
described in Section 1.2. Some modules that aggregate other
modules can be called subsystems. The principal relation, the
decomposition relation, is a form of the is-part-of relation and has
as its primary constraint the guarantee that an element can be
a part of at most one aggregate.

The module decomposition may define whether the sub-
modules are visible within only the aggregate module—the
parent—or also to other modules. The visibility of submodules
can be described in the view’s element catalog or conveyed
graphically, for example by showing interface lollipops inside
or outside the aggregate module, as in Figure 1.1.

See “Coming to Terms:
Subsystem” on page 73,
in this chapter.

The element catalog of
an architecture view
provides various informa-
tion about the elements
in that view. Element
catalogs are described
in Section 10.1.

ptg

2.1 Decomposition Style ■ 67

2.1.3 What the Decomposition Style Is For

A decomposition view presents the responsibilities of a system
in intellectually manageable pieces that are refined to convey
more and more details. Therefore, this style is well suited to
support the learning process about a system. Besides the obvi-
ous benefit for the architect to support the design work, this
style is an excellent learning and navigation tool for newcom-
ers to the project and other people who do not necessarily have
the whole functional structure of the system memorized. The
grouping of responsibilities shown in this style also builds a
useful basis for defining configuration items within a configu-
ration management framework.

A decomposition view most often serves as the input for the
work assignment view of a system, which maps parts of a soft-
ware system onto the organizational units, or teams, that will
be implementing and testing them. A decomposition view also
provides some support for analyzing effects of changes, but
because this view does not show all the dependencies among
modules, you cannot expect to do a complete impact analysis.
Here, views that elaborate the dependency relations more
thoroughly, such as the uses style described later, are required.

2.1.4 Notations for the Decomposition Style

Informal Notations

In informal notations, modules in the decomposition style are
usually depicted as named boxes that contain other named
boxes. Decomposition may also be shown by listing the module
names and using indentation to indicate is part of, as in Figure
2.4 (in Section 2.1.6).

Table 2.1 Summary of the decomposition style

Overview The decomposition style is used for decomposing a system into units of
implementation. A decomposition view describes the organization of the
code as modules and submodules and shows how system responsibilities
are partitioned across them.

Elements Module

Relations Decomposition relation, which is a form of the is-part-of relation. The doc-
umentation should specify the criteria used to define the decomposition.

Constraints • No loops are allowed in the decomposition graph.
• A module can have only one parent.

What It’s For • To reason about and communicate to newcomers the structure of soft-
ware in digestible chunks

• To provide input for work assignment
• To reason about localization of changes

Refinement is covered
in Section 6.1.

The work assignment
style is presented in
Section 5.4.

ptg

68 ■ Chapter 2: A Tour of Some Module Styles

The nesting notation can use a thick border suggesting
opaqueness—and explained in the key—indicating that chil-
dren are not visible outside the parent. If a visual notation is not
available for indicating visibility, it can be defined textually, as is
done for other properties.

UML

In UML, the package construct can be used to represent mod-
ules that contain other modules. A package can contain classes
and other packages; the class box is normally used for the
leaves of the decomposition.

In UML, decomposition is depicted in one of two ways:

1. Modules may be nested, as in Figure 2.1.

2. A succession of two diagrams can be shown, with the sec-
ond a depiction of the contents of a module shown in the
first. Figures 2.2 and 2.3 (in Section 2.1.6) illustrate this
approach.

Other properties, such as the modules’ responsibilities, are
given textually, perhaps using an annotation. Stereotypes can
provide additional information for the type of the module.

2.1.5 Relation to Other Styles

It is possible, and often desirable, to map between a decompo-
sition view and one or more component-and-connector views.
For now, it is sufficient to say that the point of providing such
a mapping is to indicate how the software implementation
structures map onto runtime structures: generally, a many-to-
many relationship. The same module might implement all or
parts of several components or connectors. Conversely, one com-
ponent might require several modules for its implementation.

Section 3.5 also dis-
cusses the mapping
between modules and
components. Document-
ing the mapping is
described in Section
10.2.

Figure 2.1
In UML, module
decomposition is shown by
nesting, with the aggregate
module shown as a
package.

A

B C

D E

ptg

2.1 Decomposition Style ■ 69

The decomposition style is closely related to the work assign-
ment style, a kind of allocation style. The work assignment style
maps modules resulting from a decomposition to a set of teams
responsible for implementing and testing those modules.

2.1.6 Examples Using the Decomposition Style

Adventure Builder

The example software architecture document that accompanies
this book online contains an example of a decomposition view
for the Adventure Builder (2010) system. See wiki.sei.cmu.edu/sad.

The ATIA-M System

Army Training Information Architecture-Migrated (ATIA-M)
is a large Web-based, Java EE application that supports training
in the U.S. Army. It has “thick clients”: Windows desktop appli-
cations developed using .NET (C#) that communicate with the
server-side Java EE components using Web services technology.

Figure 2.2 shows the top-level module decomposition for the
entire ATIA-M system, itself a module. The code is divided into
three large modules:

• Windowsapps contains the code of the thick clients. The
three submodules correspond to Training and Doctrine
Development Tool (TDDT), Unit Training Management
Configuration (UTMC), and a separate submodule with
common code used by the different Windows applications.
TDDT and UTMC were the two Windows applications orig-
inally planned, but others could be added.

• ATIA server-side Web modules contains all non-Java modules
that would be deployed to server machines. The Web mod-
ules include JavaServer Pages (JSP) files, JavaScript and
HTML code, and applets.

• ATIA server-side Java modules contains all Java source code in
ATIA that would run on application servers. This module
does not include JSP, JavaScript, HTML, applet, or thick-
client code.

The decomposition of Windowsapps into three submodules
is shown in Figure 2.2. The decomposition of ATIA server-side
Java modules, on the other hand, was captured in another
module view diagram, shown in Figure 2.3.

The work assignment
style is described in
Section 5.4.

Figure 2.2 is the first of
many examples of
architecture documen-
tation fragments from
real systems. When
examining these exam-
ples, keep in mind the
considerations stated in
Section I.5, in the intro-
duction to Part I. The
descriptions of the
elements we provide
cannot be derived from
the figures; rather, they
rely on additional docu-
mentation that would
accompany the dia-
grams in an architecture
document.

ptg

70 ■ Chapter 2: A Tour of Some Module Styles

Figure 2.3
Refinement of ATIA-M
server-side Java modules
showing how it is further
decomposed into
submodules

ATIA server-side Java modules

«subsystem»
adlsc controller

utils

facades

test taglibs

commonsecurity

«subsystem»
CCS

portalwebservice

«subsystem»
itcservlet

client

objects

business

entity

«subsystem»
tdc

Notation: UML

Figure 2.2
Top-level decomposition
view for the ATIA systemATIA-M

Windowsapps

Common code
for thick clients

TDDT
Windows app

UTMC
Windows app

ATIA server-
side Web
modules

ATIA server-
side Java
modules

Notation: UML

ptg

2.1 Decomposition Style ■ 71

A-7E Avionics System

An example of the decomposition style comes from the A-7E
avionics software system described in Chapter 3 of the book by
Bass, Clements, and Kazman (2003). Figure 2.4 shows the pri-
mary presentation part of the view. The figure names the ele-
ments and shows the is-part-of relation among them for the A-7E
system. The decomposition relation is conveyed by indentation.

In this example, the criterion for decomposition is the infor-
mation-hiding principle, which holds that there should be a
module to encapsulate responsibilities likely to change together.
A module’s responsibilities, then, are described in terms of the
information-hiding secrets it encapsulates.

This diagram shows that in A-7E, the first-order decomposi-
tion produced three modules: Hardware Hiding, Behavior
Hiding, and Software Decision Hiding. Each of these modules
is decomposed into two to six submodules, which are in turn
decomposed, and so forth, until the granularity is fine enough
to be manageable.

The A-7E decomposition view documentation describes the
responsibilities of the three highest-level modules in the ele-
ment catalog as follows:

• Hardware Hiding Module: The Hardware Hiding Module
includes the procedures that need to be changed if any part
of the hardware is replaced by a new unit with a different
hardware/software interface but with the same general
capabilities. This module implements “virtual hardware” or
an abstract device that is used by the rest of the software.
The primary secrets of this module are the hardware/soft-
ware interfaces. The secondary secrets of this module are
the data structures and algorithms used to implement the
virtual hardware.

• Behavior Hiding Module: The Behavior Hiding Module
includes procedures that need to be changed if there are
changes in requirements affecting the required behavior.
Those requirements are the primary secret of this module.
These procedures determine the values to be sent to the vir-
tual output devices provided by the Hardware Hiding Module.

• Software Decision Hiding Module: The Software Decision Hid-
ing Module hides software design decisions that are based
upon mathematical theorems, physical facts, and program-
ming considerations such as algorithmic efficiency and
accuracy. The secrets of this module are not described in
the requirements document. This module differs from the
other modules in that both the secrets and the interfaces
are determined by software designers. Changes in these

The primary presenta-
tion is the (typically)
graphical portion of an
architecture view, as
described in Chapter 10.

ptg

72 ■ Chapter 2: A Tour of Some Module Styles

Hardware Hiding Module
 Extended Computer Module

Data Module
Input/Output Module
Computer State Module
Parallelism Control Module
Program Module
Virtual Memory Module
Interrupt Handler Module
Timer Module

 Device Interface Module
Air Data Computer Module
Angle of Attack Sensor Module
Audible Signal Device Module
Computer Fail Device Module
Doppler Radar Set Module
Flight Information Displays Module
Forward Looking Radar Module
Head-Up Display Module
Inertial Measurement Set Module
Input-Output Representation Module
Master Function Switch Module
Panel Module
Projected Map Display Set Module
Radar Altimeter Module
Shipboard Inertial Nav System Module
Slew Control Module
Switch Bank Module
TACAN Module
Visual Indicators Module
Waypoint Info. System Module
Weapon Characteristics Module
Weapon Release System Module
Weight on Gear Module

Behavior Hiding Module
 Function Driver Module

Air Data Computer Module
Audible Signal Module
Computer Fail Signal Module
Doppler Radar Module
Flight Information Display Module
Forward Looking Radar Module
Head-Up Display Module
Inertial Measurement Set Module
Panel Module
Projected Map Display Set Module
Shipboard Inertial Nav System Module
Visual Indicator Module
Weapon Release Module
Ground Test Module
Shared Services Module

 Mode Determination Module
Panel I/O Support Module
Shared Subroutine Module
Stage Director Module
System Value Module

Software Decision Hiding Module
 Application Data Type Module

Numeric Data Type Module
State Transition Event Module

 Data Banker Module
Singular Values Module
Complex Event Module
Filter Behavior Module

 Physical Models Module
Aircraft Motion Module
Earth Characteristics Module
Human Factors Module
Target Behavior Module
Weapon Behavior Module

 Software Utility Module
Power-Up Initialization Module
Numerical Algorithms Module

 System Generation Module
System Generation Parameter Module
Support Software Module

Figure 2.4
The decomposition of the A-7E software architecture results in three top-level modules (Hardware Hiding, Behavior
Hiding, and Software Decision Hiding) and is-part-of relations (Bass, Clements, and Kazman 2003, p. 59). In this
presentation, is part of is indicated by textual indentation.

ptg

2.1 Decomposition Style ■ 73

modules are more likely to be motivated by a desire to
improve performance or accuracy than by externally imposed
changes.

The A-7E decomposition view documentation then goes on to
describe the second-level modules.

In the case of the A-7E architecture, the second-level module
structure was enshrined in many ways: Design documentation,
configuration-controlled files, test plans, programming teams,
review procedures, and project schedule and milestones all
were pegged to this second-level module structure as their unit
of reference.

COMING TO TERMS

Subsystem

When documenting a module view of a system, you may choose to identify cer-
tain aggregated modules as subsystems. A subsystem can be pretty much any-
thing you want it to be, but it often describes a part of a system that (1) carries
out a functionally cohesive subset of the overall system’s mission, (2) can be
executed independently, and (3) can be developed and deployed incrementally.
The software system of a Mars exploratory robot, for example, may be divided
into subsystems responsible for:

• Communication

• Motion

• Power management

• Navigation

• Monitoring its own health and status

Not just any portion of a system is a subsystem. In our exploratory robot exam-
ple, a math utility library is certainly a portion of a system and an aggregation of
modules and even has coherent functionality. But the library is unlikely to be
called a subsystem, because it lacks the ability to operate independently to do
work that’s recognizably part of the overall system’s purpose.

Subsystems do not partition a system into completely separate parts, because
some parts are used in more than one subsystem. For example, suppose that
the exploratory robot system has the layered design shown in Figure 2.5. In this
case, a subsystem consists of one segment from the top layer, as well as any
segments of any lower layers that it needs in order to carry out its responsibilities.
A subset of the system formed in this way is often called a slice, or a vertical slice.

The “more or less independent” nature of a subsystem makes it ideal for dividing
up a project’s work. You may, for example, ask an analyst to examine the perfor-
mance of a subsystem. A subsystem can often be fielded and accomplish useful

If you use a module
decomposition struc-
ture to organize your
project, you will find it
useful to focus on a
specific level of the hier-
archy as your organizing
motif, chosen based on
a manageable granularity.

ptg

74 ■ Chapter 2: A Tour of Some Module Styles

work before the whole system is complete. A subsystem makes a convenient
package to hand off to a team or a subcontractor to implement. The fact that it
executes more or less independently allows that team to work more or less
independently even through testing.

In the UML world, <<subsystem>> is a stereotype of component. It represents
a large-scale component that embodies other components. According to the
UML 2.2 specification, a subsystem is:

A unit of hierarchical decomposition for large systems. A subsystem is commonly
instantiated indirectly. Definitions of subsystems vary widely among domains and
methods, and it is expected that domain and method profiles will specialize this
construct.

In previous versions of UML, <<subsystem>> was a stereotype of package
and still today it is common to find packages with that stereotype in UML dia-
grams. Regardless of the notation used, a subsystem can represent a group of
modules (implementation units) or a group of components with runtime
presence.

You may decide to identify subsystems in your design. If you do, make sure that
your rationale explains why you chose the ones you did.

2.2 Uses Style
2.2.1 Overview

The uses style results when the depends-on relation is specialized
to uses. A module uses another module if its correctness
depends on the correctness of the other. Whereas the module
decomposition style shows only the organization of the imple-

Figure 2.5
Layered design of a hypothetical exploratory robot system

Navigation Motion
Power

management Communication

utility libraries

interprocess communication

device drivers

Monitoring

Uses is a form of depen-
dency that can exist
between two modules.
A uses B if the correct-
ness of A depends on
the presence of a correct
implementation of B.

ptg

2.2 Uses Style ■ 75

mentation units as modules and submodules, a uses style goes
one step further to reveal which modules use which other mod-
ules. This style tells developers what other modules must exist
for their portion of the system to work correctly. This style
enables incremental development and the deployment of use-
ful subsets of full systems.

2.2.2 Elements, Relations, and Properties

Table 2.2 summarizes the characteristics of the uses style. The
elements of this style are the modules as described in Section 1.2.
We define a specialization of the depends-on relation to be the
uses relation, whereby one module requires the correct imple-
mentation of another module for its own correct functioning.
This view makes explicit which modules use which other mod-
ules to achieve their responsibilities.

2.2.3 What the Uses Style Is For

This style is useful for planning incremental development, sys-
tem extensions and subsets, debugging and testing, and gaug-
ing the effects of specific changes. Figure 2.6 shows the
primary presentation of a uses view and how it can help with
incremental development. To define incremental subsets,
modules should be defined at the right level of granularity. In
the example, admin.core may not need the entire dao package,
only a submodule of it; the diagram should then show the sub-
modules of dao.

Table 2.2 Summary of the uses style

Overview The uses style shows how modules depend on each other; it is helpful for plan-
ning because it helps define subsets and increments of the system being
developed.

Elements Module

Relations The uses relation, which is a form of the depends-on relation. Module A uses
module B if A depends on the presence of a correctly functioning B to satisfy
its own requirements.

Constraints The uses style has no topological constraints. However, if uses relations
present loops, broad fan-out, or long dependency chains, the ability of the
architecture to be delivered in incremental subsets will be impaired.

What It’s For • Planning incremental development and subsets
• Debugging and testing
• Gauging the effect of changes

ptg

76 ■ Chapter 2: A Tour of Some Module Styles

The uses view also helps in managing the dependencies of a
system that is being built or maintained. The goal of this task is
to keep complexity under control and avoid degradation in
the modifiability of the system due to the addition of undesir-
able dependencies.

2.2.4 Notations for the Uses Style

Informal Notations

The uses relation can be documented as a two-column table,
with using elements on the left and the elements they use listed on
the right. Alternatively, informal graphical notations can show
the relation by using the standard box-and-line diagram with a
key. For defining subsets, a tabular—that is, nongraphical—
notation is sometimes a better alternative. It is easier to look up
the detailed relations in a table than to find them in a diagram,
which can rapidly grow too cluttered to be helpful unless the
diagram is partitioned using decomposition refinement.

Semiformal Notations

UML
The uses style is easily represented in UML. UML packages can
be used to represent modules; the uses relation is depicted as a
dependency with the stereotype <<use>>. In Figure 2.7(a), the
User Interface module has a uses dependency on the Data
Access module.

See “Coming to Terms:
Uses” on page 81, in
this chapter, for more
about loops in the uses
relation.

Decomposition refine-
ment is discussed in
Section 6.1.

Figure 2.6
In this uses view, suppose
the incremental
development plan called for
module admin.client in the
next release. Based on the
uses relation, the diagram
highlights what other
modules need to be
present: admin.core, dao,
and util.

static
Web
artifacts

Notation: UML

estore.webapp

web::shared

estore.core

web::accessControl
admin.core

dao
util

web::estore admin.client
«use»

«use»

«use»

«use»

«use»

«use»

«use»
«use»

«use»
«use»«use»

«use»

«use»

«use»

ptg

2.2 Uses Style ■ 77

Dependency Structure Matrix
The uses relation can be documented as a square matrix, with
the modules listed as rows and columns. A mark in the i th col-
umn and j th row indicates that module i uses module j. This
simple representation has evolved and been used in auto-
mated tools to create dependency structure matrices (DSMs).

A diagram like the UML package diagram in Figure 2.8 can
be seen as a directed graph; the packages are the vertices and
the dependencies are the edges. A DSM is the matrix represen-
tation of a directed graph. The cell corresponding to column i
and row j is nonzero if there is an edge from vertex i to vertex
j in the graph (that is, module i uses module j). Figure 2.9
shows the DSM for the UML diagram in Figure 2.8.

DSMs need a key too! In
the key, say whether a
value in row i and col-
umn j means that mod-
ule i depends on
module j or module j
depends on module i.
Both alternatives are
possible.

Figure 2.7
(a) The User Interface mod-
ule is an aggregate module
with a uses dependency on
the Data Access module.
We use UML package nota-
tion to represent modules
and the specialized form of
depends-on arrow to indi-
cate a uses relation.

(b) Here is a variation of Fig-
ure 2.7(a) in which the User
Interface module has been
decomposed into modules
A, B, and C. At least one of
the modules must depend
on the Data Access module
or the decomposition
would not be consistent.

(c) In UML we can represent
the uses relations and also
show interfaces explicitly.
This version shows that the
Data Access module has
two interfaces, which are
used by modules B and C,
respectively. Both the
socket lollipop connection
and the <<use>> depen-
dency connected to the lol-
lipop indicate uses
relations.

A B

C

A B

C

(b)

(c)

(a)
«use» Data

Access
User

Interface

User Interface

User Interface

Notation: UML

Notation: UML

Notation: UML

Data
Access

Data
Access

«use»

«use»

data queries

admin

«use»
«use»

«use»

ptg

78 ■ Chapter 2: A Tour of Some Module Styles

Figure 2.8
UML package diagram
showing <<uses>>
dependencies client

god

ejb

cc restart

commonvo

Notation: UML

«use»

«use»

«use»

«use» «use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 2.9
DSM for the UML diagram
in Figure 2.8

0

1

1

1

1

1

0

0

0

0

1

0

0

0

0

1

0

0

01 0

0 0

1

0 0

1

0

0

0

0

0

0

0

0 0 0

0

0

0

0

0

0

0 0 0

0 1 0

using
module

used
module

client

ejb

cc

god

restart

common

vo

cl
ie

n
t

ej
b

cc g
o

d

re
st

ar
t

co
m

m
o

n

vo

Key: “1” means
module in column
uses module in row

ptg

2.2 Uses Style ■ 79

2.2.5 Relation to Other Styles

The uses style also goes hand in hand with the layered style,
with its allowed-to-use relation. An allowed-to-use relation usually
comes first and contains coarse-grained directives defining the
degrees of freedom for implementers. Once implementation
choices have been made, the uses view emerges and governs
the production of incremental subsets.

When a module contains submodules, the decomposition
requires that any uses relation involving the aggregate module
be mapped to a submodule using that relation. In Figure 2.7(b),
the User Interface module is decomposed into modules A, B,
and C. At least one of the modules must depend on the Data
Access module; otherwise, the decomposition is not consistent.

A uses view can also show interfaces explicitly. In Figure
2.7(c), the Data Access module has two interfaces, which are
used by modules B and C, respectively.

2.2.6 Examples Showing the Uses Style

Adventure Builder

The example software architecture document accompanying
this book online contains an example of a uses view for the
Adventure Builder (2010) system. See wiki.sei.cmu.edu/sad.

The ATIA-M System

Figure 2.10 shows the diagram from a top-level uses view for
the ATIA-M system (it also shows decomposition). In the archi-
tecture documentation, it could have superseded the decom-
position view (see Figure 2.2) for the same system.

ECS

EOSDIS Core System (ECS) is a NASA system. A constellation
of satellites collect measurements about Earth and send the
data to ground stations. ECS controls spacecraft and instru-
ments, processes data, and produces refined data that are
stored in several distributed data centers and made available to
scientists around the world. Figure 2.11 is a small excerpt of a
uses view’s primary presentation from the ECS system. The
notation is textual, using the tabular format mentioned earlier.
Like most primary presentations, this one names only the ele-
ments; they are defined in the view’s supporting documenta-
tion (not shown here).

Chapter 7 has more
information about
interfaces.

ptg

80 ■ Chapter 2: A Tour of Some Module Styles

Element Uses This Element
Science Data Processing Segment

Ingest Subsystem
INGST CSCI ADSRV CSCI in the Interoperability Subsystem

STMGT CSCI in the Data Server Subsystem
SDSRV CSCI in the Data Server Subsystem
DCCI CSCI in the Communications Subsystem

(Continue for other CSCIs within the Ingest Subsystem)
Data Server Subsystem

DDIST CSCI MCI CSCI in the System Management Subsystem
DCCI CSCI in the Communications Subsystem
STMGT CSCI in the Data Server Subsystem
INGST CSCI in the Ingest Subsystem

(Continue for other CSCIs within the Data Server Subsystem)
(Continue for other subsystems within the Science Data Processing Segment)

(Continue for other ECS segments)

Figure 2.11
Excerpt of the ECS system uses view, documented as a table. The left column mirrors the system’s module
decomposition structure.

Figure 2.10
Top-level uses view for the
ATIA-M system

Notation: UML

ATIA-M

Windows apps

Common code
for thick clients

TDDC
Windows app

ATIA server-
side Web
modules

ATIA server-
side Java
modules

UTMC
Windows app

«uses»

«uses» «uses»

«uses»

«uses»

ptg

2.2 Uses Style ■ 81

COMING TO TERMS

Uses

Two of the module styles that we present in this book—the uses style and the
layered style—are based on one of the most underutilized relations in software
engineering: uses. The uses relation is a form of the depends-on relation. A unit
of software P1 is said to use another unit P2 if P1’s correctness depends on a
correct implementation of P2 being present.

The uses relation resembles, but is decidedly not, the simple calls relation pro-
vided by most programming languages. Here’s why.

• A program P1 can use program P2 without calling it. P1 may assume, for
example, that P2 has left a shared device in a usable state when it finished
with it. Or P1 may expect P2 to leave a computed result that it needs in a
shared variable. Or P1 may be a process that sleeps until P2 signals an event
to awaken it.

• A program P1 might call program P2 but not use it. If P2 is an exception han-
dler that was passed as a parameter1 for P1 to call when it detects an error,
P1 will usually not care what P2 does. P1 does not use P2 because its own
correctness does not depend on P2.

So uses is not calls or invokes. Likewise, uses is different from other depends-
on relations, such as includes, which deals with compilation dependencies but
need not influence runtime correctness.

Because the uses relation takes many forms, a uses view usually cannot be
automatically derived from other architecture views nor extracted from source
code. To enjoy its benefits, the architect must engineer the relations and docu-
ment the uses view explicitly.

The careful engineering of the uses relation imparts a powerful capability to a
development team: It enables the building of small subsets of a total system.
Early in the project, this allows incremental development, a development para-
digm that allows early prototyping, early integration, and early testing. At every
step along the way, the system carries out part of its total functionality, even if
far from everything, and does it correctly. Fred Brooks (1995) writes about the
“electrifying effect” on team morale when the system first succeeds at doing
something. Absent incremental development, nothing works until everything
works, and we are reduced to the waterfall model of development. Subsets of
the total system are also useful beyond development. They provide a safe fall-
back in the event of slipped schedules: It is much better for the project manager
to offer the customer a working subset of the system at delivery time rather than
apologies and promises.

1. Or perhaps it calls a program whose name was bound by a parameter at system-generation time or a pro-
gram whose name it looks up via a name server. Many schemes are possible.

ptg

82 ■ Chapter 2: A Tour of Some Module Styles

Here’s how it works. Choose a program that is to be in a subset; call it P1. In
order for P1 to work correctly in this subset, correct implementations of the pro-
grams it uses must also be present. So include them in the subset. For them to
work correctly, their used programs must also be present, and so forth. The sub-
set consists of the transitive closure of P1’s uses.2 Conceptually, you pluck P1
out from the uses graph and then see what programs come dangling beneath
it. There’s your subset.

Loops in the relation—that is, for example, where P1 uses P2, P2 uses P3, and
P3 uses P1—are the enemy of simple subsets. A large uses loop necessitates
bringing in a large number of programs—every member of the loop—into any
subset joined by any member. “Bringing in a program” means, of course, that it
must be implemented, debugged, integrated, and tested. But the point of incre-
mental development is that you’d like to bring in a small number of programs to
each new increment, and you’d like to be able to choose which ones you bring
in and not have them choose themselves. Generally speaking, any long list of
used programs (caused by long dependency chains or broad fan-out in the rela-
tion) detracts from the ability to field small increments. They also decrease mod-
ifiability, because a change to a module could very well ripple into modules that
it uses.

Besides managing subsets, the uses relation is also a helpful tool for debugging
and integration testing. If you discover a program that’s producing incorrect
results, the problem is going to be either in the program itself or in the programs
that it uses. The uses relation lets you instantly narrow the list of suspects. In a
similar way, you can employ the relation to help you gauge the effects of pro-
posed changes. If a program’s external behavior changes as the result of a
planned modification, you can backtrack through the uses relation to see what
other programs may be affected by that modification.

2.3 Generalization Style
2.3.1 Overview

The generalization style results when the is-a relation is employed.
This style is useful when an architect wants to support exten-
sion and evolution of architectures and individual elements.
Modules in this style are defined in such a way that they cap-
ture commonalities and variations. When modules have a gen-
eralization relationship, the parent module is a more general
version of the child modules. (The parent module owns the
commonalities, and the variations are manifested in the chil-
dren.) Extensions can be made by adding, removing, or chang-

2. Of course, calls and other depends-on relations must be given their due. If a program in the subset calls,
includes, or inherits from another program but doesn’t use it, the compiler is still going to expect that
program to be present. But if it isn’t used, there need not be a correct implementation of it: a simple stub,
possibly returning a pro forma result, will do just fine.

Even though this style
shares the terms parent
and child with the
decomposition style,
they are used differently.
In decomposition, a
parent consists of its
children. In generaliza-
tion, parents and chil-
dren have things in
common.

ptg

2.3 Generalization Style ■ 83

ing children; a change to the parent will automatically change
all the children that inherit from it, which could support evo-
lution if the change is appropriate for all the children.

Generalization may represent inheritance of either inter-
face, implementation, or both. Within an architecture descrip-
tion, the emphasis is on sharing and reusing interfaces and not
so much on implementations.

2.3.2 Elements, Relations, and Properties

Table 2.3 summarizes the characteristics of the generalization
style. The element of the generalization style is the module;
the relation is generalization, which is the is-a relation defined
in Section 1.2. In this relation, one module is a generalization
(parent) of other modules (children), and these other mod-
ules are specializations of the first.

A module can be abstract. Such a module does not contain
a complete implementation. Modules that are children of an
abstract module need to provide the necessary implementa-
tions or else they should be abstract as well.

A module that inherits information is referred to as a descen-
dant; the module providing the information is an ancestor.
Cycles are not allowed. That is, a module cannot be an ances-
tor or a descendant of itself.

The fact that module A inherits from module B using interface
realization is a promise that module A complies to interface B.
This strategy is useful when variants of a module with different

Table 2.3 Summary of the generalization style

Overview The generalization style employs the is-a relation to support extension and
evolution of architectures and individual elements. Modules in this style are
defined in such a way that they capture commonalities and variations.

Elements Module. A module can have the “abstract” property to indicate it does not
contain a complete implementation.

Relations Generalization, which is a specialization of the is-a relation. The relation can
be further specialized to indicate, for example, if it is class inheritance,
interface inheritance, or interface realization.

Constraints • A module can have multiple parents, although multiple inheritance is often
considered a dangerous design approach.

• Cycles in the generalization relation are not allowed; that is, a child module
cannot be a generalization of one or more of its ancestor modules in a view.

What It’s For • Expressing inheritance in object-oriented designs
• Incrementally describing evolution and extension
• Capturing commonalities, with variations as children
• Supporting reuse

ptg

84 ■ Chapter 2: A Tour of Some Module Styles

implementations are needed and one implementation of the
module can substitute for another implementation with little
or no effect on other modules. In object-oriented designs, class
inheritance indicates that a module inherits behavior from its
ancestors and may modify it to achieve its specialized behavior.
Interface inheritance is also possible when we want a child inter-
face that adds operations to the list of operations defined by
the parent interface.

2.3.3 What the Generalization Style Is For

The generalization style can be used to support

• Object-oriented designs. The generalization style is the pre-
dominant means for expressing an inheritance-based,
object-oriented design for a system.

• Extension. It is often easier to understand how one module
differs from another, well-known module rather than to try
to understand a new module from scratch. Thus, generali-
zation is a mechanism for producing incremental descrip-
tions to form a full description of a module.

• Local change or variation. One purpose of architecture is to
provide a stable global structure that accommodates local
change or variation. Generalization is one approach to
define commonalities on a higher level and to define varia-
tions as children of a module.

• Reuse. Finding reusable modules is a by-product of the other
purposes. Suitable abstractions can be reused at the inter-
face level alone, or the implementation can be included as
well. The definition of abstract modules creates an opportu-
nity for reuse.

2.3.4 Notations for the Generalization Style

UML

Expressing generalization lies at the heart of UML. Modules
are typically shown as classes or interfaces. Figure 2.12 shows the
basic notation available in UML for class or interface inheritance.
Figure 2.13 shows how UML expresses interface realization.

2.3.5 Relation to Other Styles

Inheritance and interface realization relationships comple-
ment other module relations and are often found in module
views along with uses relations and package decompositions.
But for designs that involve a complex hierarchy of modules, it
is useful to show inheritance relationships in a diagram sepa-
rate from other types of relationships.

Chapter 7 discusses how
to document interfaces.

ptg

2.3 Generalization Style ■ 85

2.3.6 Examples Using the Generalization Style

ArchE

Figure 2.14 shows part of a generalization view from the SEI
Architecture Expert (ArchE) tool. This tool allows an architect
to create the architecture design for a system based on quality
attribute requirements, feature requirements, and preexisting
pieces of design. Internally, ArchE uses a rule engine that
manipulates data elements called facts. Various operations are
performed on any Fact object; other operations are specific to
the subclasses of Fact.

PetStore

Figure 2.15 shows part of the generalization view of the Pet-
Store application. This is a multi-tier, Web-based application

Figure 2.12
In UML, class or interface
inheritance is represented
by a solid line with a closed,
hollow arrowhead. UML
allows an ellipsis (. . .) in
place of a submodule,
indicating that a module
can have more children
than shown and that
additional ones are likely.
Module Shape is the parent
of modules Polygon, Circle,
and Spline, each of which is
in turn a subclass, child, or
descendant of Shape.
Shape is more general; its
children are specialized
versions. The arrow points
toward the more general
entity.

. . .

Shape

Polygon Circle Spline

Notation: UML

Figure 2.13
Interface realization
(sometimes called interface
implementation) is also a
kind of generalization. It
can be expressed in UML in
two ways: (1) a dashed line
with a closed hollow
arrowhead going from the
module to the interface it
realizes; (2) a lollipop
symbol for the interface
connected to the module
that implements it. Thus the
two notations in the figure
are equivalent. However,
the one on the left is more
convenient when multiple
modules realize the same
interface.

«interface»
Printable

Order
Confirmation

Order
Confirmation

Printable

Notation: UML

ptg

86 ■ Chapter 2: A Tour of Some Module Styles

Figure 2.14
The primary presentation
for ArchE’s generalization
view. This system uses
internally a rule engine, and
many operations are
defined on a class called
Fact. In addition, specific
functionality exists to deal
with different kinds of facts
and hence the generaliza-
tion in this figure. The
classes shown here also
appear in other diagrams,
which show the attributes
and operations available in
each class, as well as uses
relations among these and
other modules that are part
of the system.

java.util.Observable

ScenarioVO

FunctionVO

ScenarioRespVO

FunctionRespVO RelationshipVO

ParameterVO

QuestionToUserVO

ResponsibilityVO

Notation: UML

Fact

id : int
type : String

Figure 2.15
Part of the primary
presentation of the
generalization view for the
PetStore application. It
shows a hierarchy of
classes that represent
events in the system, and
an interface realization. The
package on the right is part
of a Web application
framework (waf), which
offers an event-handling
service. An application
such as PetStore has to
define the application-
specific events. The events
are used for the interaction
of other modules in the
system (not shown)
following the model-view-
controller pattern.

Notation: UML

waf::event

EventSupport

«interface»
EventResponse

Order
EventResponse

OrderEvent

CreateUserEvent

CustomerEvent

SignOnEvent

CartEvent

petstore::
controller::events

ptg

2.4 Layered Style ■ 87

that implements an online pet store. The generalization view
shows several important hierarchies in the system (Figure 2.15
shows a subset of them).

2.4 Layered Style
2.4.1 Overview

The layered style, like all module styles, reflects a division of
the software into units. In this case, the units are layers. Each
layer represents a grouping of modules that offers a cohesive
set of services. There are constraints on the allowed-to-use rela-
tionship among the layers: the relations must be unidirec-
tional. The layered view of architecture, shown with a layer
diagram, is one of the most commonly used views in software
architecture. However, it often is poorly defined, and so often
misunderstood. Because true layered systems promote modifi-
ability and portability, architects have an incentive to show
their systems as layered, even if they are not.

Layers completely partition a set of software, and each parti-
tion—through a public interface—provides a cohesive set of
services. But that’s not all. Figure 2.16, which is intentionally
vague about what the units are and how they interact, shows
three divisions of software—you’ll have to take our word that
each division provides a cohesive set of services—but none of
them constitutes a layering. What’s missing?

Layering has one more fundamental property: The layers
are created to interact according to a strict ordering relation.
Herein lies the conceptual heart of layers. If (A, B) is in this
relation, we say that the implementation of layer A is allowed
to use any of the public facilities provided by layer B.

By uses, we mean the very specific term defined in Section
2.2 for the uses style, but the definition has some loopholes. If
A is implemented using the facilities in B, is it implemented
using only B? Maybe or maybe not. For example, assume that
layers are depicted horizontally, one on top of the other. Some
layering schemes allow a layer to use the public facilities of any
lower layer, not just the nearest lower layer. Other layering

A layer is a grouping of
modules that together
offer a cohesive set of
services to other layers.
The layers are related to
each other by the
strictly ordered relation
allowed to use.

Element A uses ele-
ment B if A’s correct-
ness depends on a
correct implementation
of B being present.

Figure 2.16
Three different divisions of
software. Is any of them
layered?

ptg

88 ■ Chapter 2: A Tour of Some Module Styles

schemes have so-called layers that are collections of utilities
and can be used by any layer. But no architecture that can be validly
called layered allows a layer to use, without restriction, the facilities of
a higher layer. Allowing unrestricted upward usage destroys the
desirable properties that layering brings to an architecture;
this will be discussed shortly. Usage in layers generally flows
downward. A small number of well-defined special cases may
be permitted, but these should be few and regarded as excep-
tions to the rule. Hence, the architecture in Figure 2.17 resem-
bles a layering but is not.

Figure 2.17 shows why layers have been a source of ambiguity
for so long: architects have been calling such diagrams layered
when they are not. There is more to layers than the ability to
draw separate parts on top of each other.

In some cases, modules in a very high layer might be
required to directly use modules in a very low layer where nor-
mally only next-lower-layer uses are allowed. The layer diagram
or an accompanying document will have to show these excep-
tions. The case of software in a higher layer using modules in
a lower layer that is not just the next lower layer is called layer
bridging. If many of these are present, the system is poorly struc-
tured, at least with respect to the portability and modifiability
goals that layering helps to achieve. Systems with upward usages
are not, strictly according to the definition, layered. However,
in such cases, the layered style may represent a close approxi-
mation to reality and also conveys the ideal design that the
architect was trying to achieve.

Layers cannot be derived by examining source code. Layers
are logical groupings that are wonderful aids in creating and
communicating the architecture, but often they are not explic-
itly delimited in the source code. The source code may disclose
what uses what, but the relation in layers is allowed to use.

Remember that a sys-
tem with a uses relation
from a lower layer to a
higher layer is not a lay-
ered system, strictly
speaking.

Figure 2.17
There may be three layers
here, but this is not a design
in the layered style, which
forbids upward uses.

A

B

C

Key

Layer

Allowed to use

ptg

2.4 Layered Style ■ 89

Some of the criteria used in defining the layers of a system
are an expectation that they will evolve independently on dif-
ferent time scales, that different people with different sets of
skills will work on different layers, and that different levels of
reuse are expected of the different layers.

2.4.2 Elements, Relations, and Properties

Table 2.4 summarizes the characteristics of the layered style.
The elements of a layered view are layers. A layer is a cohesive

collection of modules, each of which may be invoked or
accessed. The modules in a layer can be anything: from mod-
ules that implement Web services to assembly-language sub-
routines to shared data. A requirement is that the modules
have an interface by which their services can be triggered or
accessed.

The relation among layers is allowed to use. For two layers hav-
ing this relation, any module in the first is allowed to use any
module in the second. Module A is said to use module B if A’s
correctness depends on B being correct and present.

Layers have the following properties, which should be docu-
mented in the element catalog accompanying the layer diagram.

• Contents. The description of a layer should provide guide-
lines to what modules should be in a layer and how to imple-
ment them. It can also explicitly list the software modules

Element catalogs are
described in Section
10.1.

Table 2.4 Summary of the layered style

Overview The layered style puts together layers (groupings of modules that offer a
cohesive set of services) in a unidirectional allowed-to-use relation with each
other.

Elements Layer. The description of a layer should define what modules the layer
contains.

Relations Allowed to use, which is a specialization of the generic depends-on rela-
tion. The design should define the layer usage rules (for example, “A layer
is allowed to use any lower layer.”) and any allowable exceptions.

Constraints • Every piece of software is allocated to exactly one layer.
• There are at least two layers (typically three or more).
• The allowed-to-use relations should not be circular (that is, a lower layer

cannot use a layer above).

What It’s For • Promoting modifiability and portability
• Managing complexity and facilitating the communication of the code struc-

ture to developers
• Promoting reuse
• Achieving separation of concerns

ptg

90 ■ Chapter 2: A Tour of Some Module Styles

contained by each layer. Each module should be assigned to
exactly one layer. Layers typically have labels that are descrip-
tive but vague, such as “network communications layer” or
“business rules layer”; a description is needed that identifies
the complete contents of every layer.

• The software a layer is allowed to use. Is a layer allowed to use
only the layer below, any lower layer, or some other? If a
layer is segmented horizontally, are modules in a segment
permitted to use modules in another segment of the same
layer? This part of the documentation must also explain
exceptions, if any, to the usage rules implied by the geometry.

You should document the rationale for the choice of layer
partitioning. Explain how each layer provides a cohesive set of
responsibilities. This description helps to assign future mod-
ules to one layer or the other.

Suppose that module P1 is allowed to use module P2. Should
P2 be in a lower layer than P1, or should they be in the same
layer? Layers are not a function of just who uses what, but are
the result of a conscious design decision that allocates modules
to layers, based on such considerations as cohesion and the
nature of likely changes. In general, P1 and P2 should be in the
same layer if they are likely to be ported to a new application
together or if together they provide different aspects of the
same virtual machine to a usage community.

The preceding is an operational definition of cohesion. The
cohesion explanation can also serve as a portability guide,
describing the changes that can be made to each layer without
affecting other layers.

2.4.3 What the Layered Style Is For

Layers help to bring quality attributes of modifiability and
portability to a software system. A layer is an application of the
principle of information hiding. The theory is that a change to
a lower layer can be hidden behind its interface and will not
impact the layers above it. As with all such theories, both truth
and caveats are associated with it. The truth is that this tech-
nique has been used with great success to support portability.
Machine, operating system, or other platform dependencies
are hidden within a layer; as long as the interface for the layer
does not change, technology-specific or product-specific parts
can be exchanged, and the upper levels that depend only on
the interface will work successfully.

The caveat is that interface means more than just the applica-
tion programming interface (API) containing program signa-
tures. An interface embodies all the assumptions that an

Section 2.4.4 has more
information about seg-
mented layers.

See also “Perspectives:
Calling Higher Layers”
on page 100, in this
chapter.

A virtual machine is a
collection of modules
that form an isolated,
cohesive set of services
that can execute pro-
grams. It’s sometimes
called an abstract
machine.

See “Coming to Terms:
Virtual Machines” on
page 99, in this chapter.

See “Coming to Terms:
Signature, Interface,
API” on page 280, in
Chapter 7.

ptg

2.4 Layered Style ■ 91

external entity—in this case, a layer—may make. Changes in a
lower layer that affect, say, a performance assumption will leak
through its interface and may affect a higher layer.

A common misconception is that layers introduce additional
runtime overhead. Although this may be true for naive imple-
mentations, sophisticated compile/link/load facilities can reduce
additional overhead.

We have already mentioned that in some contexts, a layer
may contain unused services. These unused services may need-
lessly consume a runtime resource, such as memory to store
the unused code or a thread that is never launched. If these
resources are in short supply, a sophisticated compile/link/
load facility that eliminates unused code will be helpful.

Layers are part of the blueprint role that architecture plays
for constructing the system. Knowing the layers in which their
software resides, developers know what services they can rely
on in the coding environment. Layers might define work
assignments for development teams, although not always.

Layers are part of the communication role played by architec-
ture. In a large system, the number of modules and the depen-
dencies among them rapidly expand. Organizing the modules
into layers with interfaces is an important tool for managing
complexity and communicating the structure to developers.

Grouping into layers those modules that have the same tech-
nology abstraction or are cohesive with respect to their respon-
sibilities helps to assign the implementation work across more
specialized teams. For example, the modules in a presentation
layer can be assigned to skilled GUI developers.

Layers help with the analysis role played by architecture.
They support the analysis of the impact of changes to the
design by enabling some determination of the scope of
changes.

Layers that provide a virtual machine promote portability.
For this reason, it is important to scrutinize the interface of
such layers to ensure that portability concerns are addressed.
The interface should not expose functions that are dependent on
a particular platform; these functions should be hidden behind
a more abstract interface that is independent of platform.

Because the ordering relationship among layers has to do
with “implementation allowed to use,” the lower the layer, the
fewer the facilities available to it. That is, the “worldview” of
lower layers tends to be smaller and more focused on the com-
puting platforms. Lower layers tend to be built using knowl-
edge of the operating systems, communications channels,
databases, and the like. These platform-specific layers are
largely independent of the particular application that runs on

See “Coming to Terms:
Virtual Machines” on
page 99, in this chapter.

ptg

92 ■ Chapter 2: A Tour of Some Module Styles

them; they make the application more easily portable to a dif-
ferent platform.

2.4.4 Notations for the Layered Style

Informal Notations

Stack
Layers are almost always drawn as a stack of boxes. The allowed-
to-use relation is denoted by geometric adjacency and is read
from the top down, as in Figure 2.18 (note that the key could
have said, “A layer is allowed to use any lower layer”).

Layering is thus one of the few architecture styles in which
connection among components is shown by geometric adja-
cency and not an explicit symbology, such as an arrow,
although arrows can be used, as in Figure 2.19.

Segmented Layers
Sometimes layers are divided into segments denoting a finer-
grained aggregation of the modules. Often, this occurs when a
preexisting set of units, such as imported modules, share the
same allowed-to-use relation. When this happens, the creator of
the diagram must specify what usage rules are in effect among
the segments. Many usage rules are possible, but they must be
made explicit. In Figure 2.20, the top and the bottom layers are

Figure 2.18
Stack of boxes notation for
layered designs A

B

C

Key

Layer

A layer is allowed to use
the next lower layer.

Figure 2.19
Layered design with
allowed-to-use relations
shown with arrows

A

B

C

Key

Layer

Allowed to use

ptg

2.4 Layered Style ■ 93

segmented. Segments of the top layer are not allowed to use
each other, but segments of the bottom layer are. If you draw
the same diagram without the arrows, it will be harder to dif-
ferentiate the usage rules within segmented layers. Layered
diagrams are often a source of ambiguity because the diagram
does not make explicit the allowed-to-use relations.

Rings
A notational variation is to show layers as a set of concentric cir-
cles, or rings. The innermost ring corresponds to the lowest
layer; the outermost ring, the highest layer. A ring may be sub-
divided into sectors, meaning the same thing as the corre-
sponding layer being segmented.

There is no semantic difference between a layer diagram
that uses a stack of rectangles and one that uses the rings par-
adigm, except when segmented layers have restrictions on the
allowed-to-use relation within the layer. In Figure 2.21, assume
that ring segments that touch are allowed to use one another
and that layer segments that touch are allowed to use one
another. You cannot “unfold” the ring diagram to produce a
stack diagram, such as the one on the right, with exactly the

Figure 2.20
Layered design with
segmented layers

Key

Layer

UI

Business Logic

Data Access

Local Data
Access

Remote Data
Access

Web UI Rich
Client

Command
Line

Layer
segment

Allowed to use

Figure 2.21
A layered design shown as
concentric rings and as a
stack of boxes. Are these
two representations
equivalent?

C

A

A

C

B1
B1

B3

B3

B2

B2

ptg

94 ■ Chapter 2: A Tour of Some Module Styles

same meaning, because circular arrangements allow more adja-
cencies than do linear arrangements. (In the layer diagram, B1
and B3 are separate; in the ring diagram they are adjacent.)
Cases like this are the only ones in which a ring diagram can
show a geometric adjacency that a stack picture cannot.

Layers with a Sidecar
Many architectures that are described as layered look some-
thing like Figure 2.22. This type of notation could mean one of
two things: (1) Modules in D can use modules in A, B, or C. (2)
Modules in A, B, or C can use modules in D. (Technically, the
diagram might mean that both are true, although this would
arguably be a poor layered architecture.) The creator of the
diagram must specify which usage rules pertain. A variation
like this makes sense only for single-level usage rules in the
main stack, that is, when A can use only B and nothing below.
Otherwise, D could simply be made the bottommost layer in the
main stack, and the “sidecar” geometry would be unnecessary.

In some cases, the layered architecture is depicted as a three-
dimensional figure, to represent a layer that is accessible to all
other layers, as shown in Figure 2.23.

Figure 2.22
Layers with a “sidecar.” The
key should make clear what
is allowed to use and be
used by software in the box
on the side.

A

B

C

D

Figure 2.23
Three-dimensional layered
diagram trying to show that
layer D can be used by all
other layers. The picture
could just as well be
showing that D can use all
other layers. The ambiguity
should be resolved by an
annotation, or in the key.

C

B1 B2 B3

A

D

ptg

2.4 Layered Style ■ 95

Such layers on the side often represent utility libraries or
platform services (such as the operating system or runtime
environment).

Size and Color
Sometimes layers are colored to denote which team is respon-
sible for them or to denote another distinguishing feature.
Sometimes layers use different colors just to improve readabil-
ity. Size is sometimes used to give a vague idea of the relative
size of the modules constituting the various layers. If they carry
meaning, size and color should be explained in the key accom-
panying the layer diagram.

UML
UML has no built-in primitive corresponding to a layer. How-
ever, layers can be represented in UML as stereotyped pack-
ages, as shown in Figure 2.24. A package is a general-purpose
mechanism for organizing elements into groups, and it suits
the notion of layers. The allowed-to-use relation can be a stereo-
typed dependency between layer packages.

Access dependencies are not transitive. If package 1 can
access package 2 and package 2 can access package 3, it does
not automatically follow that package 1 can access package 3.

Appendix A discusses
how to use UML classes
and packages to repre-
sent layers and more.

Figure 2.24
Documenting segmented
layers in UML. If segments
in a layer are allowed to use
each other, then <<allowed
to use>> dependencies
must be added among
them as well.

«layer» A

«layer» C

«layer» B

«segment»
B1

«segment»
B2

«segment»
B3

«allowed to use»

«allowed to use»

«allowed
to use»

Notation: UML

ptg

96 ■ Chapter 2: A Tour of Some Module Styles

2.4.5 Relation to Other Styles

Layer diagrams are often confused with other architecture
styles when information orthogonal to the allowed-to-use rela-
tion is introduced without conscious decision.

1. Module decomposition. Layers in a layered view and modules
in a decomposition view are always related but almost never
correspond one-to-one with each other. A layer may com-
prise more than one module. Two submodules of a module
may be part of different layers. In any case, you should pro-
vide a mapping between layers and the modules in the
decomposition view. If a module occurs in more than one
layer, you can indicate this by using colors or fill patterns,
as in Figure 2.25.

In this example, once again borrowing from the A-7E
architecture described previously, the mapping between
layers and modules is not one-to-one. In this architecture,
the criterion for partitioning into modules was the encap-
sulation of likely changes. The shading of the elements
denotes the coarsest-grain decomposition of the system
into modules; that is, Function Driver and Shared Services
are both submodules of the Behavior Hiding module.
Hence, in this system, layers correspond to parts of highest-
level modules. It’s also easy to imagine a case in which a
module constitutes a part of a layer.

2. Tiers. Layers are often confused with the tiers in a multi-tier
architecture. Layers are not tiers. The layered style shows

Section 2.1.6 has more
information about the
module decomposition
in the A-7E avionics
system.

Figure 2.25
A diagram showing layers
and modules from a
decomposition view from
the A-7E software
architecture

Behavior-hiding
module

Key
Software decision-
hiding module

Hardware-hiding
module

Function Driver

Shared Services

Physical ModelsData Banker Filter Behaviors

Device Interfaces

Application Data Types Software Utilities

Extended Computer

Software in a layer is allowed to use software in the same
or any lower layer.

ptg

2.4 Layered Style ■ 97

groupings of implementation units and hence is a kind of
module style. The multi-tier style is a component-and-con-
nector style because tiers congregate runtime components.

3. Module “uses” style. Because layers express the allowed-to-use
relation, there is a close correspondence to the uses style.
Of course, no uses relation is allowed to violate the allowed-
to-use relation. If incremental development or the fielding
of subsets is a goal, the architect will begin with a broad
allowed-to-use specification. That specification gives the guide-
lines for designing with actual uses relations any subset of
interest.

2.4.6 Examples Using the Layered Style

UNIX System V

A classic layered design is the UNIX System V operating sys-
tem, as shown in Figure 2.26. The lower layers form the system
kernel; top layers are user programs or libraries that access the
kernel through system calls. The system call interface layer iso-
lates the kernel implementation details and provides a virtual

Section 4.6.2 discusses
tiers.

The uses style is cov-
ered in Section 2.2.

See “Perspectives:
Using a DSM to Main-
tain a Layered Architec-
ture” on page 101, in
this chapter, for a
description of how lay-
ered architectures can
be identified in a DSM
based on existing code.

Figure 2.26
The primary presentation of
a layered view of the UNIX
System V operating system
implementation (adapted
from Bach 1986)

User programs

system call interface

file subsystem

buffering
mechanism

block I/O
device drivers

hardware control

character
device drivers

process control subsystem
(ipc, scheduler, memory mgmt)

Libraries

Key
User-level
layer

Kernel-level
layer

Allowed
to use

ptg

98 ■ Chapter 2: A Tour of Some Module Styles

machine to user programs. The file subsystem is responsible
for managing files (devices are treated as files), administering
free space, controlling access, and reading/writing data. The
process control subsystem is responsible for process schedul-
ing, interprocess communication, process synchronization,
and memory management. The hardware control layer is
responsible for handling interrupts and communicating with
the machine.

This design is presented in Chapter 2 of the classic book by
Maurice Bach, The Design of the UNIX Operating System (Bach 1986),
where a candid observation is made: “The diagram serves as a
useful logical view of the kernel, although in practice the ker-
nel deviates from the model because some modules interact
with the internal operations of others.” All such exceptions
should be noted in your documentation.

Java EE Application

Figure 2.27 is the primary presentation of the layered view of a
set of integrated, multi-tier, Web-based applications that use
the Java EE platform. All user operations in these applications
follow this layered design. The topmost layer has presentation
classes, which are servlets and JavaServer Faces (JSF) action
classes. Servlet and JSF are Java component technologies for
developing Web components. The second layer has controller
classes, which implement the sequence of steps to carry on the
functionality of a use case. An example of a controller class is
CtlRetrievePtoDays. Controller classes interact with business
service classes, which encapsulate the core business logic asso-
ciated with domain objects. An example of a service class is
SvcFullTimeEmployee. The lowermost layer has data access
objects. These modules handle all interaction with the rela-
tional database.

There are two sets of auxiliary modules that are presented as
sidecar layers. On the left are presentation data transfer
objects (DTOs). They are simple classes that contain basic
attributes corresponding to data elements required in differ-
ent user screens. The right sidecar layer has the corporate
DTOs and plain old Java objects (POJOs). Like presentation
DTOs, these classes have a set of attributes to hold data. In this
design, DTOs have attributes required by a particular transac-
tion, whereas POJOs correspond to data entities stored in the
database.

The key drivers for this layered design are modifiability and
portability, which is achieved with separation of concerns. On
top is the presentation layer. Changes to the user interface are

This is the approach of
stratified design, the
notion that a complex
system should be struc-
tured as a sequence of
levels that are described
using a sequence of
languages. Each level is
constructed by combin-
ing parts that are
regarded as primitive at
that level, and the parts
constructed at each
level are used as primi-
tives at the next level.

—H. Abelson and
G. Sussman, Struc-
ture and Interpreta-
tion of Computer
Programs (1996)

ptg

2.4 Layered Style ■ 99

addressed in that layer. If the technology used to implement
the UI has to change from servlet and JSF to, say, Google Web
Toolkit and Flash, this layer has to be rewritten, but the other
layers should remain unchanged. The second layer imple-
ments the logic to handle the user actions by wiring the calls to
services in the third layer, which is the core business logic layer.
The bottom layer isolates database access operations and also
enhances portability. If the application is migrated to a differ-
ent database management system with a different SQL dialect,
all modifications required would be confined to that layer.

COMING TO TERMS

Virtual Machines

A virtual machine, sometimes called an abstract machine, is a collection of mod-
ules that form an isolated, cohesive set of services that can execute programs.
Early use of the term referred to a more abstract stand-in for a real computer,
but current use includes virtual machines that have no direct correspondence to
any real machine. Interpreters are good examples of virtual machines. The Com-
mon Language Runtime (CLR) of the Microsoft .NET platform is an example of
a virtual machine. It provides services to execute bytecode produced by com-
piling C# or other .NET programming languages. The CLR converts the byte-
code into code that is native to the operating system underneath. The Java
Virtual Machine (JVM) does the same thing for the Java language. An operating
system itself is a virtual machine that allows the execution of native code on the
underlying hardware. Thus, a virtual machine is a software layer that can exe-
cute “programs,” which can be sequences of calls to facilities of the virtual
machine’s interface. Hence some authors regard layers and virtual machines as
synonyms.

Figure 2.27
Part of the layered view of a
set of Java EE applications.
The top layer has servlets
and JSF action classes
responsible for the user
interface. Controller
classes handle the user
operations by interacting
with business service
classes. Access to the
database is done in the
lowermost layer with the
data access objects.
Sidecar layers contain
DTOs and POJOs that are
used by the other layers to
hold and transfer data.

Servlets and action classes

Controller classes

Service classes

DAO classes

Key

Layer

Allowed to useC
o

rp
o

ra
te

 D
T

O
s

an
d

 P
O

JO
s

P
re

se
n

ta
ti

o
n

D
T

O
s

ptg

100 ■ Chapter 2: A Tour of Some Module Styles

PERSPECTIVES

Calling Higher Layers

We have been emphatic in saying that upward uses invalidate layering. We
made allowances for documented exceptions but implied that too many of
those would get you barred from the Software Architect’s Hall of Fame.

Seasoned designers, however, know that in many elegantly designed layered
systems, all kinds of control and information flow upward along the chain of lay-
ers, with no loss of portability, reusability, modifiability, or any of the other qual-
ities associated with layers. In fact, one of the purposes of layers is to allow for
the “bubbling up” of information to the units of software whose scope makes
them the appropriate handlers of the information. One approach to error han-
dling illustrates this upward flow. Suppose that we have a simple three-layer
system, as in Figure 2.28. Say that program PA in A uses program PB in B, which
uses program PC in C. If PC is called in a way that violates its specification, PC
needs a way to tell PB, “Hey! You called me incorrectly!” At that point, (1) PB can
either recognize its own mistake and call PC again, this time correctly, or take
another action; or (2) PB can realize that the error resulted because it was called
incorrectly—perhaps it received bad data—by PA. In the latter case, PB needs a
way to tell PA, “Hey! You called me incorrectly!”

Callbacks are a mechanism to manifest the protestation. We do not want PC
written with knowledge about programs in B or PB written with knowledge about
programs in A, as this would limit the portability of layers C and B. Therefore,
the names of higher-level programs to call in case of error are passed downward as
parameters. Then the specification for, say, PB includes the promise that in case
of error, it will invoke the program whose name has been made available to it.

Other situations where callbacks can be used include:

• When PA uses PB to obtain data to present in the user interface but PA also
wants PB to announce future changes to the data. In other words, PA sub-

Figure 2.28
Layered design showing programs inside and their usage dependencies

A

B

C

PA
Key

Layer

Program

Uses

The layer on top is allowed
to use the next lower layer.PB

PC

ptg

2.4 Layered Style ■ 101

scribes to events that can be emitted by PB and provides to PB the name of
the operation that will handle the events.

• When PA uses PB and the interaction is asynchronous, but PA needs to
receive a response once PB is done processing the request. In this case PA
provides PB the name of the operation to call.

So there we have it: data and control flowing downward and upward in an ele-
gant error-handling scheme that preserves the best qualities of layers. So much
for our prohibition about upward uses. Right?

Wrong. Upward uses are still a bad idea, but the scheme we just described
doesn’t have any. It has upward data flow and upward invocation but not uses.
The reason is that once a program calls its error handler, its obligation is dis-
charged. The program does not use the error handler, because its own correct-
ness depends not a whit on what the error handler does. This is how the
callback mechanisms, built in to some programming languages, work and still
allow true layered systems to be written in those languages.

Although this may sound like a mere technicality, it is an important distinction.
Uses is the relation that determines the ability to reuse and to port a layer; “calls”
or “sends data to” is not. Architects need to know the difference and need to
convey the precise meaning of the relations in their architecture documentation.

—P.C. and P.M.

PERSPECTIVES

Using a DSM to Maintain a Layered Architecture

Tools based on the dependency structure matrix claiming to be the solution to
managing complexity in large software projects have recently been capturing
the attention of program analysts and software architects. The DSM concept
has been adopted for use in software engineering from its origins with Donald
Steward as the Design Structure System (Steward 1981), which he devised in
1967 to help manage complexity in the nuclear power industry. Over the past 15
years the DSM has been used in a wide variety of industries to aid in systems
engineering and analysis as well as project planning and management.

When layer A depends on layer B and layer B depends on layer A, there is a
codependence between these two layers, a situation that is forbidden in a lay-
ered architecture. In a DSM, circular dependencies are immediately visible as
marked cells on both sides of the matrix’s diagonal. A layered architecture is
clearly discernable because the corresponding DSM is a lower triangular matrix
(that is, one in which all the marked cells are below the diagonal). For example,
consider the layered architecture in Figure 2.29. The key indicates that a layer is
allowed to use only the next lower layer, so it’s a strictly layered design. The

ptg

102 ■ Chapter 2: A Tour of Some Module Styles

corresponding DSM is shown in Figure 2.30(a). If a layer were allowed to use any
lower layer, the DSM would be similar to Figure 2.30(b). When cells above the
diagonal are marked, the architect can see the circular dependency and focus
on what to change to reach the goal of a layered architecture.

In practice, layered designs are more complex. Figure 2.31 shows the layered
design that was introduced in Figure 2.27, now with Java packages added for
each layer. The DSM for this design is shown in Figure 2.32. In a DSM tool, the
architect can mark the dependencies that violate the layered design: the high-
lighted cells above and below the diagonal in Figure 2.32. During the implemen-
tation of the system, the tool can create a DSM from the code and highlight any
violations. If other constraints on interdependencies have been indicated by the
architect, those will also be visible using the DSM representation. With good
tool support, continuous integration builds can be subjected to DSM analysis,
and architecture violations can be caught immediately. DSM tools also generally
allow the user to perform “what-if” analysis by simulated restructuring of the
system, providing immediate insight into the impact that a suggested change
would have on the system’s structure.

Figure 2.29
Simple layered architecture

Figure 2.30
DSM showing (a) strictly layered design and (b) layered design

Key

Any layer is allowed to use only
the next lower layer.

Layer

UI presentation

controller

business logic

data access

0 0 1 0

1

0

0

1

0

0

0

0

0 0 0 0

1 1 1 0

1

1

0

1

0

0

0

0

0 0 0 0

(a) (b)

using
layer

used
layer

UI presentation

controller

business logic

data access

U
I p

re
se

n
ta

ti
o

n

co
n

tr
o

lle
r

b
u

si
n

es
s

lo
g

ic

d
at

a
ac

ce
ss using

layer

used
layer

UI presentation

controller

business logic

data access

U
I p

re
se

n
ta

ti
o

n

co
n

tr
o

lle
r

b
u

si
n

es
s

lo
g

ic

d
at

a
ac

ce
ss

ptg

2.4 Layered Style ■ 103

—J.S. and P.M.

Figure 2.31
Layered design showing Java packages for each layer

Figure 2.32
DSM for a layered design. The highlighted cells above and below the diagonal represent dependencies that are
not allowed

Key

Java
package

Layer

Allowed to use

Servlets and
action classes

Controller classes

Service classes

DAO classes

com.foo.
proj.ui.svl

com.foo.
proj.ui.ctl

com.foo.
proj.svc

com.foo.
proj.dao

co
m

.f
o

o
.

p
ro

j.d
to

co
m

.f
o

o
.

p
ro

j.p
o

joco
m

.f
o

o
.

p
ro

j.u
i.d

to

C
o

rp
o

ra
te

 D
T

O
s

an
d

 P
O

JO
s

P
re

se
n

ta
ti

o
n

D
T

O
s

com.foo.
proj.ui.act

1 1 1

1

0

0

1

0

1

0

0

0

0

0 0 0 0

0

0

0

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0 0

0 0

0

0

0

0

used
module

com.foo.proj.ui.svl

com.foo.proj.ui.act

com.foo.proj.ui.ctl

com.foo.proj.ui.dto

com.foo.proj.svc

com.foo.proj.dao

com.foo.proj.dto

com.foo.proj.pojo

co
m

.f
o

o
.p

ro
j.u

i.s
vl

co
m

.f
o

o
.p

ro
j.u

i.a
ct

co
m

.f
o

o
.p

ro
j.u

i.c
tl

co
m

.f
o

o
.p

ro
j.u

i.d
to

co
m

.f
o

o
.p

ro
j.s

vc

co
m

.f
o

o
.p

ro
j.d

ao

co
m

.f
o

o
.p

ro
j.d

to

co
m

.f
o

o
.p

ro
j.p

o
jo

using
module

ptg

104 ■ Chapter 2: A Tour of Some Module Styles

2.5 Aspects Style
2.5.1 Overview

The aspects style is a module style used to isolate in the archi-
tecture the modules responsible for crosscutting concerns.

When we implement software modules in general, the busi-
ness logic code ends up intermixed with code that deals with
crosscutting concerns. For example, if you’re writing a bank
automation system, there may be modules such as Account,
Customer, and Atm. The Account module ideally would con-
tain only the code to deal with the bank account business logic
(open/close account, deposit, withdraw, transfer, and so on).
But in practice we have to add code to handle crosscutting con-
cerns, such as access control, transaction management, and
logging.

The aspects style prescribes that the modules responsible for
the crosscutting functionality should be placed in one or more
aspect views. These modules are called aspects, based on the
terminology introduced by aspect-oriented programming (AOP).
The aspect views should contain information to bind each
aspect module to the other modules that require the crosscut-
ting functionality.

The aspects style is particularly useful when you plan to use
AOP in the implementation. However, it’s also applicable when
crosscutting functionality will be implemented in traditional
ways through class inheritance and interfaces, macro insertion,
dependency injection, utility libraries, or other alternatives.
The goal of designing and implementing crosscutting con-
cerns in separate aspect modules is to improve modifiability of
the modules that deal with the business domain functionality.

2.5.2 Elements, Relations, and Properties

Table 2.5 summarizes the characteristics of the aspects style.
The elements in the aspects style are aspect modules. As men-
tioned in Section 2.5.1, an aspect is a special type of module
introduced by AOP. It contains the crosscutting code that
affects other specific modules in the system.

The relation found in the aspects style is usually called cross-
cuts. An aspect crosscuts a module if the aspect contains cross-
cutting functionality that will affect the module. An aspect may
contain the same properties of a regular module. In addition,
it may contain a property that describes what target modules
are affected by that aspect; in AOP terms, this property is called
pointcut specification.

If you haven’t docu-
mented a commonality,
it isn’t likely to be one by
the time you get done
implementing.

—D. L. Parnas

See “Coming to Terms:
Aspect-Oriented Pro-
gramming” on page
107, in this chapter.

ptg

2.5 Aspects Style ■ 105

2.5.3 What the Aspects Style Is For

The aspects style can be used to model the implementation of
crosscutting concerns. It promotes modifiability by increasing
modularity and avoiding the tangling of crosscutting function-
ality and business domain functionality.

2.5.4 Notations for the Aspects Style

UML

Although UML does not have built-in symbols for aspects, it is
a common choice for aspect views. In UML aspect modules are
usually represented as stereotyped classes in a class diagram, as
shown in Figure 2.33. Especially when the target implementa-
tion platform supports AOP, showing aspect modules as stereo-
typed classes makes sense because aspects are structurally
similar to classes: they may contain attributes and operations,
and they may extend another aspect in an inheritance relation.

The crosscut relation could be represented as a stereotyped
dependency going from the aspect to each module it crosscuts.
However, this alternative does not scale: by definition an aspect
provides crosscutting functionality, and hence it may crosscut
too many modules. Drawing a line between the aspect module
and each of the crosscut modules is impractical in nontrivial
systems and would clutter the diagrams. A better alternative is
simply to omit the crosscut relation from the diagrams. Instead,
just add a comment to the aspect module to characterize (in
natural language or in a formal syntax) what other modules
this aspect crosscuts. Figure 2.34 shows an example. Not showing

Table 2.5 Summary of the aspects style

Overview The aspects style shows aspect modules that implement crosscutting con-
cerns and how they are bound to other modules in the system.

Elements Aspect, which is a specialized module that contains the implementation of a
crosscutting concern

Relations Crosscuts, which binds an aspect module to a module that will be affected by
the crosscutting logic of that aspect

Constraints • An aspect can crosscut one or more regular modules as well as aspect
modules.

• An aspect that crosscuts itself may cause infinite recursion, depending on
the implementation.

What It’s For • Modeling crosscutting concerns in object-oriented designs
• Enhancing modifiability

ptg

106 ■ Chapter 2: A Tour of Some Module Styles

the crosscut relation in the diagram actually makes sense
because in an AOP implementation, the developer doesn’t
have to identify each target class for a given aspect. The archi-
tecture representation should not be more detailed than the
implementation!

2.5.5 Relation to Other Styles

In general, aspects allow inheritance. The aspects style may be
combined with the generalization style when we want to show
a hierarchy of aspects.

2.5.6 Examples Using the Aspects Style

Figure 2.35 is from the aspects view of an application called
IkeWiki. The design prescribes the use of aspects for transac-
tion management, exception handling, authorization check,
and enforcement of architecture constraints. Drawing a line
for each crosscut relation would be impractical, so the architect
opted simply to indicate with comments what other modules
should be crosscut by each aspect.

Figure 2.34
Instead of trying to draw a
line from each aspect to
every module it crosscuts,
we simply add a comment
box that characterizes what
modules will be crosscut.

«aspect»
TransactionManagement

«aspect»
Internationalization

Crosscuts calls to any operation
within an EJB that contains the
@transactional annotation

Crosscuts any
calls to the
Locale library

Notation:
UML

Figure 2.33
Aspect modules are often
represented in UML as
classes with stereotype
<<aspect>>.

Notation: UML

«aspect»
Internationalization

«aspect»
TransactionManagement

ptg

2.5 Aspects Style ■ 107

COMING TO TERMS

Aspect-Oriented Programming

Aspect-oriented programming is an evolutionary implementation paradigm that
complements object-oriented programming and facilitates the implementation
of crosscutting concerns. AspectJ is probably the most widely known AOP
package. Other implementations include Spring AOP, JBoss AOP, AspectC++,
and Aspect#.

Suppose the bank automation example is implemented using a regular object-
oriented language. The solution would contain classes such as Account, Cus-
tomer, and Atm. In these classes, the code to handle crosscutting concerns
such as logging or transaction management is tangled with the business logic
code, making the classes more difficult to maintain. Moreover, the lines of code
found in class Account to handle transaction management are very similar if not

Figure 2.35
Primary presentation for the aspects view of the IkeWiki application. This Java EE application implemented with the
Spring framework and Google Web Toolkit uses aspects for some crosscutting concerns. The TransactionManagement
aspect makes sure all requests received by the server will close the transaction and release database resources properly,
performing a rollback when an exception occurs. The ExceptionHandling aspect has code to log the error to the
database, send e-mail notification if applicable, and wrap the exception with a proper user message to be displayed by
the client application. This aspect is woven into server-side classes that are either threads or entry points to process
HTTP requests. The AuthorizationCheck aspect is used to check if the current user has permission to execute a specific
method. The Enforcement aspect is different from the others. It doesn’t exactly implement a crosscutting concern, but
rather it scans the source code at compile time looking for violations of the layered design, as well as violations of several
coding policies.

. . .

. . .

. . .

. . .

com.ikaru.ikewiki.aspects
com.ikaru.ikewiki.util

IkewikiExceptionHandler

handleExceptionInService()
handleExceptionInThread()

«aspect»
TransactionManagement

«aspect»
ExceptionHandling

«aspect»
Enforcement

«aspect»
AuthorizationCheck

«use»

«use»

«use»

checkStatusAndCloseTransaction()

Crosscuts all public methods of
all classes with suffix ServiceImpl
AND any method with the
@transactional annotation

Compile-time declarations
to identify points in the code
that violate the layered
design or coding policies

Crosscuts:
—all public methods of all classes with suffix ServiceImpl
—the handleRequest() method of all classes that

 implement Spring’s Controller interface
—the run() method of all threads

Crosscuts any method
with the
@privilegedAccess
annotation

Key: UML
Color used to enhance
readability.
“. . .” indicates there are
other elements in the
package.

org.gwtwidgets.server.spring

ServletUtils

«entity»
User

com.ikaru.ikewiki.user

ptg

108 ■ Chapter 2: A Tour of Some Module Styles

equal to the lines of code that handle the same concern in Customer, Atm, and
other classes. The code for a particular concern is scattered across several
classes; that poses a modifiability problem. Suppose you need to change the
signature of a method used for logging. You’ll need to change the correspond-
ing lines of code in all classes where logging is needed. Code tangling and code
scattering in traditional object-oriented applications is notionally represented in
Figure 2.36.

AOP brings an ingenious solution to improve modularity and resolve the code
tangling and code scattering problems. The crosscutting code is factored out
from the classes and placed in a special module called aspect, as represented
in Figure 2.37. An aspect has two important parts: advices and pointcut speci-
fications. Advices contain the code for the crosscutting concerns. Such code
will be injected at certain points (called join points) of the classes through a pro-
cess called weaving, carried on by the AOP compiler. The pointcut specifica-
tions contain declarations that map to specific sets of join points in the target
classes. In the aspect code, advices are associated to pointcut specifications
to let the AOP compiler know where exactly each advice code will be injected
in the target classes.

AOP is the programming component of the larger aspect-oriented software
development (AOSD) movement, which strives to factor out otherwise-redundant
commonality in all kinds of software activities, including requirements engineer-
ing, design, and testing.

Figure 2.36
The traditional object-oriented implementation of a bank automation system would have several classes where
the business logic is tangled with code that handles crosscutting concerns, such as access control, logging, and
transaction management. In addition, the code that handles a particular crosscutting concern is repeated and
scattered across several classes.

. . .

Key

code scattering

Account Customer

Code to handle access control

Code to handle logging

Code to handle transaction management

Atm

code
tangling

Class
code

ptg

2.6 Data Model ■ 109

2.6 Data Model
2.6.1 Overview

Data modeling is a common activity in the software develop-
ment process of information systems. The output of this activ-
ity is the data model, which describes the static information
structure in terms of data entities and their relationships. For
example, in a banking system, entities typically include
Account, Customer and Loan. Account has several attributes,
such as account number, type (savings or checking), status,
and current balance. A relationship may dictate that one cus-
tomer can have one or more accounts, and one account is asso-
ciated to one or two customers. The data model is often
represented graphically in entity-relationship diagrams (ERDs)
or UML class diagrams.

The first draft of an architecture view typically has very little
detail. Over time, as design decisions are made, the view is elab-
orated until the architect considers there’s enough informa-
tion captured in that architecture view. The same thing
happens with the data model. Data modeling spans the evolu-
tion of the high-level model that displays the data entities in a
given business domain into a model that shows details of how

Figure 2.37
In the aspect-oriented implementation of the same bank automation system, the classes don’t contain code for
logging, access control, transaction management, and other crosscutting concerns. The code to handle these
concerns is now inside aspect modules. Classes such as Account, Customer and Atm contain the business logic
only. The AOP compiler will use the weaving process to insert the code inside aspects at the locations in the
classes where it’s needed.

. . .

Account

access
control
aspect

logging
aspect

transaction
management

aspect

Customer Atm

Aspects that
modularize code
of crosscutting
concerns

Classes with
business logic
code

ptg

110 ■ Chapter 2: A Tour of Some Module Styles

the data is stored, for example, in a relational database man-
agement system. As a result, different organizations focus the
modeling and documentation effort on different stages of the
data model evolution. Thus organizations sometimes use qual-
ifiers to the data model to distinguish these stages. Examples
of qualifiers include:

• Conceptual. The conceptual data model abstracts implemen-
tation details and focuses on the entities and their relation-
ships as perceived in the problem domain. Figure 2.38
shows a fragment of a conceptual data model.

• Logical. The logical data model is an evolution of the con-
ceptual data model toward a data management technology
(such as relational databases). It is typically the subject of
normalization (see Section 2.6.2). Figure 2.39 shows an
example of a logical data model.

• Physical. The physical data model is concerned with the
implementation of the data entities. It incorporates optimi-
zations that may include partitioning or merging entities,
duplicating data, and creating identification keys and
indexes. For example, in Figure 2.40 a column named total-
Price was likely added to the entity Order as a performance
optimization, since the total price could also be obtained by
reading all order items and adding up their prices.

Figure 2.38
First draft of a conceptual
data model. This and the
next two diagrams are
fragments of an online
order-processing system at
different stages.

Figure 2.39
Logical data model that has
evolved from the
conceptual data model in
Figure 2.38

Order

OrderItem
CatalogItem

qty
price

date
clientId
shippingInfo
billingInfo
creditCardId

name
description
listPrice
status

Legend
Entity

Relationship with
cardinality one-to-many
(crow’s foot is “many”)

ptg

2.6 Data Model ■ 111

In an early stage, the architecture documentation may contain
the data model with the key entities and important relation-
ships. Later on, this initial model is superseded by the detailed
model approved by the data administrators.

2.6.2 Elements, Relations, and Properties

Table 2.6 summarizes the characteristics of the data model style.
The elements in a data model are called data entities or sim-

ply entities. Any distinguishable object that contains informa-
tion to be stored or represented in the system can be an entity.

Figure 2.40
Physical data model that was created by adding implementation details and optimizations to the logical data model in
Figure 2.39

A B

PurchaseOrder OrderItem CatalogItem
PK poId INTEGER

FK3,I1 clientId INTEGER

FK1 shippingInfoId INTEGER
FK2 billingInfoId INTEGER
FK4 creditCardId INTEGER
 totalPrice NUMERIC(10,2)

PK,FK1 poId INTEGER

PK,FK2 itemId INTEGER

 qty NUMERIC(10,2)

 unit CHAR(10)
 price NUMERIC(10,2)

PK itemId INTEGER

 name VARCHAR(80)

 description TEXT(400)
 listPrice NUMERIC(10,2)
 status INTEGER

Legend
For each A there are 0 or more Bs,
each B is related to exactly one A,
A’s PK is needed as part of B’s PK

Entity

PK = Primary key
FK# = Foreign key
I# = Index

Column name
(bold means
required column)

Data type

See “Coming to Terms:
Entity” on page 118, in
this chapter.

Table 2.6 Summary of the data model style

Overview The data model describes the structure of the data entities and their
relationships.

Elements Data entity, which is an object that holds information that needs to be stored or
somehow represented in the system. Properties include name, data attributes,
primary key, and rules to grant users permission to access the entity.

Relations • One-to-one, one-to-many, and many-to-many relationships, which are logi-
cal associations between data entities

• Generalization/specialization, which indicate an is-a relation between entities
• Aggregation, which turns a relationship into an aggregate entity

Constraints Functional dependencies should be avoided.

What It’s For • Describing the structure of the data used in the system
• Performing impact analysis of changes to the data model; extensibility analysis
• Enforcing data quality by avoiding redundancy and inconsistency
• Guiding implementation of modules that access the data

ptg

112 ■ Chapter 2: A Tour of Some Module Styles

Properties of entities may include:

• Name of the entity.

• Description of the meaning and significance of the entity.

• List of data attributes of the entity. For example, a Car entity
may have attributes year, manufacturer, model, mileage,
price, and license. Each attribute may have properties, such
as data type, size, and whether it’s a required attribute or
not.

• The attribute (or attributes) used to uniquely identify an
entity (that is, the primary key).

• Whether an entity is weak. A weak entity, also known as a
dependent entity, depends on the existence of another
entity to exist. For example, an OrderItem requires the
existence of a PurchaseOrder in Figure 2.40.

• Constraints and invariants on the values of individual or
combined attributes. For example, “Returning date cannot
be prior to arrival date.”

• Rules that will be used to grant permissions to users or user
groups to access the entity.

• Expected number of entity instances and growth rate.

Other properties concern the physical data model and are
specific to the target implementation platform of the data
model. Examples include:

• List of attributes that should be indexed to optimize access
time.

• List of attributes that should be encrypted or compressed.

• Whether the entity should become a database view instead
of a table. A view is a virtual table that is defined by a SQL
query command on one or more tables.

• Whether the entity should become a materialized view,
which means it will be implemented as a database table that
stores a subset of the data copied from a master table. Like
a regular view, the subset is defined by a query command.

• List of database triggers that will be implemented for that
entity. A trigger is a special procedure that is automatically
executed by the database management system when data is
inserted, updated, or deleted.

There are three types of relations found in data models:

• Relationship. Used to designate a logical association between
entities. It is usually qualified by the cardinality of the partic-

ptg

2.6 Data Model ■ 113

ipant entities: one-to-one, one-to-many, or many-to-many. In
addition, a relationship can be identifying or nonidentifying.
An identifying relationship from A to B means that the exist-
ence of B depends on the existence of A; that is, the primary
key of B contains the primary key of A.

• Generalization/specialization. Indicates an is-a relation between
entities. For example, entity Insurance is a generalization of
different types of insurances; at the same time, entities Car
Insurance and House Insurance are specializations of entity
Insurance.

• Aggregation. An abstraction that turns a relationship between
entities into an aggregate entity (Smith and Smith 1977).
For example, a relationship between a patient, a physician,
and a date can be abstracted as an aggregate entity called
Appointment. In practice, this relation is rarely used.

Conceptually, there are no topological constraints with
respect to the relations in a data model. However, the database
normalization technique imposes restrictions on the data
model based on the dependencies between entity attributes.
Normalization is used by data administrators to avoid duplica-
tion of information, in order to safeguard the consistency
(integrity) of the data. Figures 2.41 and 2.42 show an example
of normalization.

For an explanation of
the normalization tech-
nique and description of
the various normal
forms, refer to the clas-
sic book by C. J. Date,
An Introduction to Data-
base Systems (1999).

Figure 2.41
Entity ProjectAssignment before normalization, along with sample data (adapted from Ponniah 2007). The attributes that
uniquely identify a project assignment (that is, the primary key) are EmpId and ProjNo.

PK EmpId INTEGER

PK ProjNo INTEGER

Name VARCHAR(80)

Position VARCHAR(80)

ProjDesc VARCHAR(80)

Start DATETIME

End DATETIME

EmpId Name Position ProjNo ProjDesc Start End

100 Simpson Analyst 23 DB design Apr-02 Jul-02
140 Beeton Technician 14 Network cabling Sep-02 Oct-02
160 Davis Technician 14 Network cabling Sep-02 Nov-02
 36 Network testing Nov-02 Dec-02
190 Berger DBA 45 Physical design Aug-02 Nov-02
 48 Space allocation Nov-02 Dec-02
100 Simpson Analyst 25 Reports Oct-02 Nov-02
110 Covino Analyst 31 Forms Mar-02 May-02
 25 Reports May-02 Jul-02
120 Brown Analyst 11 Order entry Jul-02 Sep-02
180 Smith Programmer 31 Forms Sep-02 Nov-02
 25 Reports May-02 Jul-02
200 Rogers Programmer 11 Order entry Sep-02 Oct-02
 12 Inventory control Oct-02 Dec-02
 13 Invoicing Nov-02 Dec-02
100 Simpson Analyst 31 Forms Aug-02 Oct-02
130 Clemens Analyst 23 DB design Apr-02 Jun-02

ProjectAssignment

ptg

114 ■ Chapter 2: A Tour of Some Module Styles

2.6.3 What the Data Model Is For

The data model facilitates stakeholder communication during
domain analysis and requirements elicitation. But foremost,
the data model is the blueprint for the implementation of the
data entities, for example, in a relational database.

A carefully created data model also helps to achieve perfor-
mance requirements in a software system. In data-centric appli-
cations, access to the data usually represents a significant
amount of the time to process user requests. The architect and
the data administrator should understand what kinds of data
access operations will be more critical to the system and what
their performance requirements are. Driven by these require-
ments, denormalizations, optimizations, and other design
decisions are applied to the data model, aiming at improved
system performance. Examples of these design decisions include:

• Merging two entities to avoid an expensive outer join or
union operation in a query

• Adding a derived attribute to avoid scanning an entire data
table to obtain the derived value

• Creating an index on attributes that are often parameters in
a query

• Changing the granularity (such as table row or page) and
type (such as optimistic) of locks on certain entities to avoid
contention and deadlocks

After the software system is implemented, even when the
data model is carefully created, it’s common to find perfor-

Figure 2.42
Data model for ProjectAssignment after normalization. One of the rules of normalization is that non-key attributes should
have functional dependencies to the whole primary key only. Attribute ProjDesc has a functional dependency to ProjNo,
which is not the whole primary key. After this and other violations of the normalization rules were fixed, this is the
resulting data model diagram.

ProjectAssignment Project

A B

A B

Employee

Position

Legend

For each A there are 0 or more Bs,
each B is related to exactly one A,
A’s PK is needed as part of B’s PK

For each A there are 0 or more Bs,
each B is related to exactly one A

Entity

PK = Primary key
FK# = Foreign key

Column
name

PK EmpId INTEGER

 Name VARCHAR(80)

FK1 PositionId INTEGER

PK PositionId INTEGER

 PositionDesc VARCHAR(80)

PK,FK1 EmpId INTEGER

PK,FK2 ProjNo INTEGER

 Start DATETIME

 End DATETIME

PK ProjNo INTEGER

 ProjDesc VARCHAR(80)

ptg

2.6 Data Model ■ 115

mance bottlenecks in data access operations. To remove these
bottlenecks, the data model comes in handy once again, in a
task called query optimization.

In information systems, the data model is essential input to
modifiability analysis. To analyze the impact of required modi-
fications to a system, one cannot look exclusively at the code
structure. Many modifications require altering the data model
and hence its physical implementation. Modifications to the
data model can be costly, as they may require changing the
code of multiple applications that share the same data. A sim-
ple change such as making a certain attribute of an entity man-
datory (for example, requiring a customer’s date of birth) may
require changes to all screens and functions that allow creating
or updating that information. Versioning and redeployment of
applications is more complicated when data model changes
are involved. Moreover, larger data model modifications, such
as merging with the data model of a legacy system, may also
require the implementation of extract, transform, and load
(ETL) operations to fix the data itself. Indeed, the data model
is an important input to data warehouse projects and to the
integration of data schemas required by some business part-
nerships (for example, an airline company needs to share data
with a car rental company).

The data model is an architecture view that should ideally be
created with a thorough understanding of incremental devel-
opment plans, future extensions, and integration of data
across information systems. Data is a valuable asset, and the
existence of an enterprise data model and a data administra-
tion group helps to enforce data integrity. If a new system
needs to retrieve sales information, the enterprise data model
may already contain that information. The architect of the new
system may not be aware of the data entities that hold sales
information, but the data administrator should and can point
out those entities instead of creating new ones in the database.
Disparate, redundant data contribute to poor data quality.

Based on the data model, data modeling tools can generate
scripts to create the physical database. Some tools can also gen-
erate application code to access the data tables, classes to hold
the data, forms for end users to enter data, message schemas,
and simple reports.

Finally, the data model can help application developers to
write code to access the database. It is easier to understand an
entity-relationship diagram than to browse through the table
creation commands or the database management system
dictionary.

Data integrity refers to
the consistency and
accuracy of the data
shared across all appli-
cations in a system.

ptg

116 ■ Chapter 2: A Tour of Some Module Styles

2.6.4 Notations for the Data Model Style

The data model can be described graphically using informal or
semiformal visual notations that include:

• Peter Chen’s entity-relationship diagram notation (Chen
1976)

• Crow’s foot entity-relationship diagram notation

• IDEF1X

• UML class diagram

The first three notations are ERD variations, and the last one
is the UML alternative to ERD. Crow’s foot and UML class dia-
grams are more widely used in industry and more commonly
supported by tools.

Crow’s Foot ERD Notation

One of the most popular ERD notations for relationships uses
lines with special symbols at each end to indicate cardinality.
These symbols include a dash (indicating one), a ring (indicat-
ing zero), and a crow’s foot (indicating many). The crow’s foot
ERD notation was initially used in the 1980s by Richard Barker
(1990), as well as in the Information Engineering approach
developed by James Martin and Clive Finkelstein (1981). The
symbology found in today’s tools provides slight variations on
Baker’s original notation and the Information Engineering
notation. Figure 2.43 shows an example.

Figure 2.43
Data model (simplified) of a
human resource system
using crow’s foot ERD
notation

Key

Employee Department

Dependent

Entity

Weak
entity

Cardinality:

Exactly one

Zero or one

One or more

Zero or more

Nonidentifying relationship

Identifying relationship

ptg

2.6 Data Model ■ 117

UML

The data model can be represented as a UML class diagram,
where the classes correspond to data entities. The attribute
compartment lists the entity attributes, and the operation com-
partment is empty. UML associations represent the relation-
ships between entities and the multiplicity intervals shown at
both ends of the association lines (for example, “1..*”) indicate
the cardinality of the relationship. Figure 2.44 shows an example.

UML was originally created for object-oriented modeling,
not for data modeling. Therefore, it doesn’t provide built-in
mechanisms for indicating primary keys, weak entities, or for-
eign keys. In addition, class diagrams are more flexible than
ERDs. For example, a class Order may include a list of items as
an attribute, whereas in an ERD, Item would naturally be a sep-
arate entity. Some constraints are needed in order to use UML
class diagrams as an ERD alternative.

2.6.5 Relations to Other Styles

The entities in the data model are intrinsically connected to
some of the modules in other module views, especially the
modules that contain the in-memory representation of the
data. In object-oriented systems that use a relational database
to store data, we typically find classes that correspond to the
persisted entities. The mapping is not always one-to-one,
because the relational paradigm is fundamentally different
from the object-oriented paradigm. This problem is known as
the object-relational impedance mismatch (Ambler 2006) and
is addressed by object-relational mapping (ORM) tools and

The Object Management
Group has a draft spec-
ification for an Information
Management Meta-
model that contains a
UML 2 profile for entity-
relationship modeling. It
is available online at
omgwiki.org/imm.

Figure 2.44
Data model (simplified) of a
human resource system
shown as a UML class
diagram

1..*

1

0..*

1..* 0..1

0..1

1

0..*

Key

«entity»
Employee

«entity»
Department

«entity»
Dependent

Cardinality:

Exactly one

Zero or one

One or more

Zero or more

Class

Association

ptg

118 ■ Chapter 2: A Tour of Some Module Styles

frameworks, such as Hibernate for Java and LLBLGen for
Microsoft .NET.

The architect may find it useful to indicate what modules (in
a module view), what components (in a component-and-con-
nector view), or even what use cases from the functional
requirements do use which data entities. Such mapping of the
data model to other views can be recorded as a table, as
described in Section 10.2. Moreover, the architect can indicate
whether each element creates, reads, updates, or deletes data
(CRUD, for short) from each data entity. This generic map-
ping can be represented as a CRUD matrix.

The data model describes the structure of data entities and
relationships that will typically be deployed to a shared-data-
store component such as an Oracle database. Data stores are
typically depicted in a shared-data view of the architecture,
along with the other runtime components that access them.
Also, a deployment view typically shows what machine(s) the
data stores are allocated to. Documenting the mapping of enti-
ties in a data model to different data stores and respective
machines is especially useful when the solution uses distrib-
uted or replicated databases.

2.6.6 Examples

Figure 2.45 shows the data model reconstructed and adapted
from the Microsoft .NET Pet Shop application (Microsoft 2002),
a Web store that keeps a catalog of pets and takes purchase orders
from registered Web users. The data is persisted in a relational
database. The majority of the functionality consists of retrieving,
creating or updating the data elements shown in the data model.

COMING TO TERMS

Entity

The elements in the data model style are data entities or, as most data admin-
istrators and developers call them, entities. The original paper that proposed the
entity-relationship model initially describes an entity in a purely conceptual way:
an entity is a “thing” that can be distinctly identified (Chen 1976). Later in the
paper, the author adds a practical caveat: “From now on, we shall consider only
the entities and relationships (and the information concerning them) which are
to enter into the design of a database.” Thus an entity can be related to any
object in the real world: a car, a person, an event, a company, and so on. But for
practical reasons, data modeling in general is concerned with only those entities
and their respective attributes that are relevant to the software system and

Mapping between
views is discussed in
Section 10.2.

The shared-data style is
covered in Section 4.5.1.

The deployment style is
described in Section 5.2.

ptg

2.6 Data Model ■ 119

hence will be represented in the system, possibly in the database. The same
focus is true in the context of software architecture documentation.

Strictly speaking, an entity is a particular instance of an entity set or entity type.
For example, Earth is an entity of entity set Planet. For simplicity, most people
don’t make that distinction and refer to entity sets as entities.

Figure 2.45
Data model for the Pet
Shop application using
Information Engineering
crow’s foot ERD notation

Supplier
Suppld
Name
Status
Addr1
Addr2
City
State
Zip
Phone

Item
ItemId
ProductId
ListPrice
UnitCost
Supplier
Status
Name
Image

Product
ProductId
CategoryId
Name
Descn
Image

Category
CategoryId
Name
Descn

User
UserId
Password
PasswordFormat
MobilePin
Email
PasswordQuestion
PasswordAnswer
IsApproved
CreatedDate
LastLoginDate
LastPwdChangedDate
Comment
PasswordSalt
Username

Order
OrderId
UserId
OrderDate
ShipAddr1
ShipAddr2
ShipCity
ShipState
ShipZip
ShipCountry
BillAddr1
BillAddr2
BillCity
BillState
BillZip
BillCountry
Courier
TotalPrice
BillToFirstName
BillToLastName
ShipToFirstName
ShipToLastName
AuthorizationNumber
Locale

CartItem
ItemId
UserId
Name
Type
Price
CategoryId
ProductId
IsShoppingCart
Quantity

Lineitem
OrderId
LineNum
ItemID
Quantity
UnitPrice

OrderStatus

OrderId
LineNum
OrderTimestamp
Status

ItemId
Qty

Inventory
Notation:
Information
Engineering

ptg

120 ■ Chapter 2: A Tour of Some Module Styles

2.7 Summary Checklist
• A decomposition view shows how responsibilities are allo-

cated across modules and submodules.

• A uses view shows how modules depend on one another.
This view helps achieve incremental development and is
especially suitable for performing change-impact analysis.

• A generalization view relates modules by showing how one
is a generalization or specialization of the other. This view is
widely used in object-oriented systems, where inheritance is
used to exploit commonality among modules.

• A layered view divides a system into groups of modules that
provide cohesive responsibilities. These groups are called
layers and relate to each other unidirectionally by the
allowed-to-use relation. A layered design helps a system achieve
portability and modifiability.

• An aspects view shows special modules called aspects, which
are responsible for crosscutting concerns. This view is par-
ticularly useful if the system implementation is going to use
AOP.

• A data model view describes the structure of the data used
in the system in terms of data entities and their relation-
ships. It guides implementation and helps to improve per-
formance and modifiability in data-centric systems.

2.8 Discussion Questions
1. Can you think of a system that cannot be described using a

layered view? If a system is not layered, what would this say
about its allowed-to-use relation?

2. How does a UML class diagram relate to the styles given in
this chapter? Does that diagram show decomposition, uses,
generalization, or another combination?

3. We consciously chose the term generalization to avoid the
multiple meanings that the term inheritance has acquired.
Find two or three of these meanings, compare them, and
discuss how each is a kind of generalization. (Hint: You may
wish to consult books by Booch and Rumbaugh, respectively.)

4. Suppose that your system will include commercial off-the-
shelf (COTS) software modules. In which module views
might you show them and why?

5. Would you create a data model using an entity-relationship
notation for a system that will not contain a database? In
what situations and why?

ptg

2.9 For Further Reading ■ 121

6. Crosscutting concerns have been implemented in object-
oriented systems without using AOP constructs. Would you
create an aspect view for your system if your implementa-
tion will not use AOP? Would you use aspect modules in
your design in this case?

7. The two layered diagrams in Figure 2.46 are from real sys-
tems. The first is called the ECMA “toaster model,” which
has slots for pluggable tools. The second is the layered
architecture of the OSGi framework. How is the allowed-to-
use relation represented in these diagrams? How would you
create the key to each diagram so that any ambiguity in the
notation is removed?

2.9 For Further Reading
Most of the styles in this chapter can be traced to a founda-
tional paper in the annals of the software engineering litera-
ture. An architect interested in the roots of the discipline may
find the original ideas refreshing in their simplicity and pur-
posefulness. These papers, seen as a group, express the then-
revolutionary idea that there is more to a computer program
than getting the right answer: how it is structured also matters.

In 1968, Edsger Dijkstra wrote about designing an operating
system as a set of abstract virtual machines, giving us the concept
of layers (Dijkstra 1968). David Parnas showed how decompos-
ing a system into modules based on likely changes, as opposed
to steps in the processing, resulted in systems vastly easier to
modify (Parnas 1972). Parnas also introduced the uses relation
and showed how it could lead to software that was easy to
extend or to develop incrementally (Parnas and Weiss 1979).

In the 1960s the fundamental concepts of object-oriented
programming, including objects, inheritance, and dynamic

Figure 2.46
ECMA “toaster model” (left)
and OSGi framework
layered design (right)

User Interaction Manager

Subsystem Interaction Manager

Tools

Development Manager

Repository Manager

Applications/Bundles

Life Cycle S
ec

u
ri

ty

Class Loading

JVM

OS Hardware

Service Registry

Services

ptg

122 ■ Chapter 2: A Tour of Some Module Styles

binding, were invented by Ole-Johan Dahl and Kristen Nygaard
at the Norwegian Computing Center in Oslo (Nygaard and
Dahl 1981). The concepts were introduced in the program-
ming language Simula-67, which, although never widely used
itself, laid the foundation for the development of popular
object-oriented languages such as Smalltalk and C++. In 1986–
1987, two widely influential papers by Alan Snyder and Barbara
Liskov, respectively, tied together two concepts that had been
drifting apart: inheritance and encapsulation (Snyder 1986,
Liskov 1987). Liskov in particular argued convincingly that
undisciplined inheritance that violated objects’ abstractions
was harmful. Between them, they set the object-oriented com-
munity on its present path.

A software engineering demonstration project that paid spe-
cial attention to the use of separate architectural structures was
the A-7E avionics system built by the U.S. Navy in the 1980s. A
case study is presented in the book by Bass, Clements, and
Kazman (2003). The example employs decomposition (using
information hiding as the criterion [Parnas, Clements, and
Weiss 2001]), layers, and uses, and it shows how a subset is built
from the uses relation.

The authoritative source of information about the UML lan-
guage and notation is the specification published by the
Object Management Group (OMG 2009), which at the time of
writing is on version 2.2. However, there are many UML books
that are far more digestible. Two valuable references are The
Unified Modeling Language User Guide, by Booch, Rumbaugh,
and Jacobson (2005), and UML Distilled, by Martin Fowler
(2003). UML classes, packages, and their relations are espe-
cially relevant to module styles.

The seminal paper on aspect-oriented programming was
written by Gregor Kiczales and colleagues at Xerox PARC (Kic-
zales et al. 1997). It describes the concepts and terminology
that were later used to create AspectJ and other AOP lan-
guages. The second edition of the book by Ramnivas Laddad
(2008) is an excellent guide to AspectJ and provides a nice
introduction to AOP. Recently, aspect orientation has been
investigated in the realm of domain analysis, requirements
engineering, and software architecture. Resources about the
use of aspects in early phases of software development can be
found at early-aspects.net.

Data modeling is a well-established discipline. Entity-relationship
modeling was originally proposed by Peter Chen (1976). In
addition to Chen’s original paper, the book by C. J. Date
(2003) has been an important reference to relational theory,
normalization, and data modeling since the publication of the
first edition in 1975.

ptg

123

3Component-and-
Connector Views

In this chapter, we look at these aspects of component-and-
connector (C&C) views:

• Elements, relations, and properties

• Purpose

• Notation

• Relation to other views

3.1 Overview
In this chapter we discuss C&C views in their most general
form, and we look at notations for representing C&C views. In
Chapter 4, we explore some important C&C styles.

A C&C view shows elements that have some runtime pres-
ence, such as processes, objects, clients, servers, and data
stores. These elements are called components. Additionally,
component-and-connector views include as elements the path-
ways of interaction, such as communication links and proto-
cols, information flows, and access to shared storage. Such
interactions are represented as connectors in C&C views.

Component-and-connector views are ubiquitous in practice;
indeed, box-and-line diagrams depicting these views are often
the graphical medium of choice as a principal first-look expla-
nation of the architecture of a system. But such informal C&C
views can be misleading, ambiguous, and inconsistent. Some
problems follow from the usual pitfalls of visual documenta-
tion and are equally applicable to any of the view types dis-
cussed in this book. Other problems derive specifically from
the use of components and connectors to portray a system’s
execution structure. In this chapter, we provide guidelines for
documenting C&C views, and we highlight common pitfalls.

ptg

124 ■ Chapter 3: Component-and-Connector Views

Figure 3.1 illustrates the primary presentation of a C&C view
of a system’s runtime architecture. What is this diagram (and
the documentation that explains it) attempting to convey? It
shows a picture of the system as it appears at runtime. The sys-
tem contains a shared repository of customer accounts
(Account Database) accessed by two servers and an administra-
tive component. A set of client tellers can interact with the
account repository servers, embodying a client-server style.
These client components communicate among themselves by
publishing and subscribing to events. The purpose of the two
servers is to enhance availability: If the main server goes down,
the backup can take over. Finally, an administrative compo-
nent allows an administrator to access and maintain the
shared-data store.

Each of the three types of connectors shown in Figure 3.1
represents a different form of interaction among the con-
nected parts.

• Client-server connectors allow a set of concurrent clients to
retrieve data synchronously via service requests. This variant
of the client-server style supports transparent failover to a
backup server.

• The database access connector supports transactional,
authenticated access for reading, writing, and monitoring
the database.

• The publish-subscribe connector supports asynchronous
event announcement and notification.

Each of these connectors represents a complex form of
interaction and will likely require nontrivial implementation
mechanisms. For example, the client-server connector type
represents a protocol of interaction that prescribes how clients
initiate a client-server session, how and when failover is achieved,
and how sessions are terminated. Implementation of this con-
nector will probably involve runtime mechanisms that detect
when a server has gone down, queue client requests, handle
attachment and detachment of clients, and so on.

Connectors need not be binary. Two of the three connector
types in Figure 3.1 can involve more than two participants: the
publish-subscribe bus and the failover client-server connectors.

It may also be possible to carry out both qualitative and
quantitative analyses of system properties such as perfor-
mance, reliability, and security based on this view. For instance,
the design decision that causes the administrative user inter-
face to be the only way to change the database schema would
improve the security of the system. But that decision also might
affect serviceability or availability. For example, does the use of

The primary presenta-
tion is the (typically)
graphical portion of an
architecture view.
Documentation that
explains the primary
presentation is called
supporting documenta-
tion. Both are described
in Chapter 10.

The system illustrated
in Figure 3.1 is built from
an amalgamation of
different styles: client-
server is described in
Section 4.3; the shared-
data style is described
in Section 4.5; and
publish-subscribe is
described in Section 4.4.
This picture is a result
of combining views,
which is discussed in
Section 6.6.

ptg

3.1 Overview ■ 125

the administrative interface lock out the servers? Similarly, by
knowing properties about the reliability of the individual serv-
ers and the database, you might be able to produce numeric
estimates of the overall reliability of the system, using some
form of reliability analysis.

Here are some things to note about the nature of C&C
graphical documentation, as illustrated in Figure 3.1:

• It acts as a key to the associated supporting documentation
(not shown here), where details about the elements, rela-
tions, and their properties can be found.

Supporting documenta-
tion is discussed in
Section 10.1.

Figure 3.1
A bird’s-eye-view of a sys-
tem as it appears at run-
time. This system contains
a shared repository that is
accessed by servers and an
administrative component.
A set of client tellers can
interact with the account
servers and communicate
among themselves through
a publish-subscribe
connector.

Client

Client Teller 1

Account
Server-Main

Account
Database

Account
Server-Backup

Server

Database

Database
application

Interface

Publish-subscribe

Client-server
request/reply
w/automatic
failover

Database
access

Key

Administrative

ptg

126 ■ Chapter 3: Component-and-Connector Views

• It’s restricted to information that can be simply presented
in—and comprehended from—a single diagram.

• It’s explicit about its vocabulary of component-and-connec-
tor types in the diagram’s key.

• It indicates the number and kind of interfaces on its compo-
nents and connectors.

• It uses component-and-connector abstractions that may
have rich semantics and complex implementations.

The documentation explaining the diagram should elabo-
rate on the elements shown. Supporting documentation should
explain, for example, how Account Server-Backup improves the
availability of the system. Some of the elements of this Figure 3.1
may themselves represent subsystems that have their own sub-
architectures, shown elsewhere.

The combination of C&C diagrams and their supporting
documentation provide an essential vehicle for communicat-
ing an architect’s design intent, supporting reasoning about
the runtime behavior of the system, and justifying design deci-
sions in terms of their impact on relevant quality attributes.

3.2 Elements, Relations, and Properties of C&C Views
Table 3.1 summarizes the elements, relations, and properties
that can appear in C&C views. It is followed by a more detailed
discussion of these concepts, together with guidelines con-
cerning their documentation.

Table 3.1 Summary of C&C views

Elements • Components: principal processing units and data stores. A component has a
set of ports through which it interacts with other components (via connectors).

• Connectors: pathways of interaction between components. Connectors
have a set of roles that indicate how components may use a connector in
interactions.

Relations • Attachments: component ports are associated with connector roles to
yield a graph of components and connectors.

• Interface delegation: in some situations component ports are associated
with one or more ports in an “internal” subarchitecture. Similarly for the
roles of a connector.

Constraints • Components can be attached only to connectors, not other components.
• Connectors can be attached only to components, not other connectors.
• Attachments can be made only between compatible ports and roles.
• Interface delegation can be defined only between two compatible ports

(or two compatible roles).
• Connectors cannot appear in isolation; a connector must be attached to a

component.

ptg

3.2 Elements, Relations, and Properties of C&C Views ■ 127

3.2.1 Elements

The elements of a C&C view are components and connectors.
Each element in a C&C view of a system has a runtime manifes-
tation, consuming execution resources and contributing to the
execution behavior of that system. Attachment relations of a
C&C view associate components with connectors (via their
respective ports and roles) to form a graph that represents a
runtime system configuration.

Components

Components represent the principal computational elements
and data stores that are present at runtime. Each component
in a C&C view has a name. The name should indicate the
intended function of the component. The name also allows
you to relate the graphical element with any supporting docu-
mentation for that component.

Components have interfaces called ports. A port defines a
specific point of potential interaction of a component with its
environment. A port usually has an explicit type, which defines
the kind of behavior that can take place at that point of inter-
action. A component may have many ports of the same type. In
this respect, ports differ from interfaces of modules, whose
interfaces are never replicated. For example, a filter might
have several input ports of the same type to handle multiple
input streams, or a server might provide a number of request
ports for client interactions. The database in Figure 3.1 has two
ports for two kinds of access.

You can annotate a port with a number or range of numbers to
indicate replication. For example, a port annotated with “[3]”
stands for three occurrences of that port. A port annotated
with “[0..10]” means that there are from 0 to 10 instances of
that port. That form is useful when defining component types,
allowing component instances to bind the exact number, or for
components that dynamically create new points of interaction.

A component’s ports should be explicitly documented, by
showing them in the diagram and defining them in the dia-
gram’s supporting documentation.

What C&C
Views Are For

• Showing how the system works
• Guiding development by specifying the structure and behavior of runtime

elements
• Helping architects and others to reason about runtime system quality

attributes, such as performance, reliability, and availability

Table 3.1 Summary of C&C views (continued)

Components are the
principal computational
elements and data
stores that execute in a
system.

A port is an interface of
a component. A port
defines a point of inter-
action of a component
with its environment.

To indicate multiple
ports of the same type
in a diagram using an
informal notation, you
can draw each one sep-
arately or you can show
a single port but append
a bracketed number (for
example, [5]) after the
port’s name to indicate
its degree of replication.
UML provides a similar
convention.

ptg

128 ■ Chapter 3: Component-and-Connector Views

A component in a C&C view may represent a complex sub-
system, which itself can be described as a C&C subarchitecture.
This subarchitecture can be depicted graphically in situ when
the substructure is not too complex, by showing it as nested
inside the component that it refines. Often, however, it is
documented separately. A component’s subarchitecture may
be in a style different from the one in which the component
appears.

When a component has such a substructure, you should also
document the relationship between the “internal” and “exter-
nal” ports. As we describe later, this relationship is captured
using an interface delegation relation.

Connectors

Connectors are the other kind of element in a C&C view. Sim-
ple examples of connectors are service invocation, asynchro-
nous message queues, event multicast, and pipes that represent
asynchronous, order-preserving data streams. But as we noted
earlier, connectors often represent much more complex forms
of interaction, such as a transaction-oriented communication
channel between a database server and a client, or an enter-
prise service bus that mediates interactions between collec-
tions of service users and providers.

Connectors have roles, which are its interfaces, defining the
ways in which the connector may be used by components to
carry out interaction. For example, a client-server connector
might have invokes-services and provides-services roles. A pipe
might have writer and reader roles. Like component ports, con-
nector roles differ from module interfaces in that they can be
replicated, indicating how many components can be involved
in its interaction. A publish-subscribe connector might have
many instances of the publisher and subscriber roles.

A role typically defines the expectations of a participant in
the interaction. For example, an invokes-services role might
require that the service invoker initialize the connection
before issuing any service requests. The semantics of the inter-
action represented by a connector is often documented as a
protocol specification prescribing what patterns of events or
actions are allowed to take place over the connector.

Like components, complex connectors may in turn be
decomposed into collections of components and connectors
that describe the architectural substructure of those connec-
tors. For example, a decomposition of the failover client-server
connector of Figure 3.1 would probably include components
that are responsible for buffering client requests, determining
when a server has failed, and rerouting requests.

See Chapter 7 for a
more complete discus-
sion of types of informa-
tion that can be used to
define a port.

Section 6.1 contains
more detail on guide-
lines for documenting
hierarchical relation-
ships and refinement.

See Section 3.2.3 for
more information on
how to document sub-
structure using an inter-
face delegation relation.

A connector is a run-
time pathway of interac-
tion between two or
more components.

A role is an interface of
a connector. A role
defines a point of inter-
action of a connector
and indicates how com-
ponents may use a con-
nector in interactions.

A protocol specification
or a pattern of events
can be described using
behavioral notations,
described in Chapter 8.

Refinement is described
in Section 6.1.

ptg

3.2 Elements, Relations, and Properties of C&C Views ■ 129

ADVICE

Connectors
• Connectors need not be binary. That is, they need not have exactly two roles.

For example, a publish-subscribe connector (as illustrated in Figure 3.1)
might have an arbitrary number of publisher and subscriber roles. Even if the
connector is ultimately implemented using binary connectors, such as a pro-
cedure call, it can be useful to adopt n-ary connector representations in a
C&C view.

• If a component’s primary purpose is to mediate interaction between a set of
components, consider representing it as a connector. Such components are
often best modeled as part of the communication infrastructure.

• Connectors can—and often should—represent complex forms of interaction.
What looks like a semantically simple procedure call can be complex when
carried out in a distributed setting, involving runtime protocols for time-outs,
error handling, data marshaling, and locating the service provider—for exam-
ple, as provided by SOAP.

• Connectors embody a protocol of interaction. When two or more compo-
nents interact, they must obey conventions about order of interactions, locus
of control, and handling of error conditions and time-outs. The protocol of
interaction should be documented.

3.2.2 Component-and-Connector Types and Instances

The components and connectors depicted in a C&C view are
instances of component-and-connector types. A type is an incom-
pletely defined component or connector. Type definitions often
express a set of choices, such as using a multiplicity indicator
like [1..5] to indicate that a component may have from 1 to 5
ports.

An instance is the result of completing the definition by
binding the choices that the types create. Each instance must
conform to its type in terms of behavior, interfaces, substruc-
ture (if any), properties, and topological restrictions. As a
result of this conformance requirement, all instances of a given
type are more or less identical. For example, the type may
define a set of allowable behaviors. An instance can restrict this
set, perhaps through instantiation parameters, but an instance
can’t add behaviors.

A C&C view’s primary presentation depicts only instances;
no component or connector types should appear in the view’s
primary presentation. Mixing types and instances in the same
diagram is generally ill-advised. Although it may seem conve-
nient (“I’ll just add a little inheritance information to clarify a

When documenting a
C&C view:

• Make clear in the view
what architecture
style is being used.
Refer the reader to
the appropriate style
guide for more infor-
mation about the style.

• Document any addi-
tional component or
connector type spe-
cializations intro-
duced in the view.

It is usually not a good
idea to mix types and
instances in the same
diagram.

ptg

130 ■ Chapter 3: Component-and-Connector Views

relationship between different instances”), it is more likely to
add confusion.

Types are found in style guides. However, type definitions
given in style guides, including the ones in this book, are too
general to sufficiently constrain an implementation or support
useful analysis. It would make no sense to instantiate them as
they are without specializing them first. Type definitions like
these define the essence of the elements of the style. For exam-
ple, a style guide for the client-server style will define the com-
ponent types client and server, define the connector type request/
reply connector, and specify how their interfaces differ (for example,
that clients make requests of servers, who in turn reply to clients).
Such abstract types, however, do not provide any application-
specific semantics for the components (for example, whether a
server supplies Web pages or processes banking transactions).

Types might specialize more general types in domain-
specific ways, such as a controller servlet that takes requests
from ATMs in a banking system, or a sensor component type,
used in an avionics application. Or they might be technology-
specific, such as an ASP.NET component, a Java servlet, an
Enterprise JavaBean (EJB), a MySQL database, or a database
connector. Like an abstract class in Java, these are usually still too
general to drive an implementation or support useful analysis.

Architects need to define application-specific specializations
of those types that contain enough information so that instances
that populate a view can be implemented and analyzed. We’ll
call these application-specific types. Document these types in your
view’s supporting documentation. Application-specific types
provide application-specific semantics, such as a detailed behav-
ior specification (such as showing how a request is processed)
or refined interfaces (such as refining the general notion of a
“request” with a specific set of request types). The type defini-
tion should also characterize the number of interface types
(ports for components, roles for connectors) that instances of
the type can have.

Component-and-connector types, whether introduced in
style guides or as application-specific specializations, are useful
to identify elements with common behavior, interfaces, sub-
structure, relations to implementation elements, and so on.
Localizing this information in a type definition (as opposed to
replicating it across each instance of an implied type) improves
understandability and simplifies the overall documentation.

In many cases the use of component-and-connector types
allows one to conveniently map a component type (and by
extension, all of its instances) to its implementation in a mod-
ule view. For example, if a set of name-lookup servers in a C&C

A style is a specialization
of another style if it is
consistent with that
style—that is, doesn’t
violate it—and adds
more constraints to its
element types, relation
types, and/or topologi-
cal restrictions.

Document application-
specific types you
introduce in the view’s
element catalog, part of
a view’s supporting
documentation. Ele-
ment catalogs are dis-
cussed in Section 10.1.

This flow from a style’s
types to application-
specific types to
instances constitutes a
spectrum of design,
which is discussed in
Section 6.1.3.

ptg

3.2 Elements, Relations, and Properties of C&C Views ■ 131

view are defined as instances of the NameLookupServer type
(a specialization of the client-server style’s Server type), one
might expect to find a corresponding module that implements
the behavior of all instances of such a server. A mapping
between some module and the NameLookupServer type would
indicate that every instance of the NameLookupServer corre-
sponds to that module.

ADVICE

Component-and-Connector Types
• When several components or connectors of a view share the same form and

behavior (beyond what is specified in the style), define a common, application-
specific type for them.

• Define application-specific types that cover all your components. This gives
the reader one place to look for all component-and-connector details, rather
than sometimes looking at type definitions and sometimes looking at
instance information.

• The definition of a component type or connector type should explain the gen-
eral computational nature and form of each of its instances.

• Application-specific types should provide enough information so that an
architecture built from their instances can be correctly implemented and use-
fully analyzed.

• The component-and-connector types instantiated in a particular C&C view
should be explained by referring to the appropriate style guide that enumer-
ates and defines them, or through a catalog of application-specific types
defined as part of the architecture.

• The definition of a component or connector type should characterize the
number and type of interfaces (ports for components, roles for connectors)
that instances of the type can have.

• A C&C view’s primary presentation depicts only component-and-connector
instances; no component types should appear in the view’s primary
presentation.

• When mapping between views, map modules to C&C types (not instances).

3.2.3 Relations

The primary relation within a C&C view is attachment. Attach-
ments indicate which connectors are attached to which com-
ponents, thereby defining a system as a graph of components
and connectors. Specifically, an attachment is denoted by asso-
ciating (attaching) a component’s port to a connector’s role.

Mappings between
C&C and module views
are discussed in more
detail in Section 3.5.

ptg

132 ■ Chapter 3: Component-and-Connector Views

A valid attachment is one in which the ports and roles are
compatible with each other, under the semantic constraints
defined by the style. For example, in a call-return architecture,
you should confirm that all “calls” ports are attached to some
call-return connector. At a deeper semantic level, you should
ensure that a port’s protocol is consistent with the behavior
expected by the role to which it is attached.

ADVICE

Use the following guidelines when attaching compo-
nents to connectors:

• You can depict attachment simply by connecting the
ports of components in the diagram. In this case, or in
any case where the context makes clear what roles
are being attached, you don’t need to represent roles
explicitly in the diagram.

• Attach a connector to a port of a component, not
directly to a component.

• If it might not be clear that it is valid to attach a given
port to a given role, provide a justification in an anno-
tation in the diagram or in the rationale section for the
view.

• Attaching connectors between ports annotated with a
multiplicity factor (such as [5] or [0..10]) is a great
source of ambiguity. For example, if you connect a
port of multiplicity 3 to a port of multiplicity 22, what
does that mean? If you connect two ports with the
same multiplicity (greater than 1), which ports on one
component are connected to which ports on the
other? If you use this notation, explain what you mean.

A second kind of relation is interface delegation. When a com-
ponent or connector has a subarchitecture, it is important to
document the relationship between the internal structure and
the external interfaces of that component or connector. The
relationship can be documented using interface delegation
relations. Such relations map internal ports to external ports
(for components) or internal roles to external roles (for con-
nectors). Some notations provide specific graphical elements
to characterize this relationship. Figure 3.2 shows an example
of interface delegation in UML notation. UML “delegation
connectors” are used to represent interface delegation.

It is possible to estab-
lish an interface delega-
tion between two ports
of different types. It is
also possible to relate
multiple internal ports to
a single external port. If
you do either of these,
make sure to explain
what that delegation
means and why it’s valid,
in the element catalog
entry for that view.

Describing C&C views
with UML is covered in
detail in Section 3.4.3
and Appendix A.

ptg

3.2 Elements, Relations, and Properties of C&C Views ■ 133

3.2.4 Properties

An element (component or connector) of a C&C view will have
various associated properties. Every element should have a
name and type. Additional properties depend on the type of
component or connector. The properties are needed to guide
the implementation and configuration of components and
connectors, but the architect should also define values for the
properties that support the intended analyses for the particu-
lar C&C view. For example, if the view will be used for perfor-
mance analysis, latencies, queue capacities, and thread priorities
may be necessary. The following are examples of some typical
properties and their uses:

• Reliability. What is the likelihood of failure for a given com-
ponent or connector? This property might be used to help
determine overall system reliability.

• Performance. What kinds of response time will the compo-
nent provide under what loads? What kinds of latencies and
throughputs can be expected for a given connector? This
property can be used with others to determine system prop-
erties such as response times, throughput, and buffering
needs.

• Resource requirements. What are the processing and storage
needs of a component or a connector? This property can be
used to determine whether a proposed hardware configura-
tion will be adequate.

• Functionality. What functions does an element perform?
This property can be used to reason about overall computa-
tion performed by a system.

• Security. Does a component or a connector enforce or pro-
vide security features, such as encryption, audit trails, or

Figure 3.2
A UML component diagram
showing the subarchitec-
ture of a component called
Catalog. UML delegation
connectors associate the
ports of Catalog with
the ports of internal
components.

«server»
:Catalog

«repository»

:DataCache
«data accessor»

:SearchEngine

«data accessor»
:CatalogMgr

«server»

:DataValidation

Admin
Services

Admin
Services

«write»

«call»

ItemsStore

Requests Validate

Online
Services

Data
Access

Data
Access

Data
Access

Online
Services

ptg

134 ■ Chapter 3: Component-and-Connector Views

authentication? This property can be used to determine sys-
tem security vulnerabilities.

• Concurrency. Does this component execute as a separate pro-
cess or thread? This property can help to analyze or simu-
late the performance of concurrent components and
identify possible deadlocks.

• Tier. For a tiered topology, what tier does the component
reside in? This property helps to define the build and
deployment procedures, as well as platform requirements
for each tier.

Ports and roles also may have properties associated with
them. For example, maximum sustainable request rates may
be specified for a server port.

ADVICE

To illustrate what not to do, Figure 3.3 presents an example of a poorly docu-
mented C&C view diagram.

Tiers are defined and
discussed in Section
4.6.2.

Figure 3.3
A poorly documented C&C view diagram. It does not have a key; it portrays an interface (assuming that
“API” has the common meaning of an interface) as a component; it uses different shapes for the same type of
component; it uses the same shape for different types of components and connectors; it confuses the context
with the system to be built; its use of arrows is not explained; and its components do not have ports.

UI

Server1

API

CORBA Server2

Communication Substrate

ptg

3.2 Elements, Relations, and Properties of C&C Views ■ 135

PERSPECTIVES

Are Complex Connectors Necessary?

In this book we treat connectors as first-class design elements for documenting
runtime-oriented views: Connectors can represent complex abstractions; they
have types and interfaces, or roles; and they require detailed semantic docu-
mentation. But couldn’t one simply use a mediating component for a complex
connector? For example, in Figure 3.4, the complex connector Connector 1
gets replaced by the component Component 1 and two (presumably) simpler
connectors. For instance, Connector 1 might be a pipe that implements buff-
ered data flow between components. On the other hand, Component 1 might be
a buffer, and Connector 1A and Connector 1B might be simple procedure calls
to read or write to the buffer.

In other words, are complex connectors needed? The answer is yes. Here’s why.

First, complex connectors are rarely realizable as a single mediating component.
Although most connector mechanisms do involve runtime infrastructure that
carries out the communication, that is not the only thing involved. In addition, a
connector implementation requires initialization and finalization code; special
treatment in the components that use the connector, such as using certain kinds
of libraries; global operating system settings, such as registry entries; and others.

Second, use of complex connector abstractions often supports analysis. For
example, reasoning about a data flow system is greatly enhanced if the connec-
tors are pipes rather than procedure calls or another mechanism, because well-
understood calculi are available for analyzing the behavior of data flow graphs.
Additionally, allowing complex connectors provides a single home where one
can talk about their semantics. For example, in Figure 3.4, I could attach a single
description of the protocol of interaction to the complex connector. In contrast,
the lower model would require me to combine the descriptions of two connec-
tors and a component to explain what is going on.

Figure 3.4
A complex connector and the alternative of representing it as a component with two simpler connectors

Connector 1
Component A Component B

Component A Component 1
Connector 1A Connector 1B

Component B

ptg

136 ■ Chapter 3: Component-and-Connector Views

Third, using complex connectors helps convey an architect’s design intent.
When components are used to represent complex connectors, it is often no
longer clear which components in a diagram are essential to the application-
specific computation and which are part of the mediating communication infra-
structure.

Fourth, complex connector abstractions can significantly reduce clutter in an
architecture model. Few would argue that the lower of the two diagrams in Fig-
ure 3.4 is easier to understand. Magnify this many times in a more complex dia-
gram, and it becomes obvious that clarity is served by using connectors to
encapsulate details of interaction.

—D.G.

3.3 What C&C Views Are For
Component-and-connector views are commonly used to show
developers and other stakeholders how the system works. The
C&C views (with associated behavior documentation) specify
the structure and behavior of the runtime elements. In partic-
ular, these views allow you to answer questions, such as the
following:

• What are the system’s principal executing components, and
how do they interact?

• What are the principal shared-data stores?

• Which parts of the system are replicated, and how many times?

• How does data progress through a system as it executes?

• What protocols of interaction are used by communicating
entities?

• What parts of the system run in parallel?

• How can the system’s structure change as it executes?

Component-and-connector views are also used to reason
about runtime system quality attributes, such as performance,
reliability, and availability. In particular, a well-documented
view allows architects to predict overall system properties,
given estimates or measurements of properties of the individ-
ual elements and interactions. For example, to determine
whether a system can meet its real-time scheduling require-
ments, you usually need to know the execution time of each
process component (among other things). Timing behavior
such as this would be represented as properties of the elements.
Similarly, documenting the reliability of individual elements
and communication channels supports an architect when esti-
mating or calculating overall system reliability. In some cases,

It’s a good idea to pro-
vide comprehensive
behavior documenta-
tion for each compo-
nent (or component
type). Each such model
documents the possible
behaviors of a compo-
nent. When combined
with the topological
information in a C&C
view, you can trace pos-
sible behaviors through-
out the system, rather
than just within a
component.

ptg

3.3 What C&C Views Are For ■ 137

analyses such as these are supported by formal, analytical mod-
els and tools. In others, it is achieved by judicious use of rules
of thumb and past experience.

PERSPECTIVES

Choosing Connector Abstractions

If you’ve committed to a particular C&C style, then the
types of connectors to use in documenting a C&C view
are already prescribed. But in other cases the architect
has some freedom to determine what kinds of connec-
tors to use and how to represent them in documentation.
This choice often revolves around how much implemen-
tation structure to expose. On the one hand, a connector
might be used to encapsulate a complex interaction as a
single abstraction. On the other hand, a complex form of
interaction can be represented as a set of components
and connectors that implement it.

To illustrate, consider two ways of documenting a publish-
subscribe system shown in Figure 3.5. The first version
shows five components communicating through an event
bus, which describes an interaction that ensures that each
published event is delivered to all subscribers of that
event. The second version shows the same five compo-
nents communicating with the assistance of a central-
ized dispatcher component responsible for distributing
events via procedure calls to the other components.

Figure 3.5
Two potential versions of a publish-subscribe system. In Version 1, all communica-
tion takes place over an event bus; in Version 2, communication occurs with the
assistance of a dispatcher component.

The publish-subscribe
style is described in
Section 4.4.1.

C3

C1

C4 C5C3

C2 C1

C4 C5

C2

Version 1 Version 2

Publish-subscribeDispatcher
Event producer/
consumer

PortAnnounce-notify

Event
Dispatcher

Key

ptg

138 ■ Chapter 3: Component-and-Connector Views

There are several advantages to using the first approach:

• It simplifies the description, since there are fewer ele-
ments in the view.

• It clearly distinguishes the parts of the architecture
that are used for interaction (the connectors) and the
parts that are used to provide the computational func-
tions of the system (the components).

• It permits a variety of implementations to be used to
effect the event-based interactions. For instance,
instead of a single dispatcher, there could be several,
or alternatively each component could be responsible
for sending its events to the required listeners.

• It provides a natural way to decompose documenta-
tion into multiple views, where the specific implemen-
tation would be represented in its own view as a
refinement of the event bus connector.

On the other hand, the second approach has some
advantages:

• It clearly indicates what kinds of mechanisms are
being used to carry out event announcement.

• It may better support reasoning about runtime proper-
ties, such as delays, order guarantees, and so on,
where knowledge of the specific mechanisms for dis-
patch is needed.

• It fits with what your chosen notation allows: For
instance, because UML does not provide a way to
represent rich connectors, we are forced to adopt the
second approach.

Thus the choice of connector abstraction will depend on
taste, needs for analysis, and the amount of implementa-
tion detail known to the architect when the architecture is
documented. In practice, however, documentation usu-
ally errs on the side of putting in too much detail, using
low-level communication mechanisms and additional
components instead of defining the higher-level interac-
tion abstractions that they represent.

—D.G.

Refinement is dis-
cussed in Section 6.1.

ptg

3.4 Notations for C&C Views ■ 139

3.4 Notations for C&C Views
3.4.1 Informal Notations

As always, box-and-line drawings are available to represent
C&C views. Figure 3.1 is an example of a C&C diagram that
uses an informal notation (explained in the diagram’s nota-
tion key). Although informal notations can convey limited
semantics, following some guidelines can lend rigor and depth
to the descriptions. The primary guideline is to assign each
component type and each connector type a separate visual
form (symbol), and to list each of the types in a key.

Beyond just naming the types, however, their meaning
should be specified. For example, Figure 3.1 shows a connec-
tor of type Publish-Subscribe, but the diagram does not show
the connector’s capacity, the type of data it can transmit,
whether or not delivery is guaranteed, or a host of other impor-
tant considerations. These details can be documented in the
style guide in which the type is defined, or as properties in the
C&C view’s element catalog.

Take special care with connectors. A common source of
ambiguity in most existing architecture documents is the
meaning of connectors, especially ones that use arrows as their
visual symbol. Make sure to say what the arrow’s direction
means.

3.4.2 Formal Notations

Most, if not all, architecture description languages (ADLs) can
be used to describe component-and-connector types, con-
straints on topologies of component-and-connector graphs,
and properties that can be associated with the elements of the
graph. Tools may then process an architecture description by
referring to the meanings of the types, the constraints, and the
properties. For example, some ADL-associated tools can tell you
if a set of processes can be scheduled so that, given the resources
of the CPU, they will all meet their processing deadlines.

3.4.3 Semiformal Notations: UML

This section introduces some basic UML modeling constructs
for representing components and connectors. Appendix A
goes into more depth about using UML to represent other fac-
ets of architecture.

Components in UML

UML components are a good semantic match to C&C components
because they permit intuitive documentation of important

Element catalogs docu-
ment the architecture
elements that appear in
a view. They are dis-
cussed in Section 10.1.

See “Perspectives:
Quivering at Arrows”
on page 41, in the
prologue.

Consider the following
criteria if selecting an
ADL: How standardized
is it? What analysis or
code generation does it
enable? Does it lend
itself only to represent-
ing certain styles, and if
so, are those styles the
ones you need for your
architecture? Will it let
you represent all of the
views of the architec-
ture that you need? Is it
extensible? How robust
are its tools? Is it com-
mercially supported? Is
there a large and active
user community with
whom you can interact?

ptg

140 ■ Chapter 3: Component-and-Connector Views

information such as interfaces, properties, and behavioral
descriptions. UML components also distinguish between com-
ponent types and component instances, which is useful when
defining view-specific component types.

Because C&C components that appear in a view are instances,
they should be represented using UML component instances,
as shown in Figure 3.6. The visual distinction between UML
component types and instances is found in the naming conven-
tion. Names that do not include a colon (:) are types; names
that include a colon are instances, with the instance name
appearing to the left of the colon. Anonymous instances, such
as the instance of Account Database in Figure 3.6, are shown by
starting the name with a colon.

You can define a component type in a UML diagram in a
style guide you’re writing or in a view’s element catalog for a
view-specific type. You should specify attributes common to all
instances on the component type. If creating a view-specific
type, you should link the type definition to a type defined in
your style guide, such as by placing a stereotype on the type def-
inition, as shown in Figure 3.7.

UML ports are a good semantic match to C&C ports. A UML
port can be decorated with a multiplicity, as shown in the left
portion of Figure 3.8, though this is typically done only on
component types. The number of ports on component
instances, as shown in the right portion of Figure 3.8, is typi-

Section 3.2.2 discusses
types and instances of
components and
connectors.

The element catalog of
an architecture view
provides information
about the elements in
that view. Element cata-
logs are described in
Section 10.1.

Figure 3.6
A UML representation of a
portion of the C&C view
originally presented in
Figure 3.1. This fragment
only shows how four com-
ponents are represented in
UML. Main and Backup are
instances of the same com-
ponent type (Account
Server).

Main:
Account Server

: Account
Database

Backup:
Account Server

: Administrative

Key: UML

Figure 3.7
A UML representation of
a C&C component type.
The Account Server
component type is a
specialization of the Server
component type from the
client-server style (see
Section 4.3.1).

«Server»
Account Server

Key: UML

ptg

3.4 Notations for C&C Views ■ 141

cally bound to a specific number. Components that dynamically
create and manage a set of ports should retain a multiplicity
descriptor on instance descriptions.

UML provides a lollipop/socket notation for showing pro-
vided and/or required interfaces attached to ports. Each port
can have an arbitrary number of provided and required inter-
faces. Figure 3.9 shows the same components in Figure 3.8, but
now each port of the Account Database type includes one pro-
vided interface (the lollipop), which can be further elaborated
in UML by supplying additional information, such as methods
or attributes. The instance of Account Database on the right has
exactly two Server ports, and the interfaces are omitted.

The lollipop/socket notation of UML can be confusing if
not used carefully. If the style of connector interaction is some
form of call-return, then the lollipop and socket correspond to
calls that are provided and required, respectively. In a client-
server connector, a single port might provide and require
something at the same time, in which case you would adorn the
same port with both a lollipop and a socket. But in other cases,
where “provides” and “requires” are the wrong intuition, the
notation should be avoided. In a pipe-and-filter system, for
example, what does a filter interface “provide” and what does
it “require?” In that case, just document the port by itself.

Even where appropriate, you normally omit lollipops and
sockets from a C&C view (which shows instances) and use them
only on the component type definitions. Often, full interface

Figure 3.8
A UML representation of
the ports on a C&C compo-
nent type (left) and a com-
ponent instance (right). The
Account Database com-
ponent type has two types
of ports, Server and Admin
(denoted by the boxes on
the component’s border).
The Server port is defined
with a multiplicity, meaning
that multiple instances of
the port are permitted on
any corresponding compo-
nent instance.

: Account
Database

«Repository»
Account Database

Server [1..5] Server Server

Admin Admin

Key: UML

Figure 3.9
Each port on the Account
Database type now
includes one supplied inter-
face (the lollipop), which
can be further elaborated in
UML by supplying addi-
tional information, such as
methods or attributes. The
instance of Account
Database on the right has
exactly two Server ports,
and the interfaces are
omitted.

Server[1..5]

Admin
«Repository»

Account Database

Server Server

Admin: Account
Database

Key: UML

ptg

142 ■ Chapter 3: Component-and-Connector Views

details will be provided with a component type definition, and
only ports will be shown in a C&C primary presentation. This
reduces visual clutter without losing the instances’ precise
interface definitions.

Connectors in UML

While C&C connectors are as semantically rich as C&C compo-
nents, the same is not true of UML connectors. UML connectors
cannot have substructure, attributes, or behavioral descrip-
tions. This makes choosing how to represent C&C connectors
more difficult, as UML connectors are not always rich enough.

You should represent a “simple” C&C connector using a
UML connector—a straight line. Many commonly used C&C
connectors have well-known, application-independent seman-
tics and implementations, such as function calls or data-read
operations. If the only information you need to supply is the
type of the connector, then a UML connector is adequate. Call-
return connectors can be represented by a UML assembly con-
nector, which links a component’s required interface (socket)
to the other component’s provided interface (lollipop). You
can use a stereotype to denote the type of connector. If all con-
nectors in a primary presentation are of the same type, you can
note this once in a comment rather than explicitly on each
connector, to reduce visual clutter. Attachment is shown by
connecting the endpoints of the connector to the ports of
components. Figure 3.10 illustrates some of these points.

Connector roles cannot be explicitly represented with a
UML connector because the UML connector element does
not allow the inclusion of interfaces (unlike the UML port,
which does allow interfaces). The best approximation is to
label the connector ends and use these labels to identify role
descriptions that must be documented elsewhere.

If you also need to supply simple descriptive information,
such as attribute-value pairs, attach it to a UML connector by
using tagged values or a comment.

The primary presenta-
tion is the (typically)
graphical portion of an
architecture view, as
described in Chapter 10.

Figure 3.10
A UML representation of a
“simple” C&C connector
between two components.
The type of the connector is
noted by a stereotype
(<<DB Access>> in this
case).

Server Server

Admin DB accessor

«DB Access»
: Account
Database :Administrative

Key: UML

ptg

3.4 Notations for C&C Views ■ 143

You should represent a “rich” C&C connector using a UML
component, or by annotating a straight-line UML connector
with a tag or other auxiliary documentation that explains the
meaning of the complex connector.

Figure 3.11 shows an example of representing a C&C con-
nector using a UML component. In this approach, roles are
represented using UML ports. Attachment relations are repre-
sented by attaching the UML ports of the components and the
connector using a UML connector. Although it’s not ideal to
use the same graphical convention as for a C&C component, it
is sometimes necessary in UML.

Sometimes it is better to use a straight line (possibly stereo-
typed) with a tag that explains the complex connector. For
example, suppose you have ten clients, each of which is talking
over the same nontrivial asynchronous protocol to some
server. Introducing ten extra components would make for a lot
of clutter, when a stereotyped straight-line connector would be
at least as clear.

A C&C Primary Presentation in UML

The C&C primary presentation found in Figure 3.11 is an
example of a combined view that combines the client-server,
publish-subscribe, and shared-data styles presented in Chapter 4.
Figures 3.12 and 3.13 show how to represent the same informa-
tion using UML.

Figure 3.12 defines the component-and-connector subtypes
that are view specific. Each type uses a UML stereotype to iden-
tify the corresponding component or connector type defined
in one of the three cited style guides. Multiplicities are attached

See “Perspectives: Are
Complex Connectors
Necessary?” on page
135, in this chapter.

Figure 3.11
A UML representation of
a “rich” C&C connector
used to connect three
components. The Publish-
Subscribe connector is
represented using a UML
component. Its roles are
represented using UML
ports. Attachments
between C&C ports and
roles is represented using
UML connectors between
the respective UML ports.

Pub

Pub Sub Sub Sub

SubSubSub

Pub Pub

Pub Pub

: Publish-Subscribe

c1: Client Teller cX: Client Teller cN: Client Teller

Figure 3.11
A UML representation of
a “rich” C&C connector
used to connect three
components. The Publish-
Subscribe connector is
represented using a UML
component. Its roles are
represented using UML
ports. Attachments
between C&C ports and
roles is represented using
UML connectors between
the respective UML ports.

Pub

Pub Sub Sub Sub

SubSubSub

Pub Pub

Pub Pub

: Publish-Subscribe

c1: Client Teller cX: Client Teller cN: Client Teller

ptg

144 ■ Chapter 3: Component-and-Connector Views

to some of the ports to note where multiple connections are
permitted and to set bounds on the number of connections.
This information should be in the view’s element catalog.

Figure 3.13 shows the view’s primary presentation, as repre-
sented using UML. Like the Publish-Subscribe connector, the
Failover Request/Reply connector is represented using a UML
component; this allows the details of the failover semantics to
be formally documented, and it simplifies the representation
of an n-ary connector.

In addition to the advice presented on representing basic C&C
concepts in UML, we had to decide how to represent the implied
variability from Figure 3.11. That figure gives the intuition of a
variable number of Client Teller components, any of which may
be connected to one or both of the Account Server components at
some point in time.

Using a semiformal notation like UML forces us to be more
precise about the meaning that was largely implied in the
informal version. Representing a variable number of compo-
nents is not easy using a UML instance diagram. We opted for
a naming convention of using Client Teller components c1, cX,

Figure 3.12
A UML representation of
component-and-connector
types for Figure 3.11. Each
type uses a stereotype to
link the view-specific
subtypes to the types
defined in the style guides.

DB

Req

Client

Client [*]

Server [2..*]

Server [1..5]

Admin

Server

Sub [*]Pub [*]

SubPub

Rep

Req Rep

Req Rep

Req

DB

Rep

«Request/Reply»

Failover Request/Reply

«Publish-Subscribe»

Publish-Subscribe

«Client»

Client Teller

«Repository»

Account Database

«Database

Application»

Administrative

«Server»

Account Server

ptg

3.4 Notations for C&C Views ■ 145

and cN to fill in for an arbitrary number of clients (1..N). The
meaning of this convention would have to be documented in
the view, as it is not a standard UML convention.

UML contains many of the right modeling elements to doc-
ument C&C components in an intuitive way, but it suffers from
visual blandness. Where an informal C&C notation could use
different shapes for different component types to highlight
important distinctions, all UML component types are graphi-
cally depicted using the same rectangular box. UML permits such
visual customization in theory, but tool support is lacking. Similarly,
different types of connectors cannot be quickly distinguished

Figure 3.13
A UML representation of
the primary presentation
found in Figure 3.11

Pub

Server

Server

Server Server

Admin

Server Server Server ServerServer

Client

Client

DB

«DB Access» «DB Access»

«DB Access»

DB

Client
Client Client Client Client

Client Client

Server Server

Pub

Sub Pub Sub Pub Sub

Sub Pub Sub Pub Sub

: Publish-Subscribe

c1: ClientTeller

: Failover

Request/Reply

Main:

Account Server

Backup:
Account Server

: Account

Database
:Administrative

: Failover

Request/Reply

: Failover

Request/Reply

cX: ClientTeller cN: ClientTeller

ptg

146 ■ Chapter 3: Component-and-Connector Views

by, for example, noting different line conventions; instead, the
reader must distinguish between textual descriptions on lines or
in boxes, which also tends to introduce visual clutter.

ADVICE

UML for C&C

• Use UML components and ports to model C&C com-
ponents and ports.

• Always show a component’s ports explicitly, even
though UML doesn’t require it.

• Use a <<stereotype>> to indicate the type of a com-
ponent or connector instance in a view, if that type
was defined in a style guide. If the type is specific to a
view, its name appears after the colon in the instance
name.

• Represent a simple C&C connector with a straight-line
UML connector or (if it’s a call-return connector) with
a UML assembly connector (a lollipop/socket pair).

• Represent a more complex C&C connector as a UML
component, possibly with substructure, or with a
straight-line UML connector annotated by a tag that
explains the meaning of the connector.

• Use the lollipop/socket connector in UML only for call-
return connectors. Avoid it otherwise.

• Don’t attach connectors directly to a component;
attach connectors to a specific port of a component.

PERSPECTIVES

Data Flow and Control Flow Models

Two representations that have long been used to docu-
ment software systems—for so long, in fact, that we
might consider them archaic today—are data flow and
control flow models. These models show how data and
control flow through a system during execution. Remem-
ber data flow diagrams from Structured Analysis?
They’re an example, and probably the best known exam-
ple, of a notation for a data flow model. Going back still
farther in time, flow charts are a notation for control flow

ptg

3.4 Notations for C&C Views ■ 147

models. Once ubiquitous forms of software documenta-
tion, both have receded in usage, but they can still be
found in pockets of practice. Many software engineers
trained in, for example, data flow diagrams see similar-
looking C&C views of architecture and ask “What’s the
difference?”

Plenty. First, if the nodes in the diagrams are not archi-
tecture elements—pieces of programs, for example—
then the diagrams are simply not architectural. But what
if the elements shown are architectural elements? Then
they can be said to be architecture diagrams, but they
are still not full-fledged architecture views. A C&C view
would show ports, feature-rich connectors with specified
connector protocols, behavioral and interface documen-
tation, mechanisms for variability, and design rationale.

Both data flow models and control flow models can be
seen as derivatives of a corresponding C&C view. You
can derive a data flow model from a C&C view by exam-
ining the connector protocols to determine in which
direction data can flow between components, then
replacing the C&C connectors that carry data with simple
one- or two-headed arrows indicating flow of data and
eliminating C&C connectors that don’t carry data. You can
take a similar approach to deriving a control flow model.

But why would you? First of all, replacing connectors
with arrows isn’t as easy as it sounds; see “Perspectives:
Quivering at Arrows” in Section P.5 for a discussion of the
difficulties associated with even a simple connector. Now
imagine replacing a complex connector with an arrow
when that connector involves exception handling, time-
outs, callbacks, or multistage negotiated protocols.

Second, for all but the simplest architectures, it’s hard to
imagine you’d want an architecture document to contain
the derived models but not their full-fledged C&C view
counterparts. Granted, a data flow model or a control
model highlights only certain aspects of a view in order
to simplify discussion or to focus on specific properties,
but those properties can be highlighted in the full view.
And keeping them separate means having more documen-
tation to maintain, because it’s unlikely that a tool will
keep the view and the derived model consistent with each
other; you’ll have to do that manually when either changes.

Third, for most analysis that you’d want to perform using
a data flow or control flow model, you’re going to need

The flow chart is a most
thoroughly oversold
piece of program docu-
mentation. . . . The
detailed blow-by-blow
flow chart . . . is an
obsolete nuisance suit-
able only for initiating
beginners into algorith-
mic thinking.

—Fred Brooks, The
Mythical Man-Month
(1995)

See “Perspectives:
Quivering at Arrows” on
page 41, in the prologue.

ptg

148 ■ Chapter 3: Component-and-Connector Views

the information in the full C&C view that those models
throw away. For example, control flow diagrams are use-
ful for tracking down bugs in a federation of components.
But so are the protocol specifications that dictate how
those components interact.

Data flow and control flow models are only architectural
if their nodes are architecture elements. But even if they
are, they are at best only shadows of full-fledged archi-
tecture views. Think carefully before you invest in creat-
ing and maintaining them.

—D.G. and P.C.

3.5 Relation to Other Kinds of Views
Component-and-connector views differ from module views in
fundamental ways. In particular, the elements of a C&C view
represent instances of runtime entities, whereas the elements
of a module view represent implementation entities. For exam-
ple, consider a system that has 10 identical clients connected
to a single server. That’s 11 components and 10 connectors—
but exactly 2 modules (assuming the simplest mapping between
views).

An important consideration is how to relate the C&C and
module views of a system. Often, the relationship between a
system’s C&C views and its module views may be complex.

• The same code module might be executed by many of the
elements of a C&C view.

• A single component of a C&C view might execute code
defined by many modules.

• A C&C component might have many points of interaction
with its environment, each defined by the same module
interface.

• Since not every module is necessarily shown in every mod-
ule view, a component in a C&C view may not map to any
module in a particular module view at all.

Figure 3.14 shows both a module view and a C&C view of the
same system:

• The module view represents a typical implementation that
one might find using the C programming language. In this
view, the relation between modules is uses, as described in
Chapter 2. The module main starts things off, using the facil-
ities of four modules—To-upper, To-lower, Split, and Merge—

ptg

3.5 Relation to Other Kinds of Views ■ 149

that do the bulk of the work. The main module determines
how inputs from one are fed to others, using a configura-
tion module, Config. To-upper, To-lower, Split, and Merge use
a standard I/O library (stdio) to carry out the communica-
tion. Note that from a code perspective, those worker mod-
ules do not directly use the services of one another, but
rather do so via the I/O library.

• The C&C view shows the same system described in the pipe-
and-filter style. Each of the components is a filter that trans-
forms character streams. Pathways of communication between
the components are explicit, indicating that during run-
time, the pipe connectors will mediate communication of
data streams among those components.

The mapping between these two views is illustrated in Table 3.2.
It shows which modules contribute to the implementation of
which C&C elements. As you can see, there is an m-to-n rela-
tionship for many of the elements of each view.

Table 3.2 Mapping between module and C&C views for the
example in Figure 3.14

C&C View Module View

System as a whole main

Split split, config, stdio

To-lower to_lower, config, stdio

To-upper to_upper, config, stdio

Merge merge, config, stdio

Each pipe stdio

The pipe-and-filter style
is described in Section
4.2.1.

The correspondence
between the elements
in a system’s module
views and the elements
in its C&C views should
be documented as part
of the documentation
that applies to more
than one view. This
mapping between
views is described in
Section 10.2.

Figure 3.14
Component-and-
connector and module
views of a simple system
that accepts a stream of
characters as input and
produces a new stream of
characters identical to the
original but with uppercase
and lowercase characters
alternating

x y

Key Key

Filter Module x uses yPipe Port

C&C View Module View

main

MergeSplit

To-upper

To-lower

merge

stdioconfig

to_upperto_lowersplit

ptg

150 ■ Chapter 3: Component-and-Connector Views

In many situations, however, module and C&C views have a
more straightforward relationship. Indeed, systems that have
natural correspondences between these two kinds of views are
often much easier to understand, maintain, and extend. Here
are two examples:

• Each component has a type that can be associated with an
implementation module, such as a class. In this case the
name of the component type will typically be taken to be the
same as the corresponding module, making it trivial to
relate the two views.

• Each module has a single runtime component associated
with it, and the connectors are restricted to calls procedure
connectors. This would be the case for an object-oriented
implementation in which each class has a single instance.

In addition to relations between C&C views and module
views, there is often a close correspondence between C&C
views and deployment views. Because C&C views represent
runtime elements, it is useful to relate these elements to the
physical platforms and communication channels on which
they execute using an allocation view.

3.6 Summary Checklist
• Component-and-connector views describe structures con-

sisting of elements that have runtime presence, such as pro-
cesses, objects, clients, servers, and data stores. Additionally,
C&C views include as elements the pathways of interaction,
such as communication links and protocols, information
flows, and access to shared storage.

• Component-and-connector views show instances, not types.
Style-specific types are defined in a style guide; application-
specific types are described in the view documentation.

• Components have interfaces, which are called ports.

• Connectors have interfaces, which are called roles.

• Connectors need not be binary: they may have more than
two roles.

• If a component’s primary purpose is to mediate interaction
between a set of components, consider representing it as a
connector instead.

• Connectors can, and often do, represent complex forms of
interaction. What seems to be a semantically simple proce-
dure call can be complex when carried out in a distributed
setting, involving runtime protocols for time-outs, error
handling, and locating the service provider.

Deployment views are
discussed in Section 5.2.

ptg

3.7 Discussion Questions ■ 151

• Be clear about which style you are using, by referring to an
appropriate style guide.

• Where helpful, define component-and-connector types spe-
cific to the view as specializations of the types defined in the
corresponding C&C style. These can help indicate semantic
relations between similar components, and to establish cor-
respondence between the module types that implement
their functionality.

• Always show a component’s ports explicitly. Always attach a
connector to a port of a component, not directly to a
component.

• If it is not clear that it is valid to attach a given port with a
given role, provide a justification in the rationale section for
the view or mark the attachment to be revisited later.

• Make clear which ports are used to connect the system to its
external environment.

• Data flow and control flow models are best thought of as
projections of C&C views, but they are not views. When cre-
ating such models, be explicit about the semantic criteria
used to determine where the arrows go. Data flow and con-
trol flow arrows are at best approximations to the connectors,
which define more completely the components’ interactions.

• It is often important to understand the mapping between
components in a C&C view and their respective implemen-
tation units in module views. In general, this mapping is
many-to-many.

• You can document a C&C style using a spectrum of formal-
ity, from informal box-and-line depictions to fully formal,
analyzable descriptions. UML is an example of a semiformal
notation for representing C&C styles.

3.7 Discussion Questions
1. It is said that a C&C view illustrates a system in execution.

Does this mean that it shows a snapshot of an execution, a
trace of an execution, the union of all possible traces, some
combination, or something else?

2. As we have mentioned, component is an overloaded term.
Discuss the relationship between a component in a C&C
view and (a) a UML component and (b) a component in
the sense of the component-based software engineering
community.

3. A communication framework, such as enterprise service
bus (ESB), CORBA, or COM, can be viewed as a connector

ptg

152 ■ Chapter 3: Component-and-Connector Views

among components or as a component with its own sub-
structure. Which is appropriate, and why?

4. Figure 3.15 shows an overview architecture diagram for an
electronic commerce store. Assume that you are new on
the job, without knowledge of the symbology the organiza-
tion uses, or perhaps you wrote this some time ago but now
have to go back and review the system. Critique the dia-
gram. List places where you think it is misleading, and list
the questions that need to be asked—and that the diagram
fails to answer—before you can understand its meaning.

5. After you have critiqued Figure 3.15 and have enumerated
the information you believe is missing, augment the dia-
gram to make it tell a coherent story. Did you decide that
the diagram is describing code-based entities, runtime enti-
ties, or both? Did you decide that the boxes called layers
are, in fact, layers, or something else? What did you decide
the arrows mean?

3.8 For Further Reading
We are awash in stories of architects who thought they could
plug two components together with a connector, only to find
out that the component didn’t implement the right protocol,
or was otherwise badly matched with the expectations of that
connector. This is why we prescribe writing a justification
where the matchup is less than obvious. For a thoughtful treat-

Figure 3.15
An overview architecture
diagram. Where is it
misleading? What
questions does the
diagram fail to answer?

Order
Processing

Logger Inventory

User Session Shopping Cart

Product Catalog

User

Presentation Layer

ptg

3.8 For Further Reading ■ 153

ment of element mismatch, see the paper by Garlan, Allen,
and Ockerbloom (1995).

It is tempting to treat architecture simply as an assembly of
components, but there are great conceptual advantages to be
gained from elevating connectors to the status of first-class
architecture. Mary Shaw (1996b) makes an eloquent argument
for doing so. Shaw and Garlan (1996) treat software architec-
ture in terms of components and connectors and address con-
cerns such as constructing systems as assemblies of components.
Allen and Garlan (1997) lay out the semantic foundations for
connectors as first-class entities.

Component-and-connector views can provide a basis for for-
mal analysis of qualities such as performance, reliability, secu-
rity, and privacy. Garlan and Schmerl (2006) provide a broad
introduction to such analyses.

A swarm of architecture description languages were created
in the 1990s. Medvidovic and Taylor (1997) give a tour of them
and compare members of that generation. Today only a small
number deserve mention. Acme is of that earlier generation
(see www.cs.cmu.edu/~acme [Acme 2009]). The Architecture
Analysis and Design Language (AADL) is a direct descendant
of one from that generation. Appendix C gives an architecture-
oriented overview of AADL, and the Web site at aadl.info offers
full coverage. Yahoo! Pipes can be considered an ADL, albeit a
very style-specific one; see pipes.yahoo.com/pipes (Yahoo!
2010) and the Yahoo! Pipes example in Chapter 4.

www.cs.cmu.edu/~acme

ptg

This page intentionally left blank

ptg

155

4A Tour of Some
Component-and-
Connector Styles

4.1 An Introduction to C&C Styles
A component-and-connector (C&C) style introduces a specific
set of component-and-connector types and specifies rules
about how elements of those types can be combined. Addition-
ally, given that C&C views capture runtime aspects of a system,
a C&C style is typically also associated with a computational
model that prescribes how data and control flow through sys-
tems designed in that style.

The choice of a C&C style (or styles) will usually depend on
the nature of the runtime structures in the system. For exam-
ple, if the system will need to access a set of legacy databases,
the style will likely be based on a shared-data style. Alterna-
tively, if a system is intended to perform data stream transfor-
mation, a data flow style will likely be chosen.

The choice of style will also depend on the intended use of
the documentation. For example, if high performance is a crit-
ical property, the style will likely be chosen to enable analysis of
performance, so that trade-offs affecting that system quality
can be assessed.

Many C&C styles exist. To make sense of the space of these
styles, we begin by describing some broad categories of com-
monly used C&C styles, and then we consider in more detail
one or more example styles in each category.

The space of C&C styles is quite large. For example, C&C
styles can differ dramatically in terms of the types of the con-
nectors that they support. Styles based on asynchronous event
broadcast (such as publish-subscribe) are quite different from
those based on synchronous service invocation. Similarly, styles
may differ in terms of the types of components that they permit or
require. For instance, some styles require a database component

In Section 4.9 we pro-
vide references for
reading about dozens of
C&C styles.

ptg

156 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

to be present. Other styles may require a registry component
to enable components to find others at runtime. Styles may dif-
fer in terms of topological restrictions, such as whether the
components are assigned to tiers. They may also differ in terms
of their level of domain specificity. For example, a style to sup-
port automotive control systems will likely involve connectors
that represent specific protocols for real-time coordination.
Similarly, there exist dozens of client-server styles that differ in
subtle (or not-so-subtle) ways, depending on the nature of the
application domain they are addressing. For example, some
client-server styles allow late binding of requests for services,
where the recipient of a request is determined dynamically;
others insist on a static configuration determined when a sys-
tem is built or deployed.

One way to impose some conceptual order on the space of
C&C styles is to consider several broad categories of styles, dif-
ferentiated primarily by their underlying computational
model. In this chapter we consider examples in four such
categories.

• Call-return styles. Styles in which components interact through
synchronous invocation of capabilities provided by other
components.

• Data flow styles. Styles in which computation is driven by the
flow of data through the system.

• Event-based styles. Styles in which components interact through
asynchronous events or messages.

• Repository styles. Styles in which components interact through
large collections of persistent, shared data.

Additionally we consider several crosscutting style issues,
such as the imposition of a tiered topology, and augmentations
that allow one to reason about concurrency.

Figure 4.1 provides a birds-eye view of part of the terrain.
This figure can be interpreted as a kind of C&C style specializa-
tion hierarchy. At the top is the most general and uncon-
strained form of C&C view: namely, one that uses generic
components and connectors, with no particular constraints on
topology, behavior, and element properties. Below this are the
general categories of C&C styles distinguished largely by their
underlying computational model. Below these are specializa-
tions of these general styles. Note that a specific style may spe-
cialize more than one general category, as is the case of the
service-oriented architecture (SOA) style.

Naturally this is only a partial representation of the space of
C&C styles: there are other general categories, and there are
many styles that are specializations of these categories. Addi-

Section 6.1.4 discusses
how styles can be pro-
gressively specialized
from generic styles to
domain-specific styles
and product line.

Section 4.6.1 describes
communicating pro-
cesses, which is a way
to add concurrency to a
C&C style. Section 4.6.2
describes the notion of
tiers, which are com-
mon in some C&C
architectures.

ptg

4.2 Data Flow Styles ■ 157

tionally, in most real systems several styles may be used
together, often from across categories. For example, enterprise
IT applications are frequently a combination of client-server
and shared-data styles.

4.2 Data Flow Styles
Data flow styles embody a computational model in which com-
ponents act as data transformers and connectors transmit data
from the outputs of one component to the inputs of another.
Each component type in a data flow style has some number of
input ports and output ports. Its job is to consume data on its
input ports and write transformed data to its output ports.

A variety of data flow styles appear in practice. In the early
days of computing, one common data flow style was “batch
sequential,” a style in which each component transforms all of
its data before the next component can consume its outputs.
Later a form of data flow style was invented in which compo-
nents run concurrently and data is incrementally processed:
the pipe-and-filter style. Today data flow styles are common in
domains where stream processing occurs, and where the over-
all computation can be broken down into a set of transforma-
tional steps.

Figure 4.1
A partial representation of the space of C&C styles

...

...

...

Generic C&C style

Data-flow style
See Section 4.2

Batch
sequential

Client-
server

See 4.3.1

Peer-to-
peer

See 4.3.2

Publish-
subscribe
See 4.4.1

Point-to-
point

messaging

Shared-
data

See 4.5.1

Pipeline UNIX pipe-
and-filter

Pipe-and-
filter

See 4.2.1

Multi-tier
client-server

See 4.6.2

SOA
See 4.3.3

Call-return
style

See Section 4.3

Event-based
style

See Section 4.4

Repository
style

See Section 4.5

Blackboard

Class of
styles

Generalization
Key

See Section 6.6 for a
discussion of docu-
menting a view that
combines more than
one style.

ptg

158 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

4.2.1 Pipe-and-Filter Style

Overview

The pattern of interaction in the pipe-and-filter style is charac-
terized by successive transformations of streams of data. Data
arrives at a filter’s input ports, is transformed, and then is
passed via its output ports through a pipe to the next filter. A
single filter can consume from, or produce data to, multiple
ports. Modern examples of such systems are signal-processing
systems, systems built using UNIX pipes, the request-process-
ing architecture of the Apache Web server, the map-reduce
paradigm for search engines, Yahoo! Pipes for processing RSS
feeds, and many scientific computation systems that have to
process and analyze large streams of experimental data.

Elements, Relations, and Properties

The basic form of pipe-and-filter style, summarized in Table 4.1,
provides a single type of component—the filter—and a single

Table 4.1 Summary of the pipe-and-filter style

Elements • Filter, which is a component that transforms data read on its input
ports to data written on its output ports. Filters typically execute
concurrently and incrementally. Properties may specify processing
rates, input/output data formats, and the transformation executed
by the filter.

• Pipe, which is a connector that conveys data from a filter’s output
ports to another filter’s input ports. A pipe has a single data-in and
a single data-out role, preserves the sequence of data items, and
does not alter the data passing through. Properties may specify
buffer size, protocol of interaction, and data format that passes
through a pipe.

Relations The attachment relation associates filter output ports with data-in
roles of a pipe, and filter input ports with data-out roles of pipes.

Computational Model Data is transformed from a system’s external inputs to its external
outputs through a series of transformations performed by its filters.

Constraints • Pipes connect filter output ports to filter input ports.
• Connected filters must agree on the type of data being passed

along the connecting pipe.
• Specializations of the style may restrict the association of compo-

nents to an acyclic graph or a linear sequence—sometimes called
a pipeline.

• Other specializations may prescribe that components have certain
named ports, such as the stdin, stdout, and stderr ports of UNIX
filters.

What It’s For • Improving reuse due to the independence of filters
• Improving throughput with parallelization of data processing
• Simplifying reasoning about overall behavior

ptg

4.2 Data Flow Styles ■ 159

type of connector—the pipe. A filter transforms data that it
receives through one or more pipes and transmits the result
through one or more pipes. Filters typically execute concur-
rently and incrementally. A pipe is a connector that conveys
streams of data from the output port of one filter to the input
port of another filter. Pipes act as unidirectional conduits, pro-
viding an order-preserving, buffered communication channel
to transmit data generated by filters. In the pure pipe-and-filter
style, filters interact only through pipes.

Because pipes buffer data during communication, filters can
act asynchronously and concurrently. Moreover, a filter need
not know the identity of its upstream or downstream filters. For
this reason, pipe-and-filter systems have the nice formal prop-
erty that the overall computation can be treated as the func-
tional composition of the computations of the filters, allowing
the architect to reason about the end-to-end behavior as a sim-
ple composition of the behaviors of the parts.

ADVICE

Typical properties to document for pipes include

• Pipe capacity (that is, buffer size)

• How end-of-data is signaled

• What form of blocking occurs when writing to a pipe whose buffer is full or
reading from a pipe that is empty

Properties of filters can include

• Whether or not each filter is a separate process

• The data stream transformation each performs

What the Pipe-and-Filter Style Is For

Systems conforming to a pipe-and-filter style are typically used
in data transformation systems, where the overall processing
can be broken down into a set of independent steps, each
responsible for an incremental transformation of its input
data. The independence of the processing done by each step
supports reuse, parallelization, and simplified reasoning about
overall behavior.

Often such systems constitute the front end of signal-pro-
cessing applications. These systems typically receive sensor
data at a set of initial filters; each of these filters compresses the
data and performs initial filtering. “Downstream” filters reduce

ptg

160 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

the data further and do synthesis across data derived from dif-
ferent sensors. The final filter typically passes its data to an
application, for example, providing input to modeling or visu-
alization tools.

Analyses associated with pipe-and-filter systems include
deriving the aggregate transformation provided by a graph of
filters and reasoning about system performance: input/output
stream latency, pipe buffer requirements, and throughput.

Relation to Other Styles and Models

A pipe-and-filter view of a system is not the same as a data flow
model. In the pipe-and-filter style, lines between components
represent connectors, which have a specific computational
meaning: They transmit streams of data from one filter to
another. In data flow models, the lines represent relations,
indicating the communication of data between components.
Flows in a data flow model have little computational meaning:
They simply indicate that data flows from one element to the
next. This flow might be realized by a connector, such as a pro-
cedure call, the routing of an event between a publisher and a
subscriber, or data transmitted via a pipe. The reason that
these views might be confused is that the data flow model of a
pipe-and-filter style looks almost identical to the original pipe-
and-filter view.

Data flow styles are often combined with other styles by using
them to characterize a particular subsystem. A good example
of this is the filter processing chains of the Apache Web server.

Example of the Pipe-and-Filter Style: Yahoo! Pipes

“Rewire the Web” is the motto of Yahoo! Pipes, a composition
tool that lets Web users combine simple functions quickly and
easily into pipe-and-filter applications that aggregate and
manipulate content from around the Web.

The basis of Yahoo! Pipes is the many RSS feeds available
from sites on the Internet. These data streams form the input
to the applications that users build, applications that combine
and manipulate the data in the streams to form useful results.
Many of the building blocks to perform general-purpose filter-
ing and manipulation of the data streams are made available in
the composition environment itself, rather like library functions.

For example, you can take an RSS stream from a financial
news site and filter it so that only news items related to stocks
that you own are shown. Or you can take an RSS stream from
a sports site and filter it so that you see news about your favorite
teams or athletes.

Data flow models are
discussed in “Perspec-
tives: Data Flow and
Control Flow Models,”
on page 146, in
Chapter 3.

ptg

4.3 Call-Return Styles ■ 161

Yahoo! Pipes uses terminology not quite the same as that in
this book. It calls a complete application a pipe; the building
blocks are called modules. A filter is a special kind of module
that removes values from a stream based on given comparison
criteria.

Figure 4.2 shows an application that finds an apartment for
rent that is near a given type of business, such as a movie the-
ater. This is based on one of the teaching examples on the
Yahoo! Pipes Web site.

4.3 Call-Return Styles
Call-return styles embody a computational model in which
components provide a set of services that may be invoked by
other components.1 A component invoking a service pauses
(or is blocked) until that service has completed. Hence, call-
return is the architectural analog of a procedure call in pro-
gramming languages. The connectors are responsible for con-
veying the service request from the requester to the provider
and for returning any results.

1. The term service here designates a generic operation or function that can be
invoked via a call-return connector; it does not refer to services as in service-
oriented architecture.

Figure 4.2
A Yahoo! Pipes application
for finding apartments for
rent near a given location
(shown using the notation
of the Yahoo! Pipes editor).
The pipe-and-filter flow
runs from top to bottom
through the seven “mod-
ules” down the left-hand
side (each representing
what our pipe-and-filter
style calls a filter); this is
indicated by the thick solid
lines (the pipes) connecting
the output port of one to the
input port of the next. The
other “modules” supply
inputs to the mainline com-
ponents; this is indicated
by the thinner, hollow lines.
The Fetch Feed compo-
nent uses the RSS output
from an apartment-finder
search; it is fed the search
site URL and the search
parameters by the helper
modules to its right. The
Location Extractor and
the Filter component
extract high-quality (well-
formed) addresses from the
apartment-finder search.
That stream feeds Yahoo!
Local, which finds busi-
nesses of a given type (sup-
plied by its helper module)
near a given location. (The
For Each component
applies the function shown
in its interior to every item in
the input stream.) The sec-
ond Filter removes list-
ings that aren’t a minimum
distance from our search
term. The Sort component
orders the stream in
ascending order of dis-
tance for viewing via the
Pipe Output component.

ptg

162 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

Call-return styles differ among each other in a variety of
ways. Some variants differ in terms of the behavior of their con-
nectors. For example, connectors in some call-return styles
may support error handling (such as when the service provider
is not available). Other differences relate to constraints on
topology. Some call-return architectures are organized in tiers.
Others partition the set of components into disjoint sets of
components that can make requests and those that can service
them.

Examples of call-return styles include client-server, peer-to-
peer, and representational state transfer (REST) styles.

4.3.1 Client-Server Style

Overview

As with all call-return styles, client-server style components
interact by requesting services of other components. Request-
ers are termed clients, and service providers are termed serv-
ers, which provide a set of services through one or more of
their ports. Some components may act as both clients and servers.
There may be one central server or multiple distributed ones.

Typical examples of systems in the client-server style include
the following:

• Information systems running on local networks, where the
clients are GUI applications (such as Visual Basic) and the
server is a database management system (such as Oracle)

• Web-based applications where the clients run on Web brows-
ers and the servers are components running on a Web
server (such as Tomcat)

Elements, Relations, and Properties

In the client-server style, summarized in Table 4.2, component
types are clients and servers. The principal connector type for
the client-server style is the request/reply connector used for
invoking services. When more than one service can be requested
on the same connector, a protocol specification is often used
to document ordering relations among the invocable services
over that connector. Servers have ports that describe the ser-
vices they provide. Clients have ports that describe the services
they require. Servers may in turn act as clients by requesting
services from other servers. A component that has both service-
request and service-reply ports can function as both a client
and a server simultaneously.

The computational flow of pure client-server systems is asym-
metric: clients initiate interactions by invoking services of servers.

The organization of
components in tiers and
multi-tier architectures
are discussed in Sec-
tion 4.6.2.

Wikipedia provides a
nice description of the
REST architecture style,
at en.wikipedia.org/
wiki/REST (Wikipedia
2010b).

A protocol of interac-
tions can be described
using notations such as
sequence diagrams and
state diagrams, which
are covered in Chapter 8.

ptg

4.3 Call-Return Styles ■ 163

Thus, the client must know the identity of a service to invoke
it, and clients initiate all interaction. In contrast, servers do not
know the identity of clients in advance of a service request and
must respond to the initiated client requests.

Service invocation is synchronous: the requester of a service
waits, or is blocked, until a requested service completes its
actions, possibly providing a return result. Variants of the cli-
ent-server style may introduce other connector types. For
example, in some client-server styles, servers are permitted to
initiate certain actions on their clients. This might be done by
allowing a client to register notification procedures, or call-
backs, that the server calls at specific times. In other systems
service calls over a request/reply connector are bracketed by a
“session” that delineates the start and end of a set of client-
server interactions.

Table 4.2 Summary of the client-server style

Elements • Client, which is a component that invokes services of a server
component.

• Server, which is a component that provides services to client com-
ponents. Properties will vary according to concerns of the architect
but typically include information about the nature of the server ports
(such as how many clients can connect) and performance charac-
teristics (such as maximum rates of service invocation).

• Request/reply connector, which is used by a client to invoke ser-
vices on a server. Request/reply connectors have two roles: a
request role and a reply role. Connector properties may include
whether the calls are local or remote, and whether data is
encrypted.

Relations The attachment relation associates client service-request ports with
the request role of the connector and server service-reply ports with
the reply role of the connector.

Computational Model Clients initiate interactions, invoking services as needed from servers
and waiting for the results of those requests.

Constraints • Clients are connected to servers through request/reply connectors.
• Server components can be clients to other servers.
• Specializations may impose restrictions:

– Numbers of attachments to a given port
– Allowed relations among servers

• Components may be arranged in tiers.

What It’s For • Promoting modifiability and reuse by factoring out common
services

• Improving scalability and availability in case server replication is in
place

• Analyzing dependability, security, and throughput

ptg

164 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

What the Client-Server Style Is For

The client-server style presents a system view that separates cli-
ent applications from the services they use. This style supports
system understanding and reuse by factoring out common ser-
vices. Because servers can be accessed by any number of cli-
ents, it is relatively easy to add new clients to a system. Similarly,
servers may be replicated to support scalability or availability.

ADVICE

Useful properties to document about components include whether new clients
and servers can be introduced dynamically, as well as any limitations on the
number of clients that can interact with a given server. Connector properties
deal with the request/reply protocol: How are errors handled? How are client-
server interactions set up and taken down? Are there sessions? How are servers
located? What kinds of middleware, if any, are relied upon?

Client-server system analyses include the following:

• Dependability. For example, to understand whether a system can recover
from a service failure

• Security. For example, to determine whether information provided by servers
is limited to clients with the appropriate privileges

• Performance. For example, to determine whether a system’s servers can
keep up with the volume and rates of anticipated service requests

Relation to Other Styles

Like many C&C styles, the client-server style decouples produc-
ers of services and data from consumers of those services and
data. Other styles, such as peer-to-peer, involve a round-trip
form of communication. However, these styles do not have the
asymmetric relationship between clients and servers found in
the client-server style.

Clients and servers are often grouped and deployed on dif-
ferent machines in a distributed environment to form a multi-
tier hierarchy.

Examples of the Client-Server Style

The World Wide Web may be the best known example of a sys-
tem that is, at its heart, a client-server system. It is a hypertext-
based system that allows clients (Web browsers) to access infor-
mation from servers distributed across the Internet. Clients
access the information, written in Hypertext Markup Language

ptg

4.3 Call-Return Styles ■ 165

(HTML), provided by a Web server using Hypertext Transfer
Protocol (HTTP). HTTP is a form of request/reply invocation.
HTTP is a stateless protocol; the connection between the client
and the server is terminated after each response from the server.

For another example, Figure 4.3 uses informal notation to
describe the client-server view of an ATM banking system
developed in the early 1990s. At that time, client-server archi-
tectures were the modern alternative to mainframe-based sys-
tems. (J2EE and .NET application servers didn’t exist and
multi-tier was not yet described as a style.)

In this architecture, there are three types of components:

• The FTX server daemons are processes running in the back-
ground on the fault-tolerant UNIX (FTX) server. Each dae-
mon creates one or more socket ports using predefined
TCP ports, through which calls from client components
arrive.

• ATM OS/2 client processes are concurrent processes that
run on the ATMs, which were powered with the IBM OS/2
operating system. Although it can’t be inferred from the dia-
gram, each ATM runs one instance of the ATM main pro-
cess and one instance of the Reconfigure and update process.

Figure 4.3
Client-server architecture
of an ATM banking system.
The ATM main process
sends requests to Bank
transaction authorizer
corresponding to user
operations (such as
deposit, withdrawal). It also
sends messages to ATM
monitoring server
informing the overall status
of the ATM (devices, sen-
sors, and supplies). The
Reconfigure and update
process component
sends requests to ATM
reconfiguration server
to find out if a reconfigura-
tion command was issued
for that particular ATM.
Reconfiguration of an ATM
(for example, enabling or
disabling a menu option)
and data updates are
issued by bank personnel
using the Monitoring
station program.
Monitoring station
program also sends peri-
odic requests to ATM
monitoring server to
retrieve the status of the
range of ATMs monitored
by that station.

server

Server
TCP socket connector with
client and server ports

FTX server
daemon

ATM OS/2
client process

Windows
application

clientclientclient

Client

client client

server server server server

Key

Bank
transaction
authorizer

ATM
monitoring

server

ATM
reconfiguration

server

ATM main
process

Reconfigure
and update

process

Monitoring
station

program

ptg

166 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

• The Windows application component was also a client com-
ponent. It was a Windows 3.x GUI program developed using
the Borland OWL API. Each instance was used by an opera-
tor to monitor a group of ATMs from his or her workstation.

When this system was developed, the TCP socket connector
was very often used for communication in client-server and dis-
tributed applications. Today HTTP is far more common. In the
protocol used in this TCP socket connector, the client opens a
connection to a server identified by an IP address and port
number. The client then sends a nonblocking request, after
which it may display in the UI a “Please wait…” message to the
user. Then the client calls an operation to receive the response
from the server. For both client and server, sending and receiv-
ing messages are separate steps. Therefore, the connector
implementation has to handle the correlation of request and
response messages, as well as time-outs and communication
errors.

4.3.2 Peer-to-Peer Style

Overview

In the peer-to-peer style, components directly interact as peers
by exchanging services. Peer-to-peer communication is a kind
of request/reply interaction without the asymmetry found in
the client-server style. That is, any component can, in princi-
ple, interact with any other component by requesting its ser-
vices. Each peer component provides and consumes similar
services, and sometimes all peers are instances of the same
component type. Connectors in peer-to-peer systems may
involve complex bidirectional protocols of interaction, reflect-
ing the two-way communication that may exist between two or
more peer-to-peer components.

Examples of peer-to-peer systems include file-sharing net-
works, such as BitTorrent and eDonkey; instant messaging and
VoIP applications, such as Skype; and desktop grid computing
systems.

Elements, Relations, and Properties

Table 4.3 summarizes the peer-to-peer style. The component
types in this style are peers, which are typically independent
programs running on network nodes. The principal connector
type is the call-return connector. Unlike in the client-server
style, the interaction may be initiated by either party: each peer
component acts as both client and server. Peers have interfaces
that describe the services they request from other peers and
the services they provide. The computational flow of peer-to-

The peer-to-peer archi-
tecture style has
inspired new models for
industrial production,
community knowledge,
political movement,
property ownership,
and an economic alter-
native to capitalism.
See en.wikipedia.org/
wiki/Peer-to-peer_
(meme).

ptg

4.3 Call-Return Styles ■ 167

peer systems is symmetric: Peers first connect to the peer-to-
peer network and then initiate actions to achieve their compu-
tation by cooperating with their peers by requesting services
from one another.

Often a peer’s search for another peer is propagated from
one peer to its connected peers for a limited number of hops.
A peer-to-peer architecture may have special peer nodes (called
ultrapeers, ultranodes, or supernodes) that have indexing or
routing capability and allow a regular peer’s search to reach a
larger number of peers.

Constraints on the use of the peer-to-peer style might limit
the number of peers that can be connected to a given peer or
impose a restriction about which peers know about which
other peers.

What the Peer-to-Peer Style Is For

Peers interact directly among themselves and can play the role
of both service caller and service provider, assuming whatever
role is needed for the task at hand. This partitioning provides
flexibility for deploying the system across a highly distributed
platform. Peers can be added and removed from the peer-to-
peer network with no significant impact, resulting in great scal-
ability for the whole system.

Table 4.3 Summary of the peer-to-peer style

Elements • Peer component
• Call-return connector, which is used to connect to the peer network,

search for other peers, and invoke services from other peers

Relations The attachment relation associates peers with call-return connectors.

Computational Model Computation is achieved by cooperating peers that request services
of one another.

Properties Same as other C&C views, with an emphasis on protocols of interac-
tion and performance-oriented properties. Attachments may change
at runtime.

Constraints • Restrictions may be placed on the number of allowable attachments
to any given port, or role.

• Special peer components can provide routing, indexing, and peer
search capability.

• Specializations may impose visibility restrictions on which compo-
nents can know about other components.

What It’s For • Providing enhanced availability
• Providing enhanced scalability
• Enabling highly distributed systems, such as file sharing, instant

messaging, and desktop grid computing

ptg

168 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

Typically multiple peers have overlapping capabilities, such
as providing access to the same data. Thus, a peer acting as cli-
ent can collaborate with multiple peers acting as servers to
complete a certain task. If one of these multiple peers becomes
unavailable, the others can still provide the services to com-
plete the task. The result is improved overall availability. The
load on any given peer component acting as a server is
reduced, and the responsibilities that might have required
more server capacity and infrastructure to support it are dis-
tributed. This can decrease the need for other communication
for updating data and for central server storage, but at the
expense of storing the data locally.

Peer-to-peer computing is often used in distributed comput-
ing applications, such as file sharing, instant messaging, and
desktop grid computing. Using a suitable deployment, the
application can make efficient use of CPU and disk resources
by distributing computationally intensive work across a net-
work of computers and by taking advantage of the local
resources available to the clients. The results can be shared
directly among participating peers.

Relation to Other Styles

The absence of hierarchy means that peer-to-peer systems have
a more general topology than client-server systems.

Examples of the Peer-to-Peer Style

Gnutella is a peer-to-peer network that supports bidirectional
file transfers. The topology of the system changes at runtime as
peer components connect and disconnect to the network. A
peer component is a running copy of a Gnutella client pro-
gram connected to the Internet. Upon startup, this program
establishes a connection with a few other peers. The Web
addresses of these peers are kept in a local cache.

The Gnutella protocol supports request/reply messages for
peers to connect to other peers and search for files. Peers are
identified by their IP address, and the Gnutella protocol messages
are carried over dedicated UDP and TCP ports. To perform a
search, a Gnutella peer requests information from all of its con-
nected peers, which respond with any information of interest.
The connected peers also pass the request to their peers suc-
cessively, up to a predefined number of “hops.” All the peers
that have positive results for the search request reply directly to
the requester, whose IP address and port number go along
with the request. The requester then establishes a connection
directly with the peers that have the desired file and initiates
the data transfer using HTTP (outside the Gnutella network).

In late 2007, [Gnutella]
was the most popular
file sharing network on
the Internet with an esti-
mated market share of
more than 40%.

—Wikipedia
(en.wikipedia.org/
wiki/Gnutella)

ptg

4.3 Call-Return Styles ■ 169

Later versions of Gnutella differentiate between leaf peers
and ultrapeers. An ultrapeer runs on a computer with a fast
Internet connection. A leaf peer is usually connected to a small
number (say, three) of ultrapeers, and an ultrapeer is con-
nected to a large number of other ultrapeers and leaf peers.
The ultrapeers are responsible for routing search requests and
responses for all leaf peers connected to them.

Figure 4.4 shows part of a peer-to-peer view of a Gnutella net-
work using an informal C&C notation. For brevity, only two leaf
peers and four ultrapeers are identified. Each of the identified
leaf peers uploads and downloads files directly from other peers.

4.3.3 Service-Oriented Architecture Style

Overview

Service-oriented architectures consist of a collection of distrib-
uted components that provide and/or consume services. In
SOA, service provider components and service consumer com-
ponents can use different implementation languages and plat-
forms. Services are largely standalone: service providers and
service consumers are usually deployed independently, and
often belong to different systems or even different organizations.

Elements, Relations, and Properties

Table 4.4 summarizes the SOA style. The basic component
types in this style are service providers and service consumers,

Documentation of
behavior is discussed in
Chapter 8.

Figure 4.4
A C&C diagram of a
Gnutella network, using
informal notation

A B

moldy
69.95.63.49

amidala
70.116.152.15

anakin
207.192.20.13

lambda
50.64.16.14 outrider

74.12.41.111
naboo

157.66.24.26

Key Leaf peer

Ultrapeer

Gnutella port

HTTP file transfer
from A to B

Request/reply using Gnutella
protocol over TCP or UDP

ptg

170 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

which in practice can take different forms, from JavaScript run-
ning on a Web browser to CICS transactions running on a
mainframe.

In addition to the service provider and consumer compo-
nents that you develop, your SOA application may use special-
ized components that act as intermediaries and provide
infrastructure services:

• Service invocation can be mediated by an enterprise service bus
(ESB). An ESB routes messages between service consumers
and service providers. In addition, an ESB can convert mes-
sages from one protocol or technology to another, perform
various data transformations (for example, format, content,
splitting, merging), perform security checks, and manage
transactions. When an ESB is in place, the architecture fol-
lows a hub-and-spoke design, and interoperability, security,
and modifiability are improved. When an ESB is not in
place, service providers and consumers communicate to
each other in a direct point-to-point fashion.

• To improve the transparency of location of service provid-
ers, a service registry can be used in SOA architectures. The
registry is a component that allows services to be registered
and then queried at runtime. It increases modifiability by
making the location of the service provider transparent to
consumers and permitting multiple live versions of the same
service.

• An orchestration server (or orchestration engine) is a special
component that executes scripts upon the occurrence of a
specific event (for example, a purchase order request arrived).
It orchestrates the interaction among various service con-
sumers and providers in an SOA system. Applications with
well-defined business workflows that involve interactions
with distributed components or systems gain in modifiabil-
ity, interoperability, and reliability by using an orchestration
server. Many orchestration servers support the Business Pro-
cess Execution Language (BPEL) standard.

The basic types of connectors used in SOA are these:

• Call-return connectors. Two of the most common such connec-
tors are SOAP and REST:

– SOAP is the standard protocol for communication in
Web services technology. Service consumers and provid-
ers interact by exchanging request/reply XML messages,
typically on top of HTTP.

– With the REST connector, a service consumer sends syn-
chronous HTTP requests. These requests rely on the four

Including an ESB in your
architecture of a service-
oriented system improves
interoperability, secu-
rity, and modifiability.

There are many possibil-
ities for communication
between components in
an SOA architecture,
such as SOAP, REST,
JMS, MSMQ, and
SMTP. Try to indicate in
your C&C diagram what
protocol or technology
is used for each compo-
nent interaction by
using labels or different
arrow types.

ptg

4.3 Call-Return Styles ■ 171

basic HTTP commands (post, get, put, and delete) to tell
the service provider to create, retrieve, update, or delete
a resource (a piece of data). Resources have a well-defined
representation in XML, JSON, or a similar language/
notation.

• Asynchronous messaging. Components exchange asynchro-
nous messages, usually through a messaging system such as
IBM WebSphere MQ, Microsoft MSMQ, or Apache ActiveMQ.
The messaging connector can be point-to-point or publish-
subscribe. Messaging communication typically offers great
reliability and scalability.

Components have interfaces that describe the services they
request from other components and the services they provide.
Components initiate actions to achieve their computation by
cooperating with their peers by requesting services from one
another.

In practice, SOA environments may involve a mix of the
three connectors listed above, along with legacy protocols and
other communication alternatives (such as SMTP).

Table 4.4 Summary of the service-oriented architecture style

Elements • Service providers, which provide one or more services through pub-
lished interfaces. Properties will vary with the implementation tech-
nology (such as EJB or ASP.NET) but may include performance,
authorization constraints, availability, and cost. In some cases these
properties are specified in a service-level agreement (SLA).

• Service consumers, which invoke services directly or through an
intermediary.

• ESB, which is an intermediary element that can route and transform
messages between service providers and consumers.

• Registry of services, which may be used by providers to register
their services and by consumers to query and discover services at
runtime.

• Orchestration server, which coordinates the interactions between
service consumers and providers based on scripts that define busi-
ness workflows.

• SOAP connector, which uses the SOAP protocol for synchronous
communication between Web services, typically over HTTP. Ports of
components that use SOAP are often described in WSDL.

• REST connector, which relies on the basic request/reply operations
of the HTTP protocol.

• Messaging connector, which uses a messaging system to offer
point-to-point or publish-subscribe asynchronous message
exchanges.

Relations Attachment of the different kinds of ports available to the respective
connectors

continues

ptg

172 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

What Service-Oriented Architectures Are Good For

The main benefit and the major driver of SOA is interoperabil-
ity. Because service providers and service consumers may run
on different platforms, service-oriented architectures often
integrate different systems and legacy systems. Service-oriented
architecture also offers the necessary elements to interact with
external services available over the Internet. Special SOA com-
ponents such as the registry or the ESB also allow dynamic
reconfiguration, which is useful when there’s a need to replace
or add versions of components with no system interruption.

Example of a Service-Oriented Architecture

Figure 4.5 was taken from the example software architecture
document accompanying this book online, at wiki.sei.cmu.edu/
sad. It shows the SOA view of the Adventure Builder system
(Adventure Builder 2010). This system interacts via SOAP Web
services with several other external service providers. Note that
the external providers can be mainframe systems, Java systems,
or .NET systems—the nature of these external components is
transparent because the SOAP connector provides the neces-
sary interoperability.

4.4 Event-Based Styles
Event-based styles allow components to communicate through
asynchronous messages. Such systems are often organized as a
loosely coupled federation of components that trigger behav-
ior in other components through events.

A variety of event styles exist. In some event styles, connec-
tors are point-to-point, conveying messages in a way similar to

Computational Model Computation is achieved by a set of cooperating components that
provide and/or consume services over a network. The computation is
often described as a kind of workflow model.

Constraints • Service consumers are connected to service providers, but interme-
diary components (such as ESB, registry, or BPEL server) may be used.

• ESBs lead to a hub-and-spoke topology.
• Service providers may also be service consumers.
• Specific SOA patterns impose additional constraints.

What It’s For • Allowing interoperability of distributed components running on dif-
ferent platforms or across the Internet

• Integrating legacy systems
• Allowing dynamic reconfiguration

Table 4.4 Summary of the service-oriented architecture style (continued)

ptg

4.4 Event-Based Styles ■ 173

call-return, but allowing more concurrency, because the event
sender need not block while the event is processed by the
receiver. In other event styles, connectors are multi-party,
allowing an event to be sent to multiple components. Such sys-
tems are often called publish-subscribe systems, where the
event announcer is viewed as publishing the event that is sub-
scribed to by its receivers.

Figure 4.5
Diagram of the SOA view
for the Adventure Builder
system. The OPC (Order
Processing Center)
component coordinates the
interaction with internal and
external service consumers
and providers

Key

Adventure Builder

jdbc

jdbc

TBD

OpcOrder
TrackingService

OpcPurchase
OrderService

Web
Service
Broker

Web
browser

Consumer
Web site

OPC

Bank

Adventure
Catalog

DB

User’s
e-mail
client

Airline
Provider Lodging

Provider

Activity
Provider

Adventure
OPC DB

service
registry

ActivityPO
 Service

LodgingPO
Service

AirlinePO
Service

CreditCard
Service

Client-side
application

Java EE
application

Web services
endpoint

Data
repository

HTTP/HTTPS

SOAP call

Data access

SMTP

Scope of the
application (not
a component)

External Web
service provider

ptg

174 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

4.4.1 Publish-Subscribe Style

Overview

In the publish-subscribe style, summarized in Table 4.5, com-
ponents interact via announced events. Components may sub-
scribe to a set of events. It is the job of the publish-subscribe
runtime infrastructure to make sure that each published event
is delivered to all subscribers of that event. Thus the main form
of connector in this style is a kind of event bus. Components
place events on the bus by announcing them; the connector
then delivers those events to the components that have regis-
tered an interest in those events.

The computational model for the publish-subscribe style is
best thought of as a system of independent processes or
objects, which react to events generated by their environment,
and which in turn cause reactions in other components as a
side effect of their event announcements.

Examples of systems that employ the publish-subscribe style
are the following:

• Graphical user interfaces, where a user’s low-level input
actions are treated as events that are routed to appropriate
input handlers

• Applications based on the model-view-controller (MVC)
pattern, where view components are notified when the state
of a model object changes

• Extensible programming environments, in which tools are
coordinated through events

• Mailing lists, where a set of subscribers can register interest
in specific topics

• Social networks, where “friends” are notified when changes
occur to a person’s Web site

Table 4.5 Summary of the publish-subscribe style

Elements • Any C&C component with at least one publish or subscribe port.
Properties vary, but they should include which events are
announced and/or subscribed to, and the conditions under which
an announcer is blocked.

• Publish-subscribe connector, which will have announce and listen
roles for components that wish to publish and/or subscribe to events.

Relations Attachment relation associates components with the publish-
subscribe connector by prescribing which components announce
events and which components have registered to receive events.

Computational Model Components subscribe to events. When an event is announced by a
component, the connector dispatches the event to all subscribers.

ptg

4.4 Event-Based Styles ■ 175

Elements, Relations, and Properties

The publish-subscribe style can take several forms. In one com-
mon form, called implicit invocation, the components have pro-
cedural interfaces, and a component registers for an event by
associating one of its procedures with each subscribed type of
event. When an event is announced, the associated procedures
of the subscribed components are invoked in an order usually
determined by the runtime infrastructure. Graphical user-
interface frameworks, such as Visual Basic, are often driven by
implicit invocation: User code fragments are associated with
predefined events, such as mouse clicks.

In another publish-subscribe form, events are simply routed
to the appropriate components. It is the component’s job to
figure out how to handle the event. Such systems put more of
a burden on individual components to manage event streams,
but also permit a more heterogeneous mix of components
than implicit invocation systems do.

In some publish-subscribe systems, an event announcer may
block until an event has been fully processed by the system. For
example, some user-interface frameworks require that all views
be updated when the data they depict has been changed. This
is accomplished by forcing the component that announces a
“changed-data” event to block until all subscribing views have
been notified.

ADVICE

Useful properties to document for components include these:

• Which events a component announces or subscribes to

• Conditions under which an announcer is blocked

Constraints All components are connected to an event distributor that may be
viewed as either a bus—that is, a connector—or a component. Publish
ports are attached to announce roles, and subscribe ports are attached
to listen roles. Constraints may restrict which components can listen to
which events, whether a component can listen to its own events, and
how many publish-subscribe connectors can exist within a system.
A component may be both a publisher and a subscriber, by having
ports of both types.

What It’s For • Sending events to unknown recipients, isolating event producers
from event consumers

• Providing core functionality for GUI frameworks, mailing lists, bulle-
tin boards, and social networks

Table 4.5 Summary of the publish-subscribe style (continued)

ptg

176 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

• Whether components can change their subscriptions dynamically

• Whether new event types can be created dynamically, or the event vocabu-
lary is fixed at build or deployment time

• Whether one can add new publishers to the system dynamically

Connector properties often describe the semantics of the event dispatch
mechanism:

• Can a subscriber queue up new events when it’s busy handling an event?

• Is the connector synchronous or asynchronous?

• Do events have priorities?

• Is temporal or causal ordering enforced?

• Is event delivery reliable?

• What are the semantics of each event?

• Does the connector support other distributed component management, such
as starting and stopping publish-subscribe components at the same time?

What the Publish-Subscribe Style Is For

The publish-subscribe style is used to send events and messages
to an unknown set of recipients. Because the set of event recip-
ients is unknown to the event producer, the correctness of the
producer cannot depend on those recipients. Thus new recip-
ients can be added without modification to the producers.

Publish-subscribe styles are often used to decouple user
interfaces from applications. They may also be used to inte-
grate tools in a software development environment: tools inter-
act by announcing events that trigger invocation of other tools.
Other applications include systems such as bulletin boards,
social networks, and message lists, where some dynamically
changing set of users are notified when the content that they
care about is modified.

Relation to Other Styles

The publish-subscribe style is similar to a blackboard reposi-
tory style, because in both styles components are automatically
triggered by changes to some component. However, in a black-
board system, the database is the only component that gener-
ates such events; in a publish-subscribe system, any component
may generate events.

Implicit invocation is often combined with call-return in sys-
tems in which components may interact either synchronously
by service invocation or asynchronously by announcing events.

ptg

4.4 Event-Based Styles ■ 177

For example, many service-oriented architectures and distrib-
uted object systems (such as CORBA and Java EE) support both
synchronous and asynchronous communication. In other
object-based systems, synchronous procedure calls are used to
achieve asynchronous interaction using the MVC pattern or
the observer pattern.

Example of the Publish-Subscribe Style

Figure 4.6 is a publish-subscribe view of the SEI ArchE tool.
There are three different publish-subscribe interactions in this
architecture:

1. Eclipse UI event manager acts as an event bus for user-inter-
face events (such as button clicks). Subscription informa-
tion—that is, what UI events are relevant to the system and
what components handle them—is defined at load time
when the event manager reads the SEI.ArchE.UI plug-in

config XML file. From then on a UI event generated by the
user working on a view or editor is dispatched via implicit
invocation to the action handler objects that subscribe to
that event.

2. The data manipulated in ArchE is stored using a rule
engine called Jess. Data elements are called facts. When a
user action creates, updates, or deletes a fact, that action
generates respectively an assert, modify, or retract fact

Sections 2.3.6 and 6.6.4
have more information
about the ArchE tool.

Figure 4.6
Diagram for a publish-
subscribe view of the SEI
ArchE tool

Key

E
cl

ip
se

 U
I e

ve
n

t
m

an
ag

er

Register
action
handlers

UI
event

handle
UI event

CRUD
fact data

assert/modify/
retract fact

SEI.ArchE.UI
plug-in config

views and
editors

Fact
data in

memory

ArchE
core

listener

action
handler

ArchE
core

façade
Jess

new or
setField()

notify data

change

register views as

observer of facts

register to fact

data changesnotify fact

data change

Action
handler
object

UI screen
object

Java
object

External
program

XML file
Event manager
(part of Eclipse
platform)

Register to
listen for event

Event send/
receive

Java method
call

ptg

178 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

event that is sent to Jess. When Jess processes that event,
changes to many other facts may be triggered. Jess also acts
as an event bus that announces changes to facts. In the
ArchE architecture, there is one component that sub-
scribes to all data changes: ArchE core listener.

3. ArchE keeps in memory copies of the fact data elements
persisted in the rule engine. These copies are observable
Java objects. User-interface screens (that is, views) that dis-
play those elements are observers of the fact data objects.
When facts in memory are created or updated, the views
are notified.

4.5 Repository Styles
Repository views contain one or more components, called
repositories, which typically retain large collections of persis-
tent data. Other components read and write data to the repos-
itories. In many cases access to a repository is mediated by
software called a database management system (DBMS) that
provides a call-return interface for data retrieval and manipu-
lation. MySQL is an example of a DBMS. Typically a DBMS also
provides numerous data management services, such as support
for atomic transactions, security, concurrency control, and
data integrity. In C&C architectures where a DBMS is used, a
repository component often represents the combination of
the DBMS program and the data repository.

Repository systems where the data accessors are responsible
for initiating the interaction with the repository are said to fol-
low the shared-data style. In other repository systems, the
repository may take responsibility for notifying other compo-
nents when data has changed in certain prescribed ways. These
systems follow the blackboard style. Many database manage-
ment systems support a triggering mechanism activated when
data is added, removed, or changed. You can employ this fea-
ture to create an application following the blackboard style.
But if your application uses the DBMS for retrieving and
changing data in the repository but doesn’t employ triggers,
you’re following the pure shared-data style.

4.5.1 Shared-Data Style

Overview

In the shared-data style, the pattern of interaction is domi-
nated by the exchange of persistent data. The data has multi-
ple accessors and at least one shared-data store for retaining
persistent data.

The observer design
pattern is described in
the book by Gamma et
al. (1995).

ptg

4.5 Repository Styles ■ 179

Database management systems and knowledge-based sys-
tems are examples of this style.

Elements, Relations, and Properties

The shared-data style, summarized in Table 4.6, is organized
around one or more shared-data stores, which store data that
other components may read and write. Component types
include shared-data stores and data accessors. The connector type
is data reading and writing. The general computational model
associated with shared-data systems is that data accessors per-
form operations that require data from the data store and write
results to one or more data stores. That data can be viewed and
acted on by other data accessors. In a pure shared-data system,
data accessors interact only through one or more shared-data
stores. However, in practice shared-data systems also allow
direct interactions between data accessors. The data-store com-
ponents of a shared-data system provide shared access to data,
support data persistence, manage concurrent access to data
through transaction management, provide fault tolerance,
support access control, and handle the distribution and cach-
ing of data values.

Specializations of the shared-data style differ with respect to
the nature of stored data: existing approaches include rela-
tional, object structures, layered, and hierarchical structures.

Table 4.6 Summary of the shared-data style

Elements • Repository component. Properties include types of data stored,
data performance-oriented properties, data distribution, number of
accessors permitted.

• Data accessor component.
• Data reading and writing connector. An important property is

whether the connector is transactional or not.

Relations Attachment relation determines which data accessors are connected
to which data repositories.

Computational Model Communication between data accessors is mediated by a shared-
data store. Control may be initiated by the data accessors or the data
store. Data is made persistent by the data store.

Constraints Data accessors interact with the data store(s).

What It’s For • Allowing multiple components to access persistent data
• Providing enhanced modifiability by decoupling data producers

from data consumers

ptg

180 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

What the Shared-Data Style Is For

The shared-data style is useful whenever various data items
have multiple accessors and persistence. Use of this style
decouples the producer of the data from the consumers of the
data; hence this style supports modifiability, as the producers
do not have direct knowledge of the consumers.

ADVICE

Useful properties to document about data stores include the following:

• Restrictions on the number of simultaneous connections to the data store.

• Whether or not new accessors can be added at runtime.

• Access-control enforcement policies.

• Whether concurrent access to the same data element is permitted, and if so,
what kinds of synchronization mechanisms are used.

• Administrative concerns, such as whether one modifies the types of data
stored, and if so, who has access, when those changes can be performed,
and via what interface.

• Replication of data in a distributed setting.

• Age of data.

• If the repository system supports both query-based and triggered modes of
interaction, it is important to clearly document what form of interaction is
intended, for example, by using different connector types.

Analyses associated with this style usually center on qualities
such as performance, security, privacy, availability, scalability,
and compatibility with, for example, existing repositories and
their data. In particular, when a system has more than one data
store, a key architecture concern is the mapping of data and
computation to the data. Use of multiple stores may occur
because the data is naturally, or historically, partitioned into
separable stores. In other cases data may be replicated over sev-
eral stores to improve performance and/or availability through
redundancy. Such choices can strongly affect the qualities noted
above.

Relation to Other Styles

This style has aspects in common with the client-server style,
especially the multi-tiered client-server. In information man-
agement applications that use this style, the repository is often
a relational database, providing relational queries and updates

ptg

4.5 Repository Styles ■ 181

using client-server interactions. The clients of the relational
database (that is, the accessors) connect to the DBMS using a
network port and protocol specified by the DBMS. A bridge
module or DBMS driver, built into the client components, pro-
vides database operations.

The shared-data style is closely related to the data model
style. While a shared-data view of the system depicts the data
repositories and their accessors, the data model shows how
data is structured inside the repositories, in terms of data enti-
ties and their relations.

Akin to other C&C styles, the shared-data style is also related
to the deployment style. Very often systems that have a shared
repository are distributed applications where one or more ded-
icated server machines host the repositories. A deployment
view of the system shows the allocation of the repositories and
other components to the hardware nodes.

Example of the Shared-Data Style

Figure 4.7 shows the diagram of a shared-data view of a corpo-
rate access-management system. There are three types of acces-

The data model style is
described in Section 2.6.

Figure 4.7
The shared-data diagram of
an enterprise access-man-
agement system. The cen-
tralized security realm is a
repository for user
accounts, passwords,
groups of users, roles, per-
missions, and related infor-
mation. User IDs and
passwords are synchro-
nized with external reposi-
tories shown on the top left.
The accounts of the enter-
prise employees are cre-
ated/deactivated and
permissions are granted/
revoked based on status
changes in HR database.

Key

Password
synchronizer

Windows
AD

Microsoft
Exchange

Server

Authentication

Application

Web
sign-in

Web
application

Password
reset

Self
registration

HR database

Account
provisioning

centralized security realm

Rights
enablement

Entitlement
management

Delegated
administration

Request
tracking

Audit and
monitoring

Windows GUI
application

Headless
program

Web
application

Data
repository

Data
read

Data
write

Data
read & write

ptg

182 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

sor components: Windows applications, Web applications, and
“headless” programs (that is, programs or scripts that run in
the background and don’t provide any user interface).

4.6 Crosscutting Issues for C&C Styles
There are a number of concerns that relate to many C&C styles
in a similar way. It is helpful to treat these as crosscutting issues,
since the requirements for documenting them are similar for
all styles. One such issue is concurrency: indicating which com-
ponents in the system execute as concurrent threads or pro-
cesses. Another crosscutting issue is the use of tiers: aggregating
components into hierarchical groupings and restricting com-
munication paths between components in noncontiguous
groups. Another issue is dynamic reconfiguration: indicating
which components may be created or destroyed at runtime.

In these and other cases, the crosscutting issues can be doc-
umented by augmenting the element types of a style with addi-
tional semantic detail to clarify how instances of those types
address the crosscutting issues. By adding this additional
detail, we effectively create a specialized variant of the original
style, because the augmentation will typically introduce new
constraints on the components and connectors, their proper-
ties, and system topologies.

4.6.1 Communicating Processes

Communicating processes are common in most large systems
and necessary in all distributed systems. A communicating-pro-
cesses variant of any C&C style can be obtained by stipulating
that each component can execute as an independent process.
For instance, clients and servers in a client-server style are usu-
ally independent processes. Similarly, a communicating-processes
variant of the pipe-and-filter system would require that each fil-
ter run as a separate process. The connectors of a communicating-
processes style need not change, although their implementa-
tion will need to support interprocess communication.

A common variant on this scheme (for components with
substructure) is to require that top-level components run as
separate processes but allow their internal components to run
in their parent’s process. Another variant is to use threads,
instead of processes, as the concurrency unit. Still other vari-
ants mix threads and processes.

A communicating-pro-
cesses style is any
C&C style whose com-
ponents can execute as
independent processes.

ptg

4.6 Crosscutting Issues for C&C Styles ■ 183

For communicating-processes styles, there are additional
things that often must be documented, including the following:

• Mechanisms for starting, stopping, and synchronizing a set
of processes or threads

• Preemptability of concurrent units, indicating whether the
execution of a concurrent unit may be preempted by
another concurrent unit

• Priority of the processes, which influences scheduling

• Timing parameters, such as period and deadline

• Additional components, such as watchdog timers and
schedulers, for monitoring and controlling concurrency

• Use of shared resources, lock mechanism, and deadlock
prevention or detection techniques

Communicating processes are used to understand (1) which
portions of the system could operate in parallel, (2) the bun-
dling of components into processes, and (3) the threads of
control within the system. Therefore this style variant can be
used for analyzing performance and reliability, and for influ-
encing how to deploy the software onto separate processors.
Behavioral notations such as activity diagrams and sequence
diagrams are particularly useful to understand interactions
among elements running concurrently.

4.6.2 Tiers

The execution structures of many systems are organized as a
set of logical groupings of components. Each grouping is
termed a tier. The grouping of components into tiers may be
based on a variety of criteria, such as the type of component,
sharing the same execution environment, or having the same
runtime purpose.

The use of tiers may be applied to any C&C style, although
in practice it is most often used in the context of client-server
styles. Tiers induce topological constraints that restrict which
components may communicate with other components. Spe-
cifically, connectors may exist only between components in the
same tier or residing in adjacent tiers. The multi-tier style
found in many Java EE and Microsoft .NET applications is an
example of organization in tiers derived from the client-server
style.

Additionally, tiers may constrain the kinds of communication
that can take place across adjacent tiers. For example, some
tiered styles require call-return communication in one direc-
tion but event-based notification in the other.

The deployment style is
described in Section 5.2.

Chapter 8 covers docu-
mentation of behavior.

A tier is a mechanism
for system partitioning.
Usually applied to cli-
ent-server-based sys-
tems, where the various
parts (tiers) of the sys-
tem (user interface,
database, business
application logic, and
so forth) execute on dif-
ferent platforms.

You can depict tiers
graphically by overlay-
ing tier boundaries on
top of an existing C&C
diagram. Alternatively,
or in addition, you can
document tiers by asso-
ciating a property with
each component to
indicate the tier to which
it belongs.

ptg

184 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

Tiers are not components; they are logical groupings of
components.

Example of a Multi-tiered System

Figure 4.8 uses informal notation to describe the multi-tier
architecture of the Consumer Website Java EE application.
This application is part of the Adventure Builder system
(Adventure Builder 2010). Many component-and-connector
types are specific to the supporting platform, which is Java EE
in this case.

4.6.3 Dynamic Creation and Destruction

Many C&C styles allow components and connectors to be cre-
ated or destroyed as the system is running. For example, new
server instances might be created as the number of client
requests increases in a client-server system. In a peer-to-peer
system, new components may dynamically join the system by
connecting to a peer in the peer-to-peer network. Because any
style can in principle support the dynamic creation and
destruction of elements, this is another crosscutting issue.

Don’t confuse tiers with
layers! Layering is a
module style, while tiers
apply to C&C styles. In
other words, a layer is a
grouping of implemen-
tation units while a tier is
a grouping of runtime
elements.

Figure 4.8
Diagram of the multi-tier view describing the Consumer Website Java EE application, which is part of the Adventure
Builder system

Key

Web
browser

S
ig

n
O

n
Fi

lt
er

*.do

*.screen

Main
Servlet

Template
Servlet

Screen
JSP

index.jsp

Sign On
Notifier

mappings.xml

screen
definitions.xml

sign-on-
config.xml

Order
Facade

EJB tier Back endWeb tierClient tier

Catalog
Facade OPC

Adventure
Catalog

DB

User
Mgmt
Facade

OpcOrder
TrackingService

OpcPurchase
OrderService

Client-side
application

Java
EE
filter

Stateless
session
bean

Java EE
application

Context
listener

Data
store

File
Servlet

ContainerWeb services
endpoint

SOAP
call

File
I/O

Java
call

HTTP/
HTTPS

JDBC

ptg

4.7 Summary Checklist ■ 185

To document the dynamic aspects of an architecture, you
should add several pieces of information, including the following:

• What types of components or connectors within a style may
be created or destroyed.

• The mechanisms that are used to create, manage, or destroy
elements. For example, component “factories” are a com-
mon mechanism for creating new components at runtime.

• How many instances of a given component may exist at the
same time. For example, some Web applications use a pool
of instances of Web server components, and the number of
instances in a pool is parameterized by a minimum and a
maximum value.

• What is the life cycle for different component types. Under
what conditions new instances are created, activated, deacti-
vated, and removed. For example, some styles require that
all or part of a system be brought to a stable, “quiescent”
state before new components can be added.

4.7 Summary Checklist
• Component-and-connector styles specialize C&C views by

introducing a specific set of component-and-connector
types and by specifying rules about how elements of those
types can be combined. A C&C style is typically associated
with a computational model that prescribes how execution,
data, and control flow through systems in this style.

• Component-and-connector styles can be grouped into a
number of general categories on the basis of their underly-
ing computational model. Each of these categories contains
a variety of specific C&C styles, a number of which were illus-
trated in this chapter.

• In a pipe-and-filter system, filters process the data input seri-
ally and send the output to the next filter through a pipe.

• In client-server systems, client components make synchro-
nous requests to services from server components.

• In peer-to-peer solutions, many instances of the same com-
ponent cooperate to achieve the desired goal by exchang-
ing synchronous request/reply messages.

• Service-oriented architecture involves distributed compo-
nents that act as service providers and/or service consumers
and are highly interoperable. Intermediaries such as ESB,
service registry, and BPEL server may be used.

Section 6.4.3 discusses
documentation of
dynamic systems.

ptg

186 ■ Chapter 4: A Tour of Some Component-and-Connector Styles

• In publish-subscribe systems, publishers send events to a
pub-sub connector that dispatches the event to all subscrib-
ers that have registered to receive that event.

• The shared-data style shows how a shared data repository is
accessed for reading and/or writing by independent com-
ponents called accessors.

• Many C&C views involve communicating components that
run as concurrent processes or threads. In these cases, it’s
important to document how these processes or threads are
scheduled or preempted, and how access to shared resources
is synchronized.

• Component-and-connector architectures can be structured
in tiers, which are logical groupings of components. The
multi-tier style found in Java EE and Microsoft .NET appli-
cations is a specialization of the client-server style

4.8 Discussion Questions
1. Peer-to-peer, client-server, and other call-and-return styles

all involve interactions between producers and consumers
of data or services. If an architect is not careful when using
one of these styles, he or she will produce a C&C view that
simply shows a request flowing in one direction and a
response flowing in the other. What means are at the archi-
tect’s disposal to distinguish among these styles?

2. Some forms of publish-subscribe involve runtime registra-
tion; others allow only pre-runtime registration. How
would you represent each of these cases?

3. A user invokes a Web browser to download a file. Before
doing so, the browser retrieves a plug-in to handle that type
of file. How would you model this scenario in a C&C view?

4. If you wanted to show a C&C view that emphasizes the sys-
tem’s security aspects, what kinds of properties might you
associate with the components? With the connectors?

5. Suppose that the middle tier of a three-tier system is a data
repository. Is this system a shared-data system, a three-tier
system, a client-server system, all of them, or none? Justify
your answer.

6. To help you see why layers and tiers are different, sketch a
layered view for a system you’re familiar with, and then
sketch a multi-tier client-server view for the same system.

ptg

4.9 For Further Reading ■ 187

4.9 For Further Reading
There is not widespread agreement about what to call C&C
styles or how to group them. While this might seem like an
issue of importance only to the catalog purveyors, it has docu-
mentation ramifications as well. For instance, suppose you
choose a peer-to-peer style for your system. In theory, that
should free you of some documentation obligations, because
you should be able to appeal to a style catalog for details. How-
ever, it is difficult to find an authoritative source for the style
definition; different authors describe the same style with
slightly different component-and-connector types and proper-
ties. But many good style catalogs are available. The reader
interested in finding out more about a particular style can look
at the book by Shaw and Garlan (1996) and any of the five vol-
umes of the Pattern-Oriented Software Architecture books (Busch-
mann et al. 1996; Schmidt et al. 2000; Kircher and Jain 2004;
and Buschmann, Henney, and Schmidt 2007a and 2007b).
Wikipedia is also a good source of information about styles.

The SEI report titled Evaluating a Service-Oriented Architecture
(Bianco, Kotermanski, and Merson 2007) describes many dif-
ferent component and connector types available in SOA, and
it discusses how the different design alternatives affect the
quality attribute properties of the solution. A comprehensive
description of various event-based styles is found in the Enter-
prise Integration Patterns book (Hohpe and Wolff 2003). An
excellent description of blackboards and their history in sys-
tem design can be found in the article by Nii (1986). One of
the first systems to employ the blackboard style was a speech-
understanding system called Hearsay II. A more modern varia-
tion is provided by “tuple spaces,” as exemplified by the Linda
programming language (Gelernter 1985) and JavaSpaces tech-
nology (Freeman, Hupfer, and Arnold 1999). High Level
Architecture (HLA) uses a publish-subscribe mechanism as an
integration framework for distributed simulations (IEEE
1516.1 2000).

To learn more about Yahoo! Pipes, visit pipes.yahoo.com/
pipes.

ptg

This page intentionally left blank

ptg

189

5Allocation Views and a Tour
of Some Allocation Styles

In this chapter, after a brief overview of allocation views, we
look at these aspects of allocation views and styles:

• Deployment style

• Install style

• Work assignment style

• Other allocation styles

5.1 Overview
Software elements in a software architecture interact with non-
software elements in the environment in which the software is
developed, deployed, and executed. Computing and communi-
cation hardware, file management systems, and development
teams all interact with the software architecture. Because of this,
the “set of structures needed to reason about the system” (from
our definition of software architecture given in the prologue)
includes structures that show the relations between software and
nonsoftware elements. It is through the mapping between the
software architecture and the hardware that the performance of
the system can be analyzed; it is through the mapping between
the software architecture and a file structure that the manage-
ment of the system in production can be done; and it is through
the mapping between the software architecture and the team
structure that project management activities can proceed.

These structures have a first-class place in the Views and
Beyond approach, and this chapter focuses on the views and
styles that represent them. Allocation views present a mapping
between software elements (from either a module view or a
component-and-connector [C&C] view) and nonsoftware ele-
ments in the software’s environment.

You can think of an allo-
cation view as the result
of combining a software
architecture view with a
view from a different
kind of architecture—for
example, a hardware
architecture or an orga-
nizational architecture.
Section 6.6 describes
techniques for combin-
ing otherwise-separate
views, and why you
might want to do so.

ptg

190 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

We begin by considering the most general form of the map-
ping between the software architecture and its environment.
We then identify three common allocation styles, as shown in
Figure 5.1.

• The deployment style describes the mapping between the
software’s components and connectors and the hardware of
the computing platform on which the software executes.

• The install style describes the mapping between the soft-
ware’s components and structures in the file system of the
production environment.

• The work assignment style describes the mapping between
the software’s modules and the people, teams, or organiza-
tional work units tasked with the development of those
modules.

Table 5.1 summarizes the characteristics of the allocation
styles. The elements of allocation styles are software elements
plus environmental elements. Examples of environmental ele-
ments are a processor, a disk farm, a file or folder, or a group
of developers. The software elements come from a module or
C&C style.

These are not the only
allocation styles; many
others are possible and
useful. Examples can
be found in Section 5.5
and “Perspectives:
Coordination Views,”
on page 209, in this
chapter.

Figure 5.1
Three allocation styles are
deployment (mapping soft-
ware architecture to the
hardware of the computing
platform), install (mapping it
to a file system in the pro-
duction environment), and
work assignment (mapping
it to the teams in the devel-
opment organization).

Production

Environment

Development

Organization

Software Elements

from Module or

C&C Views

Install
Style

Deployment
Style

Computing

Platform

Work
Assignment
Style

ptg

5.2 Deployment Style ■ 191

The relation in an allocation style is the allocated-to relation.
We usually talk about allocation styles in terms of a mapping
from software elements to environmental elements, although
the reverse mapping would also serve the same purposes. A sin-
gle software element can be allocated to multiple environmen-
tal elements, and multiple software elements can be allocated
to a single environmental element. If these allocations change
over time, during either development or execution of the sys-
tem, then the architecture is said to be dynamic with respect to
that allocation.

Software elements and environmental elements have prop-
erties in allocation styles. The specific properties you should
include in an allocation view will, as always, depend on the pur-
pose of that view. The usual goal of an allocation view is to com-
pare the properties required by the software element with the
properties provided by the environmental elements to deter-
mine whether the allocation will be successful or not. For
example, to ensure a component’s required response time, it
has to execute on (be allocated to) a processor that provides suf-
ficiently fast execution times, where “sufficiently fast” might be
defined in terms of a requirement that an IEEE 754 single-pre-
cision floating-point multiply must execute in 50 microsec-
onds. Or a computing platform might not allow a task to use
more than 10 kilobytes of virtual memory. In this case, an exe-
cution model of the software element in question can be used
to determine the required virtual memory usage.

The specific uses and notations for allocation styles are style
specific and are covered in their respective sections.

5.2 Deployment Style
5.2.1 Overview

In the deployment style, software elements native to a C&C
style are allocated to the hardware of the computing platform

Table 5.1 Summary of the characteristics of the allocation styles

Overview Allocation styles describe the mapping between the software architecture and
its environment.

Elements Software element and environmental element. A software element has prop-
erties that are required of the environment. An environmental element has
properties that are provided to the software.

Relations Allocated-to. A software element is mapped (allocated to) an environmental
element. Properties are dependent on the particular style.

Constraints Varies by style

ptg

192 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

on which the software executes. A valid allocation ensures that
the requirements expressed by the software elements are satis-
fied by the characteristics of the hardware element(s).

5.2.2 Elements, Relations, and Properties

Table 5.2 summarizes the characteristics of the deployment
style. Environmental elements in a deployment style are enti-
ties that correspond to physical units that store, transmit, or
compute data. Physical units include processing nodes (CPUs),
communication channels, memory stores, and data stores.

The software elements in this style are typically elements that
would be documented in a C&C view. When represented in a
deployment view, the software elements are assumed to run on
a computer. Therefore, software elements in this style corre-
spond to runtime entities of the computing platform (such as
processes, threads, ports, or shared memory).

The typical relation depicted in a deployment view is a spe-
cial allocated-to form that shows on which physical units the soft-
ware elements reside at a given moment in time. The relation
can be dynamic; that is, the allocation can change as the system

Table 5.2 Summary of the deployment style

Overview The deployment style describes the mapping of
components and connectors in the software archi-
tecture to the hardware of the computing platform.

Elements • Software element: elements from a C&C view.
Useful properties to document include the signifi-
cant features required from hardware, such as pro-
cessing, memory, capacity requirements, and fault
tolerance.

• Environmental elements: hardware of the comput-
ing platform—processor, memory, disk, network
(such as router, bandwidth, firewall, bridge), and so
on. Useful properties of an environmental element
are the significant hardware aspects that influence
the allocation decision.

Relations • Allocated-to. Physical units on which the software
elements reside during execution. Properties
include whether the allocation can change at
execution time or not.

• Migrates-to, copy-migrates-to, and/or execution-
migrates-to if the allocation is dynamic. Properties
include the trigger that causes the migration.

Constraints The allocation topology is unrestricted. However, the
required properties of the software must be satisfied
by the provided properties of the hardware.

Although the deployment
style in its general form
imposes no topological-
form restrictions, spe-
cializations (substyles)
of the deployment style
might. See Section 5.5
for examples.

ptg

5.2 Deployment Style ■ 193

executes. In this case, additional relations, such as the follow-
ing, may be shown:

• Migrates-to. A relation from a software element on one pro-
cessor to the same software element on a different proces-
sor, this relation indicates that a software element can move
from processor to processor but does not simultaneously
exist on both processors.

• Copy-migrates-to. This relation is similar to the migrates-to rela-
tion, except that the software element sends a copy of itself
to the new processor while retaining a copy on the original
processing element.

• Execution-migrates-to. Similar to the previous two, this rela-
tion indicates that execution moves from processor to pro-
cessor but that the code residency does not change. A copy
of a process exists on more than one processor, but only one
is active at any particular time. The execution of the process
“migrates” when the active process is changed.

It is also possible for the allocation to change over time as a
result of manual reconfiguration brought about by exercising
a variation point built in to the architecture.

The important properties of the elements are the significant
hardware features that affect the allocation of the software to
the physical units. How a physical unit satisfies a software ele-
ment requirement is determined by the properties of both. For
example, if a software element requires a minimum storage
capacity, any environmental element that has at least that capac-
ity is a candidate for a valid allocation.

Moreover, the types of analyses to be performed via a deploy-
ment view also determine the particular properties the ele-
ments must possess. For example, if a memory capacity analysis
is needed, the necessary properties of the software elements
must describe memory consumption aspects, and the relevant
environmental element properties must depict memory capac-
ities of the various hardware entities.

Below are some environmental element properties relevant
to physical units:

• CPU properties. The properties relevant to the various pro-
cessing elements (such as processor clock speed, number of
processors, memory capacity, bus speed, cache size, and
instruction execution speed).

• Memory properties. The properties relevant to the memory
stores (such as memory size and speed characteristics).

Section 6.4.3 describes
how to document dyna-
mism and dynamic
architectures.

Documenting variation
points is discussed in
Section 6.4.

ptg

194 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

• Disk or other storage unit capacity. The storage capacity and
access speed of disk units: individual disk drives, disk farms,
and redundant arrays of independent disks (RAIDs).

• Bandwidth. The data transfer capacity of communication
channels.

• Fault tolerance. Multiple hardware units may perform the
same function, and these units may have a failover control
mechanism.

Properties that are relevant to software elements include the
following:

• Resource consumption. For example, a computation takes 32,123
instructions always, or at most, or on average, or under nom-
inal (error-free) conditions, and so on.

• Resource requirements and constraints that must be satisfied. For
example, a software element must execute in no more than
0.1 second.

• Safety critical. For example, this would be true if a software
element must always be running.

The following property is relevant to the allocation:

• Migration trigger. If the allocation can change as the system
executes, this property specifies what must occur for a migra-
tion of a software element from one processing element to
another.

5.2.3 What the Deployment Style Is For

A deployment view is useful for analyzing performance, avail-
ability, reliability, and security. Testers use this view to under-
stand runtime dependencies, and integrators use it to plan
integration and integration testing. A deployment view may
also be used to support cost estimation when evaluating pur-
chasing options for hardware.

Performance is tuned by changing the allocation of software
to hardware. Optimal or improved allocation decisions could
be those that eliminate bottlenecks on processors or that dis-
tribute work more evenly (for example, processor utilization is
roughly even across the system). Often performance improve-
ment is achieved by collocating deployment units that require
frequent and/or high-bandwidth communications with one
another. The volume and frequency of communication among
deployable units on different processing elements, which takes
place along the communication channels between those ele-
ments, is the focus for much of the performance engineering
of a system. The architect can employ additional hardware or

ptg

5.2 Deployment Style ■ 195

replace hardware elements with more powerful versions when
requirements cannot be met no matter how the allocation is
optimized.

Availability and reliability are directly affected by the sys-
tem’s behavior in the face of faulty or failed processing ele-
ments or communication channels. If a processor or a channel
can fail without warning, copies of software components can
be placed on separate processors. If a warning will precede a
failure, then components can be migrated at runtime when a
failure is imminent. If every processing element has enough
memory to host a copy of every deployable unit, runtime
migration need not occur. When a failure occurs, a different
copy of the no-longer-available deployable unit becomes active,
but no migration of code occurs.

Security and attack resistance are influenced by the configu-
ration of the hardware and the allocation of software to it.
Limit the services available on each host to limit exposure.
Firewalls and router and bridge protections can be employed
to limit access to sensitive areas. Physical security measures can
be used to limit exposure of a processor to physical attack.

Modern software architectures seek to make deployment
decisions transparent, and thus changeable. For example, a
goal is to carry out interprocess communication in exactly the
same fashion whether the processes reside on the same or on
different processors. If the deployment changes, the code
need not. Thus, although a deployment view is invaluable in
helping to analyze and achieve quality attributes, be careful
not to let the software implementers assume too much about
the deployment.

ADVICE

An incorrect use of a deployment view is to treat it as the entire software archi-
tecture of a system. A single view in this style, in isolation, is not a complete
description of a software architecture. Although this observation is true of every
style, allocation styles seem especially susceptible. When asked to show their
software architecture, architects sometimes present an impressive diagram that
shows a network of computers with all their properties and protocols used and
the software components running on those computers. Although these dia-
grams fill an important role by helping to organize the work and to understand
the software, they do not fully represent the software architecture.

Don’t try to force a relationship between modules and hardware units. For
instance, it is usually a design error to force each layer of a layered system onto
its own processor. (Remember that layers are not tiers.)

ptg

196 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

5.2.4 Notation for the Deployment Style

Informal Notations

Informal graphical notations contain boxes, circles, lines, arrows,
and so on to represent the software and environmental elements.
In many cases, stylized symbols or icons are used to represent the
environmental elements. The symbols are frequently pictures of
the hardware devices in question. Additionally, shading, color,
border types, and fill patterns are often used to indicate the type
of element. Software elements can be listed inside or next to the
hardware to which they’re allocated to show the allocated-to rela-
tion. If the deployment structure is simple, a table that lists the
software units and the hardware element on which each executes
may be adequate. Figure 5.2 shows an example of a deployment
view primary presentation using an informal notation.

Figure 5.2
Example of a deployment view in an informal notation. This example comes from the U.S. Army Training Information
Architecture-Migrated (ATIA-M) System and uses distinctive symbols for different types of hardware. The connecting
lines are physical communication channels that allow the components to communicate with one another. The allocation
of components is shown by overlaying their names on the symbol. The allocation of connectors is done by writing their
names adjacent to the channels to denote the communication protocol. ATIA is a Java Platform, Enterprise Edition (Java
EE) application comprising hundreds of components (mostly servlets and Enterprise JavaBeans [EJBs]). The ATIA
architecture has a client-server multi-tier view with a Web GUI tier, a Web service tier, and an EJB tier. All components
inside those tiers are deployed to WebLogic, as indicated by the annotation. NIPRNET is an Internet-like network owned
by the Department of Defense.

ptg

5.2 Deployment Style ■ 197

Formal Notations

The Architecture Analysis and Design Language (AADL) and
SysML are examples of architecture description languages that
provide formal notations for describing deployment views.
AADL provides a vocabulary for representing the hardware
and binding software to hardware elements such as processors,
memory, and connections. The language supports analysis of
performance, reliability, safety-critical, and security require-
ments. In SysML, graphical representation is supported using
a modified version of UML block diagrams. In addition, it pro-
vides a tabular form for representing deployment and other
forms of allocation.

UML

In UML, a deployment diagram is a graph of nodes connected
by communication associations. Nodes correspond to processing
elements, usually having a memory and a processing capability.
Nodes may contain component instances, indicating that the
component resides on the node. Components can be connected
to each other by dependency arrows. In a UML deployment
diagram, components may contain objects, meaning that the
objects are part of those components. Migration of components
from node to node (or objects from component to component)
is shown by the <<becomes>> dependency stereotype. A node
is shown using a symbol that looks like a three-dimensional
box, with an optional name inside. Nodes are connected by
associations that stand for communication paths. The precise
nature of the communication path can be indicated by a ste-
reotype on the association (for example, <<10-T Ethernet>>,
<<RS-232>>). Properties are represented as attribute name-
value pairs (for example, processorSpeed = 300 mHz, memory =
128 MB). A deployment specification specifies the parameters
guiding deployment of a component, such as the mode of con-
currency (for example, thread, process, none).

Figure 5.3 shows an example of UML notation for a deploy-
ment view.

5.2.5 Relation to Other Styles

The deployment style is related to the C&C styles that provide
the software elements that are allocated to the hardware of the
computing platform. It is also closely related to the install style,
which shows the contents of the files deployed to hardware
nodes.

SysML and AADL are
described in Appendi-
ces B and C, respectively.

ptg

198 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

5.3 Install Style
5.3.1 Overview

The install style allocates components of a C&C style to a file
management system in the production environment. Once a
software system is implemented, the resulting files have to be
packaged to be installed on the target production platform
(such as a desktop computer or a server machine running an
application server). These files include libraries, executable
files, data files, log files, configuration and version control files,
license files, help files, deployment descriptors, scripts, and
static content (for example, HTML files and images). For a
large software system, the number of files installed in the pro-
duction environment can reach the thousands. These files
need to be organized so as to retain control over and maintain
the integrity of the system build and package process, as well as
to help deployers and operators locate and manipulate the
files when necessary. Configuration management techniques,
build tools, and installation tools usually help to get this job
done. But an architecture description shows how the installed
system is organized as a structure of files and folders, and
describing how software elements map to that structure is
important to assist developers, deployers, and operators.

The install style helps describe what specific files should be
used and how they should be configured and packaged to pro-
duce different versions of the system. Maintaining multiple
versions simultaneously is a common practice for many sys-
tems. Different versions of the same system may

Figure 5.3
A deployment view in UML,
showing the hardware
platform supporting a
Java EE system. The
<<deploy>> dependency
shows which artifacts are
deployed to which nodes.
<<execution environment>>
is a node that offers an
environment to run specific
types of components. To
know what components are
deployed to a specific
node, you need to look at
the install view to see what
components go inside each
artifact.

1

*

1

1

«internet»

«intranet»

«deploy»

«deploy»

«intranet»

Notation:
UML

«artifact»
EnterpriseWebApp.ear

«artifact»
app-client.jar

«Win desktop»
Admin user

PC

Internet
user PC

«linux server»
Database server

«Win server»
Application server

«execution
environment»
:WebSphere

ptg

5.3 Install Style ■ 199

• Support internationalization

• Offer different pricing (for example, a free version and a
commercial version)

• Accommodate customizations for different clients

• Support clients in a distributed system that still send old-ver-
sion message requests

Once the implementation is in place, configuration man-
agement tools and build scripts help to automate the process
of selecting, configuring, and packaging the right configura-
tion items for different versions. But the architecture describ-
ing this, possibly quite intricate, structure of files and folders
should be initially captured in an install view.

5.3.2 Elements, Relations, and Properties

Table 5.3 summarizes the principal characteristics of the install
style. Environmental elements in an install view are configura-
tion items: files and folders in a file system, which are orga-
nized in a tree structure. The software elements are C&C
components, such as processes, threads, servlets, or data stores.

Two relations in the install style are

• Allocated-to. A relation between components and configura-
tion items. This relation connects a component with the file
or folder that stores that component in the file system.

• Containment. A folder in the file system contains other fold-
ers and/or files. Likewise, a file (such as a zip file) may con-
tain other files and folders. Also, a given file or folder may
be contained in multiple files or folders—for example, for
multiple installed versions.

Managing multiple ver-
sions involves not only
the artifacts packaged
for deployment but also
implementation arti-
facts (such as source
files). The implementa-
tion view, introduced in
Section 5.5, describes
the structure of files and
folders in the develop-
ment environment. The
implementation and
install views together
describe the structures
containing all software
artifacts that are version
controlled.

Table 5.3 Summary of the install style

Overview The install style describes the mapping of components in the software archi-
tecture to a file system in the production environment.

Elements • Software element: a C&C component. Required properties of a software
element, if any, usually include requirements on the production environ-
ments, such as a requirement to support Java or a database, or specific
permissions on the file system.

• Environmental element: a configuration item, such as a file or a folder. Pro-
vided properties of an environmental element include indications of the
characteristics provided by the production environments.

Relations • Allocated-to. A component is allocated to a configuration item.
• Containment. One configuration item is contained in another.

Constraints Files and folders are organized in a tree structure, following an is-contained-in
relation.

ptg

200 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

As with the deployment style, the important properties of
the software and environmental elements of the install style are
those that affect the allocation of the software to configuration
items. For example, how a configuration management system
deals with histories and branches is a configuration item prop-
erty; a specific version of the Java runtime environment to use
might be a required property of a software component. An
install view might be designed to make extensive use of varia-
tion points, because installation requirements will likely be dif-
ferent on different platforms.

5.3.3 What the Install Style Is For

Understanding the organization of the files and folders of the
installed software can help developers, deployers, and opera-
tors carry out the following tasks:

• Create build-and-deploy procedures

• Navigate through a large number of files and folders that
constitute the installed system, to locate specific files that
require attention (such as a log file or configuration file)

• Select and configure files to package a specific version of a
software product line

• Update and configure files of multiple installed versions of
the same system

• Identify the purpose or contents of a missing or damaged
file, which is causing a problem in production

• Design and implement an “automatic updates” feature

The required properties of the software elements in the
install style can also be used to support the analysis of purchas-
ing options for production environments.

5.3.4 Notations for the Install Style

Any notation for an install view must show components, the
files and folders, and the mapping between them. The tree
structure organization of the files and folders should also be
shown. UML provides a number of built-in facilities to aid in
showing an install view, including the <<artifact>> stereotype
to denote a file (configuration item) and the <<manifest>>
artifact to indicate containment.

Figure 5.4 shows an install view diagram from the Duke’s
Bank application using an informal notation, and Figure 5.5
shows the same diagram rendered in UML.

Section 6.4 explains
what variation points
are and how to docu-
ment them.

Duke’s Bank is an exam-
ple application used in
Sun’s online Java tuto-
rial. See java.sun.com/
j2ee/tutorial/1_3-fcs/
doc/Ebank.html.

ptg

5.3 Install Style ■ 201

Figure 5.4
An install view in an informal notation, from the Duke’s Bank Java EE application. Java applications are usually deployed
in Java archive (JAR) files. Like a zip file, a JAR file may contain other files. Enterprise JavaBean JAR files contain EJB
classes and other files that the EJBs may need. Web archive (WAR) files contain Web components (servlets and Java-
Server Pages [JSPs]); very often, they also contain HTML, JPEG, and other files used in Web pages for “static content.”
Enterprise archive (EAR) files are a packaging of zero or more JAR and zero or more WAR files. All server-side compo-
nents are inside DukesBankApp.ear, which is deployed to the application server. The diagram also shows that the client-
side BankAdmin Java application is deployed in app-client.jar, which is deployed to the admin user’s machine.

Figure 5.5
The install view of Figure 5.4 rendered in UML. The <<artifact>> stereotype denotes a file of any kind. The <<manifest>>
stereotype indicates that a given component, class, or other artifact is inside a given artifact.

p

Account
EJB

Account
Controller

EJB

Customer
EJB

Customer
Controller

EJB

Tx
Controller

EJB
TxEJB

Key

DukesBankApp.ear

account-ejb.jar customer-ejb.jar

app-client.jar

web-client.war

tx-ejb.jar

WebMessages
.properties

.tld files .gif and
.html files

struts.jarJSPs
Dispatcher

(servlet)

AdminMessages
.properties

Bank
Admin Web

component

JAR file

EJB

File

Java
application

«manifest»

«manifest»

«manifest» «manifest»

«manifest»

«manifest»

«manifest»

«manifest»

«manifest»

«manifest»«manifest»

«manifest» «manifest» «manifest» «manifest» «manifest» «manifest»

Notation:
UML

Shorthand for
all JSP files

«artifact»
DukesBankApp.ear

«artifact»
account-ejb.jar

«artifact»
customer-ejb.jar

«artifact»
tx-ejb.jar

«sessionbean»
Account

ControllerEJB

«artifact»
app-client.jar

«J2EEapp.client»
BankAdmin

«servlet»
Dispatcher

«artifact»
struts.jar

«JSP»
*.jsp

«artifact»
web-client.war

«sessionbean»
Customer

ControllerEJB

«entitybean»
CustomerEJB

«entitybean»
AccountEJB

«sessionbean»
TxControllerEJB

«entitybean»
TxEJB

«artifact»
AdminMessages

.properties

«artifact»
WebMessages

.properties

«artifact»
*.tld, *.gif,

*.html

ptg

202 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

5.3.5 Relation to Other Styles

The install style is most strongly related to the C&C styles that
describe the software elements for the allocation. The deploy-
ment style is also closely related because it shows the hardware
elements where the files in an install view are deployed to.

5.4 Work Assignment Style
5.4.1 Overview

The work assignment style allocates modules of a module style
to the groups and individuals who are responsible for the real-
ization of a system. This style defines the responsibility for
implementing and integrating the modules to the appropriate
development teams. The style is typically used to link activities
to resources to ensure that the modules are each assigned to
an individual or team. The architecture in combination with
process determines the actual allocations.

A common managerial tool is the work breakdown structure
(WBS). This tool defines a project and groups the project’s dis-
crete work elements in a way that helps organize and define
the total work scope of the project. Software WBSs have always
been based on some decomposition of the system being built
into parts: the modules of a module style.

Because work assignments represent a mapping of the soft-
ware architecture onto groups of humans, it is an important
allocation style. Teams—and hence work assignments—are
not simply associated with writing code that will run in the final
system. There are many more tasks that humans must perform:
configuration management, testing, evaluation of potential
commercial off-the-shelf products, ongoing product sustain-
ment, and so on.

Even if a module is purchased in its entirety as a commercial
product without the need for any implementation work, some-
one still has to be responsible for procuring it, testing it, and
understanding how it works, and someone has to “speak” for it
during integration and system testing. The team responsible
for that has a place in a work assignment view, just as do teams
responsible for implementing “homegrown” modules.

Moreover, software written to support the building of the
system—tools, environments, test harnesses, and so on—and
the responsible team have a first-class place in a work assign-
ment view.

5.4.2 Elements, Relations, and Properties

The elements of this style are software modules and the groups
of people in the development organization.

ptg

5.4 Work Assignment Style ■ 203

In this style, the allocated-to relation maps from software ele-
ments to organizational units.

A well-formed work assignment relation has the property of
completeness—all work is accounted for—and no overlap—no
work is assigned to two places. Properties of the software ele-
ments may include a description of the required skill set,
whereas properties of the people elements may include pro-
vided skill sets.

Table 5.4 summarizes the characteristics of the work assign-
ment style.

5.4.3 What a Work Assignment Style Is For

The work assignment style shows the major units of software
that must be present to form a working system and who will
produce them, as well as the tools and environments in which
the software is developed (and their assignments to environmen-
tal elements). The work assignment style helps with planning
and managing team resource allocations, assigning responsi-
bilities for builds, and explaining the structure of a project—to
a new hire, for example. The work assignment style can give
each team its charter.

This style is the basis for work breakdown structures and for
budget and schedule estimates.

5.4.4 Notations for the Work Assignment Style

No special notations exist for showing work assignment views.
Among informal notations, a table showing software elements
and responsible teams is often sufficient.

Tabular notes are a very simple and clear form of description
for work assignment views. The architect doesn’t need to
choose the team but rather provide information to manage-
ment. Later, the actual team assignments can be added.

Table 5.4 Summary of the work assignment style

Overview The work assignment style describes the mapping of the software architecture
to the teams in the development organization.

Elements • Software element: a module. Properties include the required skill set and
available capacity (effort, time) needed.

• Environmental element: an organizational unit, such as a person, a team, a
department, a subcontractor, and so on. Properties include the provided
skill set and the capacity in terms of labor and calendar time available.

Relations Allocated-to. A software element is allocated to an organizational unit.

Constraints In general, the allocation is unrestricted; in practice, it is usually restricted so
that one module is allocated to one organizational unit.

ptg

204 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

Figure 5.6 shows the primary presentation for a work assign-
ment view of a NASA system called ECS. In the decomposition
view for ECS, the highest level modules are called segments;
those are decomposed into units called subsystems.

5.4.5 Relation to Other Styles

The work assignment style is strongly related to the decompo-
sition style, because that is the most common basis for its allo-
cation mapping. A work assignment view may extend the
module decomposition by adding modules that correspond to
development tools, test tools, configuration management sys-
tems, and so forth, whose procurement and day-to-day opera-
tion must also be allocated to an individual or a team.

A work assignment view is often combined with other views.
For example, team work assignments could be the modules in
a decomposition view, the layers in a layered view, the software
associated with tiers in an n-tier architecture, or the software asso-
ciated with tasks or processes in a multi-process system. You

ECS Element (Module)

Organizational UnitSegment Subsystem

Science Data
Processing
Segment
(SDPS)

Client Science team

Interoperability Prime contractor team 1

Ingest Prime contractor team 2

Data Management Data team

Data Processing Data team

Data Server Data team

Planning Orbital vehicle team

Flight
Operations
Segment
(FOS)

Planning and Scheduling Orbital vehicle team

Data Management Database team

User Interface User interface team

.

Figure 5.6
Work assignment view using a tabular notation. The left two columns echo the system’s module decomposition
structure.

The decomposition
style is discussed in
Section 2.1.

Combining views is dis-
cussed in Section 6.6.

ptg

5.4 Work Assignment Style ■ 205

could augment those views by annotating the various software
elements with the name of the team assigned to each. Or you
could document the assignments as an additional property of
the software elements.

The creation of a work assignment view—whether main-
tained separately or combined with another—enables the
architect and the project manager to give careful thought to
the best way to divide the work into manageable chunks. This
approach also helps keep explicit the need to assign responsi-
bility for all software, such as the development environment
that will not be part of the deployed system. A danger of com-
bining work assignments with other views is that the work
assignments associated with tool building may be lost; in many
situations, the ancillary software tools are not part of the actual
system and do not appear in any of other views.

PERSPECTIVES

Why Is a Work Assignment View Architectural?

A work assignment view maps software elements (modules) to environment ele-
ments (units in a development or acquisition organization). It shows who is
responsible for developing each piece of the system. Some people, when con-
fronted with our prescription to consider designing and documenting a work
assignment view as part of the architecture, balk. “Wait,” they say. “It is not part
of the architect’s responsibilities to assign work to people. That’s what project
management is for.” It’s a fair question.

About four years ago, I was part of a large U.S. government defense project that
was just getting off the ground. It was a system of large interacting systems,
each complex and, in several cases, unprecedented. The government decided
that it needed to choose a major contractor to develop a key part of this project,
and to oversee the development and integration of the rest of it. After that, it
needed to award participating contracts to many other companies to build the
other pieces of the system.

This project was predicted to comprise several tens of millions of lines of code,
with a price tag in the billions of dollars. Contracts, especially sizable ones, take
a long time to go through the competitive procurement process. There are mas-
sive “requests for proposals” publicly circulated, which precipitate massive bid
proposals in response, which in turn trigger massive source selection pro-
cesses. Even if there are no protests filed by any of the losing bidders, which
can send the process back to the beginning, it takes months or years to award
a contract and begin work. Government acquisition keeps legions of lawyers on
both sides gainfully employed.

Knowing all of this, the government agency procuring the system had a tangible
incentive to get the contract process under way as soon as possible. The clock

ptg

206 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

was ticking; this system was going to replace several others whose withdrawal
from service had already been planned. Contracting for this project occupied
everyone’s attention for well over a year.

Eventually the prime contractor and the major subcontractors were in place,
and a huge sigh of relief was palpable throughout parts of Washington. “Now,”
said the project manager, “let’s find an architect to design the system.”

Do you see the flaw here? The first day on the job, the architect was confronted
with a de facto decomposition, based on contracting concerns. It is fair to say
that this was not the decomposition the architect would have wanted, and if he
had been able to say so earlier, the contracts awarded might well have been dif-
ferent. The architect was concerned with exploiting the inherent commonality
and managing the variation across the several versions of the system he knew
were going to be deployed. He was also concerned with injecting some com-
monality across the subsystems; in particular, he knew they all needed a com-
mon look and feel. He might have created an architecture element to provide
that. But with nothing in any of the contracts to cover this, he was reduced to
writing it into the architecture “guidelines,” which were not always followed with
hoped-for rigor. We know that the module decomposition structure of a soft-
ware system is primarily where its modifiability is created. It is doubtful that the
government contracting experts either possessed the domain expertise or con-
ducted a domain analysis to see what likely changes were in store and design
the decomposition accordingly.

This example and others make me believe that a work assignment view is an
important architectural contribution. And yet the skeptics have a point. Aren’t
we asking architects to make project management decisions? In this example,
project managers were making de facto architectural decisions, and the result,
predictably, was a poor architecture. The solution seems obvious: architects
and project managers should work together on this and other issues. In partic-
ular, the architect can inform management about the decomposition and the
skill set needed to ensure the successful development of each piece. Having the
architect involved in the beginning ensures that the module decomposition
drives the work assignments and not the other way around. Having a place for
a work assignment view all ready and waiting in the architecture document can
help the architect engage his or her project manager in a conversation about fill-
ing it in.

—P.C.

5.5 Other Allocation Styles
So far in this chapter you’ve seen that hardware, file manage-
ment systems, and team structure all interact with the software
architecture. We’ve shown a style that captures each of these
allocations from software to external-to-software structures.

ptg

5.5 Other Allocation Styles ■ 207

There are many other useful mappings of this variety. Here are
a few for you to consider:

• Implementation style. The implementation style describes how
the development environment is organized in a tree struc-
ture of files and folders and how modules from a module
view map to that structure. When you apply the implemen-
tation style to a system, the resulting implementation view
shows how files and folders should be arranged to host the
implementation units: classes, programs, scripts, test cases,
make files, documentation files, and any other artifacts cre-
ated when the system is developed. The implementation
view helps developers to navigate and locate development arti-
facts, and to place new artifacts in the proper place. The
implementation view also helps in the implementation of
version control and configuration management policies.
The implementation style is similar to the install style, but
instead of showing files and folders in the production envi-
ronment, it shows the organization of files and folders in the
development environment. A screenshot of your develop-
ment environment tool (which manages the implementa-
tion environment) often makes a very useful and sufficient
diagram for your implementation view.

• Data stores style. The data stores style describes the mapping
between the software’s data entities and the hardware of the
data servers on which the software resides. When you apply
the data stores style to a system, the resulting data stores
view shows how the tables containing data described in the
data model style are distributed over servers. It might show
to which servers stored procedures have been allocated. It
might show geographic distribution of the database or data-
base replication. It might also show the machines that host
data warehouses and the data stores that feed them. These
and other similar relations are important for addressing
concerns about data availability, resilience of data to physi-
cal attack or cyberattack, as well as how data accesses affect
overall system performance. The data stores style is similar
to a deployment style, except that (instead of C&C compo-
nents) it shows data entities allocated to hardware.

Other allocation styles are possible. You could define a
requirements-allocation style that maps between system
requirements and the software elements of the architecture
that satisfy them; that’s one way to document a mapping
between requirements and design. And for projects spread
across many teams and sites, a coordination view can be an
important tool to bring the architecture and the development
organization into alignment.

If your development
organization will create
multiple software sys-
tems and wants all of
them to follow the same
structure for the files
and folders in the devel-
opment environment,
you should document
an implementation view
that serves as a refer-
ence for all these soft-
ware projects.

Section 2.6 discusses
the data model style.

Section 10.3 discusses
ways to capture map-
pings from require-
ments to software.

See “Perspectives:
Coordination Views” on
page 209, in this chapter.

ptg

208 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

There are also useful specializations of the styles discussed in
this chapter. For example:

• Specializing the deployment style. The deployment style as pre-
sented comes with no inherent topological restrictions, but
you might find certain patterns of deployment to be partic-
ularly useful. Microsoft publishes a “Tiered Distribution”
pattern, which prescribes a particular allocation of compo-
nents in a multi-tier architecture to the hardware they will
run on. This pattern specializes the generic deployment
style. If you adopt and document this pattern for your sys-
tem, the result will be a Tiered Distribution view. Similarly,
IBM’s WebSphere handbooks describe a number of what
they call “topologies” along with the quality attribute crite-
ria for choosing among them. There are 11 topologies (spe-
cialized deployment views) described for WebSphere
version 6, including the “single machine topology (stand-
alone server),” “reverse proxy topology,” “vertical scaling
topology,” “horizontal scaling topology,” and “horizontal
scaling with IP sprayer topology.”

• Specializing the work assignment style. You can also document
often-used team structure patterns as specializations of the
work assignment style. In Urdangarin et al. 2008, the
authors describe a number of team-organization approaches
for globally distributed Agile projects. Each constitutes a
specialized work assignment style:

– Platform style. In a software product line development,
one site is tasked with developing reusable core assets of
the product line, and other sites develop applications
that use the core assets.

– Competence-center style. Work is allocated to sites depend-
ing on the technical or domain expertise located at a site.
For example, user-interface design is done at a site where
usability engineering experts are located.

– Open-source style. Many independent contributors develop
the software product in accordance with a technical inte-
gration strategy. Centralized control is minimal, except
when an independent contributor integrates his code
into the product line.

They also identify two other organizational allocation
schemes that technically do not qualify as specializations of
the work assignment style, because they allocate something
other than modules to organizational units:

– Process-steps style. Work is allocated across the sites in accor-
dance with the phases of the software development process;

A style is a specializa-
tion of another style if it
is consistent with that
style—that is, doesn’t
violate it—and adds
more constraints to its
element types, relation
types, and/or topologi-
cal restrictions.

See the MSDN Web site,
msdn.microsoft.com/
en-us/library/
ms978694.aspx.

See the IBM Redbooks
Web site, www.redbooks
.ibm.com/abstracts/
sg246446.html.

www.redbooks.ibm.com/abstracts/sg246446.html
www.redbooks.ibm.com/abstracts/sg246446.html
www.redbooks.ibm.com/abstracts/sg246446.html

ptg

5.5 Other Allocation Styles ■ 209

for example, design may be done at one site, develop-
ment at another site, and testing at yet another site.

– Release-based style. The first product release is developed at
one site, the second at another site, and so on. Often the
releases will be overlapped to meet time-to-market goals;
for example, one site is testing the next release, another
site is developing a later release, and yet another site is
defining or designing an even later release.

PERSPECTIVES

Coordination Views

With Jim Herbsleb

A coordination view can be an important tool to bring the
architecture and the development organization into
alignment, particularly for projects spread across many
teams and sites.

The motivation for a coordination view stems from the
limitations of communication as a coordination mecha-
nism. Conway (1968) observed decades ago: “Any orga-
nization that designs a system will inevitably produce a
design whose structure is a copy of the organization’s
communication structure.” Small teams can coordinate
their work rather simply through frequent communica-
tion. But since the number of potential communication
paths increases as the square of the number of team
members, this strategy does not scale. The usual solu-
tion is to divide a system into parts that have limited,
well-specified interactions, so that developers working
on one part do not need to coordinate their work with
developers working on other parts. In the software
domain, Parnas (1972) observed long ago that in thinking
about criteria for partitioning code into modules, they
should be thought of not as subprograms but as “work
items” that can be assigned to teams.

Modularization is an essential strategy for allowing
development projects to coordinate their work, but it is
generally not sufficient. Modules are not completely
independent—after all, they form a single system and
must therefore interact in some way—and for this reason,
the need for teams to coordinate is rarely eliminated
completely. In some cases, only minimal coordination will
be required, but in other cases, intensive coordination is

ptg

210 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

necessary. The full picture is more complicated, as coor-
dination can happen through shared representations, by
prearranged plans and interfaces, and even by a shared
work history that enables teams to predict the actions of
other teams.

Just as the need to coordinate development work can
vary dramatically across modules, the capacity to coor-
dinate can vary dramatically across teams in a project.
The key to successful project coordination is to ensure
that the coordination required among teams never
exceeds the capacity of those teams to coordinate (Cat-
aldo et al. 2006). A coordination view is a tool that can be
used to help ensure this condition is not violated.

The key to a coordination view is representing complexity
and uncertainty in the relations between modules. Com-
plexity implies that a module and its interfaces are likely
to be difficult to understand and to use correctly. Uncer-
tainty means that potentially complicated communica-
tion and negotiation between teams and with architects
must occur as interfaces are worked out or the allocation
of functionality to modules is determined. Representing
complexity and uncertainty separately is important, since
the means for addressing them are generally quite differ-
ent. Complexity is generally addressed by detailed doc-
umentation, a tactic that is much less useful for handling
uncertainty. Frequent Agile-style communication is often
an effective way to address uncertainty, but it is easily
overwhelmed and ineffective at high levels of complexity.
It is important for a useful coordination view to represent
both.

One straightforward form a coordination view can take is
derived from matrices that represent the relations among
modules and the coordination capacities of the project
teams. Module relations are represented by two square
matrices (like dependency structure matrices), of dimen-
sion in the number of modules, with each entry taken
from the domain <0, 1, 2, 3>, representing an uncertainty
(UM) or complexity (CM) relation between two modules.
Zero values indicate modules are not related in any sub-
stantial way, while 1, 2, and 3 represent, respectively,
low, moderate, and high levels of complexity or uncer-
tainty in the interaction of the modules. Values can be
assigned in a variety of ways, for example by an expert
such as the lead architect.

Dependency structure
matrices are discussed
in Section 1.4.3.

ptg

5.5 Other Allocation Styles ■ 211

These matrices can be used in conjunction with square
matrices representing the relevant coordination capacity
of pairs of development teams. The communication
capacity matrix (CCM) represents the ease and facility
with which two teams can be expected to communicate.
This expectation depends on such factors as facility in a
common language, cultural similarity, degree of overlap
in work hours, use of similar communication technolo-
gies, and past experience successfully communicating
with each other or similar teams. The documentation
capacity matrix (DCM) represents the ease and facility
with which two teams can be expected to create relevant
documentation and achieve a common understanding of
it. This expectation depends on such factors as experi-
ence with relevant notations (for example, are both
teams experienced in UML if that is the chosen format),
history of creating and maintaining detailed and accurate
documentation of APIs, and the demonstrated willing-
ness to publish and read documentation. For both matri-
ces, the values can again be taken from the domain
<0, 1, 2, 3>, representing approximate levels of commu-
nication or documentation capacity of pairs of teams.

We now have four square matrices: two of dimension
number of modules (UM, CM), and two of dimension
number of teams (CCM, DCM). In order to compare
coordination needs with coordination capacities, it is
necessary to express both as relations among teams.
Some additional computation with UM and CM will
achieve this. All that is required is to use an allocation
view in the form of a binary matrix AM of teams by mod-
ules, where an entry of 1 indicates that a team is respon-
sible for a given module. The following multiplication
represents the degree to which each pair of teams can
expect to be required to coordinate uncertainties (where
AMT is the transpose of AM).

AM UM AMT = CRU

The product CRU is a square matrix of dimension in the
number of teams, where entries give an indication of the
extent to which each pair of teams is working on mod-
ules that interact with uncertain interfaces and/or uncer-
tain allocation of functionality. This indication is very
approximate, but a comparison of values in CRU and
CCM should give useful indication where much commu-
nication is going to be required (relatively large entries in
CRU) and little communication capacity exists (relatively

× ×

ptg

212 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

small entries in comparable cells of CCM). Such mis-
matches should trigger discussions about how communi-
cation can be supported or how work can be reassigned
in order to sidestep communication problems. An analo-
gous computation substituting CM for AM and DCM for
CCM will provide a comparison of the need of teams to
coordinate through documentation and their capacity to
do so.

Let’s illustrate with a small example. Let AM, a matrix of
dimension teams by modules, represent assignment of
code modules to teams for development. This is simply
a work assignment view. UM is an uncertainty matrix,
representing the lead architect’s judgment about the rel-
ative degree of uncertainty, for each pair of modules, of
the interface and the allocation of functionality between
the modules. CRU represents the extent to which each
pair of teams can expect to be required to coordinate
uncertainties.

CRU can now be compared with communication capac-
ities of the teams, CCM, or used to plan how the work is
assigned. It is a good bet, for example, because of the
work they are performing, teams 1 and 3 will require a
very robust communication capacity, if not collocation.
This because of the considerable uncertainty between
modules 1 and 3 as well as 3 and 5. Teams 2 and 3 will
have relatively little need to work out uncertainties,
meaning they can probably be located anywhere and will
need no special communication technologies. Teams 1
and 2 will have a moderate need to communicate, sug-
gesting they should work in time zones that allow over-
lapping work hours and have adequate teleconferencing
and perhaps instant-messaging technologies. Their coor-
dination success should be carefully monitored to ensure
they don’t get out of sync.

Additional experience with coordination views will even-
tually tell us when this simple construction is sufficient,
and when more nuanced schemes, perhaps attuned to

Work assignment views
are discussed in Sec-
tion 5.4.

× × =

AM

0 1 1 0 1
0 0 0 1 0
1 1 1 0 0

AMT

0 0 1
1 0 1
1 0 1
0 1 0
1 0 0

CRU

- 4 7
4 - 2
7 2 -

UM

- 0 3 0 0
0 - 0 1 1
3 0 - 1 3
0 1 1 - 2
0 1 3 2 -

ptg

5.7 Discussion Questions ■ 213

architecture styles or other key attributes, will add value.
We may also need more systematic ways of assigning
values to both need and capacity. Such issues are the
subject of ongoing research (Urdangarin et al. 2008;
Avritzer, Cai, and Paulish 2008).

5.6 Summary Checklist
• Allocation styles map software elements to elements in the

environment of the software.

• A deployment view describes the mapping of runtime soft-
ware elements to the hardware of the computing platform
on which the software executes.

• An install view describes the tree structure of files and fold-
ers in the production environment and how the software
components are mapped to that structure.

• A work assignment view describes the mapping of modules
onto the people, groups, or teams tasked with the develop-
ment of those modules.

5.7 Discussion Questions
1. Consider a network diagram created by the network admin-

istrator in the IT department of your organization. How
does that diagram compare with a deployment view? What
is missing?

2. Suppose that you needed to map the modules under test to
the test harness that generates inputs, exercises the mod-
ules, and records the outputs. Sketch an allocation style
that addresses this concern.

3. In one project, short identifiers were assigned to every
module. A module’s full name consisted of its identifier,
prefixed by its parent’s identifier, separated by a period (.).
The project’s file structure was defined by a short memo-
randum stating the path name of a root directory and fur-
ther stating that each module would be stored in the
directory obtained by changing each period in the mod-
ule’s full name to a slash (/). Did this memorandum con-
stitute an implementation view for this system? Why or why
not? What are the advantages and disadvantages of this
scheme?

4. Suppose that your system can be deployed on a wide variety
of computing platforms and configurations. How would
you represent that?

ptg

214 ■ Chapter 5: Allocation Views and a Tour of Some Allocation Styles

5. Besides the ones in this chapter, identify as many other
structures in the environment of a software system as you
can. Pick a few and answer the following: What software ele-
ments would map to it? Create an example primary presen-
tation for a corresponding view. Discuss to whom such a
view would be useful and what concerns it would address.

6. Many deployment tools and integrated development envi-
ronments provide views of the development and produc-
tion environments that allow you to easily understand and
navigate the tree structure of files and folders. Do you think
these tools can fill the need for creating install views or
implementation views in the architecture documentation?
Why so, or why not?

5.8 For Further Reading
Both the install style and the implementation style are aligned
with the broad topic of software configuration management
(SCM). An in-depth treatment of SCM is far beyond the scope
of this book, but you can begin investigating the topic by looking
at the documentation of SCM and version-control tools, such
as Subversion, CVS, Perforce, ClearCase, and Visual SourceSafe.
The Siemens Four View model defines a code architecture
view that explains how the software implementing the system
is organized into source, intermediate, and deployment com-
ponents and related decisions regarding build and installation
procedures and configuration management (Hofmeister, Nord,
and Soni 2000).

In the 1960s Conway (1968) formulated a law that the archi-
tectural structure mirrors the organizational structure. He
based his law on ease of communication within as opposed to
across groups. This law is an organizational articulation of cou-
pling and coherence. Architecture-based management of soft-
ware projects is also discussed in the book by Paulish (2002).
He has observed that accurate time and budget estimates
depend on basing them on the software architecture. This is
the place where a work assignment view comes into play; Paul-
ish’s observation has a strong intuitive base, as the time and
budget estimates depend on the work breakdown structure,
which in turn depends on the software architecture. More
recently, Avritzer and others have observed many different
organizational approaches to assign work in globally distrib-
uted teams (for example, product structure, process steps,
release-based, computing platform structure, competence cen-
ter, and open source) (Avritzer, Cai, and Paulish 2008).
Avritzer explicitly discussed assigning work in globally distrib-
uted teams.

ptg

215

P A R TBeyond Structure:
Completing the
Documentation

Part I presented a substantial repertoire of useful architecture
styles. An architect can choose from among these styles, pick
styles in other style catalogs, or design a new style. Once a style
is chosen, the view based on it needs to be designed and docu-
mented. The chapters in Part I presented ways to document
the elements and relations that populate a view.

But documenting a view involves more than just writing
down (or more often, drawing) the elements and their rela-
tions. Elements have interfaces, and those need to be docu-
mented so that teams developing other elements can interact
with them correctly. Elements have behavior, and confedera-
tions of elements have collective behavior, which needs to be
documented so that implementers know what the elements
they’re coding should do, and so that analysts can tell if the
architecture is satisfying the system’s behavioral requirements.
Architects need a way to explain their design—what drove
them to make the design decisions they did. Documenting
rationale is a critical but often underpracticed part of an archi-
tect’s duties.

These and other kinds of information are important parts of
the architecture document. Part II deals with those.

• Chapter 6 explores documentation techniques such as
refinement and chunking of information, context dia-
grams, creating and documenting combined views, docu-
menting variability and dynamism, and documenting the
rationale behind architectural decisions.

• Chapter 7 tells how to document the interfaces of architec-
ture elements. It provides ways to document the existence of
interfaces, the syntax (or signature) of an interface, and the
semantics of an interface.

Great things are not
done by impulse, but by
a series of small things
brought together.

—Vincent van Gogh

ptg

216 ■ Part II: Beyond Structure: Completing the Documentation

• Chapter 8 explores another essential technique for archi-
tects: documenting the behavior of an element or an ensem-
ble of elements. Documenting behavior is an essential
counterpoint to documenting static structure. This chapter
covers the techniques and notations available for expressing
the behavior of elements, groups of elements, and the sys-
tem as a whole.

ptg

217

6
Beyond the Basics

This chapter contains guidelines for dealing with several
aspects of documentation that either span views or are not spe-
cific to any particular category of views:

6.1 Refinement. Refinement is a way to reveal more information
over time as it becomes available. Refinement reflects how
architectures develop over time, and it lets architects present
information in more or less detail to serve various audi-
ences. This section discusses two kinds: decomposition
refinement and implementation refinement.

6.2 Descriptive completeness. Does your architecture document
tell the truth, the whole truth, and nothing but the truth?
There may be good reasons why it doesn’t.

6.3 Documenting context diagrams. A context diagram establishes
the boundaries for the information contained in a view. A
context diagram for the entire system defines what is and
is not in the system, thus setting limits on the architect’s
tasks. This section discusses how to document context dia-
grams, and how to tailor context diagrams for each view.

6.4 Documenting variation points. Some architectures provide
built-in variation points to facilitate building a family of
similar but architecturally distinct systems. Other architec-
tures are dynamic, in that the systems they describe change
their basic structure while they are running.

6.5 Documenting architectural decisions. Why we made architec-
tural decisions the way we did is just as important as the
results of those decisions. This section discusses how to
record the rationale behind your design.

ptg

218 ■ Chapter 6: Beyond the Basics

6.6 Combining views. Prescribing a given set of rigidly parti-
tioned views is naive; there are times and good reasons for
combining two or more views into a single combined view.

6.1 Refinement
Architects need a way to carry out their designs and present
information in a view in manageable chunks. Refinement
allows the architect to present information in separate, digest-
ible pieces. A refinement elaborates on (adds information to)
an existing representation. Refinement allows the architect to
capture and present information with more or less detail. Less
detail is useful in early stages of design, and excellent for intro-
ductions, overviews, and early conceptualizing.

There are two important kinds of refinement: decomposi-
tion refinement and implementation refinement.

6.1.1 Decomposition Refinement

A decomposition refinement elaborates a single element to
reveal its internal structure and then recursively refines each
member of that internal structure. The text-based analogy of
this is the outline, whereby major sections (denoted by roman
numerals) are decomposed into subsections (denoted by capi-
tal letters), which are decomposed into sub-subsections
(denoted by Arabic numerals), and so forth.

Using decomposition refinements in a view carries an obli-
gation to maintain consistency with respect to the relation(s)
native to that view. For example, suppose that the relation
shown in Figure 6.1(a) is send-data-to. Because element B is
shown as both receiving and sending data, the refinement of B
in Figure 6.1(b) must show where data can enter and leave B:
in this case, via B1.

Refinement is the pro-
cess of gradually dis-
closing information
across a series of
descriptions.

Decomposition refine-
ment is a refinement in
which a single element
is elaborated to reveal
its internal structure.
Each member of that
internal structure may
be recursively refined.

Figure 6.1
(a) A hypothetical system
consisting of three
elements: A, B, and C.
Arrows signify data flow.

(b) Element B is refined to
show that it consists of
elements B1, B2, B3, and
B4. Because B has two
inputs and one output, B’s
decomposition refinement
must satisfy that obligation.
Children B1 and B3 receive
the inputs; B3 produces the
output.

A

B
C

B

B1 B2

B3 B4

(a) (b)

ptg

6.1 Refinement ■ 219

Decomposition refinement is straightforward to depict in
UML if the UML construct representing the elements supports
nesting, such as a component or a package. Inside the refined
element, use delegation connectors to show the association
between the outer element’s interfaces and the inner ele-
ments. Figure 6.2 shows an example.

6.1.2 Implementation Refinement

Another kind of refinement, called implementation refinement,
shows the same system—or portion of the system—in which
many or all the elements and relations are replaced by new
ones, usually of a different type. Unlike a decomposition
refinement, the scope doesn’t zoom in, but remains fixed. The
implementation refinement reveals information showing how
the original construct will be realized.

For example, imagine two views of a publish-subscribe sys-
tem, as shown in Figure 6.3. In one view, components are con-
nected by a single event bus. In the refined view, the bus is
replaced by an event dispatcher to which the components
make explicit calls to achieve their event announcements.

Implementation
refinement is a refine-
ment in which some or
all of the elements and
relations are replaced
by other, more imple-
mentation-specific, ele-
ments and relations.

Figure 6.2
Showing decomposition
refinement in UML 2.x.
Figure 6.2(b) is a decompo-
sition refinement of Figure
6.2(a).

ItemEntry

Search

ItemEntry

Search

(b)

(a)

«component»
Catalog

Online
Services[1..5]

Admin
Services[1]

Online
Services[1..5]

Admin
Services[1]

DataAccess

Authorized
User

DataAccess

Authorized
User

«component»
SearchEngine

«component»
Catalog

«component»
DataCache

«component»
DataValidation

«component»
CatalogMgr

ptg

220 ■ Chapter 6: Beyond the Basics

6.1.3 Spectrum of Design

Through the use of refinement, architects can manage the
specificity of their architecture documentation (and its under-
lying architecture design). This varies depending on a variety
of factors, such as the stage of design, the amount of resources
available to nail down the design and produce the correspond-
ing documentation, the audience for whom that documenta-
tion is being written, and the maturity of the system. The result
is a spectrum of design.

At the left end of the spectrum, the designs (and their doc-
umentation) are broad, very abstract, and unrefined. Early in
the design, broad information is all the architect has. Happily,
the documentation of these early design stages is not wasted.
Architects often need to convey broad architectural under-
standing quickly to an audience that includes nontechnical
stakeholders: sponsors, managers, chief information officers,
visitors, and others. Such stakeholders do not want to pore
over a complete architecture document. The description
doesn’t have to be precise, it may not even need to be com-
pletely accurate, and the intent is not to instill deep under-
standing in the audience. Sometimes the intent is to instill a
sense that the people doing the presentation know what
they’re talking about.

Of course, other stakeholders (such as developers and those
who need to analyze specific properties of the architecture)
need the whole picture. They are the consumers of the docu-
mentation after detail and elaboration have been added

A marketecture . . . is a
one page, typically
informal depiction of the
system’s structure and
interactions. It shows
the major components,
their relationships and
has a few well chosen
labels and text boxes
that portray the design
philosophies embodied
in the architecture. A
marketecture is an
excellent vehicle for
facilitating discussion
by stakeholders during
design, build, review,
and of course the sales
process. It’s easy to
understand and explain,
and serves as a starting
point for deeper analysis.

—Ian Gorton, Essential
Software Architec-
ture (2006, p. 6)

Figure 6.3
Version 2 is an implementa-
tion refinement of version 1,
showing that the publish-
subscribe bus is actually
realized by an event
dispatcher.

C3

C1

C4 C5C3

C2 C1

C4 C5

C2

Version 1 Version 2

Event
Dispatcher

Key Event producer/
consumer

Announce-notify Port

Dispatcher Publish-subscribe

ptg

6.1 Refinement ■ 221

through the progressive refinement that happens as the archi-
tect collects more information and makes more design decisions.

One of the specific ways that the design moves to the right
along the spectrum is through style specialization.

6.1.4 Style Specialization

When picking a style for a view, one important dimension of
choice is how specialized that style is. The more specialized a
style is, the more constrained the architecture design space
that uses it will be. In exchange for limiting the class of systems
that are in the scope of that style, specialization has a number
of benefits, including the following:

• Stronger guidance for the architect, through the inclusion
of constraints associated with the style

• The ability to exploit specialized analyses, by leveraging
semantic properties of the system, such as computational
model and style-specific properties

• Reuse of implementation, such as middleware to support
communication and common services for components in
that style

Figure 6.4 illustrates the idea for component-and-connector
(C&C) views. Moving to the right, styles become progressively
more specific and constrained. At the left end of the spectrum
are the most generic, and hence least constrained, styles.
There a C&C style uses only generic components and connec-
tors, allowing complete freedom of expression, but carrying
none of the benefits mentioned above. Here the vocabulary
consists of the generic categories of C&C style (call-return,
data flow, event-based, and others) that impose constraints
over component-and-connector types and support a specific
computational model. Moving farther to the right are special-
izations of those styles, such as the examples described in

I’ve often found the
need for four different
architecture presenta-
tions: the slides for the
10-minute presentation,
the slides for the 1-hour
presentation, the 50-
page document, and
finally the full document.

—Philippe Kruchten

“Advice: Building an
Architecture Overview
Presentation,” on page
364 in Chapter 10,
shows how to build a
viewgraph presentation
from a software archi-
tecture document.

Figure 6.4
Style specialization

Generic Styles

Generic Style

Specializations

Generic

Component

Integration

Standards

Domain-Spec

Component

Integration

Standards

Organization-

Specific Style

Specializations

Data Flow
Call-Return
Implicit
invocation
…

Pipe & Filters
Multi-tier
SOA
…

UNIX pipes
Java EE
.NET
ESB
…

Yahoo! Pipes
Spring framework
Ruby on Rails
…

…

Degree of Specialization

ptg

222 ■ Chapter 6: Beyond the Basics

Chapter 4 (client-server, pipe-and-filter, publish-subscribe, tiered,
service-oriented, and more).

Farther right are styles that make stronger commitments to
a particular domain, and typically provide an increasing basis
for code reusability. For example, a Java EE-based style special-
izes tiered systems, introducing component types such as serv-
let, Enterprise JavaBean, and container components, while
providing considerable implementation support for distribu-
tion, remote method invocation, transaction support, and per-
sistence. One step to the right we find further specialization of
the styles. For example, the Spring framework defines a spe-
cific way to implement Java EE applications, adopting patterns
such as inversion of control and model-view-controller, and
introducing element types such as Controller, View, and View-
Resolver. Farther to the right, we might see architecture styles
for product lines, which are targeted to the needs of systems
within a particular company.

The choice of a domain-specific style often relates to the
maturity of a family of architectures within a company, business
segment, or engineering domain. For example, in the early
days of client-server-based information systems, there was very
little architecture guidance and reusability, beyond the need
for clients, servers, and some form of remote invocation.
Developers of such systems had to rely on relatively primitive
forms of support for distributed communication, such as sock-
ets and remote procedure call. As the field matured, so did
frameworks such as .NET and Java EE, enabling far greater use
of infrastructure, exploitation of common services, and guid-
ance for construction of systems using these frameworks.

6.2 Descriptive Completeness
Related to refinement is the concept of descriptive completeness.
Figure 6.5 shows an architecture diagram for an imaginary sys-
tem. Element A is related to element B in some way—the dia-
gram does not disclose how—B is related to C, and C is related
to B. If you’re a “consumer” of this diagram, what can you con-
clude about whether A and C are related?

You might say A and C are not related, because the diagram
shows no arrow between A and C. Or you might say that this
diagram reveals no relationship between A and C, but it is pos-
sible that this information was considered too detailed or tan-
gential for the diagram. Subsequent documentation may reveal
that A and C share this relation.

Either answer might be correct, as each represents a differ-
ent strategy for documentation. The first strategy says that the

Descriptive complete-
ness is a property of
architecture documen-
tation. Documentation
has descriptive com-
pleteness if it docu-
ments all elements and
relations in the system
that are in the docu-
mentation’s scope.

ptg

6.2 Descriptive Completeness ■ 223

views are written with descriptive completeness; the second
says they are not.

The same question can be asked about elements. In Figure
6.5, can we then presume that A, B, and C are the only ele-
ments involved? If the figure reflects descriptive completeness,
then yes. Otherwise, no; perhaps in an elaboration or an aug-
mentation of this view, another element will be shown, as in
Figure 6.6.

Why would an architect omit some elements and relations in
a view? There are some good reasons:

• It’s early in the design. We don’t know yet all the elements
and relations that are part of the solution. Or we don’t have
time to complete the diagram right now, so we focus on the
most important elements and relations.

• We want to show the most important parts of the view (and
may produce an accompanying refinement showing more

Figure 6.5
Element A is related to B, B
is related to C, and C is
related to B. What is the
relation between A and C?

A

B

C

Figure 6.6
An elaboration to Figure 6.5
showing an additional
element, DA

B

C

D

ptg

224 ■ Chapter 6: Beyond the Basics

of the design separately). Perhaps it’s for an overview. Per-
haps an element or relation is used only in special situations
(such as error recovery) and we don’t want to clutter the
diagram to cover these special cases. Or maybe an element
or relation is simply deemed less important and is left out.

• We want to reduce clutter in our diagrams. Maybe the same
relation exists between most or all elements in the diagram,
so we explain that in text (perhaps in a comment box)
rather than graphically to avoid cluttering the diagram.

In Section P.5, we admonished you to explain your notation.
The issue of descriptive completeness is a special case of that.
You simply need to specify which of the two strategies your doc-
uments follow.

ADVICE

If you create a diagram that is not complete, here a few things you can do to
inform the reader:

• Use ellipses (“. . .”) to indicate in the diagram that there are other elements or
relations not shown. In the key, explain the meaning of the ellipses. Figure 6.7
is an example.

Figure 6.7
Module decomposition diagram that is not complete, as indicated by the ellipses (“. . .”). For packages whose
submodules are shown and there is no “. . .” , the reader can assume all submodules are displayed.

edu.cmu.sei.pacc

plugin SEI.PECT.Core

ccl

edu.cmu.sei.pacc

«plugin» SEI.PECT.UI

PectIde
Plugin

ui

edu.cmu.sei.pacc.comfort

plugin SEI.ComFoRT

edu.cmu.sei.pacc.perf

plugin SEI.Perf-RF

ui

model

CheckAnalytic
Constraints

«jni wrapper»
CCode

Generator

«jni wrapper»
CclParser

Pect
Nature

actions

predict

ast

actions

AST

visitors

NodeVisitor
Adapter

...
...

Interpretation

Interpretation

...

«interface»
NodeVisitor

util

ui

actions

icm

Key: UML
Color for
readability.
“. . .” indicates
there are other
elements in
the package

Interpretation
AstVisitor

Performance
RFPlugin

« »

« »

« »

ptg

6.3 Documenting Context Diagrams ■ 225

• Use a comment box in the diagram to explain to the reader that not all ele-
ments or relations are being exhibited. Figure 6.8 is an example.

• Put a note in the key that says the diagram may not be complete and that
other elements or relations may exist in subsequent refinements.

6.3 Documenting Context Diagrams
The purpose of a context diagram is to depict the scope of a
view. Many, if not most, context diagrams in practice are top-
level context diagrams (TLCDs), but context diagrams are also
useful when an architecture document is explaining a subset of
the system, such as a subsystem or even a single architecture
element. Those smaller pieces have context as well, and under-
standing the context helps understand the subsystem or ele-
ment. Here, “context” means an environment with which the
part of the system interacts.

Entities in the environment may be humans, other com-
puter systems, or physical objects, such as sensors or controlled

Figure 6.8
Module uses diagram that does not show all usage dependencies, as indicated by the comment box attached to
package util. To avoid cluttering the diagram, the author decided to use that comment box instead of drawing
<<use>> dependencies from all other packages to util.

search
«use»

«use» «use»

«use»

«use»

«use»

«use»

Key: UML
Color used to
enhance
readability only

All other
packages may
call util

All Java
code
(including
GWT)

main

java::com.ikaruprojects.ikewiki

Spring, hibernate
and log4j
configuration files;
properties files used
by IkeWiki

resources

webapp

indexer

analytics

util

ads

user

komgr

presentation

JSP, HTML
files, CSS, and
other files that
are part of the
Web app

A context diagram
defines the boundary
between a system (or
part of a system under
consideration) and its
environment, showing
the entities in its envi-
ronment with which it
interacts.

A top-level context
diagram is a context
diagram in which the
scope is the entire
system.

ptg

226 ■ Chapter 6: Beyond the Basics

devices. In the case of a context diagram for a subset of the
whole system—that is, when the context diagram is not a
TLCD—the entities in the environment may well be other enti-
ties that belong to the same system as the subset.

A context diagram is useful because it clarifies what are the
parts of the whole solution you have to develop. Sometimes an
organization is asked to develop a system that is part of a larger
system, and a context diagram (in this case, a TLCD) depicts
that. Sometimes supporting frameworks and libraries, external
Web services, off-the-shelf software, other systems of the same
organization, or some other tangential software is considered
outside the scope of the system being developed. A context dia-
gram clarifies what is in and what is out.

6.3.1 Create Context Diagrams Using the Vocabulary of the View

Remember that your architecture document will consist of a
number of different views, and each view will include a context
diagram. Will each of these context diagrams be the same? No!
That would be unnecessary repetition.

Instead, let the vocabulary of the view—that is, its element
types and relation types—determine what its context diagram
should show. For example:

• The vocabulary of a decomposition view is “module” and “is
part of.” Sometimes an organization is asked to develop a
system that is part of a larger system, and a context diagram
depicts that. If so, then this relationship between what is
being developed and the larger system is shown in the con-
text diagram for the decomposition view. The system being
developed can be shown as nested inside the larger system.

A top-level context dia-
gram makes a good first
introduction to a system
and its architecture
description. It can serve
as the jumping-off point
for delving into deeper
architecture detail in any
number of directions.

Describe the context of
the system being devel-
oped using the vocabu-
lary of the view that
you’re documenting.

A B

C
Our

system

Larger system

ptg

6.3 Documenting Context Diagrams ■ 227

• The vocabulary of a uses view is “module” and “uses.” The
context diagram for a uses view shows what external entities
use or are used by the system under development.

• The vocabulary of a layered view is “layer” and “is allowed to
use.” Sometimes the system being developed sits atop a layer
provided externally, or sometimes the system being devel-
oped is the infrastructure or computing layer that can be
used by application software developed elsewhere. In that
case, the context diagram for a layered view would show the
system under development as a layer above or below some-
body else’s layers.

• The vocabulary of any kind of C&C view is, generally speak-
ing, components and connectors and runtime interaction.
The context diagram of a C&C view will show runtime inter-
action between the system being developed and external
entities, specialized as appropriate. The “traditional” con-
text diagram is, in fact, a context diagram for a C&C view.

A

B

C

Our

system

«use»

«use»

«use»

Our system

Network transport layer

Operating system

ptg

228 ■ Chapter 6: Beyond the Basics

• The vocabulary of a deployment view is the “is allocated to”
relation between software and runtime hardware. Thus the
context diagram for a deployment view will show any soft-
ware external to the system being developed that is also allo-
cated to the same hardware.

If you are documenting a view and the context diagram for
it does not apply—for instance, if you’re documenting a lay-
ered view and there are no external layers above or below the
system being developed—then simply mark the context dia-
gram for that view as “Not applicable.”

6.3.2 Content of a Context Diagram

Context diagrams show the following:

• A depiction of the system—or part of the system—whose
architecture is being documented.

• External entities.

• Relations with external entities that the system has. The
external entities are shown outside the distinguished sym-
bol for the system being described; the relations are
expressed in the vocabulary of the category of the contain-
ing view.

• A key that explains the notation used in the context dia-
gram, as is the case for all graphical figures.

Science
Data

Processing
Segment

EDOS/EBnet

GLAS SCF

MODAPS

System External
Entity

MOPITT SCF

SAGE III SCF SAGE III MOC

ACRIMI SCF

AMSR-E SCF

LPS

ASTER GDS

Science Computing
Facilities

Other Users

X interacts with Y

Data flows from
X to Y

LO data

GLAS higher
level products

MOPITT LO
data

SAGE III LO
data

SAGE III LO
data

ACRIM LO data &
higher level productsMOPITT LO

higher level
products

Higher level AMSR-E
data products

Interaction

Interaction

Algorithms

Data Acquisition Request

Exchange Data

LOR Data

SAGE III
higher level
products

GLAS LO data

MODIS higher
level products

MODIS L1A/L
1B, ancillary
data

Key

If the context diagram
for a particular view
doesn’t apply, mark it as
“Not applicable.”

Use some sort of distin-
guished symbol, such
as a thick outline or a
hashed interior, to
clearly denote the sys-
tem whose context is
being shown.

ptg

6.3 Documenting Context Diagrams ■ 229

A pure context diagram does not disclose any architecture
detail about the system—it just appears as an undecomposed
block—although in practice, context diagrams may show some
internal structure of the system being put in context. Context
diagrams do not show any temporal information, such as order
of interactions or data flow. They do not show the conditions
under which data is transferred, stimuli fired, messages trans-
mitted, and so on.

6.3.3 Context Diagrams and Other Supporting Documentation

Context diagrams impart some obligations on the other sup-
porting documentation in a view.

• The view’s element catalog should include a description of
the external elements shown in the context diagram. You
should give a reference to the documentation in which the
external entities’ interfaces are documented.

• The view’s rationale section should explain the reasons for
drawing the boundary where it is.

• If the system has an interface with its environment shown in
the context diagram, that interface needs to be “assigned”
to one of the system’s architecture elements. So every inter-
face between the system and its environment that appears in
a context diagram should also appear on one of the ele-
ments shown in the primary presentation.

6.3.4 Notations for Context Diagrams

Informal Notations

Informally, context diagrams consist of a circle-and-line or box-
and-line drawing, with the entity being defined depicted in the
center as a distinguished circle or box, the entities external to
it depicted as various shapes, and lines depicting relations con-
necting the entities as appropriate.

Structured analysis, the software design discipline that
brought context diagrams into the mainstream, uses an infor-
mal notation to depict what we would call a C&C-type context
diagram. The system is represented by a distinguished symbol
in the middle, external entities are boxes, and the lines con-
necting them indicate data flow and runtime interaction.

Because context diagrams are often used to explain systems
to people who know more about the externals of the application
than the internals, such diagrams can be quite elaborate and
use all sorts of idiomatic symbols for entities in the environment.

Figure 6.9 shows a context diagram created using an infor-
mal box-and-line diagram. Because the relation shown in the

Element catalogs are
described in Section
10.1.

ptg

230 ■ Chapter 6: Beyond the Basics

diagram is data flow (a runtime relation), we can tell that this
is the context diagram for a C&C view of some kind.

Context diagrams can be depicted easily using tables. This is
useful when there are too many interactions conveniently to
show graphically. For example, a table depicting the data flow
context diagram in Figure 6.9 would give the following:

• The identifier for each piece of data transferred across the
environment boundary (such as a message identifier)

• A description

• The element that sends it

• The element that receives it

• Some information about it, such as what you would find in
a data dictionary

Some software development standards prescribe a document
with a name such as “Interface Requirements Specification,”
whose contents consist chiefly of long tables describing mes-
sages sent to and from the system. These documents are effec-
tively context diagrams.

UML

UML does not have an explicit mechanism for a context dia-
gram. However, diagrams that are appropriate for the various
views are also good for showing the context of a given view.

Figure 6.9
Context diagram for a C&C
view using an informal
notation. The example is
taken from the Adventure
Builder system (Adventure
Builder 2010).

Notation
(Gane-Sarson)

Process
(system)

External
entity

Data flow

Consumer
Web Site

purchase order;
track order

verify credit card

place order

order confirmation

place order

order confirmation

place order

order confirmation

Order
Processing

Center
(OPC)

Bank

Lodging
Provider

Airline
Provider

Activity
Provider

ptg

6.4 Documenting Variation Points ■ 231

Recalling the principle that the context diagram for a view
should describe the context using the element-type/relation-
type vocabulary of the view that you’re documenting, the same
UML notation you use in a view’s primary presentation can be
used in that view’s context diagram.

For instance, you can use component diagrams to show a
C&C view’s context diagram. Or you can show the context dia-
gram of a decomposition view with nested packages. Or you
can show the context diagram of a layered view using packages
and <<allowed to use>> dependency arrows. And so forth.

A more general, though less informative, way to show con-
text in UML is with a combination of use case and class dia-
grams as shown in Figure 6.10. Here the system’s distinguished
symbol is an appropriately stereotyped class and environment
elements are shown as actors.

6.4 Documenting Variation Points
6.4.1 What Are Variation Points?

Variation points are places in the architecture where specific
instances of flexibility have been built in. The flexibility is
achieved by intentionally leaving specific architectural deci-
sions open, but in a way so that they can be easily bound later,
almost always by someone other than the architect. Architects
design variation points into an architecture to achieve variabil-
ity, which is the ability quickly to achieve change in preplanned
ways.

A variation point is a
place in the architecture
where a specific kind
of flexibility has been
built in.

Variability is the ability
to quickly achieve
change in preplanned
ways.

Figure 6.10
Description of a system
context, using a UML class
diagram. The class stereo-
typed as <<subsystem>>
depicts the system whose
context is shown; Patient,
Nurse, and Patient log are
external entities.

Patient

Nurse

Patient
log

«subsystem»
Patient monitoring

Notation: UML

ptg

232 ■ Chapter 6: Beyond the Basics

Providing variation points in an architecture is desirable in
the following situations:

• Some set of decisions has not yet been made during the
design process for a single system, but options have been
explored.

• The architecture for a single system is prepared for envi-
sioned future changes.

• The architecture provides basic functionality that can be
extended easily.

• The architecture is for a family or product line of systems,
and the option taken will depend on the specifics of the par-
ticular member of the family to be constructed.

• The architecture is a reference architecture for a collection
of systems and contains explicit places where configurations
and extensions to the reference architecture can occur.

Variation points can occur at any place in an architecture.
They can affect elements and relations, the properties of those
elements and relations, as well as their behavior. They can even
affect the relations between views. For example, a simple ele-
ment may run on the same processor with other elements, but
a more complicated variant might need to run on its own ded-
icated processor.

Document variation points where they occur: in diagrams,
element catalogs, behavioral descriptions, interface descrip-
tions, and so forth. But fully describing the effects and ramifi-
cations of each variation point, as well as how to exercise the
choice offered by a variation point, is best done in one place,
called a variability guide.

Documenting variation points where they occur throughout
the architecture documentation has the advantage that the
description is available where it is needed. But it also has the
disadvantage that pretty soon no one has the complete over-
view of which variation points exist in the system. Just as an ele-
ment catalog serves as a complete repository of elements in a
view, the variability guide will list and explain all of the varia-
tion points in a view.

6.4.2 Variation Mechanisms

Architects design a variation point by selecting a variation
mechanism that can be exercised to achieve one of the options
provided. Some of the more prominent architecture variation
mechanisms include the following:

See “Coming to Terms:
Product-Line Architec-
tures” on page 234 in
this chapter.

A variability guide is
the place in an architec-
ture document that
explains what variation
points have been
designed into the archi-
tecture and gives advice
about how to exercise
them.

A variation mecha-
nism is a built-in soft-
ware mechanism for
making a change that,
when exercised, results
in a new instance of the
architecture. The place
where a variation mech-
anism occurs marks a
variation point.

ptg

6.4 Documenting Variation Points ■ 233

• Element substitution. Replacing the implementation of a
module or component with a different implementation that
still honors (or “realizes”) the same interface. This might
provide one version of a system with a feature that behaves
one way, whereas the second version’s feature would behave
in a different way.

• Component replication. Creating multiple instances of a com-
ponent to provide greater capability in some fashion. For
instance, Web-based systems may allow the deployment of
Web components to multiple machines and the configura-
tion of the number of instances on each machine. Such con-
figuration is tuned to achieve the desired throughput and
availability.

• Optional inclusion. In some versions of a system, a compo-
nent might be present, whereas in another it might be omit-
ted. This allows a system to have, or not have, a particular
feature. Optional components are many times called plug-
ins or add-ons.

• Frameworks. A framework is an abstraction in which common
code providing generic functionality can be selectively over-
ridden or specialized by user code providing specific func-
tionality.

• Parameterization. To allow variation in a wide range of con-
structs. Common examples include values of file names,
URLs, user credentials, and lower-limit or upper-limit values.

• Element composition. Assembling new elements by putting
together existing elements. (A tool that does this is some-
times called a configurator.)

• Templates. Providing a generic body that is almost, but not
quite, complete. Downstream designers fill in the open
parts as needed. Templates are often for code, but they can
also be architectural: for instance, an architecture diagram
that has “empty” parts that need to be filled in.

• Inheritance. Defining generic classes and interfaces. Differ-
ent variations can be implemented (possibly by different
vendors) by creating specific subclasses or classes that real-
ize the interfaces.

• Generator. A generator is a software program that takes as
input some specification of a desired program and pro-
duces as output a program that meets that specification.

A framework is an
abstraction in which
common code provid-
ing generic functionality
can be selectively over-
ridden or specialized by
user code providing
specific functionality.

ptg

234 ■ Chapter 6: Beyond the Basics

COMING TO TERMS

Product-Line Architectures

A product-line architecture is the poster child for architectures with built-in vari-
ation points. A software product line “is a set of software-intensive systems that
share a common, managed set of features satisfying the specific needs of a par-
ticular market segment or mission and that are developed from a common set
of core assets in a prescribed way” (Clements and Northrop 2001). Each product
in the product line may have a slightly different architecture; these architectures
are instances of the product-line architecture. The product-line architecture has
decisions that have been intentionally left open; the architecture for a product
(sometimes called a product architecture or an “instance” architecture) comes
about when a product builder exercises the variation mechanisms that the product-
line architect has put in place exactly for the purpose of building any one of a
number of specific products.

For example, in a product line of personal income tax software, some products
go to the Web and download the latest calculation software to reflect changes in
the tax code; others might not. Some products might offer secure login and
encryption to allow higher data confidentiality; others might not. And so forth.
Product-line designers deal with extensive feature lists, and an individual product
is usually defined by the features it does and does not support. Together, the fam-
ily of products covers all of the targeted market segments. Individual products are
differentiated by feature and price. A developer building one of these products for,
say, testing or shipping, will exercise the variation mechanisms in such a way as
to derive the desired product. For example, if the architect has chosen optional
inclusion as the variation mechanism, the product builder will check out the cal-
culation-downloading component and the encryption component and include
them in the build, if the product includes the corresponding features.

To design a product-line architecture, an architect relies heavily on the product
line’s scope, which is a statement of what all of the products in the product line will
have in common and the specific ways that they will vary from each other. Choos-
ing variation mechanisms involves a trade-off between the cost of building in the
variation mechanisms and the cost of exercising them. For example, a generator
that takes as input a description of the product you want and—poof!—produces
that product is usually very expensive to build but very cheap to use. There are
situations where the economics favor that approach, and others where they do not.

6.4.3 Dynamism and Dynamic Architectures

When the binding time of a variation point is runtime, we say
that this is a dynamic architecture. Architectures change dur-
ing runtime in response to user requirements or to better
enable the achievement of particular quality attributes. A Web

Adynamic architecture
is one in which architec-
ture variation points are
exercised at runtime.

ptg

6.4 Documenting Variation Points ■ 235

browser that can go to a Web site, download a plug-in, and then
start using it to handle a new media type has a dynamic archi-
tecture; its runtime architecture comprises more components
after the download than before. An architecture can change
dynamically by creating (including) or deleting (dropping)
components and connectors, including replicas. For example,
when a new user enters an environment and wants new ser-
vices, components to provide those services would be created.
When the user leaves the environment, the components would
be deleted. The created component or connector may be a
replica or a singleton. In any case, the architect should docu-
ment the number of allowable replicas, the conditions under
which the creation or deletion occurs, and the connectors or
components that are created.

Another way an architecture can change dynamically is by
reallocation of resources or responsibilities. Components may
be moved from one processor to another to offer better perfor-
mance. Responsibilities may be shifted among components:
perhaps a backup could assume primary status in the event of
a failure.

Happily, documenting a dynamic architecture is no differ-
ent than documenting other kinds of variation points; the
binding time is always runtime.

6.4.4 Documenting Variation Points

Variation points should be documented in two ways. First, their
existence should be noted in the appropriate places through-
out the view (primary presentation, element catalog, context
diagram, and so on) for the view in which they are visible. Sec-
ond, the variation point should be explained in the view’s vari-
ability guide.

To show a variation point in a diagram, you can attach an
annotation to the area affected by a variation point. With a suit-
able identifier (for example, “VP12”), the annotation can
point to the location in the variability guide where the varia-
tion point is explained in full.

Other graphical approaches for showing the existence of
variation tend to depend on the variation mechanism that the
architect has chosen. For example:

• Element substitution. The UML relation “realizes” is a good
way to depict this by showing that an interface can be real-
ized by any number of implementations. Graphically, this is
shown in Figure 6.11.

• Component replication. In an informal graphical notation,
component replication is almost always documented show-

Showing variation
points graphically can
lead to diagrams that
are cluttered and hard
to read, especially if you
try to show dependen-
cies among variations
graphically. Instead, you
can annotate your dia-
gram with a pointer to
an entry in the variability
guide (described in
Section 10.1).

ptg

236 ■ Chapter 6: Beyond the Basics

ing shadow boxes: Almost always lacking are an indication
of the possible range of replication and when the actual
number is bound. Figure 6.12 includes this information in
the annotation; it could equally well have referred to the
variability guide.

• Optional inclusion. To show optional inclusion, you can
employ the notations for component replication; simply
confine the range of instances to 0 or 1.

• Creation and deletion of elements. Chapter 8 describes nota-
tions that can be used to indicate how elements can be cre-
ated and deleted when the system is executed. An example
is a UML sequence diagram, in which a time line under-
neath an object indicates the existence of that object.

• Reallocating resources. Some forms of reallocation of resources,
such as the migration of objects, can be described by a UML
stereotyped dependency <<becomes>>. The dependency tail
is on the original location of an object and the head is on
the subsequent location.

Figure 6.11
Element substitution as
expressed by the “realizes”
relation «interface»

Web Browser

Notation: UML

Internet
Explorer 6

Internet
Explorer 7

Firefox Chrome

Figure 6.12
Component replication
using shadow boxes Variation point VP7: set by

build-time parameter
“NbrOfSocketConnections”
(default=1..32)

Socket
Connection

ptg

6.4 Documenting Variation Points ■ 237

• Frameworks. Extension points need to be documented. An
extension point is a place in the framework where addi-
tional elements can be added or abstract elements can be
replaced with concrete ones. Each extension point is docu-
mented by an interface description of what the framework
provides and the extension requires.

The variability guide for a view should contain the following
information for each variation point that is present in the view:

• Description of the variation point. What decision has been left
open by this variation point? The description should be
architectural (for example, a particular component can be
swapped in and out) but also meaningful to the stakehold-
ers (for example, choosing different implementations
results in different feature behavior).

• Available options and their effects. What is the range of choices
available to exercise this variation point? What is the stake-
holder-visible effect of each? What are the architectural
effects of each option?

• Condition of applicability. Each variation point has a condition
associated with it that describes a state that must be true for
a variation point to apply. For example, to create an enter-
tainment system for a car, the decision of which type of DVD
player to use depends on the decision that the system actu-
ally has a DVD player.

• The binding time of an option. Possible binding times include
design time, compile time, link time, or runtime. If runtime,
more choices are possible: system start-up or restart time,
when the component containing the variation point starts,
or at other distinguished times during execution.

• How the option is exercised. This describes what someone has
to do in order to choose an option of the variation point: set
a build-time parameter, for instance, or replace one imple-
mentation of a module with another. This section is the
step-by-step “how-to” guide for making the choice presented
by the variation point.

• Dependencies among variation point options. Sometimes when
an option is chosen for one variation point, it constrains
other choices. For example, suppose your supply-chain
management system stores images of the items that are in
your inventory, and image format (such as JPEG or PNG) is
a variation point. Suppose customers can access your inven-
tory on a handheld device such as a pocket PC or cell
phone. The list of devices that your system supports con-
strains the image formats that can be used and vice versa.

ptg

238 ■ Chapter 6: Beyond the Basics

A variability guide can be conveniently presented as a table.
Figure 6.13 shows an example.

Variation Point

Affected
Element or
Relation Variants Condition

Binding
Time

VP1: Host name of
the SMTP server
used by the system
to send e-mail
messages

emailer Any valid host
name.

Whenever the
SMTP host
changes. Also used
to switch between
development and
test environments.

Load time

VP2: External stor-
age and content
delivery services
in use

filemanager List of Web ser-
vices; shall differ-
entiate whether
the service is
available in the
development,
test, and/or
production
environments.

At least one storage
service must be
configured. A sub-
module that handles
communication
with a given new
service must be
available prior to
enabling a service.

Load time

VP3: Access keys
to storage and con-
tent delivery Web
services

filemanager For each storage
and content deliv-
ery service
enabled (such as
Scribd, S3, You-
Tube), there will
be a set of access
parameters (such
as URL, user ID,
password).

Only used if the cor-
responding service
is enabled in VP2.

Runtime

VP4: Performance-
monitoring switch

util; logging;
aspects

True if the
response time of
requests needs to
be monitored and
recorded; false
otherwise.
Must be config-
urable separately
for development,
test, and produc-
tion environments.

Must be set to true
when the SLA is in
effect or for debug-
ging purposes. If
false, the corre-
sponding submod-
ules and artifacts
may be excluded
from the build.

Build time

Figure 6.13
Excerpt from a variability guide showing variation points of a Web application. This variability guide is part of a module
uses view (not shown), where the description of the affected elements is found.

ptg

6.5 Documenting Architectural Decisions ■ 239

6.5 Documenting Architectural Decisions
With Jeff Tyree and Art Akerman

6.5.1 Why Document Architectural Decisions?

The process of developing a complex software architecture
involves making hundreds of big and small decisions. The
results of these decisions are reflected in the views that docu-
ment the architecture—the structures with their elements and
relations and properties, and the interfaces and behavior of
those elements—but most of the time the decisions themselves
are sadly neglected. And in that case, the rationale, especially
the rationale behind the most important decisions, is irrevoca-
bly lost.

Most decisions are made in a complex environment and
almost always involve trade-offs, and the environment and the
trade-offs are likely to be completely invisible to someone who
“inherits” the architecture. Generally, there were circum-
stances, constrained by cost and schedule, under which these
decisions made sense. However, looking back, after all the dust
has settled and the original system designers are long gone, we
have no context around the critical decisions; we have no his-
tory; we have no guidance from the architect to take us for-
ward. All we can do is just shake our heads (sometimes in
disbelief) and ask “What was he thinking?” Rationale tells us
exactly that: What he (or she) was thinking.

In the Views and Beyond approach, documenting architec-
tural decisions enjoys first-class status. When we introduce the
templates for software architecture documentation in Chapter
10, you will see that they contain dedicated places to record
architectural decisions.

Documenting architectural decisions as you go results in an
architecture that is demonstrably aligned with the business and
technical goals of the system. This is a theme we have tried to
emphasize throughout the book. Documentation isn’t some-
thing you do after the architecture is finished. Documenting the
architecture helps you design the architecture. Documenting the
decisions as you make them helps you make them correctly.

6.5.2 A Template for Documenting Architectural Decisions

Following a minimalist approach, only those issues that need
addressing at various points in the life cycle should be addressed
and thus documented. For example, decisions with many
and far-reaching implications are prime candidates to be
documented.

Rationale is an expla-
nation of the reasoning
that lies behind an
architectural decision.

The life of a software
architect is a long (and
sometimes painful) suc-
cession of suboptimal
decisions made partly in
the dark.

—Philippe Kruchten

ptg

240 ■ Chapter 6: Beyond the Basics

What follows is a template for capturing essential informa-
tion about a key architectural decision.

1. Issue. State the architectural design issue being addressed.
This should leave no questions about the reason why this
issue is to be addressed now.

2. Decision. Clearly state the solution chosen. It is the selection
of one of the positions that the architect could have taken.

3. Status. State the status of the decision, such as pending,
decided, or approved. (This is not the status of imple-
menting the decision.)

4. Group. Name a containing group. Grouping allows for fil-
tering based on the technical stakeholder interests. A sim-
ple group label, such as “integration,” “presentation,”
“data,” and so on can be used to help organize the set of
decisions. For example, the data architects reviewing the
decisions can focus only on the decisions classified as data.

5. Assumptions. Clearly describe the underlying assumptions
in the environment in which a decision is being made.
These could be cost, schedule, technology, and so on.
Note that constraints in the environment (such as a list of
accepted technology standards, an enterprise architec-
ture, or commonly employed patterns) may limit the set
of alternatives considered.

6. Alternatives. List alternatives (that is, options or posi-
tions) considered. Explain alternatives with sufficient
detail to judge their suitability; refer to external documen-
tation to do so if necessary. Only viable positions should be
described here. While you don’t need an exhaustive list,
you also don’t want to hear the question “Did you think
about . . . ?” during a final review, which might lead to a
loss of credibility and a questioning of other architectural
decisions. Listing alternatives espoused by others also
helps them know that their opinions were heard. Finally,
listing alternatives helps the architect make the right deci-
sion, because listing alternatives cannot be done unless
those alternatives were given due consideration.

7. Argument. Outline why a position was selected. This is
probably as important as the decision itself. The argument
for a decision can include items such as implementation
cost, total cost of ownership, time to market, and availabil-
ity of required development resources.

8. Implications. Describe the decision’s implications. For exam-
ple, it may

– Introduce a need to make other decisions

Like all templates in this
book, use this one as a
starting point. Add or
subtract rows or sec-
tions so that it best fits
your organization, your
stakeholders, and their
needs.

ptg

6.5 Documenting Architectural Decisions ■ 241

– Create new requirements

– Modify existing requirements

– Pose additional constraints to the environment

– Require renegotiation of scope

– Require renegotiation of the schedule with the customers

– Require additional training for the staff
Clearly understanding and stating the implications of the

decisions has been a very effective tool in gaining buy-in.

9. Related Decisions. List decisions related to this one. A
traceability matrix or decision tree is useful, as is showing
complex relations diagrammatically such as with object
models. Useful relations among decisions include causal-
ity (which decisions caused other ones), structure (show-
ing decisions’ parents or children, corresponding to
architecture elements at higher or lower levels), or tem-
porality (which decisions came before or after others).

10. Related Requirements. Map decisions to objectives or require-
ments, to show accountability. Each architecture decision is
assessed as to its contribution to each major objective. We
can then assess how well the objective is met across all
decisions, as part of an overall architecture evaluation.

11. Affected Artifacts. List the architecture elements and/or
relations affected by this decision. You might also list the
effects on other design or scope decisions, pointing to the
documents where those decisions are described. You
might also include external artifacts upstream and down-
stream of the architecture, as well as management artifacts
such as budgets and schedules.

12. Notes. Capture notes and issues that are discussed during
the decision process.

ADVICE

Using the Template for Documenting Architectural Decisions

Assumptions (number 5 in the template). The architect should document key
assumptions he or she made when crafting the design. Assumptions are usually
about either environment or need. Assumptions about the environment docu-
ment what the architect assumes is available in the environment and what can
be used by the system being designed. Assumptions are also made about
invariants in the environment. For example, a navigation system architect might
make assumptions about the stability of the earth’s geographic and/or magnetic
poles. Finally, assumptions about the environment can pertain to the development

Let us change our tradi-
tional attitude to the
construction of pro-
grams. Instead of imag-
ining that our main task
is to instruct a computer
what to do, let us con-
centrate rather on
explaining to human
beings what we want a
computer to do.

—Donald Knuth

ptg

242 ■ Chapter 6: Beyond the Basics

environment: tool suites available or the skill levels of the implementation teams,
for example. Assumptions about need state why the design provided is suffi-
cient for what’s needed. For example, if a navigation system’s software interface
provides location information in a single geographic frame of reference, the
architect is assuming that it is sufficient and that alternative frames of reference
are not useful.

Assumptions can play a crucial role in the validation of an architecture. The
design that an architect produces is a function of these assumptions, and writ-
ing them down explicitly makes it vastly easier to review them for accuracy and
soundness than trying to ferret them out by examining the design.

Alternatives (number 6). Unless mandated, do not explicitly register the name
of the person who suggested each alternative. Finding the best alternative for a
design problem should be seen as a team effort. The solution has collective
ownership; it’s not important that Carlos’s solution won over Julia’s.

Argument (number 7). Analysis or formal review results often make excellent
fodder for rationale, in that they illuminate goals and requirements driving the
architecture and provide the connection between those constraints and the
architectural decisions that satisfy them. If trade studies were performed to sup-
port a decision, or analysis performed to validate a decision, these can be con-
veniently referenced here.

6.5.3 Documenting Alternatives

Often, early and major architectural decisions involve select-
ing from among a set of available alternatives. A table shows
and quickly contrasts the pros and cons of each alternative.
Table 6.1 shows an example of a table comparing three strate-
gic options available to a financial organization trying to meet
the listed business objectives.

6.5.4 Which Decisions to Document

Which of the hundreds or thousands of design decisions com-
prising an architecture should be documented? Certainly not
all of them. It’s simply too time-consuming, and many deci-
sions do not warrant the effort. So how do you select which
decisions are important enough to warrant documentation?

The goal is to receive a positive “return on investment” for
the effort you expend recording the decision. That is, you
should document an architectural decision if, in your judg-
ment, you think it’s cheaper to capture it now than not captur-
ing it will be later.

Alternatives are often
conveniently docu-
mented using a table
listing relevant objec-
tives or decision criteria
and showing how well
each alternative
addresses them.

It is hard to claim that
you know what you are
doing unless you can
present your act as a
deliberate choice out of
a possible set of things
you could have done as
well.

—E. W. Dijkstra (1972,
pp. 39–41)

ptg

6.5 Documenting Architectural Decisions ■ 243

Here are some guidelines to help you identify the architec-
tural decisions worth capturing. Document an architectural
decision if:

• It has an important effect on the system. For instance, it
strongly affects the system’s business goals, or one or more
system quality attributes (performance, availability, modifi-
ability, security, and the like). Or the decision has some
other widespread effect that will be difficult to undo. Or the
decision implies spending (or saving) a significant amount
of time (such as buying an expensive product).

• The design team spent significant time and effort evaluating
options before making a decision. For example, the deci-
sion comes after performing technical experiments or
implementing prototypes or trade-off studies. Or you per-
formed a focused group analysis or conducted a survey with
a user base or established some sort of user forum.

• The decision is complex or confusing. For instance, the
decision seems not to make sense at first but becomes clear
when more background is considered. Or on several occa-
sions, you’ve been asked, “Why did you do that?” Or the
issue is confusing to new team members.

• Decisions that were unusual or unexpected should be docu-
mented because these are very likely to be broken by mistake
by people who would not have considered such a resolution.

Table 6.1 Analysis of alternatives for implementation of interactive approval processing

ID Concerns
Alternative 1:
Re-architect System A

Alternative 2:
Extend System B

Alternative 3:
Replace System A

N1 Provide interactive
approval of credit appli-
cations

Yes Yes Yes

N2 Deliver in 6 months Yes Yes No

N3 Reduce time to market
for future enhancements

No Yes Yes

N4 Reduce costs No Yes No

N5 Reduce risks No Yes No

N6 Will not disrupt business
operations

Unknown Unknown No

N7 System qualities No Yes Unknown

N8 Reuse existing infra-
structure, buy before
build

Yes Yes No

N9 Use proven technologies Yes Yes No

ptg

244 ■ Chapter 6: Beyond the Basics

Often an architecture decision creates more issues. We doc-
ument these issues as implications, which automatically
become concerns for the new architecture decisions.

PERSPECTIVES

“It may sound like a lot of effort to do this, but here’s how we do it in the
trenches.”

We’ve worked with dozens of architects who have written thousands of deci-
sions and conducted countless review sessions defending their technical rec-
ommendations and rationales. Did these efforts produce enough tangible
results? Did they justify the significant investments of time and resources that
were made? Would these architects have been better off spending more time
developing reference architectures, patterns, or standards? It is hard to tell. One
thing is certain, however: By demonstrating relentless focus on aligning archi-
tectures with business problems, by bringing partners and customers along on
a journey to develop the “right” solutions, and by being clear about the implica-
tions of their choices, we’ve seen architects build much stronger relations with
their business and IT stakeholders. It is difficult to accuse any of these architec-
ture teams of living in an ivory tower. Their work is well integrated with the strat-
egy, development, and operations of their respective companies. How do you
put a price on that?

Sometimes we do hear complaints from architects about the extra work
involved to document their decisions. In such cases we usually find that they’ve
gone too far, by documenting decisions that had very little impact or that had
no viable alternatives. We reiterate with them the intent of documenting deci-
sions, which has very little to do with the number of decisions captured. At the
end of our discussions, architects usually leave the room much happier.

Modern enterprises have a characteristically flat organization and unclear lines
of authority. Such places gather highly intelligent people who live to challenge
the status quo, to innovate and to excel. Very seldom are people are given direct
orders anymore. It is even more seldom that they would follow such orders will-
ingly. The only way to drive change in such an environment is to obtain buy-in.
Architecture decisions and rationale are essential tools for achieving that goal.
Of course, even the most rational arguments are useless if we don’t consider
human factors, such as personal and organizational agendas, relationships,
trust, and so on. But having a strong rationale is a minimum requirement for suc-
cessful conversations.

—A.A. and J.T.

ptg

6.5 Documenting Architectural Decisions ■ 245

6.5.5 The Payback for Documenting Architectural Decisions

Documenting architectural decisions can be seen as informing
the cost/benefit formula for architecture documentation given
in the prologue. That formula lets you decide whether the payback
for producing sound architecture documentation outweighs
the effort it takes to produce it. Documenting architectural
decisions, like architecture documentation at large, helps stake-
holders do their jobs more effectively and efficiently, avoid
wasting time on known technical dead ends, and maintain and
evolve the architecture in a manner consistent with its under-
lying design concepts and constraints. That savings is the pay-
back for the effort it takes for an architect to say, “This is what
I was thinking.”

Documenting the architecture will also help ensure that the
architecture is properly aligned with the prevailing business
and technical goals, by compelling the architect to document
that alignment as the architecture is being crafted. Here the
savings shows up as prevention of rework, which might be nec-
essary if the architecture were discovered to be the wrong one
for the job, because the architect didn’t understand what “the
job” actually was.

Although maintainers and future architects are primary con-
sumers of architecture rationale, they are not the only stake-
holders. Developers can gain important insights from reading
the architect’s reasoning. Testers can design tests to validate
the architect’s precepts and assumptions. Customers can exam-
ine the documented architecture decisions to convince them-
selves that their business goals are being met by the design.
These stakeholders, and others, can read the rationale to make
sure their interests have been addressed.

Here are some of the paybacks you can expect:

• Socializing decisions. Once a final architectural decision has
been reached, the team will need to socialize the result and
convince the rest of the organization that it has chosen
appropriately. The architecture decision template provides
a common language for discussing decisions. Reviewers can
easily see the status of the decision, the reasoning behind it,
and the impacts. In practice, this is more powerful than
reviewing, say, box-and-line diagrams. In practice, contro-
versial decisions should be socialized early and often.

• External memory for the architect. The stakeholder with perhaps
the most vested interest in capturing the motivation and
background for design decisions is the architect. In the
maelstrom of developmental activities, the architect needs
some way to remember the conceptual path he or she has
taken, as well as a way not to repeat dead-end design paths.

Section P.2.4 in the pro-
logue shows a formula
describing the payoff
point for architecture
documentation.

ptg

246 ■ Chapter 6: Beyond the Basics

• Conveying risk. Without properly documenting the major
decisions, understanding the implications of the architecture
is difficult. If recorded using a structure such as the one given
in Section 6.5.2, decisions describe more than just a solution.
They also communicate the essential risks and issues. The
team has information on where it should focus attention.

• Heading off redundant discussion. Without documented ratio-
nale, stakeholders may ask the same questions about a decision
that have long been answered. People may still challenge some
decisions, but they will do so from a more informed footing.

• Supporting timely development. Each decision can be commu-
nicated separately, with a caveat that it is subject to change
due to the impacts of downstream work. As long as these
relations and risks are understood, a team can start using
the decisions. This provides the opportunity to let develop-
ment proceed in the face of not-fully-worked-out decisions.

• Support for communication. By turning the rationale into a
viewgraph presentation, management or business stake-
holders can understand the major architectural decisions
along with their implications.

PERSPECTIVES

From Documenting Architectures to Architecting As Decision Making

With Rik Farenhorst

What is being proposed in this section reflects a decision-based school of
thought for how we go about laying down an architecture. Until now, the norm
has been to create an architecture and then document it, usually as a set of
views. Rationale, if captured at all, was an after-the-fact exercise in trying to
describe the reasoning behind a fait accompli.

But architecture can be seen as the outcome of a sequence of decisions, each
one rationally made in response to context and need. “Here is a major decision
we must make now,” they say. “Let’s write about it as we make it.” And they
capture both, at the same time, with tooling.

Many architecture tools let you extend the underlying metamodel that the tools
provide out of the box. Akerman and Tyree (2005) have a metamodel for
describing architectural decisions that can be loaded into such tools. As shown
in Figure 6.14, the metamodel defines a direct association between require-
ments or stakeholder concerns, the architecture decisions that satisfy them,
and the architecture assets (systems, components, modules, interfaces, and so
on) that those decisions make manifest. “Architecture asset” is typically part of
an architecture tool’s default metamodel, and so provides the anchor point
between architecture decisions and architecture.

ptg

6.5 Documenting Architectural Decisions ■ 247

Their metamodel goes on to elaborate each node. The node “decision” is elab-
orated to define the information fields laid out in Section 6.5.2. A “concern” can be
a required capability, a change case, a quality attribute, a risk, or a business need.

Now it becomes straightforward to include both decisions and views in a single
model for the architecture. The chosen solution is captured right along with the
rationale that produced it. Rationale behind a decision is no longer second-
class; the why and the what are two sides of the same coin.

This approach is in accord with a growing community of researchers in a field called
“architectural knowledge.” They focus on managing architectural design decisions,
their rationale, and related knowledge concepts (Araujo and Weiss 2002). The
approach described here is an example of this shift put into everyday practice.

—R.F.

PERSPECTIVES

An Ontology of Architecture Decisions

Philippe Kruchten, well known for his work in creating and describing the Rational
Unified Process, is one of the most experienced and thoughtful software archi-
tects in the world. Some extremely talented architects never share what they know.
Others share all the time, but without having the experience to back it up. When
I think of that rare group of architects who speak and write usefully and with
insight from years of front-line experience, Philippe is at the top of the list. A cur-
rent interest of his is the capturing and sharing of architecture knowledge, and
toward this end he has created a classification scheme for architectural decisions
(Kruchten 2004; Kruchten, Lago, and van Vliet 2006), summarized in Table 6.2.

Figure 6.14
Akerman and Tyree’s metamodel relates architecture decisions to architecture assets. (Adapted from A. Akermann
and J. Tyree, “Position on Ontology-based Architecture,” Proceedings of the Fifth Working IEEE/IFIP Conference
on Software Architecture [November 2005]. ©2005 IEEE)

Architecture Decision

Architecture Asset

Concern Roadmap

implemented byaddressed by

transforms

Key: UML

ptg

248 ■ Chapter 6: Beyond the Basics

Philippe also proposes an outline for describing an architectural decision. Here
are some descriptive items not contained in the outline we presented in Section
6.5.2. Add them to your template if you find them useful.

• Scope. Some decisions may have limited scope, in time, in the organization,
or in the design and implementation (see the overrides relationship, later in
this sidebar). By default (if scope is not documented) the decision is univer-
sal. Scope might delimit the part of the system, a life-cycle time frame, or a
part of the organization to which the decision applies.

• Author, Time Stamp, History. The person who made the decision, and when
the decision was taken. Ideally we collect the history of changes to a design

Table 6.2 Kruchten’s classification scheme for architectural decisions

Kind of Decision Description Examples

Existence
decisions
(“ontocrises”)

An existence decision states
that some element/artifact will
positively show up; that is, it
will exist in the system’s
design or implementation.
Structural decisions lead to
the creation of architecture
elements of some kind.
Behavioral decisions decide
how the elements interact.

• “The logical view is organized in
three layers: data layer, business
logic layer, and user-interface
layer.”

• “Communication between classes
uses Remote Method Invocation
(RMI).”

Ban or
nonexistence
decisions
(“anticrises”)

This is the opposite of an
existence decision, stating
that some element will not
appear in the design or imple-
mentation.

• “The system does not use MySQL
as its relational database system.”

• “The system does not reuse the
flight management system from
project ASIEW.”

Property
decisions
(“diacrises”)

A property decision states an
enduring, overarching trait or
quality of the system. Property
decisions can be design rules
or guidelines (when expressed
positively) or design con-
straints (when expressed neg-
atively), as some trait that the
system will not exhibit.

• “All domain-related classes are
defined in Layer #2.”

• “The implementation does not
make use of open-source compo-
nents whose license restricts
closed redistribution.”

Executive
decisions
(“pericrises”)

These are the decisions that
do not relate directly to the
design elements or their qual-
ities, but are driven more by
the business environment
(financial) and affect the devel-
opment process (method-
ological), the people
(education and training), the
organization, and to a large
extent the choices of technol-
ogies and tools.

• Process decisions: “All changes in
subsystem exported interfaces
(APIs) must be approved by the
Change Control Board and the
architecture team.”

• Technology decisions: “The sys-
tem is developed using Java EE.”

• Tool decisions: “The system is
developed using the System Archi-
tect Workbench.”

ptg

6.5 Documenting Architectural Decisions ■ 249

decision. Important are the changes of state, or course, but also changes in
formulation or in scope, especially when we run incremental architecture
reviews.

• Categories. A design decision may belong to one or more categories. The
list of categories is open ended; categories are useful for queries, and for cre-
ating and exploring sets of design decisions that are associated to a specific
concern or quality attribute.

• Cost. Some design decisions have a cost associated with them, which is
useful to reason about alternatives.

• Risk. Documented traditionally by exposure—a combination of impact and
likelihood factors—this is the risk associated with taking that decision. It is
often related to the uncertainty in the problem domain or to the novelty of the
solution domain, or to unknowns in the process and organization. If the
project is using a risk management tool, this should simply link to the appro-
priate risk in that tool.

As shown in Figure 6.15, Philippe has a richly defined notion of a decision’s
state:

• Idea. Just an idea, captured so as not to be lost, when doing brainstorming,
looking at other systems, and so on. It cannot constrain other decisions other
than ideas.

• Tentative. Allows running “what-if” scenarios, when playing with ideas.

• Decided. Current position of the architect or architecture team; must be con-
sistent with other, related decisions.

• Approved. By a review, or a board (not significantly different than decided in
low-ceremony organizations).

• Challenged. Previously approved or decided decision that is now in jeop-
ardy; it may go back to approved without ceremony, but it can also be
demoted to tentative or rejected.

Figure 6.15
Kruchten’s state machine for an architectural design decision (Kruchten 2009)

Idea 0 Tentative 2 Decided 3 Approved 4

Rejected 1 Challenged 2

Obsolete 0

ptg

250 ■ Chapter 6: Beyond the Basics

• Rejected. Decision that does not hold in the current system; but we keep
such decisions around as part of the system rationale (see subsumes in the
next list).

• Obsolesced. Similar to rejected, but the decision was not explicitly rejected
(in favor of another one, for example) but simply became “moot”—for exam-
ple, as a result of some higher level restructuring.

Finally, Philippe has worked out the ways in which decisions can be related to
each other:

• Constrains. The decision “Must use Java EE” constrains the decision “Use
JBoss.”

• Forbids. Synonymous with excludes.

• Enables. The decision “Use Java” enables the decision “Use Java EE.”

• Subsumes. “All subsystems are coded in Java” subsumes “Subsystem XYZ
is coded in Java.”

• Conflicts With. “Must use .NET” conflicts with “Must use Java EE.”

• Overrides. “The Comm subsystem will be coded in C++” overrides “The
whole system is developed in Java.”

• Comprises. Synonymous with is made of and decomposes into. “Design will
use UNAS as middleware” decomposes into “Rule: cannot use Ada tasking”
and “Message passing must use UNAS messaging services” and “Error log-
ging must use UNAS error logging services,” and so on.

• Is Bound To. Decision A constrains decision B, and decision B constrains
decision A.

• Is an Alternative To. Decisions A and B address the same issue but propose
different choices.

• Is Related To. There is a relation of some sort between the two design deci-
sions, but it is not of any kind listed previously and is kept mostly for pur-
poses of documentation and illustration.

So, when you’re filling in your template for an architectural decision and you
come to the table row holding the decision’s scope, or its current state, or its
related decisions, you may want to refer to Philippe’s categories in these areas.

—P.C.

6.6 Combining Views
The basic principle of documenting an architecture as a set of
separate views brings a divide-and-conquer advantage to the
task of documentation, but if the views were irrevocably differ-
ent, with no association with one another, nobody would be
able to understand the system as a whole.

ptg

6.6 Combining Views ■ 251

Because all views in an architecture are part of that same
architecture and exist to achieve a common purpose, many of
them do have strong associations with each other. Managing
how views are associated is an important part of the architect’s
job, and documenting that association is an important part of
the documentation that applies beyond views.

6.6.1 Types of Associations Between Views

Views are associated with each other in a variety of ways.
In a many-to-one association (see Figure 6.16), multiple ele-

ments in one view are associated with a single element in
another view. Implementation units are frequently associated
with the runtime components they become. The association
should make clear which module maps to which component.

In a one-to-many association (see Figure 6.17), a single element
is associated from one view to multiple elements in another
view. For example, a shopping cart module maps to multiple
components in a tiered view of a Web store application.

Finally, a many-to-many association associates a set of ele-
ments in one view to a set of elements in another. This kind of
association reflects the inherent complexity in relating two
views to each other, each of which was crafted to show its own
important aspects that in many ways might be orthogonal to
those in the other view.

Figure 6.16
Many-to-one association.
Multiple elements from one
view are associated with a
single element of another
view. As shown here, two
modules from a decompo-
sition view are designed to
run in a single process,
shown in the communicat-
ing-processes view.

Process 1

Module 1

Module 2

Communicating-Processes
View Decomposition View

Figure 6.17
One-to-many mapping. An
element of one view can be
associated with multiple
elements in another view.

Element 1

View A View B

Element 2

Relation 1

Relation 2

Element 3

Element 4

ptg

252 ■ Chapter 6: Beyond the Basics

6.6.2 Combined Views

Sometimes the most convenient way to show a strong associa-
tion between two views is to collapse them into a single combined
view. A combined view nominally reduces the number of views
in an architecture document because it replaces the views that
it combines.

Figure 6.16 showed how multiple modules might map to a
single process. Figure 6.18 shows how that mapping might be
documented using a combined view.

In Figure 6.17 we showed how an element of one view
mapped to more than one element of a second view. In Figure
6.19, we show how to represent this as a hybrid view. If Ele-
ments 2, 3, and 4, for example, are components of a C&C view
and Element 1 is the functionality to store and to retrieve data
within a component, designed as a class in a decomposition
view, mapping Element 1 onto Elements 2 and 3 makes those
elements “persistent components.” Combined views can be
very useful as long as you do not try to overload them with too
many mappings.

There are two ways to produce a combined view.

• Create an overlay that combines the information in what
would otherwise have been in two separate views. This works
well if the coupling between the two views is tight; that is,
there are strong associations between elements in one view
and elements in the other view. If that is the case, the struc-
ture described by the combined view will be easier to under-

A combined view is a
view that contains ele-
ments and relations that
come from two or more
other views.

An overlay is a view
that combines the pri-
mary presentations of
two or more views fol-
lowed by supporting
documentation for that
combined primary
presentation.

Figure 6.18
Multiple elements from one
view can be mapped to a
single element of another
view. Here Elements 1 and
2 from a module view are
designed to run in a single
process—Element 3—
shown in the communicat-
ing-processes view. The
resulting combined view
shows all three elements of
the module and communi-
cating-processes views,
and their association as
containment.

Element 3

Element 1

Element 2

Communicating-Processes
View Module View

Element 3

Element 1

Element 2

Combined View

ptg

6.6 Combining Views ■ 253

stand than the two views seen separately. For an example,
see the overlay of decomposition and uses diagrams shown
in Figure 6.20. In an overlay, the elements and the relations
keep the types as defined in their constituent styles.

• Create a hybrid style by combining two existing styles and
creating a style guide that indicates what styles were com-
bined and describes any new or hybrid element and relation
types, their properties, and constraints. Do this if the style is
important and will be used in a variety of analyses and com-
munication contexts in the system at hand or in other sys-
tems you expect to build. A view showing the hybrid style
applied to a system is a combined view.

In a hybrid style, element and relation types of the constit-
uent styles can “meld” into new types with new properties.
Therefore, hybrid styles require the definition of the result-
ing new element and relation types. For example, if a hybrid
style combines layered style and a communicating-processes
style, a new element type could be layered process, and this type
would need to be defined in the hybrid style’s style guide.

Similarly, the relation types of a hybrid style are derived
from the relation types of the constituent styles and their
associations. Not all relation types of the constituent styles
need to be preserved.

A hybrid style is useful to create if the style is used over and
over again in the same system or in the kinds of systems devel-
oped in your organization, and if many stakeholders need to
be familiar with it.

A hybrid style is the
combination of two or
more existing styles.
Hybrid styles are docu-
mented using a style
guide, as shown in
“Style Guides: A Stan-
dard Organization for
Explaining a Style,” in
Section I.1, in the intro-
duction to Part I. Hybrid
styles are like other styles
in that, when applied to
a particular system,
they produce views.

If you create a hybrid
style, document it using
a style guide, following
a template like the one
that appears in Section
I.1, in the introduction to
Part I.

Figure 6.19
In this example, mapping
Element 1 of View A onto
Elements 2 and 3 of View B
resulted in a new type of
element, depicted as a new
shape. This required the
definition of a new element
type in a style.

Element 1

View A View B

Element 2

Relation 1

Relation 2

Element 3

Element 4

Element 2Element 3

Combined View

Element 4

ptg

254 ■ Chapter 6: Beyond the Basics

Sometimes, however, a combined view is created for a single,
short-term purpose: for analysis or communication, for exam-
ple. For these short-term purposes, creating the required doc-
umentation for a new style is burdensome overhead, and an
overlay will serve nicely.

So now an architect has three ways to establish the associa-
tion between otherwise stand-alone views:

• Document a mapping between separate views. Do this as
part of the documentation that applies beyond views.

• Create a hybrid style and then produce views of your archi-
tecture using that style.

• Create an overlay from two otherwise separate views.

In fact, there’s a fourth way that sometimes works well. Aug-
ment the property list of one view with a property that lets you
specify the important information from the second view. For
example, in a decomposition view, you can add “Organiza-
tional unit” and “Development folder” as properties to docu-
ment for each module. When you fill in those property values,
you effectively have a combined module decomposition, work
assignment, and implementation view. Or in a communicating-
processes view, you can add a property named “Processor” and
another named “Installation file.” The result is a combined
communicating-processes/deployment/install view.

Finally, you can think of allocation views such as those in
Chapter 5 as a kind of combined view. One of the views they
combine is not a view from software architecture, but rather a
view from outside—runtime hardware, development environ-
ment, or organization.

6.6.3 When to Combine Views

The set of views used for a system is the result of a trade-off
between the clarity of many views, each of which has a small
number of concepts, and the reduced cost associated with hav-
ing a small number of views, each dealing with multiple concepts.

When considering a combined view, make sure that the asso-
ciation among the constituents is clear and straightforward.
Otherwise, these views are probably not good candidates to be
combined, as the result will be a complex and confusing view.
In this case, it would be better to manage the association sepa-
rately, as in a table that relates the views while keeping them
separate. A table has the space to make the complex associa-
tions among the constituents clear and complete.

Even if the associations are strong, too many different con-
cepts clutter up combined views. Keys and the plethora of rela-
tions shown in the primary presentation all become difficult to

If two views can be
associated with one
another, you should
show that association,
whether using a hybrid
style, an overlay, or a
separate piece of the
documentation showing
the association.

If the association is
clear and straightfor-
ward, and the combined
view won’t be overly
complex, and a con-
sumer group for the
combined view has
been identified, and that
group is the same group
consuming the constit-
uent views, then it
makes sense to adopt
the combined view in
place of the separate
constituents.

ptg

6.6 Combining Views ■ 255

understand. Before committing to a combined view, sketch it
to see whether it passes the “elevator speech” test: Could you
explain the idea behind it to someone in the time it takes to
ride an elevator up a dozen or so floors?

Different groups of workers need different types of informa-
tion. Make your choice of views responsive to the needs of your
stakeholders. Before committing to a combined view, make
sure that there is a stakeholder “market” for it.

Tool support influences the choice and number of views.
The cost of maintaining multiple views is partially a function of
the sophistication of the available tools. If your tools under-
stand how a change in one view should be reflected in another
view, it is not necessary to manage this change manually. The
more sophisticated the tools, the more views can be supported.

These views often combine naturally:

• Various C&C views. Because C&C views all show runtime
relations of various types among components and connec-
tors of various types, they tend to combine well. Different
(separate) C&C views tend to show different parts of the sys-
tem, or tend to show decomposition refinements of compo-
nents in other views. The result is often a set of views that
can be combined easily.

• Deployment view with either service-oriented or communicating-
processes views. A service-oriented view shows services, and a
communicating-processes view shows processes. In both
cases, these are components that are deployed onto proces-
sors. Thus there is a strong association between the ele-
ments in these views.

• Deployment view and install view. The combined view shows
the installation files and what hardware elements they are
deployed to.

• Decomposition view and any of work assignment, implementation,
uses, or layered views. The decomposed modules form the units
of work, development, and uses; and they populate layers.

• Generalization and aspects. Both views deal with classes and
objects and the relations among them—hence, these are
two views with a strong association.

6.6.4 Examples of Combined Views

Decomposition, Uses, and Generalization

Figure 6.20 is the primary presentation for one view of the soft-
ware architecture for the SEI’s Architecture Expert (ArchE)
tool. This tool allows an architect to create the architecture
design for a system based on three types of input: quality

ptg

256 ■ Chapter 6: Beyond the Basics

attribute requirements, features of the system being designed,
and preexisting pieces of design. Internally, ArchE constructs
a representation of the responsibilities of the system and the
dependencies among them. ArchE is powered by reasoning
framework plug-ins that can create quality attribute models
and use them to analyze performance, modifiability, and other
properties. Based on the inputs—the results of quality attribute
analyses and responses provided by the architect to questions
that ArchE raises interactively—ArchE creates an architecture
design.

Figure 6.20 is the primary presentation of a combined view
showing ArchE’s module decomposition, uses, and generaliza-
tion. ArchE is an Eclipse-based tool that uses the Jess rule
engine. The <<plugin>> stereotype indicates that contained
modules are packaged as Eclipse plug-ins.

Figure 6.20
Decomposition-uses-generalization combined view for ArchE

Not part of ArchE UI.
Will be developed
separately for demo.

Notation:
UMLExternal library

«use» «use» «use»

«use»

«use»

«use»

«use»«use»

«use»

actions

ui

config

Jess Java API

RF Config
Loader

vo
corebridge

export

SEI.ArchE.UI

SEI.ArchE.Lib

«plugin»

«plugin»

«interface»

Export Design

ExportTo
Acme

ExportTo
Rose

RMA Model
Solver

solveModel(
tasks[])

ptg

6.6 Combining Views ■ 257

Tiered Client-Server and Deployment

In Chapter 4, client-server was discussed as a C&C style. There
are many alternatives for allocating the components in each
tier to the supporting hardware infrastructure. The network
topology and the deployment structure of the software affect
several quality attributes, such as availability and throughput
(enhanced by replication and clustering of machines), and
performance (components on different machines require
remote calls to interact).

Figures 6.21 and 6.22 show a multi-tier client-server view and
a deployment view, respectively, of a banking application. Fig-
ure 6.23 shows the combined view.

The use of tiers is
explained in Section
4.6.2. The deployment
style is discussed in
Section 5.2.

Figure 6.21
The multi-tier client-server view of the Duke’s Bank application

Account
Controller

EJB

Customer
Controller

EJB

Tx
Controller

EJB

Key

Back-end tierEJB tierWeb tier

Client tier

Bank
Admin

Web
browser

WebUI

Account
EJB

Customer
EJB

TxEJB

Bank
DB

Client-side
application

Web
component

Stateful
session
bean

Entity
bean

Relational
data source

TierCommentJDBC database
access

Remote
EJB call

http/
https

Figure 6.22
A deployment view of the
banking system*

1

1

1

1

1

Notation:
UML

Internet
user PC

AppServer1

AppServer2

Database
server

Admin
user PC

Internet

Intranet

ptg

258 ■ Chapter 6: Beyond the Basics

6.7 Summary Checklist
• Refinement, the gradual disclosure of more-detailed infor-

mation, is a chunking mechanism. Decomposition refine-
ment reveals internal substructure. Implementation refinement
replaces elements with different elements showing different
element relation types that are closer to the actual realization.

• Documentation may or may not show all elements and rela-
tions; when some elements and relations are suppressed,
the view documentation should make it clear to the reader
that not everything is shown.

• A context diagram shows what’s in and what’s out of the sys-
tem under consideration and the external entities with which
the system interacts.

• An architecture document does not have a single top-level
context diagram, but rather one in each view. Each such dia-
gram shows the interactions with the environment in the
vocabulary for that view. All show what’s in and what’s out.

• Document variation points by describing what elements and
relations have been designed with variation mechanisms,
and how to exercise those mechanisms. Document the vari-

Figure 6.23
A combined multi-tier client-server deployment view

Account
Controller

EJB

Customer
Controller

EJB

Tx
Controller

EJB

* 1

1 1

1 1

Key

Admin
user PC

AppServer1 AppServer2 Database
server

Back-end tierEJB tierWeb tier

Client tier

Internet
user PC

Intranet

Internet

Bank
Admin

Web
browser

WebUI

Account
EJB

Customer
EJB

TxEJB

Bank
DB

Client-side
application

Web
component

Stateful
session
bean

Entity
bean

Relational
data source

Machine
node

Communication
channel with
multiplicity (1 or *)

TierCommentJDBC database
access

Remote
EJB call

http/
https

ptg

6.8 Discussion Questions ■ 259

ation points where they occur, but explain them in a vari-
ability guide.

• Showing how views are associated with each other often
yields useful insights about the architecture. One alterna-
tive to do that is to list, possibly in a table, how elements in
one view are associated with elements in the other view.
Another alternative is combine different views into one by
creating an overlay. Yet another alternative is to produce a
view from a hybrid style, which is a combination of two or
more styles.

• Views with a high correspondence are good candidates for
mapping, and views that complement each other are good
candidates for combining.

6.8 Discussion Questions
1. A user invokes a Web browser to download a file. Before

doing so, the browser retrieves a plug-in to handle that type
of file. Is this an example of a dynamic architecture? How
would you document it?

2. Suppose that communication across layers in a layered sys-
tem is carried out by signaling events. Is event signaling a
concern that is part of the layered style? If not, how would
you document this system?

3. Consider a shared-data system with a central database
accessed by several components in a client-server fashion.
What are your options for documenting the two-style
nature of this system? Which option(s) would you choose,
and why?

4. A bridging element is one that can appear in two separate
views. Both views will have room for documenting the ele-
ment’s interface and its behavior. Assuming that we do not
wish to document information in two places, how would
you decide where to record that information? Suppose that
the bridging element is a connector with one role for one
style and one role for another. Where would you record the
information then?

5. Sketch a top-level context diagram for a hypothetical sys-
tem as it might appear in the following views, assuming in
each case that the view is appropriate for that system: (a)
uses, (b) layered, (c) service-oriented, (d) client-server, and
(e) deployment.

ptg

260 ■ Chapter 6: Beyond the Basics

6.9 For Further Reading
Michael Jackson’s book on problem frames has a good chapter
on combining multiple problem frames (Jackson 2001). Although
it is cast in terms of the problem space, rather than the solution
space of architectures, many of the ideas carry over.

A robust community of researchers is interested in the capture
and use of architectural knowledge, a generalization of archi-
tectural decisions. The Sharing and Reusing Architectural
Knowledge (SHARK) series of workshops is a good place to
learn more; an online search will turn up current offerings and
past results (de Boer and Farenhorst 2008). An important research
project in capturing architectural knowledge is the GRIFFIN
project (griffin.cs.vu.nl) at VU University in Amsterdam.

The entries in the template for documenting architectural
decisions in Section 6.5 are based on IBM’s e-Business Refer-
ence Architecture Framework (Flurry and Vicknair 2001),
where architecture decisions are a key deliverable, and from
the REMAP and DRL metamodels (Akerman and Tyree 2005).
The template also leverages Kruchten’s work on an ontology of
software architecture design decisions (Kruchten 2009). Another
ontology is given by Komiya (1994). Both are well worth a look.

ptg

261

7Documenting Software
Interfaces

In this chapter, we look at these aspects of interface documen-
tation:

• Standard organization

• Stakeholders

• Conveying syntactic information

• Conveying semantic information

• Examples of interface documentation

7.1 Overview
So far we have emphasized documenting architecture ele-
ments and their relations using various kinds of views. More
implicitly than explicitly, we have stated that of course all those
elements have interfaces through which they can interact with
each other. Interfaces are supremely architectural, for without
them one cannot perform analyses or system building—both
activities we want to do with an architecture. Therefore, a crit-
ical part of documenting a view includes documenting the
interfaces of the elements shown in that view.

Modules, as discussed in Chapters 1 and 2, clearly have inter-
faces. As we said in Chapter 3, components also have inter-
faces, but they are often called ports. In this chapter, we will not
distinguish between module interfaces and component inter-
faces; the way you document them is the same.

Describing an element’s interface means making statements
about what other elements can depend on when using this ele-
ment. Designing an interface means deciding (and document-
ing with an interface document) which services and properties
should be externally visible and which should not. Everything

An interface is a
boundary across which
two elements meet and
interact or communi-
cate with each other.

An interface document
is a specification of
what an architect
chooses to make pub-
licly known about an
element in order for
other entities to interact
or communicate with it.

ptg

262 ■ Chapter 7: Documenting Software Interfaces

that is externally visible becomes a contract, a promise to users
that the element indeed will fulfill its obligations. This on the
other hand also means that every implementation of the ele-
ment that does not violate the contract is a valid one.

An element is used by actors. Actors are other elements,
either internal or external to the system documented, that
interact with an element through its interface. Those interac-
tions can take a variety of forms, such as function or method
calls, Web service requests, remote procedure calls, data
streams, shared memory, and message passing. Most involve
the transfer of control and/or data. These points of interac-
tion with an element are called resources. Thus, an interface
consists of one or more resources available for consumption by
actors. If the element that provides that interface is a class, the
resources are typically called methods.

An interaction extends beyond functionality and state changes.
For example, if element A calls element B, the amount of time
that B takes before returning control to A is part of B’s inter-
face because it may affect A’s behavior.

Let’s establish some principles about interfaces.

• All elements have interfaces. All software elements described in
any view interact with their environment. The architect
decides which aspects of the element’s interfaces need to be
documented.

• An element’s interface is separate from its implementation. This
principle is particularly useful when we want multiple imple-
mentations of an element (such as platform-specific imple-
mentations) that provide the same interface.

• An element can have multiple interfaces. Each interface contains
a separate collection of resources that have a related logical
purpose, or represent a role that the element could fill, and
each collection serves a different class of actors. Multiple
interfaces provide a separation of concerns. A specific actor
might require only a subset of the resources provided. If the
element has multiple interfaces, this subset of resources
should be provided by one of the interfaces. Conversely, the
provider of an element may want to grant actors different
access rights, such as read or write, to prevent resource con-
tention or to implement a security policy. Multiple inter-
faces support different levels of access.

Multiple interfaces also support the evolution of ele-
ments that are publicly available or used by a large number
of actors. If the element’s interface changes, it may not be
feasible to modify everything that uses the old version. So

An element’s actors are
the other elements,
users, or systems with
which it interacts.

A resource of an inter-
face represents a func-
tion, method, data
stream, global variable,
message end point,
event trigger, or any
addressable facility
within that interface.

ptg

7.1 Overview ■ 263

you can support evolution by keeping the old interface and
adding a new one.

• Elements not only provide interfaces but also require interfaces. An
element interacts with its environment by making use of
resources or assuming that its environment behaves in a cer-
tain way. Without these required resources, the element
cannot function correctly. For example, an element may
require Internet connectivity. In this case the element
would specify that an actor can use a certain resource it pro-
vides only if Internet connectivity is present. Otherwise
some error indication will be delivered.

• Multiple actors may interact with an element through its interface
at the same time. Some interfaces don’t allow multiple concur-
rent interactions because of synchronization and multi-
threading issues. These restrictions can be made clear by
specifying the number of actors that can interact with an
element via a particular interface at the same time.

• Interfaces can be extended by generalization. Many times, several
interfaces you are designing will include a common set of
resources. These resources can be placed in a separate inter-
face, and by using a generalization relation, you are indicat-
ing that children interfaces contain (and may extend) the
common resources. Examples of resources often shared by
several interfaces include the following:

– An initialization operation

– A set of exception conditions, such as failing to have
called the initialization operation

– A standard way to handle exceptions, such as invoking a
named error handler

– A standard statement of semantics, such as persistence of
stored information

• Sometimes it’s useful to distinguish interface types from interface
instances in the architecture. Some components can provide
multiple instances of the same interface. Consider for exam-
ple a component that is an observer in the observer design
pattern. This component provides an interface with an
operation to be called when an observable component
sends a change notification. Thus far we have the interface
type. If the component is an observer of multiple different
observable components, then it may be useful to represent
that in the architecture using multiple instances of the
observer interface type.

See “Coming to Terms:
Provided vs. Required
Interfaces” on page
264, in this chapter.

ptg

264 ■ Chapter 7: Documenting Software Interfaces

COMING TO TERMS

Provided vs. Required Interfaces

Architecture elements provide services to other elements
through one or more interfaces. This concept of an ele-
ment and its interface is one of the enduring bedrock
concepts of software engineering. But architecture ele-
ments can, and often do, need specific services from
other elements in order to function correctly. To capture
this need, architects can document a required interface.

The information you need to document about what your
architecture element requires is the same as what you
should document for what it provides: resources, their
syntax and semantics, their error-handling behavior, their
quality attribute characteristics, and any variation points
they provide. In short, you can use the template given in
Figure 7.5, later in this chapter, for documenting an inter-
face that your element provides and (separately) an interface
that your element requires. You can even fill in the section on
rationale and design issues to record your decision-making
process for why your element needs what it needs.

Suppose another element provides just the resources you
need, or at least resources that are close enough to what
you need that you can use them successfully. Would you
document a required interface for your element then?
Probably not, opting instead to refer to the other element’s
provided interface, to say essentially, “I need that.”

But suppose no other element provides the resources
your element needs. Maybe there will be one, but its
designers are not as far along as you. In that case, it
makes much more sense for you to document a required
interface for your element, to guide the forthcoming
development. Once the element that will provide the
interface is designed, your required interface documen-
tation may become the documentation of the new ele-
ment’s provided interface. When the providing element
exists but you think its interface is likely to change sub-
stantially over time, or if you think that the element itself
might become unavailable, then documenting your
required interface also makes good sense. It can then be
used to guide and constrain the evolution of the other
element’s provided interface, or to shop for and qualify
potential replacement elements. Documenting an ele-

You can use the same
template to document
a required interface and
a provided interface.
The documentation of a
required interface may
become the documen-
tation of a provided
interface once the ele-
ment that provides it
is designed or
implemented.

ptg

7.2 Interface Documentation ■ 265

ment’s required interfaces also makes that element’s
reusability much easier to judge, because you can imme-
diately see what resources it would expect to find should
it be moved to a new environment.

Like all architecture documentation, a required interface
can be documented to the degree of specificity needed
to do the job. You might sketch out some resources and
trust the designers of the providing element to fill in the
details, to which you can then adapt your element.

Linking up required and provided interfaces (using, for
example, UML’s socket-and-lollipop notation) can give
confidence that in a system build, every element has
what it needs to work correctly. In UML a socket-and-
lollipop pair symbolizes that the interfaces are “compat-
ible,” meaning at least that the provided interface sup-
ports a superset of the operations and signals specified
in the required interface. That doesn’t tell you if the
requiring element uses all resources on the provider’s
interface, or only one or two.

7.2 Interface Documentation
Although an interface comprises all aspects of the interaction
an element has with its environment, what we choose to dis-
close about an interface—that is, what we document in an
interface’s documentation—is more limited. Writing down
every aspect of every possible interaction is not practical and
almost never desirable. Rather, you should expose only what
users of an interface need to know in order to interact with it.
Put another way, you choose what information is permissible
and appropriate for people to assume about the element.

The interface documentation tells what other developers
need to know about an interface in order to use it in combina-
tion with other elements. Note that a developer might observe
element properties that are an artifact of how the element is
implemented but that are not in the interface documentation.
Because these are not in the interface documentation, they are
subject to change, and developers use them at their own risk.

Also recognize that different people need to know different
kinds of information about the interface. You may have to pro-
vide separate sections in the interface documentation to
accommodate different stakeholders of the interface.

Interfaces are documented as part of a view. When a given
interface occurs in more than one view, choose one to hold the

Section 10.1 provides a
documentation tem-
plate for views, which
has a section reserved
for documenting ele-
ment interfaces.

ptg

266 ■ Chapter 7: Documenting Software Interfaces

interface documentation and refer to it in the other. Alterna-
tively, package the interface documentation separately and
have all views point to it.

Sometimes interfaces in different views have a direct corre-
spondence but are not exactly the same. For example, the
interface of a module in a module view often corresponds
directly to the interface of a component in a component-and-
connector (C&C) view. In many cases, the module and the
C&C interfaces are identical, and documenting them in both
places would produce needless duplication. In that case, you
should document the interface in the view where the docu-
mentation will be more useful and make the other view refer
to it. For example, a programmatic interface that offers proce-
dure calls as resources will be most useful for implementers,
and they are likely to look for the documentation in module
views. On the other hand, an interface that corresponds to a
message end point in a system using asynchronous messaging
is probably more relevant in a C&C view that describes the
runtime interactions, queue capacities, and overall throughput.

In other cases, a module and a C&C interface map to each
other but are not identical. For example, a module view of a
service-oriented architecture (SOA) system may show a Java
class that provides an interface with five different operations.
Two of these operations correspond to the interface of a SOAP
Web service that is depicted in the C&C SOA view of the same
system. The other three operations correspond to the inter-
face of a REST Web service that is provided by a different com-
ponent in the C&C SOA view. Each of the two Web service
interfaces corresponds to only part of the module interface. In
addition, the Web service interfaces may expose properties
(such as availability or response time) not relevant in the mod-
ule view. The syntax of the resources and data types may also
differ due to the translation from the module implementation
language (Java) to the language of the Web service interface
(XML). In cases like this, you should document the interfaces
separately but also record the mapping between them.

ADVICE

Guidelines for Documenting an Interface

• Focus on how elements interact with their environ-
ments, not on how elements are implemented. Restrict
the documentation to effects that are externally
visible.

Section 10.2.1
describes how to docu-
ment the mapping
between views, which
can contain the map-
ping between interfaces
from different views.

ptg

7.2 Interface Documentation ■ 267

• Expose only what users of the interface need to know.
Including a piece of information in the documentation
is an implicit promise that the information is reliable
and stable. Once information is exposed, other ele-
ments may rely on it, and changes will have a more
widespread effect.

• Keep in mind who will be using the interface documen-
tation and what types of information they will need. Avoid
documenting more than is necessary. For example,
you probably need less detail in the interface docu-
mentation of a module used only by another developer
on the team than you need for an interface that is part
of a commercially available API. This chapter presents
the “maximum” approach, that is, a fully documented
interface. Depending on the importance of the inter-
face, you should decrease the amount of information
and the effort spent in the interface documentation.

• When a given interface occurs in multiple views, doc-
ument it in one view and refer to it in the other, or doc-
ument the interface separately and make the views
point to this interface documentation.

• An interface in a module view and its equivalent coun-
terpart in a C&C view should be documented more
extensively only in the view where the documentation
will be more useful to the stakeholders. When inter-
faces in different views map to each other but are not
identical, you should document them separately and
document the mapping as well.

• Be as specific and as precise as you can, remember-
ing that interface documentation that can be inter-
preted differently by various parties is likely to cause
problems and confusion.

An interface may or may not have an identity of its own. In
the simplest situation, an element A provides a single interface
that is not provided by any other element. This interface is
implicitly associated with element A and doesn’t need a
name—it’s the interface of A. Documenting the interface of A
is part of documenting element A. In another situation, an ele-
ment provides two or more different interfaces. Then it’s prob-
ably a good idea to identify the interfaces, as I1 or I2 for
example, and document them separately. There’s also the situ-
ation of a single interface that is provided by two or more ele-
ments. In that case, the interface should have an identity so

See “Coming to Terms:
Signature, Interface,
API” on page 280, in
this chapter.

ptg

268 ■ Chapter 7: Documenting Software Interfaces

that elements can refer to it, and the interface should be doc-
umented independently from the elements.

As in all architecture documentation, the amount of infor-
mation conveyed in the interface documentation may vary,
depending on the importance of the interface and on the stage
of the design process when the documentation is updated.

• Early in the design process, the interface might be scarcely
specified; for example, an order tracking module provides
an operation to locate an order.

• Later, when the responsibilities of the elements become sta-
ble, the interface documentation is more fully elaborated;
for example, the order-tracking module provides the method
locateOrder(orderId) with some description about its semantics.

• Some time later, you may even refine the interface docu-
mentation with the final syntax for the method: OrderBean
locateOrderById(long orderId).

7.2.1 Showing the Existence of Interfaces in Diagrams

The existence of interfaces can be shown in the primary presen-
tations by using most graphical notations available for architec-
ture. Figure 7.1 shows an example using an informal notation.

The existence of an interface can be implied even without
using an explicit symbol for it. If there is a relation going from
element A to B and the relation type involves an interaction,1

that implies that the interaction takes place through the inter-
face of element B.

Figure 7.2 illustrates how interfaces are shown in UML. A
provided interface is depicted as a lollipop, and the socket sym-
bol is used for required interfaces (Figure 7.2(a)). Although it
shows the existence of an interface, the lollipop symbol reveals
little about the definition of an interface. UML interfaces can
be connected to classes, components, and packages.

Sometimes interfaces are depicted by themselves, with or
without an associated element. In UML, you can do that by
using the classifier box with the <<interface>> stereotype
instead of the lollipop. This alternative is particularly useful
when multiple elements implement the same interface.
Another benefit is that the resources of the interface can be
listed in the operations compartment. Figure 7.2(b) shows the
provided and required interfaces of class Garage Door as two
separate boxes.

1. Examples of relations that don’t involve an interaction include is a subclass
of and decomposition.

ptg

7.2 Interface Documentation ■ 269

ADVICE

Use an independent box for the interface in your primary
presentations if

• You wish to show the operations available in the pri-
mary presentation.

• You are making provisions for multiple elements that
realize the same interface.

Although it’s never wrong to show interfaces explicitly, be
careful not to increase the visual clutter of the diagrams.

Figure 7.1
Graphical notations for
interfaces typically show a
symbol on the boundary of
the icon for an element.
Lines connecting interface
symbols denote that the
interface exists between
the connected elements.
Graphical notations like this
can show only the exist-
ence of an interface, not its
definition. (a) An element
with multiple interfaces. For
elements with a single
interface, the interface
symbol is often omitted.
(b) Multiple actors at an
interface. Internal client and
External client both interact
with Transaction Authorizer
via the same interface. This
interface is provided by
Transaction Authorizer and
required by both Internal
client and External client.

Transaction
Authorizer

Internal
client

External
client

Admin

(a)

Element
(type unspecified)

Interaction
(type unspecified)Interface

(b)

Key

Figure 7.2
UML uses a lollipop to
denote a provided interface,
which can be appended to
classes, components, and
packages. Required inter-
faces are represented with
the socket symbol, which is
also appended to classes
and other types of elements.
UML also allows a class
symbol to be stereotyped
as an interface; a dashed
line with a closed, hollow
arrowhead shows that an
element realizes an interface.
The operations compart-
ment of the class symbol
can be annotated with the
interface’s signature infor-
mation: method names,
arguments and argument
types, and so on. Thus the
diagram in (a) is equivalent
to (b) in this figure.

ISensor
Garage
Door

Garage
Door

«interface»
ISensor

«interface»
IMovement Control

ascend()
descend()
halt()

«use»

Notation: UML

IMovementControl

(a)

(b)

ptg

270 ■ Chapter 7: Documenting Software Interfaces

When the diagram shows a module using an independent
interface, it indicates that any element implementing the inter-
face can be used. This is a useful means of expressing a partic-
ular kind of variability: the ability to substitute realizing elements,
as shown in Figure 7.3.

ADVICE

Multiple Interfaces

Elements having multiple interfaces raise some subtle design issues and some
important documentation issues. If an element interacts with more than one actor,
it’s usually best to show interfaces explicitly in your diagrams. If you don’t, a dia-
gram such as Figure 7.4(a) can be ambiguous: Does E have one interface or two?
Showing the interface symbol, as in Figure 7.4(b) or (c), resolves the ambiguity.

Figure 7.4
(a) Does element E have one interface or two? This diagram makes it difficult to determine at a glance. (b) By
using the interface symbol, it’s clear that this element has one interface and that (c) this element has two interfaces.

(c)(b)(a)

E EE

Element
(type unspecified)

Interface Interaction
(type unspecified)

KEY

Figure 7.3
An interface can be shown
separately from any element
that realizes it, thus empha-
sizing the interchangeability
of element implementa-
tions. OrderDao (and other
classes not shown) require
an object that implements a
database connection,
which is represented by the
Connection interface.
Many elements realize this
interface, representing the
interchangeable alterna-
tives of database connec-
tion implementations.

Notation: UML

OrderDao«interface»
Connection

«use»
getOrderById()
createOrder()
updateOrder()
deleteOrder()
...

open()
close()
executeSql()
...

MySQL
Database

Connection

Oracle
Database

Connection

SQL Server
Database

Connection

ptg

7.3 A Standard Organization for Interface Documentation ■ 271

7.3 A Standard Organization for Interface
Documentation

Remember that an important principle for sound documenta-
tion prescribes using a standard organization. A standard orga-
nization lets you fill in what you know about an interface now
and indicate “TBD” for what you don’t yet know, thus provid-
ing a to-do list for the remaining work. This section suggests a
standard organization (that is, a template) for interface docu-
mentation (see Figure 7.5).

The standard organization can be used to document each
interface of an architecture element. It consists of the follow-
ing sections:

1. Interface Identity. When an element has multiple inter-
faces or when the same interface is provided by multiple
elements, name the interface. In other cases the identity of
the interface is the same as the identity of the element it’s
associated with. Some programming languages, such as C#
and Java, or frameworks, such as COM, even allow these
names to be carried through into the implementation. In
some cases merely naming an interface is not sufficient,
and the version of the interface must be specified as well.
For example, in a framework with named interfaces that
have evolved over time, it could be very important to know
whether you mean v1.2 or v3.0 of the persistence interface.

2. Resources. The heart of an interface document is the set of
resources provided to its actors. Resources are often opera-
tions (such as methods, procedures, and functions), but in
a more general notion of interface they can be other
things, such as data streams, shared data, and messaging

Like all templates in this
book, you may wish to
modify the one pre-
sented in this section to
remove items not rele-
vant to your situation or
to add items unique to
your business. More
important than which
standard organization
you use is the practice
of using one.

Figure 7.5
Template for interface
documentation Interface Documentation

Section 1. Interface Identity
Section 2. Resources

For each resource: – Syntax
 – Semantics
 – Error Handling
Section 3. Data Types and Constants
Section 4. Error Handling
Section 5. Variability
Section 6. Quality-Attribute Characteristics
Section 7. Rationale and Design Issues
Section 8. Usage Guide

ptg

272 ■ Chapter 7: Documenting Software Interfaces

end points. In this section you should list the resources
and, for each resource, describe the following:

– Resource Syntax. This is the resource’s signature, which
includes any information needed to write a syntactically
correct program that uses the resource. The signature
includes the name of the resource, names and data types
of arguments, if any, structure or data type of return val-
ues, if any, and so forth.

– Resource Semantics. What is the result of using this resource?
What does the resource do from the perspective of the
actor invoking it? Semantics come in a variety of guises,
including:

i. Assignment of values to the parameters and returned
values, including their purpose and semantics. The
value assignment might be as simple as setting the
value of a return argument or as far-reaching as
updating a database table.

ii. Changes in the element’s externally visible state
brought about by using the resource. For example,
invoking a resource called open() on interface ICon-
nection may change the state of the connection to
enable it to start exchanging data. Are these changes
persistent or transient? If transient, what is the dura-
tion or termination condition?

iii. Events that will be signaled or messages that will be
sent as a result of using the resource.

iv. The side effects on other environmental elements as
the result of using this resource. For example, if you
ask a resource to destroy an object, trying to access
that object in the future through other resources
will produce quite a different outcome—an error—
as a result.

v. Humanly observable results. For example, calling a
program that turns on a display in a cockpit has a
very observable effect: the display comes on.

vi. Whether the execution of the resource will be
atomic or may be suspended or interrupted, and
whether the interaction is synchronous or asynchro-
nous, if such a distinction is applicable.

vii. Usage restrictions. Under what circumstances may
this resource be used? Perhaps data must be initial-
ized before it can be read, or perhaps a particular
method cannot be invoked unless another is invoked

Consider using precon-
ditions and postcondi-
tions for documenting
resource usage restric-
tions and resource
semantics. A precondi-
tion states what must
be true before the inter-
action is permitted; a
postcondition describes
any state changes
resulting from the
interaction.

ptg

7.3 A Standard Organization for Interface Documentation ■ 273

first. Perhaps there is a limit on the number of actors
that can interact via this resource at any instant. Per-
haps there is a limit of one actor that has ownership
and is able to modify the element, whereas others
have only read access. Perhaps the resource is
thread safe; that is, it can be invoked simultaneously
by multiple actors. Perhaps the resource can be
invoked only when the authenticated user belongs
to a certain group or has certain access rights. Some
restrictions are less prohibitive; for example, Java
interfaces can list certain methods as deprecated,
meaning that users should not use them, as they will
likely be unsupported in future versions of the inter-
face. Usage restrictions are sometimes documented
by defining exceptions that will be raised if the restric-
tions are violated.

– Error Handling. Describe error conditions and excep-
tions that can be raised by the resource.

ADVICE

Guidelines for Documenting the Semantics of a Resource

• Write down only those effects that are visible to a user: the actor invoking the
resource, another element in the system, or a human observer of the system.
Ask yourself how a user can verify what you have said. If your semantics can-
not be verified, the effect you have described is invisible, and you haven’t
captured the right information.

• Try to define the semantics of invoking a resource by describing ways other
resources will be affected. For example, in a stack object, you can describe
the effects of push(x) by saying that pop() returns x and that the value
returned by getStackSize() is incremented by 1.

• If you describe the semantics using prose, be as precise as you can. Be sus-
picious of all verbs. For every verb in the specification of a resource’s seman-
tics, ask yourself exactly what it means and how the resource’s users will be
able to verify it. Eliminate vague words, such as should, usually, and may. For
operations that position something in the physical world, be sure to define
the coordinate system, reference points, points of view, and so on, that
describe the effects.

• Clearly state any assumptions, preconditions, and bound values for parame-
ters. We should expect that users will use a resource in ways the designers
did not envision, and we should try to describe what the limits are.

• Avoid giving an example use in place of specifying the semantics. Usage is a
valuable part of interface documentation and merits its own section in the

See “Coming to Terms:
Error Handling” on page
277, in this chapter.

ptg

274 ■ Chapter 7: Documenting Software Interfaces

documentation, but it is given as advice to users and should not be expected
to serve as a definitive statement of resources’ semantics. Strictly speaking,
an example defines the semantics of a resource for only the single case illus-
trated by the example. The user might be able to make a good guess at the
semantics from the example, but we do not wish to build systems based on
guesswork.

• Avoid giving an implementation in place of specifying the semantics. Do not
use code to describe the effects of a resource.

3. Data Types and Constants. Sometimes we need to create
new data types (such as records, structs, classes, enumera-
tions, or unions) for the data passed to or returned by
resources in the interface. These data types may be defined
in the scope of the interface and should be described in the
interface documentation. For example, in an airline reser-
vation system, interface IReservation may provide a resource
makeReservation() that returns a new data type Reservation-
Record. This new data type described in the interface docu-
mentation may contain flight number, departure date and
time, seat assignment, class, fare, and other data elements.
If the data type is defined by another element, a reference
to the definition in that element’s documentation is suffi-
cient. In any case, programmers writing elements using
such a resource need to know (a) how to declare and assign
values to variables of the data type, (b) what operations and
comparisons may be performed on members of the data
type, and (c) how to convert values of the data type into
other data types, where appropriate.

Likewise, new constants are sometimes created in inter-
faces to hold commonly used values and make program-
ming against the interface more convenient. For example,
interface Sequencer of the Java sound API has an operation
setLoopCount(int count) to set the number of repetitions of
the loop for playback on a MIDI device. For convenience,
the interface defines a constant called LOOP_CONTINUOUSLY
that can be passed as an argument to that operation.

4. Error Handling. Often you may want to use an error-han-
dling behavior that is common to all or many resources. In
that case, you can use this section to describe common
error-handling behavior instead of repeating the behavior
for every resource in section 2.

ptg

7.3 A Standard Organization for Interface Documentation ■ 275

ADVICE

For documenting the error handling for resources in
either section 2 or section 4 of interface documentation,
do the following:

• If only a few resources have error handling, describe it
in section 2.

• If most of the resources follow a common error-handling
procedure, describe it in section 4.

• If most of the resources follow a common error-handling
procedure but there are resource-specific variations,
such as error codes, describe the variations in section
2 and the error-handling procedure in section 4.

• If you are using an error-handling procedure that is
common for the whole system, describe the procedure
in the rationale section of the “beyond views” part of the
documentation (see Section 10.2). Resource-specific
information, such as error codes, still needs to be doc-
umented with the resource.

When describing error handling, keep in mind that there
are different kinds of errors. An architecture-oriented
classification of exceptions is summarized in Figure 7.6.
In the context of an element’s interface, exception condi-
tions are one of the following:

1. Errors on the part of an actor invoking the resource.

a. An actor sent incorrect or illegal information to the
resource, perhaps calling a method with a null
value parameter that should not be null. Associat-
ing an error condition with the resource is the pru-
dent thing to do.

b. The element is in the wrong state for the requested
resource. The element entered the improper state
as a result of a previous action or lack of a previ-
ous action on the part of an actor. An example of
the latter is invoking a resource before the ele-
ment’s initialization method has been called.

2. Software or hardware events that result in a violation
in the element’s assumptions about its environment.

a. A hardware or software error occurred that pre-
vented the element from successfully executing.
Processor failures, network not responding, and
inability to allocate more memory are examples of
this kind of error condition.

Chapter 10 presents a
standard organization
for documenting archi-
tecture views and the
“beyond views” part of
the architecture docu-
mentation, where you
find sections for captur-
ing rationale.

ptg

276 ■ Chapter 7: Documenting Software Interfaces

b. The element is in the wrong state for the requested
resource. The element’s improper state was brought
about by an event that occurred in the environ-
ment of the element, outside the control of the
actor requesting the resource. An example is try-
ing to read from a sensor or write to a storage
device that has been taken off-line by the sys-
tem’s human operator.

5. Variability. Does the interface allow the element to be con-
figured in some way? These configuration parameters and how
they affect the semantics of the interactions in the interface
must be documented. Examples of variability include
capacities—such as of visible data structures—that can be
easily changed. Name and provide a range of values for
each configuration parameter, and specify the time when
its actual value is bound.

6. Quality Attribute Characteristics. You need to document
what quality attribute characteristics, such as performance
or reliability, the interface makes known to the element’s
users. This information may be in the form of constraints
on implementations of elements that will realize the inter-
face. The qualities you choose to concentrate on and make
promises about will depend on the context. If you’re devel-

Figure 7.6
A classification of exceptions associated with a resource on an element’s
interface

Exceptions
associated with
a resource

1. Errors on the part of
the actor invoking the
resource

1a. Incorrect
information provided
to the resource

2a. Hardware or software error
occurred, preventing successful
completion of operation

2. Hardware or software events that
resulted in a violation of the element’s
assumptions about its environment

1b. Element in wrong state for requested
operation as result of previous action or
lack of action on part of actor

2b. Environment event
occurred that put the element
in wrong state for operation

Class of
exceptions

Class-subclass
generalization

Key

Variability is discussed
in detail in Section 6.4.

ptg

7.3 A Standard Organization for Interface Documentation ■ 277

oping an SOA application where services will be available to
external service users, a service-level agreement (SLA) may
be required. The SLA specifies quality properties for the
entire service or specific operations in the service interface.
For example, it may specify that certain operations should
provide a specific response time, availability level, and
capacity in terms of number of concurrent requests.

7. Rationale and Design Issues. Like rationale for the archi-
tecture or architecture views at large, you should also record
the reasons behind the design of an element’s interface.
The rationale should explain the motivation behind the design,
constraints and compromises, alternative designs that were
considered and rejected and why, and any insight the archi-
tect has about how to change the interface in the future.

8. Usage Guide. Section 2 documents the syntax and seman-
tics on a per-resource basis. This sometimes falls short of
what is needed. In many cases, it’s helpful to complement
that information with examples that show the usage protocol
for one or more resources of the interface. Code snippets
are common in the usage guide, but sequence diagrams
and other behavioral diagrams are also good choices, espe-
cially when a certain sequence of steps for the resource
usage is required. Try to craft some clear and simple exam-
ples of the most common ways the interface might be used.

COMING TO TERMS

Error Handling

When designing an interface, architects naturally concentrate on documenting
how resources work in the nominal case, when everything goes according to
plan. The real world, of course, is far from nominal, and a well-designed system
must take appropriate action in the face of undesired circumstances. What hap-
pens when a resource is called with parameters that make no sense? What hap-
pens when the resource requires more memory, but the allocation request fails
because there isn’t any more? What happens when a resource never returns,
because it has fallen victim to a process deadlock? What happens when the
software is supposed to read the value of a sensor, but the sensor isn’t respond-
ing or is responding with gibberish?

Terminating the program on the spot seldom qualifies as “appropriate action.”
More desirable alternatives, depending on the situation, include various combi-
nations of the following:

• Returning a status indicator: an integer code—or even a message—that
reports on the resource’s execution, describing what, if anything, went wrong
and what the result was.

Behavior documentation
is covered in Chapter 8.

ptg

278 ■ Chapter 7: Documenting Software Interfaces

• Retrying, if the offending condition is considered transient. The program
might retry indefinitely or up to a preset number of times, at which point it
returns a status indicator.

• Computing partial results or entering a degraded mode of operation.

• Attempting to correct the problem, perhaps by using default or fallback val-
ues or alternative resources.

These are all reasonable actions that a resource can take in the presence of
undesired circumstances. If a resource is designed to take any of these actions,
that should simply be documented as part of the effects of that resource. But
many times, something else is appropriate. The resource can, in effect, throw
up its hands and report that an error condition existed and that it was unable to
do its job. This is where old-fashioned programs would print an error message
and terminate. Today, they often raise an exception, which allows execution to
continue and perhaps accomplish useful work. Modern programming lan-
guages provide facilities for raising exceptions and assigning handlers.

The right place to fix a problem raised by a resource is usually the actor that
invoked it, not in the resource itself. The element detects the problem; the actor
handles it. The actor might handle the exception by raising an exception of its
own and bubbling the responsibility back along the invocation chain until the
actor ultimately responsible is notified.

7.4 Stakeholders of Interface Documentation
In the prologue, we talked about stakeholders having special
needs and expectations of an architecture. Some of the stake-
holders of interface documentation and the kinds of informa-
tion they require are as follows:

• Developer of an element, who needs the most comprehensive
documentation of the interface the element provides. The
developer needs to see any assertions about the interface
that he or she will realize in the code. A special kind of
developer is the maintainer, who makes assigned changes to
the element and its interface.

• Tester of an element, who needs detailed information about all
the resources and functionality provided by an interface.
The tester can test only to the degree of knowledge embod-
ied in the interface description. If required behavior for a
resource is not specified, the tester will not know to test for
it, and the element may fail to do its job.

• Developer using an interface, who needs detailed information
about the resources provided in the interface to implement
elements that will use it. A special case is the integrator, who

ptg

7.5 Conveying Syntactic Information ■ 279

puts the system together from its constituent elements and
has a stronger interest in the behavior of the resulting
assembly. In a software product-line context, this stake-
holder exploits the variability available in the elements to
build different products.

• Analyst, whose information needs depend on the types of
analyses conducted. For a performance analyst, for exam-
ple, the interface document should give information that
can feed a performance model, such as execution time
required by resources.

• Architect looking for assets to reuse in a new system, who often
starts by examining the interfaces of elements from a previ-
ous system. The architect may also look in the commercial
marketplace to find off-the-shelf elements that can be pur-
chased and do the job. To see whether an element is a can-
didate, the architect is interested in the capabilities of the
interface resources, their quality attributes, and any variabil-
ity that the element provides.

• Project manager, who is likely to use interface documents for
planning purposes. Project managers can apply metrics
(such as function-point analysis) to gauge the complexity
and then infer estimates for how long it will take to develop
an element that realizes the interface. Project managers can
also spot special expertise that may be required, and this will
assist them in assigning the work to qualified personnel.

7.5 Conveying Syntactic Information
Often architects use a notation they’re familiar with or the
notation of the target implementation technology when speci-
fying the syntax of operations in an interface. A very common
choice is a C-like syntax, for example:

Order getOrderById(long orderId)

Most programming languages have built-in ways to specify
the signature of operations alone. C header (.h) files, and Java
and C# interfaces are examples. Some technologies also pro-
vide their own syntax for describing the interfaces. The Object
Management Group (OMG) Interface Definition Language
(IDL) is used in the CORBA technology to specify interfaces’
syntactic information. The Web services technology offers the
Web Services Description Language (WSDL). However, WSDL
is XML-based and would hardly be considered a good alterna-
tive to describe the signature of interface operations.

In the architecture inter-
face documentation, it’s
often a good idea to use
a syntax that is close to
the syntax that will be
used in the implementa-
tion. However, these
days many interfaces
are totally or partially
implemented using
languages that are suit-
able for automated
parsing and processing
but may be cumbersome
for human readers.
XML and JavaScript
Object Notation (JSON)
are examples. Avoid
using these languages
in the architecture
documentation.

ptg

280 ■ Chapter 7: Documenting Software Interfaces

7.6 Conveying Semantic Information
Natural language is the most widespread notation for convey-
ing semantic information. In many cases, a few sentences suf-
fice to describe what an operation in the interface does and
what are the usage restrictions. In other cases, natural lan-
guage is not enough, and a formal language or notation can
prevent future integration errors.

A relatively simple and effective method for expressing the
semantics of a resource in an interface is to write down its pre-
conditions and postconditions. They can be specified using
natural language, but Boolean algebra (that is, first-order
logic) is sometimes used to enhance precision.

Traces are also used to convey semantic information by writ-
ing down sequences of interactions that describe the element’s
response to a specific use.

Semantic information often includes the behavior of an element
or one or more of its resources. In that case, notations for behav-
ior, such as sequence diagrams and statecharts, come into play.

COMING TO TERMS

Signature, Interface, API

Three terms people use when discussing element interactions are signature, API,
and interface. Often they use the terms interchangeably, with unfortunate conse-
quences for their projects. We have already defined an interface to be a boundary
across which two elements meet or communicate with each other, and we have
seen that documenting an interface consists of naming and identifying it, docu-
menting syntactic information, and documenting semantic information.

A signature deals with the syntactic part of documenting an interface. When an
interface’s resources are invokable procedures, each comes with a signature
that names the procedure and defines its parameters. Parameters are defined
by giving their order, data type, and, sometimes, whether their value is changed
by the procedure. A procedure’s signature is the information that you would find
about it, for instance, in the element’s C or C++ header file.

An API, or application programming interface, is a vaguely defined term that
people use in various ways to convey interface information about an element.
Sometimes people assemble a collection of signatures and call that an ele-
ment’s API. Sometimes people add statements about programs’ effects or
behavior and call that an API. An API for an element is usually written to serve
developers who use the element.

Signatures and APIs are useful but are only part of the story. Signatures can be
used, for example, to enable automatic build checking, which is accomplished by

The example of inter-
face documentation in
Section 7.7.1 uses pre-
conditions and post-
conditions to help
explain the semantics of
each resource.

Section 8.5 describes
behavior notations such
as sequence diagrams
and statecharts.

ptg

7.7 Examples of Interface Documentation ■ 281

matching the signatures of different elements’ expectations of an interface, often
simply by linking different units of code. Signature matching will guarantee that a
system will compile and/or link successfully. But it guarantees nothing about
whether the system will operate successfully, which is, after all, the ultimate goal.

In September 1999, NASA lost a $125-million orbiter when it was about to enter
orbit around Mars. An undetected error in a data transfer between the Mars Cli-
mate Orbiter spacecraft team in Colorado and the flight navigation team in Cal-
ifornia caused the loss of the spacecraft. The error was a semantic mismatch in
the data for maneuvering the orbiter into Mars orbit: one team used English
units and the other used metric units.

A full-fledged interface is written for a variety of stakeholders and specifies the
full range of effects of each resource, including quality attributes. Signatures
and low-end APIs are simply not enough to let an element be put to work with
confidence in a system. A project that adopts them as a shortcut will pay the
price when the elements are integrated, if they’re lucky, but more than likely after
the system has been delivered to the customer.

7.7 Examples of Interface Documentation
Following are a couple of examples of interface documentation.

7.7.1 Zip Component API

The interface documentation that follows is for a hypothetical
Windows COM component that provides standard zip archive
operations. A client application can call the interface to create a
zip file and add files to it, extract files from a zip file, list the files
inside a zip file, and delete files from a zip file. The example is
inspired by publicly available components that offer similar func-
tionality, such as XZip (xstandard.com/en/documentation/xzip).

SAMPLE INTERFACE DOCUMENTAT ION

Section 1. Interface Identity

DSAVandBzip: Offers operations to compress, extract, list contents, and delete
files from a standard zip file.

Section 2. Resources

void Zip(string[] filesToZip, string zipFile,
 bool savePath, int compressionLevel)

Compress the specified files and folder and add them to the specified zip file.
Does not put a file system lock on files when reading them. If the destination zip
file doesn’t exist, create it.

ptg

282 ■ Chapter 7: Documenting Software Interfaces

Parameters:

• filesToZip: array with the names of the files or folders to be zipped. If an
item is a folder, all files and folders inside the folder are zipped recursively.

• zipFile: pathname to the destination zip file that will hold the zipped content.

• savePath: if true, the items in the zip file will keep the original pathname rel-
ative to the folder specified in filesToZip; if false, path information will be
removed.

• compressionLevel: varies from 1 (minimum compression, but faster to zip
and unzip) to 4 (maximum compression, but slower).

Preconditions:

• Files listed in filesToZip exist and are not locked.

• The folder where the specified zipFile is located already exists, the current
user has write permission on it, and there is enough disk space.

Postconditions:

• On success, the zip file is created and closed. The original files that were
zipped are also closed and remain unchanged.

Possible error codes: 201, 203, 206, 211, 215, 252, 300

void Zip(string[] filesToZip, string zipFile, bool
 savePath)

Same as Zip() using the default compressionLevel. See “Section 5. Variability.”

void Unzip(string zipFile, string destFolder, bool overwrite)

Extract and decompress all items inside the specified zip file and save them to
the specified destination folder. If a zipped file has a relative path associated to
it, the pathname is appended to the destination folder. If the corresponding sub-
folders don’t exist in the destination, they are created.

Parameters:

• zipFile: pathname to the destination zip file that holds the zipped content.

• destFolder: pathname to the folder where the zipped files will be
extracted to.

• overwrite: if true, simply overwrite existing files and folders with the same
name in the destination folder.

Preconditions:

• Specified zip file is valid and nonempty.

• The destination folder already exists, the current user has write permission
on it, and there is enough disk space.

ptg

7.7 Examples of Interface Documentation ■ 283

Postconditions:

• The zip file is closed and its contents unchanged. The extracted files are
closed at the end and contain the exact content of the original file prior to
compression.

Possible error codes: 201, 206, 207, 252, 300

ZipItem[] GetItems(string zipFile)

Get a list of the contents of the specified zip file. Return an array of ZipItem
objects in the order they were added to the zip file. Each zip item can be a file
or a folder. This operation does not involve decompressing the files.

Parameters:

• zipFile: pathname to the destination zip file that holds the zipped content.

Preconditions:

• Specified zip file is valid and nonempty.

Postconditions:

• The zip file is closed and its contents unchanged.

Possible error codes: 201, 206, 207

long ErrorCode

Global read-only variable that contains the error code of the last operation or
zero if the operation was successful. See “Section 4. Error Handling” for more
information.

Section 3. Data Types and Constants
• struct ZipItem—represents an item (file or folder) inside a zip file. Attributes:

– string Name: name of the file or folder

– string Path: path to the zipped item

– DateTime Modified: last modified on this date/time

– long OriginalSize: size in bytes of original file

– long CompressedSize: size in bytes of compressed file

– byte Type: indicates whether it’s a file or a folder. Use constants FOLDER
and FILE.

• const byte FOLDER = 1

• const byte FILE = 2

Section 4. Error Handling

Upon failure or when certain preconditions are not satisfied, all operations set
the ErrorCode global variable. Possible error codes are:

ptg

284 ■ Chapter 7: Documenting Software Interfaces

• 201—Zip file is not valid.

• 203—Cannot create zip file.

• 206—Cannot allocate memory.

• 207—Cannot open zip file.

• 211—Cannot open file/folder to zip.

• 215—Zip file is same as the input file.

• 252—Cannot create files for swapping.

• 254—Unknown error when modifying zip file.

• 300—Disk is full or protected.

Section 5. Variability

• The component may be deployed as a Windows service or as a DLL to be
loaded by a caller application.

• Windows registry keys are used for configurable properties, which are read
by the component at load time:

– Default compression level

– Whether a log file is created with results of last operations

– Location of the log file

Section 6. Quality Attribute Characteristics

The compression level will affect performance and disk space. If the level
is higher, the zip or unzip operation will take longer. However, the operation
will require less disk space as the resulting compressed file is smaller. The
normal compression ratio obtained at compression level 4 is similar to the
ratio obtained using commercial data compression tools, such as WinZip or
WinRAR.

Operations that create or update a zip file require disk space for temporary files.
The amount of space is not bigger than the size of the zip file.

The execution time of zipping a file is log-linear (n log n) proportional to the size
of the file.

The operations in the interface are thread safe and can be called by multiple
simultaneous users.

Section 7. Rationale and Design Issues

Different compression levels were created to improve the flexibility for users that
require maximum compression ratio versus users that need just a simple and
fast compression component.

ptg

7.8 Summary Checklist ■ 285

Section 8. Usage Guide
• Example of calling the component to zip some files:

DllImport("DSAVandBzip.dll")
Public static extern void Zip(string[] filesToZip, string zipFile, bool
savePath, int compressionLevel);
string[] myFiles = new string[3];
myFiles[0] = "C:\SEI\DSA\Chapter2.doc";
myFiles[1] = "C:\temp\new.css";
myFiles[2] = "C:\SEI\DSA\TOC.docx ";
Zip(myFiles, "C:\SEI\DSA\test.zip", true, 4);

7.7.2 Interface to a SOAP Web Service

The example software architecture document accompanying
this book online contains the architecture documentation for
the Adventure Builder application. See wiki.sei.cmu.edu/sad.
The OPC Uses View contains the documentation for the
OpcPurchaseOrderService and the OpcOrderTrackingService inter-
faces, which are SOAP-based Web services interfaces.

7.8 Summary Checklist
• All elements have interfaces.

• Many notations for interface documentation show only syn-
tactic information. Make sure to include semantic informa-
tion as well.

• Elements can have provided interfaces and required
interfaces.

• An element can have multiple interfaces and multiple
actors at each interface.

• An architect must carefully choose what information to put
in interface documentation, striking a balance between
usability and modifiability. Put information in an interface
document that you are willing to let people rely on. If you
don’t want people to rely on a piece of information, don’t
include it.

• In graphical depictions, show interfaces explicitly if ele-
ments have more than one interface or if you want to
emphasize the existence of an interface through which
interactions occur. Otherwise, interfaces can be implicit.

• Follow the template given in Figure 7.5 or create your own,
making sure to address the needs of the interface documen-
tation’s stakeholders.

ptg

286 ■ Chapter 7: Documenting Software Interfaces

7.9 Discussion Questions
1. Think about your favorite Web browser. How many interfaces

does it have, and what actors are served by those interfaces?

2. Sketch a picture of the Web browser showing its interfaces
and its environment.

3. For one of the interfaces you described in question 1, list a
set of exceptions that the browser detects or, from your
experience, fails to detect but should.

4. What’s the difference between an interface and a connector?

5. What’s the difference between an interface and a port?

6. Is there a difference between module (as described in Chap-
ter 1) interfaces and component (as described in Chapter 3)
interfaces?

7. Why does UML have different symbols for interface and
port? In what situation, if any, would you attach an interface
to a port of a UML component?

8. Look at an interface description in the Javadoc (or doxy-
gen) documentation for a publicly available library and try
to identify the information that corresponds to the infor-
mation required by the sections of the template presented
in Figure 7.5. Is any information missing?

7.10 For Further Reading
An excellent foundation paper on exceptions, which lays the
groundwork for separating the concern of detecting an excep-
tion from the concern of handling an exception, is the one by
Parnas and Wuerges (1976).

Joshua Bloch has delivered at conferences an excellent talk,
titled “How to Design a Good API and Why It Matters,” which
contains practical guidelines regarding the design and docu-
mentation of APIs (Bloch 2006).

Mary Shaw has made the observation that we can’t have com-
plete interface documentation, because the cast of stakehold-
ers is too numerous and the range of information they need is
too broad. And in a world in which we get our components
from other sources and know precious little about them, good
interface documentation is even more rare. However, she
points out that we can and do accomplish useful work with
such incomplete knowledge. This is so because we can assign
confidence measures to individual units of information that we
pick up about a component from various sources. She calls
such a unit a “credential,” and she assigns it properties such as

ptg

7.10 For Further Reading ■ 287

how we know it and what confidence we have in it (Shaw 1996a,
Scaffidi and Shaw 2007).

Interfaces are extremely important in service-oriented solu-
tions in general, and for applications that follow the software
as a service (SaaS) model. In SaaS, instead of paying for a soft-
ware license, customers pay for using the software, which
exposes an interface and is available via the Web. In such a sce-
nario, it’s common to provide a service-level agreement. Qual-
ity properties that are usually expressed in SLAs, notations for
SLAs, and mechanisms to monitor quality of service are dis-
cussed in the report by Bianco, Lewis, and Merson (2008).

Viewing interfaces as the set of assumptions that two compo-
nents are allowed to make about each other dates from early
work by Parnas (1971), echoed in later work about architec-
tural mismatch (Garlan, Allen, and Ockerbloom 1995).

ptg

This page intentionally left blank

ptg

289

8
Documenting Behavior

Documenting behavioral aspects of an architecture provides
many benefits both during development of the architecture
and during system maintenance. This information can be used
to gain understanding of a system, and it can also help stake-
holders reason about how a system built to the architecture will
be able to meet many of its quality-related goals. For example,
behavior documentation can identify potential deadlocks and
bottlenecks. Such documentation clarifies to developers the
steps and states involved in the operations.

Documenting an architecture requires behavior documen-
tation that complements structural views by describing how
architecture elements interact via their structures. Examples of
structural diagrams include module, component-and-connector
(C&C), and deployment diagrams. Structural relations pro-
vide a system view that reflects all potential interactions, few of
which will be active at any given instant during system execu-
tion. Many notations are available to capture system behavior.

In this chapter, we recommend what aspects of behavior to
document, we explain why that behavior documentation can
be useful, and we show examples of how this documentation is
used during the earliest phases of system development. In
addition, we provide overviews and pointers to notations,
methods, and tools that are available to help practitioners doc-
ument system behavior.

8.1 Beyond Structure
Reasoning about characteristics such as a system’s potential to
deadlock, its ability to complete a task in the desired amount
of time, or its maximum memory consumption requires that

Architecture is frozen
music.

—Johann Wolfgang von
Goethe

With George Fairbanks

ptg

290 ■ Chapter 8: Documenting Behavior

the architecture description contain information about both
the characteristics of individual elements as well as patterns of
interaction among them. Behavior documentation adds infor-
mation that reveals things like the following:

• The ordering of interactions among the elements

• Opportunities for concurrency

• Time dependencies of interactions, such as at a specific
time (for example, “At 8 a.m.”) or after a period of time (for
example, “Every 30 ms.”).

• Possible states of the system or parts of the system

• Usage patterns for different system resources (such as mem-
ory, CPU, database connections, or network)

Sequence diagrams and statecharts found in UML are exam-
ples of notations that support capturing behavioral information.

8.2 How to Document Behavior
Documented behavior supports exploring the range of possi-
ble orderings of interactions, opportunities for concurrency,
and time-based interaction dependencies among system ele-
ments. In this section, we recommend steps you can take to
reap these benefits.

There are three things you need to do to capture system
behavior: (1) decide what kinds of questions the documenta-
tion should answer; (2) determine what behavioral informa-
tion is available or can be stated as constraints on downstream
developers; and (3) choose a notation.

8.2.1 Step 1: Decide What Kinds of Questions You Need to Answer

Determining what kinds of behavior to model depends on the
type of system being designed, the stage of development, and
the focus of the design effort.

For example, consider a banking system. In such a system,
you focus on the order of events: credit, deposit, operation fee,
and logging in a money transfer operation. The behavior must
ensure that the transaction is atomic and that rollback proce-
dures are in place. On the other hand, in a real-time embed-
ded system, you need to say a lot about timing properties in
addition to the order of events.

Early in the development you will want to talk about the ele-
ments and how they interact, not about the details of how
input data is transformed into outputs. It may also be useful to
say something about constraints on the transformational
behavior within elements, because that behavior affects the

ptg

8.2 How to Document Behavior ■ 291

global behavior of the system. Later in the development, the
details should also be considered.

At a minimum you should model the stimulation of actions
and the transfer of information from one element to another.
In addition, you might want to model ordering constraints on
these interactions. Restrictions on the order and combinations
in which actions must occur should be documented if correct
behavior depends on it. Documentation that has more explicit
information about the constraints on interactions is more pre-
scriptive for developers and more precise for analysis, and
hence more likely to result in an implementation that will
exhibit the intended behavior.

As an example of the importance of focus, consider an
exploratory robot (or rover). If you’re creating a sequence dia-
gram to describe an interaction within the communication
subsystem, you may abstract (that is, omit) interactions with
the power management subsystem, because the diagram only
needs to clarify the interactions concerning the communica-
tion submodules. Defining the scope is particularly critical for
state-based diagrams. The first thing to ask is “This diagram
shows the states of what?” For example, in an ATM system, a
statechart can describe the states of the user screen, the money
dispenser, the communication channels, a bank account, a
bank card, the card reader, and so on. Each of these elements
has distinct states and transitions, and they may be related (for
example, if the card reader retains a card the user forgot to
pick up, an event may be triggered to deactivate the card). If
the scope of the state-based diagram is not well defined, you
may end up trying to model combined elements that together
have too many states.

8.2.2 Step 2: Determine What Types of Information Are Available or
Can Be Constrained

Types of Communication

Looking at a structural diagram that depicts two interrelated
elements, users of the documentation often ask “What does
the line connecting the elements mean? Is it showing flow of
data or control?” The answer should be in the diagram key. A
behavioral diagram provides a place to describe aspects of the
transfer of information and the stimulation of actions from
one element to another in more detail than you include in dia-
gram keys.

Table 8.1 shows some common examples of various types of
communication. In this table we identify three different impor-
tant characteristics of a type of communication. The first char-
acteristic is the general purpose of the communication. In

See “Perspectives:
Quivering at Arrows”
on page 41, in the
prologue.

ptg

292 ■ Chapter 8: Documenting Behavior

some cases, the primary purpose is to exchange data. In others,
the primary purpose is to stimulate another element to signal
that a task is completed or that a service is required. Often,
however, a combination of the two is the main idea, as is the
case when an element stimulates another to deliver data or
when information is passed in messages or as parameters of
events.

A second characteristic indicates whether elements commu-
nicate via synchronous or asynchronous means. Remote proce-
dure call (RPC) is an example of synchronous communication.
The sender calls the receiver and is blocked until the receiver
responds. Messaging is an example of asynchronous communi-
cation. The sender does not concern itself with the state of the
receiver when sending a message or posting an event. Right
after the message is sent, the sender continues its execution
and is not blocked waiting for a response. In fact, the sender
and receiver may not be aware of each other’s identity.

Consider the telephone and e-mail as examples. If you make
a phone call to someone, the person has to be at the phone in
order for it to achieve its full purpose. That is synchronous
communication. If you send an e-mail message and go on to
other business, perhaps without concern for a response, the
communication is asynchronous. The distinction between syn-
chronous and asynchronous communication has implications
for the behavior of the transaction. An asynchronous call intro-
duces concurrency and is more suitable for loosely coupled
elements. The distinction also affects modifiability. Asynchro-
nous interactions are usually more complicated, especially
when the transaction needs a callback, which may require
establishing a callback end point and a mechanism for corre-
lating the original call to the callback message.

Table 8.1 Types of communication

Synchronous Asynchronous

Data Local: Shared memory
Remote: Database

Stimulation Local: Procedure
call, semaphore
Remote: RPC with-
out parameters

Local: Interrupt, signal, or
event without parameters
Remote: Signal or event
without parameters

Both Local: Procedure
call
Remote: RPC with
parameters

Local: Message, event
with parameters
Remote: Message, event
with parameters

ptg

8.2 How to Document Behavior ■ 293

A third characteristic of the type of communication is
whether the call is local (within the same container or
machine) or remote. If it’s remote, the performance is worse,
because of the network overhead (even if the remote call reaches
a component within the same machine, there’s the overhead
of going through the stack of network layers). Remote calls are
also less reliable. A call or its response may not be delivered,
may get corrupted, or may arrive in the wrong order.

Constraints on Ordering

In the case of synchronous communication, you probably want
to say more than that there is two-way communication from A
to B. For instance, you may want to say whether the target of
the original message uses the assistance of other elements
before it can respond to the original request.

You may want to be more specific about certain aspects of
the way an element reacts to its inputs. You may want to note
whether an element requires all or just some of its inputs to be
present before it begins calculating. Also, you may want to say
whether it can provide intermediate outputs or only final out-
puts. If a specific collection of events must take place before an
action of an element is enabled, that should be specified, as
should the circumstances (such as ordering) in which the
events or element interactions will be triggered. These types of
constraints on interactions provide information that is useful
for analyzing the design for functional correctness, as well as
for quality attributes.

Time-Based Stimulation

If any activities are specified to take place at specific times or
after certain intervals of time, some concept of time needs to
be introduced into your documentation. Time can be speci-
fied as either a point in time (that is, calendar based) or as a
duration (timer based). Duration can be based on either wall
time or task time. As an example of using a point in time, you
may specify that certain behavior is different on weekends or
holidays. As an example of using wall-time duration, you may
specify that every five minutes, the system should determine
how many people are logged in. As an example of task-based
duration, you may specify that a task can use one minute of
CPU time before being temporarily interrupted.

8.2.3 Step 3: Choose a Notation

Any language that supports documenting system behavior must
include constructs for describing sequences of interactions.

ptg

294 ■ Chapter 8: Documenting Behavior

Because a sequence is an ordering in time, it should be possi-
ble to show time-based dependencies. Sequences of interac-
tions and the triggered activities are displayed in the order they
are supposed to occur after certain stimulus arrives. Examples
of stimuli are the passage of time and the arrival of an event.
Examples of activities are computing and waiting. Constructs
that show time as a point—for example, 8:00 a.m.—and time
as duration—such as wait for 10 seconds—are normally also
provided. As documentation of behavior implicitly refers to
structure and uses structure, the structural elements of a view
are an essential part of the language. In most behavior docu-
mentation, therefore, you can find representations of the
following:

• Stimulus and activity

• Ordering of interactions

• Structural elements with some relations the behavior maps to

Two groups of behavior documentation are available. The
languages to support behavior documentation tend to fall into
one of two corresponding categories: traces and comprehen-
sive models.

• One type of documentation allows you to capture what hap-
pens through the structural elements of a system during a
scenario as traces. Traces are sequences of activities or inter-
actions that describe the system’s response to a specific stim-
ulus. Traces are by no means a complete behavioral model
of a system. However, the explicit enumeration of all traces
would generate a complete behavioral model, although this
isn’t remotely feasible in most systems. Traces are easier to
design and communicate because they have a narrow focus.

• Another type of documentation, often state based, shows
the complete behavior of a structural element or a set of ele-
ments. This is called a comprehensive model of behavior because
it is possible to infer all paths from initial state to final state.
Comprehensive behavioral models support documentation
of alternatives and repetitions to provide the opportunity of
following different paths through a system, depending on
runtime values. With this type of documentation, it is possi-
ble to infer the behavior of the elements for the arrival of
any possible stimulus.

A difference between the two approaches is the focus of the
documentation relative to individual elements. Traces are typ-
ically scoped to include all the system elements that are
involved in a particular scenario. However, as mentioned ear-

Use trace-oriented
documentation if the
goal is to describe the
sequence of activities in
the system in a specific
scenario.

Use the comprehensive
model type of documen-
tation when a complete
behavioral understand-
ing is required, as is the
case when performing a
simulation or when
applying static analysis
techniques.

ptg

8.3 Notations for Documenting Behavior ■ 295

lier, only a fraction of the behavior of any given element shows
up in any particular trace. Each comprehensive model, on the
other hand, is typically scoped to focus on all the behavior of a
particular element or group of elements. In order to reason
about system-wide behavior, you must look at multiple compre-
hensive models side by side.

Many languages and notations are available for both types of
behavior documentation. These differ in their emphasis on
certain aspects of the behavior, such as how ordering is identi-
fied, how much support is available for documenting timing,
what types of communication are easily modeled, and so on.

8.3 Notations for Documenting Behavior
In the subsections that follow, we provide cursory overviews of
several notations to show trace and comprehensive types of
behavioral specifications. The discussions are intended to pro-
vide a flavor of the particular notations and to motivate their
use. There are many ways in which the diagrams we present in
this section may be used together to support system under-
standing. Figure 8.1 shows a reasonable way to combine the
strengths of several notations.

8.3.1 Notations for Capturing Traces

Traces are sequences of activities or interactions that describe
the system’s response to a specific stimulus when the system is
in a specific state. A trace describes a sequence of activities or
interactions between structural elements of the system.
Although it is conceivable to describe all possible traces to gen-
erate the equivalent of a comprehensive behavioral model, it is
not the intention of trace-oriented documentation to do so.

In this section, we describe four notations for documenting
traces: use cases, sequence diagrams, communication diagrams,

Figure 8.1
Using various types of behavior documentation together. (a) Begin by documenting an overview of the functional
requirements as use case diagrams. (b) Then produce use case descriptions to document the events and actions that
correspond to performing each use case. (c) Next, for each use case produce either a sequence diagram or a
communication diagram to define the messages between envisioned architecture elements. (d) Finally, produce
statecharts to complement the behavior documentation of the elements that have elaborate states and state transitions.

(a) (b) (c) (d)

ptg

296 ■ Chapter 8: Documenting Behavior

and activity diagrams. Communication diagrams were introduced
in UML version 2 and are based closely on the collaboration
diagram from UML version 1. Although other notations are
available, we have chosen these four as a representative sample.

Use Cases

Use cases describe how actors can use a system to accomplish
their goals. Use cases are frequently used to capture the func-
tional requirements for a system.

UML provides a graphical notation for use cases, as shown in
Figure 8.2, but it does not say how the text of a use case should
be written. The UML use case diagram can be used effectively
as an overview of the actors and the behavior of a system, but
most of your effort should go into producing the textual use
case description.

The use case description is textual, and it should contain:
the use case name and brief description, actor or actors who
initiate the use case (primary actors), other actors who partici-
pate in the use case (secondary actors), flow of events, alterna-
tive flows, and non-success cases. The use case description can
be enhanced with preconditions, postconditions, assumptions,
priority, and other information. A use case may include or
extend other use cases. Figure 8.3 shows an example of a use
case description for making a call in a telephone system.

All interactions in a use case are interactions between the
actors and the system; no interactions within the system are
shown. Human users are actors, but other computer systems
can also play the role of an actor.

Figure 8.2
The UML use case diagram
provides a quick overview
of the system, actors, and
the required behavior. This
example shows some use
cases in a telecommunica-
tion system.

1..2

1

Key (UML)

Use case

Actor

Association

Generalization

System
boundary

Mobile
Callee

Caller

Callee

Phone System

Make a
basic call

Make a
3-way call

Add contact

Send SMS

ptg

8.3 Notations for Documenting Behavior ■ 297

Sequence Diagrams

A UML sequence diagram shows a sequence of interactions
among instances of elements pulled from the structural docu-
mentation. It shows only the instances participating in the sce-
nario being documented. A sequence diagram has two
dimensions: vertical, representing time, and horizontal, repre-
senting the various instances. The interactions are arranged in
time sequence from top to bottom. Figure 8.4 is an example of
a sequence diagram that illustrates the basic UML notation. In
practice, the notation you’ll find in sequence diagrams is often
simpler: return messages may not be there, execution occurrence
bars may not be drawn, a single type of arrow may be used for
all types of messages, and labels on messages may not exist.

Sequence diagrams are not explicit about showing concurrency.
If that is your goal, use activity diagrams instead. Although
instances in a sequence diagram can be running concurrently,
no assumptions can be made about ordering when a sequence
diagram depicts an instance sending messages at the “same
time” to different instances or, conversely, receiving multiple
stimuli at the “same time.”

Figure 8.5 shows a more interesting sequence diagram. It
demonstrates some features introduced in UML 2.0 that help
in communicating a design to developers:

• Named frame. The optional frame around the diagram con-
tains the name of the sequence diagram, which in the exam-
ple is sdProcessOrder.

Name: Make a basic call
Description: Making a point-to-point connection between two phones.
Primary actors: Caller
Secondary actors: Callee
Flow of events:
The use case starts when a caller places a call via a terminal, such as a cell phone. All
terminals to which the call should be routed then begin ringing. When one of the terminals
is answered, all others stop ringing and a connection is made between the caller’s termi-
nal and the terminal that was answered. When either terminal is disconnected—someone
hangs up—the other terminal is also disconnected. The call is now terminated, and the
use case is ended.
Exceptional flow of events:
The caller can disconnect, or hang up, before any of the ringing terminals has been
answered. If this happens, all ringing terminals stop ringing and are disconnected, ending
the use case.

Figure 8.3
Example use case description for making a basic call in a telephone system. This use case contains a main flow of events
and one exceptional flow of events.

If your trace involves a
mix of synchronous and
asynchronous mes-
sages, use the different
types of arrows in the
UML sequence diagram
notation to differentiate
them and add the return
messages for the syn-
chronous calls.

ptg

298 ■ Chapter 8: Documenting Behavior

• Reference. An existing sequence diagram can be referenced
in other diagrams by using the frame with the upper-left
label “ref”. The example indicates that all interactions in the
referenced sequence diagram, CreditCardValidation, take place
right after ProcessOrderRPCService interacts with DaoOrder.

• Time constraint. The example specifies that the interaction of
Customer and GWTClientApp should take between one and five
seconds.

• Loop. The loop frame indicates that the interactions are
repeated in a loop. The expression after keyword “loop” in
the upper-left label defines the number of iterations. In the
example, the interactions in the loop frame are repeated for
each order item (it’s not shown in this diagram, but each
order contains a collection of order items).

• Alternatives. The frame with upper-left label “alt” contains
interactions that are executed only if the specified guard
condition (in square brackets) is true. The alt frame can be
segmented, and each segment can have a guard condition.
In the example, the alt frame has two segments, which
semantically correspond to an if-then-else construct.

Figure 8.4
A simple example of a UML
sequence diagram. Objects
(that is, element instances)
have a lifeline, drawn as a
vertical dashed line along
the time axis. The sequence
is usually started by an
actor on the far left. The
instances interact by send-
ing messages, which are
shown as horizontal
arrows. A message can be
a method or function call,
an event sent through a
queue, or something else.
The message usually maps
to a resource (operation) in
the interface of the receiver
instance. A filled arrowhead
on a solid line represents a
synchronous message,
whereas the open arrow-
head represents an asyn-
chronous message. The
dashed arrow is a return
message. The execution
occurrence bars along the
lifeline indicate that the
instance is processing or
blocked waiting for a
return. Because this
sequence diagram explic-
itly shows the creation of
the UserSession object,
its box is inserted at the
point where the creation
takes place.

Key (UML)

:Login
Page

:Login
Controller

:UserDao :Logger

:User

login
login(…)

checkPwd(…)

new :User
Session

Actor Object Lifeline
Execution
occurrence

Synchronous
message

Asynchronous
message

Return
message

register User Login(…)

ptg

8.3 Notations for Documenting Behavior ■ 299

Communication Diagrams

Like other trace notations, a UML communication diagram
shows ordered interactions among elements needed to accom-
plish a purpose. Whereas a sequence diagram shows order
using a time-line-like mechanism, a communication diagram
shows a graph of interacting elements and annotates each
interaction with a number denoting order. As in sequence dia-
grams, instances shown in a communication diagram are
instances of elements described in the accompanying struc-
tural documentation. Communication diagrams are useful
when the task is to verify that an architecture can fulfill the
functional requirements. The diagrams are not useful if the
understanding of concurrent actions is important, as when
conducting a performance analysis.

A communication diagram also shows relations among the
elements, called links (see Figure 8.6). Links show important
aspects of relations among those structural instances. Links
between the same instances in different communication dia-

Figure 8.5
Example of a UML sequence diagram for processing a purchase order on a Web store. This example exhibits some
powerful features of the sequence diagram notation, such as time constraint, reference to another sequence diagram,
loop, and conditional alternative messages.

:DaoOrder

sdProcessOrder

:Customer

:GWT
ClientApp

:Process
OrderRPC

Service

createOrder
(OrderDto)

createOrder(OrderDto)

Order

ref

 click
“Process
 Order”

{1..5s}

“Order
confirmed”

CreditCardValidation

processOrder(Order)

loop for each
order item

alt

saveSubOrder
(SubOrder)

new (Order,
item#) :Sub

Order

[item is from external partner reseller]

processSubOrder(SubOrder)

REST/SOAP call
specific to each
partner’s intf

[else]

processSubOrder(SubOrder)

updateOrder(Order)
Key: UML

:Order
FillerMDB

:Stock
Controller

AndShipping

:External
Reseller
Proxy

ptg

300 ■ Chapter 8: Documenting Behavior

grams can show different aspects of relations between the same
structural elements.

Communication diagrams and sequence diagrams essentially
express the same information, though you may choose one or
the other based on how they highlight time sequences and ele-
ment relations. Sequence diagrams show time sequences explic-
itly, making it easy to see the order in which interactions occur;
communication diagrams indicate ordering by using numbers.
Communication diagrams can resemble the structural diagram
(such as a class diagram) they derive from and also make it easy
to see how elements are statically connected; sequence diagrams
do not clearly show static connections (such as use dependen-
cies) between elements.

Activity Diagrams

UML activity diagrams are similar to flow charts. They show a
business process as a sequence of steps (called actions) and
include notation to express conditional branching and con-
currency, as well as to show sending and receiving events.
Arrows between actions indicate the flow of control. Option-
ally, activity diagrams can indicate the architecture element or
actor performing the actions. One way to do that is by drawing
an activity partition (also called a swim lane) for each element

Figure 8.6
A UML communication dia-
gram for placing a three-
way call on a telephone
system. Interactions are
shown by lines between the
instances labeled with a
sequence number, the
name of the resource being
called, and an arrowhead
that indicates the commu-
nication direction. The
sequence numbers show
which interactions follow
which. Subnumbering can
be used to show nested
stimuli and/or parallelism.
For example, the interac-
tion with a sequence num-
ber 2.1a is the first stimulus
sent as a result of receiving
stimulus number 2. The let-
ter a at the end means that
another stimulus, 2.1b, can
be performed in parallel.
This numbering scheme
may be useful for showing
sequences and parallelism,
but it tends to make a dia-
gram unreadable.

:Application :Call

Destination
:Connection

Originating
:Connection

Terminal 1
:Terminal
Connection

Terminal 2
:Terminal
Connection

Terminal 3
:Terminal
Connection

3: answer

2.1a.1.1:
active

2.1a.1.1.1:
connected

1: create 2: connect

2.1a: create

2.1b.1.1.1:
alerting

3.1.2:
connected

2.1a.1:
create

2.1b:
create

2.1b.1b:
create

2.1b.1a:
create

2.1b.1a.1:
ringing 3.1: active

2.1b.1b:1
ringing

3.1.1:
passive

Key: UML

ptg

8.3 Notations for Documenting Behavior ■ 301

and placing the actions performed by that element within the
corresponding partition. Figure 8.7 is an example of an activity
diagram that has six activity partitions.

Another important feature of activity diagrams is the ability
to express concurrency. A fork node (depicted as a thick bar
orthogonal to the flow arrows) splits the flow into two or more
concurrent flows of actions. The concurrent flows may later be
synchronized into a single flow through a join node (also
depicted as an orthogonal bar). The join node waits for all
incoming flows to complete before proceeding. An alternative
is to use a merge node, which is depicted as a diamond with

Figure 8.7
Example of an activity diagram for processing an order in the Adventure Builder system (Adventure Builder 2010). The
elements listed on the left are components from the top-level service-oriented view of the system.

Key (UML)

C
o

n
s
u

m
e
r

W
e
b

 S
it

e

A
c
ti

v
it

y

S
u

p
p

li
e
r

L
o

d
g

in
g

P
ro

v
id

e
r

A
ir

li
n

e

P
ro

v
id

e
r

O
rd

e
r

P
ro

c
e
s
s
in

g
 C

e
n

te
r

B
a
n

k

Receive
order

Verify
credit
card

Check
balance

[insufficient
balance] Notify

customer
of failure

Fill
order[sufficient

balance]

[order failed]

[order
complete]

Update
order
status

Process
activity
order

Process
lodging
order

Process
airline
order

Notify
customer
of success

Send activity
invoice

Send lodging
invoice

Send airline
invoice

R
ec

ei
ve

 a
ct

iv
it

y
in

vo
ic

e

R
ec

ei
ve

 lo
d

g
in

g
in

vo
ic

e

R
ec

ei
ve

 a
ir

lin
e

in
vo

ic
e

Action
Send
signal
action

Accept
event
action

Decision
 node

Fork
node

Merge node
(does not
synchronize)

Initial
node

Final
node

Control
flow

Activity partition (component
responsible for actions)

ptg

302 ■ Chapter 8: Documenting Behavior

multiple incoming flows. The merge node does not synchro-
nize the incoming flows; instead, as each flow completes, con-
trol is passed to the following action.

Unlike sequence and communication diagrams, activity dia-
grams don’t show the actual operations being performed on
specific objects. Activity diagrams are very useful to broadly
describe the steps in a specific work flow. Conditional branch-
ing (shown with the diamond symbol) allows a single diagram
to represent multiple traces, although it’s not usually the
intent of an activity diagram to show all possible traces or the
complete behavior for the system or part of it.

Other Trace-Based Notations

Use cases, sequence diagrams, communication diagrams, and
activity diagrams are perhaps the most commonly seen nota-
tions for capturing traces, but there are other notations that
have specialized purposes:

• A message sequence chart is a message-oriented representa-
tion containing the description of the communication between
instances. Simple message sequence charts look like sequence
diagrams but have a more specific definition and are a more
precise notation. The main area of application for a message
sequence chart is as an overview specification of the com-
munication behavior among interacting systems, especially
telecommunication switching systems. Message sequence
charts are often seen in conjunction with Specification and
Description Language (SDL), which is a comprehensive
behavioral notation. Whereas a message sequence chart
focuses on representing the message exchange between ele-
ments, such as systems and processes, SDL focuses on docu-
menting what does or should happen in an element. In that
respect, message sequence charts and SDL diagrams com-
plement each other.

• UML timing diagrams show state changes of one or more
objects along a time line. When two or more objects are
shown, the timing diagram can also display the messages
exchanged between them, similar to a UML sequence dia-
gram. Timing diagrams resemble digital signal diagrams in
that time progresses from left to right, but they have a rich
vocabulary of annotations to express timing constraints
between the events and message exchanges.

• Business Process Execution Language (BPEL) is a language
that supports creation of work flows that consist of interac-
tions among Web services. BPEL is an executable XML-
based language and hence not suitable for architecture

ptg

8.3 Notations for Documenting Behavior ■ 303

design. However, BPEL tool environments usually provide a
graphical notation (for example, Business Process Model-
ing Notation, or BPMN) that can be used to create behav-
ioral diagrams that describe control and data flow through
the system.

8.3.2 Notations for Capturing Comprehensive Models

Comprehensive models show the complete behavior of struc-
tural elements. Given this type of documentation, it is possible
to infer all possible paths from initial state to final state. The
state machine formalism is a good candidate for representing
the behavior of architecture elements because each state is an
abstraction of all possible histories that could lead to that state.
State machine languages allow you to complement a structural
description of the elements of the system with constraints on
interactions and timed reactions to both internal and environ-
mental stimuli.

In this section, we describe UML state machine diagrams.
Although other languages are available, we have chosen state
machine diagrams because they can describe behavior in a
form that captures the essence of what you wish to convey to
system stakeholders. State machines are also used in many dis-
ciplines of computer science (from compilers to data model-
ing) and are part of UML, so you are likely to find them in
modeling and drawing tools. State machine diagrams are also
available in development tools that allow you to design, simu-
late, and analyze your system, and sometimes generate code.

UML State Machine Diagrams

UML state machine diagram notation is based on the state-
chart graphical formalism developed by David Harel for mod-
eling reactive systems; they allow you to trace the behavior of
your system, given specific inputs. A UML state machine dia-
gram shows states represented as boxes and transitions
between states represented as arrows. The state machine dia-
grams help to model elements of the architecture that have
interesting or complex states. Figure 8.8 is a simple example
showing the states of a vehicle cruise control system.

Each transition in a state machine diagram is labeled with
the event causing the transition. Optionally, the transition can
specify a guard condition, which is bracketed. When the event
corresponding to the transition occurs, the guard condition is
evaluated and the transition is enabled only if the guard is true
at that time. Transitions can also have consequences, called
actions or effects, indicated by a slash. When an action is
noted, it indicates that the behavior following the slash will be

ptg

304 ■ Chapter 8: Documenting Behavior

performed when the transition occurs. The states may also
specify entry and exit actions.

UML state machine diagrams also support the nesting of
states. The outer state is called the composite state; inner states
are called substates. The composite state defines the scope of a
new state diagram, and the substates are related by transitions,
just as in a finite state machine. When the composite state is
entered, the initial state within the composite state is also
entered. Grouping substates into a composite state allows com-
mon behavior to be expressed concisely. Any behavior indi-
cated at the composite state level—depicted as transitions from
the composite state boundary rather than from any specific
substate—applies to all substates. A good use of this technique
is to indicate common error handling or termination behavior.
Figure 8.9 shows an example of this; the “user canceled order”
transition out of the “filling order” composite state (top right)
expresses that the transition can occur in any of the substates.

In UML state machines, concurrency is represented by dividing
a composite state into regions. Each concurrent region con-
tains a state machine that is a grouping of substates. Regions
are shown separated by dotted lines. The state machine in Fig-
ure 8.9 shows three concurrent regions. When all regions
reach their final state, transition “all bookings confirmed” from
the composite state is triggered. This transition causes the
“e-mail customer” action to be executed. Alternatively, the sys-
tem can leave the composite state if any of the requests is not
satisfied or, as we mentioned before, if the user cancels the
order. UML’s state machine diagram notation contains many
other features not mentioned here, such as means of express-
ing choice, timing, and history.

Other Comprehensive Notations

Formal languages such as Z, CSP, and FSP are popular in niche
domains with demanding requirements, such as safety-critical
systems. They are mathematical languages based on predicate

The boxes in a state
machine diagram are
states; they are not
components or mod-
ules. The arrows are
transitions; they are not
connectors. A state
machine diagram may
model the states of the
entire system, a compo-
nent, a collection of
components, or an
attribute of an object.
Be clear as to what you
are modeling before
creating a state
machine diagram.

State diagrams by defi-
nition are supposed to
show all states and all
transitions out of a
state. For example,
when an ATM is in state
“Enter Pin”, you should
show a transition for the
case when the user
walks away. Otherwise,
the developer may not
implement a time-out.

Decide what states your
state diagram repre-
sents. Choosing a
scope that is too broad
may result in a diagram
that is too big to under-
stand and analyze.

Don’t forget to indicate
the initial state, and
decide whether or not
there is a final state.

Figure 8.8
UML state machine dia-
gram for the cruise control
system of a motor vehicle.
The transitions correspond
to the buttons the driver
can press or driving actions
that affect the cruise con-
trol system.

Key: UMLpress “–”
to coast

press “+”
to accelerate

 press “set” or
“resume” buttons

press “cruise
on/off” button

press “cruise
on/off” button

press “cruise on/off” button

tap brake pedal

push
throttle
pedal

off
on,

disengaged
on,

engaged

ptg

8.3 Notations for Documenting Behavior ■ 305

logic and set theory. These languages can be used to produce
precise behavioral models and permit rigorous analyses, such
as type checking, model checking, and proofs. However, they
include a large set of symbols, and expressions are written in
terms of predicate logic, making it difficult for some designers
to warm up to.

Other notations exist that are used in various niche areas.
Architecture Analysis and Design Language (AADL), which is
described in Appendix C, can be used to reason about runtime

Figure 8.9
A UML state machine diagram showing the states of an order in the Adventure Builder system (Adventure Builder 2010).
Once the credit card is authorized, the order moves to the “filling order” composite state. The three regions represent
concurrent, independent substates of filling the order.

Key: UML state
machine diagram.
Color for
readability only.

user places
order

credit card charge
not authorized/e-mail
customer

credit card
authorized/e-mail
customer

created
credit card
transaction

denied

canceled
by user

user
canceled
order

filling order

book flight
request sent

book hotel
request sent

book activities
request sent

waiting for
airline

response

waiting for
hotel

response

waiting for
activity sup.

response

no reply
or request

denied

no reply
or request

denied

no reply
or request

denied

activity booking
confirmation
received

hotel booking
confirmation
received

flight booking
confirmation
received

flights
confirmed

flights not
available

hotel
confirmed

hotel not
available

activities
confirmed

activity not
available

/ e-mail
customer

/ e-mail customer
/ e-mail customer

all bookings
confirmed/e-mail

customer
order

completed
successfully

a supplier
could not
fill order

ptg

306 ■ Chapter 8: Documenting Behavior

behavior. Specification and Description Language (SDL) is
used in telephony. Koala is an architecture description lan-
guage designed with product-line architectures in mind; it pro-
vides support for variability in component selection and variety
of composition binding times.

8.4 Where to Document Behavior
Architects document behavior to show how an element behaves
when stimulated in a particular way or to show how an ensem-
ble of elements react to one another. In an architecture docu-
mentation package, where behavior is shown depends on what
is being shown. For example, in an architecture view:

• Behavior has its own section in the element catalog. For a complex
transaction, you might describe how elements interact to
process requests using a sequence diagram.

• Behavior can be part of an element’s interface documentation. The
semantics of a resource on an element’s interface can
include the element’s externally visible behavior that occurs
as a result of using the resource. Or in the usage guide sec-
tion of an interface document, behavior descriptions can be
used to explain the effects of a particular usage pattern, that
is, a particular sequence of resources used.

• Behavior can be used to fill in the rationale section, which includes
results of analysis. Behavior descriptions are often a basis for
analysis, and the behaviors that were used to analyze the sys-
tem for correctness or other quality attributes can be
recorded here.

In the documentation that applies beyond views, the ratio-
nale for why the architecture satisfies its requirements can
include behavior documentation as part of the architect’s
justification.

8.5 Why to Document Behavior
Documentation of behavior is most commonly used for com-
munication among stakeholders during development and
maintenance activities. It can also be used for system analysis.
The types of analyses you perform and the extent to which you
check the quality attributes of your system are based on the
type of system you are developing.

8.5.1 Driving Development Activities

Behavior documentation plays an important part in architec-
ture’s role as a vehicle for communication among stakeholders

Documenting interfaces
is described in Chapter 7.

Documenting rationale
is described in Section
6.5.

ptg

8.5 Why to Document Behavior ■ 307

during system development activities. It’s probably safe to say
that every architect has drawn a sequence diagram (or some
similarly expressive diagram) on the whiteboard during a
meeting in order to make concrete their ideas about what com-
ponents need to exist and the interactions among those com-
ponents. These diagrams, along with associated rationale, should
be captured as part of the architecture’s documentation. The
process of designing the architecture helps the architect develop
an understanding of the internal behavior of system elements
and gross system structure, and it improves confidence that the
system will be able to achieve its goals.

In the architecting process, system decomposition identifies
sets of subelements and defines both the structure and the
interactions among the subelements in a way that supports the
required behavior of the parent element. In many cases behav-
ior documentation is created to help reason about the interac-
tion of the subelements and their responsibilities, to see if the
decomposition is appropriate.

Trace-oriented diagrams, such as sequence diagrams, can be
created based on an implementation already in place. In that
case, the diagrams can help to spot bottlenecks, memory leaks,
and other defects, as well as identify opportunities for perfor-
mance improvements and refactorings.

8.5.2 Analysis

Behavior documentation allows you to reason about the com-
pleteness, correctness, and quality attributes of the software
system. Once the structure of an architecture view has been
identified and the interactions among elements have been
constrained, you need to look at whether the proposed system
will be capable of doing its job as planned. This is your oppor-
tunity to reason about both the completeness and the correct-
ness of the architecture. The behavior of the system can be
simulated to help reason about the architecture’s ability to sup-
port the range of functionality and related quality require-
ments of the system. Behavior documentation can be built as a
model that serves as input to the simulation.

The amount of information in the behavioral models
required to perform behavioral analysis varies greatly, depend-
ing on the level of certainty and precision required of the
result. Therefore, it is generally a good idea to do some type of
trade-off comparison to determine the cost/benefit involved
with applying certain types of architecture analysis techniques.
For any system, it is a good idea to identify and to simulate a set
of requirements-based scenarios. If you are developing a safety-
critical system, the application of more-expensive, formal analysis

If you’re spending a
long time to find a bug
in a specific transaction
involving several mod-
ules, create a sequence
diagram showing the
relevant steps. The dia-
gram helps you and
others to get a hold of
the overall transaction
and may expose erro-
neous interactions. This
advice is particularly
useful when the bug is
not easily reproducible
because of concurrency
issues.

ptg

308 ■ Chapter 8: Documenting Behavior

techniques, such as model checking, is justified in order to
identify possible design flaws that could lead to safety-related
failures.

Documenting system behavior supports exploration of the
quality attributes of a system early in the development process.
Some techniques and tools are available or are being devel-
oped that can be used to predict, based on the architecture,
that the production of a system will exhibit specific measures
related to such quality attributes as performance, reliability,
and safety.

Architecture-based simulation is similar to testing an imple-
mentation in that a simulation is based on a specific use of the
system under specific conditions and with expectation of a cer-
tain outcome. Typically, a developer identifies a set of scenarios
based on the system requirements. These scenarios are similar
to test cases in that they identify the stimulus of an activity and
the assumptions about the environment in which the system is
running and describe the expected result. These scenarios are
played out against documented system models that support
relating system elements and the constraints on their interac-
tions. The results of “running the architecture” are checked
against expected behavior.

Whereas simulation looks at a set of special cases, system-
wide techniques for analyzing the architecture evaluate the
overall system: analysis techniques for things like change
impact, deadlock, safety, and schedulability. These techniques
require information about the behavior of the system and its
constituent elements in order to perform the appropriate anal-
yses. Dependencies between and within elements can be used
to identify potential execution paths, which are needed to eval-
uate quality attributes such as performance, and to identify
chains of uses relations to help evaluate modifiability.

8.6 Summary Checklist
• Documenting behavior adds semantic detail to elements

and their interactions that have time-related characteristics.
Behavioral models complement structural models by add-
ing information that reveals ordering of interactions among
the elements, opportunities for concurrency, and time depen-
dencies of interactions, such as at a specific time or after a
period of time.

• Constraints on the interaction between elements should be
documented. Document any ordering constraints on actions
or interactions. Document a clock if your system depends
on time.

ptg

8.7 Discussion Questions ■ 309

• Most behavioral languages include representations of stim-
ulus and activity, ordering of interactions, and structural
elements.

• Trace-oriented models consist of sequences of activities or
interactions that describe the system’s response to a specific
stimulus when in a specific state. They document the trace
of activities through a system described in terms of its struc-
tural elements and their interactions. Use cases, sequence
diagrams, communication diagrams, and activity diagrams
are trace-oriented modeling languages.

• Comprehensive models, often state based, show the com-
plete behavior of a structural element or set of elements.
UML state machine diagrams are a comprehensive behavior
modeling language.

• Behavior can be documented in the element catalog of a
view and in interface documentation, and it can be used to
fill in the design background section, which includes results
of analyses.

8.7 Discussion Questions
1. Consider a car radio with seek, scan, power on/off, and

preset station buttons, along with a manual tuning knob
and volume control and a digital frequency display. (a) Of the
languages and notations for describing behavior presented
in this chapter, which ones would be good candidates for
describing the behavior of this radio? Why? (b) Using one
of the languages you chose in the previous question, sketch
the behavior of the car radio.

2. Suppose that you wanted to make sure that your car radio
did not exhibit undesirable behavior in unusual circum-
stances, such as the display going blank when the driver
turns the frequency knob while holding down a preset but-
ton. What languages would you likely use to help in that
case, and why?

3. When would you choose to document behavior using trace
models or using comprehensive models? What value do
you get, and what effort is required, for each of them?

4. Draw a statechart for an automatic teller machine for each
of the following stakeholders: (a) a customer wanting to
deposit or withdraw money from an account; (b) a bank
executive wanting to track machine usage across the bank’s
territory; (c) a service technician sent to repair the
machine when it becomes inoperative for any reason; (d) a

ptg

310 ■ Chapter 8: Documenting Behavior

security monitor whose job it is to take appropriate action
when the machine’s money safe is open, the tilt alarm goes
off, or the machine stops communicating with the bank.
Discuss the differences among the four. If you wanted to
combine them to create a single overall statechart for the
machine, how would you go about it?

5. Documenting an architecture involves drawing various
views that must be consistent with each other. If a behavior
model shows a component sending a message to another,
there must be a connector between them, but connectors
are not shown on behavior diagrams. What other con-
sistency checks between views can you think of? In answer-
ing, consider views in each category: module, C&C, and
allocation.

6. Is Figure 8.10 a behavioral diagram? Why or why not?

Figure 8.10
The numbered arrows drawn on top of this network diagram show the sequence of steps to process a specific user
transaction in terms of communicating elements.

ptg

8.8 For Further Reading ■ 311

8.8 For Further Reading
A rich source of behavior descriptions can be found in the
UML definition that is publicly available from the OMG. At
uml.org, you can find the UML specifications, which contain
definitions, descriptions, and examples of sequence and com-
munication diagrams, as well as example use cases and state
machine diagrams. You can also find several books that explain
UML and its usage in detail. Two seminal books that you will
find to be valuable references are The Unified Modeling Lan-
guage User Guide, by Booch, Rumbaugh, and Jacobson (2005)
and UML Distilled, by Martin Fowler (2003), which focuses on
the 20 percent of UML that you will use 80 percent of the time.

A good reference for statecharts is Modeling Reactive Systems
with Statecharts: The Statemate Approach, by Harel and Politi
(1998).

The BPEL specification can be found at oasis-open.org/
committees/wsbpel. The Object Management Group’s home
page for BPMN is bpmn.org.

Message sequence charts, especially combined with SDL dia-
grams, are most commonly used by the telecommunication
industry. The Web site of the International Telecommunication
Union, at itu.int, has references to resources needed to under-
stand and use message sequence charts and SDL. Additional
information and pointers to events, tools, and papers can be
found at the SDL Forum Society’s Web site, sdl-forum.org.

Many books have been written about use cases. The book
from Ivar Jacobson that started the whole use case discussion is
Object-Oriented Software Engineering: A Use Case Driven Approach
(1992). This book can serve as a starting point to understand
what was originally meant by use cases and their underlying
concepts. Alistair Cockburn’s book Writing Effective Use Cases
(2000) provides practical guidance on avoiding pitfalls, struc-
turing collections of use cases, and organizing use cases into
goal levels.

The Z language was originally developed at Oxford University
in the late 1970s and has been extended by a number of groups
since then. Tools that help create and analyze specifications
have been developed by various groups and are available freely
over the Internet. A great resource for information and point-
ers is the Web archive found at formalmethods.wikia.com/
wiki/Z_archive. J. M. Spivey’s book The Z Notation: A Reference
Manual (1988) is available online at spivey.oriel.ox.ac.uk/
mike/zrm. It provides a good reference in terms of a standard
set of features.

ptg

312 ■ Chapter 8: Documenting Behavior

AADL is a standard published by the Society of Automotive
Engineers (SAE). The SAE AADL team keeps an updated Web
site at aadl.info. An overview of AADL and its associated tools
is found in the technical note by Feiler, Gluch, and Hudak
(2006), as well as in Appendix C of this book.

ptg

313

P A R T

Building the Architecture
Documentation

Parts I and II covered the kind of information that should
appear in architecture documentation. Part I covered styles,
with their attendant element and relation types, that architects
can use to engineer views. Part II covered other critical infor-
mation beyond elements and relations that should be docu-
mented.

Part III deals more directly with the care and feeding of the
architecture documentation itself. Exactly how does an archi-
tect decide what views to put into an architecture document?
How should the architecture document be organized, laid out,
divided into sections, and packaged? How should it be
reviewed for quality and fitness for stakeholder use?

These and other topics are the subject of Part III.

• Chapter 9 provides detailed guidance for choosing the set
of views to incorporate into a documentation suite, explores
examples of sets of views, and gives two short examples for
illustrating how to decide which views to use.

• Chapter 10 prescribes templates and detailed guidance for
documenting views and documenting information that
applies to more than one view.

• Chapter 11 presents a step-by-step approach for reviewing
an architecture document. The approach is focused on
involving the appropriate stakeholders and asking ques-
tions directed at making sure the document satisfies their
specific needs and concerns.

ptg

This page intentionally left blank

ptg

315

9
Choosing the Views

As we have seen, a large part of designing the architecture for
a system consists of choosing and designing software struc-
tures, often as described in terms of architecture styles. Choos-
ing, for example, a service-oriented style for your system means
putting a service-oriented structure in place and populating it
with services and their interconnections. To the extent that
you write down that structure, and the interfaces and behavior
of the elements, you’ve created a view of your architecture,
because a view is a representation of a structure.

In other words, documenting your design decisions as you
make them (something we strongly recommend) produces
views, which are the heart of an architecture document. It is
most likely that these views are sketches more than finished
products ready for public release; this will give you the free-
dom to back up and rethink design decisions that turn out to
be problematic without having wasted time on cosmetic polish.
(In some cases, they might literally be sketches—see Figure 11.8
for an example.)

By the time you’re ready to release an architecture docu-
ment, then, you’re likely to have a fairly well worked-out collec-
tion of architecture views. At some point you’ll need to decide
which to take to completion, with how much detail, and which
to include in a release. You’ll also need to decide which views
can be usefully combined with others, so as to reduce the total
number of views in the document and reveal important rela-
tions among the views.

And that is the topic of this chapter: how an architect
decides on the views to include in the documentation package.

We have tried to explain the benefits of each kind of documen-
tation, to help you decide under what circumstances you would
want to produce it. Understanding which views to produce at

Poetry is a condensation
of thought. You write in
a few lines a very com-
plicated thought. And
when you do this, it
becomes very beautiful
poetry. It becomes
powerful poetry.

—Chen Ning Yang, win-
ner of the Nobel Prize
in Physics, 1957
(quoted in Moyers
1989, p. 313)

Combined views can be
produced by defining a
hybrid style, or by mak-
ing an overlay. These
are discussed in Sec-
tion 6.6.

ptg

316 ■ Chapter 9: Choosing the Views

what time and with how much detail can be reached only in the
concrete context of a project. You can determine which views
are required, when to create them, and how much detail to
include in order to make the development project successful if
you know the following:

• What people, and with what skills, are available

• With which standards you have to comply

• What budget is on hand

• What the schedule is

• What the information needs of the important stakeholders are

This chapter is about helping you make those determinations.
Once the entire documentation package has been assembled,
or at opportune milestones along the way, it should be reviewed
for quality, suitability, and fitness for purpose by those who are
going to use it.

9.1 Stakeholders and Their Documentation Needs
To choose the appropriate set of views, you must identify the
stakeholders that depend on software architecture documen-
tation. You must also understand each stakeholder’s informa-
tion needs.

The set of stakeholders will vary, depending on the organiza-
tion and the project. The list of stakeholders in this section is
suggestive but is not intended to be complete. As an architect,
one of your primary obligations is to understand who the stake-
holders are for your project. Similarly, the documentation needs
we lay out for each stakeholder are typical, but not definitive.
So take the following discussion as a starting point and adapt them
according to the needs of your project and your stakeholders.

Project managers care about schedule, resource assignments,
and perhaps contingency plans to release a subset of the system
for business reasons. To create a schedule, the project manager
needs information about the modules to be implemented, with
some information about their complexity, such as the list of
responsibilities, as well as dependencies that exist to other
modules, which may suggest a certain sequence in the imple-
mentation. This person is not interested in the design specifics
of any element or the exact interface beyond knowing whether
those tasks have been completed. But the manager is interested
in the system’s overall purpose and constraints; its interaction
with other systems, which may suggest an organization-to-
organization interface that the manager will have to establish;
and the hardware environment, which the manager may have

If you can’t afford to
produce a particular
part of the architecture
documentation pack-
age, at least make sure
you understand what
the long-term cost will
be for the short-term
savings. Use the for-
mula in Section P.2.4 in
the prologue to help you
estimate the cost and
benefit.

Chapter 11 covers the
review of architecture
documents by stake-
holders.

All fine architectural val-
ues are human values,
else not valuable.

—Frank Lloyd Wright

Project
managers

ptg

9.1 Stakeholders and Their Documentation Needs ■ 317

to procure. The project manager might create or help create
the work assignment view, in which case he or she will need a
decomposition view to do it.

As shown in Figure 9.1, a project manager, then, will likely
be interested in

• Module views: decomposition and uses and/or layered

• Allocation views: deployment and work assignment

• Other: top-level context diagrams showing interacting sys-
tems and system overview and purpose

Members of the development team, for whom the architecture
provides marching orders, are given constraints on how they
do their job. Sometimes a developer is given responsibility for
an element he or she did not implement, such as a commercial
off-the-shelf product. Someone still has to be responsible for
that element, to make sure that it performs as advertised and
to tailor it as necessary. This person will want to know the
following:

• The general idea behind the system. Although that informa-
tion lies in the realm of requirements rather than architec-
ture, a top-level context diagram or system overview can go
a long way to provide the information.

• Which element the developer has been assigned, that is,
where functionality should be implemented.

• The details of the assigned element, including the data
model with which it must operate.

• The elements with which the assigned part interfaces and
what those interfaces are.

• The code assets the developer can make use of.

Members of the
development team

Figure 9.1
A project manager usually
creates the work
assignments and therefore
needs some overview
information of the software.

D
ET

A
IL

Module Views C&C Views Allocation Views

Project manager

ptg

318 ■ Chapter 9: Choosing the Views

• The constraints, such as quality attributes, legacy systems
interfaces, and budget, that must be met.

As shown in Figure 9.2, a developer, then, is likely to want to see

• Module views: decomposition, uses and/or layered, and
generalization

• Component-and-connector (C&C) views: various, showing
the component(s) the developer was assigned and the com-
ponents they interact with

• Allocation views: deployment, implementation, and install

• Other: system overview; a context diagram containing the
module(s) he or she has been assigned; the interface docu-
mentation of the developer’s element(s) and the interface
documentation of those elements with which they interact;
a variability guide to implement required variability; and
rationale and constraints

Testers and integrators are stakeholders for whom the architec-
ture specifies the correct black-box behavior of the pieces that
must fit together. A unit tester of an element will want to see
the same information as a developer of that element, with an
emphasis on behavior specifications. A black-box tester will
need to see the interface documentation for the element. Inte-
grators and system testers need to see collections of interfaces,
behavior specifications, and a uses view so they can work with
incremental subsets.

As shown in Figure 9.3, testers and integrators, then, are
likely to want to see

• Module views: decomposition, uses, and data model

• C&C views: all

Testers and
integrators

Figure 9.2
Developers have interest
mainly in the software itself
and therefore create
detailed module and C&C
views and have some
interest in allocation views.

D
ET

A
IL

Module Views C&C Views Allocation Views

Developer

ptg

9.1 Stakeholders and Their Documentation Needs ■ 319

• Allocation views: deployment; install; and implementation,
to find out where the assets to build the module are

• Other: context diagrams showing the module(s) to be tested
or integrated; the interface documentation and behavior
specification(s) of the module(s) and the interface docu-
mentation of those elements with which they interact

Designers of other systems with which this one must interoperate
are stakeholders. For these people, the architecture defines
the set of operations provided and required, as well as the pro-
tocols for their operation. As shown in Figure 9.4, these stake-
holders will likely want to see

• Interface documentations for those elements with which their
system will interact, as found in module and/or C&C views

• The data model for the system with which their system will
interact

Designers of
other systems

Figure 9.3
Testers and integrators
need context and interface
information, along with
information about where
the software runs and how
to build incremental parts.

D
ET

A
IL

Module Views C&C Views Allocation Views

Tester or integrator

Figure 9.4
Designers of other systems
are interested in interface
documentation and impor-
tant system behavior.

D
ET

A
IL

Module Views C&C Views Allocation Views

Designer

ptg

320 ■ Chapter 9: Choosing the Views

• Top-level context diagrams from various views showing the
interaction

Maintainers use architecture as a starting point for mainte-
nance activities, revealing the areas a prospective change will
affect. Maintainers will want to see the same information as
developers, for they both must make their changes within the
same constraints. But maintainers will also want to see a
decomposition view that allows them to pinpoint the locations
where a change will need to be carried out, and perhaps a uses
view to help build an impact analysis to fully scope out the
effects of the change. Maintainers will also want to see design
rationale that will give them the benefit of the architect’s orig-
inal thinking and save them time by letting them see already
discarded design alternatives.

As shown in Figure 9.5, a maintainer, then, is likely to want
to see the views as mentioned for the developers of a system,
with special emphasis on

• Module views: decomposition, layered, and data model

• C&C views: all

• Allocation views: deployment, implementation, and install

• Other: rationale and constraints

Application builders in a software product line tailor the core
assets according to preplanned and built-in variability mecha-
nisms, add whatever special-purpose code is necessary, and
instantiate new members of the product line. Application
builders will need to see the variability guides for the various
elements, to facilitate tailoring. After that, application builders
need to see largely the same information as integrators do.

Figure 9.5
A maintainer has the same information needs as a developer but with a stronger
emphasis on design rationale and variability.

Maintainers

Application
builders

A software product
line is a set of software-
intensive systems shar-
ing a common, man-
aged set of features that
satisfy the specific
needs of a particular
market segment or mis-
sion and that are devel-
oped from a common
set of reusable core
assets in a prescribed
way. (Clements and
Northrop 2001)

D
ET

A
IL

Module Views C&C Views Allocation Views

Maintainer

ptg

9.1 Stakeholders and Their Documentation Needs ■ 321

As shown in Figure 9.6, a product-line application builder,
then, is likely to want to see the views mentioned for an integra-
tor, plus

• A variability guide, as given in module and/or C&C views

Customers are the stakeholders who pay for the development
of specially commissioned projects. Customers are interested
in cost and progress and convincing arguments that the archi-
tecture and resulting system will meet the quality and func-
tional requirements. Customers will also have to support the
environment in which the system will run and will want to
know that the system will interoperate with other systems in
that environment.

As shown in Figure 9.7, the customer, then, is likely to want
to see

• C&C views: the analysis results will be of particular interest

Customers

Figure 9.6
An application builder
needs to understand what
adaptations to make in
order to build new
products.

D
ET

A
IL

Module Views C&C Views Allocation Views

Application builder

Figure 9.7
A customer is interested
mainly in how the software
works in the desired
environment.

D
ET

A
IL

Module Views C&C Views Allocation Views

Customer

ptg

322 ■ Chapter 9: Choosing the Views

• Allocation views: work assignment view, no doubt filtered to
preserve the development organization’s confidential infor-
mation, and a deployment view

• Other: a top-level context diagram in one or more C&C views

End users do not need to see the architecture, which is, after all,
largely invisible to them. But they often gain useful insights about
the system, what it does, and how they can use it effectively by exam-
ining the architecture. If end users or their representatives review
your architecture, you may be able to uncover design discrepan-
cies that would otherwise have gone unnoticed until deployment.

To serve this purpose and as shown in Figure 9.8, an end
user is likely to be interested in

• C&C views: views emphasizing flow of control and transfor-
mation of data, to see how inputs are transformed into out-
puts; analysis results dealing with properties of interest, such
as performance or reliability

• Allocation views: a deployment view to understand how
functionality is allocated to the platforms with which the
users interact

Analysts are interested in the ability of the design to meet the
system’s quality objectives. The architecture serves as the fod-
der for architecture evaluation methods and must contain the
information necessary to evaluate such quality attributes as
security, performance, usability, availability, and modifiability.
For performance engineers, for example, architecture provides
the model that drives such analytical tools as rate-monotonic
real-time schedulability analysis, simulations and simulation
generators, theorem provers, and model checkers. These tools
require information about resource consumption, scheduling
policies, dependencies, and so forth.

End users

Analysts

Figure 9.8
An end user needs to have
an overview of the soft-
ware, how it runs on the
platform, and how it inter-
acts with other software.

D
ET

A
IL

Module Views C&C Views Allocation Views

End user

ptg

9.1 Stakeholders and Their Documentation Needs ■ 323

In addition to generalized analysis, architectures can be eval-
uated for the following and other quality attributes, each of
which suggests certain documentation obligations.

• Performance. To analyze for performance, performance engi-
neers build models that calculate how long things take. Plan
to provide a communicating-processes view to support per-
formance modeling. In addition, performance engineers are
likely to want to see a deployment view, behavior documen-
tation, and those C&C views that help to track execution.

• Accuracy. Accuracy of the computed result is a critical quality
in many applications, including numerical computations,
the simulation of complex physical processes, and many
embedded systems in which outputs are produced that
cause actions to take place in the real world. To analyze for
accuracy, a C&C view showing flow and transformation of
data is often useful because it shows the path that inputs
take on their way to becoming outputs, and it helps identify
places where numerical computations can degrade accuracy.

• Modifiability. To gauge the impact of an expected change, a
uses view and a decomposition view are most helpful. Those
views show dependencies and will help with impact analysis.
But to reason about the runtime effects of a proposed change
requires a C&C view as well, such as a communicating-processes
view, to make sure that the change does not introduce deadlock.

• Security. A deployment view is used to see outside connections,
as are context diagrams. A C&C view showing data flow and
security controls is used to track where information goes and
is exposed; a decomposition view is used to find where
authentication and integrity concerns are handled. Denial of
service is loss of performance, and so the security analyst will
want to see the same information as the performance analyst.

• Availability. A C&C communicating-processes view will help
analyze for deadlock, as well as synchronization and data
consistency problems. In addition, C&C views show how
redundancy, failover, and other availability mechanisms
kick in as needed. A deployment view is used to show possible
points of failure and backups. Reliability numbers for a mod-
ule might be defined as a property in a module view, which is
added to the mix.

• Usability. A decomposition view will enable analysis of system
state information presented to the user; help with determi-
nation of data reuse; assign responsibility for usability-related
operations, such as cut-and-paste and undo; and other things.
A C&C communicating-processes view will enable analysis of
cancellation possibilities, failure recovery, and so on.

ptg

324 ■ Chapter 9: Choosing the Views

As shown in Figure 9.9, an analyst is likely to be interested in

• Module views: various

• C&C views: various, but especially those showing processes

• Allocation views: deployment

Infrastructure support personnel set up and maintain the infrastruc-
ture that supports the development, build, and production envi-
ronments of the system. You need to provide documentation about
the parts that are accessible in the infrastructure. Those parts are
usually elements shown in a decomposition, C&C, install, and/or
implementation view. A variability guide is particularly useful to
help set up the software configuration management environment.

As shown in Figure 9.10, infrastructure support people likely
want to see

• Module views: decomposition and uses

• C&C views: various, to see what will run on the infrastructure

Infrastructure
support
personnel

Figure 9.9
An analyst needs informa-
tion from all views. Depend-
ing on the specific analysis,
other, more detailed infor-
mation might be required.

D
ET

A
IL

Module Views C&C Views Allocation Views

Analyst

Figure 9.10
Infrastructure support
people need to understand
the software artifacts
produced to provide tool
support.

D
ET

A
IL

Module Views C&C Views Allocation Views

Infrastructure support

ptg

9.1 Stakeholders and Their Documentation Needs ■ 325

• Allocation views: deployment and install, to see where the soft-
ware (including the infrastructure) will run; implementation

• Other: variability guides

New stakeholders will want to see introductory, background,
and broadly scoped information: top-level context diagrams,
architecture constraints, overall rationale, and root-level views,
as shown in Figure 9.11. People new to the system will usually
want to see the same kind of information as their counterparts
who are more familiar with the system, but new people will
want to see it in less detail.

Future architects are the most avid readers of architecture doc-
umentation, with a vested interest in everything. After the cur-
rent architect has been promoted for producing the exemplary
documentation, the replacement will want to know all the key
design decisions and why they were made. As shown in Figure
9.12, future architects are interested in it all, but they will be

New stakeholders

Future architects

Figure 9.11
New stakeholders need to
have the same information
as their counterparts.

D
ET

A
IL

Module Views C&C Views

AS APPROPRIATE

Allocation Views

New stakeholders

Figure 9.12
A future architect has
strong interest in all
the architecture
documentation.

D
ET

A
IL

Module Views C&C Views Allocation Views

Architect

ptg

326 ■ Chapter 9: Choosing the Views

especially keen to have access to comprehensive and candid
rationale and design information.

Table 9.1 summarizes the documentation needs of the stake-
holders presented in this section.

9.2 A Method for Choosing the Views
This section presents a three-step method for choosing the
views.

• Step 1. Build a stakeholder/view table. For this step, begin
by building a table for your project, like that in Table 9.1.

Enumerate the stakeholders for your project’s software
architecture documentation down the rows. Your stake-
holder list is likely to be different from the one in Table 9.1;
however, be as comprehensive as you can. For the columns,
enumerate the views that apply to your system. As discussed
in the prologue, some views (such as decomposition, uses,
and work assignment) apply to every system, while others
(various C&C views, the layered view) apply only to systems

Table 9.1 Summary of documentation needs

Module Views
C&C
Views Allocation Views Other Documentation

De
co

m
po

si
tio

n

Us
es

Ge
ne

ra
liz

at
io

n

La
ye

re
d

Da
ta

 M
od

el

Va
rio

us

De
pl

oy
m

en
t

Im
pl

em
en

ta
tio

n

In
st

al
l

W
or

k
As

si
gn

m
en

t

In
te

rf
ac

e
Do

cu
m

en
ta

tio
n

Co
nt

ex
t D

ia
gr

am
s

M
ap

pi
ng

 B
et

w
ee

n
Vi

ew
s

Va
ria

bi
lit

y
Gu

id
es

An
al

ys
is

 R
es

ul
ts

Ra
tio

na
le

 a
nd

 C
on

st
ra

in
ts

Project managers s s s d d o s

Members of development team d d d d d d s s d d d d d s

Testers and integrators d d d d d s s s s d d s d s

Designers of other systems s d o

Maintainers d d d d d d s s d d d d d

Product-line application builders d d s o s s s s s s d s d s

Customers o o o s

End users s s o s

Analysts d d s d d s d s d d s d s

Infrastructure support personnel s s s s d d o s

New stakeholders x x x x x x x x x x x x x x x x

Current and future architects d d d d d d d s d s d d d d d d

Key: d = detailed information, s = some details, o = overview information, x = anything

At a minimum, expect
to have at least one
module view, at least
one C&C view, and at
least one allocation
view in your architecture
document.

ptg

9.2 A Method for Choosing the Views ■ 327

designed according to the corresponding styles. That is, you
can produce a layered view only if your system is layered; you
can produce a client-server view only if you used the client-
server style; and so on. For the columns, make sure to include
the views or view sketches you already have as a result of your
design work so far.

Once you have the rows and columns defined, fill in each
cell to describe how much information the stakeholder
requires from the view: none, overview only, moderate
detail, or high detail. The candidate view list going into step
2 now consists of those views for which some stakeholder has
a vested interest.

PERSPECTIVES

Listening to the Stakeholders

It is asking a lot of an architect to divine the specific needs of each stakeholder,
and so it is a very good idea to make the effort to communicate with stakeholders,
or people who can speak for those roles. Talk with them about how they will best
be served by the documentation you are about to produce. Practitioners of archi-
tecture evaluation almost always report that one of the most rewarding side
effects of an evaluation exercise comes from assembling an architecture’s stake-
holders around a table and watching them interact and build consensus among
themselves. Architects seldom practice this team-building exercise among their
stakeholders, but a savvy architect understands that success or failure of an
architecture comes from knowing who the stakeholders are and how their inter-
ests can be served. The same holds true for architecture documentation.

Before the architecture documentation effort begins, plan to contact your stake-
holders. This will, at the very least, compel you to name them. For a large project
in which the documentation is a sizable line item in the budget, it may even be
worthwhile to hold a half-day or full-day roundtable workshop. Invite at least one
person to speak for each stakeholder role of importance in your project. Begin
the workshop by having each stakeholder explain the kind of information he or
she will need to carry out his or her assigned tasks. Have a scribe record each
stakeholder’s answer on a flip chart for all to see. Then present a documentation
plan: the set of views you’ve chosen, the supporting documentation, and the
cross-view information you plan to supplement them with. Stakeholders may
not necessarily understand what the views mean that you present. Have some
examples ready to show how a specific view looks and what kind of information
it will show. Finally, perform a cross-check to find requested but missing infor-
mation and planned but unneeded documentation. Whether you hold a full-blown
workshop or talk to your stakeholders informally, the result will be vastly increased
buy-in for your documentation efforts and a clearer understanding on every-
one’s part of what the role of the architecture and its documentation will be.

Decide for which stake-
holders you need to
provide architecture
documentation. Under-
stand what type of infor-
mation they need and
with how much detail.
Use this information to
decide what views are
needed and how to
structure them into view
packages to support
your stakeholders.

ptg

328 ■ Chapter 9: Choosing the Views

The information that stakeholders need will not always align nicely with the infor-
mation the architect was planning to produce. This is why it’s so important to
ask the stakeholders what they need. But you also have to listen to the answers.

We once ran a workshop with an architecture team to fix some issues that had
arisen during an architecture evaluation. The evaluation revealed what we
thought was a very well documented architecture. But during the follow-up
workshop, the project manager raised the same issue over and over again:
“Give me the data that I need to create a reliable project plan. It doesn’t matter
how long the project lasts, as long as we can reliably meet our delivery promises.”

Each time, the chief architect made the same reply: “The information you need
is in the architecture document.” That statement was technically true, but not
particularly helpful. The project manager needed a uses view including a list of
module responsibilities. The architect provided it (using UML output from a
tool), but the manager wasn’t satisfied. “I cannot find the information in the doc-
ument,” he said. “I don’t understand what those symbols mean and I don’t have
time to spend searching the document.” The right documentation for him would
have been an extraction of the effort/dependency information of modules from
the UML model, rendered in plain text, and packaged separately.

Sadly, about a year later the project was canceled. The customer had lost faith
in the company’s ability to deliver what they promised.

In another case, we saw an architecture documented using the Kruchten 4+1
view set. The system was a typical three-tiered client-server architecture in
which the middle tier was a framework that defined the applications as plug-ins.
Once you knew that much, it was straightforward to come up with the views.
The customer, on the other hand, knew that he was responsible for the system’s
maintenance after it was delivered. He always made the same demand: “Tell me
what and where I have to change when I want to change the content of a spe-
cific Web page.” He clearly had a “page-oriented view” in mind. This need was
not satisfied by any of the views that had been documented using the very rea-
sonable 4+1 approach. He might have been well served by a view showing
which plug-ins or parts of plug-ins contributed to producing a Web page.

Keep an open mind when listening to your stakeholders. They’ll tell you what
they need. Many times it won’t be what you were planning to provide, but many
times (as in these two cases) what they need is easily produced from the infor-
mation you already have at hand. And it might make the difference between
success and failure.

—F.B. and P.C.

• Step 2. Combine views. The candidate view list from step 1
is likely to yield an impractically large number of views. This
step will winnow the list to manageable size.

Look for views in the table that require only overview, or
that serve very few stakeholders. See if the stakeholders

Section 6.6 discusses
how to combine views,
and which views are
often easy and useful to
combine.

ptg

9.3 Example ■ 329

could be equally well served by another view having a stron-
ger constituency.

When combining views it is useful to consider the costs
associated with producing and maintaining a view. There
are at least two sources of the cost. First is the cost required
to generate the view, and second is the cost required to
maintain it and keep it consistent with other views.

• Step 3. Prioritize and stage. After step 2 you should have the
minimum set of views needed to serve your stakeholder
community. At this point you need to decide what to do first.
How you decide depends on the details specific to your
project, but here are some things to consider:

– Not all the information needs of all the stakeholders
must be satisfied to the full extent. Providing 80 percent
of the requested information goes a long way, and it
might be “good enough” so that the stakeholders can do
their job. Check with the stakeholder if a subset of infor-
mation would be sufficient. They typically prefer a prod-
uct that is delivered on time and in budget over getting
the perfect documentation.

– You don’t have to complete one view before starting
another. People can make progress with overview-level
information, so a breadth-first approach is often the best.

– Some stakeholders’ interests supersede others. A project
manager, or the management of a company with which
yours is partnering, often demands attention and infor-
mation early and often.

– If your architecture has not yet been validated or evalu-
ated for fitness of purpose, then documentation to sup-
port that activity merits high priority.

– Resist the temptation to relegate rationale documenta-
tion to the “do when we have time” category, because
rationale is best captured when fresh.

9.3 Example
This section provides an example of applying the procedure in
the previous section to select a set of views for a project.

ECS is a system for capturing, storing, distributing, processing,
and making available extremely high volumes of data from a
constellation of earth-observing satellites. By any measure, ECS
is a very large project. Many hundreds of people are involved
in its design, development, deployment, sustainment, and use.
Here is how the three-step view selection approach might have
turned out, had it been applied to the ECS software architecture.

The decomposition
view is a particularly
helpful view to release
early. High-level
decompositions are
often easy to design,
and with this informa-
tion the project man-
ager can start to build
development teams,
put training in place,
scour the commercial
markets or legacy
repositories for modules
that fill the bill, and start
producing budgets and
schedules.

Use view packets (dis-
cussed in Section
10.1.3) as a mechanism
to let you provide over-
views or less-detailed
documentation to cer-
tain stakeholders.

ptg

330 ■ Chapter 9: Choosing the Views

Step 1: Produce a Candidate View List

Stakeholders for the ECS architecture include the usual sus-
pects: the current and future architect, developers, testers and
integrators, and maintainers. But the size and complexity of
ECS, plus the fact that it is a government system whose devel-
opment is assigned to a team of contractors, add complicating
factors. In this case, there is not one project manager, but sev-
eral: one for the government and one for each of the contrac-
tors. Each contractor organization has its own assigned part of
the system to develop and, hence, its own team of developers
and testers. ECS relies heavily on commercial off-the-shelf
(COTS) components, so the people responsible for selecting
COTS candidate components, qualifying them, selecting the
winners, and integrating them into the system play a major
role. We’ll call these stakeholders COTS engineers.

The important quality attributes for ECS begin with perfor-
mance. Data must be ingested into the system to keep up with
the rate at which it floods in from the satellites. Processing the
raw data into more sophisticated and complex “data products”
must also be done every day to stay ahead of the flow. Finally,
requests from the science community for data and data analy-
sis must be handled in a timely fashion. Data integrity, security,
and availability round out the important list of quality attributes
and make the analysts concerned with these qualities impor-
tant architecture stakeholders.

ECS is a highly visible and highly funded project that attracts
oversight attention. The funding authorities require at least
overview insight into the architecture to make sure the money
over which they have control is being spent wisely. Finally, the
science community using ECS to measure and predict global
climate change also requires insight into how the system works,
so they can better set their expectations about its capabilities.

At least five of the component-and-connector views dis-
cussed in Chapter 4 and four of the module views of Chapter 2
apply to ECS. It is primarily a shared-data system. Its compo-
nents interact in both client-server and peer-to-peer fashion.
Many of those components are communicating processes. And
while the system is not actually built using pipes and filters, the
pipe-and-filter style is a very useful paradigm to provide an
overview to some of the stakeholders. (Information more
detailed than the overview will be in a different view, becoming
an implementation refinement of the pipe-and-filter view.)

Table 9.2 shows the stakeholders for the ECS architecture
documentation and the views useful to each. At this point, the
candidate view list contains 12 views.

ptg

9.3 Example ■ 331

Step 2: Combine Views

As usual, the C&C views provided good candidates for combi-
nation. In the case of ECS, augmenting the shared-data view
with other components and connectors that interact in client-
server or peer-to-peer fashion allowed those three views to
become one. The communicating processes mapped straight-
forwardly to components in this combined view, allowing it to
be folded in as well. The pipe-and-filter view can be discarded;
the combined C&C view plus some key behavioral traces show-
ing the data pipeline from satellite to scientist would provide the
same intuitive overview to the less detail-oriented stakeholders.

Similarly, some of the module views were combined. Record-
ing uses information as a property of the decomposition view
yields a combination of the decomposition and uses views.

It would have been easy to combine the work assignment
and implementation views with decomposition as well. How-
ever, because of the large size of this project and the number
of different development organizations involved, the work
assignment view was kept separate. Also, this view was of key

Table 9.2 ECS stakeholders and architecture documentation they might find most useful

Module Views C&C Views Allocation Views

Stakeholder De
co

m
po

si
tio

n

Ge
ne

ra
liz

at
io

n

Us
es

La
ye

re
d

Pi
pe

-a
nd

-f
ilt

er

Sh
ar

ed
-d

at
a

Cl
ie

nt
-s

er
ve

r

Pe
er

-t
o-

pe
er

Co
m

m
un

ic
at

in
g-

pr
oc

es
se

s

De
pl

oy
m

en
t

Im
pl

em
en

ta
tio

n

W
or

k
as

si
gn

m
en

t

Current and future architect d d d d s d d d d d s s

Government project manager d o o s o s o o o s d

Contractor’s project manager s o s s o s s s o d s d

Member of development team d d d d o d d d d s s d

Testers and integrators s s d s o d d d s s d

Maintainers d d d d o d d d d s s s

COTS engineers d s d d d d s d d

Analyst for performance d s d s o d d d d d

Analyst for data integrity s s s d o d d d d d

Analyst for security d s d d o s d d d d o o

Analyst for availability d s d d s s d o

Funding agency o o o o

Users in science community o o o o

 Key: d = detailed information, s = some detail, o = overview

ptg

332 ■ Chapter 9: Choosing the Views

interest to managers and the funding agency, who did not want
to see details of the modules. Similarly, because a large number
of stakeholders interested in the module decomposition would
not be interested in how the modules were allocated to files in
the development environment, the implementation view was
also kept separate.

After this step, the following views remain:

• Three module views: decomposition/uses, layered, and
generalization

• One C&C view: shared-data/client-server/peer-to-peer/
communicating-processes

• Three allocation views: deployment, implementation, and
work assignment

We entered step 2 with 12 candidate views, too many to be effi-
ciently maintained. Now there are 7.

Step 3: Prioritize

To let the project begin to make progress required putting
contracts in place, which in turn required coarse-grained
decomposition. Turning out the higher levels of the decompo-
sition and work assignment views received the highest priority,
in order to meet these needs.

In ECS, the layering in the architecture was very coarse
grained and can be described quickly. Similarly, generalization
occurred largely in only one of the three major subsystems, was
also coarse grained, and was able to be described quickly.
These two views were given next priority.

The combined C&C view and the deployment view followed,
nailing down details of runtime interaction only hinted at by
the module views. This allowed analysis for performance to
begin.

Finally, because the implementation view can be relegated to
each contractor’s own internal development effort, it received
the lowest priority from the point of view of the overall system.

The result was four “full-fledged” views (decomposition,
work assignment, the combined C&C view, and deployment)
plus three minor ones that are coarse grained or can be
deferred.

ptg

9.3 Example ■ 333

PERSPECTIVES

How Not to Introduce an Architecture

With John Klein

Several years ago, I was chief architect for a business unit at a large software
product development company. My manager, the vice president of engineering
for the business unit, approached me one spring day and challenged me to
define a single, unified architecture that could be applied to all current products
in our portfolio, and that would also support our best guess of future needs.
Recognizing the relationship between architecture and organization, he wanted
to use this new architecture as the basis for a major reorganization of the 300-
person software engineering team, and he wanted to roll out this reorganization
at an engineering management meeting planned for late summer. So, my team
of five architects had just 90 days to define enough of a system architecture that
our VP could build an organization around it.

After a stakeholder analysis, we determined that we needed to produce a num-
ber of views. Three of the views are described elsewhere in this book:

• A decomposition view (which we called our “Information Hiding Module Guide)

• A uses view

• A C&C communicating-processes view

In addition to these, we decided to create the following:

• A “technology view,” which would be a type of allocation view that would
map modules to implementation technology (programming language and
middleware)

• A “design model,” which was an information model for product configuration
and customization data

• An “integration view,” to specify the external interfaces of our products

• A “Zoo of Examples,” which was “information beyond views” that showed
how to use the architecture to create products

Our documentation plan also included an “Architecture Description Overview,”
which contained the stakeholder analysis, descriptions of each view, and a set
of roadmaps to help different stakeholders navigate the documentation.

We began by focusing on the Information Hiding Module Guide. We wanted to
meet our VP’s need to reorganize based on the architecture; the information hid-
ing decomposition provided a natural basis for structuring the development
organization. Also, we recognized that we were developing a software product-
line architecture, and we saw the value of structuring the information hiding
decomposition to encapsulate the variation points that the architecture would
support.

ptg

334 ■ Chapter 9: Choosing the Views

We spent much of our 90-day schedule working on the Module Guide, essen-
tially a detailed decomposition view. We also completed the Architecture
Description Overview, which we thought clearly showed our vision for docu-
menting the architecture. Finally, we created a set of “marketecture” diagrams,
which we used to communicate the architecture to our executives.

As the deadline approached, the team was feeling proud of our efforts. We felt
we had achieved the goal of developing enough architecture to drive the reor-
ganization. Besides, we thought, nobody really expected us to create the entire
architecture in just 90 days! We felt we had done enough.

Were we ever wrong!

On the appointed day, we presented the Architecture Description Overview and
Module Guide during an “all hands” conference call with the entire software
engineering team. There were some polite questions, but we sensed that there
was a lot of confusion among the team members. Our organization did not have
much exposure to architecture-centric practices. The idea of multiple views of
an architecture was understood by some but not all of the staff. Also, the
thought that you would incrementally release subsets of the architecture docu-
mentation was foreign. Finally, the first view we released showed the informa-
tion hiding structure, which the staff found difficult to grasp and appreciate.

In retrospect, I realize that the decomposition view is simply a well-organized
“parts list” for all of the products in our product line. Of course people were con-
fused—we didn’t show which parts go into which products, didn’t describe how
to assemble the parts into products, and didn’t provide a picture of any of the
final built products. We confused the development team so much that most of
the development staff pointed to the Module Guide as “the architecture docu-
ment.” Here’s what we learned.

In most cases, the first release of documentation for an architecture will not be
complete and whole. Recommendations in this book, such as “Begin your doc-
umentation with a standard outline,” will help you and your stakeholders under-
stand the vision and the intended final structure of the documentation, but the
first time you release the documentation, people will read the parts you have
completed and try to make sense of them.

Stage your architecture design and documentation to deliver coherent subsets
to stakeholders. Make each subset internally consistent and complete, and
present a chunk of the architecture that will make sense to your stakeholders.
Specifically, include some C&C views in early releases so that stakeholders can
understand how the system will function at runtime. This is usually a more nat-
ural perspective to begin reasoning about the system, as compared to a module
view showing design-time structure.

Include in each stage subsets of several views, rather than the approach we
took of delivering views sequentially. Provide your stakeholders a complete
specification of a subset of the system: a “parts list” (module view), assembly
instructions (allocation view and “beyond views”), and a picture of the running

ptg

9.6 For Further Reading ■ 335

system (C&C view). This allows them to make complete sense of each incre-
mental release of the architecture documentation.

Failure to do these things may damage your credibility, stakeholders may lose
interest, and your project may fail, as ours eventually did.

9.4 Summary Checklist
• What views you choose depends on who the important

stakeholders are, what budget is on hand, what the schedule
is, and what skills are available. It also depends on what
structures are present in the architecture.

• You should expect to choose at least one of each of the three
different types of views: module, component-and-connec-
tor, and allocation.

• You should expect to combine some views to reduce the
number of views you have to create, keep consistent, and
maintain in your architecture document.

• Prioritize and stage your release of views to serve important
project needs early.

9.5 Discussion Questions
1. Suppose that your company has just purchased another

company and that you’ve been given the task of merging a
system in your company with a similar system in the pur-
chased company. What views of the other system’s architec-
ture would you like to see, and why? Would you ask for the
same views for both systems?

2. Some architects speak of a “security view” or documenta-
tion of a “security architecture.” What do you suppose they
mean? What might this consist of?

3. How would you make a cost/benefit argument for the
inclusion or exclusion of a particular view in an architec-
ture documentation package? If you could summon up any
data you needed to support your case, what data would you
want?

9.6 For Further Reading
Around 2001, practitioners at Nokia developed the Rapid7
approach to produce high-quality usable documentation in an
Agile environment. The central approach to Rapid7 is to hold
a stakeholder workshop at each document delivery milestone

ptg

336 ■ Chapter 9: Choosing the Views

in the project. The workshop is facilitated to produce a docu-
ment outline that stakeholders will actually use. For more
information, see the paper by Kylmäkoski (2003).

A central theme of the book by Hofmeister, Nord, and Soni
(2000) is the coordinated use of separate (in their case, four)
views to engineer and document software systems. Their treat-
ment provides an excellent foundation for the philosophy
behind choosing the views: providing information to stake-
holders, and points of engineering leverage to the architect,
based on expected needs of the system being built.

ptg

337

10Building the
Documentation Package

You now have everything you need to begin building the com-
plete documentation package. You have a repertoire of styles
from which you can construct views, a method for choosing the
most useful views to document, and insights about how to doc-
ument architecture information beyond structure: context,
diagrams, variability, interfaces, and behavior. This chapter
shows you how to put it all together.

First, we return once again to our fundamental principle of
documenting architectures:

Documenting an architecture is a matter of documenting
the relevant views and then adding documentation that
applies to more than one view.

Rule 4 for sound documentation, given in the prologue,
counsels us to use a standard organization for documents.
Combining these two foundations, this chapter provides stan-
dard document organizations for documenting architecture
views, along with the information that transcends views.

10.1 Documenting a View
Figure 10.1 shows the template for documenting a view.

10.1.1 A Standard Organization for Documenting a View

No matter what the view, the documentation for a view can be
placed into a standard organization consisting of these parts.

ptg

338 ■ Chapter 10: Building the Documentation Package

Section 1. The Primary Presentation

The primary presentation shows the elements and relations of the
view. The primary presentation should contain the information
you wish to convey about the system—in the vocabulary of that
view—first. It should certainly include the primary elements
and relations but under some circumstances might not include
all of them. For example, you may wish to show the elements
and relations that come into play during normal operation but
relegate error handling or exception processing to the sup-
porting documentation. What information you include in the
primary presentation may also depend on what notation you use
and how conveniently it conveys various kinds of information.
A richer notation will tend to enable richer primary presentations.

The primary presentation is most often graphical. It might
be a diagram you’ve drawn in an informal notation using a sim-
ple drawing tool, or it might be a diagram in a semiformal or
formal notation imported from a design or modeling tool that
you’re using. The figures that illustrate diagrams from exam-
ple views in Chapters 2, 4, and 5 are all diagrams that would
appear in a primary presentation.

Drawings help people to
work out intricate rela-
tionships between parts.

—Christopher
Alexander

If your primary presen-
tation is graphical,
make sure to include a
key that explains the
notation.

Figure 10.1
View template

Section 1. Primary Presentation

Section 2. Element Catalog

Section 2.A. Elements and Their Properties
 Section 2.B. Relations and Their Properties
 Section 2.C. Element Interfaces
 Section 2.D. Element Behavior

Section 3. Context Diagram

Section 4. Variability Guide

Section 5. Rationale

Template for a View

ptg

10.1 Documenting a View ■ 339

Sometimes the primary presentation can be textual, such as
a table or a list. If that text is presented according to certain sty-
listic rules, they should be stated or incorporated by reference,
as the analog to the graphical notation key. Regardless of
whether the primary presentation is textual instead of graphi-
cal, its role is to present a terse summary of the most important
information in the view.

The primary presentation may feature more than one dia-
gram. For example, suppose the system has two separate sub-
systems, each of which is built using the pipe-and-filter style. A
pipe-and-filter view of this system could have two diagrams in
its primary presentation. Each would show the pipe-and-filter
elements in one of the two subsystems.

To remind us that the primary presentation is only the start-
ing point for documenting a view, we call the graphical portion
of the view an architecture cartoon. We use the definition from
the world of fine art: A cartoon is a preliminary sketch of the
final work; it is meant to remind us that the picture, although
getting most of the attention, is not the complete description
but only a sketch of it.

ADVICE

Use the organization described in this section as the
basis for your view template. Modify it as necessary to
make it appropriate for your organization’s standards and
the special needs of the development project at hand. Be
cautious about throwing out sections that you think you
don’t need; the presence of a section in the template can
prod you to think about the issue across the system,
whereas omitting the section will let you forget about it,
perhaps to the detriment of the system. For each section,
include a terse description of the contents of that section.

Whatever organization you choose for documenting your
views, explain it to your readers. In the Views and Beyond
template, this is done in section 2 of the template for
Documentation Beyond Views; see Section 10.2.

Even if some items are empty for a given view—for exam-
ple, perhaps no mechanisms for variability exist or no
relations other than those shown in the primary presen-
tation exist—include those sections, marked “none” or
“not applicable.” Don’t omit them, or your reader may
wonder whether it was an oversight.

An example of a textual
primary presentation is
shown in Figure 2.4, in
Section 2.1.6.

Anarchitecture cartoon
is the graphical portion
of a view’s primary pre-
sentation, without sup-
porting documentation.

If the view derives from
one or more published
styles or patterns, let
the reader know. It is
most convenient to do
this by adding an anno-
tation to the primary
presentation or (if it’s
graphical) adding a note
in the notation key. Be
sure to cite the pub-
lished source and not
just name the pattern or
style, since many pat-
terns and styles with
common names are
described differently by
different authors.

See “Not Every View
Comes from a Pub-
lished Style or Pattern,”
on page 343.

ptg

340 ■ Chapter 10: Building the Documentation Package

Section 2. The Element Catalog

The element catalog details at least those elements depicted in
the primary presentation. For instance, if a diagram shows ele-
ments A, B, and C, then the element catalog needs to explain
what A, B, and C are and their purposes or the roles they play,
rendered in the vocabulary of the view. In addition, if elements
or relations relevant to this view were omitted from the primary
presentation, they should be introduced and explained in the
catalog. Specific parts of the catalog include the following:

a. Elements and their properties. This section names each ele-
ment in the view and lists the properties of that element.
Each style introduced throughout Part I listed a set of sug-
gested properties associated with that style. For example,
elements in a decomposition view might have the property
of “responsibility”—an explanation of each module’s role
in the system—and elements in a communicating-pro-
cesses view might have timing parameters, among other
things, as properties. Whether the properties are generic to
the style chosen or the architect has introduced new ones,
this is where they are documented and given values.

b. Relations and their properties. Each view has specific relation
type(s) that it depicts among the elements in that view.
Mostly, these relations are shown in the primary presenta-
tion. However, if the primary presentation does not show
all the relations, or if there are exceptions to what is
depicted in the primary presentation, this is the place to
record that information. Otherwise, this section will be
empty.

c. Element interfaces. This section documents element interfaces.

d. Element behavior. Some elements have complex interactions with
their environment. For purposes of understanding or analysis,
it is incumbent on the architect to specify element behavior.

Section 3. Context Diagram

A context diagram shows how the system or portion of the system
depicted in this view relates to its environment.

Section 4. Variability Guide

A variability guide shows how to exercise any variation points
that are a part of the architecture shown in this view.

Section 5. Rationale

Rationale explains why the design reflected in the view came to
be. The goal of this section is to explain why the design is as it

Section I.3, in the intro-
duction to Part I, dis-
cusses how to choose
properties to document.

Documenting interfaces
is covered in Chapter 7.

Documenting behavior
is covered in Chapter 8.

Context diagrams are
discussed in Section 6.3.

Using a variability guide
to document architec-
ture variation points is
covered in Section 6.4.4.

Documenting rationale
is covered in Section 6.5.

ptg

10.1 Documenting a View ■ 341

is and to provide a convincing argument that it is sound. The
use of a pattern or style in this view should be justified here.

Items 2–5 are called the supporting documentation and explain
and elaborate the information in the primary presentation.

PERSPECTIVES

From Context Diagrams to a Context View

With Nick Rozanski and Eoin Woods

We always include a system context diagram in any architecture description we
produce, although sometimes that’s just a reference to a context diagram
defined elsewhere. In our experience a good context diagram is an essential
part of an effective architecture document. The Views and Beyond approach
extends that basic piece of good practice to provide a different kind of context
diagram in every view.

However, it wasn’t until long after our book Software Systems Architecture
(2005) went to press that we realized that we were asking the same sorts of
questions when creating our context diagrams that we were asking when creat-
ing the architecture views, namely:

• Who are the stakeholders interested in the context diagram?

• What are their concerns?

• How can we document the system context in a way that illustrates how these
concerns are addressed by the architecture?

We realized that these questions, and their answers, are important enough to
merit full consideration on their own, rather than just being implicitly answered
in one or more context diagrams. We have therefore come to the conclusion that
we need to add an additional viewpoint to our viewpoint set, namely the system
context viewpoint.

Using a system context view gives us the opportunity to explain how key concerns
will be addressed by the system, and to set out the decision-making processes
we have gone through to finalize the scope. It often also enables us to identify
some key system-wide principles, constraints, and risks at an early stage.

The purpose of any sort of context diagram is to define what is in scope and out
of scope for the system, and how the system relates to its environment. In the-
ory all of this should be clearly understood and written down before the devel-
opment starts, but in practice this is often not the case. Scope often changes
during development, and these changes must be reflected in the context dia-
gram. The scope may not be documented anywhere, or if it is, this may be
vague or inconsistent. Even worse, there may be a number of different versions
of the “implied” scope of the system, which is a recipe for disaster. And the envi-
ronment may be far from fixed and understood.

ptg

342 ■ Chapter 10: Building the Documentation Package

It is this reality that the system context viewpoint is designed to address, and as
such a context view is usually one of the first that the architect should produce.

Chapter 9 tells us that the first question we must answer when choosing our
views is “Who are the stakeholders?” For a system context view, the answer is
somewhat uncomfortable: “Pretty much all of them.” Obviously the acquirer
(sponsor) and users are interested in the scope, since this defines the extent of
the delivered system and the functionality it will and will not provide. Developers
need to know what the system comprises and, in particular, which external sys-
tems and organizations it will need to interact with.

Many other stakeholders also have concerns that will be addressed in a system
context view. For example, operational staff will need to understand the other sys-
tems that this system interacts with, so that they can begin to plan the processes
and tools they will need for its monitoring and support. Testers will need to under-
stand the inbound and outbound data flows so that they can start to think about
integration and preproduction testing, and plan the creation of appropriate stubs
and test harnesses. And key stakeholders in the other systems that interact with
this one may need to start work on changes to their interfaces, or make improve-
ments in their system’s scalability, availability, and response time.

To meet these concerns, a system context view should document:

• The key responsibilities of the system

• The identity and key responsibilities of external entities

• The main external interdependencies, including the expected external inter-
actions, the nature of the external connections, and high-level definitions of
the external interfaces

Within a system context view, context is modeled in a single (or sometimes sev-
eral) context model, which resemble “traditional” context diagrams, as described
in this chapter. These illustrate the system, the external entities, and the con-
nections between them. The system is usually represented as a “black box,”
without any of its internal details exposed—these may not be known at this early
stage anyway. Models may be annotated with logical or physical details of the
external systems and interfaces. Supplementary information is often produced
as well. This may include a list of the key functional capabilities that are in and
out of scope, a description of the key information flows, or a description of some
key interaction scenarios.

Because of the wide range of stakeholders and concerns, it is tempting to over-
load the context view models with as much information as possible: systems,
interfaces, hardware and software, organizational boundaries, constraints, and
more. However, this flies in the face of everything we know about good archi-
tecture documentation, and it is why the concept of views was introduced in the
first place. You should strive for a context view that has an even and consistent
level of focus, brings out all the key dependencies and interconnections, and
gets the right balance between brevity and accuracy. This is by no means easy,
but using multiple models—that is, multiple context diagrams—to convey dif-

ptg

10.1 Documenting a View ■ 343

ferent kinds of context information is a good way to avoid overloading a single
model.

The system context view is produced at a very early stage in the development,
when there are many unanswered questions. There may also be a significant
amount of political positioning, maneuvering, and horse-trading of scope,
requirements, and plans going on. If it is used effectively, it is a very valuable
way to communicate architecture decisions and plans in a way that is meaning-
ful to a broad community of stakeholders and provides a solid foundation for the
architecture, design, and build.

ADVICE

Not Every View Comes from a Published Style or Pattern

Until now we have written about views as though they are nothing more than a
published style or pattern applied to a system: Take the element and relation
types defined in the style or pattern, make a bunch of instances, wire them
together following the restrictions of the pattern or style, and there you are.

And that works. Many very, very useful architecture views are exactly that (or as
we saw in Section 6.6, combinations of exactly that). Views such as layered,
service-oriented, client-server, peer-to-peer, and a host of others are found in
real-world architecture documents, and they derive precisely from the corre-
sponding styles or patterns in published references.

But not every view enjoys such a formal pedigree. First, real architects often
make specializations of “standard” or published styles and patterns to suit their
needs. For example, they may impose a particular protocol on client-server, or
layered callback, or service interactions over and above what is called for in a
published pattern. Second, real architects may use common element types and
wire them together using bare-minimum architecture mechanisms to suit their
needs. For example, a view showing a system’s fail-over policy might show
components designated as “primary” and “secondary” connected by a simple
call connector to a heartbeat monitor—even if that’s not a published style.

What is the documentation obligation in this case? You could define a new style
or pattern that is exactly what (and as specialized as) you need, then cite it.
More convenient, however, is to describe the specializations you’ve made to a
published form or (if you’re really working from a new style) define the element
types and relation types in situ. A convenient place to do this is the element cat-
alog of the view in which your specialized form appears. The diagram in the pri-
mary presentation should make it clear (either through annotation or by
introducing new graphical elements that you’ll make sure to put in the key)
which elements or relations are your specializations. And you should explain
your choices in the rationale section.

ptg

344 ■ Chapter 10: Building the Documentation Package

10.1.2 Useful Variations in the Standard Organization for a View

The standard organization for documenting a view presented
in the last section serves well in most cases. However, there are
some useful variations that may serve better in others. These
include the following:

Variation 1: Divide the View into View Packets

Views of large software systems can contain hundreds or even
thousands of elements with arbitrarily deep levels of nesting.
Showing these elements in a single presentation, along with
the relations among them, can result in a blizzard of informa-
tion that is indecipherable. Also, many stakeholders aren’t
interested in the entire view, just their little part of it. Or just
the broad picture bereft of much detail. In some organiza-
tions, you might want to impose access control on parts of a
view you don’t want your subcontractors to look at.

If you need a way to present a view’s information in smaller
“chunks,” break it up into view packets. Each view packet can
show a fragment of the system with great depth of detail, or
broad areas of the system with shallower detail. The documen-
tation for a view, then, can consist of a set of view packets.

View packets make an excellent way to help the architect
carry out and record refinements as they are made as part of
the journey through the spectrum of design.

The same standard organization we used for a view also
works for a view packet. Just remember:

• The primary presentation shows the elements and relations
that populate the portion of the view shown in this view
packet, rather than the whole view.

• The supporting documentation (element catalog, context
diagram, variability guide, and rationale) all explain just the
part of the architecture shown in the primary presentation.
The “environment” shown in the context diagram may well
be other elements that are internal to the overall system
whose architecture we’re documenting.

• As an aid to readers’ navigation among view packets, it helps
to add a pointer to a view packet’s parent view packet as well
as its sibling and child view packets. (A “child” view packet
is one that shows a decomposition refinement of one or
more elements in its “parent” view packet.)

If you divide a view into view packets, preface the set with an
explanation of what view packets are provided and what part of

A view packet is the
smallest bundle of view
documentation you
would show an individ-
ual stakeholder, such as
a developer assigned to
implement a small por-
tion of the system or a
customer interested in
an overview.

Refinement and the
spectrum of design are
discussed in Chapter 6.
For an example of using
view packets to record
more and more detailed
architectural decisions,
see the sidebar “Using
View Packets to Record
Architecture Design
Steps,” on the next
page.

Decomposition refine-
ment is discussed in
Section 6.1.1.

ptg

10.1 Documenting a View ■ 345

the system each one shows. One way to do this is to show the
context diagram for each included view packet, with parent/
child links among the diagrams, to help a reader navigate to
and identify the view packet he or she wants to see.

ADVICE

Using View Packets to Record Architecture
Design Steps

Throughout this book, we have tried to make the point
that architecture documentation is not just a necessary
afterthought of architecture design, but an important
contributor to the design process itself. View packets
make an excellent vehicle for storing architecture deci-
sions as they are made, making architecture design and
documentation go hand in hand.

We illustrate this concept using version 2 of the Attribute-
Driven Design (ADD) method. ADD is a step-by-step
architecture design method that relies on iteratively
choosing a part of the system to design, and then choos-
ing appropriate architecture styles, patterns, and tactics
to satisfy the architecturally significant requirements for
that part. The result of each ADD iteration can be recorded
in its own view packet.

Since ADD is a sequential, step-by-step method, you
can also record the chronology of your design—what
decisions came before and after what other decisions.
This will be helpful if you need to change a design deci-
sion. You can easily see what design decisions you made
after the one in question, to determine if they need to
change as well.

Below are the rough steps of ADD, along with what you
should record in a view packet when you carry out each
one.

Step of ADD Method
Information to Record in a
View Packet

Step 1: Confirm there is
sufficient requirements
information.

None.

continues

ptg

346 ■ Chapter 10: Building the Documentation Package

Notice how using view packets to hold design decisions
as you go obviates the question of what views to use
during architecture design. Your choice of architecture
patterns and styles binds you to a choice of views. If you
choose a service-oriented style when designing a sys-
tem (or portion of a system), you’ll document a service-
oriented view to capture its instantiation; if you choose a

Step 2: Choose an element
of the system to design (for
the first iteration of ADD, this
“element” may well be the
whole system).

Start with a new, blank view
template. In the rationale sec-
tion, explain why you chose this
element of the system. In the
related view packets section,
point to this element’s parent (if
any), and chronological prede-
cessor (if any). Create a context
diagram for the element based
on what you know about its
interactions with entities exter-
nal to it.

Step 3: Identify candidate
architecture drivers.

Record the drivers in the ratio-
nale section.

Step 4: Choose a design
concept that satisfies the
architecture drivers.

Describe the design concept—
typically a choice of architec-
ture patterns or styles aug-
mented with tactics—in the
rationale section, and say why
you chose it.

Step 5: Instantiate architec-
ture elements and allocate
responsibilities.

Capture the instantiation in the
primary presentation. Describe
the instantiated elements, rela-
tions, and element behavior in
the element catalog.

Step 6: Define interfaces for
instantiated elements.

Record preliminary interface
definitions in the element
catalog.

Step 7: Verify and refine
requirements and make
them constraints for instan-
tiated elements.

None. When you turn your
design attention to one of those
instantiated elements, its
requirements and constraints
will yield a set of drivers that
you’ll record as step 3 of that
future iteration.

Step 8: Repeat steps 2
through 7 for the next ele-
ment of the system you wish
to decompose.

None. The method terminates
when all requirements and con-
straints have been allocated to
(and satisfied by) architecture
elements.

Step of ADD Method
Information to Record in a
View Packet

Don’t try to record all
the information in pris-
tine, ready-for-prime-
time fashion. For one
thing, ADD includes a
back-up-and-try-again
option in step 4. (Per-
haps the design con-
cept you chose three
iterations ago unwit-
tingly precluded meet-
ing the requirements
you’re handling in the
current iteration. You’ll
have to back up and try
again.) So don’t waste
time making the infor-
mation beautiful.
Instead, make it com-
prehensible. You can
shine it up when you
have an architecture
you have confidence in.

ptg

10.1 Documenting a View ■ 347

layered style, you’ll document a layered view to capture
its instantiation; and so forth. Later, when you have a col-
lection of view packets representing a collection of views,
you can assemble them into collections that make sense
using the Choosing the Views approach of Chapter 9.

Variation 2: Add a Section to Document the Behavior of the Whole
Architecture Shown in the Primary Presentation of a C&C View

The primary presentation of a C&C view shows a group of
architecture elements (components and connectors) and their
runtime interactions. The element catalog contains the behav-
ior of those elements. But you’ll almost certainly want to docu-
ment the behavior of the group as a whole somewhere. Where?
Alternatives include the following:

• The behavior section of the view’s element catalog. This section is
primarily intended to capture the behavior of individual ele-
ments. You could add a special entry at the end to capture
the behavior of everything working together.

• A new section in the standard organization for a view. Architects
often show structure and the behavior of that structure next
to each other, affording equal status to both. Giving the
behavior its own section makes that easier.

• If you use view packets, you don’t need to change the template. The
group of components and connectors shown in a view
packet might well be a specialization of a single component
or connector shown in a parent view packet. In that case, its
behavior will be documented in the element catalog of the
parent view packet.

Variation 3: Combine the Primary Presentation and Context Diagram

Stripped to its essentials, a context diagram shows the system
being described along with external elements with which it
interacts or is related. As shown in Figure 10.2, the system is
depicted as a monolithic entity, starkly bounded, with no inter-
nal structure: a black box.

Showing the internal structure is the job of the primary pre-
sentation. While this represents a useful separation of con-
cerns in many cases, sometimes the primary presentation can
be more expressive if it contains external entities. Especially
with C&C views, combining the primary presentation with the
context diagram lets you see where the arrows begin and end,
which can help you ensure that none of the ties between sys-
tem internals and externals is overlooked.

If you combine the pri-
mary presentation with
context, make sure to
indicate the system
boundary. Either use a
clear distinguished
bounding symbol, and
put that symbol in your
key, or indicate clearly
which elements are
external to the system.

ptg

348 ■ Chapter 10: Building the Documentation Package

It’s common to see external entities in primary presenta-
tions, but architects usually don’t bother indicating the fact
that some of the elements they’re showing are external. This
can be confusing. Figure 10.3 is an example of a cartoon that
combines a primary presentation with a context diagram.

Figure 10.3
A context diagram and a primary presentation combined. Here, the external entities are denoted by symbols identified
in the key.

Access Management System

Audit and
monitoring

Request
tracking

audit and report

Delegated
administration

Entitlement
management

Rights
enablement

Account
provisioning

HR database

provisioning

security
auditor

help desk

decentralized
administrator

business
sponsor

Windows AD
adapter

Password
synchronizer

Authentication

Application

Centralized security realm

Web
sign-in

Web
application

Password
reset

Self
registration

MS Exchange
adapter

SSO

internal
user

external
user

access control

identity
management

Windows
AD

Microsoft
Exchange

Server

Both Windows
and Web apps
use internally an
access mgmt.
component that
exposes an
authorization
API.

Key Windows GUI
application

Data
read

Data
write

Headless
program

Web
application

Data
repository

Dashed
component:
not part of
the system

Logical group
(not a component)

User
interaction

Data
read & write

Actor

Figure 10.2
A pure context diagram
shows the system, with no
internal structure shown,
and its relations to entities
in its environment.

SYSTEM

ptg

10.1 Documenting a View ■ 349

Variation 4: A View with a Multi-part Primary Presentation

Recall that the point of view packets was to keep from having
to present a massive (and massively complex) single diagram
of interest to almost no one. If for some reason your stakehold-
ers are not well served by dividing the view into view packets,
you can document the whole view using a series of diagrams in
its primary presentation—the diagrams that would have popu-
lated the view packets. The supporting documentation in sec-
tions 2–5, then, will explain those diagrams taken as a whole. If
you take this option, you’ll have to explain how the diagrams
relate to each other and/or how to navigate among them.

10.1.3 Avoiding Unnecessary Repetition Across Views or View
Packets

Using the view or view packet template naively might result in
information being repeated in more than one place, violating
our injunction in Section P.5 to avoid unnecessary repetition.
Cases include the following:

A module or a component appears in more than one view.
For example, the same module might appear in a decomposi-
tion, uses, and generalization view. Rather than give its defini-
tion, properties, interface, and behavior in the element catalog
of every view in which it appears, you can do the following:

• Pick the view in which it seems most appropriate to capture
this information, and have the element catalogs in the other
views simply refer to it.

• Package the potentially redundant information separately
and have all views refer to it or automatically incorporate it.

• In the case of online documentation, have every view’s ele-
ment catalog link to the information.

The context diagram of a child view packet looks like the pri-
mary presentation of its parent. Suppose a view packet shows
an element without internal substructure, but you create
another view packet to show the decomposition refinement of
that element—that is, to reveal its internal substructure. Then
the context diagram for the second view packet is going to look
a lot like the primary presentation for the first. In that case,
make the context diagram a simple pointer to the first view
packet’s primary presentation.

Global policies apply to many elements. Architects often
make decisions that apply to all the elements in a view, such as
“All components must write a human-readable message to a

Decomposition refine-
ment is covered in
Section 6.1.1.

ptg

350 ■ Chapter 10: Building the Documentation Package

log after the start and finish of every transaction.” To docu-
ment information like this, you can do any of the following:

• Add an annotation to the view showing the affected elements.

• Add an entry at the beginning of the element catalog.

• Add an entry to the behavior documentation.

• Explain the global policy in the architecture background sec-
tion of the documentation beyond views (see Section 10.2).

If you use view packets, you can document global policies in
either of two places:

• In the same place that lists the view packets in a view, you
can also put information common across all view packets, as
a way of “factoring out” commonality and putting it in one
place to avoid repetition.

• In a view packet with the greatest scope and least depth. Then
all other view packets can “inherit” the common information.

10.2 Documentation Beyond Views

QUOTE

It may take you months, even years, to draft a single
map. It’s not just the continents, oceans, mountains,
lakes, rivers, and political borders you have to worry
about. There’s also the cartouche (a decorative box con-
taining printed information, such as the title and the car-
tographer’s name) and an array of other adornments—
distance scales, compass roses, wind-heads, ships, sea
monsters, important personages, characters from the
Scriptures, quaint natives, menacing cannibal natives,
sexy topless natives, planets, wonders of the ancient
world, flora, fauna, rainbows, whirlpools, sphinxes, sirens,
cherubs, heraldic emblems, strapwork, rollwork, and/or
clusters of fruit.

—Miles Harvey, The Island of Lost Maps: A True Story of
Cartographic Crime (2000, p. 98)

In many ways, an architecture is to a system what a map of the
world is to the world. Thus far, we have focused on capturing
the various architecture views of a system, which tell the main
story. In the words of Miles Harvey, they are the “continents,
oceans, mountains, lakes, rivers, and political borders” of the
map that we are drawing. But we now turn to the complement

Rozanski and Woods
call information like this
part of the “common
design model.” See
Section E.3.

ptg

10.2 Documentation Beyond Views ■ 351

of view documentation, which is capturing the information
that applies to more than one view or to the documentation
package as a whole. Documentation beyond views corresponds
to the adornments of the map, which complete the story and
without which the work is inadequate.

10.2.1 A Standard Organization for Documenting Information
Beyond Views

Documentation beyond views can be divided into two parts:

1. Information about the architecture documentation. How the doc-
umentation is laid out and organized so that a stakeholder
of the architecture can find the information he or she
needs efficiently and reliably.

2. Information about the architecture. Here, the information that
remains to be captured beyond the views themselves is a
short system overview to ground any reader as to the pur-
pose of the system, the way the views are related to one
another, an overview of and rationale behind system-wide
design approaches, a list of elements and where they
appear, and a glossary and an acronym list for the entire
architecture.

Figure 10.4 summarizes documentation beyond views.

Document Control Information

List the issuing organization, the current version number, the
date of issue and status, a change history, and the procedure
for submitting change requests to the document. Usually this
is captured in the front matter. Change-control tools can pro-
vide much of this information.

Figure 10.4
Summary of documenta-
tion beyond views

Section 1. Documentation Roadmap

Section 2. How a View Is Documented

Section 3. System Overview

Section 4. Mapping Between Views

Section 5. Rationale

Section 6. Directory — index, glossary,
 acronym list

Template for Documentation

Beyond Views

Architecture

documentation

information

Architecture

information

ptg

352 ■ Chapter 10: Building the Documentation Package

Section 1. Documentation Roadmap

The documentation roadmap tells the reader what informa-
tion is in the documentation and where to find it.

A roadmap consists of four sections:

1. Scope and summary. Explain the purpose of the document
and briefly summarize what is covered and (if you think it
would help) what is not covered. Explain the relation to
other documents (such as downstream design documents,
or upstream system engineering documents).

2. How the documentation is organized. For each section in the
documentation, give a short synopsis of the information
that can be found there. An alternative to this is to use an
annotated table of contents. This is a table that doesn’t just
list section titles and page numbers, but also gives a synopsis
with each entry. It provides one-stop shopping for a reader
attempting to look up a particular kind of information.

3. View overview. The major part of the roadmap describes the
views that the architect has included in the package. For
each view, the roadmap gives

 i. The name of the view and what style it instantiates.

 ii. A description of the view’s element types, relation types,
and property types. This lets a reader begin to under-
stand the kind of information that is presented in the
view.

iii. A description of language, modeling techniques, or
analytical methods used in constructing the view.

4. How stakeholders can use the documentation. The roadmap fol-
lows with a section describing which stakeholders and con-
cerns are addressed by each view; this is conveniently
captured as a table. This section shows how various stake-
holders might use the documentation to help address their
concerns. Include short scenarios, such as “A maintainer
wishes to know the units of software that are likely to be
changed by a proposed modification. The maintainer con-
sults the decomposition view to understand the responsibil-
ities of each module in order to identify the modules likely
to change. The maintainer then consults the uses view to
see what modules use the affected modules (and thus
might also have to change).”

Section 2. How a View Is Documented

Adopting a standard organization means using it, but also
explaining it. This is where you explain the standard organiza-
tion you’re using to document views—either the one described

“Would you tell me,
please, which way I
ought to go from here?”

“That depends a good
deal on where you want
to get to,” said the Cat.

“I don’t much care
where,” said Alice.

“Then it doesn’t matter
which way you go,” said
the Cat.

—Lewis Carroll, Alice in
Wonderland

To be compliant with
ISO/IEC 42010:2007
(see Section E.1), you
must consider the con-
cerns of at least users,
acquirers, developers,
and maintainers.

ptg

10.2 Documentation Beyond Views ■ 353

in this chapter or one of your own. It tells your readers how to
find information in a view.

If your organization has standardized on a template for a
view, as it should, then you can simply refer to that standard. If
you are lacking such a template, then text such as that in Sec-
tion 10.1.2 should appear in this section of your architecture
documentation.

Section 3. System Overview

This is a short prose description of the system’s function, its
users, and any important background or constraints. The pur-
pose is to provide readers with a consistent mental model of
the system and its purpose.

The system overview is, strictly speaking, not part of the
architecture—that is, it is not part of the designed solution. How-
ever, it is indispensable for understanding the architecture. If an
adequate system overview exists elsewhere, such as in the over-
all project documentation, you can incorporate it by reference.

Section 4. Mapping Between Views

Because all the views of an architecture describe the same sys-
tem, it stands to reason that any two views will have much in
common. Helping a reader understand the associations
between views will help that reader gain a powerful insight into
how the architecture works as a unified conceptual whole.
Being clear about the association by providing mappings
between views is key to increasing understanding.

The associations between elements across views in a particu-
lar architecture are in general many-to-many. For instance,
each module may map to multiple runtime elements, and each
runtime element may map to multiple modules. Sometimes
runtime elements of the system do not exist as code elements
at all, such as when they are imported at runtime or incorpo-
rated at build or load time. Sometimes modules, such as layers,
do not appear at runtime. In general, parts of elements in one
view correspond to parts of elements in another view.

There are three ways to document a mapping between views.

1. State a rule that lets a reader know how to look at two views
and see the association between elements in each. Naming
conventions often provide convenient rules for mappings.
The simplest rule is that if an element with the same name
appears in different module views, or two different C&C
views, it’s the same element.

2. View-to-view associations can be conveniently captured as
tables, such as the one in Figure 10.5, taken from the

ptg

354 ■ Chapter 10: Building the Documentation Package

Duke’s Bank example. List the elements of the first view in
some convenient lookup order. The table itself should be
annotated or introduced with an explanation of the associ-
ation that it depicts; that is, what the correspondence is
between the elements across the two views. Examples include
“is implemented by,” for mapping from a component-and-
connector view to a module view; “implements,” for map-
ping from a module view to a component-and-connector
view; “included in,” for mapping from a decomposition
view to a layered view; and many others.

3. The mapping can be shown graphically. An example is
shown in Figure 10.6.

For which views should you provide an explicit mapping?
(Mappings using naming conventions are implicit.) Begin with
these rules of thumb:

• Provide a mapping between the decomposition view and
every C&C view.

• Ensure at least one mapping between a module view and a
component-and-connector view.

• If your system uses more than one module view, map them
to each other.

Section 5. Rationale

This section documents the architectural decisions that apply
to more than one view. Prime candidates include documenta-
tion of background or organizational constraints or major

Duke’s Bank is an exam-
ple application used in
Sun’s online Java tuto-
rial. See java.sun.com/
j2ee/tutorial/1_3-fcs/
doc/Ebank.html.

Allocation views (dis-
cussed in Chapter 5)
also show mappings.
They map between soft-
ware structures and
nonsoftware structures
in the system’s
environment.

Use the guidelines in
Section 6.5 to help you
capture the key archi-
tecture decisions.

Figure 10.5
An excerpt from a mapping
between views

Element in C&C View X Element in Module View Y

BankAdmin com.sun.ebank.appclient
com.sun.ebank.util
stubs from com.sun.ebank.ejb

Web browser ___

… …

WebUI web
com.sun.ebank.web
com.sun.ebank.web
stubs from com.sun.ebank.ejb

AccountControllerEJB com.sun.ebank.ojb
com.sun.ebank.util

AccountEJB com.sun.ebank.ojb
com.sun.ebank.util

ptg

10.2 Documentation Beyond Views ■ 355

requirements that led to decisions of system-wide import. The
decisions about which fundamental architecture patterns or
styles to use are often described here.

Section 6. Directory

The directory is a set of reference material that helps readers
find more information quickly. It includes the following:

• Index. Include an index of the elements, relations, and prop-
erties that appear anywhere in the architecture documenta-
tion. The index should also distinguish between pages
where a term is used and the page where it is first defined.
A convenient way to do this is to embolden the page num-
ber on which the term is defined. (An online search capabil-
ity may obviate this need.)

• Glossary. The glossary defines terms used in the architecture
documentation that have special meaning. Often there is a
system-wide glossary; if that exists and suffices, it can be
incorporated by reference.

• Acronym list. Make sure to define the important acronyms
you use in the architecture documentation. Again, projects
often keep a system-wide acronym list, which can be incor-
porated by reference.

Figure 10.6
A graphical mapping between views. On the far right are UML packages that correspond to modules from a
decomposition view. The <<manifest>> relations show the different JAR files (UML artifacts) inside which the modules
are bundled for deployment. The <<deploy>> relations show how the JAR files (MySystem.ear, MySystem.war, and
corporative.jar) are deployed to the production platform. The platform elements on the left are represented as UML
nodes and come from the deployment view of the architecture.

- Notation: UML 2.0
- In gray: packages that in Svn are
 part of the corporative project
- other colors used for readability
- «manifest» means “contains”

srv-app5

«execution environment»
Oracle App Server 10g (Prod)

«web context»
My System

tcu.util

com.tcu.business

«deploy»

«manifest»
«manifest»

«manifest»

«manifest»

«manifest»

«manifest»
«deploy»

tcu.mysystem.presentation

Web::Mysystem

Web::SharedWeb::Siga

«artifact»
MySystem.ear

«artifact»
MySystem.war

«artifact»
corporative.jar

We are searching for
some kind of harmony
between two intangi-
bles: a form which we
have not yet designed
and a context which we
cannot properly
describe.

—Christopher Alexander

Include terms in the
glossary that your
stakeholders won’t nec-
essarily know, or terms
whose meaning might
not be the same among
stakeholders.

ptg

356 ■ Chapter 10: Building the Documentation Package

• Referenced material. This is the place to put references to
material cited throughout the architecture documentation.

10.2.2 Useful Variations in the Standard Organization for
Documentation Beyond Views

Variation 1: Document How to Use the Architecture

You may wish to document “use cases” for the architecture—
that is, how to use the architecture to build applications. This
is especially helpful if the architecture is meant to be a prod-
uct-line architecture. People usually learn by internalizing
examples, so give a few. Start small; show how to build your
application’s equivalent of “hello, world!” and then work up.
Audiovisual media such as a video or a podcast can be useful in
demonstrating the use cases.

Variation 2: Document the Major Design Approaches Taken

Architectures often have dominating “motifs” or design
approaches, and elegant ones almost always do. These
approaches often take the form of well-known architecture
styles or patterns, but other overarching motifs are possible as
well. For example, your architecture may dictate that elements
implementing new functions all have certain programs on
their interfaces, or share data or handle errors in a particular way.

QUOTE

[Architectural p]atterns are a means of documenting software architectures.
They can describe the vision you have in mind when designing a software sys-
tem. This helps others to avoid violating this vision when extending and modi-
fying the original architecture, or when modifying the system’s code. For
example, if you know that a system is structured according to the Model-View-
Controller pattern, you also know how to extend it with a new function: keep
core functionality separate from user input and information display.

—Buschmann et al. (1996, pp. 6–7)

Variation 3: Make a Single Element Catalog for the Whole Architecture

Because the same element might appear in more than one
view, there is a danger that its element catalog entries will be
redundant. An option is to take all of the element catalogs and
merge them into a single one for the whole architecture. This
“supercatalog” would belong in the “documentation beyond

See “Coming to Terms:
Product-Line Architec-
tures” on page 234,
Chapter 6.

The idea for using audio-
visual media to document
architecture comes from
Markus Voelter, coauthor
of the (German) book
Software Arkitektur. He
was interviewed during
the OOPSLA 2007 con-
ference. You can find
the interview at
infoq.com/interviews/
MarkusVoelterabout-
SoftwareArchitecture-
Documentation.

ptg

10.3 Documenting a Mapping to Requirements ■ 357

views” part, because it obviously contains information common
to more than one view.

Be careful if you take this option. Describing an element in
separate views tends to reinforce the specific role the element
plays in the architecture in each view, and that’s helpful. For
example, a module (in a decomposition view) is usually described
in terms of what kinds of changes it encapsulates against,
whereas the same module (in a uses view) is described in terms
of what it uses and the role it plays in incremental develop-
ment. The same element, showing up as a component in some
C&C view, would be described in terms of its interactions with
other elements and its runtime quality attribute properties.
Just giving an element a single element catalog entry runs the
risk of overlooking what it contributes to each view in which it
appears.

Variation 4: Add a Section to Record Open Questions

This is particularly helpful during early development. It pro-
vides a “to do” list for the architect, and it informs stakeholders
of the major unknowns (and hence possible areas of instabil-
ity) still in the architecture.

10.3 Documenting a Mapping to Requirements
In many projects, showing how the architecture satisfies
requirements is an important part of the documentation. This
helps to validate the architecture by showing that

• No requirement was forgotten.

• No requirement was contradicted.

• Every architectural decision is either predicated on at least
one requirement or legitimately within the discretion of the
architect. (Not every architectural decision satisfies a stated
requirement.)

To facilitate validation, the architect records a mapping
between architectural decisions and requirements. Anyone
interested in a particular requirement should be able quickly
to find where in the architecture it is handled.

The mapping can be as detailed as the requirements them-
selves. Projects with formal requirements documents generally
have detailed mappings, whereas projects with informal or
fluid requirements (especially Agile projects) will have less
detailed mappings. Mappings are conveniently recorded in
tables such as in Figure 10.7.

A detailed mapping to
requirements often
changes quite frequently
during a project’s life
cycle. Consider captur-
ing the mapping in a
database rather than a
static document, to
facilitate updates and to
allow queries and
searches to be run.

ptg

358 ■ Chapter 10: Building the Documentation Package

Use Case UI Screen Architecture Solution and Architecture Notes

UC1
Create
project

New ArchE
Project dialog
box

Project is an inherent abstraction in Eclipse and so is the
navigator view. “Garage Door System” would be a project.

For each project, a completely independent instance of
“Jess rule engine (ArchE core)” is created (see Fig. d). All
the data for a given project is stored in file “Persisted fact
base .txt)” (Fig. d). There is one such file per project. Also,
the exported design (“.xml file” in Fig. d) is one per project.

There will be a user command to create a project triggered
by a menu option, which will activate a specific action han-
dler (Fig. e). This action handler will open the New ArchE
Project dialog box, which is one of the dialog boxes also in
Fig. e.

Navigator view

UC2
CRUD
scenarios

Scenarios table
view

Scenarios table view is one of the views and editors in Fig. e.
When the user selects the option to create a scenario, a
specific action handler (see Fig. e) will be activated. This
will open the Scenario dialog box, which is one of the dia-
log boxes in Fig. e. The action handler ultimately makes the
call to “ArchE core façade,” which updates the core. The
sequence of steps described for component “ArchE core
façade” in Section G takes place.

Scenarios—
static filter
dialog box

Scenario
dialog box

Scenario
Responsibility
Mapping table
view

UC8
Export
design

Main menu
option: File |
Export Design

There is an action handler (Fig. e) that processes this user
command. It uses the Save File As dialog box to ask for the
name of the file. Then it calls “Design export” (Fig. e), which
creates the “exported design” file. The external design tool
is activated manually. Save File As

dialog box

Generic
(not spe-
cific to a
use case)

Question to User
dialog box

A question in the Questions view corresponds to a “QA_”
fact in the core. When the user double clicks an entry, there
is an action handler responsible for processing the user
command (Fig. e). It opens the “Question to User” dialog
box, which is one of the dialog boxes in Fig. e. Answering
a question causes the action handler to store a fact in the
core.

Questions table
view

Figure 10.7
This figure shows an excerpt of the mapping between functional requirements (here, use cases) and architecture for the
ArchE system. Because ArchE is a GUI desktop application, most of the use cases are mapped to one or more UI
screens (second column). The third column describes how each use case is handled in the architecture. The figures
mentioned in the description are primary presentations of the view(s) where the referenced element is defined. (Sections
2.3.6 and 6.6.4 have more information about the ArchE tool.)

ptg

10.3 Documenting a Mapping to Requirements ■ 359

You can document a mapping to requirements in any of the
following ways.

1. Put the mapping in a single place in the documentation, a new sec-
tion in the documentation beyond views. This option is good for
projects that have informal or fluid requirements or that do
not require fine-grained accounting of each requirement.
Putting the information in one place makes it is easy to
update and convenient for validation, and it doesn’t clutter
the documentation with information that is needed only
for a short while by just a few stakeholders. This option
most often takes the form of a table that maps a require-
ments reference to an architecture element, decision, or
section of the architecture document. An example is shown
in Figure 10.7.

2. Distribute the mapping throughout the architecture documenta-
tion. You could add a separate section to each view. Or you
could overlay every place in the architecture with a tag or
adornment that reflects a requirement—every primary pre-
sentation, element catalog, context diagram, or variability
mechanism. This option is good for projects with fine-
grained requirements that map to fine-grained architec-
tural decisions. The architect can record the requirements
addressed in the same place and at the same time as the
architecture decisions are made. It’s also reasonably conve-
nient if the documentation is in an electronic form that
allows us to switch the adornments on and off or (even bet-
ter) automatically extract, collect, and index them to pro-
duce an all-in-one-place summary.

3. Capture the mapping to requirements in a view of its own. This
option is explored in the sidebar “The Requirements View-
point.” Where might such a view belong in the Style Zoo?

– You could consider the requirements a “structure” in the
software’s environment as real as the organizational,
development, or execution structures. Thus, a mapping
to requirements could be considered a new kind of allo-
cation style, and documented as a kind of allocation
view.

– You could consider the requirements as a set of concerns
that crosscut the architecture elements you’ve designed.
Thus, a mapping to requirements could be considered a
kind of aspect view. This option is good for projects with
fine-grained requirements that map to multiple archi-
tectural decisions or elements.

ptg

360 ■ Chapter 10: Building the Documentation Package

ADVICE

The Requirements Viewpoint

With Peter Eeles

Beyond the approaches for capturing a mapping to
requirements outlined in this chapter, there are several
precedents for treating the requirements that influence
the architecture as a more first-class citizen in terms of
an architecture description. For example, there is Kruchten’s
“Plus One View” of architecture, whose scenarios “are in
some sense an abstraction of the most important
requirements” (Kruchten 1995). In “The Process of Soft-
ware Architecting” (Eeles and Cripps 2009), the authors
take this thinking further by introducing a more compre-
hensive requirements viewpoint. A requirements view,
based on this viewpoint, describes those requirements
that have shaped the architecture, and may include func-
tional requirements, quality attribute requirements, and
constraints.

The value of a requirements view, however, is not con-
fined to the identification of the subset of requirements
that are deemed to be architecturally significant; the
architecture description as a whole should explicitly
define how the architecture addresses each of these
requirements. Such “traceability” from architecture to
requirements can be particularly useful during architec-
ture reviews when the architect needs to justify their
decisions, or when the architect needs to remind them-
selves of the rationale for their decisions.

The architecturally significant requirements that you cap-
ture in a requirements view may be defined within the
current project that is responsible for developing the sys-
tem, or they may come from outside the project (such as
an enterprise architecture or an industry body defining
mandatory regulations). The solution architecture is derived
from both sets of requirements, as shown in Figure 10.8,
with the outermost ring representing requirements
defined outside the project, the inner ring representing
those requirements defined within the current project
(and that align with the requirements defined outside the

You can read about the
4+1 approach in Sec-
tion E.2.

ISO 42010 defines
viewpoint as a work
product establishing the
conventions for the con-
struction, interpretation,
and use of architecture
views and associated
architecture models
(ISO/IEC 42010:2007).
ISO 42010 is described
in Section E.1.

One place this traceabil-
ity might be captured is
in the rationale section
of your documentation.
Documenting rationale
is described in Section
6.5.

ptg

10.3 Documenting a Mapping to Requirements ■ 361

project), and the center representing the solution archi-
tecture that is shaped by both sets of requirements.

Elements defined within the project may include stake-
holder needs, system features, interfaces between the
system and external entities, functional requirements, a
glossary of terms, quality attribute requirements, and any
constraints on the solution. Elements defined outside the
project, but that also influence the architecture of the
system, may include a definition of the key concepts in
the business domain, business processes, business
rules, principles that inform and guide the way in which
the system will be created (such as “buy versus build”),
and a description of existing elements that comprise the
current IT environment and that may be used by, or con-
strain, the system under development. These elements
constitute the contents that you should capture and doc-
ument in a requirements view.

Figure 10.8
Elements of a requirements view (Eeles and Cripps 2009)

SOLUTION

Business
domain

concepts

Business
rules

External
system

interfaces

Quality
attribute

requirements

Enterprise
architecture
principles

Business
processes

System
features

Solution
constraints

Glossary

Stakeholder
needs

Functional
requirements

Existing IT
environment

ptg

362 ■ Chapter 10: Building the Documentation Package

PERSPECTIVES

A Mapping to Requirements: You Might Already Have It

Although a mapping between architecture and requirements has important
uses, I’ve observed over many years that it’s seldom produced unless contrac-
tually required. During early stages of the architecture, too much is in flux, and
keeping the mapping consistent is impractical. Toward the end, when the archi-
tecture is more stable, nobody has the time (or desire) anymore to put the map-
ping in. What’s a practitioner to do?

Existing products of the architecting process can be used to help define a map-
ping between requirements and architecture. Let us consider separately
requirements for quality attributes and requirements for functionality. Quality
attribute requirements are the main drivers of the architecture. Architecture doc-
umentation can be thought of to a large extent as describing how quality
attribute requirements are supported by the architecture. So the necessary
information is there, but it needs to be organized in a way that easily shows
which structures and/or behaviors apply to which quality attribute requirement.
You can attach a kind of container to each quality attribute requirement.
Depending on the tool support you have, the container might contain links to
the supporting diagrams (behavioral or structural) or other relevant sections of
the architecture document.

What about functional requirements? Usually an architecture document is not
deemed complete if it does not contain some description of how at least the
“essential” requirements are supported by the architecture, where essential
means those requirements that are the primary purpose of the system. So, for
example, if the system is a communication system, then one of the essential
functional requirements would be to establish connections. An essential func-
tional requirement of a sensor system would be to capture data and make it
usable for end users or other systems. Usually, even a large system does not
have very many essential requirements. In many cases architects will document
those essential functional requirements as use cases. To these you can attach
some behavioral descriptions, such as sequence diagrams or collaboration dia-
grams, that describe how the architecture elements with assigned responsibili-
ties interact with each other to provide the functionality needed.

—F.B.

10.4 Packaging the Architecture Documentation
10.4.1 Packaging Schemes

You can use the templates in this chapter to create architecture
documentation structured in a variety of ways. Which option
you choose will depend on the size of the system, how you wish

ptg

10.4 Packaging the Architecture Documentation ■ 363

to package it for its stakeholders, and your organization’s stan-
dards and practices.

Produce All One Package

Here is a suggested ordering for producing a single architec-
ture document:

1. Document control information

2. Documentation roadmap

3. How a view is documented

4. System overview

5. Views

6. Mapping between views

7. Rationale

8. Directory

Produce Separate Documents

If a single document seems too unwieldy, there are a number
of ways to divide the documentation into more manageable
chunks. One way is to break the views out into their own docu-
ment. If you do that, then it makes sense to put the “How a view
is documented” section with them. Both documents should
have document control information.

Other arrangements are possible, such as putting every view
in its own document, grouping views by category (module,
C&C, allocation), or breaking out the mapping to require-
ments into its own document. You may also wish to divide the
documentation along architectural lines—a document per
subsystem, for example. Consult your stakeholders to find out
what would work best for them.

Produce Documentation Packages from Different Views

A view is a representation of a set of element types and relation
types applied to a system. If you break a view into view packets,
then every view packet in that view shares the same underlying
type. This is not always the most convenient documentation
package to give to a stakeholder. Stakeholders are often inter-
ested in, for example, shallow overviews of the whole system, or
holistic (that is, multi-view) insight and detail about a particu-
lar subsystem or layer.

To serve stakeholders like these, you can put together a
package of information including view packets from different
views. For example, you can assemble a package that provides
a broad overview of the architecture by showing high-level view

ptg

364 ■ Chapter 10: Building the Documentation Package

packets from various views. This can be followed by view pack-
ets that show deeper and deeper levels of the architecture,
again across views. The documentation roadmap for documen-
tation like this must tell the reader how to navigate through
the view packets.

ADVICE

Building an Architecture Overview Presentation

Sooner or later, every architect has to give an oral overview of an architecture,
backed up by slides. Once built, the presentation is likely to be used often, intro-
ducing the architecture to managers, developers, sponsors, evaluators, cus-
tomers, and even visitors. What should such a presentation contain? The goal
is to help the audience gain an appreciation of the problem, see the solution(s)
chosen, understand why they were chosen, and gain confidence that the archi-
tecture is the right one for the job.

Here’s an outline for a five-part, one-hour overview containing anywhere from
20 to 35 slides.

1. Problem statement: 2–3 slides. State the problem the system is trying to
solve. List driving architecture requirements, the measurable quantities you
associate with them, and any existing standards/models/approaches for
meeting them. State any technical constraints, such as a prescribed operat-
ing system, hardware, or middleware.

2. Architecture strategy: 2 slides. Describe the major architecture challenges.
Describe the architecture approaches, styles, patterns, or mechanisms
used, including what quality attributes they address and a description of
how the approaches address those attributes.

3. System context: 1–2 slides. Include one or two whole-system context dia-
grams that clearly show the system boundaries and other systems with
which yours must interact.

4. Architecture views: 12–18 slides. Use the views you’ve chosen as the back-
bone of the presentation. For each view, include the top-level (that is, system-
wide) primary presentation and, depending on the amount of detail you want
to include, perhaps a few refined primary presentations as well. Naturally,
each should include a notation key.

An overview presentation is the one case for which a cartoon does not have
to be accompanied by the supporting documentation, but you will want to
have it available for answering questions.

For each slide showing a primary presentation, make a couple of accompa-
nying slides that explain (a) how the architecture shown supports the func-
tionality and achieves the system qualities that reside with that view and (b)
the rationale for choosing that design. You may wish to annotate or color

ptg

10.4 Packaging the Architecture Documentation ■ 365

some of the cartoons to show programmatic information about the ele-
ments, such as which elements are provided by third parties, the state of an
element’s development, the amount of risk posed by an element, or the
scheduled delivery or other milestone of an element. You need not include
every view in the presentation, but you should include at least one module
view, at least one C&C view, and at least one allocation view.

Where views can be straightforwardly mapped to each other, include slides
that do so. This will be very useful in conveying the overall picture.

5. How the architecture works: 3–10 slides. Trace up to three of the most
important use cases. If possible, include the runtime resources consumed
for each use case. You should be able to extract the traces from your behavior
documentation in the form of, for example, sequence diagrams or statecharts.

Show the architecture’s capacity for growth with a trace of up to three of the
most important change scenarios. If possible, describe the change impact—
estimated size/difficulty of the change—in terms of the changed elements,
connectors, or interfaces.

Depending on the importance of each item, consider tracing a scenario that
illustrates any of the following: concurrency, failure recovery, error propaga-
tion, or key end-to-end data flows. Again, you should be able to extract this
information from your behavior documentation.

You may wish to have the following slides available to answer questions or to
help discussion but not make them part of the standard presentation:

• The set of stakeholders for the documentation and a sketch of the concerns
and information needs of each (2–3 slides)

• Glossary (1–2 slides)

Preface the whole package with a title slide, sprinkle outline slides throughout
to let the audience follow the outline of the presentation, end with a “for further
information” slide, and you’re done.

A good presentation can help an architect in many ways. Recorded on video, it
can free the architect from having to brief new hires or low-ranking visitors. It
can be handed to junior designers as a way to groom them for technical lead-
ership positions. And it helps establish a consistent vision of the architecture
throughout an organization, which makes every architect’s life easier.

10.4.2 Online Documentation, Hypertext, and Wikis

These days, Web-based documentation is becoming the norm.
Hyperlinking your documents can provide easy navigation in
and among them, as well as instant access to related docu-
ments, definitions, catalogs, and external references. Hyper-
linking also relieves you of all the problems associated with
keeping multiple copies of documents around: You make one

ptg

366 ■ Chapter 10: Building the Documentation Package

copy and link to it wherever the information contained in it is
needed. (Recall the second rule of sound documentation:
Avoid unnecessary repetition.)

Prepared using a Web-based documentation tool, a docu-
ment can be structured as linked Web pages. Compared with
documents written with a text-editing tool, Web-oriented doc-
uments typically consist of short pages (created to fit on one
screen) with a deeper structure. One page usually provides
some overview information and has links to more-detailed
information. When done well, a Web-based document is easier
to use for people who just need to have some overview infor-
mation. On the other hand, it can become more difficult for
people who need detail. Finding information can be more dif-
ficult in multi-page, Web-based documents than in a single-file,
text-based document, unless a search engine is available.

Using readily available tools, it’s possible to create a shared
document that many stakeholders can contribute to. The host-
ing organization needs to decide what permissions it wants to
give to various stakeholders; the tool used has to support the
permissions policy. In the case of architecture documentation,
we would want all stakeholders to comment on and add clari-
fying information to the architecture, but we would want only
architects to be able to change it, or at least provide architects
with a “final approval” mechanism.

In a shared document environment, where every user is
allowed to (and is encouraged to) contribute, the workload is
distributed—an effect that is typically seen as very positive. The
concepts of author (one who creates and maintains the docu-
ment) and reader (one who only reads the document) are
diminished. Readers feel more empowered, and hence have a
stronger stake in the documentation. A special kind of shared
document is a wiki. A wiki is a collection of Web pages designed
to enable anyone with access to contribute or modify content.

COMING TO TERMS

Wiki

A wiki is a Web site that allows users freely to create and
edit Web-page content using any Web browser. A wiki
offers an alternative to using an editing tool paired with a
configuration management tool. A wiki, however, is not
an alternative to modeling or drawing tools.

Everyone who can use a Web browser and fill out Web-
based forms can view and edit the content of a wiki

Shared documentation,
in a Web-based envi-
ronment, allows you to
increase collaboration
among stakeholders
and avoid unnecessary
repetition.

A wiki is a collection of
Web pages designed to
enable anyone with
access to contribute or
modify content, using a
simplified markup lan-
guage. (Wikipedia
2010c)

ptg

10.4 Packaging the Architecture Documentation ■ 367

page. A wiki supports hyperlinks and has a simple text
syntax for creating new pages and links between pages
“on the fly.” If you can suppress your desire for fancy for-
matting, wiki is a fast-to-learn, easy-to-use, and intuitive
editing environment. It allows novice users to produce
fairly nice-looking Web pages that are immediately avail-
able to all other users. A wiki also allows the reorganizing
of content. Pages can be reordered, and new pages can
be created to show the existing content in a different
order. When anyone makes changes to a page, everyone
can see what was changed.

ADVICE

If you are going to use a wiki as the repository of your
software architecture, there are some practical consider-
ations and guidelines that may help. Here is a list of rec-
ommendations for the configuration and day-by-day use
of your wiki-based architecture document.

• The first step is to create a new wiki or define a page
for the architecture document in an existing wiki. It is
possible to automatically enforce a specific structure
for a wiki page, but not for an entire wiki. But it is highly
advisable to follow a standard organization like the
ones in this chapter, enforced by convention. Create
the initial page of the architecture documentation as a
list of links to the main topics.

• Create one wiki page for each architecture view, and a
template for that page. Follow a convention to name
the views, so that it is easy to remember the names
when creating links (the view and its wiki page should
share the same name).

• Create one wiki page for each mapping between views,
so that each mapping can be edited independently.

• If you are using a drawing tool, such as Visio or Power-
Point, create one file for each diagram or one file for
each architecture view. Prefix the file with the name of
the view, replacing spaces with a standard character.

• A wiki does not provide an editorial feature similar to
the Track Changes option in Word. The wiki option is
to add comments to the discussion page. An alterna-
tive that has proven to be effective when reviewing a
wiki page is this process:

ptg

368 ■ Chapter 10: Building the Documentation Package

1. Copy the wiki page to a blank Word document.

2. Activate the Track Changes option.

3. Edit the Word document and add comments as
needed.

4. Send the Word document to the author of the wiki
page, who then can change the wiki page based
on the edits and comments in the review.

• It is very common for an element in the architecture to
appear in more than one view. Create the description
of that element in a separate page and include it by
reference in the element catalog of all pages that con-
tain that element.

• If you already have documentation created in Word
and want to migrate it to a wiki, there are macros/
scripts that can help. To find them, do a Web search
for “Word2Wiki” or “WordToWiki.”

10.4.3 Configuration Management

What book on documentation would be complete without
stressing the importance of keeping your documentation com-
plete and up to date? Recall the sixth rule of sound documen-
tation: “Keep documentation current but not too current.”
Nothing is worse than opening a set of architecture documen-
tation and trying to figure out if it represents the most recent
version of the system.

Documents should be dated and versioned. If someone is
looking at several figures, it should be obvious at a glance
which figures are from the same version of the system.

You probably think of software configuration management
systems more in terms of keeping track of the code associated
with your project, but we recommend that you think of the
documentation that you are creating as software too, and treat
it just as carefully as you do the code that derives from it.

In fact, the versions of the documentation and the code
should refer to each other. When looking at code, it should be
easy to determine which version of the architecture it reflects.

10.4.4 Follow a Release Strategy

Your project’s development plan should specify the process for
keeping the important documentation, including architecture
documentation, current. The architect should plan to issue
releases of the documentation to support major project mile-
stones, which usually means far enough ahead of the milestone
to give developers time to put the architecture to work.

The process of includ-
ing a description by ref-
erence is called
transclusion.

ptg

10.4 Packaging the Architecture Documentation ■ 369

Projects follow a rhythm, a drumbeat of incremental mile-
stones leading to eventual full release, and then entry into
maintenance and sustainment. Early in the life cycle, the
drumbeat tends to be much faster than after the system is
released or brought to market. Plan your releases of architec-
ture documentation to support the next beat of the drum. For
example, the end of each iteration or sprint or incremental
release could be associated with providing revised documenta-
tion to the development team.

PERSPECTIVES

Presentation Is Also Important

Throughout this book, we focus on telling you what to document. We do not
spend much, if any, time on how it should look—but not because form is unim-
portant. Just as the best-designed algorithm can be made to run slowly by
insufficient attention to detail during coding, so too the best-designed docu-
mentation can be made difficult to read by insufficient attention to presentation
details: for example, the style of writing, fonts, types and consistency of visual
emphasis, and the segmenting of information.

We have omitted these issues not because we think they are unimportant but
because presentation details are not our field of expertise. Universities offer
master’s degrees in technical communication, in information design, and in other
fields related to the presentation of material. We have been busy being software
engineers and architects and have never been trained in presentation issues.
Having denied expertise, however, I am now free to give some rules of thumb.

• Adopt a style guide for the documentation. The guide should specify such
particulars as fonts, numbering schemes, conventions with respect to acro-
nyms, captions for figures, and other such details. The guide should also
describe how to use the visual conventions discussed in the next several
points.

• Use visually distinct forms for emphasis. Word processors offer many tech-
niques for emphasis. Words can be bold, italic, large, or underlined. Using
these forms makes some words more important than others.

• Be consistent in using visual styles. Use one visual style for one purpose, and
do not mix purposes. That is, the first use of a word might be italicized, and
a critical thought might be expressed in bold, but do not use the same style
for both purposes, and do not mix styles.

• Do not go overboard with visuals. It is usually sufficient to use one form of
visual emphasis without combining them. Is bold less arresting to you than
bold red italic? Probably not.

• Try to distinguish different types of ideas with different visual backgrounds. In
this book, we attempted to put the main thread of discussion in the body of

ptg

370 ■ Chapter 10: Building the Documentation Package

the book, with ancillary information as sidebars. We also made the sidebars
visually distinct, so that you would know at a glance whether what you were
reading was in the main thread or an ancillary thread.

The key ideas with respect to presentation are consistency and simplicity.

• Use the same visual language to convey the same idea: consistency.

• Do not try to overwhelm the user with visuals; you are documenting a com-
puter system, not writing an interactive novel: shoot for simplicity.

The goal of the architecture documentation, as we have stressed throughout
this book, is to communicate the basic concepts of the system clearly to the
reader. Using simple and consistent visual and stylistic rules is an important
aspect of achieving this goal.

—L.B.

PERSPECTIVES

Tooling Requirements

The benefits of having architecture documentation need to outweigh the costs
of producing it, or it won’t be produced. Throughout this book we have argued
forcefully for the benefits but have thus far paid little attention to the costs. The
lower the cost of the documentation, the more activities for which it becomes
worthwhile to produce documentation.

Although the cost of documentation is primarily a human cost, the cost is
strongly related to the existence of appropriate tools that support the humans
in the production process.

What would an ideal tool to support the documentation process look like? If
such a tool were to exist, the cost of producing documentation would be much
lower than it is today. This sidebar will discuss requirements for a tool that
reduces the human cost of producing documentation.

There are two primary requirements for an ideal documentation tool.

1. The tool must generate documentation at the push of a button from informa-
tion already in the tool as a result of design or other project activities. No
information necessary for the documentation should need to be added to
the information already necessary for project activities.

2. As the system evolves, the documentation simultaneously evolves.

The requirement that the tool generates documentation at the push of a button
means that the tool must have information about each of the views in a variety
of different granularities and must have the beyond views information as well.
Being able to make connections between views requires that the tool have a

ptg

10.4 Packaging the Architecture Documentation ■ 371

sophisticated association capability. That is, given any two entities in the tool,
the architect can link them together with an appropriate annotation in a matter
of one or two button pushes or drags.

Limiting the number of user actions necessary means that the documentation
tool must be very flexible in terms of when a user of the tool can make a linkage.
This in turn means that no particular process should be imposed, because a
user may be in the middle of one activity when a stray thought arrives about
another linkage that should be made. Making the linkage and returning to the
original activity should require only one or two button pushes.

How would the tool help with specific parts of architecture documentation?
Here are some examples.

• Rationale. One portion of the documentation template is the rationale for par-
ticular decisions. If the rationale results from an automated analysis, then
linking the documentation tool to the analysis tool will make the necessary
information available. Otherwise, the rationale would need to be entered
manually or linked from an existing document.

• Mapping to requirements. Another set of information necessary for the doc-
umentation is linkage to requirements fulfillment. The requirements informa-
tion should also be available to the user of the documentation tool with one
or two button pushes.

• Elements and properties. Entities within the tool should have a collection of
attributes that include the views of which they are a portion and the proper-
ties needed for analysis. Hierarchies of entities will allow for viewing a design
at different points in the spectrum of design. Good navigation and search
capabilities are a must, and will allow for many different organizations of the
entities.

When the system is updated, it raises the possibility that the documentation
may need to be updated. The updating of the documentation should be as pain-
less as possible. Work-flow techniques can be used to determine whether the
architecture documentation needs to be updated to reflect changes in the sys-
tem and to alert the person(s) responsible for the documentation of a particular
portion of the architecture.

Because the documentation should be available at the push of a button and
because it will be evolving, the documentation tool will need to construct the
view packets dynamically. Different views at different granularities will require
different subsets of the information available. Information should be self-
contained with links to context and related information but at a size that will
localize changes to affect only the necessary information. For example, a mod-
ule’s responsibility might be decomposed into smaller responsibilities assigned
to submodules. A responsibility can then be linked to its parent and to its chil-
dren in a decomposition of responsibilities. It can also be linked to the modules
where it is realized, but it should exist as an independent entity, so that changes
to its description will have the fewest ripples.

ptg

372 ■ Chapter 10: Building the Documentation Package

Finally, the tool should support multi-user access and editing. Developers will
need to access the tool to understand the architecture. Different people will be
responsible for modifying different portions of the documentation. Some people
will need only a simple drawing tool, and so the tool should either provide that
or be able to digest and process diagrams from such tools. Development is
more and more a global matter, and so the tool should support access from
around the globe.

As may be apparent by now, the ideal documentation tool will be just one por-
tion of an integrated design, project management, requirements, analysis, and
documentation tool, because these are roles that some of the consumers of the
documentation will fulfill. There may be additional roles that require integration
with other functions that occur during the development of the system.

The type of tool we described here does not currently exist, although the ideas
are drawn from various existing tools or prototypes. We hope the description
here will help speed the introduction of such a tool.

—L.B.

10.5 Summary Checklist
• A complete architecture documentation package consists of

a set of views, along with documentation of the information
that applies to more than one view.

• Document the views, and documentation beyond views,
using the templates in this chapter (tailored for your own
use if necessary) or one of your own making.

• A view consists of a primary presentation, an element cata-
log, a context diagram, a variability guide, and rationale.
The part after the primary presentation is called supporting
documentation.

• Documentation beyond views consists of document control
information, a documentation roadmap, a view template, a
system overview, mapping between views, rationale, and a
directory.

• Document the mapping between views by using a table
showing how elements of one view correspond to elements
of another. You can also show the mapping graphically.

• A view packet is a portion of a view that you would want to
show to a single stakeholder. A view packet includes a primary
presentation depicting a part of the system, and supporting
documentation that explains the primary presentation.

• Choose a scheme for capturing the mapping to require-
ments based on the nature of the requirements and stake-
holder need.

ptg

10.6 For Further Reading ■ 373

10.6 For Further Reading
To read more about documenting architectures using a wiki,
see the technical note “Experience Using the Web-Based Tool
Wiki for Architecture Documentation,” by Felix Bachmann
and Paulo Merson (2005). You can also search for “wikis for
software engineering” to see the results of workshops and
research in this area.

ptg

This page intentionally left blank

ptg

375

11Reviewing an Architecture
Document

QUOTE

The iconic American poet Emily Dickinson craved pointed reviews of her work. Here
is how she asked for one from a literary confidant in 1862 (Weeks and Flint 1957):

Mr. Higginson, Are you too deeply occupied to say if my verse is alive?

The mind is so near itself it cannot see distinctly, and I have none to ask.

Should you think it breathed, and had you the leisure to tell me, I should feel
quick gratitude.

If I make the mistake, that you dared to tell me would give me sincerer honor
toward you.

I inclose [sic] my name, asking you, if you please, sir, to tell me what is true?

That you will not betray me it is needless to ask, since honor is its own pawn.

The prologue presented seven rules for sound documentation.
The rules concluded with this prescription:

Review documentation for fitness of purpose. Only the intended
users of a document will be able to tell you whether it contains
the right information presented in the right way. Enlist their aid.
Before a document is released, have it reviewed by representa-
tives of the community or communities for which it was written.

This chapter describes a procedure for doing just that. Like all
prescriptions in this book, you should use just as much of it as
you think will be beneficial, given the realities and circumstances
of your organization and project. For example, Scrum projects
often require a complete product (including requirements,

With David Emery and Rich Hilliard

ptg

376 ■ Chapter 11: Reviewing an Architecture Document

design, code, and test results) every 30-day sprint, with a plan-
ning session at the beginning and an evaluation at the end. The
question sets given in this chapter could serve as a quick checklist
for evaluating the documentation products along the way.

To be clear, we are not discussing how to evaluate an architecture;
there are several existing methods for that already. Rather, we are
evaluating the documentation of an architecture (one purpose of
which may be to support an architecture evaluation exercise).

11.1 Steps of the Procedure
This is a six-step procedure. The first step establishes the “why,
when, and who” of the review. Subsequent steps provide the
“what” and “how.”

Step 1: Establish the purpose of the review. An architecture
document (AD) review establishes whether the AD is fit for
some specific purpose by a set of identified stakeholders. Stat-
ing that purpose will focus the review participants and direct
the review. The questions you’ll ask about the document will be
different depending on the purpose you have in mind. The
sidebar “Why Review an Architecture Document?” provides
some examples of why the AD might be reviewed.

It is likely that any AD will need to be fit for more than one
purpose, and hence the review will be multi-faceted. The alter-
native is several smaller reviews, each with a single purpose.

Knowing the “why” will help you identify the “who.” As part
of establishing the purpose, identify the stakeholders of the AD
who should be represented in the review.

Knowing the “why” will also tell you the “when.” No matter
what life-cycle process you’re using, various review purposes
will align with certain project stages or milestones. To give an
idea of this, Table 11.1 shows a loosely defined set of broadly

Choose one or more of
these purposes or craft
your own. A review pur-
pose can be stated as a
scenario that describes
how a particular stake-
holder can successfully
use the AD to carry out
part of his or her job.

Table 11.1 Typical life-cycle phases and the AD reviews that are appropriate
for each

Project Phase Typical Activities Review AD for . . .

Concept • Identifying stakeholders’ needs
• Exploring concepts, propose

viable solutions
• Analyzing alternative architectures
• Preparing an architectural con-

cept (such as when assembling
a bid for a contract)

• Communicating between
acquirers and developers as a
part of contract negotiations

• Capturing the right stakeholders
and concerns

• Support for proposal

ptg

11.1 Steps of the Procedure ■ 377

applicable project phases, the typical activities in each phase,
and what you might wish to review the AD for in each case. Of
course, the particular life-cycle model your project uses will
lead to different phases, activities, and reviews. Carry out the
review with enough spare time to allow the AD to be modified
after the review to serve its purpose.

ADVICE

Why Review an Architecture Document?

• Review the AD for conformance to a normative specification. This kind of
review is intended to discover if the AD conforms to some normative specifi-
cation that has been imposed on it. The focus is on the AD itself; the archi-
tecture it describes is deemphasized. For example, the AD may be required
(or claim) to conform to ISO/IEC 42010:2007, the U.S. Department of Defense
Architecture Framework (DoDAF), The Open Group Architecture Framework
(TOGAF), the Federal Enterprise Architecture Framework (FEAF), or other stan-
dards, guidelines, or templates mandated by the developing organization. A
conformance review will see if it does.

• Review the AD for its ability to support use of the architecture for its intended
purpose. This kind of review is carried out to see if stakeholders of the archi-
tecture can use the AD to do their jobs. The focus is on how well the AD
describes the architecture. Understandability and usability of the AD are
important review criteria. Examples include the following:

Development • Refining system requirements
• Creating solution description
• Building system or systems
• Verifying and validating system

• Support for conformance to a nor-
mative specification

• Support for evaluation
• Support for development
• Support for input to generation and

analysis tools
• Support for judging implementation

conformance to architecture
• Support for project planning

Utilization • Operating the system to satisfy
users’ needs

• Support for help in tracking down
operational errors

Support • Providing sustained system
capability

• Support for system evolution in
concert with the architecture and
the associated business planning
for evolution

Table 11.1 Typical life-cycle phases and the AD reviews that are appropriate
for each (continued)

Project Phase Typical Activities Review AD for . . .

ptg

378 ■ Chapter 11: Reviewing an Architecture Document

– Can the AD support downstream software design, development, and evo-
lution? Can the AD enable effective communications among organizations
involved in the development, production, fielding, operation, and mainte-
nance of a system? Here, important concerns are comprehension and
completeness, as well as the precise conveyance of global design con-
cepts (and their rationale) so that all groups have the same mental model
of the architecture.

– Can the AD support project planning, budgeting, and scheduling? Here,
the emphasis is on the ability to predict the size, complexity, risk, reuse
opportunities, and requirements for specific expertise.

– Can the AD support the development of a group of systems sharing a
common set of features and built from a common set of core assets? Here,
the emphasis may be on the specification in the AD of commonalities,
points of variation, and variation mechanisms built into the architecture.

– Can the AD support preparation of acquisition documents (such as
requests for proposals and statements of work)? Can the AD support
communications between acquirers and developers as a part of contract
negotiations? Here, the important concern is comprehension, so that all
groups have the same understanding of the architecture plan and the
architecturally significant requirements.

• Review the AD for its suitability to support architecture evaluation or analysis.
This kind of review is carried out to see if the AD provides sufficient informa-
tion to be able to predict system qualities by examining or analyzing the
architecture. Examples include the following:

– Can the AD support an architecture evaluation using a method such as the
SEI Architecture Tradeoff Analysis Method (ATAM)? Here, important con-
cerns are attention to quality attributes required of and provided by the
architecture, as well as evidence of feasibility—namely, that the architec-
ture can in fact be built under the budget and schedule allotted.

– Can the AD support analysis of alternative architectures? The AD must
have the qualities necessary to evaluate an architecture by itself but also
include sufficient rationale to provide in-depth qualitative insight about
whether the architecture is well suited to take the organization into the
future, so it can be compared with other candidates.

Step 2: Establish the subject of the review. This step involves
identifying the types of artifacts, the versions of the artifacts,
their sources, and the degree of completeness of the artifacts
necessary to conduct the review. Obviously, the AD needs to be
available. Use the purpose(s) laid out in step 1 to establish the
artifact collection required and then gather them for the
review. For example, if the AD is being reviewed for conform-
ance to a standard or to a framework, the normative require-
ments of the standards/framework should also be available. In

Chapter 9 describes
how much information
of various kinds is usu-
ally needed by different
kinds of stakeholders.

ptg

11.1 Steps of the Procedure ■ 379

all cases, make sure that all reviewers are working from the
same version(s) of the artifact(s).

Step 3: Build or adapt the appropriate question set(s). This
step involves identifying the questions that your review will put
to the AD. If you already have a set of questions that meets the
purpose of your review, you can use it (perhaps with some mod-
ification). If not, you will have to construct it. Organizing ques-
tions as question sets allows them to be reused by providing
contextual information about the purpose and stakeholder
concerns that need to be addressed, as well as guidance for
obtaining and interpreting the results. Later in this chapter we
present a number of example question sets, each one designed
to serve a review purpose. If you choose to use existing ques-
tion sets, they need to be tailored for the purposes of the
review. Questions that are not relevant can be omitted. Gen-
eral questions can be made more specific according to the
technology of the project (for example, references to data per-
sistence may be replaced by references to an Oracle database).
The question set(s) that you pick will suggest a particular
approach, and the questions need to be formulated appropri-
ately. For example, will you use the active design review tech-
nique, a questionnaire or checklist given to stakeholders, some
sort of automated or measurement-based analysis, or some
other approach?

Step 4: Plan the details of the review. Planning involves set-
ting a date for the review, as well as deciding on the time frame
and the basic format of the review. The time frame might allow
as much time as needed to answer questions or only a limited
amount of time, in which case the questions need to be priori-
tized. Time and resources will affect the format and “weight”
of the review. How the results will be communicated needs to
be determined and could affect the format and weight of the
required answers.

This step also involves identifying the actual review partici-
pants (not just abstract stakeholder roles) and securing their
participation. An initial assignment of questions to the review-
ers responsible for asking them and the stakeholders responsi-
ble for supplying the answers can be made at this time. As the
review is conducted, the initial priorities and stakeholder
assignments may change as a deeper understanding of the doc-
umentation is gained and the reviewers probe further into
applicable areas.

This step also involves handling the logistics for the review:
time and place of meeting(s), paying for everyone’s time, pro-
viding read-ahead materials, and so on.

A question set groups
questions that collec-
tively address a nar-
rowly focused purpose
for an AD review. Besides
the questions them-
selves, a question set
contains information to
allow a user to ensure
the question set is
appropriate and to use it
effectively. This informa-
tion includes the name,
purpose, stakeholders
and concerns, respon-
dents, expected answers,
criticality, and advice.

Active design reviews
are explained in the
“Coming to Terms”
sidebar on page 380, in
this chapter.

There’s no limit on what
can be inspected, so
inspections should be
limited to those items
where the benefit is
likely to be worth the
cost. Consider the con-
text (rigor vs. scope vs.
resources vs. time vs.
costs) and be practical.
A less formal walk-
through process may
be adequate.

—Watts S. Humphrey
(1989, p. 172)

ptg

380 ■ Chapter 11: Reviewing an Architecture Document

Step 5: Perform the review. Performing the review involves
posing the questions to the stakeholders involved in the review
and gathering their answers. Depending on the specific approach
chosen, this might involve an individual objective review,
where stakeholders also play the role of the reviewer and pose
questions to themselves; or an inspection, where a separate
review team poses questions to the stakeholders. Inspections
could take the form of an all-hands gathering, a number of
one-on-one meetings, or something in between; the meetings
could be face to face, or distributed and remote, using (for
example) online virtual meetings. After the results are gath-
ered, the evaluation considerations and criteria are applied, as
defined by the chosen question set(s). Although the reviewers
can make some preparations, not all the important issues can
be known beforehand. These issues need to be determined in
the initial part of the review and will influence the questions
and artifacts used as the reviewers dig deeper in these areas.

Step 6: Analyze and summarize the results. The intent of this
step is to aggregate the answers to the questions and then make
a qualitative determination of the overall impact of the AD
against the stakeholders and concerns. Results are not likely to
be a simple pass/fail but rather a more nuanced conclusion
concerning specific problems in specific parts of the AD.

COMING TO TERMS

Active Design Reviews

In an active design review, reviewers are actively engaged to exercise the artifact
they are reviewing, not just look it over and scan for defects. Here is what David
Weiss, one of the creators of the active design review technique, has to say
about them:

Starting in the early 1970s I have had occasion to sit in on a number of design
reviews, in disparate places in industry and government. I had a chance to see
a wide variety of software developers conduct reviews, including professional
software developers, engineers, and scientists. All had one thing in common:
the review was conducted as a (usually large) meeting or series of meetings at
which designer(s) made presentations to the reviewers, and the reviewers could
be passive and silent or could be active and ask questions. The amount, quality,
and time of delivery of the design documentation varied widely. The time that
the reviewers put in preparation varied widely. The participation by the reviewers
varied widely. (I have even been to so-called reviews where the reviewers are
cautioned not to ask embarrassing questions, and have seen reviewers silenced
by senior managers for doing so. I was once hustled out of a design review

ptg

11.1 Steps of the Procedure ■ 381

because I was asking too many sharp questions.) The expertise and roles of the
reviewers varied widely. As a result, the quality of the reviews varied widely. In
the early 1980s Fagin-style code inspections were introduced to try to amelio-
rate many of these problems for code reviews. Independently of Fagin, we
developed active design reviews at about the same time to ameliorate the same
problems for design reviews.

Active design reviews are designed to make reviews useful to the designers.
They are driven by questions that the designers ask the reviewers, reversing the
usual review process. The result is that the designers have a way to test whether
or not their design meets the goals they have set for it. To get the reviewers to
think hard about the design, active reviews try to get them to take an active role
by requiring them to answer questions rather than to ask questions. Many of the
questions force them to take the role of users of the design, sometimes making
them think about how they would write a program to implement (parts of) the
design. In an active review, no reviewer can be passive and silent.

We focus reviewers with different expertise on different sets of questions so as
to use their time and knowledge most effectively. There is no large meeting at
which designers make presentations. We conduct an initial meeting where we
explain the process and then give reviewers their assignments, along with the
design documentation that they need to complete their assignments.

Design reviews cannot succeed without proper design documentation. Informa-
tion theory tells us that error correction requires redundancy. Active reviews use
redundancy in two ways. First, we suggest that designers structure their design
documentation so that it incorporates redundancy for the purpose of consis-
tency checking. For example, module interface documentation may include
assumptions about what functionality the users of a module require. The func-
tions offered by the module’s interface can then be checked against those
assumptions. Incorporating such redundancy is not required for active design
reviews but certainly makes it easier to construct the review questions.

Second, we select reviewers for their expertise in certain areas and include
questions that take advantage of their knowledge in those areas. For example,
the design of avionics software would include questions about devices con-
trolled or monitored by the software, to be answered by experts in avionics
device technology, and intended to insure that the designers have made correct
assumptions about the characteristics, both present and future, of such
devices. In so doing, we compare the knowledge in the reviewers’ heads with
the knowledge used to create the design.

I have used active design reviews in a variety of environments. With the proper
set of questions, appropriate documentation, and appropriate reviewers, they
never fail to uncover many false assumptions, inconsistencies, omissions, and
other weaknesses in the design. The designers are almost always pleased with
the results. The reviewers, who do not have to attend a long, often boring, meet-
ing, like being able to go off to their desks and focus on their own areas of exper-
tise, with no distractions, on their own schedule. One developer who conducted

ptg

382 ■ Chapter 11: Reviewing an Architecture Document

an active review under my guidance was ecstatic with the results. In response
to the questions she used she had gotten more than 300 answers that pointed
out potential problems with the design. She told me that she had never before
been able to get anyone to review her designs so carefully.

Of course, active reviews have some difficulties as well. As with other review
approaches, it is often difficult to find reviewers who have the expertise that you
need and who will commit to the time that is required. Since the reviewers oper-
ate independently and on their own schedule, you must sometimes harass them
to get them to complete their reviews on time. Some reviewers feel that there is
a synergy that occurs in large review meetings that ferrets out problems that
may be missed by individual reviewers carrying out individual assignments. Per-
haps the most difficult aspect is creating design documentation that contains
the redundancy that makes for the most effective reviews. Probably the second
most difficult aspect is devising a set of questions that force the reviewer to be
active. It is really easy to be lured into asking questions that allow the reviewer
to be lazy. For example, “Is this assumption valid?” is too easy. In principle,
much better is “Give 2 examples that demonstrate the validity of this assump-
tion, or a counterexample.” In practice, one must balance demands on the
reviewers with expected returns, perhaps suggesting that they must give at
least one example but two are preferable.

Active reviews are a radical departure from the standard review process for
most designers, including architects. Since engineers and project managers are
often conservative about changes to their development processes, they may be
reluctant to try a new approach. However, active reviews are easy to explain and
easy to try. The technology transfers easily and the process is easy to standard-
ize; an organization that specializes in a particular application can reuse many
questions from one design review to another. Structuring the design documen-
tation so that it has reviewable content improves the quality of the design even
before the review takes place. Finally, reversing the typical roles puts less stress
on everyone involved (designers no longer have to get up in front of an audience
to explain their designs, and reviewers no longer have to worry about asking
stupid questions in front of an audience) and leads to greater productivity in the
review.

11.2 Sample Question Sets for Reviewing the
Architecture Document

Posing and answering questions in a review is, of course, the
heart of the matter. This section discusses what is involved in
the formation of question sets—groups of questions that,
together, address a narrowly focused purpose for an AD review.
Besides the questions themselves, a question set must also con-
tain information to allow a user to make sure the question set
is appropriate and use it effectively, as shown below:

ptg

11.2 Sample Question Sets for Reviewing the Architecture Document ■ 383

1. Question Set Name. As an artifact to be reused, give the
question set a name by which it can be referred.

2. Purpose. What review purpose does the question set address?

3. Stakeholders and Concerns. Who are the stakeholders, and
which of their concerns are being addressed by the ques-
tions? Making stakeholders and concerns a first-class
dimension of an AD review effectively elaborates the pur-
pose of the question set and informs the formulation of the
questions. (While we can’t expect all of an architecture’s
stakeholders to participate in a review, we want to make sure
that all of the important stakeholder roles are represented.)

4. Questions. This section contains the questions that consti-
tute the question set. For each question, give the following
information:

a. Respondents. To whom should each question be posed?
The questions might be addressed to the person speak-
ing for the AD. Usually this will be the architect. The
questions might be addressed to reviewers checking the
understandability of the AD by using it to answer ques-
tions about the architecture it describes. For instance, if
the AD should support project planning (a purpose)
and is being reviewed for such (using a “project plan-
ning” question set), the respondents would include those
concerned with project planning—technical managers.
If the AD should support development and is now being
reviewed for that, the respondents will certainly include
key developers. Questions about the AD itself can be
answered by examining the AD or analyzing it with a
tool (for example, automatically checking to make sure
that every cross-reference is defined).

The person(s) to whom a question is posed may or
may not be the same as the stakeholder(s) whose con-
cern the question addresses. Review participants may be
proxies for stakeholders.

b. Expected Answers. What answer(s) are we looking for?
A question set will also involve formulating a set of con-
siderations and criteria to help the reviewers evaluate
the AD based on the answers they receive. For example,
they might wish to understand not just the answers
given by the reviewers but also how much difficulty the
reviewers had coming up with those answers. They
might wish to understand the criteria the stakeholders
used for why they answered “Yes, we’re happy” or “No,
we’re not happy.”

A concise statement of
the purpose can often
be useful to capture in
the name; for example,
“Ready to support
development.”

ptg

384 ■ Chapter 11: Reviewing an Architecture Document

The respondents should not be shown the expected
answers, to avoid biasing their answers.

c. Criticality. How critical is each question? The “wrong”
answer to some questions might halt a project until it’s
resolved, whereas the “wrong” answer to other ques-
tions might merely be something to watch over time.
The questions should come with guidance (perhaps a
weighting) to help establish their importance.

5. Advice. Provide additional useful information on how and
when the review should be conducted. You might relate
experience gained through using the question set in a
prior review.

Figure 11.1 provides a sample template that can be used when
constructing a question set.

Following are a few example question sets to serve specific
AD review purposes. (Some questions might apply to more
than one question set.) They are written in different styles to
illustrate the ways a question set may be used. For example, the
example question set for capturing the right stakeholders is
written in the active design review style, and the questions are
really directions to stakeholders to use the AD for some pur-
pose. The other example question sets are written as if an inter-
viewer is questioning a stakeholder. These could be adapted to
an active design review style or for the purposes of an individ-
ual objective review. Some questions that can be answered yes
or no are serving as filters, and when the answer is yes, it is
appropriate to ask follow-up questions of the form, “How do
you know?”

1. Question Set Name

2. Purpose

3. Stakeholders and Concerns

4a. Questions (organized by respondents)

4b. Expected Answers

4c. Criticality

5. Advice

Figure 11.1
Template for a question set

ptg

11.2 Sample Question Sets for Reviewing the Architecture Document ■ 385

11.2.1 Example Question Set for Capturing the Right Stakeholders
and Concerns

The Views and Beyond approach to architecture documenta-
tion uses the explicit identification of stakeholders and their
concerns to determine which views to include in the AD. Explic-
itly identifying stakeholders and concerns is also a requirement
of ISO/IEC 42010:2007. Therefore, a useful review of the AD
examines its choice of stakeholders and concerns to ensure that
the important ones are accounted for. Such a review could be
usefully carried out quite early, when the stakeholders and con-
cerns are documented but before the rest of the AD is created.

The questions in the example question set below are formu-
lated using the active design review technique.

See Section 9.1 for
more information about
stakeholders and their
documentation needs.

1. Question Set Name: Capturing the right stakeholders and concerns

2. Purpose
The purpose of this question set is to gauge the appropriateness of the architect’s list
of stakeholders and concerns and to review how well the stakeholders believe their
interests and concerns have been captured.

3. Stakeholders and Concerns
All those with a substantial stake in the architecture should be involved or have their
roles and concerns represented.

4a. Questions

Respondents: All stakeholders
1. State your stakeholder role. List the set of concerns you have that pertain to the

architecture whose AD is being reviewed.
2. Find and record all places in the AD where your stakeholder role is listed as being

covered.
3. Find and record all places in the AD where your concerns are listed as being

addressed.
4. Find and record all places in the framework used (if any) where your stakeholder

role is listed as being addressed.
5. Find and record all places in the framework used (if any) where your concerns are

listed as being addressed.
6. Record all concerns you have that are not listed as being covered in either the AD

or any framework being used or that are listed in an unclear fashion. For each,
state the impact of this omission or misunderstanding on project success.

7. For each of your concerns as a stakeholder, find and record the places in the AD
where that concern is addressed (not just listed). Explain why you do or do not
believe that the concern will be satisfied by the architecture.

8. Find and record the place in the AD that prioritizes the concerns. Explain why you
do or do not agree with it.

9. Record important stakeholders that you are aware of that are not listed and
whose concerns are not represented in the AD.

10. State how you know that the architecture satisfies the concerns of the missing
stakeholders and where this information can be found in the AD.

ptg

386 ■ Chapter 11: Reviewing an Architecture Document

11.2.2 Example Question Set for Supporting Evaluation

When an architecture is subjected to a comprehensive evalua-
tion, the AD is the vehicle for communicating the architecture
to the reviewers, or at least substantiating the architect’s pre-
sentation of the architecture. Therefore, it is useful to review
the AD before an architecture evaluation takes place to see if it
contains the necessary information to allow the evaluation to
go forward. By extension, such a review determines whether
the architecture is ready (complete enough) to be evaluated.

Respondents: Architect
11. Show where in the AD the generic stakeholders and concerns required by the

framework in use (if any) have been listed and addressed.
12. State how you produced the list of stakeholders and their concerns.

4b. Expected Answers
Each stakeholder should be able to find where in the AD (and framework, if any) their
role and concerns are listed and their concerns are addressed. Every relevant stake-
holder and concern should be covered; missing ones should be noted. All concerns
should be tied to at least one stakeholder. The architect should provide a convincing
argument that the process for identifying stakeholders and their concerns was ade-
quate.
In addition to producing satisfactory answers, the respondents should also note the
ease or difficulty in using the AD to answer the questions.

4c. Criticality
Questions revealing missing stakeholders or missing concerns are the most critical.

5. Advice
This question set is especially appropriate for an active design review, in which an all-
hands meeting is not required. Individual reviewers representing different stakeholder
roles and concerns can be engaged separately, perhaps even by telephone or elec-
tronic mail, to make sure their concerns are addressed in the AD.
By contrast, however, a similar review was carried out as a two-day all-hands work-
shop for a large U.S. defense project. The first half-day was used to present ISO/IEC
42010:2007 terms and approaches. This was a long review because the project is
large. Some 30–40 people were involved, and even then some stakeholder communi-
ties were overlooked.
On a small distance-learning project, a review for this purpose took 6 hours with a
dozen people: 6 architects and 6 stakeholders. The agenda devoted 2–3 hours to the
procedure and 3 hours to concerns.

1. Question Set Name: Supporting evaluation

2. Purpose
The purpose of this question set is to determine whether the architecture is ready to be
evaluated. This helps ascertain whether evaluation stakeholders have sufficient informa-
tion to do their job and know when their job is completed. The emphasis is on the artifacts
needed for analysis.

ptg

11.2 Sample Question Sets for Reviewing the Architecture Document ■ 387

3. Stakeholders and Concerns
The business manager is the spokesperson for the business goals the system is meant
to support. These goals include what the customer wants to build and the objectives of
the organization building the system. The business manager is concerned with how the
technical solution supports the business goals.
The architect is concerned with whether the AD supplies sufficient information for analy-
sis and how usable the AD is in supporting an evaluation. The architect would like to use
the AD to determine whether one alternative is better than another in terms of technical
considerations, difficulty, and risk.
The team preparing to conduct an architecture evaluation is concerned with knowing
what to evaluate and whether the AD supplies sufficient information for analysis.

4a. Questions

Respondents: Business manager, Architecture evaluation team
1. Are the business goals the system must satisfy clearly articulated and prioritized?
2. Is it clear how the business goals determine the requirements? Is there a mapping

between business goals and requirements? Are the requirements prioritized accord-
ing to business importance?

3. Is there traceability between the business goals and the technical solution? That is,
can you navigate from business goals to architecturally significant requirements
(ASRs), to technical decisions and associated risks, and finally back to implications
on achieving the business goals?

4. What criteria are used to determine whether the architecture is supporting the busi-
ness goals?

5. How might the system change over its lifetime of deployment (including retiring the
system)?

Respondents: Architect, Architecture evaluation team
6. Is the context of the system (or subsystem) clearly defined?
7. Have the stakeholders and their concerns been clearly defined?
8. Have the requirements, constraints, standards, and quality-assurance policies been

clearly defined?
9. Are the ASRs which the system must satisfy clearly articulated and prioritized

according to their impact on the architecture?
10. Are the ASRs clear and unambiguous? Are they “testable”? Have they been prioritized?
11. Is it clear which techniques the architect used to achieve the ASRs? Have alterna-

tives that were considered but not chosen been documented?
12. Is it clear how the architecture fulfills the other requirements that are not ASRs?
13. Has the AD identified the key decisions? If so, where are they?
14. Has the AD captured the rationale for key decisions? If so, where?
15. Can you describe the runtime resources consumed for each concern that affects the

operation of the system?
16. Can you describe the change impact (estimated size/difficulty of the change) for

those modifiability concerns that lead to changed design elements?
17. Can you determine the views necessary to analyze each ASR? Does the AD provide

the views necessary to cover the ASRs?
18. Within each view, are its models clear? Are its models well-defined by the viewpoint?

Do the models address the ASRs? Which ASRs are addressed by the models in this
view (to the extent that the model provides enough information to determine whether
the ASRs have been satisfied)?

Viewpoints, models, and correspondences are concepts in the ISO/IEC 42010
standard, discussed in Section E.1.

ptg

388 ■ Chapter 11: Reviewing an Architecture Document

19. Are all ASRs addressed by either one or more models or one or more correspon-
dences among models?

20. Have the architects done any preliminary analysis? Have these results (including
architecture issues and risks) been articulated? Where?

21. How will the architecture be introduced and retired within the business?
22. Is the current document complete in the sense that all the information is docu-

mented? If not, are there placeholders for what has yet to be documented along with
descriptions of what still needs to be worked out?

23. Can you navigate through the material during the evaluation to show the decisions
made to address stakeholders’ concerns?

Respondents: Architecture evaluation team
24. Are the concepts and notations underlying the AD clearly explained (for example, is

there a glossary of terms, key for diagrams)?
25. Have the scope and the objectives of the evaluation been clearly defined?
26. Is the context of the system (or subsystem) to be evaluated clearly defined?
27. Have the stakeholders and their concerns for the system (or subsystem) to be eval-

uated been clearly defined?
28. For each view, do you understand how to evaluate its contents?
29. For correspondences across views, do you understand how they are represented

and how to evaluate them for accuracy and completeness?
30. Are the views sufficiently complete to support the intended analysis? Can you work

around gaps identified by the architects?

4b. Expected Answers
The business manager and the architect should provide a convincing argument that the
documentation captures the important analysis artifacts that allow one to navigate from
business goals to architecturally significant requirements, to technical decisions and
associated risks, and finally back to their implications on achieving the business goals.
The evaluation team should have a clear understanding of the objectives and scope of
the evaluation. That understanding will determine what AD artifacts are needed and to
what degree.

4c. Criticality
Questions revealing missing analysis artifacts (for example, architecturally significant
requirements, architecture decisions) are the most critical.
Questions indicating incompleteness or ambiguity in conducting the analysis are also critical.

5. Advice
Depending on the scope of the evaluation, there could be some overlap with the “Ques-
tion set for supporting development.” Analysis could include “buildability” or “feasibility
in building the system as the customer describes it.” There is no overlap when evaluation
is more narrowly scoped in the sense of identifying decision points and the rationale for
selecting alternatives. In this case, the AD is treated as a sketch that shows alternatives
rather than a blueprint from which to build the system.
If the AD uses frameworks and viewpoints, then a question set for reviewing the choice
of framework and viewpoints could be created and used in conjunction with this review.
If the AD does not use these concepts explicitly, some of the questions could still be used
to understand the documentation.
The business manager and the architect share their answers to the questions with the
evaluation team. The evaluation team may answer the questions separately to varying
degrees of detail in order to validate the results.
The set of questions will be tailored according to the scope and objectives of the evalu-
ation (any combination of the system, stakeholders, ASRs, views, and decisions).

ptg

11.2 Sample Question Sets for Reviewing the Architecture Document ■ 389

11.2.3 Example Question Set for Supporting Development

Architecture has value by driving a conforming implementa-
tion—that is, that the developers can follow the specifications
and constraints of the architecture. The purpose of a review
for supporting development is to determine whether there is
enough information in the architecture for the development
stakeholders to do their jobs. A closely related task is to deter-
mine if the AD is sufficient to determine whether a system’s
implementation actually conforms to the architecture described
in the AD. The emphasis there is on the ability of the AD to
identify conformance points for the implemented system, with
the expectation that a subsequent review or audit will actually
determine conformance of the system to the architecture
(described by the AD).

1. Question Set Name: Supporting development

2. Purpose
The purpose of this question set is to determine whether the AD contains enough infor-
mation to “drive” a conforming implementation. This helps ascertain whether develop-
ment stakeholders have sufficient information to do their job and know when their job is
completed. The focus is less on analysis and more on comprehension and completeness
of the AD.

3. Stakeholders and Concerns
Architects are concerned that their AD is ready to pass to developers.
Designers and implementers are concerned with knowing what to build—that is, what
they must do in order to implement the architecture.
Software managers are concerned with estimating and/or predicting needed develop-
ment resources (budget, schedule).
Developers are concerned with when to enter test.
Testers are concerned with whether the AD supplies sufficient information to enable
architecture-based testing and to determine when to exit test.
QA stakeholders are concerned with whether the AD supplies sufficient information to
enable quality assurance and to know when they are done. A special kind of QA stake-
holder is the “conformance checker,” concerned with how to tell whether an implemen-
tation conforms to the architecture.
Integrators are concerned with whether the AD supplies sufficient information to plan
integration.
Fielders are concerned with whether the AD supplies sufficient information to plan
deployment.
Customers and program managers have indirect concerns about whether the AD is
usable by developers and how the architecture is constrained by existing components.

4a. Questions

Respondents: Software manager
1. Can you identify the full set of implementation units (elements to be implemented)?
2. Can you determine which units require development (and integration and test)

resources?

ptg

390 ■ Chapter 11: Reviewing an Architecture Document

3. For each unit requiring development, can you make predictions in terms of use of
development resources, variance, and risk?

4. Can you determine development dependencies between implementation units?
5. Can you identify runtime dependencies between units?
6. Can you lay out a schedule for this development?
7. Can you lay out a schedule for an architecture prototype?
8. Can you tell if you have enough development resources?
9. Does the AD overconstrain the stakeholders (such as developers, integrators)?

10. Does the AD identify opportunities for parallel development? Can you identify units
that can be implemented in parallel?

Respondents: Designers and implementers (including unit testers)
11. Can you identify the allowed and prohibited dependencies between implementation

units?
12. Can you identify applicable architecture constraints, rules, principles, styles,

patterns, and so on, on units or their aggregation?
13. Can you navigate from an implementation unit to its associated requirements

(formal, derived, quality, performance, and design constraints)?
14. Can you determine a test approach for the set of implementation units?
15. Can you determine approaches for error handling, resource management, human-

computer interaction, data management and persistence, variation and variability
(for example, across a product line or evolution over time), and so on?

16. Can you determine what is likely to change and how it impacts your design?
17. Can you tell how solid each decision is?
18. Can you tell what needs to change as the result of entering a new cycle?
19. Do you understand how conformance to the AD will be determined?
20. Does the AD identify opportunities for parallel development? Can you identify units

that can be implemented in parallel?

Respondents: Integrators and fielders
21. Can you identify what units must be integrated?
22. Can you determine the resources needed to operate the unit?
23. Can you determine the integration test obligations?
24. Can you identify runtime (such as load, elaboration) dependencies between units?
25. Do you understand how conformance to the AD will be determined?

Respondents: Testers (not unit testing, but rather architecture-based testing)
26. Can you determine which units can be cost-effectively tested in isolation?
27. For each unit, can you determine what is needed (for example, data, special hard-

ware, other units) to test it?
28. For each unit, can you determine what constitutes test success criteria?
29. Can you test the system as a whole?

Respondents: QA stakeholders
30. Is the AD baselined?
31. Is there a history of changes to the AD?
32. Does the AD identify key decisions?
33. Does the AD capture the key decisions and design rationale?

ptg

11.2 Sample Question Sets for Reviewing the Architecture Document ■ 391

11.2.4 Example Question Set for Reviewing for Conformance to
ISO/IEC 42010

This review assesses whether the AD conforms to the require-
ments of ISO/IEC 42010, Systems and Software Engineering—
Architecture Description.

34. Does the AD articulate “open decisions” deferred to implementation?
35. Are inconsistencies known and documented?
36. Are there known associations between each view’s models and developed/delivered

artifacts? (For example, if we have a “deployment view” in the architecture, do we
have a “packing list” for the system?)

37. Are specific conformance points identified in the views? For each such point, do we
know which view and model captures this information and which artifact/artifacts
must conform? Is there a documented method for checking conformance (for exam-
ple, inspection, developer test, formal qualification test)?

38. What questions, concerns, or issues have the developers raised during their work?
How are these captured/resolved in the AD? How has the AD changed in response
to these concerns?

39. Are the test approaches and artifacts consistent with the AD? (Could include formal
trace or an informal assessment. This is particularly associated with “use case”
kinds of views, where you want the testers to test the known use cases that the
architecture should have addressed.)

40. Is there a formal process for establishing conformance?
41. Does the content of the AD support this process?

Respondents: All stakeholders
42. Can you identify open, partially resolved, or unresolved issues in the AD?
43. Can you identify where automated tools will be used? Does the AD have the right

content that is in a format that can be processed by the tools?

4b. Expected Answers
In all cases, the stakeholders should provide a convincing argument that the documen-
tation captures the important artifacts that allow one to implement the architecture.
In addition to producing satisfactory answers, the respondents should note the ease or
difficulty in using the AD to answer the questions.

4c. Criticality
Questions revealing incompleteness or misunderstanding of artifacts are the most criti-
cal. In this case, the AD is treated as a blueprint from which to build the system or to
which the built system must conform.

5. Advice
This question set might overlap with a question set that reviews the AD for its ability to
support an architecture evaluation, in that the evaluation could analyze for “buildability”
or “feasibility in building the system as the customer describes it,” which are, of course,
among the developer concerns addressed here.
A subset of the question set may be used in a more specialized review for supporting
planning.

ptg

392 ■ Chapter 11: Reviewing an Architecture Document

FOR MORE INFORMATION

ISO/IEC 42010:2007 is the ISO adoption of ANSI/IEEE 1471-2000, and it is
identical to that earlier standard. At the time of this book’s publication, a joint
revision of ISO/IEC 42010 and ANSI/IEEE 1471 was ongoing. The questions in
this question set reflect the expected form and content of the ISO/IEC 42010
revision, including new topics such as architecture frameworks and model
correspondences.

1. Question Set Name: Reviewing for conformance to ISO/IEC 42010

2. Purpose
This question set is used to assess the conformance of the AD to the requirements of the
international standard ISO/IEC 42010. Conformance to the standard may be a prerequi-
site to acceptance of the AD as a deliverable or to other reviews.

3. Stakeholders and Concerns
Architects, acquirers, and architecture analysts all have the following concern: Does my
AD meet all of the conformance points of the standard? Can conformance be verified?

4a. Questions

Respondents: Architects
1. Does the AD contain the appropriate administrative and overview data (date of issue,

version status, issuing organization, change history, summary, scope, context, glos-
sary, and references)?

2. Does the AD contain architecture documentation required by the using organization?
3. Who are the specific stakeholders for this AD? Is there evidence the architect has

given consideration to these stakeholder classes: users of the system, system
acquirers, system developers, and system maintainers?

4. Are the stakeholders’ concerns captured? Does the AD show evidence of having
considered the purposes of the system; the suitability of the architecture to achieve
those purposes; the feasibility of constructing and deploying the system; the poten-
tial risks of system to its stakeholders throughout its life cycle; and the maintainabil-
ity and evolvability of the system?

5. Is every stakeholder and every concern covered by at least one viewpoint?
6. Is each viewpoint identified? Is there a definition for each viewpoint used in the AD?

Does each viewpoint definition include: viewpoint name; identification of the stake-
holders addressed by that viewpoint; the architectural concerns framed by that
viewpoint; and the model kinds used by the viewpoint? For each model kind, are the
conventions, including any notations, languages, modeling techniques, and analyti-
cal methods, defined?

7. If the viewpoint comes from an external source, is it fully defined and identified in
that source? Is there an association between that viewpoint and the stakeholders’
concerns? Are models/modeling techniques identified? Does the viewpoint contain
analysis techniques, rules, or constraints?

8. Is there a view for each viewpoint? Does the view correctly use/implement the mod-
els required by its viewpoint? Does the view cover the system under review? Is the
view-viewpoint relationship one-to-one?

ptg

11.3 An Example of Constructing and Conducting a Review ■ 393

11.3 An Example of Constructing and Conducting a
Review

This section shows an example of constructing and carrying
out an AD review. The review was conducted to see if a project’s
AD was sufficient to support an architecture evaluation.

• Step 1: Establish the purpose of the review. The purpose was
to evaluate an AD to see if it was sufficiently complete and

9. Does each view contain an identifier, introductory information, configuration infor-
mation as defined by the using organization, and one or more models?

10. Are any known inconsistencies between views documented?
11. Are there correspondence rules? For each such rule, is there at least one correspon-

dence satisfying each rule?
12. Does the AD cite an existing architecture framework? Is each viewpoint in the frame-

work used in the AD? Does the AD capture all of the framework’s correspondence
rules?

13. Does the AD contain the rationale for its architectural decisions, such as
• Selection of viewpoints and models/modeling techniques?
• Correspondence rules?
• Key decisions captured within each view?

Respondents: Acquirers and architecture analysts
14. Is the set of stakeholders and concerns complete?
15. Is the set of viewpoints both complete and minimal?
16. Is the set of correspondence rules (if used) appropriate?
17. Are the views complete? Do they communicate the key decisions?
18. Is the set of correspondences complete?
19. Does the rationale capture sufficient information to assist reviewers and architecture

analysts in understanding the architecture and its decisions?
20. Do the set of viewpoints and/or the selected architecture framework match contrac-

tual requirements and/or institutional practices?

4b. Expected Answers
Positive answers are expected, as well as the ability of the participants to point out spe-
cific places in the AD to justify their positive answers.

4c. Criticality
For the purpose of ascertaining conformance, all requirements in ISO/IEC 42010 are of
equal importance, and all are mandatory. (There are no tailoring options in the standard.)

5. Advice
“Complete” here is expected to be a value judgment in the review, rather than any for-
mally determined property. The stakeholders need to understand the context (including
resource constraints) as part of evaluating “completeness.” Generally, “complete” should
be interpreted as “good enough to meet our expectations for this system within the con-
text in which we are developing it.” These rules should not be required as having the
architecture description account for every (software equivalent of a) nail in the structure.
Each item chosen above directly maps to conformance points in ISO/IEC 42010:2007.
However, the terms in this section are taken directly from ISO/IEC FCD 42010:2010.

ptg

394 ■ Chapter 11: Reviewing an Architecture Document

consistent to support a formal evaluation of the architec-
ture. The chosen architecture evaluation method was the
Architecture Tradeoff Analysis Method (ATAM), which uses
a trained evaluation team to assess the consequence of
architecture decisions in light of quality attribute require-
ments and business goals. The evaluation team interacts
with the project’s architect and senior designers, as well as
important architecture stakeholders. The purpose of the
AD review is to ensure that those analysis artifacts (architec-
tural decisions, quality attributes, and business goals) are
well documented.

The “why” establishes the “who,” and in this case the
architecture evaluation team became the architecture doc-
umentation review team.

The “why” also establishes the “when,” and in this case, we
conducted the review in time for everyone to present their
results at the evaluation kick-off meeting. This meeting is a
standard part of the ATAM, in which the evaluation team
meets, discusses the architecture, agrees on team roles, and
makes the go/no-go decision.

• Step 2: Establish the subject of the review. The ATAM
requires the client to provide a presentation of the architec-
ture as well as the architecture documentation before the
evaluation exercise commences. In fact, these are used to
make a go/no-go decision: If the architecture is not suffi-
ciently mature, it cannot be reliably evaluated. In this case,
the client provided the ATAM team leader with copies of
both the presentation and the architecture document (in
this case called a “software design document”) one month
before the scheduled beginning of the evaluation.

• Step 3: Build or adapt the appropriate question set(s). The
ATAM go/no-go criteria led us to select the question sets for
(1) capturing the right stakeholders and concerns and (2)
supporting evaluation (see Section 11.2). If a framework
such as TOGAF had been used, the question set for reviewing
the choice of the framework and associated viewpoints would
have been included as well. We did not involve the business
manager or the architect in our review, but we did have
available a viewgraph presentation from each of them that
described the business drivers and architecture, respectively.

• Step 4: Plan the details of the review. The evaluation team
leader did double-duty as the review team leader. That
involved making sure all team members had the appropri-
ate artifacts: the architecture documentation and presenta-
tion and the right question sets. Since our evaluation team

ptg

11.4 Summary Checklist ■ 395

was geographically distributed, with members in five differ-
ent U.S. cities, we arranged the review process so that mem-
bers could work independently, at their own pace and
schedule. Everyone was asked to report their findings at the
kick-off meeting.

• Step 5: Perform the review. The reviewers checked the AD
to make sure that the following are documented: a list of the
stakeholders’ roles and concerns, the criteria the architect
used to produce that list, and how the architecture satisfies
the concerns. Each reviewer applied the questions against
the AD and recorded their answers. They were e-mailed to
the review leader before the kick-off meeting, so that he
could get a sense of the findings and make a preliminary
judgment as to the suitability of the AD.

• Step 6: Analyze and summarize the results. Each member of
the evaluation team provided answers to the team leader. It
took each person anywhere from one to four hours to com-
plete the question set. The evaluation leader examined the
answers, and in less than an hour was able to glean a team
consensus that the AD, while not perfect from the perspec-
tive of the question set, was sufficient to support an evalua-
tion. This impression was confirmed during a subsequent
telecon. The team leader, satisfied that the AD was suffi-
ciently developed to support an evaluation, decided to pro-
ceed. During the evaluation itself, 12 scenarios were
analyzed. In every case, the architect was able to use archi-
tecture information from the AD (in the form of a view-
graph presentation) to walk through the scenarios and
explain how the architecture did or did not support them.
In two cases, the evaluation team asked where a particular
piece of key information was documented, and the architect
was able to show its location in the AD. In all cases, the AD
supported the analysis, suggesting that the team’s conclu-
sion as to its suitability was well founded.

11.4 Summary Checklist
• Review architecture documentation to ensure that the

architecture is effectively captured in a form that allows
stakeholders to understand and use the architecture in the
way it was intended.

• Choose questions based on the purpose of the review; three
examples of why the AD might be reviewed include: con-
formance to some normative specification, suitability to sup-
port use of the architecture for its intended purpose, and
suitability to support architecture evaluation or analysis.

ptg

396 ■ Chapter 11: Reviewing an Architecture Document

• Organize questions as question sets so they can be reused by
providing contextual information about the purpose and
stakeholder concerns that need to be addressed, as well as
guidance for obtaining and interpreting the results.

11.5 Discussion Questions
1. Suppose that you have been asked to review architecture

documentation for conformance to an architecture frame-
work such as DoDAF or TOGAF. Given this purpose, whom
among the stakeholders would you invite and when in the
life cycle would you hold the review? What questions or
question sets (if any) from those in this chapter would you
reuse? What additional questions would you ask?

2. Discuss the advantages and disadvantages of conducting an
AD review as a separate method or as a procedure that is
part of an existing method. For a project you have in mind,
which would you choose and why?

3. Knowing that you intend to review the architecture docu-
mentation, how might this influence your choosing the
views and building the documentation package? What cri-
teria would help you decide whether to incorporate reviews
as part of the documenting process or to conduct a separate
review activity upon completion of the documentation?

11.6 For Further Reading
An active design review (Parnas and Weiss 1985) is a technique
for carrying out guided documentation-based reviews. Some of
the example question sets provided in this report use the active
design review approach.

SEI Active Reviews for Intermediate Designs (ARID) (Clem-
ents, Kazman, and Klein 2002) is a method for performing a
scenario-based stakeholder-centric review of a portion of archi-
tecture. The review is focused on whether the design is suffi-
cient for the software developers who will use it. ARID is based
on active design reviews and the ATAM. The elements of the
ARID method could be focused on documentation to create a
method to review documentation in line with the approach
described in this chapter. The question set for supporting
development is especially relevant. Active design reviews are a
most promising starting point. For example, active design
reviews call for recruiting different kinds of reviewers for dif-
ferent kinds of reviews. Support staff is often used, for instance,
to review for document consistency and completeness and for
conformance to a template. Active design reviews naturally go

ptg

11.6 For Further Reading ■ 397

with the idea of a spectrum of review purposes, either as sepa-
rate reviews or as multiple purposes of a single review.

Architecture-centered software project planning (ACSPP)
(Paulish 2002) is another approach (like ARID) where a por-
tion of the architecture documentation is given to the develop-
ers who are asked to use it. In this case, they are asked to take
four hours to sketch an initial design of the subsystem they are
tasked with developing and to fill out a sheet of metrics docu-
menting the time and resources needed for the development
effort. The question set for supporting development would be
relevant for that part of the effort that involves understanding
the architecture.

The SARA report (SARA 2002) presents a useful generic
model for evaluating software architectures, and it is a good
starting point for reading on this subject. Particular methods,
such as the SEI’s ATAM, can be thought of as special cases of
the SARA model.

ptg

This page intentionally left blank

ptg

399

EEpilogue:
Using Views and Beyond

with Other Approaches

The word architecture goes back through Latin to the Greek for “master
builder.” The ancients not only invented the word, they gave it its clear-
est and most comprehensive definition. According to Vitruvius—the
Roman writer, whose Ten Books on Architecture is the only surviving
ancient architectural treatise—architecture, is the union of “firmness,
commodity, and delight”; it is, in other words, at once a structural, prac-
tical, and visual art. Without solidity, it is dangerous; without useful-
ness, it is merely large-scale sculpture; and without beauty . . . it is not
more than utilitarian construction.
—Marvin Trachtenberg and Isabelle Hyman, Architecture: From
Prehistory to Post-Modernism/The Western Tradition (1986, p. 41)

This book has presented guidance, which we call the Views and
Beyond approach, for assembling a package of effective, usable
documentation for a software architecture. Using a basic set of

ptg

400 ■ Epilogue: Using Views and Beyond with Other Approaches

concepts (views and styles) and an organizing principle (mod-
ule views, component-and-connector (C&C) views, allocation
views), we have shown how to document a wide range of archi-
tecture-centric information: from structure to behavior to
interfaces to rationale. The book stands on its own as a com-
plete handbook for documentation.

But the book does not exist in a vacuum. Other writers, on
their own or under the auspices of large organizations or stan-
dards bodies, have prescribed specific view sets or other
approaches for architecture. There is now an ISO standard for
architecture documentation. Many people are writing about
how to document an “enterprise architecture.” It may not be
clear whether the advice in this book is in concert or in conflict
with these other sources. In some cases, it isn’t clear whether
there’s a relationship at all.

The purpose of this chapter is to answer the following
questions:

How do I use the Views and Beyond approach if I want to
produce software architecture documentation that . . .

1. . . . is compliant with the ISO standard for architec-
ture documents?

2. . . . adheres to the Rational Unified Process 4+1
approach to documentation?

3. . . . uses the Rozanski/Woods viewpoint set?

4. . . . supports an Agile development project?

Over and above these software-oriented variations, this chapter
also covers the U.S. Department of Defense Architecture Frame-
work (DoDAF), which is not intended for software architectures
but nevertheless is sometimes pressed into service in that way.

E.1 ISO/IEC 42010, née ANSI/IEEE Std 1471-2000
With Rich Hilliard and David Emery

E.1.1 Overview

ISO/IEC 42010 (or “eye-so-forty-two-ten” for short) is the ISO
standard, Systems and software engineering—Architecture descrip-
tion. The first edition of that standard was published in 2007. It
was the fast-track adoption by ISO of IEEE Std 1471-2000,
which was developed by an IEEE working group drawing on
experience from industry, academia, and other standards bod-
ies between 1995 and 2000. ISO 42010 is centered on two key
ideas: a conceptual framework for architecture description and

What ISO 42010 calls
an architecture descrip-
tion is what the Views
and Beyond approach
calls an architecture
document. See “Com-
ing to Terms: Specifica-
tion, Representation,
Description, Documen-
tation” on page 10, in
the prologue, for why
we chose the term we
did. In this section, we
will defer to the ISO’s
terminology.

ptg

ISO/IEC 42010, née ANSI/IEEE Std 1471-2000 ■ 401

a statement of what information must be found in any ISO
42010-compliant architecture description.1

Under ISO 42010, as in the Views and Beyond approach,
views have a central role in documenting software architec-
ture. The architecture description of a system includes one or
more views.

Figure E.1 illustrates the core concepts of architecture
description in the standard:

Under ISO 42010, an architecture description is a work product—
a concrete artifact (which could be a document or repository)
that documents the architecture of a system of interest. A sys-
tem of interest exists in some environment (containing other

1. Now that ISO has adopted the IEEE standard, the two organizations will
undertake a coordinated update to both the ISO and IEEE standards. This
section describes the standard as reflected by Committee Draft 1 (CD1),
dated January 2009 (ISO/IEC CD1 42010 2009). The material in this draft
had undergone substantial technical review within the working group but
had not been formally balloted at the time this chapter was written.

ISO 42010 defines a
view as a “work product
representing a system
from the perspective of
architecture-related
concerns.”

ISO 42010 defines sys-
tem of interest as
encompassing “individ-
ual applications, sys-
tems in the traditional
sense, subsystems,
systems of systems,
product lines, product
families, whole enter-
prises, and other aggre-
gations of interest.”

Figure E.1
Core concepts of ISO/IEC
42010:2007System of

Interest

Architecture

Stakeholder Architecture

Description

Architecture

Rationale

Architecture-

Related

Concern

Architecture

Viewpoint

Architecture

View

Model

Correspondence

Architecture

Model

Model

Correspondence

Rule

has
1

offers
0..*

governs
1

includes
0..*

associated
with
0..1

satisfies
0..1

described by
1

identifies
1..*

is important to
1..*

frames
1..*

identifies
1..*

includes
1..*

2..*
relates

includes
1..*

2..*
relates

conforms to
1

has
1..*

has
1..*

participates in
1..*

composed from
1..*

governs
1..*

Notation: UML

ptg

402 ■ Epilogue: Using Views and Beyond with Other Approaches

systems, humans, and so on), which motivates, constrains, and
interacts with the system of interest. ISO 42010 requires that an
architecture description contain the following:

• Identification of the stakeholders for the architecture and
the system of interest

• Identification of the architecture-related concerns of those
stakeholders

• A set of architecture viewpoints defined so that all of the
stakeholder concerns are covered by that set of viewpoints

• A set of architecture views, such that there is one view for
each viewpoint

• A set of architecture models from which the views are
composed

• Architecture rationale to record key decisions

ISO 42010 is based on the following tenets:

1. Architecture is an abstraction; the standard deals with the
work product used to capture an architecture, namely, the
architecture description.

2. An architecture description is inherently multi-view. No sin-
gle view is sufficient to capture an architecture because
architecture is multi-disciplinary, with multiple stakehold-
ers and multiple architecture-related concerns that the
architect must deal with.

3. It is useful to separate viewpoints (perspectives on the
architecture) from views (what is captured in the descrip-
tion of a specific architecture from the perspective of a
viewpoint for a system of interest). This distinction was
motivated by the body of existing practice that defines view-
points for a number of architecture-related concerns.
(However, the term viewpoint was introduced in the stan-
dard for this notion.)

4. There should be a viewpoint for each view. Just as every
map should have a legend, each view should have a view-
point explaining the conventions being used in that view.
Figure E.2 illustrates one possible template for a viewpoint.

5. An architecture description is driven by stakeholders’
architecture-related concerns, because these reflect the
issues the architect must deal with. Viewpoints are selected
for use in an architecture description to ensure coverage of
the identified architecture-related concerns.

ISO 42010 defines
viewpoint as a work
product establishing the
conventions for the
construction, interpre-
tation, and use of archi-
tecture views and
associated architecture
models.

ptg

ISO/IEC 42010, née ANSI/IEEE Std 1471-2000 ■ 403

Viewpoint Name The name for the viewpoint, and any synonyms for the viewpoint.

Overview An abstract or brief overview of the viewpoint and its key features.

Concerns A listing of the architecture-related concerns framed by this viewpoint. This is crucial information
for the readers, because it helps them decide whether this viewpoint will be of use to them.

Anti-
Concerns

Optional. It can be useful to document the kinds of issues a viewpoint is not appropriate for.
Articulating anti-concerns may be a good antidote for certain overused notations.

Typical
Stakeholders

Optional. The typical audiences for views prepared using this viewpoint. Who are the usual stake-
holders for this kind of view?

Model Types Identify each type of model used by the viewpoint.

Model
Languages

For each type of model used, describe the language, notation, or modeling techniques to be
used. Each model language is a key modeling resource that the viewpoint makes available. Model
languages provide the vocabularies for constructing the view. ISO/IEC 42010 does not specify
how a modeling language is documented. It could be by reference to an existing modeling lan-
guage (such as SADT or UML) or technique (for example, M/M/4 queues from queuing theory);
by providing a metamodel for the language to define the language’s core constructs; via a tem-
plate that users fill in; or by some combination of these methods.

Viewpoint
Metamodels

Optional. A metamodel presents the conceptual entities, their attributes, and the relations that
comprise the vocabulary of a type of model. There are different ways of representing ontologies
(such as entity-relation diagrams, class diagrams). Any metamodel should capture:

• Entities. What are the major sorts of elements present in this type of model?

• Attributes. What properties do entities in this type of model possess?

• Relationships. What relations are defined among entities within this type of model?

• Constraints. What kinds of constraints are there on entities, attributes, or relations within this
type of model?

Entities, attributes, relations, and constraints are all architecture elements in the sense of ISO/IEC
42010.

Conforming
Notations

Identify an existing notation or model language to be used for this type of model.

Model
Correspondence
Rules

The viewpoint may specify model correspondence rules. Each one may be documented here.

Operations on
Views

Operations define the methods that may be applied to views and their models. Operations can
be divided into categories:

• Creation methods are the means by which views are prepared using the viewpoint. These
could be in the form of process guidance (how to start, what to do next), work product guid-
ance (templates for views of this type), heuristics, styles, patterns, or other idioms.

• Interpretive methods provide the means by which views are to be understood by readers and
system stakeholders.

• Analysis methods are used to check, reason about, transform, predict, apply, and evaluate
architecture results from this view.

• Implementation methods capture how to realize or construct systems using information from
this view.

Examples Optional. This section provides examples for the reader.

Notes Optional. Any additional information users of the viewpoint may need.

Sources What are the sources for this viewpoint, if any? This may include author, history, literature refer-
ences, prior art, and more.

Figure E.2
Template for a viewpoint

ptg

404 ■ Epilogue: Using Views and Beyond with Other Approaches

One of the goals for the joint revision of ISO/IEC
42010:2007 was to align with existing ISO architecture efforts,
specifically GERAM (ISO 15704 2000) and RM-ODP (ISO/IEC
10746-2 1996). The use of these standards, and existing archi-
tecture approaches such as Kruchten’s “4+1” approach
(Kruchten 1995), Zachman’s Architecture Framework (Zachman
1987), and even the DoD Architecture Framework (DoDAF
2007), underscores the fact that many (if not most) practicing
architects operate within an architecture framework. Each of
these approaches could be considered as defining a set of view-
points, and in fact it was the existence of such approaches that
motivated the separation of viewpoint from view.

The standard also establishes requirements for creating and
documenting architecture frameworks. In the terms of the
standard, an architecture framework specifies a set of stakehold-
ers, a set of concerns, and viewpoints covering those concerns.

E.1.2 42010 and Views and Beyond

If you want to use the Views and Beyond approach to produce
an ISO 42010-compliant architecture document, you certainly
can. The main additional obligation is to choose and docu-
ment a set of viewpoints and (to a lesser degree) address ISO
42010’s required information content. Table E.1 summarizes
the information required by the ISO 42010 standard and how
the Views and Beyond approach addresses each one.

ADVICE

In ISO 42010, it is natural to talk about (for example) a “safety view” or a “secu-
rity view.” These are views (following from viewpoints) addressing the safety and
security concerns, respectively, of various stakeholders. In the Views and
Beyond approach, it is more natural to talk about a “service-oriented view” or a
“layered view.” In the Views and Beyond approach, you can put together a
package of documentation for a specific set of stakeholders based on their
needs by choosing the most applicable views, or even the most applicable view
packets from within the most applicable views, and assembling those. The
“What It’s For” section of the corresponding style guides will help you choose.
You can physically package those together to produce, say, a safety or security
documentation “view.”

To satisfy the obligation of ISO 42010 of documenting a set of viewpoints, use
the information in the “What It’s For” section of the style guide. See the intro-
duction to Part I.

To satisfy the information content required by ISO 42010, use the templates
described in Chapter 10.

The Rational Unified
Process and Kruchten’s
“4+1” approach are dis-
cussed in Section E.2.

DoDAF is discussed in
Section E.5.

ISO 42010 defines an
architecture framework
as “conventions and
common practices for
architecture description
established within a
specific domain or
stakeholder community.”

ptg

ISO/IEC 42010, née ANSI/IEEE Std 1471-2000 ■ 405

Table E.1 ISO 42010 information requirements and how we address them

ISO 42010 Information Requirement Views and Beyond Location

Identification and overview information, as
appropriate to stakeholder, project, and orga-
nization needs. For example: summary, con-
text, glossary, references, and change
history.

Several items in this category amount to
good bookkeeping. Context is addressed in
the context diagrams; the other items are
prescribed in the standard organizations of
Chapter 10.

Stakeholders and concerns. Identify architec-
turally relevant stakeholders. At a minimum
consider customers, users, operators,
acquirers, suppliers, developers, and main-
tainers. Identify their architecture-related
concerns. At a minimum consider system
purposes, suitability of architecture to meet
purposes, feasibility of construction, poten-
tial risks throughout life cycle, maintainability,
deployability, and evolvability.

The documentation roadmap called for in
Section 10.2 captures information about
stakeholders and their concerns—specifi-
cally, how they will use the documentation
package. For ISO 42010 compliance, make
sure the stakeholders and concerns include
those named in the left-hand column.

Viewpoints. For each viewpoint, the following
must be specified:
• The viewpoint name
• The subset of identified architecture-

related concerns (from above) framed by
this viewpoint

• The identification of each type of architec-
ture model used by this viewpoint

• For each type of model: the languages,
notations, rules, constraints, modeling
techniques, analytical methods, or opera-
tions to be used in creating and interpret-
ing the view

• Rationale for selection of the viewpoint
• Any additional information, such as com-

pleteness and correctness checks, evalua-
tion criteria, heuristics, or guidelines

We define several commonly used module,
C&C, and allocation styles. Each style guide
defines the concepts—elements, relations,
and properties—that should be used in doc-
umenting a system in accordance with the
style. It contains information about useful
notations and modeling techniques for that
style. Each style guide also contains a sec-
tion noting what it’s for, which should help
users in deciding what concerns will be
addressed by the style.
All of this information in a style guide consti-
tutes an implicit viewpoint definition, but the
standard requires including an explicit set in
your document, either directly or by refer-
ence. You can easily accommodate this
requirement by adding a section for view-
point definitions to the “documentation
beyond views” template in Section 10.2.
There, you can reproduce or refer to the spe-
cific style guide information as needed.

Views. Each view must include:
• A view identifier
• Overview and configuration information as

required by project or organization
• One or more architecture models covering

the whole system from the viewpoint

Chapter 10 discusses the information that
should be documented for a view.

A record of all inconsistencies among views,
preferably accompanied by an analysis of
consistency among all views.

In Chapter 6, we discuss techniques for doc-
umenting relations among views, which is
then recorded in the “documentation beyond
views” part of the package, as detailed in
Chapter 10.

Rationale for the key architectural decisions
made, preferably accompanied by evidence
of alternatives considered and rationale for
the choices made.

Reserved spots for rationale are provided in
each view, in the documentation beyond
views, and in interface documentation.

ptg

406 ■ Epilogue: Using Views and Beyond with Other Approaches

E.2 Rational Unified Process/Kruchten 4+1
The Rational Unified Process (RUP) introduces a five-view
approach to documenting software architectures, based on
Kruchten’s 4+1 approach.

1. The logical view contains the most important design classes.

2. The implementation view captures the architectural deci-
sions made for the implementation.

3. The process view documents the tasks—processes and
threads—involved.

4. The deployment view documents the various physical
nodes for the most typical platform configurations.

5. The use case view or “plus-one view” contains use cases and
scenarios of architecturally significant behavior.

The RUP describes the use case view as a representation of
an architecturally significant subset of the use case model,
which documents the system’s intended functions and its envi-
ronment. The use case view serves as a contract between the
customer and the developers and represents an essential input
to activities in analysis, design, and test. It also serves as a
design check on the other views: It is incumbent upon the
architect to show how each of the other views correctly sup-
ports the use cases in the use case view. If they do, then this sug-
gests that they are correct and consistent with each other.

E.2.1 RUP/4+1 and Views and Beyond

If you want to use the Views and Beyond approach to docu-
ment a 4+1 architecture, you can easily do so.

• Documenting a logical view of the RUP can be done by
using certain module or C&C styles. A union of the decom-
position style, the uses style, and the generalization style
allows you to represent the structural part of the logical view
by using such elements as subsystems and classes, whereas a
C&C style (which one depends on the design you chose)
allows you to represent the runtime aspects by using compo-
nents and ports.

• An implementation view can be represented by using a com-
bination of the decomposition style, the layered style, the
uses style, and the generalization style. The implementation
view represents implementation elements, such as imple-
mentation subsystems and components. The RUP distin-
guishes between a design and an implementation model to
separate general design aspects from implementation aspects
introduced by the use of a specific programming language.

The decomposition
style is covered in
Section 2.1.

The uses style is cov-
ered in Section 2.2.

The generalization style
is covered in Section 2.3.

ptg

E.2 Rational Unified Process/Kruchten 4+1 ■ 407

To describe the relations between elements of the design
model and the implementation model, the mapping should
be documented. To show how the implementation elements
are stored in a file system during development, use the
Views and Beyond implementation view.

• The RUP process view provides a basis for understanding
the process organization of a system, illustrating the decom-
position of a system into processes and threads and perhaps
also showing the interactions among processes. The process
view also includes the mapping of classes and subsystems
onto processes and threads. To accommodate the process
view, define a style that uses components such as those
defined in the C&C communicating-processes style—task,
process, thread—and specific refinements of the communi-
cation connectors, such as RPC or broadcast. To describe
the relations between processes and elements, such as sub-
systems and classes, the mapping among them should be
documented.

• A RUP deployment view describes one or more physical net-
work—hardware—configurations on which the software is
deployed and runs. This view also describes the allocation of
processes and threads—from the RUP process view—to the
physical nodes. The deployment style is a good match for
the RUP deployment view. The RUP deployment view also
allows you to assign deployment units to nodes. A deploy-
ment unit consists of a build—an executable—documents,
and installation artifacts. It is a packaging of implementa-
tion elements for selling and/or downloading purposes. To
achieve this, you can define a style showing implementation
elements—subsystems/classes—and how they are packaged
as deployment units.

Finally, use cases are a vehicle for describing behavior, and
behavior is a part of every view’s supporting documentation.
Consequently, you can document use cases as behavior docu-
mentation for the system or parts of it. You can also document
the use case view in the mapping to requirements.

Table E.2 reconciles the prescribed Rational Unified Process
views with our advice in this book.

Beyond its five views, RUP does not prescribe other kinds of
documentation, such as interface documentation, rationale,
or behavior of ensembles. It doesn’t call for a documentation
roadmap, a mapping between views, view templates, or style
guides. But it certainly does not rule these things out, either, so
don’t forget to add them.

The implementation
style is discussed in
Section 5.5.

The C&C communicating-
processes style is cov-
ered in Section 4.6.1.

The deployment style is
covered in Section 5.2.

Behavior documentation
is covered in Chapter 8.

The mapping of an
architecture to its
requirements is covered
in Section 10.3.

ptg

408 ■ Epilogue: Using Views and Beyond with Other Approaches

You are free to consider additional views that may be impor-
tant in your project’s context, and you should do so. You
should augment the primary presentation of each view with
the supporting documentation called for in Section 10.2.1,
and you should complete the package by writing the documen-
tation that applies beyond views, as described in Section 10.2.
The result will be a RUP-compliant set of documentation hav-
ing the necessary supporting information to complete the
package.

E.3 Using the Rozanski and Woods Viewpoint Set
With Nick Rozanski and Eoin Woods

In 2005, the two coauthors of this section, Nick Rozanski and
Eoin Woods, wrote a very useful book on the design and docu-
mentation of software systems architecture (Rozanski and
Woods 2005). In it, they prescribed a useful set of six view-
points (in the ISO 42010 sense) to be used in documenting
software architectures. The six viewpoints, based on an exten-
sion of the Kruchten 4+1 set, are shown in Figure E.3.

The views specified by their viewpoint set are the following:

• The functional view documents the system’s functional ele-
ments, their responsibilities, interfaces, and primary inter-
actions. A functional view is the cornerstone of most
architecture documents and is often the first part of the doc-
umentation that stakeholders try to read. It drives the shape
of other system structures such as the information structure,
concurrency structure, deployment structure, and so on. It
also has a significant impact on the system’s quality proper-
ties, such as its ability to change, its ability to be secured, and
its runtime performance.

Table E.2 Relating Views and Beyond to RUP

To Achieve This RUP View Use This Views and Beyond Approach

Use case view Adopt use cases to specify behavior, either associated with any of
the views or as part of the documentation beyond views.

Logical view Use a module style that shows generalization, uses, and decompo-
sition for structural aspects, and a C&C style for the runtime
aspects.

Implementation view Use a module style that contains implementation elements. Use an
implementation view to show allocation to development files.

Process view Use a style such as the communicating-processes style.

Deployment view Use the deployment style, one of the allocation styles.

ptg

E.3 Using the Rozanski and Woods Viewpoint Set ■ 409

• The information view documents the way that the architec-
ture stores, manipulates, manages, and distributes informa-
tion. The ultimate purpose of virtually any computer system is
to manipulate information in some form, and this viewpoint
develops a complete but broad view of static data structure
and information flow. The objective of this analysis is to
answer the important questions around content, structure,
ownership, latency, references, and data migration.

• The concurrency view describes the concurrency structure of
the system and maps functional elements to concurrency
units to clearly identify the parts of the system that can exe-
cute concurrently and how this is coordinated and con-
trolled. This entails the creation of models that show the
process and thread structures that the system will use and
the interprocess communication mechanisms used to coor-
dinate their operation.

• The development view describes the architecture that sup-
ports the software development process. Development views
communicate the aspects of the architecture of interest to
those stakeholders involved in building, testing, maintain-
ing, and enhancing the system.

• The deployment view describes the environment into which
the system will be deployed, including capturing the depen-
dencies the system has on its runtime environment. This
view captures the hardware environment that the system
needs, the technical environment requirements for each
element, and the mapping of the software elements to the
runtime environment that will execute them.

Figure E.3
The Rozanski and
Woods viewpoint set (from
Rozanski and Woods 2005,
p. 213)

Software

Architecture

functional

development

information

concurrency

operational

deployment

ptg

410 ■ Epilogue: Using Views and Beyond with Other Approaches

• The operational view describes how the system will be oper-
ated, administered, and supported when it is running in its
production environment. For all but the simplest systems,
installing, managing, and operating the system is a signifi-
cant task that must be considered and planned at design
time. The aim of the operational view is to identify system-
wide strategies for addressing the operational concerns of
the system’s stakeholders and to identify solutions that
address these.

COMING TO TERMS

Architecture Perspectives

An architecture perspective defines a number of activ-
ities, tactics and guidelines for a set of related quality prop-
erties. For example, a resilience perspective might include
activities such as confirming availability requirements
and schedule; estimating the availability of individual
components; and deriving the overall platform and ser-
vice availability. It might include tactics for achieving high
availability, such as use fault-tolerant hardware; use clus-
tering and load balancing: and use software availability
solutions such as redundant logging and up-to-the-minute
data restoration. Notice that a perspective is somewhat
more restrictive than a viewpoint as defined in ISO 42010.

Architecture perspectives formalize an activity that good
architects do as a matter of course, namely, ensuring that
a system exhibits the right quality attribute properties,
such as resilience, scalability, security, or extensibility.

This typically requires consideration of the system across
a number of its architecture views. For example, achiev-
ing good performance requires consideration of the sys-
tem’s functional and concurrency structures, the way it
manages and accesses information, and how it is
deployed on physical hardware and software.

Having started to design the architecture of the system,
and documented the architecture in a number of views,
the architect therefore applies the perspective to the
views to assess its capabilities against those quality
properties. Applying a perspective does not result in a
new view, but rather, it may result in a number of modifi-
cations to existing views to help address stakeholder
concerns.

An architecture per-
spective is “a collection
of activities, tactics, and
guidelines that are used
to ensure that a system
exhibits a particular set
of related quality prop-
erties that require con-
sideration across a
number of the system’s
architectural views”
(Rozanski and Woods
2005).

See Section 9.1 for
more information about
stakeholders and their
documentation needs.

ptg

E.3 Using the Rozanski and Woods Viewpoint Set ■ 411

Applying perspectives enables the architect to identify
any weaknesses or omissions in the architecture, and to
suggest enhancements or extensions to it. This leads to
insights into the architecture (for example, understanding
better where its single points of failure are), improve-
ments to it (such as adding redundant hardware or software
components to reduce the likelihood of catastrophic fail-
ure), and artifacts (such as service availability models).

If you wish to document perspectives prescribed by the
Rozanski and Woods approach, you can do so by sup-
plementing your documentation as follows:

The template for documentation beyond views includes
a documentation roadmap. Supplement this roadmap
with a description of the perspectives applied to the
architecture. These descriptions can be found in the per-
spective catalog and can be included in the roadmap
directly or by reference. Complement the mapping between
views with a mapping between perspectives and views.
Stakeholders wishing to understand how their concerns
are met can look at the applicable perspectives to see
which views are involved.

The template for a view packet is the place to record
more-detailed information. Capture the explanation for
design decisions that resulted from the application of the
perspective under rationale, and capture references to
the concern that motivated the perspective under other
information.

E.3.1 Rozanski and Woods Viewpoints and Views and Beyond

This set of viewpoint definitions is not prescriptive about the
notations or modeling approaches that should be used in each
view. Instead, the viewpoints define the type(s) of models
expected in each view and the information that should be cap-
tured in each, suggesting possible modeling approaches for
each. Therefore, it is perfectly possible to use this viewpoint set
in conjunction with the documentation approaches described
by the Views and Beyond approach.

• A functional view contains a functional structure model,
comprising a set of functional elements, interfaces offered
by the elements, connectors between the elements, and
external entities that the system’s elements interact with.
Such a functional view can be documented using a C&C

See Figure 10.4 in
Section 10.2 for the
template for documen-
tation beyond views.

See Figure 10.1, in
Section 10.1, for the
template for a view.

ptg

412 ■ Epilogue: Using Views and Beyond with Other Approaches

style, using components and ports to model the functional
elements and their interfaces and connectors to link them
together.

• An information view may contain a wide variety of models
related to the information in the system, including static
data structure models, information flow models, informa-
tion life-cycle models, and data ownership models. Here,
the data model view directly applies. Data flow can also be
documented as a C&C or module style.

• A concurrency view may contain a system-level concurrency
model, showing architecturally significant process and
thread structures, and a state model, showing the valid states
and transitions of any system elements with complex life
cycles. The concurrency model may contain processes, pro-
cess groups, threads, and interprocess communication
mechanisms. The state models contain the familiar state
machines, made up of states, transitions, events, and
actions. The concurrency model can be documented using
the C&C communicating-processes style, and as mentioned
earlier when discussing documenting behavior, state models
can be naturally captured as state machines.

• A development view may contain a module structure model
(showing how the implementation modules are organized),
common design models (describing system-wide design
conventions), and codeline models (explaining how the
source code is organized and built). Of these, the module
structure model can be very naturally captured using the
module decomposition, uses, or layered styles, while the
allocation implementation style may well be helpful in rep-
resenting a codeline model. The common design model
(dealing with functions such as initialization, termination
and restart, and message logging) can be captured in the
architecture background section of the view packet tem-
plate under assumptions that pertain to the development
environment. These assumptions place design constraints
on the developers to maximize commonality across element
implementations. These constraints might be recorded in
textual form or in the form of design patterns using more
specific notations (such as UML).

• A deployment view may contain a runtime platform model,
showing how the system is deployed to production; a net-
work model, showing its networking requirements; and
technology dependency models, showing the requirements
that the system has on its runtime environment. Of these,

Data model views are
described in Section 2.6.

ptg

E.3 Using the Rozanski and Woods Viewpoint Set ■ 413

the runtime platform model and network model are both
naturally documented using the allocation deployment
style. The technology dependency models simply record the
technology dependencies of each part of the deployment
environment (that is, required libraries, middleware, and so
on). These can be captured using a uses style (represented
as a simple table).

• Finally, an operational view can contain models relating to sys-
tem installation, system migration strategy, operational con-
figuration management approach, administration, and system
support. These models capture requirements of the operat-
ing environment that influence the architecture. Like any
other requirements, they can be part of the documentation
beyond views. Solutions can be captured in one or more
existing views such as the allocation install style, a C&C repos-
itory style, or the uses style, showing guidelines for monitor-
ing and message logging.

Table E.3 summarizes the discussion.

Table E.3 Relating Views and Beyond to the Rozanski and Woods
viewpoint set

To Achieve This
R&W View Use This Approach

Functional One or more C&C styles.

Information Data model style; data flow can be documented as
a C&C style.

Concurrency C&C communicating-processes style.

Development Decomposition or layered style (to represent the
structure model).
Implementation style (to represent the codeline
model).

Documentation of assumptions (to represent the
common design model).

Deployment Deployment style (runtime platform and network
models).
Uses style (technology dependency model).

Operational Install style; operational requirements can be part
of the documentation beyond views, and solutions
can be associated with any of the views.

The data model style is
covered in Section 2.6.

The communicating-
processes style is cov-
ered in Section 4.6.1.

The layered style is cov-
ered in Section 2.4.

The implementation
style is covered in Sec-
tion 5.3.

Documentation of
assumptions is part of
rationale. See Section 6.5.

The deployment style is
covered in Section 5.2.

Documentation beyond
views is covered in Sec-
tion 10.2.

ptg

414 ■ Epilogue: Using Views and Beyond with Other Approaches

E.4 Documenting Architecture in an Agile Development
Project

E.4.1 Overview

“Agile” refers to an approach to software development that
emphasizes rapid and flexible development and deemphasizes
project and process infrastructure for their own sake. Figure
E.4 shows the “manifesto” for Agile software development that
has served since 2001 as the movement’s Desiderata.

There are many different methodological instantiations of
the Agile approach. These include Extreme Programming
(Beck and Andres 2004), Scrum (Schwaber 2001), Feature-
Driven Development (Palmer and Felsing 2002), and Crystal
Clear (Cockburn 2004). Practices that show up in one or more
of the Agile methods include the following:

• User stories. Text specifies functional requirements describ-
ing the actions of people.

• Test-driven development. Developers create automated tests at
the same time they write the tested code.

• Short iterations. The development plan consists of short iter-
ations (a few weeks); also called sprints.

• Pair programming. Developers work in pairs, where one is typ-
ing the code and the other reviews the code looking for
defects and ways to improve the design.

• Refactoring. As part of the implementation cycle, code is
refactored to improve the internal structure and maintain-
ability without altering the externally visible behavior.

For some, agility is used as an excuse to avoid disciplined
development. The Dilbert cartoon in Figure E.5 represents
this early view of the Agile world.

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

– Individuals and interactions over processes and tools
– Working software over comprehensive documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

Figure E.4
The Manifesto for Agile
Software Development
(Agile Alliance 2002a)

ptg

E.4 Documenting Architecture in an Agile Development Project ■ 415

In fact, saying that Agile development is antithetical to doc-
umented development is simply not true, if indeed it ever was.

A related misconception is that in Agile, coding starts on day
one of the project. In practice, the first iteration can go by with
no production code written at all. This happens because the
team is sorting out design alternatives and conducting technical
experiments with different frameworks, platforms, or technologies.

The key goal of design and modeling in Agile projects is not
to avoid designing, but to avoid “big design up front” (BDUF).
Broad and far-reaching architecture strategies are worked out
up front, but many other design decisions can be deferred until
needed. They can be written down whenever they are made.

Documented design decisions in Agile projects tend to be (but
are not always) fewer in number and coarser in granularity
than design decisions documented in traditional projects. This
comes about because Agile developers are expected to have
design skills, and Agile designers and architects are expected
to have coding skills. So the communication of design deci-
sions is shorter and denser; it’s rather like telling a story to a
member of your family as opposed to a complete stranger.

E.4.2 Agile Development and Views and Beyond

The Views and Beyond and Agile philosophies agree strongly
on a central point: If information isn’t needed, don’t docu-
ment it. All documentation should have an intended use and
audience in mind, and be produced in a way that serves both.
One of the fundamental principles of technical documentation
is “Write for the reader.” That means understanding who will
read the documentation and how they will use it. If there is no
audience, there is no need to produce the documentation.

Architecture view selection is an example of applying this
principle. The Views and Beyond approach prescribes produc-
ing a view if and only if it addresses the concerns of an explic-
itly identified stakeholder community.

A recent survey shows
that Agile teams are
more likely to build
models than traditional
teams (Ambysoft 2008).

Use a standard organi-
zation in order to
employ documentation
as a receptacle to hold
the results of design
decisions as they are
made.

The Seven Rules for
Sound Documentation
are given in Section P.5.
of the prologue

View selection is cov-
ered in Chapter 9.

Figure E.5
Agile, as some imagined it.
(DILBERT: © Scott Adams /
Dist. by United Feature
Syndicate, Inc.)

ptg

416 ■ Epilogue: Using Views and Beyond with Other Approaches

Another central idea to remember is that documentation is
not a monolithic activity that holds up all other progress until
it is complete. The view selection method given in Chapter 9
prescribes producing the documentation in prioritized stages
to satisfy the needs of the stakeholders who need it now.

Cockburn expresses a similar idea this way: “The correct
amount of documentation is exactly that needed for the
receiver to make her next move in the game. Any effort to
make the models complete, correct, and current past that
point is a waste of money” (Cockburn 2002). The trick is know-
ing who the receivers are and what moves they need to make.
Remember that the receiver might be a maintainer whose job
begins long after the system is first fielded and the develop-
ment team is disbanded.

With that in mind, the following is the suggested approach
for producing Views and Beyond-based architecture documen-
tation using Agile principles:

1. Adopt a template or standard organization to capture your
design decisions.

2. Plan to document a view if (but only if) it has a strongly
identified stakeholder constituency.

3. Fill in the sections of the template for a view, and for informa-
tion beyond views, when (and in whatever order) the infor-
mation becomes available. But only do this if writing down
this information will make it easier (or cheaper or make suc-
cess more likely) for someone downstream doing their job.

Actually, this three-step approach is the entire Views and
Beyond approach in a nutshell: Have a template. Fill it in as
you go. Only write down what’s worth writing down. For an
Agile project, the emphasis shifts to the guidance about not
doing things, which is implied by the “only if” clauses.

Beyond this strategic guidance, you can also use the follow-
ing advice:

• Stop designing as soon as you feel you’re ready to start coding.
Don’t worry about creating an architectural design docu-
ment and then a finer-grained design document. Produce
just enough design information to allow you to move on to
code. Capture the design information in a format that is
simple to use and simple to change—a wiki, perhaps. In the
next sprint, you can expand the existing design as needed
in order to capture design decisions required to implement
the features listed for that sprint.

• Don’t feel obliged to fill up all sections of the template, and certainly
not all at once. We still suggest you define and use rich tem-

See the formula for the
economics of docu-
mentation in Section
P.2.4 of the prologue.

Using a wiki to capture
an architecture is dis-
cussed in Section
10.4.2.

ptg

E.4 Documenting Architecture in an Agile Development Project ■ 417

plates because they may be useful in some situations. But
you can always write “N/A” for the sections for which you
don’t need to record the information (perhaps because you
will convey it orally).

Using a view template such as the one in Section 10.1, the
ultimate simplification is to add the primary presentation
and leave all other sections marked as “N/A”. In Agile
teams, modeling sometimes happens as brief discussions by
the whiteboard. In your view, the primary presentation may
have a digital picture of the whiteboard and nothing more.
Further information about the elements (element catalog),
rationale discussion (architecture background), variability
mechanisms being used (variability guide), and all else will
be communicated verbally to the team—at least for now.
Later on, if you find out that it’s useful to record a piece of
information about an element, a context diagram, rationale
for a certain design decision, or something else, you can
replace the “N/A” with the corresponding piece of informa-
tion.

• If it’s not worth updating the design, throw it away. As an exam-
ple, suppose you created a sequence diagram that became
part of the architecture documentation. In the implementa-
tion, you started off following what’s in the sequence diagram.
However, you found better ways to implement that transac-
tion and the end result turned out to be fairly different from
the sequence diagram. The original diagram fulfilled its pri-
mary purpose by guiding the initial implementation. What
should you do with the diagram now? You can:

– Leave it as is. This is the worst option, because now the
documentation will be at odds with the implementation.
Nothing makes a reader flee from documentation faster
than the discovery that it is out of date, and now the
reader won’t trust any other part of the architecture doc-
umentation, either.

– Update the diagram. This is the ideal option, given you
have time for that. The updated diagram will help main-
tainers who will need to understand that part of the
implementation.

– Remove or cross off the diagram. This option is the realistic
choice in many projects. The diagram is out of date;
you’re better off removing it or marking it as out of date
or no longer authoritative (Figure E.6 shows an example)
so it won’t mislead readers of the documentation. In
Agile projects, code, code comments, and associated unit
tests often serve as the authoritative documentation for
local (element-specific) designs.

The fourth principle of
sound documentation
in the prologue tells us
that it’s better to write
“N/A” or “TBD” than
leave sections blank.
You shouldn’t remove
the section headers
either; otherwise, your
document will end up
with a different structure
than the template.

Sequence diagrams can
be used to document
behavior. Sequence
diagrams are covered in
Section 8.3.2.

ptg

418 ■ Epilogue: Using Views and Beyond with Other Approaches

• Many times, sketches are all you need. Don’t spend time crafting
the neatest diagram using the latest and richest notation
available. Don’t spend money on sophisticated modeling
tools if you just need to draw simple diagrams. In many
Agile projects, especially the ones with small, collocated
teams, the true value of design diagrams comes from draw-
ing them, which forces you to think through the issues; once
the issues are solved, the documentation can be refined.
Many times the design is represented as a sketch on a white-
board or piece of paper. Figure E.7 shows an example.

If a sketch successfully
conveys the design to
the development team,
you can use it as the pri-
mary presentation in an
architecture view.

Figure E.6
The architect decided not
to update this diagram, but
he didn’t want to delete it
either. So he marked the
diagram to prevent others
from consuming out-of-
date information.

Figure E.7
Sketch of a C&C view on
the whiteboard

ptg

E.5 U.S. Department of Defense Architecture Framework ■ 419

E.5 U.S. Department of Defense Architecture
Framework
With Don O’Connell

E.5.1 Overview of DoDAF

The DoDAF is the U.S. Department of Defense’s framework
standard on how to document an architecture. According to
the DoD:

The DoDAF provides the guidance and rules for developing,
representing, and understanding architectures based on a com-
mon denominator across DoD, Joint, and multinational bound-
aries. It provides insight for external stakeholders into how the
DoD develops architectures. The DoDAF is intended to ensure
that architecture documentation can be compared and related
across programs, mission areas, and, ultimately, the enterprise,
thus, establishing the foundation for analyses that supports
decision-making processes throughout the DoD.

The DoDAF defines a set of products that act as mechanisms for
visualizing, understanding, and assimilating the broad scope
and complexities of an architecture description through
graphic, tabular, or textual means. These products are orga-
nized under four views: [operational view (OV), systems and
services view (SV), technical standards view (TV), and all-view
(AV)]. Each view depicts certain perspectives of an architecture
as described below.

The OV captures the operational nodes, the tasks or activities
performed, and the information that must be exchanged to
accomplish DoD missions. It conveys the types of information
exchanged, the frequency of exchange, which tasks and activi-
ties are supported by the information exchanges, and the
nature of information exchanges. . . .

The SV captures system, service, and interconnection function-
ality providing for, or supporting, operational activities. DoD
processes include warfighting, business, intelligence, and infra-
structure functions. The SV system functions and services
resources and components may be linked to the architecture
artifacts in the OV. These system functions and service resources
support the operational activities and facilitate the exchange of
information among operational nodes. . . .

The TV is the minimal set of rules governing the arrangement,
interaction, and interdependence of system parts or elements.
Its purpose is to ensure that a system satisfies a specified set of
operational requirements. The TV provides the technical sys-
tems implementation guidelines upon which engineering spec-
ifications are based, common building blocks are established,
and product lines are developed. It includes a collection of the
technical standards, implementation conventions, standards
options, rules, and criteria that can be organized into profile(s)
that govern systems and system or service elements for a given
architecture. . . .

In this section, all quoted
material and figures
come from DoDAF 2007
(online at
www.defenselink.mil/
cio-nii/docs/
DoDAF_Volume_I.pdf).

The U.K. Ministry of
Defence employs a
similar framework
called MoDAF.

www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf
www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf
www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf

ptg

420 ■ Epilogue: Using Views and Beyond with Other Approaches

[The AV captures the] overarching aspects of an architecture that
relate to all three views. The AV products provide information
pertinent to the entire architecture but do not represent a dis-
tinct view of the architecture. AV products set the scope and
context of the architecture. The scope includes the subject area
and time frame for the architecture. The setting in which the
architecture exists comprises the interrelated conditions that
compose the context for the architecture. These conditions
include doctrine; tactics, techniques, and procedures; relevant
goals and vision statements; concepts of operations (CONOPS);
scenarios; and environmental conditions.

The relations among these views are shown in Figure E.8.

Figure E.8
All-view describes the over-
all context of the system.
Operational views are
largely contextual, con-
cept-of-operations, and
capability diagrams and
tables. Systems and ser-
vices views are largely the
nodes and interconnectiv-
ity, with numerous products
showing various functions
and behaviors. Technical
standards views are about
current and future technical
standards.

All-View
Describes the Scope and Context (Vocabulary) of the Architecture

Operational

View

Identifies What Needs to Be

Accomplished and Who Does It

Systems and

Services View

Relates Systems, Services, and

Characteristics to Operational Needs

Technical Standards

View

Prescribes Standards

and Conventions

• What Needs to Be Done
• Who Does It
• Information Exchanges
 Required to Get It Done

• Systems and Services That
 Support the Activities and
 Information Exchanges

• Specific System
 Capabilities Required to
 Satisfy Information
 Exchanges

• Technical Standards Criteria
 Governing Interoperable
 Implementation/Procurement
 of the Selected System
 Capabilities

ptg

E.5 U.S. Department of Defense Architecture Framework ■ 421

E.5.2 DoDAF and Software Architecture

Although DoDAF is quite reticent about pronouncing what
kind of architecture it was intended to capture—software? sys-
tem? enterprise?—it is quite clear that it was not intended to
capture software architectures.

Generally speaking, DoDAF views provide the following rel-
evant software architecture information.

1. Context and scope of the architecture

2. Key capabilities provided by the system, the key mission
threads, the operational nodes and their mission activities

3. The system nodes and primary data flows, the networks that
connect those nodes, and the allocation of functionality to
those system nodes

4. Optionally, performance, availability, information assur-
ance, and interoperability behaviors

5. Deployment views, showing major software components
and where they reside

6. Services, along with their capabilities and constraints

E.5.3 DoDAF and Views and Beyond

Table E.4 shows all of the DoDAF products, arranged by type
of view. DoDAF is not a particularly suitable framework for soft-
ware architecture; nevertheless, if you need to produce DoDAF
documents, the rightmost column tells you the place in Views
and Beyond documentation where you can record it.

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to
capture their information

View
Framework
Product

Framework
Product Name

General
Description Views and Beyond Equivalent

All View AV-1 Overview and
Summary
Information

Scope, purpose,
intended users,
environment
depicted, analytical
findings

This is accounted for in the doc-
umentation roadmap and sys-
tem overview given in the
documentation beyond views
section, as well as the analytical
findings to support rationale for
major design decisions.

Documentation beyond
views is covered in Section
10.2.

Documenting rationale is
covered in Section 6.5.

AV-2 Integrated
Dictionary

Architecture data
repository with defi-
nitions of all terms
used in all products

Glossary

continues

ptg

422 ■ Epilogue: Using Views and Beyond with Other Approaches

Operational OV-1 High-Level
Operational
Concept
Graphic

High-level graphical/
textual description of
operational concept

This makes a good part of the sys-
tem overview given in the docu-
mentation beyond views.

Documentation beyond views is
covered in Section 10.2.

OV-2 Operational
Node
Connectivity
Description

Operational nodes,
connectivity, and
information
exchange need lines
between nodes

Context diagram in a view packet
whose scope is the node

Context diagrams are discussed
in Section 6.3.

OV-3 Operational
Information
Exchange Matrix

Information exchanged
between nodes and
the relevant attributes
of that exchange

C&C view showing information
exchange

OV-4 Organizational
Relationships
Chart

Organizational, role,
or other relations
among organizations

A work assignment view is similar.
Showing relations among organiza-
tions in a work assignment view is
analogous to showing the relations
among hardware nodes in a deploy-
ment view.

Work assignment views are
covered in Section 5.4.

Deployment views are covered
in Section 5.2.

OV-5 Operational
Activity Model

Capabilities, opera-
tional activities, rela-
tions among
activities, inputs, and
outputs; overlays can
show cost, perform-
ing nodes, or other
pertinent information

These are all descriptions of
required behavior and not of archi-
tecture constructs.

Documenting behavior is
covered in Chapter 8.

OV-6a Operational
Rules Model

One of three prod-
ucts used to describe
operational activity—
identifies business
rules that constrain
operation

OV-6b Operational
State Transition
Description

One of three prod-
ucts used to describe
operational activity—
identifies business
process responses
to events

OV-6c Operational
Event-Trace
Description

One of three prod-
ucts used to describe
operational activity—
traces actions in a
scenario or
sequence of events

OV-7 Logical Data
Model

Documentation of
the system data
requirements and
structural business
process rules of the
Operational View

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to
capture their information (continued)

View
Framework
Product

Framework
Product Name

General
Description Views and Beyond Equivalent

ptg

E.5 U.S. Department of Defense Architecture Framework ■ 423

Systems
and
Services

SV-1 Systems
Interface
Description,
Services
Interface
Description

Identification of
systems nodes, sys-
tems, system items,
services, and service
items and their inter-
connections, within
and between nodes

C&C views showing systems, ser-
vices, and interconnections

SV-2 Systems
Communications
Description,
Services
Communications
Description

Systems nodes, sys-
tems, system items,
services, and service
items and their
related communica-
tions laydowns

SV-3 Systems-
Systems Matrix,
Services-
Systems Matrix,
Services-
Services Matrix

Relations among
systems and ser-
vices in a given archi-
tecture; can be
designed to show
relations of interest,
e.g., system-type
interfaces, planned
vs. existing inter-
faces, etc.

Mapping between views; specifi-
cally a mapping between C&C
views showing systems and C&C
views showing services.

Documenting a mapping
between views is covered in
Section 10.2.

SV-4a Systems
Functionality
Description

Functions performed
by systems and the
system data flows
among system
functions

Functions performed by the system
and its services can be docu-
mented in a decomposition view.

Decomposition views are
covered in Section 2.1.

SV-4b Services
Functionality
Description

Functions performed
by services and the
service data flow
among service
functions

SV-5a Operational
Activity to
Systems
Function
Traceability
Matrix

Mapping of system
functions back to
operational activities

Mapping to requirements

Mappings to requirements are
discussed in Section 10.3.

SV-5b Operational
Activity to
Systems
Traceability
Matrix

Mapping of systems
back to capabilities
or operational
activities

SV-5c Operational
Activity to
Services
Traceability
Matrix

Mapping of services
back to operational
activities

SV-6 Systems Data
Exchange
Matrix, Services
Data Exchange
Matrix

Provides details of
system or service
data elements being
exchanged between
systems or services
and the attributes of
that exchange

C&C views showing the systems
and services, and their informa-
tion exchange and performance
characteristics

continues

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to
capture their information (continued)

View
Framework
Product

Framework
Product Name

General
Description Views and Beyond Equivalent

ptg

424 ■ Epilogue: Using Views and Beyond with Other Approaches

Systems
and
Services
(conitnued)

SV-7 Systems
Performance
Parameters
Matrix, Services
Performance
Parameters
Matrix

Performance charac-
teristics of Systems
and Services View
elements for the
appropriate time
frame(s)

SV-8 Systems
Evolution
Description,
Services
Evolution
Description

Planned incremental
steps toward migrat-
ing a suite of systems
or services to a more
efficient suite, or
toward evolving a
current system to a
future implementation

Rationale supporting architec-
ture decisions made to prepare
for the evolution

Documenting rationale is
covered in Section 6.5.

SV-9 Systems
Technology
Forecast,
Services
Technology
Forecast

Emerging technolo-
gies and software/
hardware products
that are expected to
be available in a given
set of time frames
and that will affect
future development
of the architecture

SV-10a Systems Rules
Model, Services
Rules Model

One of three products
used to describe sys-
tem and service func-
tionality—identifies
constraints that are
imposed on systems/
services functionality
due to some aspect
of systems design or
implementation

Behavior documentation, part of
the C&C views showing the ele-
ments whose behavior is being
documented

Behavior documentation is
covered in Chapter 8.

SV-10b Systems State
Transition
Description, Ser-
vices State Tran-
sition
Description

One of three prod-
ucts used to describe
system and service
functionality—identi-
fies responses of a
system/service to
events

SV-10c Systems Event-
Trace Descrip-
tion, Services
Event-Trace
Description

One of three prod-
ucts used to describe
system or service
functionality—identi-
fies system/service-
specific refinements
of critical sequences
of events described
in the Operational
View

SV-11 Physical Schema Physical implemen-
tation of the Logical
Data Model entities,
e.g., message for-
mats, file structures,
physical schema

Data model view

Data model views are
covered in Section 2.6.

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to
capture their information (continued)

View
Framework
Product

Framework
Product Name

General
Description Views and Beyond Equivalent

ptg

E.5 U.S. Department of Defense Architecture Framework ■ 425

Generally, the following parts are missing from DoDAF to
support a software architecture documentation:

1. Business environment and business drivers.

2. Architecture requirements in the form of quality attributes,
plus customer inputs and prioritization of these attributes.

3. Architecture patterns and tactics, and the requirements
that they address.

4. Module views showing the build-time relations and depen-
dencies.

5. The SV views show a functional view of the architecture
design. What is missing are the following notions:

a. Infrastructure (messaging, system management, failure
detection and recovery, and so on).

b. Design patterns and other approaches to accomplish
the quality attribute requirements.

c. Dynamic nature of deployments.

d. The OV-5 views are about mapping operational needs
to functions. Software is often not built to these one-to-
one mappings; thus, the mapping is not really possible.
This mapping can be misleading.

6. Detailed software component interfaces. These are typi-
cally missing if the DoDAF views are describing a system of
systems. These are also typically missing if DoDAF views are
not constructed by software architects.

7. C&C view showing processes and threading of the software
components. The notion of threads, interthread communi-
cations, multiple processes, and protected data is not
supported.

Technical
Standards

TV-1 Technical Stan-
dards Profile

Listing of standards
that apply to Sys-
tems and Services
View elements in a
given architecture

These standards are primarily
intended to address interoperability
among systems in the architecture.
Using Views and Beyond, you can
list standards in the view(s) in which
they apply. The “relations” part of
the element catalog is a good spot
for this.

TV-2 Technical Stan-
dards Forecast

Description of
emerging standards
and potential impact
on current Systems
and Services View
elements, within a
set of time frames

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to
capture their information (continued)

View
Framework
Product

Framework
Product Name

General
Description Views and Beyond Equivalent

ptg

426 ■ Epilogue: Using Views and Beyond with Other Approaches

E.5.4 A Strategy to Use DoDAF to Document Software Architecture

DoDAF, for all its attention to architecture, is a poor choice to
represent software architecture. Its views were not created to
support software architecture, and so unsurprisingly, they do a
poor job of it. DoDAF simply speaks a different language, the
language of systems and system-of-systems design. It is possible
to shoehorn DoDAF into use by replacing its notion of “system”
with the software architecture notion of “component,” but if you
do that, make sure that all of your readers are in on the trick.

A charitable thing to say is that while DoDAF is certainly not suf-
ficient for software architecture, some DoDAF products are useful
in representing software architectures. So here’s a broad strategy:

• Include system-level behavior documentation as part of the
DoDAF operational architecture view, concentrating on use
cases that depict information exchange. Include this docu-
mentation in the “operational activity sequence and timing
descriptions” products.

• Include element-level behavior documentation as part of
the DoDAF systems architecture view. Include this docu-
mentation in the “systems activity sequence and timing
descriptions” products.

• Include allocation views as part of the DoDAF system archi-
tecture view, where “physical resources” are documented.

• Include various module and C&C views as part of the
DoDAF technical architecture view, appealing to it as the
repository of “rules governing the arrangements, interac-
tion, and interdependence of system parts” and “the criteria
that describe compliant implementations.”

• For the information contained in the beyond views part of the
documentation, DoDAF provides slots for overview and sum-
mary information and a dictionary. Use the former to hold the
documentation roadmap, the view template, the system over-
view, and system-wide rationale. The latter can be home to the
mapping between views, the element directory, and the glossary.

Specific DoDAF products that are useful for software archi-
tecture include the following:

• SV-5, which might be the starting point for a 4+1-style logical
view.

• OV-2 and OV-3, where information exchange is covered.

• AV-1 and OV-1, which provide contextual views, and those
are useful for software.

• OV-7 and SV-11, which show the logical data model and
implementation of the data model.

ptg

E.5 U.S. Department of Defense Architecture Framework ■ 427

DoDAF 2 .0

As this book was going to publication, DoDAF version 2.0 was on the verge of
release. Its goal, according to the DoD, is

to include further guidance on planning, developing, managing, maintaining, and
governing architectures through a coherent semantic and structural metamodel.
This version will place greater emphasis on a “data-centric” approach that facilitates
the use of architecture by a wider variety of decision makers and will include addi-
tional information on federation for improved enterprise decisions.

Figure E.9, taken from the DoDAF 1.5 definition document, shows the evolution
of DoDAF.

Figure E.9
Progression culminating in DoDAF version 2.0

DoD Architecture
Framework, Version 1.0

DoD Architecture
Framework, Version 1.5

DoD Architecture
Framework, Version 2.0

C4ISR Architecture
Framework, Version 2.0

1990s

October
1995

June
1996

October
1996

February
1998

August
2003

April
2007

TBD

Increasing Focus on Joint and
Multinational Operations

Deputy Secretary of
Defense Directive

Developed by the C4ISR
Integration Task Force’s Integrated

Architectures Panel under the
Direction of the ASD(C3I)

C4ISR Architecture
Framework, Version 1.0

C4ISR Architecture Working
Group Is Established by the

ASD(c3I) and JointStaff/J6

Architecture Coordination
Council Memorandum

December
1997

Developed by the DoDAF
Working Group

Incorporates
Net-Centric Concepts

Greater Emphasis
on Data

ptg

428 ■ Epilogue: Using Views and Beyond with Other Approaches

E.6 Where Architecture Documentation Ends
Early in this book, we examined the question of where archi-
tecture ends and nonarchitectural design begins. A related
question is where architecture documentation ends and other
documentation issues begin. Architectures of all stripes exist.
Security architectures, enterprise architectures, reference archi-
tectures, installation architectures: the list is endless.

Some of the terms are clearly in scope. Reference architec-
tures, for instance, appeared in our discussion of documenting
variation points in Chapter 6; the essence of a reference archi-
tecture is its ability to be tailored to the needs of any of a family
of systems. Security architectures, although not addressed as
such, are covered by making sure that a security specialist can
find information of analytical use in one or more of the “nor-
mal” styles, such as those presented in Part I.

But some writers undoubtedly incorporate into architecture
some aspects of system documentation that are outside the
scope of this book. We completely agree with Boehm et al.
(1999) that architecture is not an island and should be related
to other important system development documents; however,
all the organizations, templates, and guidelines in the Views
and Beyond approach were created to capture software architec-
tures. The artifacts we’ve prescribed let you capture “the set of
structures needed to reason about the system, which comprise
software elements, relations among them, and properties of
both,” quoting from our definition of software architecture we
gave at the outset.

How does the guidance in this book relate to architectures
that occupy outlying regions of the topic area? To the extent
that these “architectures” depend on architecture structures as
captured by styles and views, the principles in this book hold.
But writing down system installation procedures, for example,
is not architectural. Nevertheless, the principles for sound
documentation extend well beyond the realm of “mainline”
architectures. Involvement of stakeholders, letting the uses of
documentation guide its contents, controlling repetition, using
a standard organization, avoiding ambiguity: these and other
principles form the foundation of a high-quality documenta-
tion task.

Many other topics in software engineering are related to
documenting software architecture. Chief among them is the
general topic of software architecture. Other topics that you want
to be aware of but that are outside the scope of this book are
architecture description languages, commercial components,
hypertext documentation, and configuration management.

ptg

E.8 For Further Reading ■ 429

E.7 A Final Word
Helping practitioners do their job more effectively is the goal
of this book. We wanted to help an architect answer the ques-
tion, “What do I do now?” Communicating the architecture is
as important a task as creating it, for without effective commu-
nication, the architecture is nothing.

Architectures are too complex to be communicated all at
once, just as a high-dimension object cannot be seen or
grasped in its entirety in our three-dimensional world. As a way
to divide and conquer complexity, views are by far the most
effective means of architecture communication that we know.
Styles and views establish a specialized and shared vocabulary,
allow reuse of technical knowledge and practice from one sys-
tem to the next, and facilitate analysis and prediction. Relating
the views to one another and making the documentation
accessible to its stakeholders completes the communication
obligation to the present stakeholders. Capturing the rationale
and why things are the way they are completes the communi-
cation obligation to the future.

That is the essence of documentation: recognizing and dis-
charging the architect’s obligations to the community of stake-
holders, present and future, whose needs the architecture is
intended to serve. We hope that we have provided guidance
that will lead to high-quality products and that is also practical
and flexible enough to be useful in the resource-constrained,
never-enough-time environments in which all architects labor.

And we look forward to discovering what’s on the horizon.

E.8 For Further Reading
The Internet contains a wealth of information about RUP,
DoDAF, and ISO 42010. A good starting point for RUP is Phil-
ippe Kruchten’s original paper proposing the 4+1 approach
for architecture; it is still the best introduction to that concept
(Kruchten 1995).

The Web site Agile Modeling Practices, at agilemodeling.com/
practices.htm, is a good repository for information about Agile
practices. Other foundation works for Agile development
include the following:

• Resources produced by the Agile Alliance:

– “Manifesto for Agile Software Development,” at
agilemanifesto.org (Agile Alliance 2002a)

– The Agile Alliance Web site: agilealliance.org (Agile
Alliance 2002b)

ptg

430 ■ Epilogue: Using Views and Beyond with Other Approaches

– “Principles Behind the Agile Manifesto,” at
agilemanifesto.org/principles.html (Agile Alliance 2002c)

• Kent Beck and Cynthia Andres’s book Extreme Programming
Explained: Embrace Change (2nd edition) (Beck and Andres
2004).

• Alistair Cockburn’s books:

– Agile Software Development (Cockburn 2002)

– Crystal Methodologies (Cockburn 2001)

– Crystal Clear: A Human-Powered Methodology for Small Teams
(Cockburn 2004)

• Stephen Palmer and John Felsing’s book A Practical Guide to
Feature-Driven Development (Palmer and Felsing 2002).

• Ken Schwaber’s book Agile Software Development with Scrum
(Schwaber 2001).

• The Rozanski and Woods viewpoint set is described in detail
in their book Software Systems Architecture (Rozanski and Woods
2005).

ptg

431

AUML—Unified Modeling
Language

A.1 Introduction
The Unified Modeling Language (UML) is a standardized
visual language for modeling software designs. Originally cre-
ated to merge a number of similar-but-different notations for
object-oriented modeling, UML has grown to become the de
facto standard for representing software designs in systems of
all kinds. The purpose of this appendix is to show how UML
should be used to describe different kinds of information
found in software architecture documentation: module views,
component-and-connector (C&C) views, allocation views, behav-
ior documentation, and interfaces.

The appendix should work as a quick refresher to the UML
diagrams and symbols that you may use or may find in architec-
ture documentation. It’s not intended to be a UML tutorial.
It’s assumed that you are familiar with basic UML concepts
such as classes, packages, dependencies, and messages.

UML retains many of the characteristics that trace back to its
object-oriented origins, but object-oriented abstractions are not
always the best tools for describing software architectures. For
example, UML has no notation for a layer, context diagram, or
rich connector. Many changes were incorporated in the 2.0 revi-
sion of UML, some motivated by a need for improved architec-
ture abstractions. Language elements such as connectors and
ports were introduced to address some problems. Other ele-
ments were enriched to improve their suitability; for example,
UML components now share many features with classes, such as
the ability to add interfaces and behavioral descriptions.

The result is that today’s 2.x versions of UML are better suited
to documenting architectures than earlier versions, but there
are still some gaps between UML and architecture abstractions,

For a more in-depth
explanation of the dif-
ferent UML diagrams,
consult the UML books
referenced in Section
2.9.

ptg

432 ■ Appendix A: UML—Unified Modeling Language

particularly for C&C views. This appendix focuses on guidance
for documenting software architectures using UML, indepen-
dent of whether UML is the best choice for each architecture
documentation piece.

UML provides 14 types of diagrams divided into two catego-
ries: structure diagrams and behavior diagrams. Figure A.1
shows the hierarchy of UML 2.2 diagram types. For each con-
crete diagram type, the small icons indicate the kinds of infor-
mation the diagram is better suited to convey.

ADVICE

You probably won’t find anyone who uses all 14 types of diagrams to document
a software system. It is not a goal to try. Pick a subset chosen to match the mod-
eling tasks you have at hand. Try to use UML diagrams that your readers are
familiar with and express the right meaning. Avoid any temptation to show off
your UML knowledge by using uncommon UML symbols. Otherwise you may
fail to communicate the design.

Section 3.4.3 discusses
the problems with using
UML concepts to repre-
sent C&C abstractions.

Figure A.1
UML 2.2 diagram types

State Machine
Diagram

Use Case
Diagram

Timing
Diagram

Interaction
Overview Diag.

Structure
Diagram

Behavior
Diagram

Class Diagram

Composite
Structure Diag.

Component
Diagram

Deployment
Diagram

Object
Diagram

Profile DiagramPackage
Diagram

Activity
Diagram

Interaction
Diagram

Sequence
Diagram

Communication
Diagram

Notation: UML, with these extra symbols:
Most useful for describing

module views

C&C views

allocation views

behavior (in any view)

requirements

Diagram

ptg

A.2 Documenting a Module View ■ 433

The meaning of any UML symbol can be further specialized
by using stereotypes. A stereotype is a domain-specific or tech-
nology-specific label shown within guillemets (also known as
“angle brackets”) that can be applied to existing UML elements
and relations. The diagrams in this appendix use standard UML
stereotypes where possible. However, several stereotypes are
introduced to represent types of elements or relations specific
to a style (such as <<layer>>).

A.2 Documenting a Module View
Module views show architecture structures where the elements
are implementation units, or modules. Modules should be rep-
resented in UML as packages, classes, or interfaces. The following
subsections describe how UML should be used to document
different module styles and which UML symbols are most appro-
priate for showing modules and their relations in each style.

A.2.1 Decomposition Style

Modules, as described in Chapter 1, are typically represented
in UML as packages or classes. In UML, decomposition of
modules in submodules is shown by nesting packages, classes,
or interfaces inside packages. Figure A.2 shows an example.

A.2.2 Uses Style

This style describes usage dependencies among modules. In
UML, dependencies are shown using the dependency arrow.

The UML standard ste-
reotypes are listed in
Annex C of the UML
specifications (version
2.2). The UML standard
is maintained by the
Object Management
Group (OMG), and the
specifications can be
downloaded from
uml.org.

The module decompo-
sition style is described
in Section 2.1.

Figure A.2
UML packages and classes
are used in decomposition
views.

com.foo.project.gwt.client

controller App ApplicationFacade

ApplicationMediatorview model

ptg

434 ■ Appendix A: UML—Unified Modeling Language

Use the UML usage dependency (<<use>>) to show usage
between packages, classes, or interfaces in a uses view. Figure
A.3 shows examples of uses relations in UML.

A.2.3 Generalization Style

Modules in a generalization view should be represented using
classes and interfaces. Generalization (is-a relation) between
modules is shown in UML using the generalization (class
inheritance) arrow. Another form of is-a relation, interface
realization, is shown using the interface realization arrow. Fig-
ure A.4 shows an example.

A.2.4 Layered Style

UML doesn’t have a built-in notation for layers. Because a layer
is a grouping of modules, the natural alternative is to use pack-
ages, stereotyped as <<layer>>. The allowed-to-use relation
between layers should be shown as a stereotyped UML depen-
dency. Figure A.5 shows an example.

A.2.5 Aspects Style

In aspect-oriented software development, a module that is
responsible for a crosscutting concern (such as international-

The uses style is
described in Section 2.2.

The generalization style
is described in Section
2.3.

The layered style is
described in Section 2.4.

Figure A.3
UML dependencies are
used in module uses views. «interface»

Event

«use» «use» «use»
«use»

Dispatcher

util

services

BeanManager
CallListener

Logger

Figure A.4
UML class inheritance (on
the left) is used in generali-
zation views. UML interface
realization (on the right) is
also a kind of is-a
relationship.

Account «interface»
Observer

Checking
Account

Savings
Account

Admin
AccountView

ptg

A.2 Documenting a Module View ■ 435

ization) is called an aspect. UML doesn’t have a built-in notation
for aspects. You should use classes, stereotyped as <<aspect>>,
to represent aspects. The crosscuts relation from aspects to classes,
packages, and other aspects can be shown graphically using a
stereotyped dependency arrow. However, because crosscuts rela-
tions are often numerous, a less-cluttered alternative is to use
annotations to define what each aspect crosscuts. Figure A.6
shows an example.

A.2.6 Data Model Style

You should document a data model in UML using a class dia-
gram. Classes should have the standard <<entity>> stereotype.

The aspects style is
described in Section 2.5.

Figure A.5
Stereotyped packages can
represent layers in UML.

«layer»
User interface

«layer»
Services

«layer»
Data access objects

«allowed to use»

«allowed to use»

Figure A.6
Aspects can be
represented in UML as
stereotyped classes. The
crosscuts relation can be
shown graphically or (to
reduce visual clutter) with
annotations.

Crosscuts all public methods of
all classes with suffix ServiceImpl
AND any method with the
@transactional annotation

Crosscuts any method
with the @privileged
Access annotation

«aspect»
AuthorizationCheck

«aspect»
TransactionManagement

checkStatusAndCloseTransaction()

ptg

436 ■ Appendix A: UML—Unified Modeling Language

A special constraint can be used to indicate the attributes that
form the primary key (PK) of an entity. Figure A.7 shows an
example.

PERSPECTIVES

UML Class Diagrams: Too Much, Too Little

You may have noticed that UML class diagrams can be
used in nearly all of the module styles covered in Chapter 2,
and you might conclude that a single class diagram can
represent all your module views, and maybe more.

In fact, it can. UML class diagrams are a veritable semantic
smorgasbord, able to show generalization, dependency,
module decomposition, general entity-relationship infor-
mation, aspect modules, and interface realization. Figure
A.8 compiles the UML symbols for the elements and rela-
tions usually found in class diagrams.

Good, right? Class diagrams sound like the Rosetta
Stone of architecture diagrams. What else do we need?

Well, plenty. First of all, using a single class diagram to
represent all possible information undercuts the primary
usefulness of views. Views give us different perspectives
on the various architecture structures of a system, and
one of the greatest sources of confusion in architecture
diagrams is the unplanned, haphazard amalgamation of
various kinds of information in the same diagram.

Of course, not every view needs to be primitive or stand
by itself. A source of great clarity and insight in architec-

The data model style is
described in Section 2.6.

Figure A.7
UML classes and their
associations can be used
for data modeling.

0..*

1

10..*
0..*1

«entity»
Course_Offer

«entity»
Course_Student

«entity»
Student

«entity»
Course

id {PK}
name
dateOfBirth

courseId {PK}
userId {PK}
status

id {PK}
name
syllabus

id {PK}
courseId {PK}
room
hours

ptg

A.2 Documenting a Module View ■ 437

Figure A.8
A summary of UML
symbols used in module
views.

SaveFileDialog
SaveFileDialog

FileName
Filter

ShowDialog()
OnFileOk(…)

System.IO.Log

«interface»
IAnimatable

UIElement
IPrintable

UIElement
IPrintable

class with attributes

and operations:

used to represent a
module, aspect, or
data entity

class:

used to represent a
module, aspect, or
data entity

package:

used to represent a
module or layer

class with provided

interface:

used to represent an
interface provided by
a module

class with required

interface:

used to represent an
interface required by
a module

generalization:

used to represent a
generalization relation

dependency (with a stereotype):

used to represent relations such
as use and allowed to use

aggregation:

used to represent aggregation of data
entities into an aggregate entity

association:

used to represent logical
associations between data entities,
often annotated with multiplicities

interface realization:

used to represent a
realization relation between
an interface and a module
realizing that interface

interface:

used to represent an
interface of a module

ture documentation comes when a small number of
views are carefully and consciously chosen to be wed,
showing various kinds of information at once and how
they overlap and interplay.

But what is produced by using all the class diagram’s
relations in a single view? The result would be the “inherits/
depends-on/uses/data model/realizes/decomposition” view,
which—unless your system were very small—would
probably be too busy to read and too bewildering to
understand. Instead, try to document the module views
separately, using the restricted forms of class diagrams
dictated by the module styles. Combine two views only if
it makes sense to do so.

Are class diagrams rich enough to give us all we need in
any module view? No. If your architecture is object-ori-
ented, it’s natural to think of it first and foremost in those
terms: a collection of classes instantiated as objects that
interact at runtime. You might be wondering whether you
really need to document your module view as anything
but that. Maybe, you think, when push com‘es to shove,
the only thing you give your architecture stakeholders is
a set of UML class diagrams. But you need more.

First, trying to represent behavior with a class diagram is
out of the question. You’ll need sequence diagrams,
activity diagrams, state machine diagrams, or other behav-
ior diagrams. Second, class diagrams—even as rich as

Section 6.6 explains
how to choose and to
document combined
views.

ptg

438 ■ Appendix A: UML—Unified Modeling Language

they are—are fundamentally about attributes and opera-
tions of classes, and code relations. Class diagrams
have no way to represent temporal information and are
not suitable to capture design rationale, variability, data
flow, context (what modules are external to the system),
and other important information that should be recorded
in a module view.

UML class diagrams are a foundational piece of notation
for module-based views. But like all good tools, they
aren’t for every job.

—D.G. and P.M.

A.3 Documenting a Component-and-Connector View
C&C components should be represented using UML compo-
nent instances in object diagrams or component diagrams;
C&C component types should be represented using UML com-
ponents in a component diagram. Component types and
instances should not be represented in the same diagram.

Component types and instances are distinguished in UML
by the same convention used to distinguish classes and objects:
names that do not include a colon (“:”) are types, and names
that include a colon are instances, with the instance name
appearing to the left of the colon and the type name appearing
to the right of the colon. Anonymous instances can be docu-
mented by not including an instance name to the left of the
colon and are typically used when there’s only one instance of
that type or the instance name is not significant.

C&C component ports should be represented using UML
ports. UML provided and required interfaces can be attached
to ports to provide additional information, but this is usually
done on component types, not instances. Ports should have an
identifier and may have a multiplicity indicator.

Figure A.9 shows examples of representing a component
type and instances. Components should be stereotyped to indi-
cate the name of the corresponding component type from the
style guide used for the view being documented. For example,
in Figure A.9, the Catalog component type that is represented
is a subtype of the server type defined in the client-server style
in Chapter 4.

C&C connectors can be represented in a few ways in UML,
largely depending on the amount of information you want to
document in UML (as opposed to prose) or the degree to
which you want to convey the connector’s semantics. The two

To avoid ambiguity,
always add UML ports
to explicitly represent a
component’s points of
interaction. You should
label those ports. If you
think representing the
ports in the diagram is
not necessary (perhaps
because each compo-
nent has only one port),
it’s OK to omit the UML
ports and attach con-
nectors directly to com-
ponents. But use this
simplification with cau-
tion, and consider men-
tioning your convention
with a phrase in the dia-
gram’s key.

ptg

A.3 Documenting a Component-and-Connector View ■ 439

primary options for representing a C&C connector are a UML
connector and a UML component, as shown in Figure A.10.

1. A UML connector is an undecorated line. The connector’s
type should be denoted by adding a stereotype that identi-
fies it. Unfortunately, UML connectors cannot have sub-
structure, properties, or behavioral descriptions, limiting
what can be documented using UML. For example, because
formal interfaces (like UML interfaces or ports) cannot be
added, connector roles cannot be represented. Their pres-
ence can be indicated by labeling the connector ends.

Figure A.10
C&C connectors represented using a UML connector and a UML component. In the top portion of this figure, a C&C
connector is represented using a UML connector, with the type of the connector identified by the <<RPC>> stereotype.
In the bottom portion, the same C&C connector is represented using a UML component. The type of C&C connector is
identified in this case by the anonymous instance’s type name (:RPC), which is a subtype of the style guide provided
<<request/reply>> type. The UML component version allows the connector’s roles to be explicitly represented using
UML ports.

using a UML connector to
represent a C&C connector

using a UML component to
represent a C&C connector

«client»
:Search

«client»
:Search

«server»
:Catalog

«server»
:Catalog

«request/
reply»
:RPC

«RPC»

Online
Services

Online
Services

Service
Provider

Requester

Get
Data

Get
Data

Figure A.9
Component type and
instances represented
using UML components.
The type, Catalog, is a
subtype of server from the
client-server style. It uses
UML ports and provided
and required interfaces to
document its ports. The
Online Services port
includes a multiplicity, con-
straining how many
instances of that port may
be on any instance of the
Catalog component type.
lib1 and lib2 are
instances of the Catalog
component type. lib1
includes explicit documen-
tation of component ports,
for example, specifying that
it has two instances of the
Online Services port.
lib2 does not explicitly
document its ports, leaving
the number of instances of
Online Services to be
documented elsewhere.

[1..5]

component type
(with UML ports
and interfaces)

a component instance
(with ports explicitly
documented)

a component
instance

DataAccess

DataAccess

Admin
Services

Admin
Services

Online
Services

Online
Services
Online
Services

«server»
Catalog

«server»
lib1 : Catalog

«server»
lib2 : Catalog

ItemEntry

Searchable

ptg

440 ■ Appendix A: UML—Unified Modeling Language

Alternatively, their presence can be inferred when attached
to explicit component ports that unambiguously match a
connector role.

2. A UML component, unlike a UML connector, can have
substructure, properties, and behavioral descriptions, mak-
ing it a better choice when such information needs to be
documented for a C&C connector. UML ports are used to
represent connector roles, just as they are used to represent
component ports.

There are two variations on the UML connector strategy that
can be useful in particular situations; these options are shown
in Figure A.11.

• A navigable end (an arrowhead) can be shown on one end
of a UML connector to identify a direction associated with
an interaction. The documentation should identify the mean-
ing of such arrowheads, as multiple interpretations are often
possible (for example, does it represent the initiation of an
interaction or the direction in which data is passed?). This
option is less useful when connectors represent bidirectional
interactions, such as protocols. Tool support, however, is not
always available for this option (connector tool support in
general is inconsistent). Instead, to use this option, you may
have to use a UML association rather than a UML connector
in order to add a navigable end.

• A UML assembly connector can be used in place of a simple
connector. Assembly connectors are drawn using a ball-and-
socket notation (the explicit connection of the provided
and required interface symbols). This representation maps
naturally to connectors between simple provided and required
interfaces (such as simple call-return connectors). This option

See “Perspectives:
Quivering at Arrows” on
page 41, in the prologue.

Figure A.11
Two variations of using a
UML connector to repre-
sent a C&C connector. The
top variation uses a naviga-
ble end (the arrowhead) to
convey the general direc-
tion of the interaction. The
bottom variation uses the
ball-and-socket notation
for an assembly connector
to convey the attachment
to provided and required
interfaces of component
ports.

adding navigable end to a connector

using the ball-and-socket notation
for an assembly connector

«client»
:Search

«client»
:Search

«server»
:Catalog

«server»
:Catalog

Get
Data

Online
Services

«RPC»

Get
Data

Online
Services

«RPC»

ptg

A.3 Documenting a Component-and-Connector View ■ 441

is less useful when connectors do not match a provided/
required intuition (for example, when an input port of a fil-
ter in a pipe-and-filter architecture does not clearly map to
either a provided or required interface) or when connec-
tors represent bidirectional interactions.

Simple representations, based on UML connectors, are
good options when a connector has well-known semantics and
implementations, such as procedure calls or data-read opera-
tions. When you need to do more than simply identify a con-
nector type, a UML component representation is a good
option. This option allows the explicit representation of con-
nector roles, behavior, and substructure. However, some impor-
tant properties can be represented without resorting to the use
of UML components.

Tagged values can be used, as shown in Figure A.12, to asso-
ciate attribute values with a UML connector. To use this approach,
you create a stereotype for the connector type and define
attributes that become associated with the stereotype. These
attributes are called tagged values in UML and are shown in a
comment box. Some UML tools allow you to create stereotypes
(such as <<JMS>>) and define their attributes with name and
data type (for example, queueID : String; capacity : integer;
persistent : Boolean). Then each time the stereotype is used,
the tool allows you to select the stereotyped element or rela-
tion and enter the values of the attributes in a properties box.
In such cases, comment boxes will not appear in the diagram.

Component or connector substructure should be repre-
sented in UML using nested UML components and UML del-
egation connectors, as shown in Figure A.13. The UML
components representing the substructure of a component
(or connector) are nested within that UML component. The
ports of the outer UML component are associated with the cor-
responding ports of the inner UML components using UML
delegation connectors. A UML delegation connector is shown
as a solid line with an open arrowhead. The arrowhead on a
UML delegation connector should point inward when relating

The relationship
expressed by UML del-
egation connectors is
called interface delega-
tion and is described in
Section 3.2.3. Nesting
and interface delegation
are how UML repre-
sents decomposition
refinement, which is dis-
cussed in Section 6.1.1.

Figure A.12
C&C connectors can be
represented as stereotyped
UML connectors with
tagged values. In this
example the connector
<<JMS>> represents the
use of the Java Message
Service, which allows you
to define different kinds of
message queues.

«sessionbean»
:OrderFillerEJB

«message-driven
bean»

:NotificationsMDB

«JMS»

queueID=NotificationsQueue
capacity=20
persistent=True

ptg

442 ■ Appendix A: UML—Unified Modeling Language

ports that are both “provides” ports, and point outward when
relating ports that are both “requires.”

When documenting a specific C&C view in UML, you should
use a stereotype to identify the type of each component and
connector, ensuring a clear relationship to the component and
connector types defined in the style guides used to create the
view. If application-specific subtypes of these types have been
defined, those types should be identified in the names of the
instances (appearing to the right of the colon). For example,
Figure A.14 shows a UML diagram of a pipe-and-filter view. Fil-
ters are represented as UML components with the <<filter>>
stereotype, and pipes are represented as UML connectors with
the <<pipe>> stereotype. These stereotypes associate each
instance with its type from the pipe-and-filter style guide. Each

The pipe-and-filter style
is described in Section
4.2.1.

Figure A.14
UML diagram of a pipe-and-filter view. Filters are shown as stereotyped UML components, and pipes are stereotyped
UML connectors. Four tagged values (“capacity”, “end-of-data”, “when-full”, and “when-empty”) indicate important
properties of each pipe.

capacity = 40
end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 30 sec and retry

capacity = 50
end-of-data = ”EOT” String
when-full = block for 2 sec and retry
when-empty = block for 20 sec and retry capacity = 10

end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 60 sec and retry

capacity = 40
end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 30 sec and retry

«pipe»
«pipe»

«pipe»

«pipe»

out in

out in

out

out

in

in

«filter»
:XmlToObject

«filter»
:Process
Payment

«filter»
:FormatRejected

Records

«filter»
:Calculate

DirectDeposit

«filter»
:Format

DirectDeposit

Figure A.13
Substructure of a UML
component. Delegation
connector arrows associate
the external ports with
ports of internal
components.

Data
Access

Admin
Services

Online
Services

Admin
Services

Online
Services

«server»
:Catalog

ItemsStore

Requests Validate

«call»

«write»

Data
Access

«data
accessor»

:SearchEngine

«data
accessor»

:CatalogMgr

«repository»
:DataCache

«server»
:DataValidation

Data
Access

ptg

A.4 Documenting an Allocation View ■ 443

filter is further associated with an application-specific subtype
of filter, such as XmlToObject or Process Payment. The <<pipe>>
stereotype defines four tagged values to indicate important
properties of pipes.

A.4 Documenting an Allocation View
Allocation views present mappings between software elements
(from module or C&C views) and environmental elements.
Environmental elements are nonsoftware elements (such as
hardware nodes) that are somehow associated to the software
elements of the system being designed. This section provides
guidance on how to document environmental elements in
UML and the mappings between software and environmental
elements.

A.4.1 Deployment Style

The environmental elements of a deployment view are hardware
elements, such as processors, memory, and network elements.
These elements can be represented in UML deployment dia-
grams using UML nodes. A node is a computational resource,
such as a laptop computer, a server machine, a router, or a
mobile device. Figure A.15 shows examples of nodes.

To document a deployment view of your architecture, map
the software elements (elements from a C&C view) to the
nodes representing hardware elements in a UML deployment
diagram. You can connect UML component instances to nodes
using a nonstandard stereotyped dependency (such as <<allo-
cated to>>), as illustrated in Figure A.16.

When documenting a
software element in any
allocation view, be sure
to use a UML represen-
tation that is consistent
with how you repre-
sented that same ele-
ment in another view.
For example, if you doc-
ument module Transac-
tionMgr in a uses view
with a class, do not rep-
resent the Transaction-
Mgr module in an
implementation view
with a package.

You should add a ste-
reotype to each node to
identify different cate-
gories of computing
hardware, communica-
tion appliances, and
other devices, as shown
in Figure A.15.

Figure A.15
UML nodes are used to
represent hardware
elements in a deployment
view.

«router»
rtr3

«blade server»
srvpatrol

Figure A.16
Using a stereotyped
dependency to show that a
component is allocated
(that is, deployed) to a
specific node

«allocated to»«component»
: Catalog

«linux quad»
app-srv2a

ptg

444 ■ Appendix A: UML—Unified Modeling Language

In many cases your software system will have a large number
of components deployed to the same hardware node. Trying to
draw all these UML components connected to the nodes may
clutter your UML deployment diagram. In that case, you may
have to resort to documenting the complete allocation of com-
ponents to nodes in a diagram annotation, in the element cat-
alog of the view, or in a table that maps nodes to components.

Another alternative in representing the allocation of compo-
nents to nodes is explicitly to represent the packaging of com-
ponents into files (such as zip, setup, or jar files) for deployment.
These files should be represented in a UML deployment dia-
gram as artifacts. A UML <<artifact>> is a stereotyped class that
typically represents a file, such as a script, executable, configu-
ration file, bundle file, source file, XML file, or PDF document.
The standard <<manifest>> stereotyped dependency indicates
that a given element (such as a component) is manifested in an
<<artifact>>; that is, the artifact contains the concrete physical
representation of that element. UML also provides a stereo-
typed dependency, <<deploy>>, to indicate that an artifact is
deployed to (that is, installed on) a node. Thus, we can show
that a component is allocated to a node using an artifact as an
intermediary. Figure A.17 shows three equivalent ways to repre-

Figure A.17
Three UML alternatives that show a component that is packaged into an artifact and the node to which the artifact is
deployed. In the first alternative (top), the <<manifest>> relation shows what components are encapsulated in an artifact,
and the <<deploy>> relation shows what node an artifact is deployed to. In the second alternative (center), the
association of components to artifacts is shown via <<manifest>>, and deployment of an artifact to a node is shown by
nesting. In the third alternative (bottom), deployment of artifacts is shown separately by listing the names of artifacts
inside a node (this notation is a shorthand for nesting artifacts inside nodes, but it is not supported by some UML tools).

«manifest» «deploy»

«manifest»

«manifest»

«component»
Catalog

«component»
Catalog

«component»
Catalog

«artifact»
webstore.jar

«linux quad»
app-srv2a

«artifact»
webstore.jar

«artifact»
webstore.jar

webstore.jar
commons-io.jar
instrument.dll

app-srv2a

app-srv2a

ptg

A.4 Documenting an Allocation View ■ 445

sent that allocation in a UML diagram. The criteria to choose
among these options include graphical convenience and sup-
port in the UML tool being used.

Using the alternatives shown in Figure A.17 will lead you to
a view that combines the deployment and the install styles. This
is because a UML deployment diagram includes some informa-
tion you would typically find in an install view. For example, a
deployment file in a UML deployment diagram is not an ele-
ment of the deployment style as described in Section 5.2, but
rather the install style, as described in Section 5.3.

Deployment views often also show the communication chan-
nels between hardware elements. In a UML deployment dia-
gram, nodes are connected to each other by communication
paths, as shown in Figure A.18. These paths can have stereo-
types to distinguish different kinds of communication chan-
nels (such as Internet, LAN, wireless, HTTP). Multiplicity can
be used to indicate the number of instances of the node at
each end of the communication path.

A.4.2 Install and Implementation Styles

The environmental elements that are the focus of the install
and implementation styles described in Chapter 5 are files and
directories. These elements can be represented by UML
artifacts, which are found in UML deployment diagrams. In an
install view, the software elements mapped to the UML artifacts
will typically be UML components in a C&C view. In an imple-
mentation view, the software elements will typically be classes
or packages that are the modules in a module view of the
architecture.

To show that a given software element is mapped to a UML
artifact, we use the same <<manifest>> stereotyped depen-
dency discussed for the deployment style. This <<manifest>>
relationship represents that the artifact contains the concrete
physical representation of the software element.

Section 6.6 discusses
combined views.

Figure 5.3, in Section
5.2.4, is an example of
a UML deployment
diagram.

Figure A.18
UML nodes are connected
by communication paths
that can optionally show
multiplicity.

1*

app-server2a db-server1

HTTP server
Web client
machine

communication path
between two nodes

communication path
showing multiplicity

ptg

446 ■ Appendix A: UML—Unified Modeling Language

The containment relation that exists for files and directories
in the install and implementation styles can be shown for UML
artifacts by nesting the artifacts.

Implementation views typically show the tree structure of
files and folders in the development environment; install views
show the tree structure of the installed application. A UML
artifact naturally represents a file, but not a folder (directory),
in the file system. An alternative is to create a stereotype to spe-
cialize the standard UML artifact to represent a file system
directory. Figure A.19 is an example of an install view using reg-
ular artifacts for files and stereotyped <<dir artifacts>> for folders.

A.4.3 Work Assignment Style

In the work assignment style, the environmental elements are
people or organizational units. The software elements are
modules. UML doesn’t have a diagram type that is intended to
show work assignment information. However, if you choose
UML, you should represent a work assignment view with a
package diagram, using actors and packages. Figure A.20 shows
a simple example. The packages represent modules from a

The implementation
style is described in
Section 5.5. The install
style is described in
Section 5.3.

Figure A.19
Simple example of a UML diagram for an install view

«dir artifact»
C:\Program Files\SoundRecorder

«dir artifact»

\log

«dir artifact»

\config

«artifact»
application.ini

«artifact»
updater.ini

«artifact»
install.log

«artifact»
SR.log

«artifact»
SR.exe

«artifact»
updater.exe

«artifact»
sound.dll

«artifact»
license.txt

«artifact»
readme.html. . .

«Win task»

«Win process»

«Win process» «dir artifact»

\dat

. . .

Notation: UML
‘...’ indicates that there are
other elements not shown

«manifest»

«manifest»

«manifest»

«manifest»

«manifest»

: SRmain

: SRservices

: SRupdater

: SR repository
«file repository»

ptg

A.4 Documenting an Allocation View ■ 447

module view, and the actors are the organizational units you’re
assigning the work to. Stereotyped dependencies indicate the
activities being assigned.

ADVICE

Avoid UML Ambiguity Traps

UML offers some very wide-ranging modeling constructs, many of which have
semantics that are open to broad interpretation. That makes it easy to create
UML diagrams that, while correct, fail to convey your architectural decisions
with precision or (worse) convey the wrong notion altogether. Four cases war-
rant special admonition:

• Overusing class diagrams. This topic is covered separately in the sidebar
“UML Class Diagrams: Too Much, Too Little,” in Section A.2.6.

• Using dependency arrows in a C&C diagram. It is possible to use a UML
dependency to represent a connector with an arrow. This is a bad idea!
Dependency is a relation typically found in a module view to depict a static
relation between code elements, not in a C&C view, where relations represent
runtime interactions. A dependency arrow in a C&C view may cause confu-
sion by making your view look like a combination (an unintentional one) of
C&C views and module views. Plus, depends on is usually just the wrong
concept for a C&C view. Architects tend to use this arrow when they want to

Figure A.20
Simple example of work assignment shown with UML symbols

Navigation
subsystem

Telemetry

science
team

data
team

local
QA team

QA contractor
team

«develops» «develops»
«develops» «develops» «develops»

«tests»«tests»«tests» «tests» «tests»

Communication
subsystem

Sampling and
analysis
subsystem

Data processing
subsystem

prime contractor
team 1

prime contractor
team 2

ptg

448 ■ Appendix A: UML—Unified Modeling Language

imply directionality, as in a pipe-and-filter view, to show flow of information.
But the whole point of that style is to create an architecture where the filters
are independent of each other. Depends on is exactly the wrong thing to say
(and draw) in a pipe-and-filter view.

• Careless use of associations. In a module view of the architecture, you may
find modules represented as UML classes with UML associations between
them. A navigable association from X to Y usually means that X and Y can
interact in some way, and/or the state of an X object contains one or more
(depending on the multiplicity) references to Y objects. Figure A.21 is an
example of a UML class diagram with associations. We have observed that
architects sometimes use association (improperly, in our opinion) to signify a
uses relation. Before you use an association to connect classes in a module
view, ask yourself whether the association represents just a uses relation. If it
does, represent it using a <<use>> dependency instead. If it doesn’t, make
sure it’s clear to the stakeholders what the associations represent.

• Using types instead of instances. Figure A.22 shows a component type
(Catalog) being deployed to a hardware node. Although UML allows this,
what does it mean? It might mean that all instances of the type are deployed
to the node, or any one instance, or one particular instance, or something
else. You can use a type name as shorthand for one or more instances—as
long as you explain it. If you take this option, add an explanation to the dia-
gram’s key to say what you mean.

Figure A.21
Examples of UML associations between classes. Cardinality (multiplicity) is indicated by a numeric label at
the association end (“*” represents “many”). The hollow diamond indicates an aggregation association, which
is a logical part-whole relation. An association may imply a usage dependency relation in the direction of the
navigability arrow.

id
emailId
password
name

id
name

userId

* statusHistory
Entries

1

has

countryId

1 *lives in

id
name
gmtTimezone

cities*

has

UserStatus
History

id
status
date
description

User

City

Country

ptg

A.5 Documenting Behavior ■ 449

Ambiguities like these should be avoided wherever possible for the benefit of all
stakeholders of the documentation.

A.5 Documenting Behavior
UML offers a wide variety of diagram types to model system
behavior. Many of them are mentioned in Chapter 8 in this
book. Behavior diagrams complement the structure diagrams
found in module, C&C, and allocation views. For instance, a
UML class diagram showing classes and packages and their usage
dependencies can be the primary presentation of a uses view.
A sequence diagram can describe the behavior of the modules
(classes in the class diagram) when executing a specific trace
or scenario. Table A.1 summarizes the types of behavior dia-
grams available in UML and when to use each one.

Figure A.22
Allocating a component type to a node

«allocated to»
«component»

Catalog

«linuxquad»
app-srv2a

Table A.1 UML behavior diagram types

UML Diagram Definition

Activity diagram Use to describe a work flow of the system as a sequence of actions. It
can show branch conditions and concurrent actions.

Sequence
diagram

Use to show the explicit sequence of messages between architecture
elements and participants of a specific trace. It can show conditional
segments of the trace, loops, and parallel segments.

Communication
diagram

Use to show the sequence of messages between architecture elements
in a specific trace.

Timing diagram Use to capture state changes along a strict time line, as well as timing
constraints. Particularly useful to model real-time systems.

Interaction over-
view diagram

Use to compose workflows following the activity diagram notation, where
the actions are themselves interaction diagrams (such as sequence dia-
grams or activity diagrams).

State machine
diagram

Use to model the behavior of architecture elements by specifying their
states and all possible transitions between states.

Use case
diagram

Use to show actors and the use cases that they can perform. Use cases
represent functionality of a system or parts of it.

ptg

450 ■ Appendix A: UML—Unified Modeling Language

The following subsections give a brief overview of each type
of UML behavioral diagram and show the most useful symbols
used in each diagram.

A.5.1 Activity Diagram

UML activity diagrams are flow charts. You should use them to
describe the sequence of actions performed in a given business
process of the system. They are particularly useful to describe
business flows that involve concurrency (that is, actions exe-
cuted in parallel). Figure A.23 shows symbols commonly used
in UML activity diagrams.

When using an activity diagram to describe the behavior of
the system, you can indicate which architecture element per-
forms each action using activity partitions (“swim lanes”). If
there is an interaction between two swim lanes, there should be
a relation or connector between the corresponding architec-
ture elements in the primary presentation where these ele-
ments are defined. Figure A.24 shows an example of an activity
diagram. In this example, Depth Meter, Dive Tracker, and Ther-
mometer could be modules from a module view or components
from a C&C view.

A.5.2 Sequence Diagram

The UML sequence diagram should be used to describe graph-
ically the sequence of interactions among architecture elements

Section 8.3.2 describes
UML activity diagrams
as a behavioral notation.

Figure A.23
Symbols used in UML
activity diagrams

interruptible region with
interrupting edge (if this
edge is active, all
behaviors in the region
are terminated)

activity partition
or “swim lane”
(indicates the
element
performing the
actions)

action

initial
node

final
node

object
node

control
flow

decision
node

fork node
(introduces
concurrency)

join node
(synchronizes
control flow)

merge node
(does not
synchronize)

send
signal
action

accept
event
action

ptg

A.5 Documenting Behavior ■ 451

in a particular trace or scenario of the system. The participants
in a sequence diagram are UML objects. These participants
may be instances of UML classes that are modules in a module
view, or UML component instances from a C&C view. If the
sequence diagram shows a message from one participant to
another, there should be a <<use>> dependency or a connec-
tor between the corresponding classes or components in the
module or C&C view, respectively.

The basic notation for sequence diagrams is shown in Figure
A.25. There are also different types of frames that can be used
to organize the diagrams and express conditional flows and
loops. Figure A.26 shows some of the different kinds of frames
available. Figure A.27 shows the notation for timing con-
straints, parallel traces, and coregions, which are useful to
describe behaviors in systems with strict deadlines and concur-
rent tasks.

Chapter 8 has some
examples of sequence
diagrams (see Figures
8.4 and 8.5). Another
example can be found in
the software architecture
document that accom-
panies this book online
at wiki.sei.cmu.edu/
sad/index.php/
Workflowmanager_
Module_Uses_View.

Figure A.24
Example of a UML activity
diagram. It shows the flow
of activities performed by a
simple diving computer
that registers depth of the
diver (based on the water
pressure) and the water
temperature. Depth Meter,
Dive Tracker, and
Thermometer are
architecture elements.

read
pressure

[not
underwater]

enter
dive mode

[underwater]

check
depth

check
water

temperature
read

pressure

beep
alarm

[not ascending
too fast]

[ascending
too fast]

sleep
0.5 sec

[underwater]

exit dive
mode

[not
underwater]

finish
dive mode

read
water

temperature

sleep
30 sec

exit dive
mode

Depth Meter Dive Tracker Thermometer

ptg

452 ■ Appendix A: UML—Unified Modeling Language

Sometimes an object receives a call when it’s already execut-
ing another call. This reentrant call is represented by an over-
lapping execution occurrence bar, as shown in Figure A.28.

A special case of a reentrant call is when the object makes a
call to itself. The notation for self calls is not defined in the

Figure A.25
Basic notation for UML
sequence diagrams actor (usually

starts the
sequence)

object

lifeline

synchronous
message

asynchronous
message

execution occurrence
(object is executing or
waiting for a response)

object
destruction

return
message

Figure A.26
Some of the frames
available in the UML
sequence diagram notation

sd id

id

[condition]

[else]

[x==value1]

[x==value2]

[else]

[condition]

loop [guard]

loop [0,*]

frame identifying
the sequence diagram
(id is optional)

optional
trace

frame showing
alternative
traces
(equivalent
to an if-then-
else construct)

frame showing
alternative
traces
(equivalent to
a switch-case
construct)

interaction use
(shorthand for
copying contents
of referred diagram)

loop (guard is
Boolean expression
or min, max number
of iterations)

infinite loop

alt

alt

ref

opt

Figure A.27
UML sequence diagram
notation for timing
constraint, parallel traces,
and coregions

par

time duration
constraint

coregion
(messages within
can occur in any
order; equivalent
to a par frame with
each message in a
separate segment)

parallel execution
(the two or more
segments of the
frame are traces
that occur in
parallel)

msg1

msg2

time

ptg

A.5 Documenting Behavior ■ 453

UML specifications. A common alternative is to use an overlap-
ping execution occurrence and a self message (see Figure
A.29(a)). Showing the new execution occurrence is especially
useful if you want to indicate other calls that are made within
that execution. A valid simplification is to show the self mes-
sage but omit the overlapping execution occurrence bar (Fig-
ure A.29(b)). The third alternative, also valid, is to simply
indicate in a comment box that an internal call takes place at
that point (Figure A.29(c)).

A.5.3 Communication Diagram

Akin to sequence diagrams, communication diagrams should
be used to describe the sequence of interactions among archi-
tecture elements in a specific trace or scenario. The architec-
ture elements may be objects (instances of classes from a
module view) or component instances from a C&C view. The
notation for UML communication diagrams is straightforward,
as shown in Figure A.30.

A communication diagram shows a particular trace. There is
a line between two objects if they interact in that trace. The line
is labeled with an arrow, an operation name, and a number 1,
2, 3, and so on, to indicate the order of the interactions. In

Section 8.3.1 contains a
subsection about com-
munication diagrams,
with an example.

Figure A.28
Showing reentrant calls in a
UML sequence diagram

reentrant
call

Figure A.29
Options to show self calls in
a UML sequence diagram

(a) (b) (c)

call
getConnection()

getConnection()getConnection()

ptg

454 ■ Appendix A: UML—Unified Modeling Language

reality the numbering is not that simple. If an operation call is
number n in the sequence and if the execution of that call trig-
gers another call, this new call will be numbered n.1. If there’s
a third nested call, it will be n.1.1, and so forth successively.
Once all nested calls within the execution of n are complete,
call n+1 takes place. Figure A.31 illustrates this idea, showing a
simplistic communication diagram on the left and the equiva-
lent sequence diagram on the right.

A.5.4 Timing Diagram

A UML timing diagram is particularly useful when you need to
describe how the architecture elements interact and change
state along a strict time line, as in real-time systems. A timing
diagram is a trace-oriented notation; that is, each diagram
depicts the behavior of the architecture for a particular trace
or scenario.

A timing diagram shows the state changes of one or more
objects along a horizontal time scale. These objects may repre-
sent modules from a module view or component instances
from a C&C view. If the diagram shows multiple objects, in
addition to state changes, the timing diagram can display the
messages between objects that cause state changes. The dia-
gram can also display duration constraints to emphasize partic-
ular timing restrictions. Figure A.32 gives an example of a
timing diagram.

Section 8.3.2 describes
the difference between
trace-oriented and
comprehensive model
notations.

Figure A.30
Basic notation for UML
communication diagrams object

1:m()
call between two objects;
the operation called is m();
the number indicates the
ordering of messages in
the diagram

Figure A.31
Notional example of
communication diagram
and corresponding
sequence diagram that
illustrates how calls are
numbered in a
communication diagram

:A

:C

:B

:A :B :C

opX()
opY()

opZ()

(a) (b)

1:opX()

2:opZ()

1.
1:

op
Y(

)

ptg

A.5 Documenting Behavior ■ 455

A.5.5 Interaction Overview Diagram

UML interaction overview diagrams can be used to describe
behavior in architecture views that show interactions of large-
scale elements. They are useful to compose existing sequence
diagrams, communication diagrams, and other interaction
diagrams.

The interaction overview diagram uses the basic notation of
activity diagrams to show a composition of work flows; the
actions in an interaction overview diagram are replaced with
interaction diagrams or references to interaction diagrams
(defined elsewhere in the documentation). An interaction dia-
gram (see Figure A.1) can be a sequence diagram, a communi-
cation diagram, a timing diagram, or an interaction overview
diagram. Thus, an interaction overview diagram can have deci-
sion diamonds, initial and final nodes, and fork and merge

Figure A.32
Example of UML timing dia-
gram showing the state
changes and messages for
a successful “commit”
transaction in the two-
phase commit protocol
when there are two partici-
pants (workers). A duration
constraint indicates the
coordinator can wait up to 5
seconds for the “yes” (or
“no”) response from a
worker.

aborted

committed

ready

initial

aborted

committed

waiting

tentative

aborted

committed

ready

initial

commit

canCommit

canCommit

yes

yes

doCommit

commitDone

doCommit

commitDone

w
1

:W
or

ke
r

:C
oo

rd
in

at
or

w
2

:W
or

ke
r

0 5 10 15 20

{0..5s}

Time between canCommit
is sent and yes (or no) is
received by Coordinator

ptg

456 ■ Appendix A: UML—Unified Modeling Language

nodes for concurrency. However, instead of rounded rectan-
gles for actions, we have frames that either define an interac-
tion diagram inline or reference an existing one. Figure A.33
is an example of an interaction overview diagram where two
interaction diagrams (sequence diagrams in this case) are shown
inline, and two other interaction diagrams are referenced.

Figure A.33
Example of an interaction
overview diagram for the
automatic updates feature
of an ATM

sd

sd CheckForUpdates

:Timer
:Atm

Software
Updater

:Software
Updates
Service

isNewVersion
Available(curVersion)

Put ATM
out of service

for maintenance

ref

:Atm
Software
Updater

:Software
Updates
Service

getVersion(
newVersion)

:DataFile
Manager

convertDataFiles()

:OS

kill process

ATM rebootref

loop for each

updated

process

replace installation files

Key: UML

[new version available]

[requires manual update]

timeout

ptg

A.5 Documenting Behavior ■ 457

A.5.6 State Machine Diagram

State machine diagrams should be used to model the behavior
of architecture elements or groups of elements that go
through multiple states and transitions that are clearly identi-
fiable. A state machine can describe possible states and transi-
tions for modules from a module view, components from a
C&C view, hardware elements or communication channels
from a deployment view, and so on. The UML notation for
state diagrams is very rich. In addition to the basic symbols for
states and transitions, the notation allows the representation of
other useful information, such as the following:

• Initial and final (pseudo-) states.

• Composite states, which are states that have one sub-state
machine or multiple concurrent sub-state machines (multi-
ple regions).

• A history (pseudo-) state that represents the fact that a sub-
state machine “remembers” its last state when control comes
back to it. A history state has a transition to the “default”
state that becomes active when the sub-state machine is
entered for the first time.

• Guard constraints on transitions. When the event that fires
a transition occurs, the transition is enabled only if the
guard constraint evaluates to true.

• Entry and exit actions on states, which represent behavior that
is executed when the state is entered or exited, respectively.

• Effect on a transition, which is behavior executed when the
transition fires.

Figure A.34 shows the basic elements of the UML notation
for state machine diagrams. Figure A.35 is an example of a
state machine diagram.

Chapter 8 discusses
UML state machines as
a notation for behavior
documentation. Fig-
ures 8.8 and 8.9 in that
chapter show other
examples of UML state
machine diagrams.

Figure A.34
Notation for UML state
machine diagrams

event [guard] / effect

H

state

state

transition

initial state

final state

history state

region region
composite
state with
two regions

ptg

458 ■ Appendix A: UML—Unified Modeling Language

A.5.7 Use Case Diagram

You should create use case diagrams to specify the features,
operations, or actions available in the system, that is, what the
system is supposed to do. The actors involved in each use case
are also indicated. Actors are human or nonhuman entities
outside the system. A typical use case does not show architec-
ture elements but rather an overview of the behavior the system
provides. Thus, use cases frequently capture the functional
requirements for a system.

Figure A.35
UML state machine diagram for a car stereo that has an AM/FM tuner and a CD player. The events correspond to the
user action of pressing the power, eject, “FM AM,” or “CD” button, or inserting a disc. The history states tell that the FM
tuner is activated when the stereo is turned on for the first time, and from then on the system will remember whether the
radio (FM or AM) or the CD was playing last.

on

Radio playing

FM tuner
playing

CD playing

AM tuner
playing

CD loading

off

H

H

FM AM
button

FM AM
button

CD button
[no CD in]

eject button
[CD in] /
ejectDisc()

eject button
[no CD in]

CD
inserted

FM AM
button

[valid CD]

[invalid CD] /
ejectDisc()

eject button /
ejectDisc()

eject button /
ejectDisc()

FM AM
button

CD button
[CD in]

power
button

power
button

Section 8.3.1 discusses
use cases as a notation
for behavior documen-
tation. Figure 8.2 is an
example of use case
diagram.

ptg

A.5 Documenting Behavior ■ 459

The basic notation for use case diagrams consists of use case
ovals and actors, and straight lines to show the associations of
actors to use cases. You can draw a rectangle around a group of
use cases to demarcate the functionality of a subject (a system or
subsystem). It’s also possible to use generalization to show hier-
archies of actors or use cases. Figure A.36 shows the basic nota-
tion for use case diagrams.

Two relations that can be specified between use cases are
these:

• Extend. If use case A extends use case B, the behavior speci-
fied by A is conditionally inserted into B. Imagine that use
case B has an extension point where use case A can be
“plugged in.” If a certain condition—often specified in a
comment note—is true, use case A is executed. Use case B
remains independent of A. Figure A.37 shows an example.

• Include. The behavior of the included use case is inserted into
the including use case(s). The included use case is not
optional and the including use case depends on it. An
included use case can be used to factor out behavior that can
be reused by multiple use cases. Figure A.37 shows an example.

Figure A.36
Symbols used in UML use
case diagrams use case

actor

association

generalization

subject (system)
boundary

Figure A.37
On the left is an example of
the extend relation in a
UML use case diagram.
The behavior in “Reset
password” is conditionally
inserted into an appropriate
spot in “Sign in,” but “Sign
in” remains independent of
“Reset password.” On the
right is an example of the
include relation. Behavior in
“Print receipt” is inserted
into the behavior of “With-
draw” and “Deposit”—they
depend on the execution of
“Print receipt.”

user clicked
“Forgot
password”

«extend»

«include»

«include»

Print
receipt

Withdraw

Deposit

Sign in

Reset
password

ptg

460 ■ Appendix A: UML—Unified Modeling Language

A.6 Documenting Interfaces
Architectural elements of different kinds have interfaces
across which they interact and communicate with each other.
Interfaces of modules and components are represented differ-
ently in UML.

Module interfaces should be documented using UML pro-
vided and required interfaces. When a module provides (that
is, realizes or implements) an interface, this should be depicted
as a provided interface in UML (a lollipop symbol). An inter-
face can also be represented in UML as a stereotyped class,
which makes it easier to see operations and attributes of the
interface. A realization arrow is used to indicate that a given
module provides that interface. Figure A.38 shows both alter-
natives for depicting provided interfaces.

To indicate that a module requires an interface, you should
use a UML required interface (a socket symbol) attached to
the class representing the module. It is common to avoid doc-
umenting required interfaces as sockets; instead, a provided
interface can be represented by drawing a <<use>> depen-
dency from the module requiring the interface to that inter-
face. Figure A.39 shows both options.

Interfaces in C&C views are called ports (component inter-
faces) and roles (connector interfaces). Component ports
should be represented using UML ports, optionally aug-
mented with UML interfaces (both provided and required, as
for modules). A port can include any number of provided and
required interfaces, in any combination. UML interfaces can
be attached to a port when you want to indicate the operations
or attributes provided or required at that port. Ports can also
include a multiplicity (typically only on component types),
restricting how many occurrences of that port can be found on
any corresponding instance.

Chapter 7 discusses the
documentation of soft-
ware interfaces. Section
7.2.1 provides advice
on how to represent
interfaces in diagrams,
including UML diagrams.

Section 3.4.3 has an
advice box about repre-
senting components,
ports, and connectors
in UML.

OCL is an OMG stan-
dard, and the specifica-
tions can be found at
omg.org/spec/OCL.

Figure A.38
Two alternatives for show-
ing in UML that an interface
(IObservable in this exam-
ple) is provided (that is,
realized or implemented)
by a class
(NavigationSystemStatus)

Subscribe(IObserver
subscriber)

«interface»
IObservable

Navigation
System
Status

IObservable

Navigation
System
Status

provided interface
(lollipop)

interface as
stereotyped class
and interface
realization

ptg

A.6 Documenting Interfaces ■ 461

Representing connector roles is more difficult in UML.
When connectors are represented using UML connectors,
UML ports cannot be used. Instead, roles can be at best iden-
tified by labeling the connector ends. When connectors are
represented using UML components, however, UML ports can
be used to represent roles (just as for component ports).

ADVICE

UML interfaces describe the syntax of operations and attributes. To capture
semantics, error conditions, and quality attributes of the interface resources,
you can use comment boxes in the diagram or the element catalog of your
architecture view. Semantics and usage constraints on an interface can also be
documented using the Object Constraint Language (OCL). OCL is a formal
declarative language that operates on UML models.

PERSPECTIVES

UML Tools

The landscape of UML tools is populated with a wide range of commercial and
free tools. When I teach software architecture to practitioners, I’m often asked
what the best UML tools are. I always reply with the usual answer: “It depends.”
And it really does. UML tools these days do much more than create UML mod-
els and diagrams. Some tools offer:

• Reverse engineering

• Code generation

Figure A.39
Two alternatives for
showing in UML that an
interface is used (that is,
required) by a class

Scheduled
Service

Scheduled
Service

Advise(int duration)
Unadvise()

«interface»
ITimer

Logger

required
interfaces
(socket)

the «use»
dependencies
point to the
required
interfaces

«use»

«use»

ILogging

ILogging

ITimer

ptg

462 ■ Appendix A: UML—Unified Modeling Language

• Model-driven architecture (MDA) compliance

• Compiling and debugging code

• Requirements mining

• Project management aid

• Designing aid

• Support to software development processes (such as the Rational Unified
Process)

• Code complexity analysis and automatic refactorings

• Modeling using other languages (such as Business Process Modeling Nota-
tion, or BPMN, and entity-relationship diagrams)

• Impact analysis

• Calculation of winning lottery numbers (No, not that.)

I’ve been involved in the evaluation of UML tools several times. As a practitioner,
I work with UML tools on a daily basis. Currently I work with three or four differ-
ent tools in different projects, and I can’t help thinking at times how much I wish
I had that other tool in front of me. Extra time you and your peers spend because
you are not using the best tool for the job usually costs far more than the tool
itself. So, choosing wisely may spare you a lot of pain and cash in the long run.

There are basically two categories of UML tools (or software design tools in gen-
eral): modeling tools and drawing tools. A UML modeling tool will allow you to
draw UML diagrams and will catalog in a model all elements and relations that
you define in the context of a project. Thus, when you add a message from
object “:A” to “:B” in a sequence diagram, the tool can prompt you to choose
one of the operations you previously defined for class “B” in a class diagram.
On the other hand, a drawing tool or diagramming tool will let you draw UML
diagrams without creating a model underneath. The whiteboard or piece of
paper where you sketch design diagrams is the simplest form of drawing tool.
A sophisticated one is, for example, Microsoft Visio with Pavel Hruby’s UML 2
stencil (available at softwarestencils.com/uml).

Many organizations apply a lot of effort to adopt a UML tool. Some of them buy
a powerful UML modeling tool, configure the tool on everybody’s machine, train
the people, and then what happens? Months later they realize that only 10 or 15
percent of what the tool offers is used, or most people simply use the tool as a
drawing tool. The first step to choose a UML tool is to define the evaluation cri-
teria, which should be based on well-thought-out requirements. Here are some
recommendations for your next quest for the right UML tool:

• The requirement can’t be just “I need a good UML tool.” The tool should have
the features you need. Examples: you may need a tool that does both reverse
engineering and code generation (round-trip engineering); you may be look-
ing for a UML tool that has timing diagrams—not all UML tools support all
UML diagrams.

ptg

A.6 Documenting Interfaces ■ 463

• The requirements should come from the people who are going to use the tool.
Sometimes management buys a tool to “help out” without consulting with the
target tool users.

• The tool should match the skill set of the people who need to use it.

• Consider the geographic distribution of your team. Some tools have better
support for distributed teams.

• If you have a software development process in place, the tool should support
the process. It’s much harder to try to adapt the process to fit the tool.

• Think about the cost of tool support. For free tools, a popular product with a
large user base represents greater hopes of finding solutions for the prob-
lems you may encounter.

• Don’t blindly trust tool advertisements and published tool rankings. The eval-
uators ranked the tools against their criteria, not yours.

As you may have suspected, for several reasons I’ll close this sidebar without
expressing my preference for any UML modeling tool. The fun is in finding the
right one . . . for you. Just remember that the right tool is the one that makes
your job easier.

—P.M.

ptg

This page intentionally left blank

ptg

465

BSysML—Systems
Modeling Language

Although not intended as a dedicated architecture description
language, the Systems Modeling Language (SysML) provides
sufficient constructs to meet many of the needs of a systems
engineer. The engineer can represent the topology of the
hardware and allocate software units to those hardware units.
It is possible to represent the various architecture views needed
to document a software architecture and particularly to show
combined views of hardware and software.

SysML is a general-purpose systems-modeling language intended
to support a broad range of analysis and design activities for
systems-engineering applications. Systems engineers begin
with a general problem statement, evolve toward a more spe-
cific problem statement, and eventually allocate portions of
the problem to various solution elements. SysML is defined so
that sufficient detail can be specified to support a variety of
automated analysis and design tools.

SysML is a standard maintained by the Object Management
Group (OMG) and was developed by OMG in cooperation
with the International Council on Systems Engineering
(INCOSE). SysML was developed as a profile of the Unified
Modeling Language (UML). Being a profile means that SysML
reuses much of UML, but it also provides the extensions neces-
sary to meet the needs of systems engineers. The extensive
overlap facilitates the interactions between systems engineers
writing in SysML and software engineers writing in UML.
SysML retains the extensibility of UML by including the UML
elements necessary to define the SysML constructs.

The SysML standard defines several diagram types, shown in
Table B.1. The first column lists those UML diagram types that
SysML reuses unchanged. The second column lists those UML

With John D. McGregor

ptg

466 ■ Appendix B: SysML—Systems Modeling Language

diagram types that have been modified. The third column lists
those diagram types unique to SysML. As a convention, SysML
diagrams have an enclosing frame with a diagram type designa-
tor. The two or three letters following each name in the table
form the designator used in the enclosing frame of each dia-
gram to identify the diagram type. A SysML model is composed
of several diagram instances, usually from several different dia-
gram types.

B.1 Architecture Documentation
A SysML model is an aggregation of diagram instances, which
together completely describes the target. SysML can be used to
construct an ISO/IEC 42010-compliant description, or it may
describe the architecture of the system in one model. A SysML
model is typically organized using packages, each of which
defines a namespace. A package contains a set of diagrams and
may import diagrams from other packages. SysML supports
the standard definitions of viewpoint and view and has stereo-
types for each one. In SysML, a view is represented as a package
that contains information conforming to a specific viewpoint.
Figure B.1 shows an example of a viewpoint and three con-
forming views described in a SysML block diagram.

B.2 Requirements
SysML provides a means of establishing traceability among
requirements and from requirements to their implementation
as described in the architecture. Figure B.2 illustrates these
relations. Requirements are related to each other for a variety
of reasons, including one requirement being derived from
another. A requirement can be related to the elements that sat-
isfy the requirement through the satisfy relationship. This tech-
nique links the requirements to the architecture; for example,
Payment is represented in both Figure B.2 and Figure B.3.

Table B.1 SysML diagram types

As Is Modified Unique

Sequence (sd) Activity (act) Requirements (req)

State (stm) Block (bdd) Parametric (par)

Use case (uc) Internal block (ibd)

Package (pkg)

ptg

B.2 Requirements ■ 467

Figure B.1
SysML block diagrambdd [package] block [block]

«view»
Management

«conform» «conform» «conform»

«view»
Computation

«view»
Conceptual

«viewpoint»
Analysis

stakeholders : ”Domain expert, Business analyst”

purpose : “show a structural view”

concerns : “need a complete picture of domain”

languages : “SysML”

methods :

Figure B.2
SysML requirement
diagram

req [package] Requirements [Requirements]

«requirement»
Ensure correct fair exchange of product and payment

Text : ” The system must ensure that users receive the correct
product for the product they submit”

Id : “NF-001”

«requirement»
Turn On Exact Change Light

Text : ” To ensure fairness turn on the exact change
light when it is not possible to give change”

Id : “NF-001-D001”

«testcase»
ExactChange…

«satisfy»

«block»
Payment

«deriveReqt»

ptg

468 ■ Appendix B: SysML—Systems Modeling Language

B.3 Documenting a Module View
Table B.2 provides a mapping of the requirements of a Views
and Beyond module view to the SysML block diagram. The
block is a SysML model element that is similar to a class in
UML. The block diagram illustrates the relations among a set
of blocks, including the usual is a, depends on, and is part of. This
is basic structural information that will be referenced by other
views. Figure B.3 shows an is-a module view using the SysML
block diagram.

Table B.2 Mapping the concepts of a module view to SysML

Module SysML

Module Block

Is-a, is-part-of, depends-on
relations

All these relations

Name, responsibilities, imple-
mentation information

Name, operations, and properties

Properties of relations Name, visibility, and numerous
other properties, plus the possibil-
ity of defining additional ones

Figure B. 3
Generalization view in
SysML

bdd [package] block3 [block3]

«block»
Product

operations

constraints

parts
references

values
+ price : float

properties
+ Property1

«block»
Payment

operations

constraints

parts
references

values
date : EDate

amountPaid : float

properties

«block»
Currency

operations

constraints

parts
references

values
properties

«block»
Credit

operations

constraints

parts
references

values
properties

Module view

1

+product +payment

«generalization» «generalization»

1

ptg

B.4 Documenting a Component-and-Connector View ■ 469

B.4 Documenting a Component-and-Connector View
The block and internal block diagrams can be used together to
provide a C&C view. The block diagram is used to define the
component types and their relations. The internal block dia-
gram is used to represent the component instances and their
connections. Table B.3 shows the mapping of the require-
ments of a C&C view to SysML. Figure B.4 shows a C&C view of
the blocks in Figure B.3.

Table B.3 Mapping the concepts of a C&C view to SysML

C&C SysML

Principal processing units and
data stores
Interaction mechanisms

Blocks and parts

Attachments Flow ports and item flows

Connector Connector; connectors connect
out port to an in port

Name of component, type, and
other properties
Name of connectors, type, and
other properties

Name, type, and any properties
from the block
Name only; other properties can
be added either by a comment or
by a stereotype

No fixed topology Topology to fit the problem

Figure B.4
Internal block diagramibd [block] internalBD [IBD]

Instance of
Product

Instance of
Payment

approvePayment

product

creditCardPayment

ptg

470 ■ Appendix B: SysML—Systems Modeling Language

B.5 Documenting an Allocation View
Systems engineers use allocation relations to associate many
different types of information. SysML has several ways to show
various types of allocation. The most common allocation view
allocates the software to hardware. Table B.4 gives a mapping
of the allocation view requirements onto a SysML internal
block diagram.

Table B.4 Mapping of allocation view concepts to SysML

Allocation SysML

Software element, environment element A block is stereotyped to represent hardware;
a description of the software allocated to that
hardware is added.

Allocated-to relations For this allocation the relation is runs on.

Software element has required properties.
Environmental element has provided
properties.

Both the software element and the hardware
element have more complete descriptions in
other diagrams that provide this information.

Properties depend on style. The properties are defined elsewhere.

Topology varies by style. Pairwise match of “from” and “to” elements

Figure B.5
Allocation of software to
hardware in SysML

ibd [block] internalBD2 [IBD]

«hardware»

coinAcceptor

allocatedFrom

«software»

CoinDriver

«hardware»

VendingProcessor

allocatedFrom

«software»

Vending

«hardware»

billAcceptor

allocatedFrom

«software»

BillDriver

«hardware»

creditCardAcceptor

allocatedFrom

«software»

CardDriver

ptg

B.6 Documenting Behavior ■ 471

Figure B.5 shows the “allocatedFrom” partition in a block
definition. It is also possible to have an “allocatedTo” partition,
giving two-way traceability. Allocations can also be specified on
a large number of other model elements. SysML adds a table
style for allocation; see Table B.5 for an example.

B.6 Documenting Behavior
SysML has two ways to model behavior: the sequence and activ-
ity diagrams. The sequence diagram usually portrays a single
path or scenario. It is unchanged from the UML definition.
The activity diagram, in both SysML and UML, can represent
a complete algorithm, but the SysML activity diagram has
added a number of extensions that support describing a
broader range of behaviors more accurately. These additions
include the ability to represent inputs and outputs at various
points along the paths of the diagram, and the ability to model
an activity as a first-class entity that can appear in a class dia-
gram and can participate in specification/generalization rela-
tions. Figure B.6 shows a small activity diagram.

Table B.5 Table view of allocation

Type Name End Relation End Type Name

Activity CoinDriver From Allocate To Block coinAcceptor

Activity BillDriver From Allocate To Block billAcceptor

Figure B.6
A SysML activity diagramactivity

updateTotal

CancelAction

Behavior description
Hardware event trace

CoinInsertEvent

BillInsertEvent

CreditCardInsertEvent

Cancel

ptg

472 ■ Appendix B: SysML—Systems Modeling Language

B.7 Documenting Interfaces
SysML provides an interface model element in the block dia-
gram type. The interface can also have associated constraints.
As with all of the SysML diagram types, constraints may be
added to any of the elements in a diagram, usually to specify
the semantics of the element to which the constraint is
attached. In Figure B.7, a constraint is used to capture the
semantics of one dependency of the View interface.

B.8 Summary
A number of commercial and open-source tools support
SysML. The Topcased project (topcased.org) provides editors
for both the graphical and XML-based syntaxes of SysML.
Commercial tools such as Rhapsody, MagicDraw, and Enter-
prise Architect support SysML.

At this writing, SysML version 1.2 is the latest release. As the
use of SysML expands, expect that many change requests will
be submitted and the language will evolve to more fully meet
the needs of the systems-engineering community. Changes to
UML may also be reflected in SysML, because they share a
large portion of their metamodels.

Figure B.7
Interface documentation in
SysML

bdd [package] mvc [mvc]

«dependency»

«dependency»

«dependency»

«interface»
Model

+ notify ()
+ register ()
+ unregister ()

«interface»
View

+ update ()

«interface»
Controller

+ mouseEvent ()
+ keyboard ()

Interface
documentation

{only data needed
for this view }

ptg

473

C
AADL—

The SAE Architecture
Analysis and Design

Language

C.1 Introduction
The Architecture Analysis and Design Language (AADL) (SAE
AADL 2010) was developed as an SAE International industry
standard with participation from European and U.S. avionics,
aerospace, automotive, and medical device industry. SAE Inter-
national is the largest standards provider for the avionics and
automotive industry. AADL was first approved by more than 20
member organizations and published in November 2004 (SAE
2004/2009). In January 2009 a revision was published as SAE
document AS5506A, based on feedback from industrial expe-
rience with AADL.

The AADL standard defines a textual and graphical lan-
guage to represent the runtime architecture of software sys-
tems as a component-based model in terms of tasks and their
interactions, the hardware platform the system executes on,
possibly in a distributed fashion, and the physical environment
it interfaces with, such as a plane, car, medical device, robot,
satellite, or collections of such systems. This core language
includes properties concerning timing, resource consumption
in terms of processors, memory, network, deployment alterna-
tives of software on different hardware platforms, and trace-
ability to the application source code. AADL is extensible
through user-defined properties and sublanguage annexes.
The standard includes a set of annex documents published as
SAE AS5506/1 (SAE 2006) that defines the AADL Meta-Model
and XMI model interchange format for AADL, as well as the
Error Modeling Annex as a standardized extension to support
fault modeling and reliability and dependability analysis. Other
extensions, such as for security, behavior, and architectures such
as ARINC653 exist as draft standards and working documents.

With Peter Feiler

ptg

474 ■ Appendix C: AADL— The SAE Architecture Analysis and Design Language

A UML profile of AADL is being standardized jointly with an
Object Management Group (OMG) initiative (OMG 2009).

AADL provides several categories of components:

• A generic abstract component used for conceptual modeling
and for specifying architecture templates or patterns

• Software components such as the following:

– Thread to represent schedulable concurrent tasks

– Thread group to support grouping of threads into groups
with a common interface

– Process to represent protected address spaces

– Data to model application data types and static data com-
ponents

– Subprogram and subprogram groups to represent applica-
tion functions and libraries of functions

• Hardware components such as the following:

– Processor to execute threads

– Virtual processor to represent virtual machines and hierar-
chical schedulers

– Memory to represent storage hardware

– Bus to represent buses and networks used to support
communication between hardware components

– Virtual bus to represent protocols and virtual channels

– Device to represent components of the physical system
such as an engine or a camera

• System to support hierarchical grouping of both software
and hardware components

The AADL standard associates specific semantics to each of
the component categories; for example, it defines the execu-
tion semantics of threads in terms of a hybrid automaton.
AADL imposes a containment relationship on components of
different categories. For example, threads and thread groups
must be contained in a process. Processes and hardware com-
ponents and system components can be contained in system
components. Interaction relations are expressed through con-
nections, and associations are expressed through reference
properties.

The property and annex annotations of the AADL model
support the generation of analytical models for different qual-
ity attributes from the same architecture model, as shown in
Figure C.1 (Lewis and Feiler 2008).

ptg

C.2 Documenting a Module Style ■ 475

C.2 Documenting a Module Style
Although AADL does not use the term “module,” AADL can
represent units of implementation and relations among them.
An AADL model is organized into packages, each of which
defines a namespace. Packages can be placed into a nested
naming hierarchy similar to Java packages. A package contains
component specifications and may specify use of components
from other packages. A package has a public part containing
component specifications accessible to other packages and a
private part containing component specifications local to the
package. The package and its component specifications are
maintained in an XMI representation based on the standard-
ized AADL Meta-Model and have both a textual and graphical
presentation. The graphical presentation may show subsets of
the underlying model according to a specific view point.

Component types can be defined in terms of other compo-
nent types through an extends relation (expressed by the
extends keyword in textual AADL). This relation corresponds
to the generalization concept in UML. This permits an incom-
plete component type that acts as a template to be refined by
completing the specification of features and properties, and to
be extended with additional features. These component types
effectively represent a family of interfaces for a component.

Multiple component implementations can be associated
with a component type through a realization relation expressed
by naming the type as part of the implementation specifica-
tion. They represent variants of a component. Implementa-
tions themselves can be refinements and extensions of other

Figure C.1
Multiple dimensions of
architecture analysis in
AADL

ARCHITECTURAL
MODEL

REAL-TIME
PERFORMANCE
Deadlock/Starvation
Latency
Execution Time/Deadline

SECURITY
Intrusion
Integrity
Confidentiality

DATA QUALITY
Temporal Correctness
Data Precision/Accuracy
Confidence

RELIABILITY
& SAFETY
MTBF
FMEA
Hazard Analysis

RESOURCE
CONSUMPTION
Bandwidth
CPU Time
Power

ptg

476 ■ Appendix C: AADL— The SAE Architecture Analysis and Design Language

implementations. These incomplete component types and
component implementation can be explicitly parameterized.
This allows us to model architecture patterns, reference archi-
tectures, and families of system architectures (Feiler et al.
2004, Feiler 2007, Feiler et al. 2009).

Figure C.2 shows the specification of a landing gear with fea-
tures indicating that it requires access to an electrical power
source, a hydraulic power source, and a signal flow. The com-
ponent as well as its features can have properties. In our example,
the landing gear has a weight property, a property providing
traceability to a requirement, and an indication of the
intended tier in a multi-tier architecture. The properties of the
landing gear features indicate their electrical and hydraulic
power requirements.

A graphical view of this component specification is shown in
Figure C.3. It shows the landing gear with its features on the
right. At the bottom is a property viewer that shows the prop-
erties associated with the landing gear specification. You can
create a new component specification by selecting the appro-
priate component category from the palette on the left and by
adding features from the palette into the component type.

Users can define data types using the AADL data component
type. Such data type specifications can be placed in a separate
package, which we call DataDictionary in our example in Fig-
ure C.4. This specification may characterize the data type in
source code with properties relevant at the architecture level,
such as the size of the data type, its source file, its base type rep-
resentation, and constraints on the data value and its measure-
ment unit. Data component types can have provided subprogram
features to reflect methods on classes. The internal details of
such data types may have been declared in a programming lan-
guage or expressed in a data modeling notation such as UML
class diagrams, or they can be expressed in AADL.

system LandingGear
 features
 ElectricalSupply: requires bus access ElectricalPower
 { SEI::PowerBudget => access 6000.0 w;};
 HydraulicPower: requires bus access HydraulicPressure {
 SAVI:: PressureBudget => access 300.0 psi;
 };
 Signals: requires bus access SignalFlow;
 properties
 SAVI::requirement => "Req 3";
 SEI::NetWeight => 30000.0 kg;
 SAVI::SystemTier => tier2;
end Landing Gear

Figure C.2
Specification sheet of a
landing gear

ptg

C.2 Documenting a Module Style ■ 477

A component implementation acts as a blueprint of the real-
ization of a component. Figure C.5 illustrates such a blueprint
for the implementation of a flight manager process. It consists
of several threads as subcomponents of the process. Connec-
tions indicate how these threads communicate with each other
and with components outside the process through the features
of the process interface, which are shown on the left. In this
case the port group graphic is expanded to show the elements
of the port group, such that individual ports of the port group
can be connected.

package DataDictionary
 public
 data NavSignalData
 properties
 Source_Data_Size => 2 Bytes;
 Source_Text => ("DataDictionary.java");
 Data_Model::Base_Type => data BaseTypes::uint16;
 Data_Model::Real_Range => 0.0 .. 255.8;
 Data_Model::Measurement_Unit => "km";
 end NavSignalData;

Figure C.4
User-defined data types

Figure C.3
Graphical view of
component specification

ptg

478 ■ Appendix C: AADL— The SAE Architecture Analysis and Design Language

C.3 Documenting a Component-and-Connector View
Each AADL component category has well-defined semantics,
many of which correspond to components in a component-
and-connector (C&C) view. For example, AADL threads model
concurrent tasks or active objects that represent sequential
execution of source code. A thread is bound to a virtual proces-
sor or processor for execution. AADL threads can be dis-
patched periodically or triggered by events or the arrival of
messages. In the latter case, a thread may execute aperiodically,
that is, in response to the arrival of an event or message. If the
thread is already active, newly arriving events or messages are
queued. A thread may execute sporadically; that is, it will respond
to events and messages, but its execution will be limited to a
maximum rate. A thread may have a dispatch protocol called
timed; that is, it will respond to events or messages like an ape-
riodic thread, but it will time out after a specified period if no
event or message arrives. A thread may be declared with a
hybrid dispatch protocol; that is, it executes periodically and it
responds to events and message arrivals. A thread may be dis-
patched as a background thread; that is, it is dispatched once
and executes until completion. The semantics of these dis-
patch protocols and the scheduling states of threads, such as
suspended, ready, and running, are defined precisely in the
standard using hybrid automata.

An example of a component specification for a process is
shown in Figure C.6. An AADL process represents a space par-
tition; that is, it provides runtime address space protection
from other processes. It illustrates that at every level of the
component hierarchy, we specify the complete interface of a
component and its subcomponents to outside components. It
also illustrates the use of port groups to indicate a collection of
ports through which this process interacts with other software

Figure C.5
Component blueprint of a
flight manager

ptg

C.3 Documenting a Component-and-Connector View ■ 479

components. The interaction with other components will be
specified through a single port group connection instead of
separate connections for each port.

The details of interaction in terms of ports are specified sep-
arately in a port group type declaration that can be placed in a
separate AADL package, as shown in Figure C.7. In our exam-
ple, one port group consists of two incoming ports and four
outgoing ports.

Port-based communication may be in the form of messages
(AADL event data port), in the form of events (AADL event port),
and in the form of state data (AADL data port). Event data ports
and event ports have queues associated with them. In addition,
arrival of messages or events can trigger the dispatch of a
thread according to its dispatch protocol. Data ports and event
data ports are typed with user-defined data types, and only
ports with compatible data types can be connected.

In AADL the connection concept is used to connect compo-
nent ports, subprogram features, or access features. Connec-
tions can have properties, such as properties that indicate the
desired protocol or quality of service provided by a protocol,
such as guaranteed delivery. The connection is then bound to
a virtual bus or bus that acts as the logical connector in terms of
protocols, or a physical connector to perform the communication

process prFlightManager
 features
 toFGS: port group Integrator::FGS::FMS::ICD::FMS_To_FGS;
 other_FMS_A: port group Integrator::FGS::FMS::ICD::FMS_CrossPlg;
 other_FMS_B: port group Integrator::FGS::FMS::ICD::FMS_CrossSkt;
end prFlightManager

Figure C.6
Software process with port groups

Package Integrator::FGS::FMS::ICD
 public
 -- with DataDictionary
 port group FMS_to_FGS
 features
 fuelFlow: in data port DataDictionary::FuelFlowData;
 navSignal: in data port DataDictionary:: NavSignalData;
 guidanceOut: out data port DataDictionary:: GuidanceData;
 fpDataOut: out data port DataDictionary:: FPData;
 navDataOut: out data port DataDictionary:: NavData;
 dmy: out event data port;
 end FMS_to_FGS;

Figure C.7
Port group specifications

ptg

480 ■ Appendix C: AADL— The SAE Architecture Analysis and Design Language

between different hardware components of the sender and
receiver.

AADL supports directional flow through ports and connec-
tions. The threads may perform periodic sampled processing
of signal streams, such as control systems, including communi-
cation timing semantics that ensure deterministic sampling.
Threads may also perform data-driven message processing,
processing of discrete events, and periodic processing of
alarms. In addition to port-based communication, AADL sup-
ports modeling of access to shared data components with con-
currency control—for example, blackboard architectures—
and shared access to bus components for communication
between hardware components. Finally, AADL supports inter-
action between threads and with devices through subprogram
calls to model service calls.

AADL distinguishes between a set of component specifica-
tions and blueprints and an instance of a system model. An
instance model is the result of instantiating a top-level system
implementation recursively. Typically, such a system consists of
the application software, the computing platform, and the
physical environment. The AADL standard has defined a sepa-
rate XMI representation of an instance model that analysis
tools can operate on directly, or from which analytical models
and runtime executives can be generated.

The instance model represents the complete component
containment hierarchy, as illustrated in Figure C.8. Connec-
tion instances are between the components that are the leaves
of the component hierarchy, for example, between thread
instances or between processor instances and bus instances.
The AADL standard does not require the full component con-
tainment hierarchy to be reflected in the instance model;
instance models may be flattened to include only component
instances with connection instances.

AADL supports the instantiation of incomplete system mod-
els. This allows such models to be analyzed early in the devel-
opment life cycle and the analyses revisited as the model is
refined. For example, only one process has been expanded to
the thread level. For such a model we can still perform resource
budget analysis by rolling up the data from threads and com-
paring it against the resource budgets of the processes. Those
budgets are compared against the capacity available through
the hardware.

AADL supports the analysis of critical flows throughout a sys-
tem by providing the capability to specify end-to-end flows and
annotating them with relevant flow properties, such as latency,
precision, and confidentiality. An end-to-end flow is specified

ptg

C.4 Documenting a Deployment View ■ 481

in terms of a sequence of component flow specifications and
connections. A component flow specification specifies a flow
from a component input (port) to one of its outputs (ports)
without having to expose the component implementation.
This allows end-to-end flow analysis, such as latency analysis, to
be performed on systems of systems based on specified flow
properties, while implementations of individual systems can be
separately validated to ensure they meet the specified flow
property.

C.4 Documenting a Deployment View
A complete AADL model of an embedded system includes soft-
ware components, computer hardware components, and com-
ponents of the physical system. The application software has to
be deployed on the computer hardware in order for us to be
able to perform analysis of operational quality attributes, such
as meeting timing, performance, reliability, safety-criticality,
and security requirements.

Figure C.9 shows a graphical representation of the deployment
view, as it is often found in architecture documents. It shows
the computer hardware components and the software compo-
nents placed inside them to indicate that they are bound to the
respective hardware component. This deployment information

Figure C.8
Component containment hierarchy of system instance model

MemBank1.RAM

MemBank2.ROM

Switch.EtherSwitch

PilotDsplay.MFD

MissionProcessor1Xeon.solo

Platform.ComputingPlatform.SlowProcessor

ApplicationSystem.EmbeddedApp.FlightManagerPIO

SystemConfigurations_mysystem_FMPIO_Instance.mysystem.FMPIO

GP.GuidanceProcessing

APC.AircraftPerformanceCalculation

PetIO.PeriodicIC

pageFeed.HandlePageRequest

FPP.FlightPlanProcessing

INAV.IntegratedNavigation

WAM.WarningAnnunciationManager

FD.FlightDirector

PCM.PageContentManager

DM.DisplayManager

FM.FlightManager.PIO

NSP.NavigationSensorProcess

ptg

482 ■ Appendix C: AADL— The SAE Architecture Analysis and Design Language

is recorded through properties for processor binding, memory
binding, and connection binding. This deployment informa-
tion can be declared as a collection of property values at the
top of the model and refer to both the processes and threads
to be bound to processors, memory, and buses.

C.5 Documenting Behavior
AADL supports modeling of a variety of system behaviors. The
AADL mode and mode transition concept allows users to spec-
ify operational modes, different property values for different
modes, and different runtime configurations of components
and connection for different modes. For example, it can
define different sets of threads and port connections during
the taxiing mode of an aircraft and a cruise mode.

AADL modes can also be used to define different fault-tolerant
configurations. This is illustrated by the architecture redun-
dancy pattern shown in Figure C.10. It shows a replicated compo-
nent with an observer to determine its health. The replicated
component can be a software component or a hardware com-
ponent. In a hot standby pattern, both the primary and the
backup components are active in primary and backup mode;
in a passive backup pattern, only one of the components is
active at a time. Event-triggered mode transitions the dynamic
aspects of switching between these configurations. These
architecture patterns can be associated with the architecture as
aspects without cluttering the primary functional view.

The AADL property set mechanism allows users to introduce
new properties in support of certain analyses. For example, the
security behavior of security frameworks, such as the Bell

Figure C.9
Graphical representation of
a deployment view

MissionProcessor1

PCM.PageContentManager

DM.DisplayManager

MissionProcessor3

MissionProcessor2

WAM.WarningAnnunciationManager

FD.FlightDirector

FM.FlightManager

ptg

C.5 Documenting Behavior ■ 483

LaPadula and Chinese Wall frameworks, can be expressed as
properties on existing AADL model concepts (Hansson and
Feiler 2008). Figure C.11 illustrates the definition of security
classifications as an enumeration type that is then used to
define security properties with values of that type.

AADL also supports the use of a sublanguage in AADL
model annotations. Figure C.12 shows the specification of an
error state machine using the AADL Error Model Annex sub-
language (Rugina et al. 2008). This error machine specifies
fault-free states and error state, intrinsic faults and error prop-
agations with probability of occurrence, and conditions under
which error states can change.

An error state machine is associated with a component type
or component implementation. As a result, this error state
machine is attached to each instance of this component. The
error state machines of different components interact by prop-
agating errors based on the logical and physical connectivity as
well as the deployment of software to hardware.

AADL also has a draft Behavior Annex standard that was due
to be published at the time of this writing. The focus of this

property set Security_types is
 -- The levels of security that are applicable to the system.
 -- We require the use of the enumeration type because it
 -- forces an order on the levels, but with the limitation that
 -- the order is a total linear order.
 --
 -- Here we use the standard military/governmental classifications.
Classifications:
 type enumeration (unclassified, confidential, secret, top_secret);

Figure C.11
User-defined properties

Figure C.10
Dual redundancy pattern

insignal

outsignal

Init/restart

primary

backup

Primary Backup

Reinit

observer

Primaryok

Primaryfail

M

N

ptg

484 ■ Appendix C: AADL— The SAE Architecture Analysis and Design Language

annex is to support the specification of component interaction
behavior and discrete state behavior within components.

C.6 Documenting Interfaces
A component type declares the interface of a component to
other components, provides a specification of services, and
presents its resource requirements on the hardware platform.
The AADL feature concept is used to represent both provided
and required features through which the component interacts
with other components. AADL supports three types of interac-
tions between components: (1) port-based flow of data, events,
and messages from one component to another; (2) communi-
cation through shared access to a common resource, such as a
shared data component; and (3) calls on subprograms to
request services with returning results. AADL also supports the
concept of a flow specification to represent the flow through a
component without requiring access to its implementation.
Flow specifications can have properties such as the expected
latency of a flow through the component. They support end-to-
end flow analysis of large-scale systems.

C.7 Summary
AADL supports modeling of the static structure and interaction
topology, as well as the dynamic nature of system architectures.

error model basic
features
 Error_Free: initial error state;
 Failed: error state;
 Crashed: error state;
 Fail: error event {occurrence => poisson 10e-3};
 Repair: error event {occurrence => poisson 0.0001};
 KO: in out error propagation {occurrence => fixed p};
 OK: in out error propagation {Occurrence => fixed 0.2-p};
end basic;

error model implementation basic.nominal
transitions
 Error_Free -[Fail]-> Failed;
 Failed -[Repair]-> Error_Free;
 Error_Free -[in KO]-> Failed;
 Failed -[out KO]-> Failed;
 Error_Free-[in KO]-> Failed;
 Failed-[out OK]->Crashed;
end basic.nominal;

Figure C.12
An example of the Error Model Annex sublanguage

ptg

C.7 Summary ■ 485

The dependencies and the hierarchy reflected in the AADL
model are a good basis for analysis of quality attributes that
focus on the design of an architecture, such as modifiability.
AADL models include the task and communication architec-
ture of application software, the runtime architecture and
hardware platform, and the deployment of the former on the
latter to support the analysis of operational quality attributes,
such as availability.

The AADL standard includes a standard interchange format
for models in terms of XMI. This interchange format facilitates
integration with existing tools and interchange of AADL mod-
els between projects and organizations. There is an open-
source tool set for AADL (called OSATE) (SAE AADL 2010)
based on Eclipse, as well as commercial tool support. A num-
ber of architecture analysis tools as well as automatic genera-
tors of runtime executives have been integrated with these
AADL tool sets.

ptg

This page intentionally left blank

ptg

487

Acronyms

AADL Architecture Analysis and Design Language

ACSPP Architecture-centered software project planning

AD Architecture documentation

ADD Attribute-Driven Design

ADL Architecture description language

ADR Active design review

AOP Aspect-oriented programming

AOPA Aircraft Owners and Pilots Association

AOSD Aspect-oriented software development

API Application programming interface

ArchE Architecture Expert

ARID Active Reviews for Intermediate Designs

ASR Architecturally significant requirement

ATAM Architecture Tradeoff Analysis Method

ATIA U.S. Army Training Information Architecture System

ATM Asynchronous transfer mode

AV All-view

BDUF Big design up front

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

C&C Component and connector

CCM CORBA component model

CLR Common Language Runtime

CM Complexity

ptg

488 ■ Acronyms

CONOPS Concepts of Operations

CORBA Common Object Request Broker Architecture

COTS Commercial off-the-shelf

DBMS Database management system

DCM Data collection module

DoD U.S. Department of Defense

DoDAF Department of Defense Architecture Framework

DSM Dependency structure matrix

ECS EOSDIS Core System

ERD Entity-relationship diagram

FEAF Federal Enterprise Architecture Framework

FOS Flight Operations Segment

FTX Fault-tolerant UNIX

HLA High-Level Architecture

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDL Interface Definition Language (CORBA)

IEEE Institute of Electrical & Electronics Engineers

INCOSE International Council on Systems Engineering

IP Internet Protocol

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JSON JavaScript Object Notation

JSP JavaServer Pages

JVM Java Virtual Machine

MVC Model-view-controller

OMG Object Management Group

OSATE Open-source AADL tool environment

OV Operational view

OWL Ontology Web language

RAID Redundant array of independent disks

RMI Remote Method Invocation

RUP Rational Unified Process

SaaS Software as a service

SAE Society of Automotive Engineers

SARA Software architecture review and assessment

ptg

Acronyms ■ 489

SCM Software configuration management

SDL Specification and Description Language

SDPS Science Data Processing Segment

SHARK Sharing and Reusing Architectural Knowledge

SLA Service-level agreement

SOA Service-oriented architecture

SV Systems and services view

SysML Systems Modeling Language

TCP Transmission Control Protocol

TDDT Training and Doctrine Development Tool

TLCD Top-level context diagram

TOGAF The Open Group Architecture Framework

TV Technical standards view

UM Uncertainty

UML Unified Modeling Language

UTMC Unit Training Management Configuration

WBS Work breakdown structure

WSDL Web Services Definition Language

XML Extensible Markup Language

ptg

This page intentionally left blank

ptg

491

Glossary

Actors the other elements, users, or systems with which an
element interacts.

Allocation style a kind of style that describes the mapping of
software units to elements of an environment in which the
software is developed or executes.

Architectural (architecture) pattern “an architectural pattern
expresses a fundamental structural organization schema
for software systems. It provides a set of predefined sub-
systems, specifies their responsibilities, and includes rules
and guidelines for organizing the relationships between
them” (Buschmann et al. 1996, page 12).

Architecture cartoon the graphical portion of a view’s pri-
mary presentation, without supporting documentation.

Architecture description language (ADL) a language for rep-
resenting a software and/or system architecture. ADLs are
usually graphical languages that provide semantics that
enable analysis and reasoning about architectures, often
using associated tools.

Architecture framework “conventions and common prac-
tices for architecture description established within a specific
domain or stakeholder community” (ISO/IEC 42010:2007).
TOGAF and DoDAF are examples of architecture frameworks.

Architecture perspective “a collection of activities, tactics,
and guidelines that are used to ensure that a system exhib-
its a particular set of related quality properties that require
consideration across a number of the system’s architec-
tural views” (Rozanski and Woods 2005).

Architecture stakeholder someone who has a vested interest
in the architecture.

ptg

492 ■ Glossary

Architecture style specialization of element and relation
types, together with a set of constraints on how they can be
used.

Bridging element an element that is common to two views
and is used to provide the continuity of understanding
from one view to the other. A bridging element appears in
both views and has supporting documentation, usually a
mapping between views, that makes the correspondence
clear, perhaps by showing the combined picture.

Combined view a view that contains elements and relations
that come from two or more other views.

Communicating-processes style any C&C style whose compo-
nents can execute as independent processes.

Component-and-connector (C&C) style a kind of style that
introduces a specific set of component and connector
types and specifies rules about how elements of those types
can be combined. Additionally, given that C&C views cap-
ture runtime aspects of a system, a C&C style is typically
also associated with a computational model that prescribes
how data and control flow through systems designed in
that style.

Components the principal computational elements and data
stores that execute in a system.

Connector a runtime pathway of interaction between two or
more components.

Context diagram a representation that defines the boundary
between a system (or part of a system under consider-
ation) and its environment, showing the entities in its envi-
ronment with which it interacts.

Data integrity a property ensuring consistency and accuracy
of the data shared across all applications in a system.

Decomposition refinement a refinement in which a single
element is elaborated to reveal its internal structure. Each
member of that internal structure may be recursively
refined.

Dependency structure matrix (DSM) a table that shows mod-
ules as the row and column headers; a cell is nonzero if
and only if there is a dependency between the row’s mod-
ule and the column’s module.

Descriptive completeness a property of architecture docu-
mentation; a document has descriptive completeness if it
documents all elements and relations in the system that
are in the documentation’s scope.

Dynamic architecture an architecture in which architecture
variation points are exercised at runtime.

ptg

Glossary ■ 493

Element an architecture building block native to a style. An
element can be a module, a component or connector, or
an element in the environment of the system whose archi-
tecture we are documenting. The description of an ele-
ment tells what role it plays in an architecture, lists its
important properties, and furnishes guidelines for effec-
tive documentation of the element in a view.

Entity in a data model, a particular instance of an entity set
or entity type (for example, Earth is an entity of entity set
Planet).

Filter a component in the pipe-and-filter style that transforms
data read on its input ports to data written on its output ports.
Filters typically execute concurrently and incrementally.

Framework a framework is an abstraction in which common
code providing generic functionality can be selectively
overridden or specialized by user code providing specific
functionality. See also architecture framework.

Hierarchical element any kind of element that can consist of
like-kind elements. A module is a hierarchical element
because modules consist of submodules, which are them-
selves modules. A task or a process is not a hierarchical
element.

Hybrid style the combination of two or more existing styles.
Hybrid styles, when applied to a particular system, produce
views.

Implementation inheritance the definition of a new imple-
mentation based on one or more previously defined
implementations. The new implementation is usually a
modification of the ancestors’ behavior.

Implementation refinement a refinement in which some or
all of the elements and relations are replaced by other,
more implementation-specific, elements and relations.

Interface a boundary across which two elements meet and
interact or communicate with each other.

Interface document a specification of what an architect
chooses to make publicly known about an element in
order for other entities to interact or communicate with it.

Interface inheritance the definition of a new interface based
on one or more previously defined interfaces. The new
interface is usually a subset of the ancestors’ interface(s).

Layer a grouping of modules that together offer a cohesive
set of services to other layers. The layers are related to each
other by the strictly ordered relation allowed to use.

Module an implementation unit of software that provides a
coherent set of responsibilities.

ptg

494 ■ Glossary

Module style a kind of style that introduces a specific set of
module types and specifies rules about how elements of
those types can be combined.

Overlay a combination of the primary presentations of two
or more views followed by supporting documentation for
that combined primary presentation.

Pipe a connector in the pipe-and-filter style that conveys
streams of data from the output port of one filter to the
input port of another filter without changing values or the
order of the data.

Port an interface of a component. A port defines a point of
interaction of a component with its environment.

Property additional information about elements and rela-
tions. When an architect documents a view based on that
style, the properties will be given values. Property values
are often used to analyze an architecture for its ability to
meet quality attribute requirements.

Question set questions that collectively address a narrowly
focused purpose for an architecture document review.
Besides the questions themselves, a question set contains
information to allow a user to ensure the question set is
appropriate and to use it effectively. This information
includes the name, purpose, stakeholders and concerns,
respondents, expected answers, criticality, and advice.

Rationale an explanation of the reasoning that lies behind
an architecture decision.

Refinement the process of gradually disclosing information
across a series of descriptions.

Relation a definition of how elements cooperate to accom-
plish the work of the system. The description of a relation
names the relations among elements and provides rules
on how elements can and cannot be related.

Resource a function, method, data stream, global variable,
message end point, event trigger, or any addressable facil-
ity within an interface.

Responsibility a general statement about an architecture ele-
ment and what it is expected to contribute to the architec-
ture. This might include the actions that it performs, the
knowledge it maintains, or the role it plays in achieving the
system’s overall quality attributes or functionality.

Role an interface of a connector. A role defines a point of
interaction of a connector and indicates how components
may use a connector in interactions.

Software architecture the set of structures needed to reason
about the system, which comprises software elements, rela-
tions among them, and properties of both.

ptg

Glossary ■ 495

Software product line a set of software-intensive systems shar-
ing a common, managed set of features that satisfy the spe-
cific needs of a particular market segment or mission and
that are developed from a common set of reusable core
assets in a prescribed way.

Specialization a style is a specialization of another style if it is
consistent with that style—that is, doesn’t violate it—and
adds more constraints to its element types, relation types,
and/or topological restrictions.

Stakeholder see architecture stakeholder.
Stereotype a type of modeling element in UML that extends

the semantics of the metamodel. Stereotypes must be
based on certain existing types or classes of the meta-
model. Stereotypes may extend the semantics but not the
structure of preexisting types and classes. Certain stereo-
types are predefined in UML; others may be user defined.

Style guide the description of an architecture style that spec-
ifies the vocabulary of design (sets of element and relation-
ship types) and the rules (sets of topological and semantic
constraints) for how that vocabulary can be used.

Substyle a specialization of another style if it is consistent
with that style—that is, doesn’t violate it—and adds more
constraints to its element types, relation types, and/or
topological restrictions.

Subsystem a part of a system that (1) carries out a function-
ally cohesive subset of the overall system’s mission, (2) can
be executed independently, and (3) can be developed and
deployed incrementally.

System a collection of entities (elements, components, models,
and so forth) that are organized for a common purpose.

System of interest ISO 42010 defines “system of interest” as
encompassing “individual applications, systems in the tra-
ditional sense, subsystems, systems of systems, product
lines, product families, whole enterprises, and other aggre-
gations of interest.”

Tier a mechanism for system partitioning. Usually applied to
client-server-based systems, where the various parts (tiers)
of the system (user interface, database, business applica-
tion logic, and so forth) execute on different platforms.

Top-level context diagram a context diagram in which the
scope is the entire system.

Topology a definition of constraints on how elements and
relations can be associated in a particular style.

Unified Modeling Language (UML) a graphical language for
visualizing, specifying, constructing, and documenting the
artifacts of a software system.

ptg

496 ■ Glossary

Uses relation a form of dependency that exists between two
modules. A uses B if the correctness of A depends on the
presence of a correct implementation of B.

Variability the ability quickly to achieve change in pre-
planned ways.

Variability guide the place in an architecture document that
explains what variation points have been designed into the
architecture and gives advice about how to exercise them.

Variation mechanism a built-in software mechanism for mak-
ing a change that, when exercised, results in a new instance
of the architecture. The place where a variation mecha-
nism occurs marks a variation point.

Variation point a place in the architecture where a specific
kind of flexibility has been built in.

View a representation of a set of system elements and rela-
tions among them.

View packet the smallest bundle of view documentation you
would show an individual stakeholder, such as a developer
assigned to implement a small portion of the system or a
customer interested in an overview.

Viewpoint ISO 42010 defines a viewpoint as a work product
establishing the conventions for the construction, inter-
pretation, and use of architecture views and associated
architecture models.

Virtual machine sometimes called an abstract machine, a col-
lection of modules that form an isolated cohesive set of ser-
vices that can execute programs.

Wiki a collection of Web pages designed to enable anyone
with access to contribute or modify content, using a simpli-
fied markup language.

ptg

497

References

Abelson, H., and G. Sussman. 1996. Structure and Interpretation of
Computer Programs. 2nd ed. MIT Press.

Acme 2009. The Acme Project. http://www.cs.cmu.edu/~acme/.

Adventure Builder 2010. Java Adventure Builder Reference
Application. https://adventurebuilder.dev.java.net/.

Agile Alliance. 2002a. “Manifesto for Agile Software Development.”
http://www.agilemanifesto.org.

———. 2002b. Web site. http://www.agilealliance.org.

———. 2002c. “Principles Behind the Agile Manifesto.” http://
www.agilemanifesto.org/principles.html.

Akerman, A., and J. Tyree. 2005. “Position on Ontology-based
Architecture.” Proceedings of the 5th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA 2005). November 6–10,
pp. 289–290.

Alexander, Christopher. 1979. The Timeless Way of Building.
Oxford University Press.

Allen, R. J., and D. Garlan. 1997. “A Formal Basis for Architec-
tural Connection.” ACM Transaction on Software Engineering
and Methodology 6(3): 213–249.

Ambler, Scott W. 2006. “The Object Relational Impedance
Mismatch.” http://www.agiledata.org/essays/
impedanceMismatch.html.

Ambysoft. 2008. “Modeling and Documentation Practices
on IT Projects Survey Results: July 2008.” http://www
.ambysoft.com/surveys/modelingDocumentation2008.html.

Araujo, I., and M. Weiss. 2002. “Linking Patterns and Non-
Functional Requirements.” Proceedings of the Pattern Languages

http://www.cs.cmu.edu/~acme/
http://www.agilemanifesto.org
https://adventurebuilder.dev.java.net/
http://www.agilealliance.org
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
http://www.agiledata.org/essays/impedanceMismatch.html
http://www.agiledata.org/essays/impedanceMismatch.html
http://www.ambysoft.com/surveys/modelingDocumentation2008.html
http://www.ambysoft.com/surveys/modelingDocumentation2008.html

ptg

498 ■ References

of Programs Conference (PLoP 2002). Monticello, Illinois, Sep-
tember 8–12. Available at http://www.hillside.net/plop/
plop2002/proceedings.html.

Atlantic. 1956. “Rhythm in My Blood.” The Atlantic Magazine,
February 1956.

Avritzer, A., Y. Cai, and D. Paulish. 2008. “Coordination Impli-
cations of Software Architecture in a Global Software Devel-
opment Project.” Proceedings of WICSA 2008, pp. 107–116.

Bach, Maurice. 1986. The Design of the UNIX Operating System.
Prentice Hall.

Bachmann, Felix, and Paulo Merson. 2005. Experience Using the
Web-Based Tool Wiki for Architecture Documentation. Carnegie
Mellon University, Software Engineering Institute Technical
Note CMU/SEI-2005-TN-041.

Barker, Richard. 1990. CASE Method: Entity Relationship Model-
ling. Addison-Wesley.

Bass, L., P. Clements, and R. Kazman. 2003. Software Architecture
in Practice. 2nd ed. Addison-Wesley.

Beck, Kent. 2000. Extreme Programming Explained: Embrace
Change. Addison-Wesley.

Beck, Kent, and Cynthia Andres. 2004. Extreme Programming
Explained: Embrace Change. 2nd ed. Addison-Wesley.

Bianco, Phil, Rick Kotermanski, and Paulo Merson. 2007. Eval-
uating a Service-Oriented Architecture. Carnegie Mellon Univer-
sity, Software Engineering Institute Technical Report CMU/
SEI-2007-TR- 015.

Bianco, Phil, Grace Lewis, and Paulo Merson. 2008. Service
Level Agreements in Service-Oriented Architecture Environment.
Carnegie Mellon University, Software Engineering Institute
Technical Note CMU/SEI-2008-TN-021.

Bloch, Joshua. 2006. “How to Design a Good API and Why It
Matters.” http://www.infoq.com/presentations/effective-
api-design.

Boehm, B., D. Port, A. Egyed, and M. Abi-Antoun. 1999. “The
MBASE Life Cycle Architecture Milestone Package: No
Architecture Is An Island.” 1st Working International Con-
ference on Software Architecture.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. 2005. The
Unified Modeling Language User Guide. 2nd ed. Addison-Wesley.

Bosch, J. 2000. Design and Use of Software Architecture: Adopting
and Evolving a Product Line Approach. Addison-Wesley.

http://www.hillside.net/plop/plop2002/proceedings.html
http://www.hillside.net/plop/plop2002/proceedings.html
http://www.infoq.com/presentations/effective-api-design
http://www.infoq.com/presentations/effective-api-design

ptg

References ■ 499

Brooks, Jr., Frederick P. 1995. The Mythical Man-Month: Essays
on Software Engineering. Anniv. ed. Addison-Wesley.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. 1996. Pattern-Oriented Software
Architecture Volume 1: A System of Patterns. Wiley.

Buschmann, Frank, Kevlin Henney, and Douglas C. Schmidt.
2007a. Pattern-Oriented Software Architecture Volume 4: A Pattern
Language for Distributed Computing. Wiley.

———. 2007b. Pattern-Oriented Software Architecture Volume 5: On
Patterns and Pattern Languages. Wiley.

Cataldo, M., P. Wagstrom, J. D. Herbsleb, and K. Carley. Forth-
coming. “Identification of Coordination Requirements:
Implications for the Design of Collaboration and Awareness
Tools.” In Proceedings, Computer-Supported Cooperative Work.

Chen, Peter. 1976. “The Entity-Relationship Model: Toward a
Unified View of Data.” ACM Transactions on Database Systems
1(1): 9–36.

Clements, Paul, and Linda Northrop. 2001. Software Product
Lines: Practices and Patterns. Addison-Wesley.

Clements P., R. Kazman, and M. Klein. 2002. Evaluating Soft-
ware Architectures: Methods and Case Studies. Addison-Wesley.

Clements P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. 2003. Documenting Software Architec-
tures: Views and Beyond. 1st ed. Addison-Wesley.

Cockburn, Alistair. 2000. Writing Effective Use Cases. Addison-
Wesley.

———. 2001. Crystal methodologies Web page. http://
alistair.cockburn.us/crystal.

———. 2002. Agile Software Development. Addison-Wesley.

———. 2004. Crystal Clear: A Human-Powered Methodology for
Small Teams. Addison-Wesley.

Conway, M. E. 1968. “How Do Committees Invent?” Datamation
14(4): 28–31.

Date, C. J. 1999. An Introduction to Database Systems. 7th ed.
Addison-Wesley.

———. 2003. An Introduction to Database Systems. 8th ed.
Addison-Wesley.

de Boer, R. C., and R. Farenhorst. 2008. “In Search Of ‘Archi-
tectural Knowledge.’ ” 3rd Workshop on SHAring and Reusing
architectural Knowledge (SHARK). Leipzig, Germany. May 13,
pp. 71–78.

http://alistair.cockburn.us/crystal
http://alistair.cockburn.us/crystal

ptg

500 ■ References

DeRemer, F., and H. J. Kron. 1976. “Programming-in-the-Large
versus Programming-in-the-Small.” IEEE Transactions on Soft-
ware Engineering, SAE 2(2): 80–86.

Dijkstra, E. W. 1968. “The Structure of the ‘T.H.E.’ Multi-
programming System.” Communications of the ACM 18(8):
453–457.

———. 1972. “Notes on Structured Programming: On Pro-
gram Families.” In Ole-Johan Dahl, ed., Structured Program-
ming, pp. 39–41. Academic Press.

Dobrica, L., and E. Niemela. 2002. “A Survey on Software
Architecture Analysis Methods,” IEEE Transactions on Soft-
ware Engineering 28(7): 638–653.

DoDAF. 2007. U.S. Department of Defense Architecture
Framework, version 1.5. http://www.defenselink.mil/
cio-nii/docs/DoDAF_Volume_I.pdf.

Eeles, P., and P. Cripps. 2009. The Process of Software Architecting.
Addison-Wesley.

Feiler, Peter H. 2007. Modeling of System Families. Carnegie
Mellon University, Software Engineering Institute Technical
Note CMU/SEI-2007-TN-047.

Feiler, Peter H., David Gluch, John Hudak, and Bruce Lewis.
2004. Embedded Systems Architecture Analysis Using SAE AADL.
Carnegie Mellon University, Software Engineering Institute
Technical Note CMU/SEI-2004-TN-005.

Feiler, Peter H., David P. Gluch, and John J. Hudak. 2006. The
Architecture Analysis & Design Language (AADL): An Introduc-
tion. Carnegie Mellon University, Software Engineering
Institute Technical Note CMU/SEI-2006-TN-011.

Feiler P., D. Gluch, K. Weiss, and K. Woodham. 2009. “Model-
Based Software Quality Assurance with the Architecture
Analysis and Design Language.” Proceedings of AIAA Infotech
@Aerospace 2009, Seattle, Washington, April 6–9.

Flurry, G., and W. Vicknair. 2001. “The IBM Application
Framework for e-business.” IBM Systems Journal 40(1): 8–24.

Fowler, Martin. 2002. Patterns of Enterprise Application Architec-
ture. Addison-Wesley.

———. 2003. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley.

Freeman, Eric, Susanne Hupfer, and Ken Arnold. 1999.
JavaSpaces Principles, Patterns, and Practice. Prentice Hall.

http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf

ptg

References ■ 501

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley.

Garlan, D., and M. Shaw. 1993. “An Introduction to Software
Architecture.” In V. Ambriola and G. Tortora, eds., Advances
in Software Engineering and Knowledge Engineering, vol. 2.
World Scientific.

Garlan, D., R. Allen, and J. Ockerbloom. 1995. “Architectural
Mismatch or Why It’s So Hard to Build Systems out of Exist-
ing Parts.” Proceedings of 17th Int. Conf. on Software Engineer-
ing, Seattle, Wash., April 24–28.

Garlan, D., and D. Perry. 1995. “Introduction to the Special
Issue on Software Architecture.” IEEE Transactions on Soft-
ware Engineering 21(4): 269–274.

Garlan, David, and Bradley Schmerl. 2006. “Architecture-
driven Modeling and Analysis.” Proceedings of the 11th Austra-
lian Workshop on Safety Related Programmable Systems (SCS’06),
Melbourne, Australia.

Garland, Jeff, and Richard Anthony. 2003. Large-Scale Software
Architecture: A Practical Guide Using UML. Wiley.

Gelernter, D. 1985. “Generative Communication in Linda.”
ACM Trans. Program. Lang. Syst. 7, 1 (Jan. 1985), pp. 80–112.

Goethert, W., and J. Siviy. 2004. Applications of the Indicator Tem-
plate for Measurement and Analysis. Carnegie Mellon Univer-
sity, Software Engineering Institute Technical Note CMU/
SEI-2004-TN-024.

Gorton, I. 2006. Essential Software Architecture. Springer.

Hämäläinen, N., and J. Markkula. 2007. “Quality Evaluation
Question Framework for Assessing the Quality of Architec-
ture Documentation.” In the CD proceedings of E. Berki, J.
Nummenmaa, M. Ross, and G. Staples, eds., Software Quality
Meets Work-Life Quality. International BCS Conference on Soft-
ware Quality Management—SQM 2007. Tampere, Finland,
August 1–2.

Hansson, Jörgen, and Peter H. Feiler. 2008. “Enforcement of
Quality Attributes for Net-centric Systems through Model-
ing and Validation with Architecture Description Lan-
guages.” Proceedings of 4th International Congress on Embedded
Real-Time Systems, January.

Harel, David, and Michael Politi. 1998. Modeling Reactive Systems
with Statecharts: The Statemate Approach. McGraw-Hill.

ptg

502 ■ References

Harvey, Miles. 2000. The Island of Lost Maps: A True Story of Car-
tographic Crime. Random House.

Hoare, C. A. R. 1985. Communicating Sequential Processes. Pren-
tice Hall.

Hoffman, D. M., and D. M. Weiss, eds. 2001. Software Fundamen-
tals: Collected Papers by David L. Parnas. Addison-Wesley.

Hofmeister, C., R. Nord, and D. Soni. 2000. Applied Software
Architecture. Addison-Wesley.

Hohpe, Gregor, and Bobby Wolff. 2003. Enterprise Integration
Patterns. Addison-Wesley.

Hughart, Barry. 1984. Bridge of Birds: A Novel of an Ancient China
That Never Was. Random House.

Humphrey, Watts S. 1989. Managing the Software Process.
Addison-Wesley.

IBM. 2004. Rational Unified Process. http://www-
306.ibm.com/software/awdtools/rup/.

IEEE 1471. 2000. IEEE Product No.: SH94869-TBR: Recommended
Practice for Architectural Description of Software-Intensive Systems.
IEEE Standard No. 1471-2000. Available at http://
shop.ieee.org/store/.

IEEE 1516.1. 2000. IEEE Standard No.: 1516-1-2000: Standard for
Modeling and Simulation (M&S)—High Level Architecture
(HLA)—Federated Interface Specification. IEEE Product No.:
SS94883-TBR. Available at http://shop.ieee.org/store/.

ISO/IEC 10746-2. 1996. Information Technology—Open Distrib-
uted Processing—Reference Model: Foundations. Available at
http://www.iso.org/iso/catalogue_detail.htm?csnum-
ber=18836.

ISO 15704. 2000. Industrial Automation Systems—Requirements for
Enterprise-Reference Architectures and Methodologies. Available at
http://www.iso.org/iso/catalogue_detail.htm?csnum-
ber=28777.

ISO/IEC 42010. 2007. Systems and Software Engineering—Recom-
mended Practice for Architectural Description of Software-Intensive
Systems. (Identical to ANSI/IEEE Std 1471-2000). http://
www.iso-architecture.org/ieee-1471/.

ISO/IEC CD TR 24748. 2007. Systems and Software Engineering—
Life Cycle Management—Guide for Life Cycle Management.

ISO/IEC 12207. 2008. Systems and Software Engineering—Soft-
ware Life Cycle Processes. 2008.

http://www-306.ibm.com/software/awdtools/rup/
http://www-306.ibm.com/software/awdtools/rup/
http://shop.ieee.org/store/
http://shop.ieee.org/store/
http://shop.ieee.org/store/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=18836
http://www.iso.org/iso/catalogue_detail.htm?csnumber=18836
http://www.iso.org/iso/catalogue_detail.htm?csnumber=28777
http://www.iso.org/iso/catalogue_detail.htm?csnumber=28777
http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/

ptg

References ■ 503

ISO/IEC WD2 42010. 2008. Systems and Software Engineering—
Architectural Description. Working draft dated 1 March 2008.
http://www.iso-architecture.org/ieee-1471/docs/ISO-IEC-
WD2v1-42010.pdf.

ISO/IEC CD1 42010. 2009. Recommended Practice for Architec-
tural Description of Software-Intensive Systems—ANSI/IEEE Std
1471 :: ISO/IEC 42010. http://www.iso-architecture.org/
ieee-1471/.

Iverson, K. E. 1987. “A Dictionary of APL.” APL Quote Quad
18(1): 5.

Jackson, Michael. 1995. Software Requirements and Specifications:
A Lexicon of Practice Principles and Prejudices. Addison-Wesley.

———. 2000. Problem Frames: Analysing & Structuring Software
Development Problems. Addison-Wesley.

Jacobson, I. 1992. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley.

Jazayeri, Mehdi, Alexander Ran, and Frank van der Linden.
2000. Software Architecture for Product Families: Principles and
Practice. Addison-Wesley.

Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. M. Loingtier, and J. Irwin. 1997. “Aspect-Oriented Program-
ming.” Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). Published as Lecture Notes in Computer
Science, Number 1241. Springer Verlag, pp. 220–242.

Kircher, Michael, and Prashant Jain, 2004. Pattern-Oriented
Software Architecture Volume 3: Patterns for Resource Manage-
ment. Wiley.

Komiya, S. 1994. “A Model for the Recording and Reuse of
Software Design Decisions and Decision Rationale.” Third
International Conference on Software Reuse: Advances in Software
Reusability. Rio de Janeiro, Brazil, November 1–4, pp. 200–201.

Kruchten, Philippe. 1995. “The 4+1 View Model of Architec-
ture.” IEEE Software 12(6): 42–50.

———. 2004. “An Ontology of Architectural Design Decisions
in Software Intensive Systems.” Proceedings of the 2nd Gronin-
gen Workshop on Software Variability, Groningen, The Nether-
lands, December 2–3, pp. 54–61.

———. 2009. “Documentation of Software Architecture from
a Knowledge Management Perspective—Design Represen-
tation.” In Software Architecture Knowledge Management, ed.
M. Ali Babar, T. Dingsøyr, P. Lago, and H. van Vliet,
pp. 39–57. Springer Verlag.

http://www.iso-architecture.org/ieee-1471/docs/ISO-IEC-WD2v1-42010.pdf
http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/docs/ISO-IEC-WD2v1-42010.pdf

ptg

504 ■ References

Kruchten, P., P. Lago, and H. van Vliet. 2006. “Building Up and
Reasoning about Architectural Knowledge.” In QoSA: Qual-
ity of Software Architecture. Published as Lecture Notes in Com-
puter Science, Number 4214, ed. C. Hofmeister, pp. 43–58.
Springer Verlag.

Kylmäkoski, Roope. 2003. “Efficient Authoring of Software
Documentation Using RaPiD7.” Proceedings of the 25th Inter-
national Conference on Software Engineering, Portland, Oregon,
May 3–10.

Laddad, Ramnivas. 2008. AspectJ in Action. Manning.

Lewis, Bruce A., and Peter H. Feiler. 2008. “Multi-Dimensional
Model Based Development for Performance Critical Com-
puter Systems Using the AADL.” Proceedings of 4th Interna-
tional Congress on Embedded Real-Time Systems, January.

Liskov, B. 1987. “Data Abstraction and Hierarchy.” OOPSLA’87:
Conference on Object Oriented Programming Systems, Languages
and Applications. Orlando. Also available as SigPlan Notices
23(5): 17–34.

Louridas, P., and P. Loucopoulos. 2000. “A Generic Model for
Reflective Design.” TOSEM 9: 199–237.

Martin, James, and Clive Finkelstein. 1981. Information Engi-
neering. Technical Report. Savant Institute.

Medvidovic, N., and R. N. Taylor. 1997. “A Framework for Clas-
sifying and Comparing Architecture Description Lan-
guages.” Proceedings of the 6th European Software Engineering
Conference together with FSE4, pp. 60–76.

Microsoft Developer Network. 2002. Using .NET to Implement
Sun Microsystems’ Java Pet Store J2EE BluePrint Application.
http://msdn2.microsoft.com/en-us/library/
ms954626.aspx.

Moyers, Bill. 1989. A World of Ideas, ed. Betty Sue Flowers.
Doubleday.

Nii, H. P. 1986. “Blackboard Systems.” AI Magazine 7(3): 38–53
and 7(4): 82–107.

Nygaard, K., and O.-J. Dahl. 1981. “The Development of the
SIMULA Language.” In History of Programming Languages,
ed. R. Wexelblat, pp. 439–493. Academic Press.

Object Management Group. 2009. Modeling and Analysis of Real-
Time Embedded Systems (MARTE). http://www.omgmarte.org.

Palmer, Stephen, and John Felsing. 2002. A Practical Guide to
Feature-Driven Development. Prentice Hall.

http://www.omgmarte.org
http://msdn2.microsoft.com/en-us/library/ms954626.aspx
http://msdn2.microsoft.com/en-us/library/ms954626.aspx

ptg

References ■ 505

Parnas, D. L. 1971. “Information Distribution Aspects of
Design Methodology.” Proceedings of the 1971 IFIP Congress.
North Holland Publishing.

———. 1972. “On the Criteria to Be Used in Decomposing
Systems into Modules.” Communications of the ACM 15(12):
1053–1058.

———. 1974. “On a ‘Buzzword’: Hierarchical Structure.”
Proceedings of the IFIP Congress ’74, pp. 336–339.

———. 1996. “Why Software Jewels Are Rare.” Computer 29(2),
February, pp. 57–60.

Parnas, D. L., and D. M. Weiss. 1985. “Active Design Reviews:
Principles and Practices.” 8th International Conference on Soft-
ware Engineering, pp. 215–222. Reprinted in Software Funda-
mentals: Collected Papers by David L. Parnas, ed. D. Hoffman
and D. Weiss. Addison-Wesley.

Parnas, D. L., and P. C. Clements. 1986. “A Rational Design
Process: How and Why to Fake It.” IEEE Transactions in Soft-
ware Engineering SE-12(2): 251–257.

Parnas, D., P. Clements, and D. Weiss. 2001. “The Modular
Structure of Complex Systems.” Reprinted in Software Fun-
damentals: Collected Papers by David L. Parnas, ed. D. Hoffman
and D. Weiss. Addison-Wesley.

Parnas, David L., and H. Wuerges. 2001. “Response in
Undesired Events in Software Systems.” In Software Funda-
mentals: Collected Papers by David L. Parnas, ed. D. Hoffman
and D. Weiss. Addison-Wesley.

Paulish, D. J. 2002. Architecture-Centric Software Project Manage-
ment: A Practical Guide. Addison-Wesley.

Perry, D. E., and A. L. Wolf. 1992. “Foundations for the Study
of Software Architecture.” Software Engineering Notes 17(2):
40–52.

Ponniah, Paulraj. 2007. Data Modeling Fundamentals. Wiley.

Prieto-Diaz, R., and J. M. Neighbors. 1986. “Module Intercon-
nection Languages.” The Journal of Systems and Software 6(4):
307–334.

Rozanski, N., and E. Woods. 2005. Software Systems Architecture.
Addison-Wesley.

Rugina, Ana-Elena, Karama Kanoun, Mohamed Kaaniche, and
Peter Feiler. 2008. “Software Dependability Modeling using
an Industry-Standard Architecture Description Language.”
Proceedings of 4th International Congress on Embedded Real-Time
Systems, January 2008.

ptg

506 ■ References

SAE. 2004/2009. SAE International, Avionics Systems Division
AS-2C Subcommittee: Standard Document SAE AS-5506A.
Nov. 2004, rev. Jan 2009. Avionics Architecture Description Lan-
guage Standard.

SAE. 2006. SAE International, Avionics Systems Division AS-2C
Subcommittee. Annex Document AS-5506/1. June 2006.
SAE Architecture Analysis & Design Language (AADL) Annex
Volume 1: Graphical AADL Notation, AADL Meta-Model and
Interchange Formats, Language Compliance and Application Pro-
gram Interface.

SAE. 2010. AADL Standard Web site. http://www.aadl.info.

SARA. 2002. Final Report of the Software Architecture Review and
Assessment (SARA) Group, version 1.0. http://philippe
.kruchten.com/architecture/SARAv1.pdf.

Scaffidi, Christopher, and Mary Shaw. 2007. “Developing
Confidence in Software through Credentials and Low-
Ceremony Evidence.” International Workshop on Living with
Uncertainties at the 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007), Atlanta, Georgia,
November 2007.

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann. 2000.
Pattern-Oriented Software Architecture Volume 2: Patterns for
Concurrent and Networked Objects. Wiley.

Schwaber, Ken. 2001. Agile Software Development with Scrum.
Prentice Hall.

SEI. 2010.“Defining Software Architecture.” http://
www.sei.cmu.edu/architecture/start/definitions.cfm.

Shaw, Mary. 1990. “Elements of a Design Language for
Software Architecture.” Position Paper for IEEE Design
Automation Workshop. January 1990. Unpaginated.

———. 1991. “Heterogeneous Design Idioms for Software
Architecture.” Proceedings of the 6th International Workshop on
Software Specification and Design, Como, Italy, October 25–26,
1991, pp. 158–165.

———. 1995. “Making Choices: A Comparison of Styles for
Software Architecture.” IEEE Software, Special Issue on Software
Architecture 12(6): 27–41.

———. 1996a. “Truth vs. Knowledge: The Difference Between
What a Component Does and What We Know it Does.” Pro-
ceedings of the 8th International Workshop on Software Specifica-
tion and Design, pp. 181–185.

http://www.aadl.info
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://philippe.kruchten.com/architecture/SARAv1.pdf
http://philippe.kruchten.com/architecture/SARAv1.pdf

ptg

References ■ 507

———. 1996b. “Procedure Calls Are the Assembly Language
of Software Interconnection: Connectors Deserve First
Class Status.” In Studies of Software Design, Proceedings of a 1993
Workshop, ed. D. A. Lamb; published as Lecture Notes in Com-
puter Science No. 1978, pp. 17–32. Springer Verlag.

Shaw, M., and D. Garlan. 1996. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall.

Smith, C., and L. Williams. 2002. Performance Solutions: A Practi-
cal Guide for Creating Responsive, Scalable Software. Addison-
Wesley.

Smith, John Miles, and Diane C. P. Smith. 1977. “Database
Abstractions: Aggregation and Generalization.” ACM Trans-
actions on Database Systems 2 (2).

Snyder, A. 1986. “Encapsulaton and Inheritance in Object-
Oriented Programming Languages.” In Proceedings of the
Conferences on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’86), ed. Norman K. Meyerowitz,
pp. 38–45. Available as SIGPLAN Notices 21(11), November.

Soni, D., R. L. Nord, and C. Hofmeister. 1995. “Software Archi-
tecture in Industrial Applications.” Proceedings of the 17th
International Conferences on Software Engineering, pp. 196–207.

Spivey, J. M. 1988. The Z Notation: A Reference Manual. 2nd ed.
Available at http://spivey.oriel.ox.ac.uk/mike/zrm/.

Stafford, J. A., and A. L. Wolf. 2001. “Software Architecture.”
In Component-Based Software Engineering: Putting the Pieces
Together, ed. G. T. Heineman and W. T. Council. Addison-
Wesley.

Steward, Donald. 1981. “Design Structure System: A Method
for Managing the Design of Complex Systems.” IEEE Trans-
actions on Engineering Management 28(33): 71–74.

Szyperski, C. 1998. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley.

Taylor, R. N., N. Medvidovic, and E. M. Dashofy. 2009. Software
Architecture: Foundations, Theory, and Practice. Wiley.

TOGAF. 2010. The Open Group Architecture Framework,
version 9. http://www.opengroup.org/architecture/
togaf9-doc/arch/.

Trachtenberg, Marvin, and Isabelle Hyman. 1986. Architecture:
From Prehistory to Post-Modernism/The Western Tradition. Pren-
tice Hall.

http://www.opengroup.org/architecture/togaf9-doc/arch/
http://www.opengroup.org/architecture/togaf9-doc/arch/
http://spivey.oriel.ox.ac.uk/mike/zrm/

ptg

508 ■ References

Urdangarin, R., P. Fernandes, A. Avritzer, and D. Paulish. 2008.
“Experiences with Agile Practices in the Global Studio
Project.” IEEE International Conference on Global Software Engi-
neering (ICGSE), Bangalore, India, August 17–20, pp. 77–86.

Weeks, Edward, and Emily Flint, eds. 1957. “Emily Dickinson’s
Letters.” In Jubilee: One Hundred Years of the Atlantic. Little,
Brown and Company.

Wikipedia. 2010a. “Architectural style.” http://en.wikipedia.org/
wiki/Architectural_style.

———. 2010b. “Representational State Transfer.” http://
en.wikipedia.org/wiki/REST.

———. 2010c. “Wiki.” http://en.wikipedia.org/wiki/Wiki.

Wright, Tim. 2003. “Flying Like the Birds.” AOPA Pilot . June
2003: 81–89. Also available at http://roman-hartmann.de/
html/flying_like_the_birds.html.

Yahoo!. 2010. Pipes Web site. http://pipes.yahoo.com/pipes/.

Zachman, J. A. 1987. “A Framework for Information Systems
Architecture.” IBM Systems Journal 26(3).

http://en.wikipedia.org/wiki/Architectural_style
http://en.wikipedia.org/wiki/Architectural_style
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/Wiki
http://roman-hartmann.de/html/flying_like_the_birds.html
http://roman-hartmann.de/html/flying_like_the_birds.html
http://pipes.yahoo.com/pipes/

ptg

509

About the Authors

Paul Clements is a Senior Member of the Technical Staff at the
Carnegie Mellon Software Engineering Institute (SEI), where
he has worked since 1994 leading or coleading projects in soft-
ware product-line engineering and software architecture doc-
umentation and analysis. Besides this one, Clements is the
coauthor of two other practitioner-oriented books about soft-
ware architecture: Software Architecture in Practice (Addison-Wesley,
1998; Second Edition 2003) and Evaluating Software Architec-
tures: Methods and Case Studies (Addison-Wesley, 2001). He also
cowrote Software Product Lines: Practices and Patterns (Addison-
Wesley, 2001) and was coauthor and editor of Constructing Supe-
rior Software (Sams, 1999). In addition, Clements has authored
dozens of papers in software engineering, reflecting his long-
standing interest in the design and specification of challenging
software systems. In 2005 and 2006 he spent a year as a visiting
faculty member at the Indian Institute of Technology in Mum-
bai. He received a Ph.D. in computer sciences from the Univer-
sity of Texas at Austin in 1994. He is a founding member of the
IFIP Working Group on Software Architecture (WG2.10).

Felix Bachmann is a Senior Member of the Technical Staff at
the SEI, working in the Architecture Centric Engineering Ini-
tiative. He is coauthor of the Attribute-Driven Design Method,
a contributor to and instructor for the ATAM Evaluator Train-
ing course, and a contributor to the book Software Architecture
in Practice, Second Edition. Before joining the SEI, he was a soft-
ware engineer at Robert Bosch GmbH in corporate research,
where he worked with software development departments to
address the issues of software engineering in small and large
embedded systems.

ptg

510 ■ About the Authors

Len Bass is a Senior Member of the Technical Staff at the SEI.
He has coauthored two award-winning books in software archi-
tecture as well as several other books and numerous papers in
a wide variety of areas of computer science and software engi-
neering. He has been a keynote speaker or a distinguished lec-
turer on six continents. He is currently working on applying
the concepts of ultra-large-scale systems to the smart grid. He
has been involved in the development of numerous different
production or research software systems, ranging from operat-
ing systems to database management systems to automotive sys-
tems. He is a member of the IFIP Working Group on Software
Architecture (WG2.10).

David Garlan is a Professor of Computer Science and Director
of Software Engineering Professional Programs in the School
of Computer Science at Carnegie Mellon University (CMU).
He received his Ph.D. from CMU in 1987 and worked as a soft-
ware architect in industry between 1987 and 1990. His interests
include software architecture, self-adaptive systems, formal
methods, and cyber-physical systems. He is considered to be
one of the founders of the field of software architecture and,
in particular, formal representation and analysis of architec-
tural designs. In 2005 he received a Stevens Award Citation for
fundamental contributions to the development and under-
standing of software architecture as a discipline in software
engineering.

James Ivers is a Senior Member of the Technical Staff at the
SEI, where he works in the areas of software architecture and
program analysis. He received a Master of Software Engineer-
ing from CMU in 1996 and has worked for and with a variety
of development organizations, from start-up to multinational
corporations. He has written numerous papers, contributed to
the development of an international standard for distributed
simulations, and has recently been working in a public-private
collaboration to draft security recommendations for the smart
grid.

Reed Little is a Senior Member of the Technical Staff at the
SEI. He applies more than 35 years of experience in computer
simulation, software architecture, software product lines, man-
machine interface, artificial intelligence, and programming
language design to various aspects of applied research and
hands-on customer assistance for large (more than three mil-
lion lines of code) software systems.

ptg

About the Authors ■ 511

Paulo Merson has more than 20 years of software development
experience. He works for the SEI in the areas of software archi-
tecture, service-oriented architecture, and aspect-oriented soft-
ware development. He is also a practicing software architect in
industry. One of his assignments at the SEI is to teach a two-day
course in “Documenting Software Architectures” for industry
and government practitioners. His speaking experience also
includes tutorials at various conferences, such as SD Best Prac-
tices, Dr. Dobb’s Architecture & Design World, and JavaOne.
Prior to joining the SEI, he was a Java EE consultant. Paulo
holds a B.Sc. in Computer Science from University of Brasilia,
and a Master of Software Engineering from CMU.

Robert Nord is a Senior Member of the Technical Staff in the
Research, Technology, and System Solutions Program at the SEI,
where he works to develop and communicate effective methods
and practices for software architecture. He is coauthor of the
practitioner-oriented book Applied Software Architecture (Addison-
Wesley, 2000) and lectures on architecture-centric approaches.
He is a member of the IFIP Working Group on Software Archi-
tecture (WG2.10).

Judith Stafford is a Senior Lecturer at Tufts University and a
Visiting Scientist at the SEI. Before joining the faculty at Tufts
University, she was a Senior Member of the Technical Staff at
the SEI in the Product Lines Systems Program, working in the
Software Architecture Technologies Initiative. She has authored
several book chapters on the topic of software architecture
analysis, software architecture support for software component
composition, and software architecture documentation. Stafford
has been an organizer and program committee member for
several conferences and workshops, and a guest editor on sev-
eral leading software engineering journal special issues. She
received her Ph.D. and M.S. degrees in Computer Science from
the University of Colorado at Boulder. She is a member of the
IEEE Computer Society, ACM SIGSOFT and SIGPLAN, and
the IFIP Working Group on Software Architecture (WG2.10).

ptg

This page intentionally left blank

ptg

513

About the Contributors

Art Akerman is a Director, Enterprise Architecture, at a For-
tune 500 financial services company. He has more than 15
years of experience developing and architecting complex, mis-
sion-critical systems for government, insurance, and financial
services industries. Art is currently leading an effort to consol-
idate, virtualize, and standardize the company’s technology
portfolio and to apply service-oriented architecture principles
to IT infrastructure.

Peter Eeles, Executive IT Architect at IBM Rational Software,
has spent much of his career architecting and implementing
large-scale, distributed systems. His current role is focused on
helping organizations improve their software development
capability. He coauthored Building J2EE Applications with the
Rational Unified Process (Addison-Wesley, 2003), Building Busi-
ness Objects (Wiley, 1998), and The Process of Software Architecting
(Addison-Wesley, 2009).

David Emery is Chief Software Architect at DSCI, a systems/
software engineering company, working on the Army’s Future
Combat Systems program. He has spent the last 18 years work-
ing on defining and improving the practice of architecture as
a distinct discipline within software and systems engineering.
David is head of the U.S. Technical Working Group for ISO/
IEC JTC1/SC7 WG42, revising the ISO/IEC 42010:2007 stan-
dard for architecture description, and he was a major contrib-
utor to the predecessor IEEE Std 1471-2000.

George Fairbanks has been teaching software architecture and
object-oriented design for ten years. In the spring of 2008 he

ptg

514 ■ About the Contributors

was the co-instructor for the graduate software architecture
course at Carnegie Mellon University (CMU). He holds a
Ph.D. in Software Engineering from CMU. His dissertation
introduced design fragments, a new way to specify and assure
the correct use of frameworks through static analysis. He has
written production code for telephone switches, plug-ins for
the Eclipse IDE, and everything from soup to nuts for his dot-
com start-up.

Rik Farenhorst has been a researcher at the Information Man-
agement and Software Engineering department of the VU
University Amsterdam for four years. He conducts research on
architectural knowledge management, which focuses on the
effective application of knowledge management practices in
the software architecture domain. His research results have
been published in over a dozen refereed articles.

Peter Feiler has been with the CMU Software Engineering
Institute (SEI) for 23 years. He is the technical lead and author of
the Society of Automotive Engineers (SAE) Architecture Analysis
& Design Language (AADL) standard. His research interests
include dependable real-time systems, architecture languages
for embedded systems, and predictable system engineering.

James Herbsleb is a Professor in the School of Computer Sci-
ence at CMU. For the last 18 years, his research has focused on
coordination in software engineering projects. His practical
experience comes from working in industry, leading the Bell
Labs Collaboratory project, as well as consulting and collabo-
rating with many industry partners, including IBM, Accenture,
Bosch, and Siemens. His current work focuses on developing
organizational and architectural tactics for improving coordi-
nation, and identifying and cataloguing socio-technical pat-
terns that meld organizational and architectural solutions.

Rich Hilliard is a software systems architect consulting to
industry, government, and academia. He is editor of ISO/IEC
42010, Systems and Software Engineering—Architecture description
(the standard formerly known as ANSI/IEEE Std 1471). He
has been writing about architecture since 1990.

John Klein is a Senior Member of the Technical Staff at SEI.
Prior to joining SEI in 2008, he was a chief architect for com-
munication application products at Avaya, Inc. John has more
than 25 years’ experience developing systems architectures, in
domains ranging from sensors and weapons to videoconfer-
encing and collaboration systems to telephone call centers.

ptg

About the Contributors ■ 515

Philippe Kruchten was a system and software architect with
Alcatel and Rational Software for about 20 years on a variety of
large software systems, in telecommunication, defense, and
transportation. While at Rational, he developed the concept of
multiple architecture views, a representation technique that
he later included in the Rational Unified Process. He now
teaches software engineering at the University of British
Columbia in Vancouver.

John D. McGregor is an associate professor of computer sci-
ence at Clemson University, a Visiting Scientist at the Software
Engineering Institute, and a partner in Luminary Software, a
software engineering consulting firm. His research interests
include software product lines, model-driven development,
and component-based software engineering. Dr. McGregor
advises systems engineers on software engineering decisions,
including software architecture. He has defined a tool chain
consisting of SysML, AADL, and UML as a means of providing
continuity of information from system definition to code gen-
eration and test. He is a coauthor of A Practical Guide to Testing
Object-Oriented Software (Addison-Wesley, 2001).

Don O’Connell is a Technical Fellow in Software/Systems
Architecture and works for The Boeing Company. For the past
nine years he has worked in Boeing Phantom Works, and he is
leading an effort to increase Boeing’s architecture compe-
tence through the introduction of key practices such as archi-
tecture evaluation, architecture development, architecture
analysis, and architect certification.

T. V. Prabhakar is currently a Professor in Computer Science
and Engineering at the Indian Institute of Technology, in Kan-
pur, where he has been since 1986. He has taught many
courses on architecture and design for the industry; his forte is
teaching architecture in a classroom. His current interests are
software architecture and knowledge processing.

Nick Rozanski has worked in IT since the early 1980s. During
his career he has worked as developer, designer, requirements
analyst, and, more recently, architect, on a wide range of
projects in finance, retail, manufacturing, and government.
He currently leads the Enterprise Architecture group at Bar-
clays Global Investors in London. He and his team are charged
with delivering the vision and roadmaps for IT; for providing
guidance and oversight for projects and programs; for support-
ing the IT Group’s planning and investment processes; and fos-
tering innovative solutions to challenging business problems.

ptg

516 ■ About the Contributors

Darpan Saini is a research fellow at the Master of Software
Engineering program at Carnegie Mellon University. His pri-
mary research interests include programming language design
and software architecture. He has prior experience developing
tools that generate code from UML models.

Jeff Tyree is a Senior Director, IT Architecture, at a Fortune
500 financial services company. His interests include large-
scale system design, system evolution processes, refactoring,
and performance engineering. Jeff has more than 20 years of
experience developing software for financial and defense
industries. He received his bachelor’s degree in Mathematics
from Berea College in Berea, Kentucky, and a master’s degree
in Mathematics from the University of Tennessee, Knoxville.

David M. Weiss received a B.S. in Mathematics in 1964 from
Union College and a Ph.D. in Computer Science in 1981 from
the University of Maryland. He is currently the Lanh and Oahn
Nguyen professor of software engineering at Iowa State Uni-
versity. Dr. Weiss’s best-known work is the goal-question-metric
approach to software measurement, his explorations of the
modular structure of software systems, and his work in software
product-line engineering as a coinventor of the FAST process.
He is coauthor and coeditor of two books: Software Product Line
Engineering (Springer, 2005) and Software Fundamentals: Collected
Papers by David L. Parnas (Addison-Wesley, 2001).

Eoin Woods is a software architect with Barclays Global Inves-
tors, responsible for the architecture of the firm’s next-gener-
ation portfolio management system. Eoin has worked in
software engineering since the early 1990s and has worked pri-
marily as a software architect for the last ten years. He is coau-
thor, with Nick Rozanski, of the widely used book Software
Systems Architecture: Working With Stakeholders Using Viewpoints
and Perspectives (Addison-Wesley, 2005).

ptg

517

Index

Note: Italicized page locators indicate figures/
tables.

4+1 approach, 404, 406–408, 408, 429

A
A-7E avionics system, 71–73, 72, 96, 96, 122
Abstract component in AADL, 474
Abstract machines, 99

layered style, 90
Abstract module, 83, 84
Abstractions for connectors, 137–138, 138
Access dependencies in layered style, 95
Accuracy as documentation need, 323
Acme language, 153
Acronyms

in directories, 355
list of, 487–489
overuse, 37

ACSPP (architecture-centered software
project planning), 397

Active design reviews, 380–382
Active Reviews for Intermediate Designs

(ARID), 396
Activity diagrams, 450, 450

behavior documentation, 300–302, 301
SysML, 471, 471

Actors
element use by, 262–263
use case diagrams, 458

Ada packages, 30
Adventure Builder system

activity diagram, 301
C&C view, 230
decomposition style example, 69

interface documentation, 285
multi-tiered system, 184, 184
SOA view, 172, 173
state machine diagrams, 305
uses style example, 79

Advice for question sets, 384
Affected artifacts, 241
Aggregation relations in data model style,

111, 113
Agile Alliance, 429–430
Agile environment

overview, 414–415, 415
Views and Beyond approach in, 20, 415–

418, 418
Akerman, Art, 239, 246, 247, 260, 513
Alexander, Christopher, 34, 338, 355
All-view (AV) in DoDAF, 419–421, 420
Allen, R. J., 153, 287
Allocated-to relations

allocation style, 191
deployment style, 192, 196
install style, 199
SysML module view, 470
work assignment style, 203

Allocation styles, 29, 50
deployment. See Deployment style
elements and relations, 191
for end users, 322, 322
install, 198–202, 201
miscellaneous, 206–209
overview, 189–191, 190
work assignment, 202–205, 204

Allocation views, 29, 50
analysts, 322–324, 324
application builders, 320–321, 321

ptg

518 ■ Index

Allocation views (continued)
customers, 321–322, 321
designers of other systems, 319–320, 319
development teams, 317–318, 317
DoDAF, 426
future architects, 325–326, 325
infrastructure support personnel, 324–325,

324
maintainers, 320, 320
new stakeholders, 325, 325
project managers, 316–317, 317
SysML, 470–471, 470
testers and integrators, 318–319, 318
UML, 443–447, 443–447

Allowed-to-use relations
layered style, 87–90, 92–93, 92
module views, 57
UML module views, 434
uses style, 79

Alternative frames in sequence diagrams, 298
Alternatives in architectural decisions, 240, 242
Ambiguity

architectural documentation, 40–43
UML, 447–449, 448–449

Ambler, Scott W., 117
Analysis

architecture document reviews, 380, 395
module views for, 59–60

Analysis role, layered style for, 91
Analysts

architecture documentation for, 14
documentation needs, 322–324, 324
interface documentation for, 279

Andres, Cynthia, 414, 430
Angle brackets (<< >>), 433
Anonymous instances, 438
ANSI/IEEE Std 1471-2000. See ISO/IEC 42010
Anticrises in architectural decisions, 248
Application builders’ documentation needs,

320–321, 321
Application programming interfaces (APIs), 280
Application-specific types in C&C views, 130
Approved status for architectural decisions, 249
Araujo, I., 247
ArchE tool, 85

combined views, 255–256
generalization style example, 85, 86
publish-subscribe style, 177–178, 177

Architects
allocation styles for, 325–326, 325
architecture documentation for, 15

Architectural decisions documentation
alternatives, 242
choices, 242–244
ontology, 247–250, 248–249
payback, 245–246
purpose, 239
templates, 239–242

Architectural frameworks in ISO/IEC 42010,
404

Architectural knowledge field, 247
Architecture Analysis and Design Language

(AADL), 153, 197, 305, 312
behavior documentation, 482–484, 483
C&C view, 478–481, 479, 481
deployment view, 481–482, 482
interface documentation, 484
introduction, 473–474, 475
module style, 475–477, 476–478
summary, 484–485

Architecture cartoons, 339
Architecture-centered software project plan-

ning (ACSPP), 397
Architecture description languages (ADLs)

C&C views, 139
description, 11
notations, 53

Architecture document reviews, 375
active design reviews, 380–382
example construction and conducting,

393–395
question sets, 382–393, 384
steps, 376–380

Architecture documentation
for changing architectures, 20–21
as decision making, 246–247, 247
economics, 18–19
packages, 362–369
purpose, 9–10
and quality attributes, 17–18
seven rules, 36-44
SysML, 466
terms, 10–12
uses and audiences, 12–16
beyond views, 351, 351
Views and Beyond approach, 19–20

Architecture Expert (ArchE) tool
combined views, 255–256
generalization style example, 85, 86
publish-subscribe style, 177–178, 177

Architecture overview presentations, 364–365
Architecture patterns, 32–36

ptg

Index ■ 519

Architecture perspectives, 410–411
Architecture styles. See Styles
Architecture Tradeoff Analysis Method

(ATAM), 378, 394
Architecture views. See Views
Architectures, product-line, 234
Arguments in architectural decision tem-

plates, 240, 242
Army Training Information Architecture-

Migrated (ATIA-M)
decomposition style example, 69, 70
uses style example, 79, 80

Arnold, Ken, 187
Arrows

C&C diagrams, 440, 447–448
confusion from, 41–43
UML diagrams, 300–302, 301, 440

Artifacts
architectural decision templates, 241
documents as, 11
UML, 444, 444

Aspect-oriented programming (AOP), 104,
107–108, 108–109

Aspect-oriented software development
(AOSD) movement, 108

AspectJ language, 107, 122
Aspects style

elements, relations, and properties, 104–105
examples, 106, 107
notations, 105–106, 106
overview, 104
purpose, 105
relation to other styles, 106
UML module views, 434–435

Aspects views, combined, 255
Associations

UML, 448, 448
view-to-view, 251, 353–354, 354

Assumptions in architectural decision tem-
plates, 240–242

Asynchronous calls, 42
Asynchronous communication

behavior documentation, 292
SOA style, 171

ATAM (Architecture Tradeoff Analysis
Method), 378, 394

ATM banking system
AOP example, 107–108, 108–109
client-server example, 165–166, 165

Attachment relations
C&C views, 126–127, 131–132

client-server style, 163
peer-to-peer style, 167
pipe-and-filter style, 158
publish-subscribe style, 174
shared-data style, 179
SOA style, 171
UML connectors, 142–143, 143

Attack resistance in deployment style, 195
Attribute-Driven Design (ADD) method,

345–347
Audiences for architecture documentation,

12–16
Authors in architectural decisions, 248–249
Availability

deployment style, 195
documentation needs, 323

Available options for variation points, 237
Avritzer, A., 213, 214

B
Bach, Maurice, 98
Bachmann, Felix, 373, 509
Background threads, 478
Backgrounds for presentations, 369–370
Backup modes in AADL, 482
Balconies, 34
Ban decisions in architectural decisions, 248
Bandwidth in deployment style, 194
Barker, Richard, 116
Bass, Len, 5, 32, 47, 71, 122, 510
Batch sequential style, 157
Beck, Kent, 414, 430
Behavior Annex standard in AAL, 483
Behavior documentation, 289–290

AADL, 482–484, 483
communication types, 291–293, 292
DoDAF, 426
location, 306
notation, 293–306, 295–301, 304–305
purpose, 306–308
questions to answer, 290–291
SysML, 471, 471
UML, 449–459, 449–459
view documentation, 340

Behavior Hiding Module in A-7E avionics sys-
tem, 71, 72

Bell LaPadula framework, 482–483
Bianco, Phil, 187, 287
Big design up front (BDUF), 415
Binding time of options for variation points,

237

ptg

520 ■ Index

Black-box testers, documentation needs,
318–319, 319

Blank sections in documentation, 44
Bloch, Joshua, 286
Boehm, B., 428
Booch, Grady, 4, 122, 311
Boolean algebra, 280
Box-and-line diagrams, 40
Bridging, layer, 88
Bridging elements, 26, 259
Britton, Kathryn Heninger, 14
Brooks, Frederick P., Jr., 40, 81, 147
Build-versus-buy decisions, 66
Buschmann, Frank, 33–34, 48, 187, 356
Buses in AADL, 474
Business managers, architecture documenta-

tion for, 15
Business Process Execution Language

(BPEL) standard
notations, 302–303
obtaining, 311
orchestration server for, 170

Business Process Modeling Notation
(BPMN), 303

C
C&C styles. See Component-and-connector

(C&C) styles
C&C views. See Component-and-connector

(C&C) views
CAFCR model, 25
Cai, Y., 213, 214
Call-return connectors

peer-to-peer style, 167
SOA style, 170–171

Call-return styles, 156, 157, 161–162
client-server, 162–166
peer-to-peer, 166–169, 169
service-oriented architecture, 169–172, 172

Callbacks in layered architecture, 100
Calls procedure in C&C view, 150
Candidate view lists, 330–331
Carroll, Lewis, 352
Cataldo, M., 210
Categories

architectural decisions, 249
architecture styles, 29, 49–50

Challenged status for architectural decisions,
249

Chen, Peter, 116, 118, 122

Child modules in generalization style, 82
Child view packets in context diagrams, 349
Chinese Wall framework, 483
Class diagrams in UML, 436–438, 437, 447
Class inheritance in generalization style, 84
Clements, Paul, 5, 32, 47, 71, 122, 234, 320,

396, 509
Client-server connectors in C&C views, 124
Client-server style

elements, relations, and properties, 162–164
examples, 164–166, 165
overview, 162
purpose, 163–164
relation to other styles, 164

Cockburn, Alistair, 311, 414, 416, 430
Color in layered style, 95
Combining primary presentations and con-

text diagrams, 347–348, 348
Combining views, 250–251

associations between views, 251
considerations, 254–255, 328–329
examples, 255–257, 256–258
process, 252–254, 252–253, 331–332

Comment boxes, 225
Commercial off-the-shelf (COTS) compo-

nents, 330
Common Language Runtime (CLR), 99
Communicating processes, 182–183
Communication

architectural decision payback, 246
behavior documentation, 291–293, 292
layered style for, 91
module views for, 60
SOA style, 171

Communication capacity matrices (CCMs),
211–212

Communication diagrams
behavior documentation, 299–300, 300
UML, 453–454, 454

Competence-center style, 208
Complex connectors in C&C views, 135–136,

135
Complexity in module relations, 210–212
Component-and-connector (C&C) styles, 29, 50

communicating processes, 182–183
crosscutting issues, 182–185, 184
data flow. See Data flow styles
dynamic creation and destruction, 184
introduction, 155–157, 157
repository, 178–182, 181
tiers, 183–184, 184

ptg

Index ■ 521

Component-and-connector (C&C) views
AADL, 478–481, 479, 481
analysts, 323–324, 324
application builders, 321, 321
combined, 255
connectors, 135–138, 135
customers, 321, 321
data flow and control flow models, 146–148
designers of other systems, 319–320, 319
development teams, 318, 318
DoDAF, 425–426
elements, 126–129
end users, 322, 322
future architects, 325–326, 325
infrastructure support personnel, 324–325,

324
maintainers, 320, 320
new stakeholders, 325, 325
notations, 132, 133, 139–146, 140–145
overview, 123–126, 125
primary presentations, 347
properties, 126, 133–134, 134
purpose, 127, 136–137
relation to other kinds of views, 148–150,

149
relations, 126, 131–132, 133
style specialization, 221–222
SysML, 469, 469
testers and integrators, 318, 319
types and instances, 129–131
UML, 438–443, 439–442, 460

Components, 29-32
C&C views, 123, 127–128
in multiple views, 349
replicating, 233, 235–236
UML, 139–140
UML for C&C views, 438–443, 439–442

Composite state in state machine diagrams,
304, 457

Comprehensive models
behavior, 294
notations, 303–306, 304–305

Comprises relations in architectural deci-
sions, 250

Computational models, 155–157
client-server style, 163
peer-to-peer style, 167
pipe-and-filter style, 158
publish-subscribe style, 174
shared-data style, 179
SOA style, 172

Concept phase in architecture document
reviews, 376

Concepts of operations (CONOPS) in
DoDAF, 420

Conceptual data model, 110, 110
Concurrency

activity diagrams, 301–302
C&C views, 134

Concurrency views for viewpoint sets, 409,
412–413

Conditional branching in activity diagrams, 302
Conditions of applicability for variation

points, 237
Configuration management, 368
Configuration parameters for interfaces, 276
Conflicts With relations in architectural deci-

sions, 250
Conformance checkers, architecture docu-

mentation for, 15
Conformance points, 389
Connecting elements, 4–5
Connectors

abstractions, 137–138, 137
C&C views, 123, 128–129, 135–138, 135
publish-subscribe style, 174
shared-data style, 179
SOA style, 170–171
UML, 142–143, 438–443, 439–442

Consistency in presentations, 370
Constants in interfaces, 274
Constrains relations in architectural deci-

sions, 250
Constraints

allocation styles, 191
aspects style, 105
behavior documentation, 293
C&C views, 126
client-server style, 163
data model style, 111
decomposition style, 67
deployment style, 192
generalization style, 83
install style, 199
layered style, 89
model, 172
module views, 56
peer-to-peer style, 167
pipe-and-filter style, 158
publish-subscribe style, 175
sequence diagrams, 298
shared-data style, 179

ptg

522 ■ Index

Constraints (continued)
style guides, 51
uses style, 75
work assignment style, 203

Construction, module views for, 59
Containment relations in install style, 199
Context diagrams, 225–226

child view packets, 349
combining primary presentations with,

347–348, 348
content, 228–229
notations, 229–231, 230–231
supporting documentation, 229
view documentation, 340–343
vocabulary of view for, 226–228, 226–228

Context views, 341–343
Control flow models in C&C views, 146–148
Control information in documentation, 351–

356, 354–355
Conveying risk, architectural decisions for,

246
Conway, M. E., 209, 214
Coordination views, 209–213
Copy-migrates-to relations in deployment

style, 192–193
Costs

architectural decisions, 249
architecture documentation, 18–19
combined views, 255

CPU properties in deployment style, 193
Creates, reads, updates, or deletes data

(CRUD) matrices, 118
Cripps, P., 360
Criticality in question sets, 384
Crosscuts relations

aspects style, 104–105
module views, 57, 435, 435

Crow’s foot ERD notation, 116, 116
Crystal Clear approach, 414
CSP language, 304–305
Currency in architectural documentation,

44–45
Customers, 15, 321–322, 321

D
Dahl, Ole-Johan, 122
Dashofy, E. M., 5
Data accessor component in shared-data

style, 179
Data-centric approach in DoDAF, 427

Data communication in behavior documen-
tation, 292

Data elements, 4
Data entities in data model style, 111

relationships, 57, 62, 109, 110, 111, 116,
117, 118, 120

Data flow diagrams, 38–43
Data flow models in C&C views, 146–148
Data flow styles, 156–157, 157

call-return, 161–162
client-server, 162–166
event-based, 172–178, 173, 177
peer-to-peer, 166–169, 169
pipe-and-filter, 158–161, 161
service-oriented architecture, 169–172,

172
Data in AADL, 474
Data integrity, 115
Data model style

elements, relations, and properties, 111–
113, 113–114

entities, 118–119
examples, 118, 119
notations, 116–117, 116–117
overview, 109–111, 110–111
purpose, 111, 114–115
relationships, 57, 62, 109, 110, 111, 116,

117, 118, 120
relations to other styles, 117–118
UML module views, 435–436, 436

Data ports in AADL, 479–480
Data reading and writing connectors in

shared-data style, 179
Data stores style, 207
Data transfer objects (DTOs), 98
Data Types and Constants section in interface

documentation, 283
Data types in interfaces, 274, 283
Database access connectors in C&C views, 124
Database administrators, architecture docu-

mentation for, 15
Database management systems (DBMSs), 178
Date, C. J., 113, 122
de Boer, R. C., 260
de Mille, Agnes, 25
Debugging, uses style for, 82
Decided status in architectural decisions, 249
Decision making, architecting as, 246–247, 247
Decisions in architectural templates, 240
Decomposition refinement, 218–219, 218–219
Decomposition relation, 66

ptg

Index ■ 523

Decomposition style, 65
elements, relations, and properties, 66–67,

67
examples, 69–73, 70
notations, 67–68, 68
overview, 65–66
purpose, 67
relation to other styles, 68–69
UML module views, 433, 433

Decomposition views in combined views,
255–256, 256

Denial of service, 323
Department of Defense Architecture Frame-

work (DoDAF), 377, 404, 419
documentation strategies, 426
overview, 419–420, 420
and software architecture, 421
version 2.0, 427, 427
and Views and Beyond, 421–425

Dependability in client-server style, 164
Dependencies

in layered style, 95
UML module views, 433–434, 434
variation point options, 237

Dependency arrows in C&C diagrams, 447–448
Dependency structure matrices (DSMs)

layered style, 101–102, 102–103
module views, 62
uses style, 77, 78

Depends-on relations
module views, 57, 60, 61
modules, 49
SysML module view, 468
uses, 74–75, 81

Depends on the correctness of relation in
architecture views, 24

Deployers, architecture documentation for, 15
Deployment style

elements, relations, and properties, 192–
194

notation, 196–198, 196
overview, 191–192
purpose, 194–195
relation to other styles, 197
UML allocation view, 443–445, 443–445

Deployment views, 22
4+1 approach, 407
AADL, 481–482, 482
combined views, 255, 257, 257–258
Rozanski and Woods viewpoint sets, 409,

412–413

Deprecated methods, 273
DeRemer, F., 64
Descriptions, architecture, 11
Descriptive architecture documentation, 12
Descriptive completeness, 222–225, 223–225
Design approaches, documenting, 356
Design idioms, 33
Design issues for interfaces, 277
Design reviews, active, 380–382
Design Structure System, 101
Design vs. architecture, 6–9
Designers, architecture documentation for, 15
Designers of other systems, documentation

needs, 319–320, 319
Detailed design, 7–8
Details in architecture document reviews,

379, 394–395
Developers, interface documentation for,

278–279
Development activities in behavior documen-

tation, 306–307
Development phase in architecture docu-

ment reviews, 377
Development teams, documentation needs,

317–318, 318
Development views in viewpoint sets, 409,

412–413
Devices in AADL, 474
Diacrises in architectural decisions, 248
Diagrams

activity. See Activity diagrams
class, 436–438, 437, 447
communication, 299–300, 300, 453–454, 454
context. See Context diagrams
ERDs, 62, 116, 116
interaction overview, 455–456, 456
interfaces, 268–270, 269–270
limitations, 38–43
sequence. See Sequence diagrams
state machine, 303–304, 304, 457, 458
timing, 302, 454, 455
use case, 458, 459

Dickinson, Emily, 375
Dijkstra, Edsger W., 36–37, 121, 242
Directional flow in AADL, 480
Directional relationships, 41–43
Directories, 355–356
Disk capacity in deployment style, 194
Distributed computing applications, 168
Document control information, 351–356,

354–355

ptg

524 ■ Index

Documentation beyond views, 350–351
behavior documentation in rationale, 306
standard organization for, 351–356, 351,

354–355
variations, 356–357

Documentation capacity matrices (DCMs),
211–212

Documentation overview, 9–12
Documentation packages. See Packages
Documentation roadmap, 352
DoDAF. See Department of Defense Architec-

ture Framework (DoDAF)
Downstream filters in pipe-and-filter style, 159
Drawing tools in UML, 462
Dynamic architecture, 234–235
Dynamic creation and destruction in C&C

styles, 184
Dynamism and dynamic architectures, 234–

235

E
e-Business Reference Architecture Frame-

work, 260
E-mail communication in behavior docu-

mentation, 292
Ease of reference, organization for, 43
Eclipse UI event manager, 177
ECMA toaster model, 121, 121
Economics in architecture documentation,

18–19
Education, architecture as, 12
Eeles, Peter, 360–361, 361, 513
Element catalogs

behavior documentation, 306
view documentation, 340
whole architecture, 356–357

Element developers, interface documenta-
tion for, 278

Element-level behavior documentation in
DoDAF, 426

Element properties in styles, 52–53
Element substitution, 233, 235
Elements, 4–5

allocation styles, 191
aspects style, 104–105
bridging, 26, 259
C&C views, 126–129
client-server style, 162–163
data model style, 111–113
decomposition style, 66–67, 67

deployment style, 192
generalization style, 83
hierarchical, 8
install style, 199–200
interfaces, 262–263
layered style, 89
module views, 56–57
peer-to-peer style, 166–167
pipe-and-filter style, 158–159
publish-subscribe style, 174–175
shared-data style, 179
SOA style, 169–171
style guides, 50
tools for, 371
uses style, 75
in variability, 233
variation points, 236
work assignment style, 202–203

Ellipses (...), 224
Emery, David, 375, 400, 513
Emphasis in presentations, 369
Enables relations in architectural decisions,

250
Encapsulation in module views, 58
End users, documentation needs, 322, 322
Enterprise Architect tool, 472
Enterprise service bus (ESB), 170
Entities in data model style, 118–119
Entity-relationship diagrams (ERDs)

data model style, 116, 116
module views, 62

Entry actions in state machine diagrams, 457
Environmental elements

allocation styles, 190–191
allocation views, 443, 470
deployment style, 192, 196, 443
install style, 199–200, 445
work assignment style, 203, 446

EOSDIS Core System (ECS)
uses style example, 79, 80
view selection example, 329–332
work assignment views, 204, 204

Error handling
in interface documentation, 283–284
interfaces, 273–276, 276
terms, 277–278

Error Modeling Annex in AADL, 473, 483, 484
Error state machine in AADL, 483
Evaluators, architecture documentation for, 15
Event-based styles, 156, 157, 172–178, 173, 177
Event ports in AADL, 479

ptg

Index ■ 525

Execution-migrates-to relations in deploy-
ment style, 192–193

Executive decisions in architectural deci-
sions, 248

Existence decisions in architectural deci-
sions, 248

Exit actions in state machine diagrams, 457
Expected answers in question sets, 383
Exploratory robot, 73, 74
Extends relation

AADL module style, 475
use case diagrams, 459, 459

Extension, generalization style for, 84
External memory from architectural deci-

sions, 245
Extreme Programming, 414

F
Failover Request/Reply connectors, 144
Fairbanks, George, 289, 513–514
Farenhorst, Rik, 246, 260, 514
Fault tolerance

AADL, 482
deployment style, 194

Feature-Driven Development, 414
Feiler, Peter H., 312, 473–474, 476, 483, 514
Felsing, John, 414, 430
Filters in pipe-and-filter style, 158–159
Final state in state machine diagrams, 457
Finkelstein, Clive, 116
Fitness of purpose

architectural documentation, 44–45
document reviews for, 375

Flight Operations Segment (FOS) in ECS
module, 204

Flint, Emily, 375
Flow charts in activity diagrams, 450
Flurry, G., 260
Focus in behavior documentation, 291
Forbids relations in architectural decisions, 250
Fork nodes in activity diagrams, 301
Formal notations

architecture views, 53
C&C views, 139
deployment style, 197

Fowler, Martin, 48, 122, 311
Frames in UML, 451, 452
Frameworks in variability, 233, 237
Freeman, Eric, 187
FSP language, 304–305

Functional views in viewpoint sets, 408, 411–
413

Functionality in C&C views, 133
Future architects, documentation needs,

325–326, 325

G
Gamma, E., 23, 34, 178
Garlan, David, 4, 153, 187, 287, 510
Gelernter, D., 187
Generalization concept in AADL module

style, 475
Generalization/specialization relations in

data model style, 111, 113
Generalization style

elements, relations, and properties, 83–84
examples, 85–87, 86
notations, 84, 85
overview, 82–83
purpose, 83–84
relation to other styles, 84
UML module views, 434

Generalization views, combined, 255–256, 256
Generalization vs. inheritance, 120
Generators in variability, 233
Gives computational work to relation, 24
Global policies, 349–350
Glossary of terms

in documentation beyond views, 355
list, 491–496

Gluch, David P., 312
Gnutella peer-to-peer networks, 168–169, 169
Gorton, Ian, 220
Graphical user interfaces in publish-

subscribe style, 174
Groups in architectural decision templates, 240
Guard constraints on transitions, 457
Guillemets (<< >>), 433

H
Hansson, Jörgen, 483
Hardware components in AADL, 474
Hardware Hiding Module in A-7E avionics

system, 71, 72
Harel, David, 303, 311
Harvey, Miles, 350
Henderson, Steuart, 9
Henney, Kevlin, 48, 187
Herbsleb, James D., 209–213, 514
Hierarchical elements, 8

ptg

526 ■ Index

High Level Architecture (HLA), 187
Hilliard, Rich, 375, 400, 514
History in architectural decisions, 248–249
History state in state machine diagrams, 457
Hoare, C. A. R., 40
Hofmeister, Christine, 24, 64, 214, 336
Hohpe, Gregor, 187
Hudak, John, 312
Hughart, Barry, 44
Humphrey, Watts S., 379
Hupfer, Susanne, 187
Hybrid styles in combined views, 253
Hybrid threads, 478
Hyman, Isabelle, 399
Hypertext, 365–366
Hypertext Markup Language (HTML), 164–

165
Hypertext Transfer Protocol (HTTP), 165

I
Idea status in architectural decisions, 249
IDEF1X notation, 116
Identification and overview information in

ISO/IEC 42010, 405
Identifying relation in data model style, 113
Identity in interfaces, 271
Implementation constraints in module views,

59
Implementation information property, 58–59
Implementation refinement, 219, 220
Implementation style, 207

UML allocation view, 445–446, 446
Implementation views

4+1 approach, 406–407
combined views, 254
use by infrastructure support personnel, 324

Implementers, architecture documentation
for, 15

Implications in architectural decision tem-
plates, 240–241

Implicit invocation in publish-subscribe style,
175

Include relations in use case diagrams, 459, 459
Incremental development, uses style for, 81–82
Indexes in directories, 355
Informal notations

architecture views, 53
C&C views, 139
context diagrams, 229–230, 230
decomposition style, 67–68
deployment style, 196

install style, 200, 201
layered style, 92–95, 92–95
module views, 60, 61
uses style, 76
work assignment style, 203

Information Engineering approach, 116
Information systems, data model style for, 115
Information views in viewpoint sets, 409,

412–413
Infrastructure support personnel, documen-

tation needs, 324–325, 324
Inheritance

vs. generalization, 120
generalization style, 84
as a variation mechanism, 233

Initial state in state machine diagrams, 457
Install style

elements, relations, and properties, 199–200
notations, 200, 201
overview, 198–199
purpose, 200
relation to other styles, 202
UML allocation view, 445–446, 446

Install views in combined views, 255
Instances

AADL, 480, 481
of components and connectors, 129–131
UML, 448
UML C&C views, 438, 439

Integration testing, uses style for, 82
Integrators

architecture documentation for, 16
documentation needs, 318–319, 319
interface documentation for, 278–279

Interaction overview diagrams in UML, 455–
456, 456

Interactions of connectors, 129
Interface Definition Language (IDL), 279
Interface delegation in C&C views, 126, 132
Interface documentation, 261

AADL, 484
behavior documentation in, 306
data types and constants, 274
diagrams, 268–270, 269–270
error handling, 273–276, 276, 283–284
examples, 281–285
extended by generalization, 263
guidelines, 266–267
identity, 271, 281
multiple, 270
overview, 261–263, 265–268

ptg

Index ■ 527

provided vs. required, 264–265
quality attributes, 276–277, 284
resources, 271–274, 279
stakeholders, 278–279
standard organization, 271–277, 271, 276
syntactic information, 279–280
terms, 280–281
UML, 460–461, 460–461
variability, 276

Interface inheritance in generalization style, 84
Interface realization in generalization style,

83–84
Interfaces

layered style, 90–91
SysML, 472, 472
view documentation, 340

International Council on Systems Engineer-
ing (INCOSE), 465

Invokes-services roles in C&C views, 128
Is-a relations

generalization style, 82
module views, 57
modules, 49
SysML module view, 468
UML module views, 434

Is an Alternative To relations in architectural
decisions, 250

Is Bound To relations in architectural deci-
sions, 250

Is-part-of relations
A-7E avionics system, 71
architecture views, 24
decomposition style, 65–67
module views, 57, 60, 61
modules, 49
SysML module view, 468

Is Related To relations in architectural deci-
sions, 250

ISO/IEC 42010
overview, 400–404, 401, 403
question sets for, 391–393
Views and Beyond approach, 404, 405

Issues in architectural decision templates, 240
Iterations in Agile projects, 414
Ivers, James, 510

J
Jackson, Michael, 38, 260
Jacobson, Ivar, 4, 122, 187, 311
Jain, Prashant, 187

Jargon, 37
Java EE application, 98–99, 99
Java modules, ATIA server-side, 69, 70
Java Virtual Machine (JVM), 99
JavaScript Object Notation (JSON), 279
JavaServer Faces (JSF) action classes, 98–99
Jazayeri, Mehdi, 2
Jefferson, Thomas, 18
Johnson, Samuel, 36
Join nodes, activity diagrams, 301

K
Kazman, R., 5, 32, 47, 71, 122, 396
Kiczales, Gregor, 122
Kircher, Michael, 187
Klein, John, 333–335, 514
Klein, M., 47, 396
Knuth, Donald, 241
Koala language, 306
Komiya, S., 260
Kotermanski, Rick, 187
Kron, H. J., 64
Kruchten, Philippe, 24, 48, 221, 239, 515

4+1 approach, 360, 404, 406–408, 408, 429
architectural decisions, 247–249, 248–249,

260
Kylmäkoski, Roope, 336

L
Laddad, Ramnivas, 122
Lago, P., 247
Language of quality attributes, 17
Layer bridging, 88
Layer diagrams, 38–39
Layered process for combined views, 253
Layered style

calling higher layers, 100–101
Dependency Structure Matrix for, 101–

102, 102–103
elements, relations, and properties, 89–90
examples, 97–99, 97, 99
notations, 92–95, 92–95
overview, 87–89, 87–88
purpose, 89–91
relation to other styles, 96–97, 96
UML module views, 434, 435

Layered views, 404
combined views, 255
and portability, 22

Lewis, Grace, 287, 474

ptg

528 ■ Index

Life-cycle phases in architecture document
reviews, 376–377

Linda programming language, 187
Links in communication diagrams, 299–300,

300
Liskov, Barbara, 122
Little, Reed, 510
Local calls vs. remote calls, 42
Local change and variation, generalization

style for, 84
Local communication in behavior documen-

tation, 293
Logical data model, 110, 110
Logical views in 4+1 approach, 406
Lollipop/socket notation, 141, 141, 268, 269
Loop frames in sequence diagrams, 298

M
MagicDraw tool, 472
Mailing lists, publish-subscribe style for, 174
Maintainers

architecture documentation for, 16
documentation needs, 320, 320
interface documentation for, 278

Major design approaches, documenting, 356
Management information in module views, 59
Many-to-many associations in views, 251
Many-to-many relations in data model style,

111
Many-to-one associations, 251
Mapping

module and C&C views, 149
to requirements, 17, 357–362, 358, 361, 371
to source code units, 59
between views, 353–354, 354

Mars Climate Orbiter, 281
Mars exploratory robot, 73, 74
Martin, James, 116
McGregor, John D., 465, 515
Medvidovic, N., 5, 153
Memory for AADL, 474
Memory properties in deployment style, 193
Merge nodes in activity diagrams, 301–302
Merson, Paulo, 187, 287, 373, 511
Message sequence charts, 302
Messaging connectors in SOA style, 171
Meta-Model in AADL, 473
Microsoft .NET Pet Shop application, 118
Migrates-to relations in deployment style,

192–193
Migration triggers in deployment style, 194

Mode transitions in AADL, 482
Model-view-controller (MVC) pattern, 174
Modeling tools in UML, 462
Modifiability

documentation needs, 323
layered style, 98–99

Modula modules, 30
Modularization, 209–212
Module decomposition and layered style, 96,

96
Module interfaces in UML, 460
Module structure in architecture views, 24
Module styles, 29, 65

AADL, 475–477, 476–478
aspects, 104–108, 106–109
data model. See Data model style
decomposition. See Decomposition style
generalization. See Generalization style
layered. See Layered style
use. See Uses style

Module views
analysts, 323–324, 324
application builders, 321, 321
vs. C&C view, 148–149, 149
customers, 321, 321
designers of other systems, 319–320, 319
development teams, 318, 318
DoDAF, 426
elements, 56–57
end users, 322, 322
future architects, 325–326, 325
infrastructure support personnel, 324, 324
maintainers, 320, 320
new stakeholders, 325, 325
notations, 60–62, 61–62
overview, 55–56, 56
project managers, 317, 317
properties, 57–59, 58
purpose, 59–60
relation to other views, 63
relations, 57
subsystems, 73–74, 74
SysML, 468, 468
testers and integrators, 318, 319
UML, 433–436, 433–436

Modules, 29–32, 31
in multiple views, 349
styles, 49

Morale, uses relation for, 81
Multi-part primary presentations, 349
Multiple interfaces, 262–263, 270

ptg

Index ■ 529

N
Name property in module views, 57
Named frames in sequence diagrams, 297
Naming conventions in UML, 140
Natural language, 280
Navigable associations in UML, 440
Neighbors, J. M., 64
Nesting notation in decomposition style, 68
Nesting of states in state machine diagrams,

304
Network administrators, architecture docu-

mentation for, 16
New stakeholders, documentation needs,

325, 325
Nii, H. P., 187
Nonarchitectural design, 7
Nonexistence decisions in architectural deci-

sions, 248
Nonidentifying relations in data model style,

113
Nord, Robert, 24, 64, 214, 336, 511
Normalization in data model style, 113, 113–

114
Northrop, Linda, 234, 320
Notations

architecture views, 53
formal, 53
informal, 53
semiformal, 53

aspects style, 105–106, 106
behavior documentation, 293–306, 295–

301, 304–305
C&C views, 132, 133, 139–146, 140–145
comprehensive models, 303–306, 304–305
context diagrams, 229–231, 230–231
data model style, 116–117, 116–117
decomposition style, 67–68, 68
deployment style, 196–198, 196
explaining, 40–41
generalization style, 84, 85
install style, 200, 201
layered style, 92–95, 92–95
module views, 60–62, 61–62
style guides, 51
for traces, 295–303, 295–301
uses style, 76–77, 77–78
work assignment style, 203–204, 204

Notes in architectural decision templates,
241

Nygaard, Kristen, 122

O
Object Constraint Language (OCL), 460–461
Object Management Group (OMG), 465

AADL standards, 474
IDL standard, 279
OCL standard, 460
SysML standard, 465
UML specification, 122, 311, 433

Object-oriented designs, generalization style
for, 84

Object-relational impedance matching, 117
Object-relational mapping (ORM) tools, 117
Obsolesced status in architectural decisions,

250
Ockerbloom, J., 153, 287
O’Connell, Don, 419, 515
Ogilvy, David, 36
OMG. See Object Management Group

(OMG)
One-to-many associations in views, 251
One-to-many relations in data model style, 111
One-to-one relations, 111
Online documentation for packages, 365–366
Ontocrises in architectural decisions, 248
Ontology in architectural decisions, 247–250,

248–249
Open questions, 357
Open-source style, 208
Operational view (OV)

DoDAF, 419, 422
Rozanski and Woods viewpoint sets, 410, 413

Optional inclusion, 233, 236
Orchestration servers in SOA style, 170–171
Order Processing Center (OPC) component

in Adventure Builder, 173, 184, 230, 285
Ordering constraints in behavior documen-

tation, 293
OSATE tools, 485
OSGi framework, 121, 121
Overhead in layered style, 91
Overlays in combined views, 252–253
Overrides relations in architectural deci-

sions, 250
Overview presentations, 364–365

P
Packages

AADL module style, 475
architecture documentation, 349–350,

362–369

ptg

530 ■ Index

Packages (continued)
configuration management, 368
documentation beyond views, 350–357,

351, 354–355
mapping to requirements, 357–362, 358,

361
online documentation and hypertext, 365–

366
release strategy, 368–369
schemes, 362–364
tooling requirements, 370–372
UML, 61, 76, 77–78, 355, 433
wikis, 365–368

Pair programming, 414
Palmer, Stephen, 414, 430
Parameterization in variability, 233
Parent modules in generalization style, 82
Parnas, David L., 24, 30, 34, 47, 48, 104, 121,

122, 209, 286–287, 396
Partial results in error handling, 278
Pascal, Blaise, 37
Patterns, architectural

and styles, 32–36
and views, 343

Paulish, D., 213, 214, 397
Payback from architectural decisions, 245–246
Peer-to-peer style

elements, relations, and properties, 166–
167

examples, 168–169, 169
overview, 166
purpose, 167
relation to other styles, 168

Performance
C&C views, 133
client-server style, 164
deployment style, 194
documentation needs, 323

Pericrises in architectural decisions, 248
Perry, Dewayne, 4, 24, 33, 48
Perspectives, architecture, 410–411
Pet Shop application, 118, 119
PetStore application, 85–87, 86
Physical data model, 110, 111
Pipe-and-filter style

elements, relations, and properties, 158–159
example, 160–161, 161
overview, 158
purpose, 158–160
relation to other styles and models, 160
UML, 442–443, 442

Plain old Java objects (POJOs), 98
Platform style, 208
Plus One View, 360
Policies, global, 349–350
Politi, Michael, 311
Portability in layered style, 90, 98–99
Ports

AADL, 478–480, 479
C&C views, 127–128, 134
UML, 140, 141, 460

Prabhakar, T. V., 515
Prescriptive architecture documentation, 12
Presentations

C&C views, 347
combining with context diagrams, 347–348,

348
guidelines, 369–370
multi-part, 349
overview, 364–365
view documentation, 338–339
view packets, 344

Prieto-Diaz, R., 64
Primary presentations

C&C views, 347
combining with context diagrams, 347–348,

348
multi-part, 349
view documentation, 338–339
view packets, 344

Priorities in view selection, 329, 332
Process-steps style, 208–209
Process structure in architecture views, 24
Process views in 4+1 approach, 407
Processes in AADL, 474
Processing elements, 4
Processors in AADL, 474
Product-line architectures, 234
Product line implementation in decomposi-

tion style, 66
Product line managers, architecture docu-

mentation for, 16
Programming in the large, 30
Project managers

architecture documentation for, 16
documentation needs, 316–317, 317
interface documentation for, 279

Properties
AADL, 482–483, 483
in architectural decisions, 248
in architecture documentation, 17
aspects style, 104–105

ptg

Index ■ 531

C&C views, 126, 133–134, 134
client-server style, 162–164
data model style, 111–113
decomposition style, 66–67, 67
deployment style, 192–194
generalization style, 83
install style, 199–200
layered style, 89
module views, 57–59, 58
peer-to-peer style, 166–167
pipe-and-filter style, 158–159
publish-subscribe style, 174–176
SOA style, 169–170
style guides, 50–51
tools for, 371
uses style, 75
view documentation, 340
work assignment style, 202–203

Provided interfaces, 264–265
Provides-services roles in C&C views, 128
Pseudo-states in state machine diagrams, 457
Publish-subscribe connectors in C&C views, 124
Publish-subscribe style

elements, relations, and properties, 174–176
example, 177–178, 177
overview, 174
purpose, 175–176
relation to other styles, 176–177

Published styles and views, 343
Publisher roles in C&C views, 128

Q
Quality attributes

and architecture documentation, 17–18
decomposition style, 66
interface documentation, 284
interfaces, 276–277
and software architecture, 2–3

Questions and question sets
architecture document reviews, 379, 382–

394, 384
behavior documentation, 290–291
open, 357
for supporting development, 389–391
for supporting evaluation, 386–388

R
Ran, Alexander, 2
Rapid7 approach, 335–336

Rational Unified Process (RUP)
architecture views, 24
Views and Beyond, 406–408, 408

Rationale
in architectural decisions, 239
architecture documentation, 17, 44
behavior documentation, 306
documentation beyond views, 354–355
interface issues, 277
tools for, 371
view documentation, 340–341

Rationale and Design Issues section in inter-
face documentation, 284

Reader point of view in architectural docu-
mentation, 36–37

Reader roles in C&C views, 128
Realization concept in AADL module style,

475
Reallocating resources in variation points,

236
Redundant discussion, architectural deci-

sions for, 246
Reentrant calls in UML, 452, 453
Refactoring Agile projects, 414
Referenced material in directories, 356
References in sequence diagrams, 298
Refinement, 218

decomposition, 218–219, 218–219
implementation, 219, 220
spectrum of design, 220–221
style specialization, 221–222

Reid, Thomas, 54
Rejected status in architectural decisions, 250
Related decisions in architectural decision

templates, 241
Related requirements in architectural deci-

sion templates, 241
Relations, 5

allocation styles, 191
aspects style, 104–105
C&C views, 126, 131–132, 133
client-server style, 162–163
data model style, 111–113, 113–114
decomposition style, 66–69, 67
deployment style, 192–193
directional, 41–43
generalization style, 83
install style, 199–200
layered style, 89
module views, 57

ptg

532 ■ Index

Relations (continued)
peer-to-peer style, 166–167
pipe-and-filter style, 158–159
publish-subscribe style, 174–175
selecting, 52–53
shared-data style, 179
SOA style, 169–172
style guides, 50–51
uses style, 75
view documentation, 340
work assignment style, 202–203

Release-based style, 209
Release strategy in packages, 368–369
Relevant views, 22
Reliability

C&C views, 133
deployment style, 195

Remote calls vs. local calls, 42
Remote communication in behavior docu-

mentation, 293
Remote procedure call (RPC), 292
Repetition

architectural documentation, 37–38
across views and view packets, 349–350

Repository component in shared-data style,
179

Repository styles, 156, 157, 178–182, 181
Representation, defined, 11
Representatives of external systems, architec-

ture documentation for, 16
Request/reply connectors in client-server

style, 163
Required interfaces, 264–265
Requirements

mapping to, 17, 357–362, 358, 361
tooling, 370–372
viewpoints, 360–361

Resources, 262
C&C views, 133
deployment style, 194
in interface documentation, 281–283
interfaces, 271–274

Respondents in question sets, 383
Responsibilities in modules, 56
Responsibility property in module views, 57–

58
REST connectors in SOA style, 170–171
Retrying in error handling, 278
Reuse

generalization style for, 84
interface documentation for, 279

Rhapsody tool, 472
Rich C&C connectors, 143, 143
Rings notation in layered style, 93–94, 94
Risk in architectural decisions, 246, 249
Roles in C&C views, 128, 134
Rozanski, Nick, 13, 25 37, 341–343, 350, 408–

413, 409, 413, 430, 515
RSS feeds, 160, 161
Rugina, Ana-Elena, 483
Rumbaugh, James, 4, 122, 311

S
SaaS (software as a service) model, 287
Safety critical properties in deployment style,

194
Safety views, 404
Saini, Darpan, 516
SARA report, 397
Satellite system, 79, 80
Satisfy relationships in SysML, 466
Scaffidi, Christopher, 287
Schemes, packaging, 362–364
Schmerl, Bradley, 153
Schmidt, Douglas C., 187
Schwaber, Ken, 414, 430
Science Data Processing Segment (SDPS) in

ECS module, 204
SCM (software configuration management),

214
Scope

architectural decisions, 248
documentation roadmaps, 352

Scrum approach, 414
Security

AADL, 482–483
C&C views, 133–134
client-server style, 164
deployment style, 195
documentation needs, 323

Security views, 404
Segmented layers in layered style, 92–93, 93
Self calls in UML, 452, 453
Semantics for resource, 272–274
Semiformal notations

architecture views, 53
C&C views, 139–146, 140–145
uses style, 76, 77–78

Send-data-to relations in decomposition
refinement, 218

Separate documents in scheme packaging,
363–364

ptg

Index ■ 533

Sequence diagrams
Agile projects, 417, 418
behavior documentation, 297–298, 298–299
SysML, 471
UML, 450–453, 451–453

Servers in client-server style, 162
Service-level agreements (SLAs), 277
Service-oriented architecture (SOA) style

elements, 169, 171
example, 172, 173
module view, 266
overview, 169
properties, 169
purpose, 172
relations, 169, 171–172

Service-oriented views, 404
Service providers in SOA style, 171
Service registry in SOA style, 170
Services in call-return styles, 161
Servlets, 98
Shared-data stores, 179
Shared-data style, 178

elements, relations, and properties, 179
example, 181–182
overview, 178–179
purpose, 179–180
relation to other styles, 180–181

Shares-part-of-the-same-secret-as relations in
architecture views, 24

Sharing and Reusing Architectural Knowl-
edge (SHARK) workshops, 260

Shaw, Mary, 4, 33, 48, 153, 187, 286–287
Short iterations approach, 414
Sidecars, layers with, 94–95, 94
Siemens Four View model, 24, 214
Signatures, 280–281
Simplicity in presentations, 370
Size in layered style, 95
Slices, 73
Smalltalk classes, 30
Snyder, Alan, 122
SOA. See Service-oriented architecture

(SOA) style
SOAP connectors

C&C views, 129
SOA style, 170–172

SOAP Web service
interface documentation, 285
synchronous remote calls, 42

Social networks, publish-subscribe style for,
174

Socializing decisions, architectural decisions
for, 245

Society of Automotive Engineers (SAE), 312
Software architecture overview, 1–5

vs. design, 6–9
documentation overview. See Architecture

documentation overview
and quality attributes, 2–3

Software as a service (SaaS) model, 287
Software components in AADL, 474
Software configuration management (SCM),

214
Software Decision Hiding Module in A-7E

avionics system, 71–73, 72
Software elements

allocation styles, 191
deployment style, 192
install style, 199
work assignment style, 203

Software Engineering Institute, 47
Software interfaces. See Interfaces
Software product lines, 320
Soni, Dilip, 24, 64, 214, 336
Specializations

allocations, 208
C&C views, 130–131
styles, 221–222

Specification, defined, 10
Specification and Description Language

(SDL), 302, 306
Spectrum of design, 220–221
Spivey, J. M., 311
Spring framework, 222
Stack notation in layered style, 92, 92
Stafford, Judith A., 11, 511
Staging in view selection, 329
Stakeholder/view tables, 326–327
Stakeholders, 15–16

architecture documentation for, 13
documentation roadmaps, 352
interface documentation, 278–279
ISO/IEC 42010, 405
quality attributes for, 18
question sets, 383, 385–386
view selection for, 316–328, 317–322, 324–

326
Standard organization

architectural documentation, 43–44
for documentation beyond views, 351–356,

351, 354–355
variations, 356–357

ptg

534 ■ Index

Standard organization (continued)
for interface documentation, 271–277,

271, 276
for style guides, 50–51
for views, 337–341

variations, 344–349, 348
State machine diagrams, 303–304, 304, 457,

458
Status in architectural decision templates, 240
Status indicators in interfaces, 277
Stereotypes in UML, 62, 62, 433, 441
Steward, Donald, 101
Stimulation communication, 292
Storage unit capacity in deployment style, 194
Stream of consciousness writing, 37
Style guides, 26

outline, 50–51
presentations, 369

Style specialization, 221–222
Styles, 25

allocation. See Allocation styles
categories, 29, 49–50
C&C. See Component-and-connector

(C&C) styles
element and relation properties, 52–53
examples, 54
module. See Module styles
notations for architecture views, 53
overview, 25–28, 27–28
terms, 29–36

Subjects
architecture document reviews, 378–379,

394
use case diagrams, 459

Subprograms in AADL, 474
Subscriber role in C&C views, 128
Substates in state machine diagrams, 304
Subsumes relations in architectural deci-

sions, 250
Subsystems, 73–74, 74

decomposition style, 66
Support phase in architecture document

reviews, 377
Supporting documentation, 341

C&C views, 125
context diagrams, 229
view packets, 344

Swim lanes in UML sequence diagrams 300–
301, 450

Symbols in use case diagrams, 459, 459
Synchronous calls, 42

Synchronous communication, 292
Syntactic information, interface documenta-

tion for, 279–280
Syntax, resource, 272
SysML. See Systems Modeling Language

(SysML)
System analysis and construction, architec-

ture documentation for, 14
System context views, 341–343
System engineers, architecture documenta-

tion for, 16
System-level behavior documentation in

DoDAF, 426
System overview in documentation beyond

views, 353
Systems and services view (SV) in DoDAF,

419, 423–425
Systems in AADL, 474
Systems Modeling Language (SysML), 197,

465–466, 466
allocation view, 470–471, 470
architecture documentation, 466
behavior documentation, 471, 471
C&C view, 469, 469
interfaces, 472, 472
module view, 468, 468
requirements, 466, 467
summary, 472

Systems of interest in ISO/IEC 42010, 401
Szyperski, C., 30

T
Tables

DoDAF, 419
SysML, 197
uses style, 76, 80
work assignment style, 203, 204

Tagged values in UML, 441, 441
Taylor, R. N., 5, 153
TDDT (Training and Doctrine Development

Tool), 69
Team allocation in decomposition style, 66
Team morale, uses relation for, 81
Technical standards view (TV) in DoDAF,

419, 425
Telephone communication, 292
Templates. See also Standard organization.

architectural decisions, 239–242
architecture perspectives, 411
question sets, 384, 384
in variability, 233

ptg

Index ■ 535

Tentative status in architectural decisions, 249
Terms

in directories, 355
glossary, 491–496

Test-driven development in Agile projects,
414

Test information in module views, 59
Testers

architecture documentation for, 16
documentation needs, 318–319, 318
interface documentation for, 278

Textual representation of views
decomposition view for A-7E example, 72
module views, 61
visibility in module views, 68
work assignment view for ECS, 79–80

The Open Group Architecture Framework
(TOGAF), 377

Threads in AADL, 474, 478–480
Three-part rule in architecture patterns, 34
Tiered client-server views, 257, 257–258
Tiers

C&C styles, 183–184, 184
C&C views, 134
layered style, 96–97

Time-based stimulation in behavior docu-
mentation, 293

Time constraints in sequence diagrams, 298
Time stamps in architectural decisions, 248–

249
Timed threads, 478
Timely development, architectural decisions

for, 246
Timing diagrams in UML, 302, 454, 455
Tools

for combined views, 255
requirements, 370–372
UML, 461–463

Top-level context diagrams (TLCDs), 225–226
Topcased project, 472
Traceability of requirements viewpoints, 360
Traces

behavior documentation, 294–295
notations for, 295–303, 295–301
for semantic information, 280

Trachtenberg, Marvin, 399
Training and Doctrine Development Tool

(TDDT), 69
Transclusion process, 368
Transitions in state machine diagrams, 303–

304, 304, 457

Tuple spaces, 187
Types

of components and connectors, 129–131
UML, 448, 449

Tyree, Jeff, 239, 516, 246, 247, 260

U
UML. See Unified Modeling Language
Unified Modeling Language (UML), 431

activity diagrams, 300–302, 301, 450, 450
allocation view, 443–447, 443–447
ambiguity traps, 447–449, 448–449
aspects style, 105–106, 106
assembly connectors, 142, 146, 440, 440
associations, 57, 117, 117, 197, 251–255,

251–253, 436–437, 440, 448, 448, 459,
459

behavior documentation, 296–305, 296–
301, 449–459, 449–459

C&C views, 132, 133, 139–146, 140–145,
438–443, 439–442

class diagrams, 436–438, 437, 447
communication diagrams, 299–300, 300,

453–454, 454
components, 74, 133, 135, 137, 139–146,

140–145, 151, 197, 198, 219, 219, 268,
269, 286, 431, 432, 438–445, 439–444,
448, 449, 451, 451, 460, 461

context diagrams, 230–231, 231
data model style, 117, 117
decomposition refinement, 218–219, 219
decomposition style, 68, 68
delegation connectors, 132, 133, 219, 441,

442
deployment style, 197, 198
generalization style, 84, 85
interaction overview diagrams, 455–456, 456
interface documentation, 268, 269, 460–

461, 460–461
introduction, 431–433, 432
layered style, 95, 95
module views, 61–62, 61–62, 433–436, 433–

436
packages, 61, 61, 68, 68, 74–77, 77–78, 95,

231, 268, 269, 355, 431, 432, 433–435,
433, 435, 437, 446, 449

port, 127, 140–141, 141, 146, 149, 151, 169,
220, 286, 438, 439, 441, 460

provided interface, 61, 141–142, 264–265,
268, 269, 285, 437, 438, 439, 440–441,
440, 460, 460

ptg

536 ■ Index

Unified Modeling Language (UML) (continued)
required interface, 141–142, 264–265, 268,

269, 285, 437, 438, 439, 440–441, 440,
460, 460

sequence diagrams, 297–298, 298–299,
450–453, 451–453

state machine diagrams, 303–304, 304,
457, 458

SysML, 465–466, 466
timing diagrams, 302, 454, 455
tools, 461–463
use case diagrams, 458, 459
use cases, 296, 296–297
uses style, 76, 77–78

Uncertainty relations between modules
(UM), 210–212

Unit Training Management Configuration
(UTMC), 69

Universal styles, 26
UNIX System V operating system, 97–98, 97
Usability in documentation needs, 323
Usage Guide section in interface documenta-

tion, 277, 285
Use case diagrams, 458, 459
Use cases

4+1 approach, 407
behavior documentation, 296, 296–297
documenting, 356

User stories in Agile projects, 414
Users, architecture documentation for, 16
Uses of architecture documentation, 12–16
Uses relations, 81–82

layered style, 97
module views, 57
UML, 448

Uses structure in architecture views, 24
Uses style, 74–75

elements, relations, and properties, 75
examples, 79–80, 80
notations, 76–77, 77–78
purpose, 75–76, 76
relation to other styles, 79
UML module views, 433
uses relation, 81–82

Uses views in combined views, 255–256, 256
Utilization phase in architecture document

reviews, 377
UTMC (Unit Training Management Configu-

ration), 69

V
van der Linden, Frank, 2
van Gogh, Vincent, 215
van Vliet, H., 247
Variability, 231

interfaces, 276, 284
Variability guides, 232, 340
Variation points, 231, 232

documenting, 235–238, 238
dynamism and dynamic architectures,

234–235
variation mechanisms, 232–233

Versions, architecture documentation for, 21
Vertical slices, 73
Vicknair, W., 260
View packets, 344–347
View selection, 315–333

examples, 329–335
prioritizing and staging, 329, 332
stakeholder documentation needs, 316–

328, 317–322, 324–326
stakeholder/view tables, 326–327

View-to-view associations in documentation
beyond views, 353–354, 354

Viewpoints
ISO/IEC 42010, 402–403, 403, 405
requirements, 360–361, 361
Rozanski and Woods viewpoint sets, 408–

413, 409, 413
Views, 22–23

associations between, 251
combining. See Combining views
component-and-connector. See Compo-

nent-and-connector (C&C) views
coordination, 209–213
documentation beyond views, 350–356,

351, 354–356
in documentation packages, 337, 363–365

repetition across, 349–350
standard organization, 337–344, 338
standard organization variations, 344–

349, 348
documentation roadmaps, 352
history of, 23–25
ISO/IEC 42010, 401
mapping between, 353–354, 354
module. See Module views
notations, 53
and published styles and patterns, 343

ptg

Index ■ 537

Views and Beyond approach, 19–20, 339
in Agile development environment, 20,

415–418, 418
architecture decisions, 239
architecture documentation, 19–20
context diagrams, 341
compared to DoDAF, 421–425
compared to ISO/IEC 42010, 400–405
compared to Rozanski and Woods, 411–413
compared to RUP, 406–408

Virtual buses in AADL, 474
Virtual machines, 99

layered style, 90
Virtual processors in AADL, 474
Visibility of interface property in module

views, 58, 58
Visual styles in presentations, 369
Vitruvius, 399
Vocabulary of view for context diagrams,

226–228, 226–228
Voelter, Markus, 356
von Goethe, Johann Wolfgang, 289

W
Web-based documentation, 365–366. See

also Wikis.
Web modules, ATIA server-side, 69
Web Services Description Language (WSDL),

279
Weeks, Edward, 375
Weiss, David M., 121, 122, 380, 396, 516
Weiss, M., 247
Wikis, 365–368
Windowsapps, 69

Wolf, Alexander L., 4, 11, 24, 33, 48
Wolff, Bobby, 187
Woods, Eoin, 3, 13, 25, 37, 341–343, 350,

408–413, 409, 413, 430, 516
Work assignment style, 205–206

elements, relations, and properties, 202–
203

notations, 203–204, 204
overview, 202
purpose, 203
relation to other styles, 204–205
specializing, 208
UML, 446–447, 447

Work assignment views in combined views, 255
Work breakdown structure (WBS), 202
World Wide Web in client-server style, 164–

165
Wright, Frank Lloyd, 14, 55, 316
Writer roles in C&C views, 128
Wuerges, H., 286

X
XMI model in AADL, 473
XZip component, 281

Y
Yahoo! Pipes, 160–161, 161
Yang, Chen Ning, 315

Z
Z language, 304–305, 311
Zachman, J. A., 404
Zip component API, 281–285

ptg

This page intentionally left blank

ptg

Section 1. Primary Presentation

Section 2. Element Catalog

Section 2.A. Elements and Their Properties
 Section 2.B. Relations and Their Properties
 Section 2.C. Element Interfaces
 Section 2.D. Element Behavior

Section 3. Context Diagram

Section 4. Variability Guide

Section 5. Rationale

Template for a View

ptg

Section 1. Documentation Roadmap

Section 2. How a View Is Documented

Section 3. System Overview

Section 4. Mapping Between Views

Section 5. Rationale

Section 6. Directory — index, glossary,
 acronym list

Template for Documentation

Beyond Views

Architecture

documentation

information

Architecture

information

Interface Documentation

Section 1. Interface Identity
Section 2. Resources

For each resource: – Syntax
 – Semantics
 – Error Handling
Section 3. Data Types and Constants
Section 4. Error Handling
Section 5. Variability
Section 6. Quality-Attribute Characteristics
Section 7. Rationale and Design Issues
Section 8. Usage Guide

	Contents
	About the Cover
	Foreword to the Second Edition
	Foreword to the First Edition
	Preface
	Acknowledgments
	Reader’s Guide
	Prologue: Software Architectures and Documentation
	P.1 A Short Overview of Software Architecture
	P.1.1 Overview
	P.1.2 Architecture and Quality Attributes
	Coming to Terms: What Is Software Architecture?
	Perspectives: What’s the Difference Between Architecture and Design?

	P.2 A Short Overview of Architecture Documentation
	P.2.1 Why Document Software Architecture?
	Coming to Terms: Specification, Representation, Description, Documentation
	P.2.2 Uses and Audiences for Architecture Documentation
	P.2.3 Architecture Documentation and Quality Attributes
	P.2.4 Economics of Architecture Documentation
	P.2.5 The Views and Beyond “Method”
	P.2.6 Views and Beyond in an Agile Environment
	P.2.7 Architectures That Change Faster Than You Can Document Them

	P.3 Architecture Views
	Coming to Terms: A Short History of Architecture Views

	P.4 Architecture Styles
	P.4.1 Three Categories of Styles
	Coming to Terms: Module, Component
	Coming to Terms: “Architecture Style” and “Architecture Pattern”

	P.5 Seven Rules for Sound Documentation
	Perspectives: Beware Notations Everyone “Just Knows”
	Perspectives: Quivering at Arrows

	P.6 Summary Checklist
	P.7 Discussion Questions
	P.8 For Further Reading

	Part I: A Collection of Software Architecture Styles
	I.1 Three Categories of Styles
	I.2 Style Guides: A Standard Organization for Explaining a Style
	I.3 Choosing Which Element and Relation Properties to Document
	I.4 Notations for Architecture Views
	I.5 Examples
	Chapter 1 Module Views
	1.1 Overview
	1.2 Elements, Relations, and Properties of Module Views
	1.3 What Module Views Are For
	1.4 Notations for Module Views
	1.5 Relation to Other Views
	1.6 Summary Checklist
	1.7 Discussion Questions
	1.8 For Further Reading

	Chapter 2 A Tour of Some Module Styles
	2.1 Decomposition Style
	2.2 Uses Style
	2.3 Generalization Style
	2.4 Layered Style
	2.5 Aspects Style
	2.6 Data Model
	2.7 Summary Checklist
	2.8 Discussion Questions
	2.9 For Further Reading

	Chapter 3 Component-and-Connector Views
	3.1 Overview
	3.2 Elements, Relations, and Properties of C&C Views
	3.3 What C&C Views Are For
	3.4 Notations for C&C Views
	3.5 Relation to Other Kinds of Views
	3.6 Summary Checklist
	3.7 Discussion Questions
	3.8 For Further Reading

	Chapter 4 A Tour of Some Component-and-Connector Styles
	4.1 An Introduction to C&C Styles
	4.2 Data Flow Styles
	4.3 Call-Return Styles
	4.4 Event-Based Styles
	4.5 Repository Styles
	4.6 Crosscutting Issues for C&C Styles
	4.7 Summary Checklist
	4.8 Discussion Questions
	4.9 For Further Reading

	Chapter 5 Allocation Views and a Tour of Some Allocation Styles
	5.1 Overview
	5.2 Deployment Style
	5.3 Install Style
	5.4 Work Assignment Style
	5.5 Other Allocation Styles
	5.6 Summary Checklist
	5.7 Discussion Questions
	5.8 For Further Reading

	Part II: Beyond Structure: Completing the Documentation
	Chapter 6 Beyond the Basics
	6.1 Refinement
	6.2 Descriptive Completeness
	6.3 Documenting Context Diagrams
	6.4 Documenting Variation Points
	6.5 Documenting Architectural Decisions
	6.6 Combining Views
	6.7 Summary Checklist
	6.8 Discussion Questions
	6.9 For Further Reading

	Chapter 7 Documenting Software Interfaces
	7.1 Overview
	7.2 Interface Documentation
	7.3 A Standard Organization for Interface Documentation
	7.4 Stakeholders of Interface Documentation
	7.5 Conveying Syntactic Information
	7.6 Conveying Semantic Information
	7.7 Examples of Interface Documentation
	7.8 Summary Checklist
	7.9 Discussion Questions
	7.10 For Further Reading

	Chapter 8 Documenting Behavior
	8.1 Beyond Structure
	8.2 How to Document Behavior
	8.3 Notations for Documenting Behavior
	8.4 Where to Document Behavior
	8.5 Why to Document Behavior
	8.6 Summary Checklist
	8.7 Discussion Questions
	8.8 For Further Reading

	Part III: Building the Architecture Documentation
	Chapter 9 Choosing the Views
	9.1 Stakeholders and Their Documentation Needs
	9.2 A Method for Choosing the Views
	9.3 Example
	9.4 Summary Checklist
	9.5 Discussion Questions
	9.6 For Further Reading

	Chapter 10 Building the Documentation Package
	10.1 Documenting a View
	10.2 Documentation Beyond Views
	10.3 Documenting a Mapping to Requirements
	10.4 Packaging the Architecture Documentation
	10.5 Summary Checklist
	10.6 For Further Reading

	Chapter 11 Reviewing an Architecture Document
	11.1 Steps of the Procedure
	11.2 Sample Question Sets for Reviewing the Architecture Document
	11.3 An Example of Constructing and Conducting a Review
	11.4 Summary Checklist
	11.5 Discussion Questions
	11.6 For Further Reading

	Epilogue: Using Views and Beyond with Other Approaches
	E.1 ISO/IEC 42010, née ANSI/IEEE Std 1471-2000
	E.1.1 Overview
	E.1.2 42010 and Views and Beyond

	E.2 Rational Unified Process/Kruchten 4+1
	E.2.1 RUP/4+1 and Views and Beyond

	E.3 Using the Rozanski and Woods Viewpoint Set
	Coming to Terms: Architecture Perspectives
	E.3.1 Rozanski and Woods Viewpoints and Views and Beyond

	E.4 Documenting Architecture in an Agile Development Project
	E.4.1 Overview
	E.4.2 Agile Development and Views and Beyond

	E.5 U.S. Department of Defense Architecture Framework
	E.5.1 Overview of DoDAF
	E.5.2 DoDAF and Software Architecture
	E.5.3 DoDAF and Views and Beyond
	E.5.4 A Strategy to Use DoDAF to Document Software Architecture

	E.6 Where Architecture Documentation Ends
	E.7 A Final Word
	E.8 For Further Reading

	Appendix A: UML—Unified Modeling Language
	A.1 Introduction
	A.2 Documenting a Module View
	A.2.1 Decomposition Style
	A.2.2 Uses Style
	A.2.3 Generalization Style
	A.2.4 Layered Style
	A.2.5 Aspects Style
	A.2.6 Data Model Style
	Perspectives: UML Class Diagrams: Too Much, Too Little

	A.3 Documenting a Component-and-Connector View
	A.4 Documenting an Allocation View
	A.4.1 Deployment Style
	A.4.2 Install and Implementation Styles
	A.4.3 Work Assignment Style

	A.5 Documenting Behavior
	A.5.1 Activity Diagram
	A.5.2 Sequence Diagram
	A.5.3 Communication Diagram
	A.5.4 Timing Diagram
	A.5.5 Interaction Overview Diagram
	A.5.6 State Machine Diagram
	A.5.7 Use Case Diagram

	A.6 Documenting Interfaces
	Perspectives: UML Tools

	Appendix B: SysML—Systems Modeling Language
	B.1 Architecture Documentation
	B.2 Requirements
	B.3 Documenting a Module View
	B.4 Documenting a Component-and-Connector View
	B.5 Documenting an Allocation View
	B.6 Documenting Behavior
	B.7 Documenting Interfaces
	B.8 Summary

	Appendix C: AADL—The SAE Architecture Analysis and Design Language
	C.1 Introduction
	C.2 Documenting a Module Style
	C.3 Documenting a Component-and-Connector View
	C.4 Documenting a Deployment View
	C.5 Documenting Behavior
	C.6 Documenting Interfaces
	C.7 Summary

	Acronyms
	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	References
	About the Authors
	About the Contributors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

