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Praise for the First Edition of Documenting Software Architectures

“For many years, box and line diagrams have decorated the text that describes system 
implementations. These diagrams can be evocative, sometimes inspirational, occasionally 
informative, but are rarely precise and never complete. Recent years have brought appreci-
ation for the importance of a deliberate structural design, or architecture, for a system. Now, 
in Documenting Software Architectures, we have guidance for capturing that knowledge, 
both to aid design and—perhaps more significantly—to inform subsequent maintainers, 
who hold over half the total cost of a system’s software in their hands. Half of this cost goes 
into figuring out how the system is organized and where to make the change. A documented 
architecture is the essential roadmap for the system, leading the maintainer through the 
implementation jungle.”

—Mary Shaw, Alan J. Perlis Professor of Computer Science, Carnegie Mellon University 
Coauthor of Software Architecture: Perspectives on an Emerging Discipline

“Multiple software architecture views are essential because of the diverse set of stakeholders 
(users, acquirers, developers, testers, maintainers, inter-operators, and others) needing to 
understand and use the architecture from their viewpoint. Achieving consistency among 
such views is one of the most challenging and difficult problems in the software architecture 
field. This book is a tremendously valuable first step in defining analyzable software architec-
ture views and frameworks for integrating them.”

—Barry Boehm, TRW Professor of Software Engineering 
Director, USC Center for Software Engineering

“There is probably no better set of authors to write this book. The material is readable. It uses 
humor effectively. It is nicely introspective when appropriate, and yet in the end it is forthright 
and decisive. The philosophical elements of the book are fascinating. The authors consider 
concepts that few others even are aware of, present the issues related to those concepts, 
and then resolve them! This is a tour de force on the subject of architectural documentation.”

—Robert Glass, Editor-in-Chief, Journal of Systems and Software 
Editor/Publisher, The Software Practitioner

“We found this book highly valuable for our work with our business units and would recom-
mend it to anyone who wants to understand the needs for and improve their skills in describ-
ing software architectures for complex systems.”

—Steffen Thiel, Robert Bosch Corporation
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“Since our projects involve numerous stakeholders, documenting the architecture from var-
ious views is of particular importance. For this task, this book provides pragmatic and well-
structured guidance and will be an important reference for industrial practice.”

—Martin Simons, Daimler Chrysler Research and Technology

“Software architecture is an abstract representation of the most essential design decisions. 
It is expressed using concepts that are not directly visible in software implementation. How 
to identify these decisions? How to represent them? How to find the concepts that make 
complex software understandable? This excellent book is written by a group of expert archi-
tects sharing their experience and understanding of useful architectural concepts, essential 
design decisions, and practical ways to represent architectural views of complex software.”

—Alexander Ran, Principal Scientist of Software Architecture, Nokia

“I particularly appreciate the major theme of the book: that a software architecture consists 
of a variety of different structures, each defined by a set of elements and a relationship 
among those elements. I further appreciate the authors pointing out why the diagrams that 
seem so beloved by today’s software designers are often deceptive and of little value. (I fre-
quently say that in software engineering every diagram takes a thousand words to explain 
it.) It was also refreshing to see an explanation of why ‘levels of abstraction,’ a favorite term 
of many software designers, is an empty phrase. These are just a few of the elements that 
made me impatient to see this book published.”

—David Weiss, Director of Software Technology Research, Avaya Laboratories

“The authors have written a solid book that discusses many of the most important issues 
facing software designers. They point out many decisions that can be considered, dis-
cussed, and made before coding begins to provide guidance for the programmers. These 
issues are far more important than most of the decisions that programmers focus on. Prop-
erly made and documented, the decisions discussed in this book will guide programmers 
throughout the remainder of the software development process.”

—David Parnas, Director of the Software Engineering Programme, McMaster University
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These pictures are meant to entertain you. There is 
no significant meaning to the arrows between the boxes.

—A speaker at a recent software architecture conference, coming to a 
complex but ultimately inadequate boxes-and-lines-everywhere 
viewgraph of her system’s architecture and deciding that trying to 
explain it in front of a crowd would not be a good idea

I’d like to start with a diagram. It’s a bunch of shapes 
connected by lines. Now I will say some impressive words: 
synchronized digital integrated dynamic e-commerce space. 
Any questions?

—Dilbert, making a viewgraph presentation

At the end of the day, I want my artifacts to be enduring. 
My goal is to create a prescriptive, semi-formal architectural 
description that can be used as a basis for setting 
department priorities, parallelizing development, [managing] 
legacy migration, etc.

—A software architect for a major financial services firm
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About the Cover

The cover shows a bird’s wing, a motif chosen because it has 
much in common with software architecture. Rather than 
appeal to the overused analogy of house architectures, we find 
physiological systems to be a richer metaphor for software and 
system architectures. Among such systems, a bird’s wing is one 
of the most compelling examples.

How would you “document” a bird’s wing for someone who 
did not know what it was? A bird’s wing, like a software system, 
can be shown by emphasizing any of a number of structures— 
nerves, feathers, bones, blood vessels, muscles; each structure 
must be compatible with the others and must work toward ful-
filling a common purpose. Feathers are elements that, at a 
glance, appear to be replicated countless times across the wing; 
on closer inspection, however, the feathers reveal a rich sub-
structure of their own and small but systematic variations. All 
feathers are almost alike, but no two are identical.

The wing exhibits strong quality attributes: lightness in 
weight, aerodynamic sophistication, outstanding thermal pro-
tection. The wing’s reliability, cycling through millions of 
beats, is unparalleled. Unlike a house, which mostly just sits 
there, the essence of a wing is in its dynamic behavior. In coarse 
terms, the wing extends, flaps, and retracts; in finer terms, the 
bird commands movements almost too subtle to see, control-
ling pitch, roll, and yaw with exquisite finesse. For millennia, 
humans have tried to comprehend the wing by examining its 
parts and from different points of view. But the whole wing is 
much more than the sum of its elements and structures: It is in 
the whole that beauty and grace emerge alongside breathtak-
ing performance. Falcon wings deliver so much speed that fal-
cons have evolved thick tears that won’t evaporate during a
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200-mph dive, and they have developed a special structure just 
inside their nostrils to keep the slipstream from ramming into 
their lungs. Insect eaters such as swallows routinely endure 14 
times the pull of gravity, and they do it dozens of times a day. 
The common starling, merely an average flier, can slip through 
the air at 120 body lengths per second; by comparison, the fast-
est known aircraft, the SR-71 “Blackbird,” can manage only 
about 32 (Wright 2003).

Structure, substructure, replication with variation, dynamic 
behavior, critical quality attributes, and emergent properties of 
the entire system: All these aspects are important to capture 
when documenting a software architecture. We haven’t learned 
how to document beauty and grace yet, but for that we substi-
tute the documentation of what the designer had in mind. For 
software, we can do this. For the wing of a bird, we can only 
admire the result.
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Foreword to the
Second Edition

A colleague of mine, in the market for a home, fell in love with 
an older property that had been designed by a student of 
Frank Lloyd Wright himself. Curious about its history, its struc-
ture, its evolution, he contacted the local planning office, 
which happily and quickly provided him with a copy of the 
original blueprints.

Why, my friend asked me, can we get the drawings for a 
house that’s several decades old, but we are unable to see the 
architecture of software written last year?

In this book, the authors offer some pragmatic wisdom that 
helps attend to my friend’s lament.

The theory and the practice of the architecture of software-
intensive systems are in a very vibrant phase. The early work of 
Mary Shaw and David Garlan in particular gave rise to software 
architecture as an identifiable domain of study, and in the 
years since, we’ve seen the emergence of architecture-as-an-
artifact as a mainstream concern for the development and evo-
lution of systems. This has manifest itself in notations such as 
the Unified Modeling Language (which was explicitly influ-
enced by Philippe Kruchten’s 4+1 model view of software archi-
tecture) as well as a panoply of architectural frameworks, such 
as The Open Group Architecture Framework and the Depart-
ment of Defense Architecture Framework. Add to these meth-
ods such as IBM’s Unified Process and, at another extreme, the 
Federal Segment Architecture Methodology, and it is clear that 
architecture-as-an-artifact has found an important role in the 
reasoning about and governing of software-intensive systems.

There are some things we can say with confidence. Every sys-
tem has an architecture. All complex systems are hierarchical 
in nature, but also exhibit other patterns of regularity. There’s
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an intimate dance that occurs between the processes of archi-
tecting and of implementation. And, to understand and rea-
son about the architecture of a software-intensive system, one 
has to consider multiple views from the perspectives of specific 
concerns from multiple classes of stakeholders.

The most commonly used notation and tool for describing a 
system’s architecture is a boxes-and-lines sketch created on a 
whiteboard. Such documentation is both expeditious and use-
ful, but it is neither enduring nor rigorous nor complete. In 
this book the authors offer the definitive reference on the doc-
umenting of the architecture of software-intensive systems, in 
ways that are enduring and rigorous and complete. And useful, 
by the way!

I remember reading the first edition of this book, and 
e-mailing my compliments to the authors for producing such a 
comprehensive reference. Well, they’ve outdone themselves. 
This new edition is brighter, shinier, more complete, more 
pragmatic, more focused than the previous one, and I wouldn’t 
have thought it possible to improve on the original. As the field 
of software architecture has grown over these past decades, 
there is much more to be said, much more that we know, and 
much more that we can reflect upon of what’s worked and 
what hasn’t—and the authors here do all that, and more.

So, my hope for you, dear reader, is this: May the software 
you write today have an architecture that your children’s chil-
dren may discern and celebrate.

—Grady Booch
IBM Fellow
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Foreword to the 
First Edition

Ten years ago, I was brought in to lead the architecture team 
of a new and rather ambitious command-and-control system. 
After some rocky beginnings, the architectural design work 
started to proceed full speed, and the architects were finally 
forging ahead, inventing and resolving and designing and try-
ing, almost in a euphoric state. We had many brainstorming 
sessions, filling whiteboards with design fragments and note-
books with scribblings; various prototypes validated or invali-
dated our reasoning. As the development team grew in size, 
the architects had to explain the principles of the nascent 
architecture to a wider and wider audience, consisting of not 
only new developers but also many parties external to the 
development group. Some were intrigued by this new concept 
of a software architecture. Some wanted to know how this 
architecture would impact them: for planning, for organizing 
the teams and the contractors, for delivery of the system, for 
acquisition of some of the system parts. Some parties wanted to 
influence the design of this architecture. Further removed 
from development, customers and prospects wanted a peek, 
too. So the architects had to spend hours and days describing 
the architecture in various forms and levels and tones to varied 
audiences, so that each party could better understand it.

Becoming this center of communication slowly stretched 
our capacity. On the one hand, we were busy designing the 
architecture and validating it; on the other hand, and at the 
same time, we were communicating to a large audience what it 
was and why it was that way and why we did not choose some 
other solution. A few months into the project, overwhelmed, 
we even began having a difficult time agreeing among our-
selves about what it was we had actually decided.
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This led me to the conclusion that “if it is not written down, 
it does not exist.” This became sort of a leitmotiv in the archi-
tecture team for the following two years. As the ancient Chi-
nese poet Lao-Tsu says in the Tao Te Ching:

Let your workings remain a mystery. 
Just show people the results.

(Tablet #36)

The architecture could be whatever we had talked about, 
argued, imagined, or even drafted on a board, and so on. But 
the architecture of this system was only what was described in 
one major document: the Software Architecture Document (SAD). 
Architectural elements and architectural decisions not cap-
tured in this document simply did not exist. This one rule—“If 
it is not in the SAD, it does not exist.”—became our incentive to 
evolve and to keep the document up-to-date, almost to the 
week; there was also an incentive to not include anything and 
everything and untried ideas, as this was the project’s definite 
arbiter.

The SAD rapidly became a central element in the life of the 
project. It became our best display window for showing off our 
stuff, our comfort when we were down, and our shield when 
attacked.

The key problem we faced at the time was: What do we doc-
ument for a software architecture? How do we document it? 
What outline do we use? What notation? How much or how lit-
tle? There were few exemplars of architectural description for 
systems as ambitious as ours. Driven by necessity, we improvised. 
We made some mistakes and corrected some. We discovered 
rapidly that architecture is not flat but rather a multidimen-
sional reality, with several intertwined facets, and some facets— 
or views—of interest to only a few parties. We found out that 
many readers would not even open a document that weighed 
more than a pound, and we would have a difficult time updat-
ing it anyhow. We realized that without capturing the reasons 
for our choices, we were doomed to reconstruct them again 
and again, every time a new stakeholder with a sharp mind 
came around. We picked a visual notation, not too vague and 
fuzzy but not too esoteric and convoluted, either, in order to 
not discourage most parties.

Today, software architects have a great starting point for 
deciding how to document their software architectures. You 
have it in your hands. The authors went through many experi-
ences similar to mine and extracted the important lessons 
learned. They read many software architecture documents.
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They reviewed the academic literature, studied all the pub-
lished books, checked the standards, and synthesized all this 
wisdom in this handbook: the essential things you need to 
know to define your own software architecture document. You 
will find guidance for the scope of software architecture; its 
organization; the techniques, tools, and notation to use or not 
to use; and comparisons, advice, and rules of thumb. In here, 
you’ll find the templates to get you started and the continuing 
guidance for when you get lost or despairing on the way.

This book is of immense value. The description and commu-
nication of software architecture is quite crucial to its many 
stakeholders, and this handbook should save you months of tri-
als and errors, lots of undeserved hassle, and many costly mis-
takes that could potentially jeopardize the whole endeavor. It 
will become an important reference on the shelf of the soft-
ware architect.

—Philippe Kruchten 
Director of Process Development
Rational Software Canada, Vancouver



ptg

This page intentionally left blank 



ptg

xxix

Preface

The purpose of this book is to answer the following question:

How do you document an architecture so that others can success-
fully use it, maintain it, and build a system from it? 

The audience for this book includes all the people involved 
in the production and consumption of architecture documen-
tation. The goal of this book is to help you decide what infor-
mation about an architecture is important to capture and to 
provide guidelines, notations, and examples for capturing it. 
We intend this book to be a practitioner-oriented guide to the 
various kinds of information that constitute an architecture. 
We give practical guidance for choosing what information 
should be documented and show—with examples in various 
notations, including but not limited to the Unified Modeling 
Language (UML)—how to describe that information in writ-
ing so that others can use it to carry out their architecture-
based work: implementation, analysis, and recovery. We also 
show how to create a comprehensive software architecture doc-
ument that others can use.

Although piles of books exist about how to use a particular 
notation (UML comes to mind), we believe what an architect 
really needs is guidance in which architecture and its stake-
holders are the first-class citizens, and language is relegated 
more appropriately to a supporting role. That’s what we’ve 
tried to provide with this book.

Languages and Tools for Architecture
Commercial languages and tool suites are available for capturing 
design information, especially in the realm of object-oriented
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systems. Some of these tools are bound up with associated 
design methods, notations, and commercial products. Some 
tools are aimed at points in the design space other than archi-
tecture. If you have decided to adopt one of these tools and/ 
or notations, will this book relate to you?

Very few things become obsolete faster than references to 
specific tools, so we’ve avoided those. Instead, we have concen-
trated on the information you should capture about an archi-
tecture. We believe that is the approach you should take, too: 
Concentrate on the information you need to capture, and then 
figure out how to capture it using an available tool. Almost all 
tools provide ways to add free-form annotations to the building 
blocks they provide; if all else fails, these annotations will let 
you capture and record information in ways you see fit. 
Remember that not all the people for whom architecture doc-
umentation is prepared will be able to use the tool environ-
ment you’ve chosen or understand the commercial notation 
you’ve adopted.

Having said that, however, we acknowledge that a few stan-
dard languages and notations have come to dominate, chief 
among them UML. And so this book provides a plethora of 
examples showing UML 2 representing the architecture views 
we cover, as well as other concepts such as refinement and 
behavior. If you have chosen UML as your modeling language, 
you’ll feel at home. 

Appendix A contains a summary of UML’s visual notation 
and its applicability to document the concepts in this book. 
Appendices B and C summarize the Systems Modeling Lan-
guage (SysML) and the Architecture Analysis and Design 
Language (AADL), respectively. Our purpose is not to teach 
these languages, but to offer a quick refresher for those famil-
iar with them and a flavor-providing introduction for every-
one else.

What’s New in the Second Edition
• A number of new architecture styles have entered the main-

stream, and this edition talks about documenting those. 
These include service-oriented architectures, multi-tier 
architectures, and architectures for aspect-oriented systems. 
We also treat the architecture-level documentation of a soft-
ware system’s data model, as well as its installation and pro-
duction environment, as first-class styles.
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• This edition is much more Agile-friendly, orienting its 
advice to be consistent with the Agile Manifesto’s entreaty to 
value working software over comprehensive documentation.

• We treat the systematic documentation of rationale with 
much greater depth, reflecting best industrial practices. 
We’ve added a new chapter about reviewing an architecture 
document to make sure it’s serving its stakeholders as 
intended.

• The suggested templates for architecture documentation 
have several improvements, reflecting years of use and feed-
back. They are also more flexible, and we lay out different 
options for arranging your documentation.

• We have replaced the comprehensive example of a docu-
mented software architecture with a new one. The architec-
ture is for a Web-based service-oriented system, more in 
today’s industrial mainstream. To make the book smaller 
and allow us to maintain the example over time, we put the 
example online. And many of our in-line examples have 
been replaced or updated.

• Since the first edition was published, the Unified Modeling 
Language has graduated to version 2.0 and beyond. That 
opened up new possibilities for more straightforwardly doc-
umenting various architecture constructs, especially compo-
nents and connectors. Where necessary, our figures are 
updated to reflect the new constructs. 

• This edition has concise appendices summarizing three 
important languages and notations useful for documenting 
architectures: UML, AADL, and SysML. Each appendix con-
stitutes a mini-reference guide on the language.

• Finally, this edition reflects the experience we’ve gained 
with Views and Beyond in the intervening years since the 
first edition was published. This experience has come from 
creating documented architectures for very challenging sys-
tems, and helping other people do so. It also comes from 
using architecture documentation in practice, such as when 
we evaluate other organizations’ software architectures. 
Finally, it has come from interacting with more than a thou-
sand participants in our two-day industrial course based on 
the book. These interactions with practicing software archi-
tects have let us make our advice more prescriptive and 
crisp and reflect the problems and situations that architects 
face daily.
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Complete Example of a Software Architecture Document 
Online
You can see a fully worked-out example of a software architec-
ture document using the approaches and templates described 
in this book at wiki.sei.cmu.edu/sad.

—P.C. 
Austin, Texas

—F.B., L.B., D.G., J.I., R.L., R.N. 
Pittsburgh, Pennsylvania

—P.M. 
Brasilia, Brazil

—J.S. 
Boston, Massachusetts
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Audience
There are three primary audiences for this book.

1. Software architects who are charged with producing archi-
tecture documentation for software projects. For these peo-
ple we tried to answer the question “What information do I 
need to capture about my architecture, and what notations 
and techniques are available for communicating it clearly 
and usefully in a timely fashion?”

2. Stakeholders of an architecture who must digest and use 
the documentation they receive from the architect or archi-
tecture team. A software architect can provide this book as 
a companion to his or her documentation, pointing con-
sumers to specific sections that explain documentation-
organizing principles, notations, concepts, or conventions.

3. People who wish to learn introductory concepts about soft-
ware architecture. By establishing the purposes and uses of 
software architecture (and hence, its documentation), and 
by establishing a basic set of concepts important in the cre-
ation and communication of architecture, this book serves 
as an introduction to the subject.

We assume basic familiarity with the concepts of software 
engineering. In many cases, we will sharpen and solidify basic 
concepts that you already know, such as architecture views, archi-
tecture styles, and interfaces.

Stylistic Conventions
The book’s core message is contained in the main flow of the text. 
But we also provide extra information in the margins, including
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• Definitions: Where we introduce a term such as view, we 
make it bold and underlined; a margin note adjacent to that 
line gives the definition. These terms are also listed in the 
glossary at the end.

• Nuggets of practical advice.

• Pointers to sources of additional information, either within 
this book or outside.

• Illuminating quotes that we hope will add to the fullness of 
the message.

Advice that won’t fit into a margin note will be called out in 
the body of the text. Longer diversions occur as sidebars, 
which are visually distinguished passages that appear at the 
end of a section. “Coming to Terms” sidebars tackle issues of

A view is a represen-
tation of a set of 
system elements 
and relationships 
among them.

Every graphical presen-
tation should include a 
key that explains the 
notation used.

The prologue contains 
an introduction to the 
basic architecture con-
cepts used in this book.

A good notation should 
embody characteristics 
familiar to any user of 
mathematical notation: 
Ease of expressing con-
structs arising in prob-
lems, suggestivity, 
ability to subordinate 
detail, economy, ame-
nability to formal proofs.

—Ken Iverson (1987, 
p. 341)
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terminology, while “Perspectives” sidebars are observations or 
background information written and signed by one or more of 
the authors.

At the end of each chapter, you can find

• A summary checklist that highlights the main points and 
prescriptive guidance of the chapter

• A set of discussion questions that can serve as the basis for 
classroom or brown-bag-lunch-group conversation

• “For Further Reading,” a section that offers references for 
more in-depth treatment of related topics

A glossary appears at the end of the book.

How to Read and Use This Book
All architects should

• Read the introduction to Part I, to gain an understanding of 
styles and views, and to get a glimpse of the collection of 
styles discussed in this book. 

• Browse Chapters 1–5 to gain a deeper understanding of the 
views that might be used in your documentation. Later, 
once you’ve chosen a set of views to document, you can read 
about them in more depth as needed.

• Read Chapter 10, to learn the organizational scheme for a 
documentation package.

• Read Chapter 9, to learn how to choose the important views 
for a particular system. This will let you plan your documen-
tation package, matching your stakeholders and the uses 
your documentation will support with the kind of informa-
tion you need to provide.

• Browse the sections in Chapter 6 to learn about document-
ing variability, context diagrams, and other helpful con-
cepts. Come back and concentrate on these as needed.

• Read Chapters 7 and 8 to learn about documenting software 
interfaces and documenting behavior of a system.

• Consult Chapter 11 to see how your architecture document 
should be reviewed, so that you can better position it for a 
successful review by giving reviewers the information they 
need.

• If you are interested in making your documentation compli-
ant with other prescriptive methods, such as IBM Rational’s 
4+1 approach or ISO/IEC 42010, consult the epilogue.
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An architecture stakeholder using an architecture docu-
ment written with the precepts of this book may wish to consult 
this book to gain a deeper understanding. You should

• Read Chapter 10 to gain a better understanding of the lay-
out of the document, and how the layout achieves coverage 
of the architectural information being conveyed.

• Consult other chapters as necessary to provide more insight 
into specific parts of the architecture document. For exam-
ple, you may wish to read the introduction to Part I to learn 
about module, component-and-connector, and allocation 
styles, and then consult the chapter on a specific style.

• Read Chapter 11 if your job is to conduct or participate in a 
review of the architecture document.

Pr
ol

og
ue

In
tr

o 
to

 P
ar

t I

C
ha

pt
er

 1

C
ha

pt
er

 2

C
ha

pt
er

 3

C
ha

pt
er

 4

C
ha

pt
er

 5

C
ha

pt
er

 6

C
ha

pt
er

 7

C
ha

pt
er

 8

C
ha

pt
er

 9

C
ha

pt
er

 1
0

C
ha

pt
er

 1
1

A
pp

en
di

ce
s

E
pi

lo
gu

e

Architects

browse

consult

read

Pr
ol

og
ue

In
tr

o 
to

 P
ar

t I

C
ha

pt
er

 1

C
ha

pt
er

 2

C
ha

pt
er

 3

C
ha

pt
er

 4

C
ha

pt
er

 5

C
ha

pt
er

 6

C
ha

pt
er

 7

C
ha

pt
er

 8

C
ha

pt
er

 9

C
ha

pt
er

 1
0

C
ha

pt
er

 1
1

A
pp

en
di

ce
s

E
pi

lo
gu

e

Stakeholders

browse

consult

read



ptg

Reader’s Guide ■ xxxix

Readers who wish to learn introductory concepts about soft-
ware architecture should

• Read the prologue to learn what software architecture is, 
why it is important, and the critical role of documentation 
in a development project.

• Read the introduction to Part I, to gain an understanding of 
styles and views, and to get a glimpse of the collection of 
styles discussed in this book. 

• Read Chapters 1–5 to become familiar with some architec-
ture styles that are widely used in modern software systems.

• Browse Chapters 7 and 8 to learn about the important archi-
tecture concepts of interfaces and behavior.

• Consult Chapter 10 to see a format for an architecture 
document.

• Browse the appendices to help you understand the exam-
ples in the book if you’re not familiar with the notations.
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PPrologue: 
Software Architectures and

Documentation

The prologue establishes a small but fundamental set of con-
cepts that will be used throughout the book. We begin with 
short overviews of software architecture (Section P.1) and 
architecture documentation (Section P.2), and then we go on 
to discuss the following topics:

• Section P.3: Architecture views

• Section P.4: Architecture styles (and their relation to archi-
tecture patterns) and the classification of styles into three 
categories: module styles, component-and-connector styles, 
and allocation styles

• Section P.5: Rules for sound documentation

P.1 A Short Overview of Software Architecture
P.1.1 Overview

Software architecture has emerged as an important subdisci-
pline of software engineering. Architecture is roughly the pru-
dent partitioning of a whole into parts, with specific relations 
among the parts. This partitioning is what allows groups of 
people—often separated by organizational, geographical, and 
even time-zone boundaries—to work cooperatively and pro-
ductively together to solve a much larger problem than any of 
them could solve individually. Each group writes software that 
interacts with the other groups’ software through carefully 
crafted interfaces that reveal the minimal and most stable 
information necessary for interaction. From that interaction 
emerges the functionality and quality attributes—security, 
modifiability, performance, and so forth—that the system’s 
stakeholders demand. The larger and more complex the sys-

The software architec-
ture of a computing 
system is the set of 
structures needed to 
reason about the sys-
tem, which comprise 
software elements, rela-
tions among them, and 
properties of both.
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tem, the more critical is this partitioning—and hence, archi-
tecture. And as we will see, the more demanding those quality 
attributes are, the more critical the architecture is.

A single system is almost inevitably partitioned simulta-
neously in a number of different ways. Each partitioning 
results in the creation of an architectural structure: different 
sets of parts and different relations among the parts. Each is 
the result of careful design, carried out to satisfy the driving 
quality attribute requirements and the most important busi-
ness goals behind the system.

Architecture is what makes the sets of parts work together as 
a coherent and successful whole. Architecture documentation 
help architects make the right decisions; it tells developers how 
to carry them out; and it records those decisions to give a sys-
tem’s future caretakers insight into the architect’s solution.

P.1.2 Architecture and Quality Attributes

For nearly all systems, quality attributes such as performance, 
reliability, security, and modifiability are every bit as important 
as making sure that the software computes the correct answer. 
A software system’s ability to produce correct results isn’t help-
ful if it takes too long doing it, or the system doesn’t stay up 
long enough to deliver it, or the system reveals the results to 
your competition or your enemy. Architecture is where these 
concerns are addressed. For example:

• If you require high performance, you need to

– Exploit potential parallelism by decomposing the work 
into cooperating or synchronizing processes.

– Manage the interprocess and network communication 
volume and data access frequencies.

– Be able to estimate expected latencies and throughputs.

– Identify potential performance bottlenecks.

• If your system needs high accuracy, you must pay attention 
to how the data elements are defined and used and how 
their values flow throughout the system.

• If security is important, you need to

– Legislate usage relationships and communication restric-
tions among the parts.

– Identify parts of the system where an unauthorized intru-
sion will do the most damage.

– Possibly introduce special elements that have earned a 
high degree of trust.

Many projects make the 
mistake of trying to 
impose a single parti-
tion in multiple compo-
nent domains, such as 
equating threads with 
objects, which are 
equated with modules, 
which in turn are 
equated with files. Such 
an approach never suc-
ceeds fully, and adjust-
ments eventually must 
be made, but the dam-
age of the initial intent is 
often hard to repair. This 
invariably leads to prob-
lems in development 
and occasionally in final 
products. 

—Jazayeri, Ran, and 
van der Linden (2000, 
pp. 16–17)
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• If you need to support modifiability and portability, you 
must carefully separate concerns among the parts of the sys-
tem, so that when a change affects one element, that change 
does not ripple across the system.

• If you want to deploy the system incrementally, by releasing 
successively larger subsets, you have to keep the dependency 
relationships among the pieces untangled, to avoid the 
“nothing works until everything works” syndrome.

The solutions to these concerns are purely architectural in 
nature. It is up to architects to find those solutions and com-
municate them effectively to those who will carry them out. 
Architecture documentation has three obligations related to 
quality attributes. First, it should indicate which quality attribute 
requirements drove the design. Second, it should capture the 
solutions chosen to satisfy the quality attribute requirements. 
Finally, it should capture a convincing argument why the solu-
tions provide the necessary quality attributes. The goal is to 
capture enough information so that the architecture can be 
analyzed to see if, in fact, the system(s) derived from it will pos-
sess the necessary quality attributes.

COMING TO TERMS

What Is Software Architecture?

If we are to agree on what it means to document a soft-
ware architecture, we should establish a common basis 
for what it is we’re documenting. No universal definition 
of software architecture exists. The Software Engineering 
Institute’s Web site collects definitions from the literature 
and from practitioners around the world; so far, more 
than 150 definitions have been collected. 

It seems that new fields try to nail down standard defini-
tions or their key terms as soon as they can. As the field 
matures, basic concepts become more important than 
ironclad definitions, and this urge seems to fade. When 
object-oriented development was in its infancy, you 
could bring any OO meeting to a screeching halt by put-
ting on your best innocent face and asking, “What 
exactly is an object?” This largely ended when people 
realized that the scatter plot of definitions had an appar-
ent (if unarticulated) centroid, from which very useful 
progress could be made. Sometimes “close enough” is, 
well, close enough.

Chapter 10 will show 
where in the documen-
tation to record the driv-
ing quality attribute 
requirements, the solu-
tions chosen, and the 
rationale for those 
solutions.

Software architecture is 
the set of design deci-
sions which, if made 
incorrectly, may cause 
your project to be 
cancelled.

—Eoin Woods (SEI 
2010)

You can read the SEI 
collection of definitions, 
or contribute your own, 
at www.sei.cmu.edu/ 
architecture.

www.sei.cmu.edu/architecture
www.sei.cmu.edu/architecture


ptg

4 ■ Prologue: Software Architectures and Documentation

This seems to be the case with software architecture. 
Looking at the major attempts to nail down its definition 
gives us a good glimpse at our own centroid. With that in 
mind, here are a few influential definitions:

By analogy to building architecture, we propose the follow-
ing model of software architecture: Software Architecture = 
{Elements, Form, Rationale}. That is, a software architec-
ture is a set of architectural (or, if you will, design) elements 
that have a particular form. We distinguish three different 
classes of architectural elements: processing elements; 
data elements; and connecting elements. The processing 
elements are those components that supply the transfor-
mation on the data elements; the data elements are those 
that contain the information that is used and transformed; 
the connecting elements (which at times may be either 
processing or data elements, or both) are the glue that 
holds the different pieces of the architecture together. 
(Perry and Wolf 1992, p. 44)

 . . . beyond the algorithms and data structures of the com-
putation; designing and specifying the overall system 
structure emerges as a new kind of problem. Structural 
issues include gross organization and global control struc-
ture; protocols for communication, synchronization, and 
data access; assignment of functionality to design ele-
ments; physical distribution; composition of design ele-
ments; scaling and performance; and selection among 
design alternatives. (Garlan and Shaw 1993, p. 1)

The structure of the components of a program/system, 
their interrelationships, and principles and guidelines gov-
erning their design and evolution over time. (Garlan and 
Perry 1995, p. 269)

An architecture is the set of significant decisions about the 
organization of a software system, the selection of the 
structural elements and their interfaces by which the sys-
tem is composed, together with their behavior as specified 
in the collaborations among those elements, the composi-
tion of these structural and behavioral elements into pro-
gressively larger subsystems, and the architecture style 
that guides this organization—these elements and their 
interfaces, their collaborations, and their composition. 
(Booch, Rumbaugh, and Jacobson 1999, p. 31)

The fundamental organization of a system embodied in its 
components, their relations to each other, and to the envi-
ronment, and the principles guiding its design and evolu-
tion. (IEEE 1471 2000, p. 9)

The software architecture of a program or computing sys-
tem is the structure or structures of the system, which
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comprise software elements, the externally visible proper-
ties of those elements, and the relations among them. By 
“externally visible properties,” we are referring to those 
assumptions other components can make of a compo-
nent, such as its provided services, performance charac-
teristics, fault handling, shared resource usage, and so on. 
(Bass, Clements, and Kazman 2003, p. 27)

The set of principal design decisions governing a system. 
(Taylor, Medvidovic, and Dashofy 2009, p. xv)

A few other “mainstream” definitions have emerged 
since then, but they are largely restatements and recom-
binations of the ones we just listed. The centroid seems 
to have stabilized.

That centroid takes a largely structural perspective on 
software architecture: Software architecture is com-
posed of elements, connections or relations among 
them, and, usually, some other aspect or aspects, such 
as (take your pick) configuration; constraints or seman-
tics; analyses or properties; or rationale, requirements, or 
stakeholders’ needs. 

These perspectives do not preclude one another, nor do 
they represent a fundamental conflict about what soft-
ware architecture is. Instead, they represent a spectrum 
in the software architecture community about the empha-
sis that should be placed on architecture: its constituent 
parts, the whole entity, the way it behaves once built, or 
the building of it. Taken together, they form a consensus 
view of software architecture. 

In this book we use a definition similar to the one from 
Bass, Clements, and Kazman (2003). We chose it 
because it helps us know what to document about an 
architecture. The definition emphasizes the plurality of 
structures present in every software system. These 
structures, carefully chosen and designed by the archi-
tect, are the key to achieving and reasoning about the 
system’s design goals. And those structures are the key 
to understanding the architecture. Therefore, they are the 
focus of our approach to documenting a software archi-
tecture. Structures consist of elements, relations among 
the elements, and the important properties of both. So 
documenting a structure entails documenting those 
things.
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PERSPECTIVES

What’s the Difference Between Architecture and 
Design?

The question of how architecture is different from design 
has nipped at the heels of the software development 
community for years. It is a question I often hear when 
teaching an introductory course on architecture. It mat-
ters here because the question deals with what we 
should put in an architecture document and what we 
should put somewhere else.

The first thing we can say is that clearly architecture is 
design, but not all design is architecture. That is, many 
design decisions are left unbound by the architecture 
and are happily left to the discretion and good judgment 
of downstream designers and even implementers. The 
architecture establishes constraints on downstream 
activities, and those activities must produce artifacts— 
finer-grained designs and code—that comply with the 
architecture.

It’s tempting to stop there, but if you’re paying attention 
you’ve seen that we’ve just translated the question: Archi-
tecture consists of architectural design decisions, and all 
others are nonarchitectural. So what decisions are 
nonarchitectural? That is, what design decisions does the 
architect leave to the discretion of others?

To answer this question, we return to the primary pur-
pose of architecture, which is to assure the satisfaction 
of the system’s quality and behavioral requirements and 
business goals. The architect does this by making design 
decisions that manifest themselves in the system’s archi-
tectural structures.

Thus, architectural decisions are ones that permit a sys-
tem to meet its quality attribute and behavioral require-
ments. All other decisions are nonarchitectural.

Clearly any design decisions resulting in element proper-
ties that are not visible—that is, make no difference out-
side the element—are nonarchitectural. A typical example 
is the selection of a data structure, along with the algo-
rithms to manage and access that data structure.

You may have been hoping for a more concrete answer, 
such as “the first three levels of module decomposition
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are architectural, but any subsequent decomposition is 
not.” Or, “the classes, packages and their relations in a 
UML class diagram are architectural, but sequence dia-
grams are not.” Or “defining the services of an SOA sys-
tem is architectural, but designing the internal structure 
of each service provider component is not.” 

But those don’t work because they draw arbitrary and 
artificial boundaries. Attempts like that to be practical 
end up being impractical because true architecture bleeds 
across those boundaries.

Here are some more sometimes-heard artificial definitions.

First, “architecture is the small set of big design deci-
sions.” Some people define “small set” by insisting that 
an architecture document should be no more than 50 
pages. Or 80. Or 30. Their feeling, apparently, is that 
architecture is the set of design decisions that you can 
squeeze into a given page quota, and everything beyond 
that is not. This is, of course, utter nonsense.

Another oft-heard nonanswer is “architecture is what you 
get before you start adding detail to the design.” Termi-
nology often directs our thinking, rather than serves it. A 
pernicious example that puts us in the wrong mind set is 
“detailed design.” Detailed design is what many people 
say follows architecture. The term is everywhere, and 
needs to be stamped out. It implies that the difference 
between architectural and nonarchitectural design is 
something called “detail.” Architecture is apparently not 
allowed to be detailed, because if it is, well, you’re doing 
detailed design then, aren’t you? Never mind that we 
have no idea how to measure “detail” nor to set a thresh-
old for when there is too much of it to be architectural. If 
your design starts to look “detailed” then you aren’t doing 
architecture and you’ll be reported to the Detailed Design 
Police for overstepping your authority. More utter nonsense.

It’s true that some architectural design decisions may 
lack much specificity; that is, they preserve freedom of 
choice for downstream designers. Some architectural 
design decisions may not be “decisions” at all, but broad 
constraints. Plug-ins that populate your Web browser are 
an example. No architecture nails down the complete set, 
but the architecture does constrain new ones to meet 
certain standards and interfaces. Or the architect might 
describe an element by saying, “The element delivers its 
computational result through this published interface, is

Don’t use the term 
“detailed design”! Use 
“nonarchitectural 
design” instead. 
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thread-safe, puts no more than three messages on the 
network per invocation, and returns its answer in less 
than 20 ms.” The team implementing that element is free 
to make whatever design decisions they wish as long as 
they satisfy the architect’s prescription for it.

On the other hand, some architectural decisions can be 
quite “detailed,” such as the adoption of specific proto-
cols, an XML schema, or communication or technology 
standards. Such decisions are usually made for pur-
poses of interoperability or various flavors of modifiability 
(such as scalability or extensibility). 

Even interfaces of elements, which some decry as “obvi-
ously” outside the realm of architecture, can be supremely 
architectural. For instance, in a service-oriented architec-
ture (SOA), components interact through published inter-
faces. Important design decisions made when defining 
these interfaces include the granularity of the operations, 
the data format, and the type of interaction (synchronous 
or asynchronous) for each operation. Or consider an ele-
ment that processes data from a real-time sensor. Mak-
ing this element’s interface process a stream as opposed 
to individual data elements will make an enormous differ-
ence in the ability of the element (and hence the system) 
to meet real-time performance requirements. This deci-
sion cannot be left up to the element’s development 
team; everything depends on it.

A legitimate question about detail does arise when con-
sidering modules and other hierarchical elements: 
When do you stop? When have you designed enough 
levels in the hierarchy? Are submodules enough, or does 
the architect need to design sub-sub-sub-submodules? 
Here’s a good test of our claim for when architecture 
stops. Module decomposition is about achieving inde-
pendent development and modifiability. Both are achieved 
by carefully assigning coherent responsibilities to each 
module. When the modules you’ve designed are fine-
grained enough to satisfy the system’s modifiability and 
independent development requirements, you’ve dis-
charged your obligation as an architect. 

Finally, what is architectural is sensitive to context. Sup-
pose the architect identifies an element but is content to 
sketch the element’s interface and behavior in broad 
terms. If the element being prescribed is very large and 
complex, the team developing it may choose to give it an

A hierarchical element
is any kind of element 
that can consist of like-
kind elements. A module 
is a hierarchical element 
because modules consist 
of submodules, which 
are themselves modules. 
A task or a process is not 
a hierarchical element.
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internal substructure of its own, which for all the world 
looks like an architecture. And within the context of that 
element, it is. But in the context of the overall system, the 
substructure is not architectural but merely an internal 
design decision made by the development team for that 
element.

To summarize, architecture is design, but not all design is 
architectural. The architect draws the boundary between 
architectural and nonarchitectural design by making 
those decisions that need to be bound in order for the 
system to meet its development, behavioral, and quality 
goals. All other decisions can be left to downstream 
designers and implementers. Decisions are architectural 
or not, according to context. If structure is important to 
achieve your system’s goals, that structure is architec-
tural. But designers of elements, or subsystems, that you 
assign may have to introduce structure of their own to 
meet their goals, in which case such structures are archi-
tectural: to them but not to you.

And (repeat after me) we all promise to stop using the 
phrase “detailed design.” Try “nonarchitectural design” 
instead.

—P.C.

P.2 A Short Overview of Architecture Documentation
P.2.1 Why Document Software Architecture?

Even the best architecture, most perfectly suited for the job, 
will be essentially useless if the people who need to use it do 
not know what it is, cannot understand it well enough to apply 
it, or (worst of all) misunderstand it and apply it incorrectly. All 
of the effort, analysis, hard work, and insightful design on the 
part of the architecture team will have been wasted. They 
might as well have gone on vacation for all the good their 
architecture will do.

Creating an architecture isn’t enough. It has to be commu-
nicated in a way to let its stakeholders use it properly to do 
their jobs. If you go to the trouble of creating a strong architec-
ture, you must go to the trouble of describing it in enough 
detail, without ambiguity, and organized so that others can 
quickly find needed information. 

Documentation speaks for the architect. It speaks for the 
architect today, when the architect should be doing other things 
besides answering a hundred questions about the architecture.

Doing business without 
advertising [or design-
ing an architecture with-
out documenting it] is 
like winking at a girl in 
the dark. You know 
what you’re doing, but 
nobody else does.

—Steuart Henderson 
Britt
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And it speaks for the architect tomorrow, when he or she has 
left the project and now someone else is in charge of its evolu-
tion and maintenance.

Documentation is often treated as an afterthought, some-
thing people do because they have to. Maybe a contract 
requires it. Maybe a customer demands it. Maybe a company’s 
standard process calls for it. In fact, these may be legitimate 
reasons. But none of them are compelling enough to produce 
high-quality documentation. Why should the architect spend 
valuable time and energy just so a manager can check off a 
deliverable?

The best architects produce the best documentation not 
because it’s “required,” but because they see that it is essential 
to the matter at hand: producing a high-quality product, pre-
dictably and with as little rework as possible. They see their 
immediate stakeholders as the people most intimately involved 
in this undertaking: developers, deployers, testers, and analysts.

But the best architects also see documentation as delivering 
value to themselves. Documentation serves as the receptacle to 
hold the results of design decisions as they are made. A well-
thought-out documentation scheme can make the process of 
design go much more smoothly and systematically. Documen-
tation helps the architect while the architecting is in progress, 
whether in a six-month design phase or a six-day Agile sprint.

COMING TO TERMS

Specification, Representation, Description, 
Documentation

What shall we call the activity of writing down a software 
architecture for the benefit of others or for our own ben-
efit at a later time? Leading contenders are documenta-
tion, representation, description, and specification. None 
of these terms has a standardized meaning in our field: 
the difference between them is unclear. For the most 
part, we use documentation throughout this book, and 
we want to explain why.

Specification tends to connote an architecture rendered 
in a formal language. Now, we are all for formal specs. 
But formal specs are not always practical, nor are they 
always necessary. Sometimes, they aren’t even useful: 
How, for example, do you capture in a formal language 
the rationale behind your architectural decisions, and 
why would you try?
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Representation connotes a model, an abstraction, a rendi-
tion of a thing that is separate or different from the thing 
itself. Is architecture something more than what some-
one writes down about it? Arguably yes, but it’s certainly 
pretty intangible in any case. We felt that raising the issue 
of a model versus the thing being modeled would only 
elicit needlessly diverting questions best left to those 
whose hobby, or calling, is philosophy: Does an abstrac-
tion of a tree falling in a model of a forest make a repre-
sentation of a sound? This does not seem like the start of 
a productive conversation.

Description has been staked out by the architecture 
description language (ADL) community, and more 
recently by the standards community coming up with 
mandates for how to write down an architecture. It’s curi-
ous that the people you’d think would be the most formal 
snagged the least rigorous sounding term of the bunch. 
(The next time you board a jet, sit in front of a computer-
controlled X-ray machine, or watch the launch of a billion-
dollar space vehicle your tax dollars paid for, ask yourself 
whether you hope the control software has been speci-
fied to the implementers, or merely described.) We 
eschewed description, then, because it all at once 
sounds too formal—we didn’t want people to think that 
writing down an architecture requires an architecture 
description language—and too informal. Descriptions 
can be notoriously vague, such as when your friends 
describe the blind date they set you up with. Sometimes 
we need a little more specificity in our lives, and certainly 
we need it in our architectures.

That leaves documentation. Documentation connotes 
the creation of an artifact: namely, a document, which 
may of course consist of electronic files, Web pages, a 
snapshot of a whiteboard, or paper. Thus, documenting 
a software architecture becomes a concrete task: pro-
ducing a software architecture document. Viewing the 
activity as creating a tangible product has advantages. 
We can describe good architecture documents and bad 
ones. We can use completeness criteria to judge how 
much work is left in producing this artifact and determin-
ing when the task is done. Planning or tracking a project’s 
progress around the creation of artifacts, or documents, 
is an excellent way to manage. Making the architecture 
information available to its consumers and keeping it up 
to date reduces to a solved problem of configuration

ADLs are discussed in 
Section 3.4.2 and in the 
For Further Reading 
section of Chapter 8. 
For an overview of 
ADLs, see the work by 
Stafford and Wolf 
(2001).
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control. Documentation can be formal or not, as appro-
priate, and may contain models or not, as appropriate. 
Documents may describe, or they may specify. Hence, 
the term is appropriately general.

No matter what you call it, the essence of the activity is 
writing down—and keeping current—the results of architec-
tural decisions so that the stakeholders of the architecture— 
people who need to know what it is to do their job—have 
the information they need in an accessible, nonambigu-
ous form.

P.2.2 Uses and Audiences for Architecture Documentation

Architecture documentation must serve varied purposes. It 
should be sufficiently abstract to be quickly understood by new 
employees. It should be sufficiently concrete to serve as a blue-
print for construction. It should have enough information to 
serve as a basis for analysis. 

Architecture documentation is both prescriptive and 
descriptive. For some audiences, it prescribes what should be 
true, placing constraints on decisions yet to be made. For other 
audiences, it describes what is true, recounting decisions 
already made about a system’s design.

The best architecture documentation for, say, performance 
analysis may well be different from the best architecture docu-
mentation we would wish to hand to an implementer. And 
both of these will be different from what we put in a new hire’s 
“welcome aboard” package or a briefing we put together for an 
executive. The process of documentation planning and review 
needs to ensure support for all the relevant needs.

We can see that many different kinds of people are going to 
have a vested interest in an architecture document. They hope 
and expect that the architecture document will help them do 
their respective jobs. Understanding their uses of architecture 
documentation is essential, as those uses determine the impor-
tant forms. 

Fundamentally, architecture documentation has three uses.

1. Architecture serves as a means of education. The educational 
use consists of introducing people to the system. The peo-
ple may be new members of the team, external analysts, or 
even a new architect. In many cases, the “new” person is the 
customer to whom you’re showing your solution for the 
first time, a presentation you hope will result in funding or 
go-ahead approval.

Section 6.1.3 (“Spec-
trum of Design”) 
discusses how archi-
tecture documentation 
captures the very 
abstract to the very 
detailed.

In Chapter 9, the docu-
mentation’s expected 
uses, along with the 
documentation obliga-
tions each use imparts, 
become the basis for 
helping an architect 
plan the documentation 
package.

Chapter 9 discusses 
planning the contents 
of a documentation 
package. Chapter 11 
discusses reviewing 
documentation.
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2. Architecture serves as a primary vehicle for communication among 
stakeholders. An architecture’s precise use as a communica-
tion vehicle depends on which stakeholders are doing the 
communicating. Some examples are described in Table P.1.

Perhaps one of the most avid consumers of architecture 
documentation is none other than the architect in the 
project’s future. The future architect may be the same person 
as the present one, or he or she may be a replacement, but 
in either case he or she is guaranteed to have an enormous 
stake in the documentation. New architects are interested 
in learning how their predecessors tackled the difficult 
issues of the system and why particular decisions were made. 
Even if the future architect is the same person, he or she will 
use the documentation as a repository of thought, a store-
house of design decisions too numerous and hopelessly 
intertwined ever to be reproducible from memory alone.

Even in the short term, documenting an architecture 
helps in the process of designing the architecture. First, the 
documentation provides dedicated compartments for 
recording various kinds of design decisions as soon as they 
are made. Second, the documentation gives you a rough 
but helpful way to gauge progress and the work remaining: 
As “TBD”s disappear from the document, completion 
draws near. Finally, documentation provides a framework 
for systematic attack on designing the architecture. Key 
design decisions, usually made early, should be written 
down so that the shadow they cast on subsequent design 
decisions is explicit and remembered. 

QUOTE

In our organization, a development group writes design 
documents to communicate with other developers, exter-
nal test organizations, performance analysts, the techni-
cal writers of manuals and product helps, the separate 
installation package developers, the usability team, and 
the people who manage translation testing for interna-
tionalization. Each of these groups has specific ques-
tions in mind that are very different from the ones that 
other groups ask:

• What test cases will be needed to flush out functional 
errors?

• Where is this design likely to break down?

• Can the design be made easier to test?

A stakeholder of an 
architecture is someone 
who has a vested interest 
in it. (Many of an archi-
tecture’s stakeholders 
are listed in Table P.1.)

Chapter 9 is about how 
stakeholders’ needs will 
help determine the con-
tents of the architecture 
documentation.

Stakeholders (explicitly or 
implicitly) drive the whole 
shape and direction of the 
architecture, which is 
developed solely for their 
benefit and to serve their 
needs. . . . Without stake-
holders, there would be 
no point in developing the 
architecture because 
there would be no need 
for the system it will turn 
into, nor would there be 
anyone to build it, deploy 
it, run it, or pay for it. . . . 
Architectures are created 
solely to meet stake-
holder needs.

—Rozanski and Woods 
(2005, p. 21)
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• How will this design affect the response of the system 
to heavy loads?

• Are there aspects of this design that will affect its per-
formance or ability to scale to many users?

• What information will users or administrators need to 
use this system, and can I imagine writing it from the 
information in this design?

• Does this design require users to answer configuration 
questions that they won’t know how to answer?

• Does it create restrictions that users will find onerous?

• How much translatable text will this design require?

• Does the design account for the problems of dealing 
with double-byte character sets or bi-directional 
presentation?

—Kathryn Heninger Britton (Hoffman and Weiss 2001, 
pp. 337–338)

3. Architecture serves as the basis for system analysis and construction.

– Architecture tells implementers what to implement. 

– For those interested in the ability of the design to meet 
the system’s quality objectives, the architecture docu-
mentation serves as the fodder for evaluation. The archi-
tecture documentation must contain the information 
necessary to evaluate a variety of attributes, such as secu-
rity, performance, usability, availability, and modifiability. 
Analyses of each one of these attributes have their own 
information needs.

– For system builders who use automatic code-generation 
tools, the documentation may incorporate the models 
used for generation. 

Get the habit of analysis— 
analysis will in time 
enable synthesis to 
become your habit of 
mind.

—Frank Lloyd Wright

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they 
might use it

Name Description Use for Architecture Documentation

Analyst Responsible for analyzing the 
architecture to make sure it meets 
certain critical quality attribute 
requirements. Analysts are often 
specialized; for instance, perfor-
mance analysts, safety analysts, 
and security analysts may have 
well-defined positions in a project.

Analyzing satisfaction of quality 
attribute requirements of the system 
based on its architecture.
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Architect Responsible for the development 
of the architecture and its docu-
mentation. Focus and responsibil-
ity is on the system.

Negotiating and making trade-offs 
among competing requirements and 
design approaches. A vessel for 
recording design decisions. Provid-
ing evidence that the architecture 
satisfies its requirements.

Business 
manager

Responsible for the functioning of 
the business/organizational entity 
that owns the system. Includes 
managerial/executive responsibil-
ity, responsibility for defining busi-
ness processes, and more. 

Understanding the ability of the 
architecture to meet business goals.

Conformance 
checker

Responsible for assuring con-
formance to standards and pro-
cesses to provide confidence in a 
product’s suitability.

Basis for conformance checking, for 
assurance that implementations 
have been faithful to the architectural 
prescriptions.

Customer Pays for the system and ensures 
its delivery. The customer often 
speaks for or represents the end 
user, especially in a government 
acquisition context. 

Assuring required functionality and 
quality will be delivered, gauging 
progress, estimating cost, and set-
ting expectations for what will be 
delivered, when, and for how much.

Database 
administrator

Involved in many aspects of the 
data stores, including database 
design, data analysis, data model-
ing and optimization, installation 
of database software, and moni-
toring and administration of data-
base security.

Understanding how data is created, 
used, and updated by other archi-
tectural elements, and what proper-
ties the data and database must 
have for the overall system to meet 
its quality goals.

Deployer Responsible for accepting the 
completed system from the devel-
opment effort and deploying it, 
making it operational, and fulfilling 
its allocated business function.

Understanding the architectural ele-
ments that are delivered and to be 
installed at the customer’s or end 
user’s site, and their overall respon-
sibility toward system function.

Designer Responsible for systems and/or 
software design downstream of 
the architecture, applying the 
architecture to meet specific 
requirements of the parts for 
which they are responsible.

Resolving resource contention and 
establishing performance and other 
kinds of runtime resource consump-
tion budgets. Understanding how 
their part will communicate and inter-
act with other parts of the system.

Evaluator Responsible for conducting a for-
mal evaluation of the architecture 
(and its documentation) against 
some clearly defined criteria.

Evaluating the architecture’s ability 
to deliver required behavior and 
quality attributes.

Implementer Responsible for the development 
of specific elements according to 
designs, requirements, and the 
architecture.

Understanding inviolable constraints 
and exploitable freedoms on devel-
opment activities.

continues

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they 
might use it (continued )

Name Description Use for Architecture Documentation
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Integrator Responsible for taking individual 
components and integrating them, 
according to the architecture and 
system designs.

Producing integration plans and pro-
cedures, and locating the source of 
integration failures.

Maintainer Responsible for fixing bugs and 
providing enhancements to the 
system throughout its life (includ-
ing adaptation of the system for 
uses not originally envisioned).

Understanding the ramifications of a 
change.

Network 
administrator

Responsible for the maintenance 
and oversight of computer hard-
ware and software in a computer 
network. This may include the 
deployment, configuration, main-
tenance, and monitoring of net-
work components.

Determining network loads during 
various use profiles and understand-
ing uses of the network.

Product line 
manager

Responsible for development of 
an entire family of products, all 
built using the same core assets 
(including the architecture).

Determining whether a potential new 
member of a product family is in or 
out of scope and, if out, by how 
much.

Project 
manager

Responsible for planning, 
sequencing, scheduling, and allo-
cating resources to develop soft-
ware components and deliver 
components to integration and 
test activities.

Helping to set budget and schedule, 
gauging progress against estab-
lished budget and schedule, and 
identifying and resolving develop-
ment-time resource contention.

Representative 
of external 
systems

Responsible for managing a sys-
tem with which this one must 
interoperate, and its interface with 
our system.

Defining the set of agreement 
between the systems. 

System 
engineer

Responsible for design and devel-
opment of systems or system 
components in which software 
plays a role.

Assuring that the system environ-
ment provided for the software is 
sufficient.

Tester Responsible for the (independent) 
test and verification of the system 
or its elements against the formal 
requirements and the architecture.

Creating tests based on the behavior 
and interaction of the software ele-
ments.

User The actual end users of the sys-
tem. There may be distinct kinds 
of users, such as administrators, 
superusers, and so on.

Users, in the role of reviewers, might 
rely on architecture documentation 
to check whether desired functional-
ity is being delivered. Users might 
also refer to the documentation to 
understand what the major system 
elements are, which can aid them in 
emergency field maintenance.

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they 
might use it (continued )

Name Description Use for Architecture Documentation
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P.2.3 Architecture Documentation and Quality Attributes

If architecture is largely about the achievement of quality 
attributes, and if one of the main uses of architecture docu-
mentation is to serve as a basis for analysis (to make sure the 
architecture will achieve its required quality attributes), where 
do quality attributes show up in the documentation? There are 
five major ways:

1. Any major design approach (such as an architecture pat-
tern or style) chosen by the architect will have quality 
attribute properties associated with it. Client-server is good 
for scalability, layering is good for portability, an informa-
tion-hiding-based decomposition is good for modifiability, 
services are good for interoperability, and so forth. Explain-
ing the choice of approach is likely to include a discussion 
about the satisfaction of quality attribute requirements and 
trade-offs incurred. Look for the place in the documenta-
tion where such an explanation occurs. In our approach, 
we call that rationale.

2. Individual architectural elements that provide a service 
often have quality attribute bounds assigned to them. Con-
sumers of the services need to know how fast, secure, or 
reliable those services are. These quality attribute bounds 
are defined in the interface documentation for the ele-
ments, sometimes in the form of a Quality of Service con-
tract. Or they may simply be recorded as properties that the 
elements exhibit.

3. Quality attributes often impart a “language” of things that 
you would look for. Security involves things like security lev-
els, authenticated users, audit trails, firewalls, and the like. 
Performance brings to mind buffer capacities, deadlines, 
periods, event rates and distributions, clocks and timers, 
and so on. Availability conjures up mean time between fail-
ure, failover mechanisms, primary and secondary function-
ality, critical and noncritical processes, and redundant 
elements. Someone fluent in the “language” of a quality 
attribute can search for the kinds of architectural elements 
(and properties of those elements) that were put in place 
precisely to satisfy that quality attribute requirement.

4. Architecture documentation often contains a mapping to 
requirements that shows how requirements (including quality 
attribute requirements) are satisfied. If your requirements 
document establishes a requirement for availability, for 
instance, then you should be able to look up that require-
ment by name or reference in your architecture document 
to see the place(s) where that requirement is satisfied.

For more on styles and 
patterns, see “Coming 
to Terms: ‘Architecture 
Style’ and ‘Architecture 
Pattern’ ” on page 32, in 
this chapter.

Documenting rationale 
is covered in Section 6.5.

Interface documentation 
is covered in Chapter 7.

Properties are discussed 
in Section I.3, in the 
introduction to Part I.

Documenting a map-
ping to requirements is 
covered in Section 10.3.
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5. Every quality attribute requirement will have a constituency 
of stakeholders who want to know that that quality attribute 
requirement is going to be satisfied. For these stakeholders, 
the architect should provide a special place in the docu-
mentation’s introduction that either provides what the 
stakeholder is looking for or tells the stakeholder where in 
the document to find it. It would say something like “If you 
are a performance analyst, you should pay attention to the 
processes and threads and their properties (defined 
[here]), and their deployment on the underlying hardware 
platform (defined [here]).” In our documentation approach, 
we put this here’s-what-you’re-looking-for information in a 
section called the documentation roadmap.

P.2.4 Economics of Architecture Documentation

We’d all like to make our stakeholders happy, of course. Giddy, 
in fact. So why is producing high-quality architecture docu-
mentation often relegated to the “I’ll do it if I have time” cate-
gory of an architect’s many tasks? Why do project managers 
often fail to insist that architecture documentation accompany 
the other archival artifacts produced during development? 
The answer, of course, is that an architecture document, let 
alone one that induces giddiness, costs time and money.

Project managers are, by and large, rational people. (No, 
seriously, they are.) They are willing to invest resources in activ-
ities that yield demonstrable benefit, and not so much other-
wise. As architects, we should be able to make a business case 
for producing and maintaining architecture documentation. 
And here it is: Activities that the project manager is going to 
have to fund will be less costly in the presence of high-quality, 
up-to-date documentation than they would otherwise.

A formula to show the savings looks like this:

over all activities A(Cost of A without AD – Cost of A with AD) > Cost of AD,

where “Cost of A without AD” and “Cost of A with AD” are the 
cost of performing activity A without and with (respectively) an 
architecture document. “Cost of AD” is the cost of producing 
and maintaining the architecture documentation. In other 
words, the payback from good architecture documentation 
should exceed the effort to create it. Payback is measured in 
terms of effort saved.

This formula gives us a way to think about documentation, 
its effort, and its payoff. When deciding whether you should 
produce a particular piece of documentation, ask yourself how

The documentation 
roadmap is described in 
Section 10.2.

The man who stops 
advertising to save 
money is like the man 
who stops the clock to 
save time. [The same 
could be said for the 
architect who stops 
documenting.]

—Thomas Jefferson
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much effort it will take to do so, and what activities will be 
cheaper as a result. By choosing even a small number of key 
activities that will benefit from the presence of documentation, 
you should be able to make a convincing back-of-the-envelope 
argument that the effort invested will more than pay for itself.

And if you can’t—that is, if the effort doesn’t pay for itself— 
then you shouldn’t expend it. Put your resources elsewhere.

The formula is nicely general; it does not require that you 
actually enumerate all the activities involved. The ones that are 
not affected by the presence or absence of architecture docu-
mentation at all simply wash out of the formula. But other 
activities such as coding, re-engineering, launching a change 
effort, and so on should have significant cost savings.

P.2.5 The Views and Beyond “Method”

We call our approach to documentation Views and Beyond. 
This is to emphasize that we use the concept of a view— 
explained in the next section—as the fundamental organizing 
principle for architecture documentation, but also because we 
go beyond views to include additional information that 
belongs in an architecture document. 

Views and Beyond is not actually a method. It does not have 
a sequence of steps, with entry and exit criteria for each. 
Rather, it is more a collection of techniques that carry out an 
underlying philosophy. The philosophy is that an architecture 
document should be helpful to the people who depend on it 
to do their work (far from least of which is the architect). The 
techniques can be bundled into a few categories:

1. Finding out what stakeholders need. If you don’t do this, 
you’re going to end up with documentation that may serve 
no one.

2. Providing the information to satisfy those needs by record-
ing design decisions according to a variety of views, plus the 
beyond-view information. 

3. Checking the resulting documentation to see if it satisfied 
the needs.

4. Packaging the information in a useful form to its stakeholders.

While items 3 and 4 denote document-centric activities, 
items 1 and 2 denote activities that should be carried out in 
conjunction with performing the architecture design. That is, 
we don’t want Views and Beyond to be an architecture documen-
tation method; rather, we want it to help the architect identify 
and record the necessary design decisions as they are made. 
Documentation should be the helpful result of making an

Chapter 9 covers a way 
to use stakeholder 
needs to determine the 
views you include in your 
architecture document.

Chapter 11 covers 
reviewing documentation.

Chapter 10 covers 
packaging and organiza-
tion of documentation.

Don’t consider architec-
ture documentation as a 
task separate from 
design; rather, make it 
an essential part of the 
architecture design pro-
cess, serving as a ready 
vessel for holding the 
output of architectural 
decisions as soon as 
those decisions are made.
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architecture decision, not a separate step in the architecture 
process. The more that documentation is treated like a follow-
on to design, with its own separate method, the less likely it is 
to be done at all.

P.2.6 Views and Beyond in an Agile Environment

It is an unfortunate myth that Agile development and docu-
mentation (particularly architecture documentation) are at 
odds with each other. They aren’t, and there are many exam-
ples of Agile leaders saying exactly that. Nevertheless, it is pos-
sible to interpret the advice in this book as prescribing a 
heavyweight and cumbersome approach to documentation. 
You can imagine an architect lagging hopelessly behind the 
project, which has gone on to deliver the product while he or 
she is still struggling to complete a Views-and-Beyond-style doc-
umentation package from six iterations ago. Neither the archi-
tect (nor this book) would likely be invited back to the next 
project.

Here is some advice that applies to all projects but especially 
to Agile projects: The Views and Beyond approach provides 
guidance for documenting many kinds of architecture infor-
mation: structures, elements, relations, behavior, interfaces, 
rationale, traces to requirements, style guides, system context, 
and a whole lot more. But nowhere is it written that you have 
to do all of that. Decide what is useful (you can use the formula 
in Section P.2.4 to help you decide). Then, for example, if you 
decide that documenting the rationale behind a certain design 
decision is going to pay off in the future, then you can use the 
available guidance to help you do it. If you decide that docu-
menting certain views is useful, then you can use the available 
guidance to help you do it. And so forth. 

Choose what’s useful and cost-effective to document. Docu-
ment that. Period.

P.2.7 Architectures That Change Faster Than You Can Document 
Them

When your Web browser encounters a file type it’s never seen 
before, odds are that it will go to the Internet, download the 
appropriate plug-in to handle the file, install it, and reconfig-
ure itself to use it. Without even needing to shut down, let 
alone go through the code-integrate-test development cycle, 
the browser is able to change its own architecture by adding a 
new component. 

Service-oriented systems that utilize dynamic service discov-
ery and binding also exhibit these properties. More challenging 
systems that are highly dynamic, self-organizing, and reflective

[W]e have come to value 
. . . working software 
over comprehensive 
documentation.

—The Agile Manifesto 
(Agile Alliance 2002)

Section E.4 in the 
epilogue elaborates on 
architecture documen-
tation in an Agile 
environment.
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(meaning self-aware) are on the horizon. In these cases, the 
identities of the components interacting with each other can-
not be pinned down, let alone their interactions, in any static 
architecture document.

Another kind of architectural dynamism, equally challeng-
ing from a documentation perspective, is found in systems that 
are rebuilt and redeployed with great rapidity. Some develop-
ment shops, such as those responsible for commercial Web 
sites, build and “go live” with their system many dozens of times 
every single day. 

Whether an architecture changes at runtime, or as a result 
of a high-frequency release-and-deploy cycle, both share some-
thing in common with respect to documentation: They change 
much faster than the documentation cycle. In either case, 
nobody is going to hold up things until a new architecture doc-
ument is produced, reviewed, and released. 

But knowing the architecture of these systems is every bit as 
important, and arguably more so, than for systems in the world 
of more traditional life cycles. Here’s what you can do if you’re 
an architect in a highly dynamic environment:

1. Document what is true about all versions of your system. 
Your Web browser doesn’t go out and grab just any piece of 
software when it needs a new plug-in; a plug-in must have 
specific properties and a specific interface. And it doesn’t 
just plug in anywhere, but in a predetermined location in the 
architecture. Record those invariants as you would for any 
architecture. This may make your documented architecture 
more a description of constraints or guidelines that any 
compliant version of the system must follow. That’s fine.

2. Document the ways the architecture is allowed to change. 
In the previous examples, this will usually mean adding new 
components and/or replacing components with new 
implementations. In the Views and Beyond approach, the 
place to do this is called the variability guide. 

3. Make your system capture its own architecture-of-the-
moment automatically. When your Web browser or SOA sys-
tem crashes, your recovery team is going to want to know 
exactly what configuration was running when the problem 
occurred. This ability can run the spectrum from primitive 
(write changes in a log file) to sophisticated (drive a real-
time display of the components and their interactions, 
much like what is found in network service centers).

Using a variability guide 
to document an archi-
tecture’s variation 
points is covered in 
Section 6.4.



ptg

22 ■ Prologue: Software Architectures and Documentation

P.3 Architecture Views
Perhaps the most important concept associated with software 
architecture documentation is that of the view. A software 
architecture is a complex entity that cannot be described in a 
simple one-dimensional fashion. Our analogy with the bird 
wing proves illuminating. If you are interested in any but the 
most superficial understanding, then no single rendition of a 
bird wing will do. Instead, you need many: feathers, skeleton, 
circulation, muscular views, and many others. Which of these 
views is the “architecture” of the wing? None of them. Which 
views convey the architecture? All of them.

In this book, we use the concept of views to give us the most 
fundamental principle of architecture documentation, illus-
trated in Figure P.1:

Documenting an architecture is a matter of documenting 
the relevant views and then adding documentation that 
applies to more than one view. 

What are the relevant views? It depends on your goals. As we 
saw previously, architecture documentation can serve many 
purposes: a mission statement for implementers, a basis for 
analysis, the specification for automatic code generation, the 
starting point for system understanding and asset recovery, or 
the blueprint for project planning.

Different views also expose different quality attributes to dif-
ferent degrees. Therefore, the quality attributes that are of 
most concern to you and the other stakeholders in the system’s 
development will affect the choice of what views to document. 
For instance, a layered view will tell you about your system’s port-
ability, a deployment view will let you reason about your system’s 
performance and reliability, and so forth.

Different views support different goals and uses. This is funda-
mentally why we do not advocate a particular view or collection

A view is a representa-
tion of a set of system 
elements and the rela-
tionships associated 
with them.

For more information 
about the bird wing 
analogy, see “About the 
Cover” on page xxi.

Chapter 9 shows how to 
choose the relevant 
views. Section 10.1 
shows how to document 
a view, and Section 10.2 
shows how to docu-
ment the information 
that applies to more 
than one view.

Layered views are cov-
ered in Section 2.4. 
Deployment views are 
covered in Section 5.2.

Figure P.1
A documentation package 
for a software architecture 
can be composed of one or 
more view documents and 
documentation that 
explains how the views 
relate to one another, 
introduces the package to 
its readers, and guides 
them through it.
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of views. The views you should document depend on the uses 
you expect to make of the documentation. Different views will 
highlight different system elements and/or relations.

It may be disconcerting that no single view can fully repre-
sent an architecture. Additionally, it feels somehow inadequate 
to see the system only through discrete, multiple views that may 
or may not relate to one another in any straightforward way. 
The essence of architecture is the suppression of information 
not necessary to the task at hand, and so it is somehow fitting 
that the very nature of architecture is such that it never pre-
sents its whole self to us but only a facet or two at a time. This is 
its strength: Each view emphasizes certain aspects of the system 
while deemphasizing or ignoring other aspects, all in the inter-
est of making the problem at hand tractable. Nevertheless, no 
one of these individual views adequately documents the software 
architecture for the system. That is accomplished by the com-
plete set of views along with information that transcends them.

The documentation for a view contains 

• A primary presentation, usually graphical, that depicts the 
primary elements and relations of the view

• An element catalog that explains and defines the elements 
shown in the view and lists their properties

• A specification of the elements’ interfaces and behavior

• A variability guide explaining any built-in mechanisms avail-
able for tailoring the architecture

• Rationale and design information

The documentation that applies to all of the views contains

• An introduction to the entire package, including a reader’s 
guide that helps a stakeholder find a desired piece of infor-
mation quickly

• Information describing how the views relate to one another, 
and to the system as a whole

• Constraints and rationale for the overall architecture

• Such management information as may be required to effec-
tively maintain the whole package

COMING TO TERMS

A Short History of Architecture Views

Nearly all modern approaches to designing and docu-
menting architectures rely on the concept of an architec-
tural view. Where did this concept come from?

An object-oriented pro-
gram’s runtime struc-
ture often bears little 
resemblance to its code 
structure. The code 
structure is frozen at 
compile-time; it con-
sists of classes in fixed 
inheritance relation-
ships. A program’s run-
time structure consists 
of rapidly changing net-
works of communicat-
ing objects. In fact, the 
two structures are 
largely independent. 
Trying to understand 
one from the other is 
like trying to understand 
the dynamism of living 
ecosystems from the 
static taxonomy of 
plants and animals, and 
vice versa.

—Gamma et al. (1995, 
p. 22)

Section 10.1 substan-
tially elaborates this 
outline.

Section 10.2 substan-
tially elaborates this 
outline.
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More than three decades ago, David Parnas 
(1974) observed that software consists of many 
structures, which he defined as partial descrip-
tions showing a system as a collection of parts

and showing some relations among the parts. This defi-
nition largely survives in architecture papers today. Par-
nas identified several structures prevalent in software. A 
few were fairly specific to operating systems, such as the 
structure that defines what process owns what memory 
segment, but others are more generic and broadly appli-
cable. These include the module structure, in which the 
units are work assignments and the relation is is-a-part-
of or shares-part-of-the-same-secret-as; the uses struc-
ture, in which the units are programs, and the relation is 
depends on the correctness of; and the process struc-
ture, in which the units are processes, and the relation is 
gives computational work to.

Quite a bit later, DeWayne Perry and 
Alexander Wolf recognized that, sim-
ilar to building architecture, a variety 
of views of a system are required.

Each view emphasizes certain architectural aspects that 
are useful to different stakeholders or for different pur-
poses (Perry and Wolf 1992).

Later, Philippe Kruchten (1995) of the Rational 
Software Corporation wrote an influential paper 
describing four main views of software archi-
tecture (logical, process, development, physi-

cal) that can be used to great advantage in system 
building, along with a distinguished fifth view that ties the 
other four together by showing how they satisfy key use 
cases: the “4+1” approach to architecture. The 4+1 
approach has since been embraced as a foundation 
piece of the Rational Unified Process.

At about the same time, 
Dilip Soni, Robert Nord, and 
Christine Hofmeister of Sie-
mens Corporate Research

made a similar observation about views of architecture 
they found in use in industrial practice (Soni, Nord, and 
Hofmeister 1995). They wrote about the conceptual view, 
module interconnection view, execution view, and code 
view. These views, which correspond more or less to 
Kruchten’s four views, have become known as the Sie-
mens Four View model for architecture.

To see how the 4+1 
views correspond to 
views described in this 
book, see Section E.2 of 
the epilogue.

The Siemens Four View 
model is explained in 
the book by Hofmeister, 
Nord, and Soni (2000).
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Other “view sets” have emerged since these. In their 
book Software Systems Architecture, Rozanski and 
Woods (2005) advocate using functional, information, 
concurrency, development, deployment, and operational 
views. Philips Research, the R&D arm of the giant Dutch 
electronics company, has created the “CAFCR” model of 
architecture, which calls for five views: the customer, 
application, functional, conceptual, and realization views.

In the year 2000, the IEEE adopted a standard (IEEE 
1471-2000) for architecture descriptions. Unlike approaches 
that prescribe a fixed set of views, this standard advo-
cates creating your own views that best serve the stake-
holders and their concerns associated with your system. 
(The Views and Beyond approach also advises flexibility 
in choosing your view set.)

P.4 Architecture Styles
Recurring forms have been widely observed, even if written for 
completely different systems. These forms occur often enough 
that they are worth writing and learning about in their own 
right. We call these forms architecture styles. (In this book, we 
usually just say styles.) Styles have implications for architecture 
documentation and deserve definition and discussion in their 
own right.

Styles allow one to apply specialized design knowledge to a 
particular class of systems and to support that class of system 
design with style-specific tools, analysis, and implementations. 
The literature is replete with a number of styles, and most 
architects have a wide selection in their repertoires.

For example, we’ll see that modules can be arranged into a 
useful configuration by restricting what each one is allowed to 
use.  The result is a layered style that imparts to systems that use 
it qualities of modifiability and portability. Different systems 
will have a different number of layers, different contents in 
each layer, and different rules for what each layer is allowed to 
use. However, the layered style is abstract with respect to these 
options and can be studied and analyzed without binding them.

For another example, we’ll see that client-server is a com-
mon architecture style. The elements in this style are clients, 
servers, and the protocol connectors that depict their interaction. 
When used in a system, the client-server style imparts desirable

IEEE 1471-2000 is 
now known as ISO/IEC 
42010:2007. We 
describe this standard 
in Section E.1 of the 
epilogue.

An architecture style is 
a specialization of ele-
ment and relation types, 
together with a set of 
constraints on how they 
can be used.

In all processes of life 
people imitate, and so 
must artists. They are 
influenced by their peers 
as by their antecedents 
because this is the way 
of organic development. 
Late Beethoven and early 
Schubert, for instance, 
are almost indistinguish-
able; while Brahms took 
certain themes, note for 
note, from Beethoven; 
and Shakespeare stole 
nearly all of his plots—all 
the good ones certainly.

—Agnes de Mille, Amer-
ican dancer and cho-
reographer (Atlantic 
1956)



ptg

26 ■ Prologue: Software Architectures and Documentation

properties to the system, such as the ability to add clients with 
little effort. Different systems will have different protocols, dif-
ferent numbers of servers, and different numbers of clients 
each can support. However, the client-server style is abstract 
with respect to these options and can be studied and analyzed 
without binding them.

Some styles are applicable in every software system. For 
example, every system is decomposed into modules to divide 
the work; hence, the decomposition style applies everywhere. 
Other examples of “universal styles” are uses, deployment, and 
work assignment. Some styles occur only in systems in which 
they were explicitly chosen and designed in by the architect: 
layered, service oriented, and multi-tier, for example.

Choosing a style, whether it’s one covered in this book or 
somewhere else, imparts a documentation obligation to record 
the specializations and constraints that the style imposes and 
the characteristics that the style imparts to the system. We call 
this piece of documentation a style guide. The obligation to 
document a style can usually be discharged by citing a descrip-
tion of the style in the literature: this book, for example. If you 
invent your own style, however, you should write a style guide 
for it because it will help you and your peers to apply that style 
in other systems.

No system is built exclusively from a single style. On the con-
trary, every system can be seen to be an amalgamation of many 
different styles. Some (such as decomposition and work assign-
ment) occur in every system, but in addition to these, systems 
can exhibit a combination of one or more “chosen” styles as 
well.

Even restricting our attention to component-and-connector 
styles, it’s possible for one system to exhibit several styles in the 
following ways:

• Different “areas” of the system might exhibit different styles. 
For example, a system might use a pipe-and-filter style to 
process input data but route the result to a database that is 
accessed by many elements. This system would be a blend of 
pipe-and-filter and shared-data styles. Documentation for 
this system would include (1) a pipe-and-filter view that 
showed one part of the system and (2) a shared-data view 
that showed the other part. In a case like this, one or more 
elements must occur in both views and have properties of 
both kinds of elements. (Otherwise, the two parts of the sys-
tem could not communicate with each other.) These bridging 
elements provide the continuity of understanding from one 
view to the next. They likely have multiple interfaces, each

The layered style is 
described in Section 2.4.

The client-server style is 
described in Section 4.3.1.

A style guide is the 
description of an archi-
tecture style that speci-
fies the vocabulary of 
design (sets of element 
and relationship types) 
and the rules (sets of 
topological and semantic 
constraints) for how that 
vocabulary can be used.

The contents of a style 
guide are given in Sec-
tion I.2, in the introduc-
tion to Part I. Section 
6.1.4 discusses how to 
create and document a 
new style.

Combining views is an 
important concept cov-
ered in Section 6.6.

A bridging element is 
an element that is com-
mon to two views and is 
used to provide the 
continuity of under-
standing from one view 
to the other. A bridging 
element appears in both 
views and has support-
ing documentation, 
usually a mapping 
between views, that 
makes the correspon-
dence clear, perhaps by 
showing the combined 
picture.
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providing the mechanisms for letting the element work with 
other elements in each of the views to which it belongs. The 
filter/database connector in Figure P.2 is an example.

• An element playing a part in one style may itself be com-
posed of elements arranged in another style. For example, 
a service provider in an SOA system might, unknown to 
other service providers or its own service users, be imple-
mented using a multi-tier style. Documentation for this sys-
tem would include an SOA view showing the overall system, 
as well as a multi-tier view documenting that server, as illus-
trated in Figure P.3.

• Finally, the same system might simply be seen in different 
lights, as though you were looking at it through filtered 
glasses. For example, a system featuring a database reposi-
tory, as in Figure P.4, may be seen as embodying either a 
shared-data style or a client-server style. The glasses you 
choose will determine the style that you “see.”

In the last case, your choice of style-filtered glasses depends, 
once again, on the uses to which you and your stakeholders 
intend to put the documentation. For instance, if the shared-
data style is more easily understood by the stakeholders that 
will consume that view, you might choose it. If you need the 
perspective afforded by more than one style, however, you have 
a choice. You can document the corresponding views separately, 
or you can combine them into a single view that is, roughly 
speaking, the union of what the separate views would be.

This combined view is 
called an overlay. Over-
lays are discussed in 
Section 6.6.

Figure P.2
A system combining a 
pipe-and-filter style with a 
shared-data style. The 
“filter/database connector” 
is a bridging element.
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Figure P.3
A system combining two 
styles. Here a service 
provider is composed 
internally in a multi-tier 
style.
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Figure P.4
This system could be in the 
shared-data style, or the 
client-server style, 
depending on your 
perspective.
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P.4.1 Three Categories of Styles

Although no fixed set of views is appropriate for every system, 
broad guidelines can help us gain a footing. Architects need to 
think about their software in three ways simultaneously:

1. How it is structured as a set of implementation units

2. How it is structured as a set of elements that have runtime 
behavior and interactions

3. How it relates to nonsoftware structures in its environment

Each style we present in this book falls into one of these 
three categories: 

1. Module styles 

2. Component-and-connector (C&C) styles

3. Allocation styles

When we apply a style to a system, the result is a view. Module 
views document a system’s principal units of implementation. 
C&C views document the system’s units of execution. And allo-
cation views document the relations between a system’s soft-
ware and nonsoftware resources of the development and 
execution environments.

COMING TO TERMS

Module, Component

In this book, we rely on three categories of styles: mod-
ule, component-and-connector, and allocation. This three-
way distinction allows us to structure the information 
we’re presenting in an orderly way and, we hope, allows 
you to recall it and access it in an orderly way, so that you 
can write an architecture document that presents its 
information in an orderly way. But for this strategy to suc-
ceed, the distinctions have to be meaningful. Two of the 
categories rely on words for which we give precise 
meanings, but which are not historically well differenti-
ated: module and component.

Like many words in computing, these two have mean-
ings outside our field. Furthermore, both terms have 
come to be associated with movements in software engi-
neering that have overlapping goals.

During the 1960s and 1970s, software systems increased 
in size and were no longer able to be produced by one

A selection of module 
styles is presented in 
Chapter 2. A selection 
of C&C styles is pre-
sented in Chapter 4. A 
selection of allocation 
styles is presented in 
Chapter 5.

One of the best ways to 
avoid confusion in your 
architecture is to be 
meticulous about 
making it clear whether 
each architecture ele-
ment is a module or a 
component.
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person. It became clear that new techniques were 
needed to manage software complexity and to partition 
work among programmers. To address such issues of 
“programming in the large,” various criteria were intro-
duced to help programmers decide how to partition their 
software. Encapsulation, information hiding, and abstract 
data types became the dominant design paradigms of 
the day. Until this movement, computer programs were 
largely about calculating the correct answer, but thought 
leaders were now saying that how you structure your 
code determines other important properties of the system. 
Module became the carrier of their meaning. The 1970s 
and 1980s saw the advent of “module interconnection 
languages” and features of new programming languages 
such as Modula modules, Smalltalk classes, and Ada 
packages. Today’s dominant design paradigm—object-
oriented programming—has these module concepts at 
its heart. Components, by contrast, are in the limelight 
with component-based software engineering and the 
component-and-connector perspective in the software 
architecture field.

Both movements aspire to achieve rapid system con-
struction and evolution through the selection, assembly, 
and wholesale replacement of independent subpieces. 
Both modules and components are about the decompo-
sition of a whole software system into constituent parts. 
But beyond that, the two terms take on different shades 
of meaning.

• A module refers first and foremost to a unit of imple-
mentation. Parnas’s foundational work in module 
design (Parnas 1972) used information hiding as the 
criterion for allocating responsibility to a module. 
Information that was likely to change over the lifetime 
of a system, such as the choice of data structures or 
algorithms, was assigned to a module, which had an 
interface through which its facilities were accessed. 
Modules have long been associated with source code, 
but information models, XML files, config files, BNF 
files for parsers, and other implementation artifacts 
are all perfectly fine modules.

• A component refers to a runtime entity. Szyperski says 
that a component “can be deployed independently 
and is subject to composition by third parties” 
(Szyperski 1998, p. 30). The emphasis is clearly on the 
finished product and not on the implementation con-
siderations that went into it. Indeed, the operative
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model is that a component is delivered in the form of 
an executable binary only: Nothing upstream from that 
is available to the system builder.

In short, a module suggests implementation units and 
artifacts, with less emphasis on the delivery medium and 
what goes on at runtime. A component is about units of 
software active at runtime with no visibility into the imple-
mentation structure.

Who cares? If every module turned into exactly one com-
ponent at runtime, it would be easy to sweep the differ-
ence under the rug. But this is often far from reality! In 
many systems, a single module might turn into many 
components, or it might take many modules to turn into 
a single component. An easy way to see this is to imag-
ine a trivially simple client-server system. Suppose our 
system has a single server, which at runtime serves up 
some interesting piece of data to ten interested clients, 
all of which do the same thing. This system has eleven 
components but only two modules. The server module 
maps 1:1 onto the server component S1. The client mod-
ule maps 1:10 to the client components C1–C10. Failing 
to distinguish between modules and components makes 
it too easy to blithely assume that every unit of implemen-
tation turns into exactly one unit of execution. It isn’t so. 

Our use of the terms in this book reflects their pedigrees. 
Module styles described in this book reflect implementa-
tion artifact considerations: decompositions that assign 
parts of the problem to units of design and implementation,

Figure P.5
A client-server system 
might consist of two 
modules but eleven 
components.
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layers that reflect what uses are allowed when software 
is being written, and classes that factor out commonality 
from a set of instances. Modules in these styles are often 
units of source code, but there’s also the data model 
style, where the module is a model of the data that the 
system manipulates. Of course, all these module styles 
have runtime implications; that’s the end game of soft-
ware design, after all. C&C styles described in this book 
focus on how processes interact and data travels around 
the system during execution.

In many architectures, there is a one-to-one mapping 
between modules and components. Further, the module 
and its component counterpart are usually given the same 
name in this case. This makes it tempting to believe that 
the modules and components are the same, which in 
turn makes it tempting to believe there is no difference. 
Don’t be tempted. Although a one-to-one mapping does 
no harm, the truth is that the module and component are 
different elements sharing the same name. In such an 
architecture, the module will show up in a module view, 
and a component with the same name will show up in 
one or more component-and-connector views.

Modules and components represent the current bedrock of 
the software engineering approach to rapidly constructed, 
easily changeable software systems. As such, modules 
and components serve as fundamental building blocks 
for creating and documenting software architectures.

COMING TO TERMS

“Architecture Style” and “Architecture Pattern” 

What do the two terms mean?

In this book we use “architecture style” as the term for a 
package of design decisions that explains a generic design 
approach for a software system. Another term for a similar 
concept, used by many architects and authors, is “architec-
ture pattern.” What is the difference between these two 
concepts and why did we choose style over pattern?

An architecture style is a “specialization of element and 
relation types, together with a set of constraints on how 
they can be used” (Bass, Clements, and Kazman 2003).

Section 10.2 describes 
how to document the 
mapping between a 
system’s modules and 
its components. Sec-
tions 1.5 and 3.5 dis-
cuss how modules and 
components relate to 
each other.
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An architecture pattern “expresses a fundamental 
structural organization schema for software systems” 
(Buschmann et al. 1996, p. 12). It is, above all, a pattern, 
which in the context of architecture “describes a partic-
ular recurring design problem that arises in specific 
design contexts, and presents a well-proven generic 
scheme for its solution. The solution scheme is specified 
by describing its constituent components, their respon-
sibilities and relations, and the ways in which they collab-
orate” (Buschmann et al. 1996, p. 8).

An essential part of an architecture pattern is its focus on 
the problem and context as well as how to solve the 
problem in that context. That last part we’ll call the archi-
tecture approach. An architecture style focuses on the 
architecture approach, with more lightweight guidance 
on when a particular style may or may not be useful. Very 
informally, we can put it this way (where the arrow means 
“suggests”):

• Architecture pattern: {problem, context} 
architecture approach

• Architecture style: architecture approach

How did these two terms come about?

“Architecture style” as we use it today traces to some 
early writing from the formative days of software archi-
tecture study. 

In 1990 and 1991, Mary Shaw was noticing and 
describing recurring architecture concepts she 
found in many systems. She called these 
“elements of a design language for software

architecture” or “design idioms” (Shaw 1990, 1991). In 
1992 Dewayne Perry and Alexander Wolf wanted to 
“build an intuition” about the still-new field of software 
architecture (Perry and Wolf 1992). Looking around at 
other kinds of architecture—network architecture, com-
puter architecture, and others—they hit upon building 
architecture as rich in fertile (and borrowable) concepts. 
One of those concepts was architecture style. Like 
Shaw before them, they were also noticing recurring 
design forms in software architectures, and they saw that 
this would be a useful term to appropriate to describe 
those forms. Styles, then, were observed phenomena, 
approaches (manifest in the kinds of elements and rela-
tions employed) that the authors noticed were being

Q UO TE S

Thus, we find in building 
architecture some fun-
damental insights about 
software architecture: 
multiple views are 
needed to emphasize 
and to understand dif-
ferent aspects of the 
architecture; styles are a 
cogent and important 
form of codification that 
can be used both 
descriptively and pre-
scriptively; and, engi-
neering principles and 
material properties are 
of fundamental impor-
tance in the develop-
ment and support of a 
particular architecture 
and architectural style.

—Perry and Wolf (1992)

[In building architecture,] 
architectural styles 
classify architecture in 
terms of form, tech-
niques, materials, time 
period, region, etc. . . . 
leading to a terminology 
such as Gothic “style.”

—Wikipedia (2010a)
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used over and over. The emphasis was on discovery and 
categorization of utilized forms.

In 1996 Frank Buschmann and his colleagues 
at Siemens made the inevitable connection 
between two powerful concepts: software 
architecture and design patterns (the latter hav-

ing electrified software engineering the previous year). 
Their book, Pattern-Oriented Software Architecture, Vol-
ume 1: A System of Patterns (Buschmann et al. 1996; 
PoSA, for short), is where the term architectural pattern 
was first used. Followed over the years by (at this writing) 
four sequels, the PoSA series does for architects what 
Design Patterns (Gamma et al. 1995) did for designers 
and programmers.

Both design patterns and (software) architec-
ture patterns owe their meaning to the building 
architect Christopher Alexander, who in the 
1970s wrote several books detailing architec-

ture approaches to solve common building design prob-
lems. People love to sit next to windows, he wrote, so 
make every room have a place where they can comfort-
ably do so. People love balconies, he wrote, but obser-
vations show they won’t spend time on a balcony less 
than 10 feet wide. So make your balconies at least 10 
feet wide. People love outdoor spaces, he wrote, but not 
if they’re in the shadow of a building. So in the northern 
hemisphere put your courtyards on the south side. He 
called these design nuggets patterns: “a three-part rule, 
which expresses a relation between a certain context, a 
problem, and a solution” (Alexander 1979, p. 247). The 
patterns community (of whatever flavor) has tried to 
remain faithful to his meaning.

Why do patterns seem more specific?

It has turned out, not as a matter of the intrinsic nature of 
these things but rather as a matter of practice, that the 
published architecture patterns tend to be more con-
straining—that is, they embed more design decisions— 
than the published architecture styles. Patterns often 
look “more detailed” or “less abstract” than styles. Styles 
tend to tell people what the element and relation types of 
interest are, and give topological constraints: Put layers 
on top of layers; pipes connect to filters, not pipes; and 
so on. Patterns tend to be more specific, showing 
instances of the element type interacting with each other.

“Anarchitectural pattern 
expresses a fundamental 
structural organization 
schema for software 
systems. It provides a 
set of predefined sub-
systems, specifies their 
responsibilities, and 
includes rules and 
guidelines for organiz-
ing the relationships 
between them.” 
(Buschmann et al. 1996, 
p. 12)

We must not forget that 
the wheel is reinvented 
so often because it is a 
very good idea; I've 
learned to worry more 
about the soundness of 
ideas that were 
invented only once.

—D. L. Parnas (1996)
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That’s because the collectors of styles were motivated to 
find commonality where none had been observed before. 
Broad categories are more inclusive. Pattern writers have 
tended to record very specific and context-dependent prob-
lems; hence their solutions are correspondingly specific.

Architects can use this de facto distinction to their 
advantage. For instance, if you’re handling a lot of data 
in your system, you might want to consider a style (the 
shared-data style is a good candidate) and ask yourself 
if the element and relation types are what you need: That 
is, do you really need a database? Yes? OK, now go look 
for a more constrained architecture approach (which 
might very well be given as a pattern). 

Why did we use “architecture style” in this book?

In this book, which is about documenting software architec-
tures and not so much about designing them, we concen-
trate on presenting a variety of solution approaches— 
architecture styles—so that we can show how to document 
systems built using them. In a software architecture docu-
ment, one doesn’t document a pattern, one documents an 
application of it—that is, the instantiated solution approach.

How do I document the use of a style or pattern in a software 
architecture document?

Architects can use either patterns or styles as a starting 
point for their design. They might be published in existing 
catalogs, stored in an organization’s proprietary repository 
of standard designs, or created specifically for the prob-
lem at hand by the architect. In either case, they provide 
a generic (that is, incomplete) solution approach that the 
architect will have to refine and instantiate. 

First, record the fact that the given style or pattern is 
being used. Then say why this solution approach was 
chosen—why it is a good fit to the problem at hand. If the 
chosen approach comes from a pattern, show that the 
problem at hand fits the problem and context of the pat-
tern. If the chosen approach comes from a style, explain 
why the style does the needed job.

Using a pattern or a style means making successive 
design decisions that eventually result in an architecture. 
These design decisions manifest themselves as newly 
instantiated elements and relations among them. The 
architect can document a snapshot of the architecture at

The shared-data style is 
described in Section 
4.5.1.

The software architec-
ture document tem-
plates in Chapter 10 will 
provide a place for all of 
this information.

The concept of making 
successively more 
constrained design 
decisions is called a 
“spectrum of design” 
and is discussed in Sec-
tion 6.1.3.
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each stage. How many stages there are depends on 
many things, not the least of which is the ability of read-
ers to follow the design process in case they have to 
revisit it in the future.

Summary

Architecture styles represent observed architecture 
approaches. A style description does not generally include 
detailed problem/context information. Architecture pat-
terns do. An architecture approach might be docu-
mented (and several are) as an architecture style and an 
architecture pattern. Both styles and patterns are a set of 
prepackaged design decisions involving the choice of 
element types, relation types, properties, and constraints 
on the topology and interaction among the elements via 
the relations. Both provide vocabularies that shortcut 
explanation and allow greatly facilitated communication 
(“My system is layered.” “Ah, I understand. What are the 
layers?”), and help chart a course to the satisfaction of 
specific quality attribute requirements. Both can be used 
in combination—it is a rare system that uses only one 
style or one architecture pattern. And both represent 
essential elements of an architect’s vocabulary.

P.5 Seven Rules for Sound Documentation 
Architecture documentation is much like the documentation 
we write in other facets of our software development projects. 
As such, it obeys the same fundamental rules for what distin-
guishes good, usable documentation from poor, ignored doc-
umentation. We close the prologue with seven rules for sound 
software documentation. Use this checklist when you write 
technical documentation. (You can also use it when you read 
technical documentation: the rules provide objective criteria 
for judging a document’s quality, and they let you say some-
thing constructive in a critical review.)

Rule 1: Write Documentation from the Reader’s Point of View

This rule simply reminds us to keep the end game in mind as 
we produce our documentation: Make your document serve its 
stakeholders and their intended uses of it. It is surprisingly easy 
to forget that rule in the midst of looming deadlines, an over-
flowing e-mail queue, and a cell phone that won’t shut up. 

The great computing scientist Edsger Dijkstra (1930–2002), 
the inventor of many of the software engineering principles we

Styles are described 
using a common set of 
information; this layout 
is called a style guide. 
The style guide we use 
to describe the styles 
covered in this book is 
explained in the intro-
duction to Part I.

These are the rules for 
any technical documen-
tation, including soft-
ware architecture 
documentation:

1. Write documentation 
from the reader’s 
point of view.

2. Avoid unnecessary 
repetition.

3. Avoid ambiguity.
4. Use a standard 

organization.
5. Record rationale.
6. Keep documentation 

current but not too 
current.

7. Review documentation 
for fitness of purpose.

The consumer isn’t a 
moron. She is your wife.

—David Ogilvy, writing 
about advertising
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now take for granted, once said that he would happily spend 
two hours pondering how to make a single sentence clearer. 
He reasoned that if the paper were read by a couple of hun-
dred people—a decidedly modest estimate for someone of 
Dijkstra’s caliber—and he could save each reader a minute or 
two of confusion, it was well worth the effort. Professor Dijk-
stra’s consideration for the reader reflects his classic manners, 
but it also gives us a new and useful concept of the effort asso-
ciated with a document. Usually we just count how long it takes 
to write. Dijkstra taught us to be concerned with how long it 
takes to use. Writing a document that a reader finds easy to use 
will help tilt the economics of documentation in our favor, as 
defined in the formula in Section P.2.4. 

Writing for the reader is just plain polite, but it has a practi-
cal advantage as well. A reader who feels that the document 
was written with him or her in mind appreciates the effort but, 
more to the point, will come back to the document again and 
again in the future. Documents written for the reader will be 
read; documents written for the convenience of the writer will 
not. All of us like to shop at stores that seem to want our busi-
ness, and we avoid stores that do not. This is no different.

Tips on how to write for the reader include:

• Find out who your readers are, what they know, and what 
they expect of the document. Have an informal chat with 
some representatives of various kinds of readers and see 
what their expectations are. Don’t make uninformed 
assumptions about what your readers know.

• Avoid stream of consciousness writing. If you find yourself 
writing things down in the order they occur to you, without 
an overall organizational plan, stop. Work out where spe-
cific kinds of information should go and put them where 
they belong. Make sure that you know what question(s) are 
being answered by each section of a document. 

• Avoid unnecessary insider jargon. The documentation may 
be read by someone new to the field or from a company that 
does not share the same jargon. Add a glossary to define 
specialized terms.

• Avoid overuse of acronyms. Resist using an acronym when 
the spelled-out phrase is short or it appears only a few times. 
Always provide a dictionary that decodes whatever acronyms 
you do use.

Rule 2: Avoid Unnecessary Repetition

Each kind of information should be recorded in exactly one 
place. This makes documentation easier to use and much easier

I have made this letter 
rather long only 
because I have not had 
time to make it shorter.

—Blaise Pascal, French 
mathematician, phys-
icist, and moralist

The true measure of a 
man is how he treats 
someone who can do 
him absolutely no good.

—Attributed to Samuel 
Johnson

Rozanski and Woods’s 
book Software Systems 
Architecture (2005) lists 
the following properties 
of an “effective archi-
tectural description”: 
correctness, sufficiency, 
conciseness, clarity, 
currency, and precision.
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to change as it evolves. It also avoids confusion: information 
that is repeated is likely to be in a slightly different form, and 
now the reader must wonder “Was the difference intentional? 
If so, what is the meaning of the difference? Did the author 
change one place and forget to update the other?”

It should be a goal that information never be repeated. How-
ever, at times the cost to the reader of not repeating informa-
tion in the other places where it’s needed is high. Readers 
don’t like to flip pages or click hyperlinks unnecessarily. The 
information may be repeated in two or more different places 
for clarity or to make different points. Also, expressing the 
same idea in different forms is often useful for achieving a 
thorough understanding. If keeping the information separate 
comes at too high a cost to the reader, repeat the information.

In a document maintained and viewed online, hyperlinks 
make this rule easier to follow. For example, each term can be 
hyperlinked to its definition; a concept can be hyperlinked to 
an explanation or elaboration.

PERSPECTIVES

Beware Notations Everyone “Just Knows”

Rule 3 admonishes us to avoid ambiguity. “A well-
defined notation with precise semantics,” we say, “goes 
a long way toward eliminating whole classes of linguistic 
ambiguity from a document.” Here we want to empha-
size the part about “precise semantics.” Just having a 
well-defined notation is not enough. 

Consider data flow diagrams. Years ago Michael Jackson 
wrote a wonderful Socratic dialogue that showed how a 
data flow diagram is largely incapable of conveying use-
ful information about a software design unless you 
already have a pretty good idea what the design is by the 
time you start looking at it (Jackson 1995, pp. 42–47; we 
reprinted the dialogue in Chapter 11 of the first edition of 
this book [Clements et al. 2003]). Data flow diagrams, for 
heaven’s sake! They’ve been around for decades. Can it 
really be that nobody understands what they mean? 
Jackson was able to show convincingly how easily they 
can be misinterpreted.

Consider layer diagrams. Layered systems were first 
described more than four decades ago. We’ve all seen 
them; we’ve all written them. Yet how many times have

The data flow diagrams 
. . . don’t seem to be 
much use. They’re just 
vague pictures suggest-
ing what someone 
thinks might be the 
shape of a system to 
solve a problem, and no 
one’s saying what the 
problem is. [T]he big 
picture isn’t much use if 
it doesn’t say anything 
you can understand. 
You’re all just guessing 
what Fred’s diagram 
means. It wouldn’t 
mean anything at all to 
you if you didn’t already 
have a pretty good idea 
of what the problem is 
and how to solve it.

—A character in a 
parable about data 
flow diagrams written 
by Michael Jackson 
(1995)
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we stopped to ask exactly what they mean? A layer dia-
gram is about the only graphical representation of archi-
tecture in which position is significant. Box 1 on top of 
Box 2 is quite a different system than Box 2 on top of Box
1. What does it mean, exactly, that some rectangles are 
stacked up on top of each other? “Oh, the programs on 
top can call programs below” is an answer I often get 
when I ask this question in class. Well, can programs at 
the top call any programs below, or just the programs in 
the next lower layer? Ask this question in a room full of 
professional software engineers, and (if my experience 
teaching to these groups is any measure) you’ll usually 
get one-third nods, one-third head shakes, and one-third 
looking as though you just told them the sun is made of 
really shiny cheese. Can programs in a layer call other 
programs in the same layer? Generally the same 
response. And everyone, absolutely everyone, forgets to 
tell me that programs below are not allowed to call pro-
grams above, which is a rather important thing to 
remember about layers.

So, surprise: Simple layer diagrams are inherently ambig-
uous. Common variants, such as what I call “layers with 
a sidecar,” where a vertical box is smooshed up against 
the stack on one side, are even more ambiguous. (The 
good news is that they can be easily disambiguated.)

A well-defined notation is one in which you can look at an 
example and tell whether it’s a legal example of using the 
notation or not. Layers and data flow diagrams both have 
this property. But neither, traditionally presented, have 
precise enough semantics to be unambiguous.

Notations like this, where software engineers “just know” 
what they mean, are the most dangerous. We all might 
“know” what a layer diagram means. The problem is that 
what I “know” it means will be different from what you 
“know” it means, and different still from what the archi-
tect meant. So we’ll all go merrily along with no hint of a 
problem until late in the project when our errors in under-
standing may cause us to miss a deadline or suffer an 
operating failure.

—P.C.
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Rule 3: Avoid Ambiguity

Ambiguity occurs when documentation can be interpreted in 
more than one way and at least one of those ways is incorrect. 
The most dangerous kind of ambiguity is undetected ambigu-
ity. Here, each reader will think he or she understands the doc-
ument, but unwittingly each reader will come to different 
conclusions about what it is saying. 

Following two of the other rules will help you avoid ambiguity:

• By avoiding needless repetition (rule 2), you avoid the 
“almost but not quite alike” form of ambiguity.

• Reviewing the document with members of its intended audi-
ence (rule 7) will help spot and weed out ambiguities.

A well-defined notation with precise semantics goes a long 
way toward eliminating whole classes of linguistic ambiguity 
from a document. This is one area where standard languages 
and notations help a great deal, but using a formal language 
isn’t always necessary. Simply adopting a set of notational con-
ventions and then using them consistently and rigorously will 
help eliminate many sources of ambiguity. But if you do adopt 
a notation, then the following corollary applies:

ADVICE

We have several things to say about box-and-line dia-
grams masquerading as architecture documentation.

• Don’t be guilty of drawing one and claiming that 
it’s anything more than a start at an architecture 
description.

• If you draw one yourself, make sure that you explain 
precisely what the boxes and lines mean. 

• If you see one, ask its author what the boxes mean 
and what, precisely, the arrows connote. The result is 
usually illuminating, even if the only thing illuminated is 
the author’s confusion.

Rule 3a: Explain Your Notation

The ubiquitous box-and-line diagrams that people always draw 
on whiteboards are one of the greatest sources of ambiguity in 
architecture documentation. Although not a bad starting 
point, these diagrams are certainly not good architecture doc-
umentation. First, most such diagrams suffer from ambiguity.

Q UO TE

It is far better to be 
explicit and wrong than 
to be vague.

—Frederick Brooks, Jr. 
(1995, p. 259)

Clarity is our only 
defense against the 
embarrassment felt on 
completion of a large 
project when it is dis-
covered that the wrong 
problem has been 
solved.

—C. A. R. Hoare (1985, 
p. 85)
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Are the boxes supposed to be modules, objects, classes, ser-
vices, clients, servers, databases, processes, functions, tiers, pro-
cedures, processors, or something else? Do the arrows mean 
calls, uses, data flow, I/O, inheritance, communication, pro-
cessor migration, or something else?

Make it as easy as possible for your reader to determine the 
meaning of the notation. The best way to do this is always to 
include a key in your diagrams. If you’re using a standard visual 
language defined elsewhere, the key can simply name it or 
refer readers to the source of the language’s semantics. Even if 
the language is standard or widely used, different versions 
often exist. Let your reader know, by citation, which one you’re 
using. For example, “Key: UML 2.0” is a perfectly fine key, and 
it puts readers and authors on the same page. For a home-
grown informal notation, include a key to the symbology. This 
is good practice because it compels you to understand what the 
pieces of your system are and how they relate to one another; 
it’s also courteous to your readers. 

PERSPECTIVES

Quivering at Arrows

Many architecture diagrams with an informal notation 
use arrows to indicate a directional relationship among 
architecture elements. Although this might seem like a 
good and innocuous way to indicate that two elements 
interact, it creates a great source of confusion in many 
cases. What do the arrows mean? 

Consider the following architecture snippet:

What does the arrow mean? Here are some possibilities: 

• C1 calls C2.

• Data flows from C1 to C2.

• C1 instantiates C2.

• C1 sends a message to C2.

• C1 is a subtype of C2. (Usually C2 would be posi-
tioned above C1, but that is not mandatory.)

Every diagram in the 
architecture documen-
tation should include a 
key that explains the 
meaning of every sym-
bol used. The key 
should identify the nota-
tion. If a predefined 
notation is being used 
(such as UML), the key 
should name it and if 
necessary cite the doc-
ument that defines the 
version being used. 
Otherwise, the key 
should define the sym-
bology and the mean-
ing, if any, of colors, 
shapes, position, and 
other information-carry-
ing aspects of the dia-
gram. If your diagram 
uses color but the color 
has no particular mean-
ing or is only there to 
enhance readability, say 
so in the key.

If you define an informal 
notation for your dia-
grams, try to use the 
same notation consis-
tently across diagrams 
of the same type. Use 
different symbols for 
different types of ele-
ments and relations. For 
example, if you used a 
rounded rectangle for 
Web components in a 
diagram, avoid using a 
different shape for Web 
components in other 
diagrams.C1 C2
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• C2 is a data repository and C1 is writing data to C2.

• Conversely, C1 is a repository and C2 is reading data 
from C1.

Any of these might make sense, and people use arrows 
to mean all these things and more, often using multiple 
interpretations in the same diagram.

Suppose we know the arrow indicates that component 
C1 calls component C2. If your system uses different 
kinds of calls, it’s a good idea to differentiate them in the 
diagrams. In particular, it is important to distinguish syn-
chronous from asynchronous calls, and local from 
remote calls. Both aspects may have implications for 
behavior, performance, modifiability, and reliability of the 
interaction. It may also be useful to differentiate the tech-
nology used to implement the call when the solution will 
accommodate different ones. For example, a synchro-
nous remote call can be implemented via a Web service 
such as SOAP, REST, Java RMI, or .NET remoting, 
among other options. To differentiate the types of inter-
action in the diagram, use distinct arrowheads (open, 
closed, solid, hollow) and lines (solid, dotted, dashed, 
double).

Suppose that we know that C1 calls C2. Sometimes we 
feel tempted to also show a data flow between the two. 
We could use the preceding figure and assume the arrow 
indicates data flow (instead of “calls”), but if C2 returns a 
value to C1, shouldn’t an arrow go both ways? Or should 
a single arrow have two arrowheads? These two options 
are not interchangeable. A double-headed arrow typi-
cally denotes a symmetric relationship between two ele-
ments, whereas two single-headed arrows suggest two 
asymmetric relationships at work. In either case, the dia-
gram will lose the information that C1 initiated the inter-
action. Suppose that C2 also invokes C1. Would we need 
to put two double-headed arrows between C1 and C2? 
When a component C1 calls a component C2, C1 may 
pass data as arguments to C2 and C2 may return data 
back to C1. Therefore, it’s often a better idea to use the 
arrow to indicate the call’s relation rather than data flow; 
otherwise the diagram may easily end up full of double-
headed arrows that don’t tell much.

Although arrows are often used to indicate interactions, 
often one can avoid confusion by not using them where 
they are likely to be misinterpreted. For example, one can

SOAP and REST are 
defined in Section 4.3.3. 
In previous versions of 
the SOAP specification, 
SOAP was an acronym, 
but this is no longer the 
case. See www.w3.org/ 
TR/soap12-part1/#intro.

www.w3.org/TR/soap12-part1/#intro
www.w3.org/TR/soap12-part1/#intro
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use lines without arrowheads. Sometimes physical 
placement, rather than lines, can convey the same infor-
mation. For example, a layer A on top of a layer B indi-
cates that modules in A can use modules in B. Nesting 
one element inside another often means “is part of.”

Finally, a good key is essential for understanding the 
meaning of arrows, even ones that represent “simple” 
interactions such as “calls.” A useful arrow, suitably 
explained in the key, will leave no doubt as to which is the 
calling end and which is the called end of a call-return 
connector, and which way the data flows.

—D.G. and P.M.

Rule 4: Use a Standard Organization

Establish a standard, planned organization scheme, make your 
documents adhere to it, and ensure that readers know about it. 
A standard organization, also called a template, offers many 
benefits.

• It helps the reader navigate the document and find specific 
information quickly. Thus, this benefit is also related to the 
write-for-the-reader rule.

• It also helps the document writer plan and organize the con-
tents. The writer doesn’t have to start with a blank page 
when answering the question “What topics and in what 
order should I have in this document?” The template 
already provides an outline of the important topics to cover.

• It allows the writer to record information as soon as it’s 
known. For example, pieces of section 4 may be written 
before sections 1–3 are there.

• It reveals what work remains to be done by the number of 
sections labeled “TBD” (to be determined) or “To Do.”

• It embodies completeness rules for the information; the sec-
tions of the document constitute the set of important aspects 
that need to be conveyed. Hence, the standard organization 
can form the basis for a first-order validation check of the 
document at review time.

Corollaries to this rule are these:

1. Organize documentation for ease of reference. Software docu-
mentation may be read from cover to cover at most once, 
probably never. But a document is likely to be referenced 
hundreds or thousands of times. Do what you can to make 
it easy to find information quickly. Adding a table of contents,

Section I.2, in the intro-
duction to Part I, con-
tains a standard 
organization for a style 
guide. Sections 10.1 
and 10.2 contain a stan-
dard organization that 
we recommend for doc-
umenting views and 
information beyond 
views. Chapter 7 contains 
a standard organization 
for the documentation 
of a software interface.

Take any long explana-
tions of figures that are 
in the main text and 
move these to the fig-
ures’ captions. In-text 
explanations would 
serve first-time readers 
well, but putting expla-
nations in captions will 
serve second-time 
readers better: When 
they see a figure they’re 
looking for they won’t 
have to go search the 
text for its explanation.

—Instructions to the 
editors of this book, 
explaining one way in 
which we tried to 
organize the book for 
ease of reference
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an index, a glossary, and an acronym list are all good ways 
to help readers look up specific information.

2. Don’t leave any section blank; mark as “TBD” what you don’t yet 
know or “NA” what you know is not applicable. Many times, we 
can’t fill in a document completely because we don’t yet 
know the information, or because decisions have not been 
made, or because we didn’t yet have time to do it. In that 
case, mark the document accordingly (for example, “TBD” 
or “To Do”). Templates are by nature generic and hence 
comprehensive. If a given section of the template does not 
apply for the document you’re creating, mark it as “NA.” If 
the section is blank, the reader will wonder whether the 
information is coming later or whether it is indeed sup-
posed to be blank. Thus this advice is related to the rule 
about avoiding ambiguity.

Rule 5: Record Rationale

Architecture is the result of making a set of important design 
decisions, and architecture documentation records the out-
comes of those decisions. For the most important decisions, 
you should record why you made them the way you did. You 
should also record the important or most likely alternatives 
you rejected and state why. Later, when those decisions come 
under scrutiny or pressure to change, you will find yourself 
revisiting the same arguments and wondering why you didn’t 
take another path. Recording your rationale will save you enor-
mous time in the long run, although it requires discipline to 
record your rationale in the heat of the moment. 

Of course, not every single design decision should have the 
rationale captured in the architecture documentation. If a 
design decision is key to achieve a quality requirement of the 
system, its rationale is probably worth capturing. If a design 
decision required a long meeting with stakeholders, that’s a 
good decision to capture. If you conducted technical experi-
ments and studies or created prototypes to evaluate design 
alternatives, the conclusions of this effort should be captured 
as rationale for the chosen alternative. Keep in mind that one 
week, one month, or one year from now, you may not remem-
ber why you did things that way, and other people will not 
know either.

Rule 6: Keep Documentation Current but Not Too Current

Documentation that is incomplete or out of date does not 
reflect truth, does not obey its own rules for form and internal 
consistency, and is not used. Documentation that is kept cur-
rent and accurate is used. Why? Because questions about the

Don’t leave sections 
blank. Mark them as 
“not applicable” or “to 
be determined,” as 
appropriate. Better: 
“Not applicable 
because [reason]” and 
“To be determined by 
[date or milestone].”

“Well, it’s an idea, and 
even a bad idea is better 
than none,” said Master 
Li. “Error can point the 
way to truth, while 
empty-headedness can 
only lead to more 
empty-headedness or 
to a career in politics.”

—Barry Hughart, Bridge 
of Birds (1984)

Section 6.5 discusses 
the documentation of 
rationale.
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software can be most easily and most efficiently answered by 
referring to the appropriate document. Documentation that is 
somehow inadequate to answer the question needs to be fixed. 
Updating it and then referring the questioner to it will deliver 
a strong message that the documentation is the final, authori-
tative source for information.

During the design process, on the other hand, decisions are 
made and reconsidered with great frequency. Revising docu-
mentation to reflect decisions that will not persist is an unnec-
essary expense.

Your development plan should specify particular points at 
which the documentation is brought up to date or the process 
for keeping the documentation current. For example, the end 
of each iteration or sprint, or each incremental release, could 
be associated with providing revised documentation. Every 
design decision should not be recorded and distributed the 
instant it is made; rather, the document should be subject to 
version control and have a release strategy, just as every other 
artifact does.

Rule 7: Review Documentation for Fitness of Purpose 

Only the intended users of a document will be able to tell you 
whether it contains the right information presented in the 
right way. Enlist their aid. Before a document is released, have 
it reviewed by representatives of the community or communi-
ties for which it was written.

P.6 Summary Checklist
• The goal of documenting an architecture is to write it down 

so that others can successfully use it, maintain it, and build 
a system from it.

• Documentation exists to further architecture’s uses as a 
means of education, as a vehicle for communication among 
stakeholders, and as the basis for analysis.

• Documenting an architecture is a matter of documenting 
the relevant views and then adding documentation that 
applies to more than one view.

• Documentation should pay for itself by making develop-
ment activities less costly.

• Module styles help architects think about their software as a 
set of implementation units. C&C views help architects 
think about their software as a set of elements that have 
runtime behavior and interactions. Allocation views help 
architects think about how their software relates to the non-
software structures in its environment.

Even with the best 
intentions, sometimes 
budget and schedule 
preclude conscientious 
updating of an architec-
ture document as the 
system undergoes 
change. In that case, as 
happens all too often, 
the code becomes the 
final source of authority. 
Try to use the formula in 
Section P.2.4 to justify 
maintaining the docu-
ment by making a case 
that doing so is worth 
the investment. If that 
fails, then at least mark 
the sections of the doc-
ument that are out of 
date so that readers can 
still have confidence in 
the remainder.

Chapter 11 covers 
reviewing architecture 
documents.
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• An architecture style is a specialization of elements and rela-
tions, together with a set of constraints on how they can be 
used. A style defines a family of architectures that satisfy the 
constraints.

• Some styles are applicable in every software system. Other 
styles occur only in systems in which they were explicitly cho-
sen and designed in by the architect.

• Follow the seven rules for sound documentation.

1. Write documentation from the point of view of the 
reader, not the writer.

2. Avoid unnecessary repetition.

3. Avoid ambiguity. Always explain your notation.

4. Use a standard organization.

5. Record rationale.

6. Keep documentation current but not too current.

7. Review documentation for fitness of purpose.

P.7 Discussion Questions
1. Think of a technical document that you remember as being 

exceptionally useful. What made it so?

2. Think of a technical document that you remember as being 
dreadful. What made it so?

3. List several architectural aspects of a system you’re familiar 
with, and state why they are. List several aspects that are not 
architectural, and state why they are not. List several 
aspects that are “on the cusp,” and make a compelling argu-
ment for putting each into “architectural” or “nonarchitec-
tural” categories.

4. If you visit Seoul, Korea, you might see the following sign 
presiding over one of the busy downtown thoroughfares:

1

2

3

4

5
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What does it mean? Is the information this sign conveys 
structural, behavioral, or both? What are the elements in 
this system? Are they more like modules or like compo-
nents? What qualities about the notation make this sign 
understandable or not understandable? Does the sign con-
vey a dynamic architecture, or dynamic behavior within a 
static architecture? Who are the stakeholders of this sign? 
What quality attributes is it attempting to achieve? How 
would you validate it, to assure yourself that it was satisfying 
its requirements?

5. How much of a project’s budget would you devote to soft-
ware architecture documentation? Why? How would you 
measure the cost and the benefit?

P.8 For Further Reading
The full treatment of software architecture—how to build one, 
how to evaluate one to make sure it’s a good one, how to 
recover one from a jumble of legacy code, and how to drive a 
development effort once you have one—is beyond the scope of 
this book. However, general books on software architecture are 
plentiful. Several authors provide good coverage: Bass, Clem-
ents, and Kazman (2003); Hofmeister, Nord, and Soni (2000); 
Shaw and Garlan (1996); Bosch (2000); and Gorton (2006). 
Also, Jeff Garland and Richard Anthony’s Large-Scale Software 
Architecture: A Practical Guide Using UML is a good resource 
(Garland and Anthony 2003).

The Software Engineering Institute’s software architecture 
Web page—at www.sei.cmu.edu/architecture—provides a wide 
variety of software architecture resources and links, including 
a broad collection of definitions of the term (SEI 2010).

One of the goals of documentation is to provide sufficient 
information so that an architecture can be analyzed for fitness 
of purpose. For more about analysis and evaluation of software 
architectures, see the book by Clements, Kazman, and Klein 
(2002).

The seven rules of sound documentation are adapted from 
a paper by Parnas and Clements (1986), which also espouses a 
philosophy directly relevant to this book. That paper holds 
that although system design is almost always subject to errors, 
false starts, and resource-constrained compromises, systems 
should be documented as though they were the product of an 
idealized, step-by-step, smoothly executed design process. That 
is the documentation that will be the most helpful in the long 
run. This book is consistent with that philosophy, in that it lays 
out what the end state of your documentation should be.

www.sei.cmu.edu/architecture
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If you want a deeper appreciation of the field of architecture 
and its roots, then diving into some of the early papers will be 
worth your time:

David Parnas (1974) first made the observation that software 
can be described by many structures, not just one. This insight 
led directly to the concept of views that we use today. Architec-
ture views in general, and “4+1 views” in particular, are a fun-
damental aspect of the Rational (now IBM Rational) Unified 
Process for object-oriented software (Kruchten 1995). 

An early paper on software architecture that tied us to build-
ing architecture and our “architecture styles” to the architec-
ture styles of buildings is by Perry and Wolf (1992).

A tour de force in style comparison is found in the paper by 
Shaw (1995), in which the author examines 11 different previ-
ously published solutions to the automobile cruise-control 
problem and compares each solution through the lens of 
architecture style. Chapter 3 of the book by Shaw and Garlan 
(1996) continues the theme. A number of example problems 
are presented. For each one, several architecture solutions are 
presented, each based on the choice of a different style. These 
side-by-side comparisons not only reveal qualities of the styles 
themselves, but also richly illustrate the overall concept.

For encyclopedic catalogs of architecture patterns, see the 
Pattern-Oriented Software Architecture series of books by the fol-
lowing authors: Buschmann et al. (1996); Schmidt et al. 
(2000); Kircher and Jain (2004); and Buschmann, Henney, 
and Schmidt (2007a and 2007b). Also see Martin Fowler’s 
book Patterns of Enterprise Application Architecture (2002).

Smith and Williams (2002) include three chapters of princi-
ples and guidance for architecting systems in which perfor-
mance is an overriding concern.
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P A R T

A Collection of Software 
Architecture Styles

The starting point of architecture design is most often a preex-
isting package of design decisions. Very few architects design 
systems completely by closing their eyes, thinking hard, and 
conjuring up a brand-new design. 

A most useful package of design decisions is the architecture 
style. Chapters 1–5 present a range of important and widely 
used architecture styles. The emphasis here is on how to docu-
ment a view that results from the use of a style.

I.1 Three Categories of Styles
Chapters 1–5 are organized along the lines of the three catego-
ries of styles we discussed in the prologue: module styles 
(Chapters 1 and 2), component-and-connector (C&C) styles 
(Chapters 3 and 4), and allocation styles (Chapter 5). Plan for 
your documentation package to include at least one module 
view, at least one component-and-connector view, and at least 
one allocation view.

Modules are the primary elements of module styles. A mod-
ule is an implementation unit that provides a coherent set of 
responsibilities. A module might take the form of a class, a col-
lection of classes, a layer, an aspect, or any decomposition of 
the implementation unit. Every module has a collection of 
properties assigned to it. These properties are intended to 
express the important information associated with the mod-
ule, as well as constraints on the module. Sample properties 
are responsibilities, visibility information, and author or 
owner. The relations that modules have to one another include 
is part of, depends on, and is a.

A module style is a kind 
of style that introduces 
a specific set of module 
types and specifies 
rules about how ele-
ments of those types 
can be combined.

Module styles are 
described in Chapters 1 
and 2.
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Component-and-connector styles express runtime behavior. 
They are described in terms of components and connectors. A 
component is one of the principal processing units of the exe-
cuting system. Components might be services, processes, 
threads, filters, repositories, peers, or clients and servers, to 
name a few. A connector is the interaction mechanism among 
components. Connectors include pipes, queues, request/reply 
protocols, direct invocation, event-driven invocation, and so 
forth. Components and connectors can be decomposed into 
other components and connectors. The decomposition of a 
component may include connectors and vice versa. 

Allocation styles describe the mapping of software units to 
elements of an environment in which the software is developed 
or executes. The environment might be the hardware, the file 
systems supporting development or deployment, or the devel-
opment organization(s). 

I.2 Style Guides: A Standard Organization for Explaining 
a Style

Styles presented together for comparison and selection should 
be described consistently with each other. In this way, an archi-
tect can better make an informed decision about which one(s) 
to use. This is an application of the fourth rule for sound doc-
umentation: Use a standard organization. The outline used for 
describing a style is called a style guide.

The styles in Chapters 1–5 are presented using the form of a 
style guide. Below is the outline for that style guide.

OUTL INE  FOR A  STYLE  GUIDE

1. Overview. The overview in a style guide explains why 
this style is useful. It discusses what it is about a system 
that the style addresses and how it supports reasoning 
about systems.

2. Element types, relation types, and properties.

a. Elements are the architecture building blocks 
native to the style. A style guide defines one or 
more element types, instances of which will popu-
late an architecture that uses that style. 

b. Relations determine how the elements work 
together to accomplish the work of the system. A 
style guide defines one or more relation types that

A component-and-
connector style is a 
kind of style that intro-
duces a specific set of 
component and con-
nector types and speci-
fies rules about how 
elements of those types 
can be combined. Addi-
tionally, given that C&C 
views capture runtime 
aspects of a system, a 
C&C style is typically 
also associated with a 
computational model 
that prescribes how 
data and control flow 
through systems 
designed in that style.

C&C styles are described 
in Chapters 3 and 4.

An allocation style is a 
kind of style that 
describes the mapping 
of software units to ele-
ments of an environment 
in which the software is 
developed or executes.

Allocation styles are 
described in Chapter 5.

A style guide is the 
description of an archi-
tecture style that speci-
fies the vocabulary of 
design (sets of element 
and relationship types) 
and rules (sets of topo-
logical and semantic 
constraints) for how that 
vocabulary can be used.
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apply to the style’s element types. An architecture 
using the style will describe the relations (instances 
of the relation type) that determine how the ele-
ments can work together, and any important prop-
erties of those relations. The style guide provides 
rules on how elements can and cannot be related.

3. Constraints. This section of the style guide lists the rules 
for putting the elements and relations together to 
form a valid instance of the style. For example, in a 
pipe-and-filter style, a pipe is allowed to attach to a fil-
ter, but not to another pipe. In a layered style, the lay-
ers are laid out adjacently in a stack, not scattered 
about randomly. In a work-assignment style, every soft-
ware unit has to be allocated to at least one organiza-
tional element.

4. What it’s for. This section of the style guide describes the 
kind of reasoning supported by views in the style. The 
intent is to help the architect understand to what pur-
pose(s) a view in this style may be put. This might be 
how using the style helps in the development process 
(for example, the “uses” style is good for reasoning 
about modifiability). Or it might be about how the style 
helps the product (for instance, pipe-and-filter yields 
good performance when processing a series of data 
elements).

5. Notations. This section of the style guide will give 
descriptions of graphical and/or textual representa-
tions that are available and useful to document views in 
the style. Different notations will also support the con-
veyance of different kinds of information in the view.

6. Relation to other styles. This section of the style guide 
describes how views derived from this style might be 
related to views derived from different styles. For exam-
ple, views from two different styles might convey different 
but related information about a system, and the archi-
tect would like a way to choose which one to use. This 
section might also include warnings about other views 
with which a particular view is often confused, to the 
detriment of the system and its stakeholders. (Layers and 
tiers are a good example of this. They are fundamen-
tally different, but are often [mis]used interchangeably.)

7. Examples. This section provides or points to an example 
of a documented view derived from the given style.

An element is an archi-
tecture building block 
native to the style. An 
element can be a mod-
ule, a component or 
connector, or an ele-
ment in the environment 
of the system whose 
architecture we are doc-
umenting. The descrip-
tion of an element tells 
what role it plays in an 
architecture, lists its 
important properties, 
and furnishes guide-
lines for effective docu-
mentation of the 
element in a view. 

A relation defines how 
elements cooperate to 
accomplish the work of 
the system. The 
description of a relation 
names the relations 
among elements and 
provides rules on how 
elements can and can-
not be related.

A property contains 
additional information 
about elements and 
relations. A style defini-
tion includes the prop-
erty name and 
description. When an 
architect documents a 
view based on that 
style, the properties will 
be given values. Prop-
erty values are often 
used to analyze an 
architecture for its abil-
ity to meet quality 
attribute requirements.
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I.3 Choosing Which Element and Relation Properties to 
Document

The discussion in Chapters 1–5 heavily emphasizes styles, 
which are documented in published style guides. But as you 
read about the styles in Part I, remember that the end game is 
to produce views based on the chosen style. Recall that a view 
is a representation of a style applied to a particular system—in 
this case the system whose architecture is being documented.

One of the tasks in documenting a view is deciding which 
properties of elements to document. Recall from our preced-
ing discussion of style guides that properties are additional 
information about the elements and their relations that are 
useful to document. The styles of Chapters 1–5 are each 
described with a set of properties likely to be useful; consider 
them suggestions. 

Properties almost always include the name of the element as 
well as some description of its role or responsibility in the 
architecture. For example, properties of a layer—an element 
of the layered style, which is one of the module styles—should 
include the layer’s name, the units of software the layer con-
tains, and the nature of the capabilities that the layer provides. 
A layered view will then, for each layer, specify its name, the 
units of software it contains, and the capabilities it provides.

Beyond these basic properties, however, are properties that 
will support architecture-based analysis. If you want to analyze 
an architecture for performance, then properties in some 
views probably should include an element’s best- and worst-
case response times, or the maximum number of events an ele-
ment can service per time unit. If you want to analyze an archi-
tecture for security, then you probably want to document 
properties that explain levels of encryption and authorization 
rules for different elements and relations.

So: If you care about quality attribute x, then define proper-
ties that will let you analyze for x in the views that are related to 
achieving x.

Also as you read Chapters 1–5, remember that a view may 
represent more than one style. In fact, this is the norm. Since 
all nontrivial software systems employ many styles at once, 
mandating that each view come from just one style would 
result in a plethora of views and a very thick architecture doc-
ument. Some styles can be fruitfully combined, and that com-
bination used to create a view. Component-and-connector styles 
in particular tend to combine well, and many architects pro-
duce a single component-and-connector view for their system 
that reflects all of the C&C styles they used.

When documenting a 
view, decide on the list 
of properties to docu-
ment about the elements 
in that view. Choose 
properties that will aid 
the analysis you wish 
the documentation to 
support. Documenting a 
view, then, includes 
documenting the values 
for the properties you 
chose.

Section 6.6 discusses 
which styles go together 
well to produce com-
bined views.
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By learning the “pure” (uncombined) styles, however, you 
can make more informed choices about which ones to com-
bine. Each comes with its own vocabulary (of element and rela-
tion types); you can use these vocabularies to build meaningful 
combined views that carry forward the pedigree of each of 
their constituent styles.

I.4 Notations for Architecture Views
Notations for documenting views differ considerably in their 
degree of formality. Roughly speaking, there are three main 
categories of notation:

1. Informal notations. Views are depicted (often graphically) 
using general-purpose diagramming and editing tools and 
visual conventions chosen for the system at hand. The 
semantics of the description are characterized in natural 
language and cannot be formally analyzed.

2. Semiformal notations. Views are expressed in a standardized 
notation that prescribes graphical elements and rules of 
construction, but does not provide a complete semantic 
treatment of the meaning of those elements. Rudimentary 
analysis can be applied to determine if a description satis-
fies syntactic properties. Unified Modeling Language (UML) 
is a semiformal notation in this sense.

3. Formal notations. Views are described in a notation that has 
a precise (usually mathematically based) semantics. Formal 
analysis of both syntax and semantics is possible. There are 
a variety of formal notations for software architecture avail-
able, although none of them can be said to be in wide-
spread use. Generally referred to as architecture description 
languages (ADLs), they typically provide both a graphical 
vocabulary and an underlying semantics for architecture 
representation. In some cases these notations are special-
ized to particular styles. In others they allow many styles, or 
even provide the ability to formally define new styles. The 
usefulness of ADLs lies in their ability to support automa-
tion through associated tools—automation to provide use-
ful analysis of the architecture, or automation to assist in 
code generation.

Determining which form of notation to use involves making 
several trade-offs. Typically more-formal notations take more 
time and effort to create, but they repay this effort in reduced 
ambiguity and better opportunities for analysis. Conversely, 
more-informal notations are easier to create, but they provide 
fewer guarantees. 

Think carefully about 
the choice of design 
notation for each dia-
gram in your architec-
ture documentation. 
Consider available tool 
support, the knowledge 
and the needs of the 
documentation stake-
holders, and the pur-
pose of the diagrams 
(for example, imple-
mentation guidance, 
analysis, or model and 
code generation). Some 
architecture informa-
tion can be docu-
mented more effectively 
with other notations.

DE F IN IT IO N  

An architecture 
description language 
is a language for repre-
senting a software and/ 
or system architecture. 
ADLs are usually graph-
ical languages that pro-
vide semantics that 
enable analysis and rea-
soning about architec-
tures, often using 
associated tools.

Appendix C describes 
one particular architec-
ture description lan-
guage, called AADL, in 
depth. The “For Further 
Reading” section of 
Chapter 3 provides 
resources for learning 
about other ADLs.
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We’ll see examples of views rendered in these different kinds 
of notations throughout Part I.

I.5 Examples
Throughout this book, but especially in Part I, we will present 
many examples of architecture documentation fragments 
extracted from real systems. When you look at these examples, 
please keep in mind the following notes:

• The goal is for you to understand the kinds of information 
the example conveys and how the chosen notation is used 
to depict different types of elements and relations. 

• The goal is usually not for you to understand the meaning of 
the specific elements and relations, that is, the responsibilities 
they satisfy. Any software system uses acronyms and internal 
jargon that become part of the vocabulary of the stakehold-
ers familiar with that system. The examples in the book should 
allow you to recognize what information the architect wanted 
to capture without knowing the meaning of these terms.

• For each example, the piece extracted from the original 
architecture documentation is typically just a diagram. To 
that diagram we add a brief description with information 
that can’t really be inferred by the diagram alone. This 
information comes from other parts of each system’s archi-
tecture documentation that are not reproduced in the book. 
A diagram is not enough to document a view!

• We chose diagrams that we think are good examples of dif-
ferent styles and notations. However, they may not be perfect 
with respect to notation choice and usage, diagramming 
aesthetics, and quality of the design itself. 

• Very often architecture diagrams do not show a single style 
in its pure form. In many of our examples, you will be able 
to find vestiges of styles other than the one the diagram is 
illustrating. That’s normal.

• The example does not necessarily show the latest version of 
the design.

There is no greater 
impediment to the 
advancement of knowl-
edge than the ambiguity 
of words.

—Thomas Reid, Scot-
tish philosopher
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1
Module Views

In this chapter, we look at these aspects of module views:

• Elements, relations, and properties

• Purpose

• Notation

• Relation to other views

1.1 Overview
In this chapter and the next, we look at ways to document the 
module structures of a system’s software. Such documentation 
enumerates the principal implementation units, or modules, 
of a system, together with the relations among these units. We 
refer to these descriptions as module views. As we will see, these 
views can be used for each of the purposes outlined in the pro-
logue: education, communication among stakeholders, and 
the basis for construction and analysis.

The way in which a system’s software is decomposed into 
manageable units remains one of the important forms of sys-
tem structure. At a minimum, it determines how a system’s 
source code is decomposed into units, what kinds of assump-
tions each unit can make about services provided by other 
units, and how those units are aggregated into larger ensem-
bles. It also includes global data structures that impact and are 
impacted by multiple units. Module structures often deter-
mine how changes to one part of a system might affect other 
parts and hence the ability of a system to support modifiability, 
portability, and reuse.

It is unlikely that the documentation of any software archi-
tecture can be complete without at least one module view.

The architect must be a 
prophet . . . a prophet in 
the true sense of the 
term . . . if he can’t see 
at least ten years ahead 
don’t call him an 
architect.

—Frank Lloyd Wright
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We begin by considering module views in the general form. 
Table 1.1 summarizes the discussion in the following sections 
about the elements, relations, constraints, and purpose of the 
module views. In Chapter 2 we provide this information specific 
to each of a number of often used module styles. 

1.2 Elements, Relations, and Properties of Module 
Views

1.2.1 Elements

System designers use the term module to refer to a wide variety 
of software structures, including programming language 
units—such as C programs, Java or C# classes, Delphi units, 
and PL/SQL stored procedures—or simply general groupings 
of source code units—such as Java packages or C# namespaces. 
In this book, we adopt a much broader definition.

We characterize a module by enumerating its set of respon-
sibilities, which are foremost among a module’s properties. 
This broad notion of responsibilities is meant to encompass 
the kinds of features that a unit of software might provide: that 
is, its functionality and the knowledge it maintains.

Modules can be aggregated and decomposed. Each of the 
various module styles identifies a different set of modules and 
relations, and then aggregates or decomposes these modules 
based on relevant style criteria. For example, the layered style

Table 1.1 Summary of the module views

Elements Modules, which are implementation units of software that provide a coherent 
set of responsibilities.

Relations • Is part of, which defines a part/whole relationship between the submodule— 
the part—and the aggregate module—the whole.

• Depends on, which defines a dependency relationship between two mod-
ules. Specific module styles elaborate what dependency is meant.

• Is a, which defines a generalization/specialization relationship between a 
more specific module—the child—and a more general module—the parent.

Constraints Different module views may impose specific topological constraints.

What It’s For • Providing a blueprint for construction of the code
• Facilitating impact analysis
• Planning incremental development
• Supporting requirements traceability analysis
• Explaining the functionality of the system and the structure of the code base
• Supporting the definition of work assignments, implementation schedules, 

and budget information
• Showing the structure of information to be persisted

A module is an imple-
mentation unit of 
software that provides 
a coherent set of 
responsibilities.

A responsibility is a 
general statement 
about an architecture 
element and what it is 
expected to contribute 
to the architecture. This 
includes the actions 
that it performs, the 
knowledge it maintains, 
the decisions it makes, 
or the role it plays in 
achieving the system’s 
overall quality attributes 
or functionality.
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identifies modules and aggregates them based on an allowed-to-
use relation, whereas the generalization style identifies and 
aggregates modules based on what they have in common.

1.2.2 Relations

Module views have the following types of relations:

• Is part of. The is-part-of relation defines a part/whole rela-
tionship between the submodule—the part—and the aggre-
gate module—the whole. In its most general form, the is-
part-of relation simply indicates aggregation, with little 
implied semantics. 

• Depends on. A depends on B defines a dependency relation 
between A and B. Many different specific forms of depen-
dency can be used in module views. Later, we look at four in 
particular: uses, allowed to use, crosscuts, and data entity rela-
tionships, in the module uses, layered, aspect, and data 
model styles, respectively. The logical association between 
classes (in a UML class diagram, for example) also depicts a 
dependency between the classes.

• Is a. The is-a relation defines a generalization/specialization 
relationship between a more specific module—the child— 
and a more general module—the parent. The child is able 
to be used in contexts in which the parent is used. Later, we 
look at this relation in more detail in the generalization 
style. Object-oriented inheritance and interface realization 
are special cases of the is-a relation.

1.2.3 Properties

Properties of modules that help to guide implementation or 
are input to analysis should be recorded as part of the support-
ing documentation for a module view. The list of properties 
may vary but is likely to include the following:

• Name. A module’s name is, of course, the primary means to 
refer to it. A module’s name often suggests something about 
its role in the system: a module called “account_mgr,” for 
instance, probably has little to do with numeric simulations 
of chemical reactions. In addition, a module’s name may 
reflect its position in a decomposition hierarchy; the name 
“A.B.C,” for example, refers to a module C that is a submod-
ule of a module B, itself a submodule of A.

• Responsibility. The responsibility property of a module is a 
way to identify its role in the overall system and establishes 
an identity for it beyond the name. Whereas a module’s 
name may suggest its role, a statement of responsibility

In Chapter 2, the is-
part-of relation is 
refined to a decomposi-
tion relation in the 
decomposition style.

In Chapter 2, the 
depends-on relation is 
refined to “uses” in the 
uses style, “allowed to 
use” in the layered style, 
and “crosscut” in the 
aspect style.

In Chapter 2, the is-a 
relation is refined to 
generalization in the 
generalization style.
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establishes it with much more certainty. Responsibilities
should be described in sufficient detail to make clear to the
reader what each module does.

• Visibility of interface(s). When a module has submodules,
some interfaces of the submodules may have internal pur-
poses; that is, the interfaces are used only by the submod-
ules within the enclosing parent module. These interfaces
are not visible outside that context and therefore do not
have a direct relationship to the parent interfaces. Different
strategies can be used for those interfaces that have a direct
relationship to the parent interfaces. The strategy shown in
Figure 1.1(a) is encapsulation. The parent module provides
its own interfaces and maps all requests to the capabilities
provided by the submodules. The facilities of the enclosed
modules are not available outside the parent. Alternatively,
the interfaces of an aggregate module can be a subset of the
interfaces of its submodules. The aggregate module selec-
tively exposes some of the interfaces of the submodules.
Layers and subsystems are often defined in this way. For
example, if module C is an aggregate of modules A and B,
C’s implicit interface will be a subset of the interfaces of
modules A and B (see Figure 1.1(b)).

• Implementation information. Because modules are units of
implementation, it is useful to record information related to
their implementation from the point of view of managing
their development and building the system that contains
them. Although this information is not, strictly speaking,
architectural, it may be useful to record it in the architec-

Documenting software 
interfaces is discussed 
in Chapter 7.

Figure 1.1
(a) Module C provides its 
own interface, hiding the 
interfaces of modules A 
and B. (b) Module C 
exposes a subset of the 
interfaces of modules A 
and B as its interface.

C

A B

C

A B

Key
Module Module interface

(b)(a)
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ture documentation where the module is defined. Imple-
mentation information might include

– Mapping to source code units. This identifies the files that
constitute the implementation of a module. For example,
a module named Account, if implemented in Java, might
have several files that constitute its implementation:
IAccount.java (an interface), AccountImpl.java (an imple-
mentation of Account functionality), AccountBean.java
(a class to hold the state of an account in memory),
AccountOrmMapping.xml (a file that defines the map-
ping between AccountBean and a database table—
object-relational mapping), and perhaps even a unit test
AccountTest.java.

– Test information. The module’s test plan, test cases, test
scaffolding, and test data are important to store.

– Management information. A manager may need informa-
tion about the module’s predicted schedule and budget.

– Implementation constraints. In many cases, the architect will
have a certain implementation strategy in mind for a
module or may know of constraints that the implementa-
tion must follow. This information is private to the mod-
ule and hence will not appear, for example, in the
module’s interface.

Module styles may have properties of their own in addition to
these. Also, you may find other properties useful that are not listed.

1.3 What Module Views Are For
Expect to use module views for

• Construction. A module view can provide a blueprint for the
source code and the data store. In this case, the modules
and physical structures, such as source code files and direc-
tories, often have a close mapping.

• Analysis. Two important analysis techniques are require-
ments traceability and impact analysis. Because modules
partition the system, it should be possible to determine how
the functional requirements of a system are supported by
module responsibilities. Some functional requirements will
be met by a sequence of invocations among modules. Docu-
menting such sequences shows how the system is meeting its
requirements and identifies any unaddressed requirements.
Impact analysis, by contrast, helps to predict the effect of
modifying the system. Module views that show dependen-
cies among modules or layers provide a good basis for

In addition to identifying 
the implementation 
units, one also needs to 
identify where they 
reside in a project’s fil-
ing scheme: a directory 
or folder in a file system, 
a URL in an intranet, or 
a location in a configu-
ration management 
system’s storage space. 
This information is in the 
purview of the imple-
mentation style, dis-
cussed in Section 5.5.

Section 10.3 discusses 
documenting the map-
ping between require-
ments and architecture.
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impact analysis. Modules are modified as a result of prob-
lem reports or change requests. Impact analysis requires a
certain degree of design completeness and integrity of the
module description. In particular, dependency information
has to be available and correct in order to create useful
results.

• Communication. A module view can be used to explain the
system’s functionality to someone not familiar with the sys-
tem. The various levels of granularity of the module decom-
position provide a top-down presentation of the system’s
responsibilities and therefore can guide the learning pro-
cess. For a system whose implementation is already in place,
module views, if kept up to date, are very helpful, as they
explain the structure of the code base to a new developer on
the team—much more effective than providing the URL to
the version management system repository and asking him
or her to browse the source files and read the code. Thus,
up-to-date module views are very useful during system main-
tenance.

On the other hand, it is difficult to use the module views to
make inferences about runtime behavior, because these views
are just a static partition of the functions of the software. Thus,
a module view is not typically used for analysis of performance,
reliability, or many other runtime qualities. For those, we typi-
cally rely on component-and-connector and allocation views.

1.4 Notations for Module Views
1.4.1 Informal Notations

A number of notations can be used to present a module view.
One common informal notation uses boxes to represent the
modules, with different kinds of lines between them represent-
ing the relations. Nesting is used to depict aggregation, and
arrows typically represent a depends-on relation. In Figure 1.1
(in Section 1.2.3), for example, nesting represents aggrega-
tion, and lollipops indicate interfaces.

A second common form of informal notation is a simple tex-
tual listing of the modules with descriptions of the responsibil-
ities. Various textual schemes can be used to represent the is-
part-of relation, such as indentation, outline numbering, and
parenthetical nesting. Other relations may be indicated by key-
words. For example, the description of module A might
include the line “Imports modules B, C,” indicating a depen-
dency between module A and modules B and C.

Expect to use compo-
nent-and-connector
and allocation views, 
not module views, to 
analyze performance, 
reliability, and other 
runtime qualities.

Figure 2.4 is an example 
of a textual notation for 
modules, using indenta-
tion to indicate is part of.
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1.4.2 Unified Modeling Language

Software modeling notations, such as UML, provide a variety of
constructs that can be used to represent modules. Figure 1.2
shows some examples for modules using UML notation. Figure
1.3 shows how the three basic relations native to module views
are denoted using UML.

UML has a class construct, which is the object-oriented spe-
cialization of a module as described here. UML packages are
used to represent an aggregation of modules. UML packages

Appendix A describes 
how UML can be used 
to show different mod-
ule views, as well as 
C&C and allocation 
styles.

Figure 1.2
Examples of module 
notation in UML. A module 
may be represented as a 
class or a package. More 
specific types of modules 
can be indicated with 
stereotypes (as in 
Figure 1.4).
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«interface»
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interface not
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lollipop

package

class

SaveFileDialog

FileName
Filter

ShowDialog()
OnFileOk(…)
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SaveFileDialog

Figure 1.3
Examples of module 
relations in UML
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BeanManager
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two forms of 
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can represent, for example, layers, subsystems, and collections
of implementation units that live together in the implementa-
tion namespace. 

UML was originally created to model object-oriented systems.
It is now considered a general-purpose modeling language. As
a result, UML elements and relations are generic; that is, they
are not specific to implementation technologies or platforms.
But you can define stereotypes to specialize the UML symbols.
A stereotype is a UML extension mechanism and is repre-
sented in diagrams as a label in guillemets («stereotype label»).
Figure 1.4 shows some examples. If used correctly, stereotypes
make your UML diagrams more expressive. The UML specifi-
cation provides a number of standard stereotypes, but you can
also create your own. 

1.4.3 Dependency Structure Matrix

A dependency structure matrix (DSM) is a table that shows
modules as the column and row headings and dependencies as
the table cells. The DSM is built as a square matrix (that is, a
matrix with same number of rows and columns) where ele-
ment ij is nonzero if there is a dependency between module i
and module j in the architecture.

Some tools that create DSMs can automatically interchange
between class diagrams or box-and-line diagrams and DSMs.
DSM-based tools are more commonly used for architecture
management and enforcement for systems that are already
implemented—the DSM is obtained by reverse-engineering
the code. 

1.4.4 Entity-Relationship Diagram

An entity-relationship diagram (ERD) is a notation specifically
used for data modeling. It shows data entities that require a rep-
resentation in the system and their relationships. These rela-
tionships can be one-to-one, one-to-many, or many-to-many.

Stereotype is a UML 
extension mechanism 
that allows the definition 
of a new type of model-
ing element or relation 
based on an existing 
UML element or relation.

Try to become familiar 
with UML standard ste-
reotypes, as well as 
other stereotypes com-
monly used in your 
organization.

A dependency struc-
ture matrix is a table 
that shows modules as 
the row and column 
headers; a cell is non-
zero if and only if there 
is a dependency 
between the row’s mod-
ule and the column’s 
module.

Section 2.2.4 has exam-
ples and more informa-
tion about DSMs.

Section 2.6.4 has exam-
ples and more informa-
tion about ERDs.

Figure 1.4
Examples of UML elements 
and relations with 
stereotypes «subsystem»

Communication
«view»

AccountForm
«layer»

Presentation

«interface»
IAnimatable «model»

AccountEntity

«layer»
BusinessLogic

«allowed to use»
«sends event to»
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1.5 Relation to Other Views 
Module views are commonly mapped to component-and-con-
nector views. The implementation units shown in module
views have a mapping to components that execute at runtime.
Sometimes, the mapping is quite straightforward, even one-to-
one. More often, a single module will be replicated as part of
many runtime components and a given component could map
to several modules. 

Module views also provide the software elements that are
mapped to the diverse nonsoftware elements of the system
environment in the various allocation views.

A common problem is the overloading of module views with
information pertaining to other views. This can be quite useful
when done in a disciplined fashion but can also lead to confu-
sion. For example, showing a remote procedure call connec-
tion in a module view is implicitly introducing the “connector”
concept from a component-and-connector view. The module
views are often confused with views that demonstrate runtime
relations. A module view represents a static partitioning of the
software implementation units; therefore, multiple instances
of objects—data repositories and networks, for example—are
not shown in this view.

1.6 Summary Checklist
• Modules pertain to the way in which a system’s software is

decomposed into manageable units of responsibilities,
which is one of the important forms of system structure.

• Modules are related to one another by forms of is-part-of,
depends-on, and is-a relations.

• A module view provides a blueprint for the source code and
the data model.

• Expect to have at least one module view in your documenta-
tion package.

• You should not depend on a module name to define the
functional duties of the module: use the responsibility prop-
erty.

• Document module interface(s) to establish a module’s role
in the system.

• Module views are commonly mapped to component-and-
connector views. In general, a module may participate in
many runtime components.

Components are dis-
cussed at length in 
Section 3.2.

Allocation views are 
described in Chapter 5.
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1.7 Discussion Questions
1. What is it possible and not possible to say about data flow

by looking at a module view? What about control flow?
What can you say about which modules interact with which
other modules?

2. Which properties of a module might you think of as worthy
of having special notational conventions to express them,
and why? For example, you might want to color a commer-
cial-off-the-shelf module differently from modules devel-
oped in-house.

3. The depends-on relation among modules is very general.
What specific types of dependencies might be reflected in
a module view?

4. A primary property of a module is its set of responsibilities.
How do a module’s responsibilities differ from the require-
ments that it must satisfy?

5. When documenting a particular system, you might wish to
combine modules into an aggregate, to market them as a
combined package, for example. Would this package itself
be a module? That is, are all aggregates of modules them-
selves modules?

6. Would you show libraries or frameworks on which your sys-
tem depends as modules in your module views? 

1.8 For Further Reading
DeRemer and Kron (1976) describe programming-in-the-
small languages for writing modules and a “module intercon-
nection language” for knitting those modules together. Prieto-
Diaz and Neighbors (1986) present a survey of module inter-
connection languages that are specifically designed to support
module interconnection, and they include brief descriptions
of some software development systems that support module
interconnection.

The chapter on the Module Architecture View in the book
by Hofmeister, Nord, and Soni (2000) describes a view of a sys-
tem in terms of modules and layers and how to represent them
in UML.
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2A Tour of Some
Module Styles

In this chapter, we look at six important module styles:

• The decomposition style, used to show the structure of mod-
ules and submodules (that is, containment relations among
modules)

• The uses style, used to indicate functional dependency rela-
tions among modules

• The generalization style, used to indicate specialization rela-
tions among modules

• The layered style, used to describe the allowed-to-use relation in
a restricted fashion between groups of modules called layers

• The aspects style, used to describe particular modules called
aspects that are responsible for crosscutting concerns

• The data model style, used to show the relations among data
entities

2.1 Decomposition Style
2.1.1 Overview

By taking the elements and the properties of module views and
focusing on the is-part-of relation, we get the decomposition
style. A decomposition view describes the organization of the
code as modules and submodules and shows how system respon-
sibilities are partitioned across them. Almost all architects begin
with the decomposition style. Architects tend to attack a prob-
lem with divide-and-conquer techniques, and a decomposition
view records their campaign.
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The criteria used for decomposing a module into smaller
modules include:

• Achievement of certain quality attributes. For example, to support
modifiability, the information-hiding design principle calls
for encapsulating changeable aspects of a system in separate
modules, so that the impact of any one change is localized.

• Build-versus-buy decisions. Some modules may be bought in
the commercial marketplace, reused intact from a previous
project, or obtained as open-source software. These mod-
ules already have a set of responsibilities implemented. The
remaining responsibilities then must be decomposed around
those established modules.

• Product line implementation. To support the efficient implemen-
tation of products of a product family, it is essential to distin-
guish between common modules, used in every or most
products, and variable modules, which differ across products.

• Team allocation. To allow implementation of different respon-
sibilities in parallel, separate modules that can be allocated
to different teams should be defined. The skills of develop-
ers also influence the decomposition. For example, if spe-
cialized Web developers are available, modules that handle
the Web UI should be kept separate.

A useful design heuristic holds that a module is small
enough if it could be discarded and begun again if the pro-
grammer(s) assigned to implement it left the project.

A decomposition view may represent the first pass at a
detailed architecture design; the architect may subsequently
introduce other types of relations and module specializations.
The decomposition view defines the modules that may appear
in uses, layered, generalization, and other module-based views.

2.1.2 Elements, Relations, and Properties

Table 2.1 summarizes the characteristics of the decomposition
style. Elements of the decomposition style are modules, as
described in Section 1.2. Some modules that aggregate other
modules can be called subsystems. The principal relation, the
decomposition relation, is a form of the is-part-of relation and has
as its primary constraint the guarantee that an element can be
a part of at most one aggregate.

The module decomposition may define whether the sub-
modules are visible within only the aggregate module—the
parent—or also to other modules. The visibility of submodules
can be described in the view’s element catalog or conveyed
graphically, for example by showing interface lollipops inside
or outside the aggregate module, as in Figure 1.1.

See “Coming to Terms: 
Subsystem” on page 73, 
in this chapter.

The element catalog of 
an architecture view 
provides various informa-
tion about the elements 
in that view. Element 
catalogs are described 
in Section 10.1.
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2.1.3 What the Decomposition Style Is For

A decomposition view presents the responsibilities of a system
in intellectually manageable pieces that are refined to convey
more and more details. Therefore, this style is well suited to
support the learning process about a system. Besides the obvi-
ous benefit for the architect to support the design work, this
style is an excellent learning and navigation tool for newcom-
ers to the project and other people who do not necessarily have
the whole functional structure of the system memorized. The
grouping of responsibilities shown in this style also builds a
useful basis for defining configuration items within a configu-
ration management framework.

A decomposition view most often serves as the input for the
work assignment view of a system, which maps parts of a soft-
ware system onto the organizational units, or teams, that will
be implementing and testing them. A decomposition view also
provides some support for analyzing effects of changes, but
because this view does not show all the dependencies among
modules, you cannot expect to do a complete impact analysis.
Here, views that elaborate the dependency relations more
thoroughly, such as the uses style described later, are required.

2.1.4 Notations for the Decomposition Style

Informal Notations

In informal notations, modules in the decomposition style are
usually depicted as named boxes that contain other named
boxes. Decomposition may also be shown by listing the module
names and using indentation to indicate is part of, as in Figure
2.4 (in Section 2.1.6).

Table 2.1 Summary of the decomposition style

Overview The decomposition style is used for decomposing a system into units of 
implementation. A decomposition view describes the organization of the 
code as modules and submodules and shows how system responsibilities 
are partitioned across them.

Elements Module

Relations Decomposition relation, which is a form of the is-part-of relation. The doc-
umentation should specify the criteria used to define the decomposition.

Constraints • No loops are allowed in the decomposition graph.
• A module can have only one parent.

What It’s For • To reason about and communicate to newcomers the structure of soft-
ware in digestible chunks

• To provide input for work assignment
• To reason about localization of changes

Refinement is covered 
in Section 6.1.

The work assignment 
style is presented in 
Section 5.4.



ptg

68 ■ Chapter 2: A Tour of Some Module Styles

The nesting notation can use a thick border suggesting
opaqueness—and explained in the key—indicating that chil-
dren are not visible outside the parent. If a visual notation is not
available for indicating visibility, it can be defined textually, as is
done for other properties.

UML

In UML, the package construct can be used to represent mod-
ules that contain other modules. A package can contain classes
and other packages; the class box is normally used for the
leaves of the decomposition. 

In UML, decomposition is depicted in one of two ways:

1. Modules may be nested, as in Figure 2.1. 

2. A succession of two diagrams can be shown, with the sec-
ond a depiction of the contents of a module shown in the
first. Figures 2.2 and 2.3 (in Section 2.1.6) illustrate this
approach.

Other properties, such as the modules’ responsibilities, are
given textually, perhaps using an annotation. Stereotypes can
provide additional information for the type of the module. 

2.1.5 Relation to Other Styles

It is possible, and often desirable, to map between a decompo-
sition view and one or more component-and-connector views.
For now, it is sufficient to say that the point of providing such
a mapping is to indicate how the software implementation
structures map onto runtime structures: generally, a many-to-
many relationship. The same module might implement all or
parts of several components or connectors. Conversely, one com-
ponent might require several modules for its implementation.

Section 3.5 also dis-
cusses the mapping 
between modules and 
components. Document-
ing the mapping is 
described in Section 
10.2.

Figure 2.1
In UML, module 
decomposition is shown by 
nesting, with the aggregate 
module shown as a 
package.

A

B C

D E
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The decomposition style is closely related to the work assign-
ment style, a kind of allocation style. The work assignment style
maps modules resulting from a decomposition to a set of teams
responsible for implementing and testing those modules.

2.1.6 Examples Using the Decomposition Style

Adventure Builder

The example software architecture document that accompanies
this book online contains an example of a decomposition view
for the Adventure Builder (2010) system. See wiki.sei.cmu.edu/sad.

The ATIA-M System

Army Training Information Architecture-Migrated (ATIA-M)
is a large Web-based, Java EE application that supports training
in the U.S. Army. It has “thick clients”: Windows desktop appli-
cations developed using .NET (C#) that communicate with the
server-side Java EE components using Web services technology.

Figure 2.2 shows the top-level module decomposition for the
entire ATIA-M system, itself a module. The code is divided into
three large modules: 

• Windowsapps contains the code of the thick clients. The
three submodules correspond to Training and Doctrine
Development Tool (TDDT), Unit Training Management
Configuration (UTMC), and a separate submodule with
common code used by the different Windows applications.
TDDT and UTMC were the two Windows applications orig-
inally planned, but others could be added. 

• ATIA server-side Web modules contains all non-Java modules
that would be deployed to server machines. The Web mod-
ules include JavaServer Pages (JSP) files, JavaScript and
HTML code, and applets.

• ATIA server-side Java modules contains all Java source code in
ATIA that would run on application servers. This module
does not include JSP, JavaScript, HTML, applet, or thick-
client code.

The decomposition of Windowsapps into three submodules
is shown in Figure 2.2. The decomposition of ATIA server-side
Java modules, on the other hand, was captured in another
module view diagram, shown in Figure 2.3. 

The work assignment 
style is described in 
Section 5.4.

Figure 2.2 is the first of 
many examples of 
architecture documen-
tation fragments from 
real systems. When 
examining these exam-
ples, keep in mind the 
considerations stated in 
Section I.5, in the intro-
duction to Part I. The 
descriptions of the 
elements we provide 
cannot be derived from 
the figures; rather, they 
rely on additional docu-
mentation that would 
accompany the dia-
grams in an architecture 
document.
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Figure 2.3
Refinement of ATIA-M 
server-side Java modules 
showing how it is further 
decomposed into 
submodules
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Notation: UML

Figure 2.2
Top-level decomposition 
view for the ATIA systemATIA-M

Windowsapps

Common code 
for thick clients

TDDT
Windows app

UTMC
Windows app

ATIA server-
side Web
modules

ATIA server-
side Java
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Notation: UML
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A-7E Avionics System

An example of the decomposition style comes from the A-7E
avionics software system described in Chapter 3 of the book by
Bass, Clements, and Kazman (2003). Figure 2.4 shows the pri-
mary presentation part of the view. The figure names the ele-
ments and shows the is-part-of relation among them for the A-7E
system. The decomposition relation is conveyed by indentation. 

In this example, the criterion for decomposition is the infor-
mation-hiding principle, which holds that there should be a
module to encapsulate responsibilities likely to change together.
A module’s responsibilities, then, are described in terms of the
information-hiding secrets it encapsulates.

This diagram shows that in A-7E, the first-order decomposi-
tion produced three modules: Hardware Hiding, Behavior
Hiding, and Software Decision Hiding. Each of these modules
is decomposed into two to six submodules, which are in turn
decomposed, and so forth, until the granularity is fine enough
to be manageable.

The A-7E decomposition view documentation describes the
responsibilities of the three highest-level modules in the ele-
ment catalog as follows:

• Hardware Hiding Module: The Hardware Hiding Module
includes the procedures that need to be changed if any part
of the hardware is replaced by a new unit with a different
hardware/software interface but with the same general
capabilities. This module implements “virtual hardware” or
an abstract device that is used by the rest of the software.
The primary secrets of this module are the hardware/soft-
ware interfaces. The secondary secrets of this module are
the data structures and algorithms used to implement the
virtual hardware.

• Behavior Hiding Module: The Behavior Hiding Module
includes procedures that need to be changed if there are
changes in requirements affecting the required behavior.
Those requirements are the primary secret of this module.
These procedures determine the values to be sent to the vir-
tual output devices provided by the Hardware Hiding Module.

• Software Decision Hiding Module: The Software Decision Hid-
ing Module hides software design decisions that are based
upon mathematical theorems, physical facts, and program-
ming considerations such as algorithmic efficiency and
accuracy. The secrets of this module are not described in
the requirements document. This module differs from the
other modules in that both the secrets and the interfaces
are determined by software designers. Changes in these

The primary presenta-
tion is the (typically) 
graphical portion of an 
architecture view, as 
described in Chapter 10.
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Hardware Hiding Module
      Extended Computer Module

Data Module
Input/Output Module
Computer State Module
Parallelism Control Module
Program Module
Virtual Memory Module
Interrupt Handler Module
Timer Module

      Device Interface Module
Air Data Computer Module
Angle of Attack Sensor Module
Audible Signal Device Module
Computer Fail Device Module
Doppler Radar Set Module
Flight Information Displays Module
Forward Looking Radar Module
Head-Up Display Module
Inertial Measurement Set Module
Input-Output Representation Module
Master Function Switch Module
Panel Module
Projected Map Display Set Module
Radar Altimeter Module
Shipboard Inertial Nav System Module
Slew Control Module
Switch Bank Module
TACAN Module
Visual Indicators Module
Waypoint Info. System Module
Weapon Characteristics Module
Weapon Release System Module
Weight on Gear Module

Behavior Hiding Module
      Function Driver Module

Air Data Computer Module
Audible Signal Module
Computer Fail Signal Module
Doppler Radar Module
Flight Information Display Module
Forward Looking Radar Module
Head-Up Display Module
Inertial Measurement Set Module
Panel Module
Projected Map Display Set Module
Shipboard Inertial Nav System Module
Visual Indicator Module
Weapon Release Module
Ground Test Module
Shared Services Module

      Mode Determination Module
Panel I/O Support Module
Shared Subroutine Module
Stage Director Module
System Value Module

Software Decision Hiding Module
      Application Data Type Module

Numeric Data Type Module
State Transition Event Module

      Data Banker Module
Singular Values Module
Complex Event Module
Filter Behavior Module

      Physical Models Module
Aircraft Motion Module
Earth Characteristics Module
Human Factors Module
Target Behavior Module
Weapon Behavior Module

      Software Utility Module
Power-Up Initialization Module
Numerical Algorithms Module

      System Generation Module
System Generation Parameter Module
Support Software Module

Figure 2.4
The decomposition of the A-7E software architecture results in three top-level modules (Hardware Hiding, Behavior 
Hiding, and Software Decision Hiding) and is-part-of relations (Bass, Clements, and Kazman 2003, p. 59). In this 
presentation, is part of is indicated by textual indentation.
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modules are more likely to be motivated by a desire to
improve performance or accuracy than by externally imposed
changes.

The A-7E decomposition view documentation then goes on to
describe the second-level modules. 

In the case of the A-7E architecture, the second-level module
structure was enshrined in many ways: Design documentation,
configuration-controlled files, test plans, programming teams,
review procedures, and project schedule and milestones all
were pegged to this second-level module structure as their unit
of reference. 

COMING TO TERMS

Subsystem

When documenting a module view of a system, you may choose to identify cer-
tain aggregated modules as subsystems. A subsystem can be pretty much any-
thing you want it to be, but it often describes a part of a system that (1) carries
out a functionally cohesive subset of the overall system’s mission, (2) can be
executed independently, and (3) can be developed and deployed incrementally.
The software system of a Mars exploratory robot, for example, may be divided
into subsystems responsible for:

• Communication

• Motion

• Power management

• Navigation

• Monitoring its own health and status

Not just any portion of a system is a subsystem. In our exploratory robot exam-
ple, a math utility library is certainly a portion of a system and an aggregation of
modules and even has coherent functionality. But the library is unlikely to be
called a subsystem, because it lacks the ability to operate independently to do
work that’s recognizably part of the overall system’s purpose.

Subsystems do not partition a system into completely separate parts, because
some parts are used in more than one subsystem. For example, suppose that
the exploratory robot system has the layered design shown in Figure 2.5. In this
case, a subsystem consists of one segment from the top layer, as well as any
segments of any lower layers that it needs in order to carry out its responsibilities.
A subset of the system formed in this way is often called a slice, or a vertical slice.

The “more or less independent” nature of a subsystem makes it ideal for dividing
up a project’s work. You may, for example, ask an analyst to examine the perfor-
mance of a subsystem. A subsystem can often be fielded and accomplish useful

If you use a module 
decomposition struc-
ture to organize your 
project, you will find it 
useful to focus on a 
specific level of the hier-
archy as your organizing 
motif, chosen based on 
a manageable granularity.
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work before the whole system is complete. A subsystem makes a convenient
package to hand off to a team or a subcontractor to implement. The fact that it
executes more or less independently allows that team to work more or less
independently even through testing. 

In the UML world, <<subsystem>> is a stereotype of component. It represents
a large-scale component that embodies other components. According to the
UML 2.2 specification, a subsystem is:

A unit of hierarchical decomposition for large systems. A subsystem is commonly
instantiated indirectly. Definitions of subsystems vary widely among domains and
methods, and it is expected that domain and method profiles will specialize this
construct.

In previous versions of UML, <<subsystem>> was a stereotype of package
and still today it is common to find packages with that stereotype in UML dia-
grams. Regardless of the notation used, a subsystem can represent a group of
modules (implementation units) or a group of components with runtime
presence. 

You may decide to identify subsystems in your design. If you do, make sure that
your rationale explains why you chose the ones you did.

2.2 Uses Style
2.2.1 Overview

The uses style results when the depends-on relation is specialized
to uses. A module uses another module if its correctness
depends on the correctness of the other. Whereas the module
decomposition style shows only the organization of the imple-

Figure 2.5
Layered design of a hypothetical exploratory robot system

Navigation Motion
Power

management Communication

utility libraries

interprocess communication

device drivers

Monitoring

Uses is a form of depen-
dency that can exist 
between two modules. 
A uses B if the correct-
ness of A depends on 
the presence of a correct 
implementation of B.
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mentation units as modules and submodules, a uses style goes
one step further to reveal which modules use which other mod-
ules. This style tells developers what other modules must exist
for their portion of the system to work correctly. This style
enables incremental development and the deployment of use-
ful subsets of full systems.

2.2.2 Elements, Relations, and Properties

Table 2.2 summarizes the characteristics of the uses style. The
elements of this style are the modules as described in Section 1.2.
We define a specialization of the depends-on relation to be the
uses relation, whereby one module requires the correct imple-
mentation of another module for its own correct functioning.
This view makes explicit which modules use which other mod-
ules to achieve their responsibilities.

2.2.3 What the Uses Style Is For

This style is useful for planning incremental development, sys-
tem extensions and subsets, debugging and testing, and gaug-
ing the effects of specific changes. Figure 2.6 shows the
primary presentation of a uses view and how it can help with
incremental development. To define incremental subsets,
modules should be defined at the right level of granularity. In
the example, admin.core may not need the entire dao package,
only a submodule of it; the diagram should then show the sub-
modules of dao.

Table 2.2 Summary of the uses style

Overview The uses style shows how modules depend on each other; it is helpful for plan-
ning because it helps define subsets and increments of the system being 
developed.

Elements Module

Relations The uses relation, which is a form of the depends-on relation. Module A uses
module B if A depends on the presence of a correctly functioning B to satisfy 
its own requirements.

Constraints The uses style has no topological constraints. However, if uses relations 
present loops, broad fan-out, or long dependency chains, the ability of the 
architecture to be delivered in incremental subsets will be impaired.

What It’s For • Planning incremental development and subsets
• Debugging and testing
• Gauging the effect of changes
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The uses view also helps in managing the dependencies of a
system that is being built or maintained. The goal of this task is
to keep complexity under control and avoid degradation in
the modifiability of the system due to the addition of undesir-
able dependencies. 

2.2.4 Notations for the Uses Style

Informal Notations

The uses relation can be documented as a two-column table,
with using elements on the left and the elements they use listed on
the right. Alternatively, informal graphical notations can show
the relation by using the standard box-and-line diagram with a
key. For defining subsets, a tabular—that is, nongraphical—
notation is sometimes a better alternative. It is easier to look up
the detailed relations in a table than to find them in a diagram,
which can rapidly grow too cluttered to be helpful unless the
diagram is partitioned using decomposition refinement.

Semiformal Notations

UML
The uses style is easily represented in UML. UML packages can
be used to represent modules; the uses relation is depicted as a
dependency with the stereotype <<use>>. In Figure 2.7(a), the
User Interface module has a uses dependency on the Data
Access module. 

See “Coming to Terms: 
Uses” on page 81, in 
this chapter, for more 
about loops in the uses
relation.

Decomposition refine-
ment is discussed in 
Section 6.1.

Figure 2.6
In this uses view, suppose 
the incremental 
development plan called for 
module admin.client in the 
next release. Based on the 
uses relation, the diagram 
highlights what other 
modules need to be 
present: admin.core, dao, 
and util. 

static
Web
artifacts

Notation: UML
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Dependency Structure Matrix
The uses relation can be documented as a square matrix, with
the modules listed as rows and columns. A mark in the i th col-
umn and j th row indicates that module i uses module j. This
simple representation has evolved and been used in auto-
mated tools to create dependency structure matrices (DSMs).

A diagram like the UML package diagram in Figure 2.8 can
be seen as a directed graph; the packages are the vertices and
the dependencies are the edges. A DSM is the matrix represen-
tation of a directed graph. The cell corresponding to column i
and row j is nonzero if there is an edge from vertex i to vertex
j in the graph (that is, module i uses module j). Figure 2.9
shows the DSM for the UML diagram in Figure 2.8. 

DSMs need a key too! In 
the key, say whether a 
value in row i and col-
umn j means that mod-
ule i depends on 
module j or module j
depends on module i.
Both alternatives are 
possible.

Figure 2.7
(a) The User Interface mod-
ule is an aggregate module 
with a uses dependency on 
the Data Access module. 
We use UML package nota-
tion to represent modules 
and the specialized form of 
depends-on arrow to indi-
cate a uses relation. 

(b) Here is a variation of Fig-
ure 2.7(a) in which the User 
Interface module has been 
decomposed into modules 
A, B, and C. At least one of 
the modules must depend 
on the Data Access module 
or the decomposition 
would not be consistent.

(c) In UML we can represent 
the uses relations and also 
show interfaces explicitly. 
This version shows that the 
Data Access module has 
two interfaces, which are 
used by modules B and C, 
respectively. Both the 
socket lollipop connection 
and the <<use>> depen-
dency connected to the lol-
lipop indicate uses
relations. 

A B

C

A B

C

(b)

(c)

(a)
«use» Data

Access
User

Interface

User Interface

User Interface

Notation: UML

Notation: UML

Notation: UML

Data
Access

Data
Access

«use»

«use»

data queries

admin

«use»
«use»

«use»
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Figure 2.8
UML package diagram 
showing <<uses>> 
dependencies client

god

ejb

cc restart

commonvo

Notation: UML

«use»

«use»

«use»

«use» «use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 2.9
DSM for the UML diagram 
in Figure 2.8
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2.2.5 Relation to Other Styles

The uses style also goes hand in hand with the layered style,
with its allowed-to-use relation. An allowed-to-use relation usually
comes first and contains coarse-grained directives defining the
degrees of freedom for implementers. Once implementation
choices have been made, the uses view emerges and governs
the production of incremental subsets.

When a module contains submodules, the decomposition
requires that any uses relation involving the aggregate module
be mapped to a submodule using that relation. In Figure 2.7(b),
the User Interface module is decomposed into modules A, B,
and C. At least one of the modules must depend on the Data
Access module; otherwise, the decomposition is not consistent.

A uses view can also show interfaces explicitly. In Figure
2.7(c), the Data Access module has two interfaces, which are
used by modules B and C, respectively.

2.2.6 Examples Showing the Uses Style

Adventure Builder

The example software architecture document accompanying
this book online contains an example of a uses view for the
Adventure Builder (2010) system. See wiki.sei.cmu.edu/sad.

The ATIA-M System

Figure 2.10 shows the diagram from a top-level uses view for
the ATIA-M system (it also shows decomposition). In the archi-
tecture documentation, it could have superseded the decom-
position view (see Figure 2.2) for the same system.

ECS

EOSDIS Core System (ECS) is a NASA system. A constellation
of satellites collect measurements about Earth and send the
data to ground stations. ECS controls spacecraft and instru-
ments, processes data, and produces refined data that are
stored in several distributed data centers and made available to
scientists around the world. Figure 2.11 is a small excerpt of a
uses view’s primary presentation from the ECS system. The
notation is textual, using the tabular format mentioned earlier.
Like most primary presentations, this one names only the ele-
ments; they are defined in the view’s supporting documenta-
tion (not shown here).

Chapter 7 has more 
information about 
interfaces.
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Element Uses This Element
Science Data Processing Segment

Ingest Subsystem
INGST CSCI ADSRV CSCI in the Interoperability Subsystem

STMGT CSCI in the Data Server Subsystem
SDSRV CSCI in the Data Server Subsystem
DCCI CSCI in the Communications Subsystem

(Continue for other CSCIs within the Ingest Subsystem)
Data Server Subsystem

DDIST CSCI MCI CSCI in the System Management Subsystem
DCCI CSCI in the Communications Subsystem
STMGT CSCI in the Data Server Subsystem
INGST CSCI in the Ingest Subsystem

(Continue for other CSCIs within the Data Server Subsystem)
(Continue for other subsystems within the Science Data Processing Segment)

(Continue for other ECS segments)

Figure 2.11
Excerpt of the ECS system uses view, documented as a table. The left column mirrors the system’s module 
decomposition structure.

Figure 2.10
Top-level uses view for the 
ATIA-M system

Notation: UML

ATIA-M

Windows apps

Common code
for thick clients

TDDC
Windows app

ATIA server-
side Web
modules

ATIA server-
side Java
modules

UTMC
Windows app

«uses»

«uses» «uses»

«uses»

«uses»
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COMING TO TERMS

Uses

Two of the module styles that we present in this book—the uses style and the
layered style—are based on one of the most underutilized relations in software
engineering: uses. The uses relation is a form of the depends-on relation. A unit
of software P1 is said to use another unit P2 if P1’s correctness depends on a
correct implementation of P2 being present.

The uses relation resembles, but is decidedly not, the simple calls relation pro-
vided by most programming languages. Here’s why.

• A program P1 can use program P2 without calling it. P1 may assume, for
example, that P2 has left a shared device in a usable state when it finished
with it. Or P1 may expect P2 to leave a computed result that it needs in a
shared variable. Or P1 may be a process that sleeps until P2 signals an event
to awaken it.

• A program P1 might call program P2 but not use it. If P2 is an exception han-
dler that was passed as a parameter1 for P1 to call when it detects an error,
P1 will usually not care what P2 does. P1 does not use P2 because its own
correctness does not depend on P2.

So uses is not calls or invokes. Likewise, uses is different from other depends-
on relations, such as includes, which deals with compilation dependencies but
need not influence runtime correctness. 

Because the uses relation takes many forms, a uses view usually cannot be
automatically derived from other architecture views nor extracted from source
code. To enjoy its benefits, the architect must engineer the relations and docu-
ment the uses view explicitly.

The careful engineering of the uses relation imparts a powerful capability to a
development team: It enables the building of small subsets of a total system.
Early in the project, this allows incremental development, a development para-
digm that allows early prototyping, early integration, and early testing. At every
step along the way, the system carries out part of its total functionality, even if
far from everything, and does it correctly. Fred Brooks (1995) writes about the
“electrifying effect” on team morale when the system first succeeds at doing
something. Absent incremental development, nothing works until everything
works, and we are reduced to the waterfall model of development. Subsets of
the total system are also useful beyond development. They provide a safe fall-
back in the event of slipped schedules: It is much better for the project manager
to offer the customer a working subset of the system at delivery time rather than
apologies and promises.

1. Or perhaps it calls a program whose name was bound by a parameter at system-generation time or a pro-
gram whose name it looks up via a name server. Many schemes are possible.
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Here’s how it works. Choose a program that is to be in a subset; call it P1. In
order for P1 to work correctly in this subset, correct implementations of the pro-
grams it uses must also be present. So include them in the subset. For them to
work correctly, their used programs must also be present, and so forth. The sub-
set consists of the transitive closure of P1’s uses.2 Conceptually, you pluck P1
out from the uses graph and then see what programs come dangling beneath
it. There’s your subset.

Loops in the relation—that is, for example, where P1 uses P2, P2 uses P3, and
P3 uses P1—are the enemy of simple subsets. A large uses loop necessitates
bringing in a large number of programs—every member of the loop—into any
subset joined by any member. “Bringing in a program” means, of course, that it
must be implemented, debugged, integrated, and tested. But the point of incre-
mental development is that you’d like to bring in a small number of programs to
each new increment, and you’d like to be able to choose which ones you bring
in and not have them choose themselves. Generally speaking, any long list of
used programs (caused by long dependency chains or broad fan-out in the rela-
tion) detracts from the ability to field small increments. They also decrease mod-
ifiability, because a change to a module could very well ripple into modules that
it uses.

Besides managing subsets, the uses relation is also a helpful tool for debugging
and integration testing. If you discover a program that’s producing incorrect
results, the problem is going to be either in the program itself or in the programs
that it uses. The uses relation lets you instantly narrow the list of suspects. In a
similar way, you can employ the relation to help you gauge the effects of pro-
posed changes. If a program’s external behavior changes as the result of a
planned modification, you can backtrack through the uses relation to see what
other programs may be affected by that modification.

2.3 Generalization Style
2.3.1 Overview

The generalization style results when the is-a relation is employed.
This style is useful when an architect wants to support exten-
sion and evolution of architectures and individual elements.
Modules in this style are defined in such a way that they cap-
ture commonalities and variations. When modules have a gen-
eralization relationship, the parent module is a more general
version of the child modules. (The parent module owns the
commonalities, and the variations are manifested in the chil-
dren.) Extensions can be made by adding, removing, or chang-

2.  Of course, calls and other depends-on relations must be given their due. If a program in the subset calls,
includes, or inherits from another program but doesn’t use it, the compiler is still going to expect that
program to be present. But if it isn’t used, there need not be a correct implementation of it: a simple stub,
possibly returning a pro forma result, will do just fine.

Even though this style 
shares the terms parent
and child with the 
decomposition style, 
they are used differently. 
In decomposition, a 
parent consists of its 
children. In generaliza-
tion, parents and chil-
dren have things in 
common.
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ing children; a change to the parent will automatically change
all the children that inherit from it, which could support evo-
lution if the change is appropriate for all the children.

Generalization may represent inheritance of either inter-
face, implementation, or both. Within an architecture descrip-
tion, the emphasis is on sharing and reusing interfaces and not
so much on implementations.

2.3.2 Elements, Relations, and Properties

Table 2.3 summarizes the characteristics of the generalization
style. The element of the generalization style is the module;
the relation is generalization, which is the is-a relation defined
in Section 1.2. In this relation, one module is a generalization
(parent) of other modules (children), and these other mod-
ules are specializations of the first.

A module can be abstract. Such a module does not contain
a complete implementation. Modules that are children of an
abstract module need to provide the necessary implementa-
tions or else they should be abstract as well. 

A module that inherits information is referred to as a descen-
dant; the module providing the information is an ancestor.
Cycles are not allowed. That is, a module cannot be an ances-
tor or a descendant of itself.

The fact that module A inherits from module B using interface
realization is a promise that module A complies to interface B.
This strategy is useful when variants of a module with different

Table 2.3 Summary of the generalization style

Overview The generalization style employs the is-a relation to support extension and 
evolution of architectures and individual elements. Modules in this style are 
defined in such a way that they capture commonalities and variations.

Elements Module. A module can have the “abstract” property to indicate it does not 
contain a complete implementation. 

Relations Generalization, which is a specialization of the is-a relation. The relation can 
be further specialized to indicate, for example, if it is class inheritance, 
interface inheritance, or interface realization. 

Constraints • A module can have multiple parents, although multiple inheritance is often 
considered a dangerous design approach.

• Cycles in the generalization relation are not allowed; that is, a child module 
cannot be a generalization of one or more of its ancestor modules in a view.

What It’s For • Expressing inheritance in object-oriented designs
• Incrementally describing evolution and extension
• Capturing commonalities, with variations as children
• Supporting reuse
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implementations are needed and one implementation of the
module can substitute for another implementation with little
or no effect on other modules. In object-oriented designs, class
inheritance indicates that a module inherits behavior from its
ancestors and may modify it to achieve its specialized behavior.
Interface inheritance is also possible when we want a child inter-
face that adds operations to the list of operations defined by
the parent interface. 

2.3.3 What the Generalization Style Is For 

The generalization style can be used to support

• Object-oriented designs. The generalization style is the pre-
dominant means for expressing an inheritance-based,
object-oriented design for a system.

• Extension. It is often easier to understand how one module
differs from another, well-known module rather than to try
to understand a new module from scratch. Thus, generali-
zation is a mechanism for producing incremental descrip-
tions to form a full description of a module.

• Local change or variation. One purpose of architecture is to
provide a stable global structure that accommodates local
change or variation. Generalization is one approach to
define commonalities on a higher level and to define varia-
tions as children of a module.

• Reuse. Finding reusable modules is a by-product of the other
purposes. Suitable abstractions can be reused at the inter-
face level alone, or the implementation can be included as
well. The definition of abstract modules creates an opportu-
nity for reuse.

2.3.4 Notations for the Generalization Style

UML

Expressing generalization lies at the heart of UML. Modules
are typically shown as classes or interfaces. Figure 2.12 shows the
basic notation available in UML for class or interface inheritance.
Figure 2.13 shows how UML expresses interface realization.

2.3.5 Relation to Other Styles

Inheritance and interface realization relationships comple-
ment other module relations and are often found in module
views along with uses relations and package decompositions.
But for designs that involve a complex hierarchy of modules, it
is useful to show inheritance relationships in a diagram sepa-
rate from other types of relationships.

Chapter 7 discusses how 
to document interfaces. 
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2.3.6 Examples Using the Generalization Style

ArchE

Figure 2.14 shows part of a generalization view from the SEI
Architecture Expert (ArchE) tool. This tool allows an architect
to create the architecture design for a system based on quality
attribute requirements, feature requirements, and preexisting
pieces of design. Internally, ArchE uses a rule engine that
manipulates data elements called facts. Various operations are
performed on any Fact object; other operations are specific to
the subclasses of Fact.

PetStore

Figure 2.15 shows part of the generalization view of the Pet-
Store application. This is a multi-tier, Web-based application

Figure 2.12
In UML, class or interface 
inheritance is represented 
by a solid line with a closed, 
hollow arrowhead. UML 
allows an ellipsis (. . .) in 
place of a submodule, 
indicating that a module 
can have more children 
than shown and that 
additional ones are likely. 
Module Shape is the parent 
of modules Polygon, Circle, 
and Spline, each of which is 
in turn a subclass, child, or 
descendant of Shape. 
Shape is more general; its 
children are specialized 
versions. The arrow points 
toward the more general 
entity.

. . .

Shape

Polygon Circle Spline

Notation: UML

Figure 2.13
Interface realization 
(sometimes called interface 
implementation) is also a 
kind of generalization. It 
can be expressed in UML in 
two ways: (1) a dashed line 
with a closed hollow 
arrowhead going from the 
module to the interface it 
realizes; (2) a lollipop 
symbol for the interface 
connected to the module 
that implements it. Thus the 
two notations in the figure 
are equivalent. However, 
the one on the left is more 
convenient when multiple 
modules realize the same 
interface.

«interface»
Printable

Order
Confirmation

Order
Confirmation

Printable

Notation: UML
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Figure 2.14
The primary presentation 
for ArchE’s generalization 
view. This system uses 
internally a rule engine, and 
many operations are 
defined on a class called 
Fact. In addition, specific 
functionality exists to deal 
with different kinds of facts 
and hence the generaliza-
tion in this figure. The 
classes shown here also 
appear in other diagrams, 
which show the attributes 
and operations available in 
each class, as well as uses
relations among these and 
other modules that are part 
of the system.

java.util.Observable

ScenarioVO

FunctionVO

ScenarioRespVO

FunctionRespVO RelationshipVO

ParameterVO

QuestionToUserVO

ResponsibilityVO

Notation: UML

Fact

id : int
type : String

Figure 2.15
Part of the primary 
presentation of the 
generalization view for the 
PetStore application. It 
shows a hierarchy of 
classes that represent 
events in the system, and 
an interface realization. The 
package on the right is part 
of a Web application 
framework (waf), which 
offers an event-handling 
service. An application 
such as PetStore has to 
define the application-
specific events. The events 
are used for the interaction 
of other modules in the 
system (not shown) 
following the model-view-
controller pattern. 

Notation: UML

waf::event

EventSupport

«interface»
EventResponse

Order
EventResponse

OrderEvent

CreateUserEvent

CustomerEvent

SignOnEvent

CartEvent

petstore::
controller::events
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that implements an online pet store. The generalization view
shows several important hierarchies in the system (Figure 2.15
shows a subset of them).

2.4 Layered Style
2.4.1 Overview

The layered style, like all module styles, reflects a division of
the software into units. In this case, the units are layers. Each
layer represents a grouping of modules that offers a cohesive
set of services. There are constraints on the allowed-to-use rela-
tionship among the layers: the relations must be unidirec-
tional. The layered view of architecture, shown with a layer
diagram, is one of the most commonly used views in software
architecture. However, it often is poorly defined, and so often
misunderstood. Because true layered systems promote modifi-
ability and portability, architects have an incentive to show
their systems as layered, even if they are not.

Layers completely partition a set of software, and each parti-
tion—through a public interface—provides a cohesive set of
services. But that’s not all. Figure 2.16, which is intentionally
vague about what the units are and how they interact, shows
three divisions of software—you’ll have to take our word that
each division provides a cohesive set of services—but none of
them constitutes a layering. What’s missing?

Layering has one more fundamental property: The layers
are created to interact according to a strict ordering relation.
Herein lies the conceptual heart of layers. If (A, B) is in this
relation, we say that the implementation of layer A is allowed
to use any of the public facilities provided by layer B.

By uses, we mean the very specific term defined in Section
2.2 for the uses style, but the definition has some loopholes. If
A is implemented using the facilities in B, is it implemented
using only B? Maybe or maybe not. For example, assume that
layers are depicted horizontally, one on top of the other. Some
layering schemes allow a layer to use the public facilities of any
lower layer, not just the nearest lower layer. Other layering

A layer is a grouping of 
modules that together 
offer a cohesive set of 
services to other layers. 
The layers are related to 
each other by the 
strictly ordered relation 
allowed to use.

Element A uses ele-
ment B if A’s correct-
ness depends on a 
correct implementation 
of B being present.

Figure 2.16
Three different divisions of 
software. Is any of them 
layered?
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schemes have so-called layers that are collections of utilities
and can be used by any layer. But no architecture that can be validly
called layered allows a layer to use, without restriction, the facilities of
a higher layer. Allowing unrestricted upward usage destroys the
desirable properties that layering brings to an architecture;
this will be discussed shortly. Usage in layers generally flows
downward. A small number of well-defined special cases may
be permitted, but these should be few and regarded as excep-
tions to the rule. Hence, the architecture in Figure 2.17 resem-
bles a layering but is not.

Figure 2.17 shows why layers have been a source of ambiguity
for so long: architects have been calling such diagrams layered
when they are not. There is more to layers than the ability to
draw separate parts on top of each other.

In some cases, modules in a very high layer might be
required to directly use modules in a very low layer where nor-
mally only next-lower-layer uses are allowed. The layer diagram
or an accompanying document will have to show these excep-
tions. The case of software in a higher layer using modules in
a lower layer that is not just the next lower layer is called layer
bridging. If many of these are present, the system is poorly struc-
tured, at least with respect to the portability and modifiability
goals that layering helps to achieve. Systems with upward usages
are not, strictly according to the definition, layered. However,
in such cases, the layered style may represent a close approxi-
mation to reality and also conveys the ideal design that the
architect was trying to achieve.

Layers cannot be derived by examining source code. Layers
are logical groupings that are wonderful aids in creating and
communicating the architecture, but often they are not explic-
itly delimited in the source code. The source code may disclose
what uses what, but the relation in layers is allowed to use.

Remember that a sys-
tem with a uses relation 
from a lower layer to a 
higher layer is not a lay-
ered system, strictly 
speaking.

Figure 2.17
There may be three layers 
here, but this is not a design 
in the layered style, which 
forbids upward uses.

A

B

C

Key

Layer

Allowed to use
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Some of the criteria used in defining the layers of a system
are an expectation that they will evolve independently on dif-
ferent time scales, that different people with different sets of
skills will work on different layers, and that different levels of
reuse are expected of the different layers.

2.4.2 Elements, Relations, and Properties

Table 2.4 summarizes the characteristics of the layered style.
The elements of a layered view are layers. A layer is a cohesive

collection of modules, each of which may be invoked or
accessed. The modules in a layer can be anything: from mod-
ules that implement Web services to assembly-language sub-
routines to shared data. A requirement is that the modules
have an interface by which their services can be triggered or
accessed.

The relation among layers is allowed to use. For two layers hav-
ing this relation, any module in the first is allowed to use any
module in the second. Module A is said to use module B if A’s
correctness depends on B being correct and present.

Layers have the following properties, which should be docu-
mented in the element catalog accompanying the layer diagram.

• Contents. The description of a layer should provide guide-
lines to what modules should be in a layer and how to imple-
ment them. It can also explicitly list the software modules

Element catalogs are 
described in Section 
10.1.

Table 2.4 Summary of the layered style

Overview The layered style puts together layers (groupings of modules that offer a 
cohesive set of services) in a unidirectional allowed-to-use relation with each 
other. 

Elements Layer. The description of a layer should define what modules the layer 
contains.

Relations Allowed to use, which is a specialization of the generic depends-on rela-
tion. The design should define the layer usage rules (for example, “A layer 
is allowed to use any lower layer.”) and any allowable exceptions. 

Constraints • Every piece of software is allocated to exactly one layer.
• There are at least two layers (typically three or more).
• The allowed-to-use relations should not be circular (that is, a lower layer 

cannot use a layer above).

What It’s For • Promoting modifiability and portability
• Managing complexity and facilitating the communication of the code struc-

ture to developers
• Promoting reuse
• Achieving separation of concerns
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contained by each layer. Each module should be assigned to
exactly one layer. Layers typically have labels that are descrip-
tive but vague, such as “network communications layer” or
“business rules layer”; a description is needed that identifies
the complete contents of every layer. 

• The software a layer is allowed to use. Is a layer allowed to use
only the layer below, any lower layer, or some other? If a
layer is segmented horizontally, are modules in a segment
permitted to use modules in another segment of the same
layer? This part of the documentation must also explain
exceptions, if any, to the usage rules implied by the geometry.

You should document the rationale for the choice of layer
partitioning. Explain how each layer provides a cohesive set of
responsibilities. This description helps to assign future mod-
ules to one layer or the other. 

Suppose that module P1 is allowed to use module P2. Should
P2 be in a lower layer than P1, or should they be in the same
layer? Layers are not a function of just who uses what, but are
the result of a conscious design decision that allocates modules
to layers, based on such considerations as cohesion and the
nature of likely changes. In general, P1 and P2 should be in the
same layer if they are likely to be ported to a new application
together or if together they provide different aspects of the
same virtual machine to a usage community.

The preceding is an operational definition of cohesion. The
cohesion explanation can also serve as a portability guide,
describing the changes that can be made to each layer without
affecting other layers.

2.4.3 What the Layered Style Is For

Layers help to bring quality attributes of modifiability and
portability to a software system. A layer is an application of the
principle of information hiding. The theory is that a change to
a lower layer can be hidden behind its interface and will not
impact the layers above it. As with all such theories, both truth
and caveats are associated with it. The truth is that this tech-
nique has been used with great success to support portability.
Machine, operating system, or other platform dependencies
are hidden within a layer; as long as the interface for the layer
does not change, technology-specific or product-specific parts
can be exchanged, and the upper levels that depend only on
the interface will work successfully.

The caveat is that interface means more than just the applica-
tion programming interface (API) containing program signa-
tures. An interface embodies all the assumptions that an

Section 2.4.4 has more 
information about seg-
mented layers.

See also “Perspectives: 
Calling Higher Layers” 
on page 100, in this 
chapter.

A virtual machine is a 
collection of modules 
that form an isolated, 
cohesive set of services 
that can execute pro-
grams. It’s sometimes 
called an abstract
machine.

See “Coming to Terms: 
Virtual Machines” on 
page 99, in this chapter.

See “Coming to Terms: 
Signature, Interface, 
API” on page 280, in 
Chapter 7.
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external entity—in this case, a layer—may make. Changes in a
lower layer that affect, say, a performance assumption will leak
through its interface and may affect a higher layer.

A common misconception is that layers introduce additional
runtime overhead. Although this may be true for naive imple-
mentations, sophisticated compile/link/load facilities can reduce
additional overhead.

We have already mentioned that in some contexts, a layer
may contain unused services. These unused services may need-
lessly consume a runtime resource, such as memory to store
the unused code or a thread that is never launched. If these
resources are in short supply, a sophisticated compile/link/
load facility that eliminates unused code will be helpful.

Layers are part of the blueprint role that architecture plays
for constructing the system. Knowing the layers in which their
software resides, developers know what services they can rely
on in the coding environment. Layers might define work
assignments for development teams, although not always.

Layers are part of the communication role played by architec-
ture. In a large system, the number of modules and the depen-
dencies among them rapidly expand. Organizing the modules
into layers with interfaces is an important tool for managing
complexity and communicating the structure to developers.

Grouping into layers those modules that have the same tech-
nology abstraction or are cohesive with respect to their respon-
sibilities helps to assign the implementation work across more
specialized teams. For example, the modules in a presentation
layer can be assigned to skilled GUI developers. 

Layers help with the analysis role played by architecture.
They support the analysis of the impact of changes to the
design by enabling some determination of the scope of
changes.

Layers that provide a virtual machine promote portability.
For this reason, it is important to scrutinize the interface of
such layers to ensure that portability concerns are addressed.
The interface should not expose functions that are dependent on
a particular platform; these functions should be hidden behind
a more abstract interface that is independent of platform.

Because the ordering relationship among layers has to do
with “implementation allowed to use,” the lower the layer, the
fewer the facilities available to it. That is, the “worldview” of
lower layers tends to be smaller and more focused on the com-
puting platforms. Lower layers tend to be built using knowl-
edge of the operating systems, communications channels,
databases, and the like. These platform-specific layers are
largely independent of the particular application that runs on

See “Coming to Terms: 
Virtual Machines” on 
page 99, in this chapter.
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them; they make the application more easily portable to a dif-
ferent platform. 

2.4.4 Notations for the Layered Style

Informal Notations

Stack
Layers are almost always drawn as a stack of boxes. The allowed-
to-use relation is denoted by geometric adjacency and is read
from the top down, as in Figure 2.18 (note that the key could
have said, “A layer is allowed to use any lower layer”).

Layering is thus one of the few architecture styles in which
connection among components is shown by geometric adja-
cency and not an explicit symbology, such as an arrow,
although arrows can be used, as in Figure 2.19.

Segmented Layers
Sometimes layers are divided into segments denoting a finer-
grained aggregation of the modules. Often, this occurs when a
preexisting set of units, such as imported modules, share the
same allowed-to-use relation. When this happens, the creator of
the diagram must specify what usage rules are in effect among
the segments. Many usage rules are possible, but they must be
made explicit. In Figure 2.20, the top and the bottom layers are

Figure 2.18
Stack of boxes notation for 
layered designs A

B

C

Key

Layer

A layer is allowed to use 
the next lower layer.

Figure 2.19
Layered design with 
allowed-to-use relations 
shown with arrows

A

B

C

Key

Layer

Allowed to use
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segmented. Segments of the top layer are not allowed to use
each other, but segments of the bottom layer are. If you draw
the same diagram without the arrows, it will be harder to dif-
ferentiate the usage rules within segmented layers. Layered
diagrams are often a source of ambiguity because the diagram
does not make explicit the allowed-to-use relations. 

Rings
A notational variation is to show layers as a set of concentric cir-
cles, or rings. The innermost ring corresponds to the lowest
layer; the outermost ring, the highest layer. A ring may be sub-
divided into sectors, meaning the same thing as the corre-
sponding layer being segmented.

There is no semantic difference between a layer diagram
that uses a stack of rectangles and one that uses the rings par-
adigm, except when segmented layers have restrictions on the
allowed-to-use relation within the layer. In Figure 2.21, assume
that ring segments that touch are allowed to use one another
and that layer segments that touch are allowed to use one
another. You cannot “unfold” the ring diagram to produce a
stack diagram, such as the one on the right, with exactly the

Figure 2.20
Layered design with 
segmented layers
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UI

Business Logic

Data Access

Local Data
Access

Remote Data
Access

Web UI Rich
Client

Command
Line

Layer
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Allowed to use

Figure 2.21
A layered design shown as 
concentric rings and as a 
stack of boxes. Are these 
two representations 
equivalent?
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same meaning, because circular arrangements allow more adja-
cencies than do linear arrangements. (In the layer diagram, B1
and B3 are separate; in the ring diagram they are adjacent.)
Cases like this are the only ones in which a ring diagram can
show a geometric adjacency that a stack picture cannot.

Layers with a Sidecar
Many architectures that are described as layered look some-
thing like Figure 2.22. This type of notation could mean one of
two things: (1) Modules in D can use modules in A, B, or C. (2)
Modules in A, B, or C can use modules in D. (Technically, the
diagram might mean that both are true, although this would
arguably be a poor layered architecture.) The creator of the
diagram must specify which usage rules pertain. A variation
like this makes sense only for single-level usage rules in the
main stack, that is, when A can use only B and nothing below.
Otherwise, D could simply be made the bottommost layer in the
main stack, and the “sidecar” geometry would be unnecessary.

In some cases, the layered architecture is depicted as a three-
dimensional figure, to represent a layer that is accessible to all
other layers, as shown in Figure 2.23.

Figure 2.22
Layers with a “sidecar.” The 
key should make clear what 
is allowed to use and be 
used by software in the box 
on the side.

A

B

C

D

Figure 2.23
Three-dimensional layered 
diagram trying to show that 
layer D can be used by all 
other layers. The picture 
could just as well be 
showing that D can use all 
other layers. The ambiguity 
should be resolved by an 
annotation, or in the key.

C

B1 B2 B3

A

D
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Such layers on the side often represent utility libraries or
platform services (such as the operating system or runtime
environment).

Size and Color
Sometimes layers are colored to denote which team is respon-
sible for them or to denote another distinguishing feature.
Sometimes layers use different colors just to improve readabil-
ity. Size is sometimes used to give a vague idea of the relative
size of the modules constituting the various layers. If they carry
meaning, size and color should be explained in the key accom-
panying the layer diagram.

UML
UML has no built-in primitive corresponding to a layer. How-
ever, layers can be represented in UML as stereotyped pack-
ages, as shown in Figure 2.24. A package is a general-purpose
mechanism for organizing elements into groups, and it suits
the notion of layers. The allowed-to-use relation can be a stereo-
typed dependency between layer packages. 

Access dependencies are not transitive. If package 1 can
access package 2 and package 2 can access package 3, it does
not automatically follow that package 1 can access package 3.

Appendix A discusses 
how to use UML classes 
and packages to repre-
sent layers and more.

Figure 2.24
Documenting segmented 
layers in UML. If segments 
in a layer are allowed to use 
each other, then <<allowed 
to use>> dependencies 
must be added among 
them as well. 

«layer» A

«layer» C

«layer» B

«segment»
B1

«segment»
B2

«segment»
B3

«allowed to use»

«allowed to use»

«allowed
to use»

Notation: UML
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2.4.5 Relation to Other Styles

Layer diagrams are often confused with other architecture
styles when information orthogonal to the allowed-to-use rela-
tion is introduced without conscious decision.

1. Module decomposition. Layers in a layered view and modules
in a decomposition view are always related but almost never
correspond one-to-one with each other. A layer may com-
prise more than one module. Two submodules of a module
may be part of different layers. In any case, you should pro-
vide a mapping between layers and the modules in the
decomposition view. If a module occurs in more than one
layer, you can indicate this by using colors or fill patterns,
as in Figure 2.25.

In this example, once again borrowing from the A-7E
architecture described previously, the mapping between
layers and modules is not one-to-one. In this architecture,
the criterion for partitioning into modules was the encap-
sulation of likely changes. The shading of the elements
denotes the coarsest-grain decomposition of the system
into modules; that is, Function Driver and Shared Services
are both submodules of the Behavior Hiding module.
Hence, in this system, layers correspond to parts of highest-
level modules. It’s also easy to imagine a case in which a
module constitutes a part of a layer.

2. Tiers. Layers are often confused with the tiers in a multi-tier
architecture. Layers are not tiers. The layered style shows

Section 2.1.6 has more 
information about the 
module decomposition 
in the A-7E avionics 
system.

Figure 2.25
A diagram showing layers 
and modules from a 
decomposition view from 
the A-7E software 
architecture
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Application Data Types Software Utilities
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Software in a layer is allowed to use software in the same 
or any lower layer.
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groupings of implementation units and hence is a kind of
module style. The multi-tier style is a component-and-con-
nector style because tiers congregate runtime components.

3. Module “uses” style. Because layers express the allowed-to-use
relation, there is a close correspondence to the uses style.
Of course, no uses relation is allowed to violate the allowed-
to-use relation. If incremental development or the fielding
of subsets is a goal, the architect will begin with a broad
allowed-to-use specification. That specification gives the guide-
lines for designing with actual uses relations any subset of
interest.

2.4.6 Examples Using the Layered Style

UNIX System V

A classic layered design is the UNIX System V operating sys-
tem, as shown in Figure 2.26. The lower layers form the system
kernel; top layers are user programs or libraries that access the
kernel through system calls. The system call interface layer iso-
lates the kernel implementation details and provides a virtual

Section 4.6.2 discusses 
tiers.

The uses style is cov-
ered in Section 2.2.

See “Perspectives: 
Using a DSM to Main-
tain a Layered Architec-
ture” on page 101, in 
this chapter, for a 
description of how lay-
ered architectures can 
be identified in a DSM 
based on existing code.

Figure 2.26
The primary presentation of 
a layered view of the UNIX 
System V operating system 
implementation (adapted 
from Bach 1986)
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machine to user programs. The file subsystem is responsible
for managing files (devices are treated as files), administering
free space, controlling access, and reading/writing data. The
process control subsystem is responsible for process schedul-
ing, interprocess communication, process synchronization,
and memory management. The hardware control layer is
responsible for handling interrupts and communicating with
the machine. 

This design is presented in Chapter 2 of the classic book by
Maurice Bach, The Design of the UNIX Operating System (Bach 1986),
where a candid observation is made: “The diagram serves as a
useful logical view of the kernel, although in practice the ker-
nel deviates from the model because some modules interact
with the internal operations of others.” All such exceptions
should be noted in your documentation. 

Java EE Application

Figure 2.27 is the primary presentation of the layered view of a
set of integrated, multi-tier, Web-based applications that use
the Java EE platform. All user operations in these applications
follow this layered design. The topmost layer has presentation
classes, which are servlets and JavaServer Faces (JSF) action
classes. Servlet and JSF are Java component technologies for
developing Web components. The second layer has controller
classes, which implement the sequence of steps to carry on the
functionality of a use case. An example of a controller class is
CtlRetrievePtoDays. Controller classes interact with business
service classes, which encapsulate the core business logic asso-
ciated with domain objects. An example of a service class is
SvcFullTimeEmployee. The lowermost layer has data access
objects. These modules handle all interaction with the rela-
tional database. 

There are two sets of auxiliary modules that are presented as
sidecar layers. On the left are presentation data transfer
objects (DTOs). They are simple classes that contain basic
attributes corresponding to data elements required in differ-
ent user screens. The right sidecar layer has the corporate
DTOs and plain old Java objects (POJOs). Like presentation
DTOs, these classes have a set of attributes to hold data. In this
design, DTOs have attributes required by a particular transac-
tion, whereas POJOs correspond to data entities stored in the
database.

The key drivers for this layered design are modifiability and
portability, which is achieved with separation of concerns. On
top is the presentation layer. Changes to the user interface are

This is the approach of 
stratified design, the 
notion that a complex 
system should be struc-
tured as a sequence of 
levels that are described 
using a sequence of 
languages. Each level is 
constructed by combin-
ing parts that are 
regarded as primitive at 
that level, and the parts 
constructed at each 
level are used as primi-
tives at the next level.

—H. Abelson and 
G. Sussman, Struc-
ture and Interpreta-
tion of Computer 
Programs  (1996)
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addressed in that layer. If the technology used to implement
the UI has to change from servlet and JSF to, say, Google Web
Toolkit and Flash, this layer has to be rewritten, but the other
layers should remain unchanged. The second layer imple-
ments the logic to handle the user actions by wiring the calls to
services in the third layer, which is the core business logic layer.
The bottom layer isolates database access operations and also
enhances portability. If the application is migrated to a differ-
ent database management system with a different SQL dialect,
all modifications required would be confined to that layer. 

COMING TO TERMS

Virtual Machines

A virtual machine, sometimes called an abstract machine, is a collection of mod-
ules that form an isolated, cohesive set of services that can execute programs.
Early use of the term referred to a more abstract stand-in for a real computer,
but current use includes virtual machines that have no direct correspondence to
any real machine. Interpreters are good examples of virtual machines. The Com-
mon Language Runtime (CLR) of the Microsoft .NET platform is an example of
a virtual machine. It provides services to execute bytecode produced by com-
piling C# or other .NET programming languages. The CLR converts the byte-
code into code that is native to the operating system underneath. The Java
Virtual Machine (JVM) does the same thing for the Java language. An operating
system itself is a virtual machine that allows the execution of native code on the
underlying hardware. Thus, a virtual machine is a software layer that can exe-
cute “programs,” which can be sequences of calls to facilities of the virtual
machine’s interface. Hence some authors regard layers and virtual machines as
synonyms.

Figure 2.27
Part of the layered view of a 
set of Java EE applications. 
The top layer has servlets 
and JSF action classes 
responsible for the user 
interface. Controller 
classes handle the user 
operations by interacting 
with business service 
classes. Access to the 
database is done in the 
lowermost layer with the 
data access objects. 
Sidecar layers contain 
DTOs and POJOs that are 
used by the other layers to 
hold and transfer data.
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PERSPECTIVES

Calling Higher Layers

We have been emphatic in saying that upward uses invalidate layering. We
made allowances for documented exceptions but implied that too many of
those would get you barred from the Software Architect’s Hall of Fame.

Seasoned designers, however, know that in many elegantly designed layered
systems, all kinds of control and information flow upward along the chain of lay-
ers, with no loss of portability, reusability, modifiability, or any of the other qual-
ities associated with layers. In fact, one of the purposes of layers is to allow for
the “bubbling up” of information to the units of software whose scope makes
them the appropriate handlers of the information. One approach to error han-
dling illustrates this upward flow. Suppose that we have a simple three-layer
system, as in Figure 2.28. Say that program PA in A uses program PB in B, which
uses program PC in C. If PC is called in a way that violates its specification, PC
needs a way to tell PB, “Hey! You called me incorrectly!” At that point, (1) PB can
either recognize its own mistake and call PC again, this time correctly, or take
another action; or (2) PB can realize that the error resulted because it was called
incorrectly—perhaps it received bad data—by PA. In the latter case, PB needs a
way to tell PA, “Hey! You called me incorrectly!”

Callbacks are a mechanism to manifest the protestation. We do not want PC
written with knowledge about programs in B or PB written with knowledge about
programs in A, as this would limit the portability of layers C and B. Therefore,
the names of higher-level programs to call in case of error are passed downward as
parameters. Then the specification for, say, PB includes the promise that in case
of error, it will invoke the program whose name has been made available to it.

Other situations where callbacks can be used include: 

• When PA uses PB to obtain data to present in the user interface but PA also
wants PB to announce future changes to the data. In other words, PA sub-

Figure 2.28
Layered design showing programs inside and their usage dependencies
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scribes to events that can be emitted by PB and provides to PB the name of
the operation that will handle the events.

• When PA uses PB and the interaction is asynchronous, but PA needs to
receive a response once PB is done processing the request. In this case PA
provides PB the name of the operation to call. 

So there we have it: data and control flowing downward and upward in an ele-
gant error-handling scheme that preserves the best qualities of layers. So much
for our prohibition about upward uses. Right?

Wrong. Upward uses are still a bad idea, but the scheme we just described
doesn’t have any. It has upward data flow and upward invocation but not uses.
The reason is that once a program calls its error handler, its obligation is dis-
charged. The program does not use the error handler, because its own correct-
ness depends not a whit on what the error handler does. This is how the
callback mechanisms, built in to some programming languages, work and still
allow true layered systems to be written in those languages.

Although this may sound like a mere technicality, it is an important distinction.
Uses is the relation that determines the ability to reuse and to port a layer; “calls”
or “sends data to” is not. Architects need to know the difference and need to
convey the precise meaning of the relations in their architecture documentation.

—P.C. and P.M.

PERSPECTIVES

Using a DSM to Maintain a Layered Architecture

Tools based on the dependency structure matrix claiming to be the solution to
managing complexity in large software projects have recently been capturing
the attention of program analysts and software architects. The DSM concept
has been adopted for use in software engineering from its origins with Donald
Steward as the Design Structure System (Steward 1981), which he devised in
1967 to help manage complexity in the nuclear power industry. Over the past 15
years the DSM has been used in a wide variety of industries to aid in systems
engineering and analysis as well as project planning and management.

When layer A depends on layer B and layer B depends on layer A, there is a
codependence between these two layers, a situation that is forbidden in a lay-
ered architecture. In a DSM, circular dependencies are immediately visible as
marked cells on both sides of the matrix’s diagonal. A layered architecture is
clearly discernable because the corresponding DSM is a lower triangular matrix
(that is, one in which all the marked cells are below the diagonal). For example,
consider the layered architecture in Figure 2.29. The key indicates that a layer is
allowed to use only the next lower layer, so it’s a strictly layered design. The
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corresponding DSM is shown in Figure 2.30(a). If a layer were allowed to use any
lower layer, the DSM would be similar to Figure 2.30(b). When cells above the
diagonal are marked, the architect can see the circular dependency and focus
on what to change to reach the goal of a layered architecture.  

In practice, layered designs are more complex. Figure 2.31 shows the layered
design that was introduced in Figure 2.27, now with Java packages added for
each layer. The DSM for this design is shown in Figure 2.32. In a DSM tool, the
architect can mark the dependencies that violate the layered design: the high-
lighted cells above and below the diagonal in Figure 2.32. During the implemen-
tation of the system, the tool can create a DSM from the code and highlight any
violations. If other constraints on interdependencies have been indicated by the
architect, those will also be visible using the DSM representation. With good
tool support, continuous integration builds can be subjected to DSM analysis,
and architecture violations can be caught immediately. DSM tools also generally
allow the user to perform “what-if” analysis by simulated restructuring of the
system, providing immediate insight into the impact that a suggested change
would have on the system’s structure. 

Figure 2.29
Simple layered architecture

Figure 2.30
DSM showing (a) strictly layered design and (b) layered design 
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—J.S. and P.M.

Figure 2.31
Layered design showing Java packages for each layer

Figure 2.32
DSM for a layered design. The highlighted cells above and below the diagonal represent dependencies that are 
not allowed
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2.5 Aspects Style
2.5.1 Overview

The aspects style is a module style used to isolate in the archi-
tecture the modules responsible for crosscutting concerns. 

When we implement software modules in general, the busi-
ness logic code ends up intermixed with code that deals with
crosscutting concerns. For example, if you’re writing a bank
automation system, there may be modules such as Account,
Customer, and Atm. The Account module ideally would con-
tain only the code to deal with the bank account business logic
(open/close account, deposit, withdraw, transfer, and so on).
But in practice we have to add code to handle crosscutting con-
cerns, such as access control, transaction management, and
logging.

The aspects style prescribes that the modules responsible for
the crosscutting functionality should be placed in one or more
aspect views. These modules are called aspects, based on the
terminology introduced by aspect-oriented programming (AOP).
The aspect views should contain information to bind each
aspect module to the other modules that require the crosscut-
ting functionality. 

The aspects style is particularly useful when you plan to use
AOP in the implementation. However, it’s also applicable when
crosscutting functionality will be implemented in traditional
ways through class inheritance and interfaces, macro insertion,
dependency injection, utility libraries, or other alternatives.
The goal of designing and implementing crosscutting con-
cerns in separate aspect modules is to improve modifiability of
the modules that deal with the business domain functionality.

2.5.2 Elements, Relations, and Properties

Table 2.5 summarizes the characteristics of the aspects style.
The elements in the aspects style are aspect modules. As men-
tioned in Section 2.5.1, an aspect is a special type of module
introduced by AOP. It contains the crosscutting code that
affects other specific modules in the system.

The relation found in the aspects style is usually called cross-
cuts. An aspect crosscuts a module if the aspect contains cross-
cutting functionality that will affect the module. An aspect may
contain the same properties of a regular module. In addition,
it may contain a property that describes what target modules
are affected by that aspect; in AOP terms, this property is called
pointcut specification.

If you haven’t docu-
mented a commonality, 
it isn’t likely to be one by 
the time you get done 
implementing.

—D. L. Parnas

See “Coming to Terms: 
Aspect-Oriented Pro-
gramming” on page 
107, in this chapter.
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2.5.3 What the Aspects Style Is For 

The aspects style can be used to model the implementation of
crosscutting concerns. It promotes modifiability by increasing
modularity and avoiding the tangling of crosscutting function-
ality and business domain functionality. 

2.5.4 Notations for the Aspects Style

UML

Although UML does not have built-in symbols for aspects, it is
a common choice for aspect views. In UML aspect modules are
usually represented as stereotyped classes in a class diagram, as
shown in Figure 2.33. Especially when the target implementa-
tion platform supports AOP, showing aspect modules as stereo-
typed classes makes sense because aspects are structurally
similar to classes: they may contain attributes and operations,
and they may extend another aspect in an inheritance relation.

The crosscut relation could be represented as a stereotyped
dependency going from the aspect to each module it crosscuts.
However, this alternative does not scale: by definition an aspect
provides crosscutting functionality, and hence it may crosscut
too many modules. Drawing a line between the aspect module
and each of the crosscut modules is impractical in nontrivial
systems and would clutter the diagrams. A better alternative is
simply to omit the crosscut relation from the diagrams. Instead,
just add a comment to the aspect module to characterize (in
natural language or in a formal syntax) what other modules
this aspect crosscuts. Figure 2.34 shows an example. Not showing

Table 2.5 Summary of the aspects style

Overview The aspects style shows aspect modules that implement crosscutting con-
cerns and how they are bound to other modules in the system. 

Elements Aspect, which is a specialized module that contains the implementation of a 
crosscutting concern

Relations Crosscuts, which binds an aspect module to a module that will be affected by 
the crosscutting logic of that aspect

Constraints • An aspect can crosscut one or more regular modules as well as aspect 
modules.

• An aspect that crosscuts itself may cause infinite recursion, depending on 
the implementation.

What It’s For • Modeling crosscutting concerns in object-oriented designs 
• Enhancing modifiability
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the crosscut relation in the diagram actually makes sense
because in an AOP implementation, the developer doesn’t
have to identify each target class for a given aspect. The archi-
tecture representation should not be more detailed than the
implementation!

2.5.5 Relation to Other Styles

In general, aspects allow inheritance. The aspects style may be
combined with the generalization style when we want to show
a hierarchy of aspects. 

2.5.6 Examples Using the Aspects Style

Figure 2.35 is from the aspects view of an application called
IkeWiki. The design prescribes the use of aspects for transac-
tion management, exception handling, authorization check,
and enforcement of architecture constraints. Drawing a line
for each crosscut relation would be impractical, so the architect
opted simply to indicate with comments what other modules
should be crosscut by each aspect.

Figure 2.34
Instead of trying to draw a 
line from each aspect to 
every module it crosscuts, 
we simply add a comment 
box that characterizes what 
modules will be crosscut. 

«aspect»
TransactionManagement

«aspect»
Internationalization

Crosscuts calls to any operation 
within an EJB that contains the 
@transactional annotation

Crosscuts any 
calls to the 
Locale library

Notation:
UML

Figure 2.33
Aspect modules are often 
represented in UML as 
classes with stereotype 
<<aspect>>.

Notation: UML

«aspect»
Internationalization

«aspect»
TransactionManagement
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COMING TO TERMS

Aspect-Oriented Programming

Aspect-oriented programming is an evolutionary implementation paradigm that
complements object-oriented programming and facilitates the implementation
of crosscutting concerns. AspectJ is probably the most widely known AOP
package. Other implementations include Spring AOP, JBoss AOP, AspectC++,
and Aspect#.

Suppose the bank automation example is implemented using a regular object-
oriented language. The solution would contain classes such as Account, Cus-
tomer, and Atm. In these classes, the code to handle crosscutting concerns
such as logging or transaction management is tangled with the business logic
code, making the classes more difficult to maintain. Moreover, the lines of code
found in class Account to handle transaction management are very similar if not

Figure 2.35
Primary presentation for the aspects view of the IkeWiki application. This Java EE application implemented with the 
Spring framework and Google Web Toolkit uses aspects for some crosscutting concerns. The TransactionManagement 
aspect makes sure all requests received by the server will close the transaction and release database resources properly, 
performing a rollback when an exception occurs. The ExceptionHandling aspect has code to log the error to the 
database, send e-mail notification if applicable, and wrap the exception with a proper user message to be displayed by 
the client application. This aspect is woven into server-side classes that are either threads or entry points to process 
HTTP requests. The AuthorizationCheck aspect is used to check if the current user has permission to execute a specific 
method. The Enforcement aspect is different from the others. It doesn’t exactly implement a crosscutting concern, but 
rather it scans the source code at compile time looking for violations of the layered design, as well as violations of several 
coding policies.

. . .

. . .

. . .

. . .

com.ikaru.ikewiki.aspects
com.ikaru.ikewiki.util

IkewikiExceptionHandler

handleExceptionInService()
handleExceptionInThread()

«aspect»
TransactionManagement

«aspect»
ExceptionHandling

«aspect»
Enforcement

«aspect»
AuthorizationCheck

«use»

«use»

«use»

checkStatusAndCloseTransaction()

Crosscuts all public methods of 
all classes with suffix ServiceImpl 
AND any method with the 
@transactional annotation

Compile-time declarations 
to identify points in the code 
that violate the layered 
design or coding policies

Crosscuts:
—all public methods of all classes with suffix ServiceImpl
—the handleRequest() method of all classes that 

 implement Spring’s Controller interface
—the run() method of all threads

Crosscuts any method 
with the 
@privilegedAccess
annotation

Key: UML
Color used to enhance 
readability.
“. . .” indicates there are 
other elements in the 
package.

org.gwtwidgets.server.spring

ServletUtils

«entity»
User

com.ikaru.ikewiki.user
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equal to the lines of code that handle the same concern in Customer, Atm, and
other classes. The code for a particular concern is scattered across several
classes; that poses a modifiability problem. Suppose you need to change the
signature of a method used for logging. You’ll need to change the correspond-
ing lines of code in all classes where logging is needed. Code tangling and code
scattering in traditional object-oriented applications is notionally represented in
Figure 2.36.

AOP brings an ingenious solution to improve modularity and resolve the code
tangling and code scattering problems. The crosscutting code is factored out
from the classes and placed in a special module called aspect, as represented
in Figure 2.37. An aspect has two important parts: advices and pointcut speci-
fications. Advices contain the code for the crosscutting concerns. Such code
will be injected at certain points (called join points) of the classes through a pro-
cess called weaving, carried on by the AOP compiler. The pointcut specifica-
tions contain declarations that map to specific sets of join points in the target
classes. In the aspect code, advices are associated to pointcut specifications
to let the AOP compiler know where exactly each advice code will be injected
in the target classes.

AOP is the programming component of the larger aspect-oriented software
development (AOSD) movement, which strives to factor out otherwise-redundant
commonality in all kinds of software activities, including requirements engineer-
ing, design, and testing.

Figure 2.36
The traditional object-oriented implementation of a bank automation system would have several classes where 
the business logic is tangled with code that handles crosscutting concerns, such as access control, logging, and 
transaction management. In addition, the code that handles a particular crosscutting concern is repeated and 
scattered across several classes.

. . .

Key

code scattering

Account Customer

Code to handle access control

Code to handle logging

Code to handle transaction management

Atm

code
tangling

Class
code
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2.6 Data Model
2.6.1 Overview

Data modeling is a common activity in the software develop-
ment process of information systems. The output of this activ-
ity is the data model, which describes the static information
structure in terms of data entities and their relationships. For
example, in a banking system, entities typically include
Account, Customer and Loan. Account has several attributes,
such as account number, type (savings or checking), status,
and current balance. A relationship may dictate that one cus-
tomer can have one or more accounts, and one account is asso-
ciated to one or two customers. The data model is often
represented graphically in entity-relationship diagrams (ERDs)
or UML class diagrams.

The first draft of an architecture view typically has very little
detail. Over time, as design decisions are made, the view is elab-
orated until the architect considers there’s enough informa-
tion captured in that architecture view. The same thing
happens with the data model. Data modeling spans the evolu-
tion of the high-level model that displays the data entities in a
given business domain into a model that shows details of how

Figure 2.37
In the aspect-oriented implementation of the same bank automation system, the classes don’t contain code for 
logging, access control, transaction management, and other crosscutting concerns. The code to handle these 
concerns is now inside aspect modules. Classes such as Account, Customer and Atm contain the business logic 
only. The AOP compiler will use the weaving process to insert the code inside aspects at the locations in the 
classes where it’s needed.

. . .

Account

access
control
aspect

logging
aspect

transaction
management

aspect

Customer Atm

Aspects that 
modularize code 
of crosscutting 
concerns

Classes with 
business logic 
code
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the data is stored, for example, in a relational database man-
agement system. As a result, different organizations focus the
modeling and documentation effort on different stages of the
data model evolution. Thus organizations sometimes use qual-
ifiers to the data model to distinguish these stages. Examples
of qualifiers include: 

• Conceptual. The conceptual data model abstracts implemen-
tation details and focuses on the entities and their relation-
ships as perceived in the problem domain. Figure 2.38
shows a fragment of a conceptual data model.

• Logical. The logical data model is an evolution of the con-
ceptual data model toward a data management technology
(such as relational databases). It is typically the subject of
normalization (see Section 2.6.2). Figure 2.39 shows an
example of a logical data model.

• Physical. The physical data model is concerned with the
implementation of the data entities. It incorporates optimi-
zations that may include partitioning or merging entities,
duplicating data, and creating identification keys and
indexes. For example, in Figure 2.40 a column named total-
Price was likely added to the entity Order as a performance
optimization, since the total price could also be obtained by
reading all order items and adding up their prices.

Figure 2.38
First draft of a conceptual 
data model. This and the 
next two diagrams are 
fragments of an online 
order-processing system at 
different stages.

Figure 2.39
Logical data model that has 
evolved from the 
conceptual data model in 
Figure 2.38

Order

OrderItem
CatalogItem

qty
price

date
clientId
shippingInfo
billingInfo
creditCardId

name
description
listPrice
status

Legend
Entity

Relationship with 
cardinality one-to-many 
(crow’s foot is “many”)
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In an early stage, the architecture documentation may contain
the data model with the key entities and important relation-
ships. Later on, this initial model is superseded by the detailed
model approved by the data administrators.

2.6.2 Elements, Relations, and Properties

Table 2.6 summarizes the characteristics of the data model style.
The elements in a data model are called data entities or sim-

ply entities. Any distinguishable object that contains informa-
tion to be stored or represented in the system can be an entity. 

Figure 2.40
Physical data model that was created by adding implementation details and optimizations to the logical data model in 
Figure 2.39

A B

PurchaseOrder OrderItem CatalogItem
PK poId INTEGER

FK3,I1 clientId  INTEGER

FK1 shippingInfoId INTEGER
FK2 billingInfoId INTEGER
FK4 creditCardId INTEGER
 totalPrice NUMERIC(10,2)

PK,FK1 poId INTEGER

PK,FK2 itemId INTEGER

 qty NUMERIC(10,2)

 unit CHAR(10)
 price NUMERIC(10,2)

PK itemId INTEGER

 name VARCHAR(80)

 description TEXT(400)
 listPrice NUMERIC(10,2)
 status INTEGER

Legend
For each A there are 0 or more Bs, 
each B is related to exactly one A, 
A’s PK is needed as part of B’s PK

Entity

PK = Primary key
FK# = Foreign key
I# = Index

Column name
(bold means 
required column)

Data type

See “Coming to Terms: 
Entity” on page 118, in 
this chapter.

Table 2.6 Summary of the data model style 

Overview The data model describes the structure of the data entities and their 
relationships.

Elements Data entity, which is an object that holds information that needs to be stored or 
somehow represented in the system. Properties include name, data attributes, 
primary key, and rules to grant users permission to access the entity.

Relations • One-to-one, one-to-many, and many-to-many relationships, which are logi-
cal associations between data entities

• Generalization/specialization, which indicate an is-a relation between entities
• Aggregation, which turns a relationship into an aggregate entity

Constraints Functional dependencies should be avoided. 

What It’s For • Describing the structure of the data used in the system
• Performing impact analysis of changes to the data model; extensibility analysis
• Enforcing data quality by avoiding redundancy and inconsistency
• Guiding implementation of modules that access the data
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Properties of entities may include:

• Name of the entity. 

• Description of the meaning and significance of the entity.

• List of data attributes of the entity. For example, a Car entity
may have attributes year, manufacturer, model, mileage,
price, and license. Each attribute may have properties, such
as data type, size, and whether it’s a required attribute or
not.

• The attribute (or attributes) used to uniquely identify an
entity (that is, the primary key).

• Whether an entity is weak. A weak entity, also known as a
dependent entity, depends on the existence of another
entity to exist. For example, an OrderItem requires the
existence of a PurchaseOrder in Figure 2.40.

• Constraints and invariants on the values of individual or
combined attributes. For example, “Returning date cannot
be prior to arrival date.”

• Rules that will be used to grant permissions to users or user
groups to access the entity.

• Expected number of entity instances and growth rate.

Other properties concern the physical data model and are
specific to the target implementation platform of the data
model. Examples include:

• List of attributes that should be indexed to optimize access
time.

• List of attributes that should be encrypted or compressed.

• Whether the entity should become a database view instead
of a table. A view is a virtual table that is defined by a SQL
query command on one or more tables.

• Whether the entity should become a materialized view,
which means it will be implemented as a database table that
stores a subset of the data copied from a master table. Like
a regular view, the subset is defined by a query command. 

• List of database triggers that will be implemented for that
entity. A trigger is a special procedure that is automatically
executed by the database management system when data is
inserted, updated, or deleted.

There are three types of relations found in data models: 

• Relationship. Used to designate a logical association between
entities. It is usually qualified by the cardinality of the partic-
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ipant entities: one-to-one, one-to-many, or many-to-many. In
addition, a relationship can be identifying or nonidentifying.
An identifying relationship from A to B means that the exist-
ence of B depends on the existence of A; that is, the primary
key of B contains the primary key of A. 

• Generalization/specialization. Indicates an is-a relation between
entities. For example, entity Insurance is a generalization of
different types of insurances; at the same time, entities Car
Insurance and House Insurance are specializations of entity
Insurance.

• Aggregation. An abstraction that turns a relationship between
entities into an aggregate entity (Smith and Smith 1977).
For example, a relationship between a patient, a physician,
and a date can be abstracted as an aggregate entity called
Appointment. In practice, this relation is rarely used.

Conceptually, there are no topological constraints with
respect to the relations in a data model. However, the database
normalization technique imposes restrictions on the data
model based on the dependencies between entity attributes.
Normalization is used by data administrators to avoid duplica-
tion of information, in order to safeguard the consistency
(integrity) of the data. Figures 2.41 and 2.42 show an example
of normalization. 

For an explanation of 
the normalization tech-
nique and description of 
the various normal 
forms, refer to the clas-
sic book by C. J. Date, 
An Introduction to Data-
base Systems (1999).

Figure 2.41
Entity ProjectAssignment before normalization, along with sample data (adapted from Ponniah 2007). The attributes that 
uniquely identify a project assignment (that is, the primary key) are EmpId and ProjNo.

PK EmpId INTEGER

PK ProjNo INTEGER

Name VARCHAR(80)

Position VARCHAR(80)

ProjDesc VARCHAR(80)

Start DATETIME

End DATETIME

EmpId Name Position ProjNo ProjDesc  Start End 

100 Simpson Analyst 23 DB design Apr-02 Jul-02 
140 Beeton Technician 14 Network cabling Sep-02 Oct-02 
160 Davis Technician 14 Network cabling Sep-02 Nov-02 
   36 Network testing Nov-02 Dec-02 
190 Berger DBA 45 Physical design Aug-02 Nov-02 
   48 Space allocation Nov-02 Dec-02 
100 Simpson Analyst 25 Reports Oct-02 Nov-02 
110 Covino Analyst 31 Forms Mar-02 May-02 
   25 Reports May-02 Jul-02 
120 Brown Analyst 11 Order entry Jul-02 Sep-02 
180 Smith Programmer 31 Forms Sep-02 Nov-02 
   25 Reports May-02 Jul-02 
200 Rogers Programmer 11 Order entry Sep-02 Oct-02 
   12 Inventory control Oct-02 Dec-02 
   13 Invoicing Nov-02 Dec-02 
100 Simpson Analyst 31 Forms Aug-02 Oct-02 
130 Clemens Analyst 23 DB design Apr-02 Jun-02 

ProjectAssignment
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2.6.3 What the Data Model Is For

The data model facilitates stakeholder communication during
domain analysis and requirements elicitation. But foremost,
the data model is the blueprint for the implementation of the
data entities, for example, in a relational database.

A carefully created data model also helps to achieve perfor-
mance requirements in a software system. In data-centric appli-
cations, access to the data usually represents a significant
amount of the time to process user requests. The architect and
the data administrator should understand what kinds of data
access operations will be more critical to the system and what
their performance requirements are. Driven by these require-
ments, denormalizations, optimizations, and other design
decisions are applied to the data model, aiming at improved
system performance. Examples of these design decisions include:

• Merging two entities to avoid an expensive outer join or
union operation in a query

• Adding a derived attribute to avoid scanning an entire data
table to obtain the derived value

• Creating an index on attributes that are often parameters in
a query

• Changing the granularity (such as table row or page) and
type (such as optimistic) of locks on certain entities to avoid
contention and deadlocks

After the software system is implemented, even when the
data model is carefully created, it’s common to find perfor-

Figure 2.42
Data model for ProjectAssignment after normalization. One of the rules of normalization is that non-key attributes should 
have functional dependencies to the whole primary key only. Attribute ProjDesc has a functional dependency to ProjNo, 
which is not the whole primary key. After this and other violations of the normalization rules were fixed, this is the 
resulting data model diagram.

ProjectAssignment Project

A B

A B

Employee

Position

Legend

For each A there are 0 or more Bs, 
each B is related to exactly one A, 
A’s PK is needed as part of B’s PK

For each A there are 0 or more Bs, 
each B is related to exactly one A

Entity

PK = Primary key
FK# = Foreign key

Column
name

PK EmpId INTEGER

 Name VARCHAR(80)

FK1 PositionId INTEGER

PK PositionId INTEGER

 PositionDesc VARCHAR(80)

PK,FK1 EmpId INTEGER

PK,FK2 ProjNo INTEGER

 Start DATETIME

 End DATETIME

PK ProjNo INTEGER

 ProjDesc VARCHAR(80)
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mance bottlenecks in data access operations. To remove these
bottlenecks, the data model comes in handy once again, in a
task called query optimization. 

In information systems, the data model is essential input to
modifiability analysis. To analyze the impact of required modi-
fications to a system, one cannot look exclusively at the code
structure. Many modifications require altering the data model
and hence its physical implementation. Modifications to the
data model can be costly, as they may require changing the
code of multiple applications that share the same data. A sim-
ple change such as making a certain attribute of an entity man-
datory (for example, requiring a customer’s date of birth) may
require changes to all screens and functions that allow creating
or updating that information. Versioning and redeployment of
applications is more complicated when data model changes
are involved. Moreover, larger data model modifications, such
as merging with the data model of a legacy system, may also
require the implementation of extract, transform, and load
(ETL) operations to fix the data itself. Indeed, the data model
is an important input to data warehouse projects and to the
integration of data schemas required by some business part-
nerships (for example, an airline company needs to share data
with a car rental company).

The data model is an architecture view that should ideally be
created with a thorough understanding of incremental devel-
opment plans, future extensions, and integration of data
across information systems. Data is a valuable asset, and the
existence of an enterprise data model and a data administra-
tion group helps to enforce data integrity. If a new system
needs to retrieve sales information, the enterprise data model
may already contain that information. The architect of the new
system may not be aware of the data entities that hold sales
information, but the data administrator should and can point
out those entities instead of creating new ones in the database.
Disparate, redundant data contribute to poor data quality.

Based on the data model, data modeling tools can generate
scripts to create the physical database. Some tools can also gen-
erate application code to access the data tables, classes to hold
the data, forms for end users to enter data, message schemas,
and simple reports.

Finally, the data model can help application developers to
write code to access the database. It is easier to understand an
entity-relationship diagram than to browse through the table
creation commands or the database management system
dictionary.

Data integrity refers to 
the consistency and 
accuracy of the data 
shared across all appli-
cations in a system.
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2.6.4 Notations for the Data Model Style

The data model can be described graphically using informal or
semiformal visual notations that include: 

• Peter Chen’s entity-relationship diagram notation (Chen
1976)

• Crow’s foot entity-relationship diagram notation

• IDEF1X

• UML class diagram

The first three notations are ERD variations, and the last one
is the UML alternative to ERD. Crow’s foot and UML class dia-
grams are more widely used in industry and more commonly
supported by tools. 

Crow’s Foot ERD Notation

One of the most popular ERD notations for relationships uses
lines with special symbols at each end to indicate cardinality.
These symbols include a dash (indicating one), a ring (indicat-
ing zero), and a crow’s foot (indicating many). The crow’s foot
ERD notation was initially used in the 1980s by Richard Barker
(1990), as well as in the Information Engineering approach
developed by James Martin and Clive Finkelstein (1981). The
symbology found in today’s tools provides slight variations on
Baker’s original notation and the Information Engineering
notation. Figure 2.43 shows an example.

Figure 2.43
Data model (simplified) of a 
human resource system 
using crow’s foot ERD 
notation

Key

Employee Department

Dependent

Entity

Weak
entity

Cardinality:

Exactly one

Zero or one

One or more

Zero or more

Nonidentifying relationship

Identifying relationship
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UML

The data model can be represented as a UML class diagram,
where the classes correspond to data entities. The attribute
compartment lists the entity attributes, and the operation com-
partment is empty. UML associations represent the relation-
ships between entities and the multiplicity intervals shown at
both ends of the association lines (for example, “1..*”) indicate
the cardinality of the relationship. Figure 2.44 shows an example.

UML was originally created for object-oriented modeling,
not for data modeling. Therefore, it doesn’t provide built-in
mechanisms for indicating primary keys, weak entities, or for-
eign keys. In addition, class diagrams are more flexible than
ERDs. For example, a class Order may include a list of items as
an attribute, whereas in an ERD, Item would naturally be a sep-
arate entity. Some constraints are needed in order to use UML
class diagrams as an ERD alternative. 

2.6.5 Relations to Other Styles

The entities in the data model are intrinsically connected to
some of the modules in other module views, especially the
modules that contain the in-memory representation of the
data. In object-oriented systems that use a relational database
to store data, we typically find classes that correspond to the
persisted entities. The mapping is not always one-to-one,
because the relational paradigm is fundamentally different
from the object-oriented paradigm. This problem is known as
the object-relational impedance mismatch (Ambler 2006) and
is addressed by object-relational mapping (ORM) tools and

The Object Management 
Group has a draft spec-
ification for an Information 
Management Meta-
model that contains a 
UML 2 profile for entity-
relationship modeling. It 
is available online at 
omgwiki.org/imm.

Figure 2.44
Data model (simplified) of a 
human resource system 
shown as a UML class 
diagram

1..*

1
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1..* 0..1
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frameworks, such as Hibernate for Java and LLBLGen for
Microsoft .NET.

The architect may find it useful to indicate what modules (in
a module view), what components (in a component-and-con-
nector view), or even what use cases from the functional
requirements do use which data entities. Such mapping of the
data model to other views can be recorded as a table, as
described in Section 10.2. Moreover, the architect can indicate
whether each element creates, reads, updates, or deletes data
(CRUD, for short) from each data entity. This generic map-
ping can be represented as a CRUD matrix.

The data model describes the structure of data entities and
relationships that will typically be deployed to a shared-data-
store component such as an Oracle database. Data stores are
typically depicted in a shared-data view of the architecture,
along with the other runtime components that access them.
Also, a deployment view typically shows what machine(s) the
data stores are allocated to. Documenting the mapping of enti-
ties in a data model to different data stores and respective
machines is especially useful when the solution uses distrib-
uted or replicated databases.

2.6.6 Examples

Figure 2.45 shows the data model reconstructed and adapted
from the Microsoft .NET Pet Shop application (Microsoft 2002),
a Web store that keeps a catalog of pets and takes purchase orders
from registered Web users. The data is persisted in a relational
database. The majority of the functionality consists of retrieving,
creating or updating the data elements shown in the data model.

COMING TO TERMS

Entity

The elements in the data model style are data entities or, as most data admin-
istrators and developers call them, entities. The original paper that proposed the
entity-relationship model initially describes an entity in a purely conceptual way:
an entity is a “thing” that can be distinctly identified (Chen 1976). Later in the
paper, the author adds a practical caveat: “From now on, we shall consider only
the entities and relationships (and the information concerning them) which are
to enter into the design of a database.” Thus an entity can be related to any
object in the real world: a car, a person, an event, a company, and so on. But for
practical reasons, data modeling in general is concerned with only those entities
and their respective attributes that are relevant to the software system and

Mapping between 
views is discussed in 
Section 10.2.

The shared-data style is 
covered in Section 4.5.1.

The deployment style is 
described in Section 5.2.
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hence will be represented in the system, possibly in the database. The same
focus is true in the context of software architecture documentation.

Strictly speaking, an entity is a particular instance of an entity set or entity type.
For example, Earth is an entity of entity set Planet. For simplicity, most people
don’t make that distinction and refer to entity sets as entities.

Figure 2.45
Data model for the Pet 
Shop application using 
Information Engineering 
crow’s foot ERD notation

Supplier
Suppld
Name
Status
Addr1
Addr2
City
State
Zip
Phone

Item
ItemId
ProductId
ListPrice
UnitCost
Supplier
Status
Name
Image

Product
ProductId
CategoryId
Name
Descn
Image

Category
CategoryId
Name
Descn

User
UserId
Password
PasswordFormat
MobilePin
Email
PasswordQuestion
PasswordAnswer
IsApproved
CreatedDate
LastLoginDate
LastPwdChangedDate
Comment
PasswordSalt
Username

Order
OrderId
UserId
OrderDate
ShipAddr1
ShipAddr2
ShipCity
ShipState
ShipZip
ShipCountry
BillAddr1
BillAddr2
BillCity
BillState
BillZip
BillCountry
Courier
TotalPrice
BillToFirstName
BillToLastName
ShipToFirstName
ShipToLastName
AuthorizationNumber
Locale

CartItem
ItemId
UserId
Name
Type
Price
CategoryId
ProductId
IsShoppingCart
Quantity

Lineitem
OrderId
LineNum
ItemID
Quantity
UnitPrice

OrderStatus

OrderId
LineNum
OrderTimestamp
Status

ItemId
Qty

Inventory
Notation:
Information
Engineering
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2.7 Summary Checklist
• A decomposition view shows how responsibilities are allo-

cated across modules and submodules.

• A uses view shows how modules depend on one another.
This view helps achieve incremental development and is
especially suitable for performing change-impact analysis.

• A generalization view relates modules by showing how one
is a generalization or specialization of the other. This view is
widely used in object-oriented systems, where inheritance is
used to exploit commonality among modules.

• A layered view divides a system into groups of modules that
provide cohesive responsibilities. These groups are called
layers and relate to each other unidirectionally by the
allowed-to-use relation. A layered design helps a system achieve
portability and modifiability.

• An aspects view shows special modules called aspects, which
are responsible for crosscutting concerns. This view is par-
ticularly useful if the system implementation is going to use
AOP.

• A data model view describes the structure of the data used
in the system in terms of data entities and their relation-
ships. It guides implementation and helps to improve per-
formance and modifiability in data-centric systems.

2.8 Discussion Questions
1. Can you think of a system that cannot be described using a

layered view? If a system is not layered, what would this say
about its allowed-to-use relation?

2. How does a UML class diagram relate to the styles given in
this chapter? Does that diagram show decomposition, uses,
generalization, or another combination? 

3. We consciously chose the term generalization to avoid the
multiple meanings that the term inheritance has acquired.
Find two or three of these meanings, compare them, and
discuss how each is a kind of generalization. (Hint: You may
wish to consult books by Booch and Rumbaugh, respectively.)

4. Suppose that your system will include commercial off-the-
shelf (COTS) software modules. In which module views
might you show them and why? 

5. Would you create a data model using an entity-relationship
notation for a system that will not contain a database? In
what situations and why?
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6. Crosscutting concerns have been implemented in object-
oriented systems without using AOP constructs. Would you
create an aspect view for your system if your implementa-
tion will not use AOP? Would you use aspect modules in
your design in this case?

7. The two layered diagrams in Figure 2.46 are from real sys-
tems. The first is called the ECMA “toaster model,” which
has slots for pluggable tools. The second is the layered
architecture of the OSGi framework. How is the allowed-to-
use relation represented in these diagrams? How would you
create the key to each diagram so that any ambiguity in the
notation is removed?

2.9 For Further Reading
Most of the styles in this chapter can be traced to a founda-
tional paper in the annals of the software engineering litera-
ture. An architect interested in the roots of the discipline may
find the original ideas refreshing in their simplicity and pur-
posefulness. These papers, seen as a group, express the then-
revolutionary idea that there is more to a computer program
than getting the right answer: how it is structured also matters.

In 1968, Edsger Dijkstra wrote about designing an operating
system as a set of abstract virtual machines, giving us the concept
of layers (Dijkstra 1968). David Parnas showed how decompos-
ing a system into modules based on likely changes, as opposed
to steps in the processing, resulted in systems vastly easier to
modify (Parnas 1972). Parnas also introduced the uses relation
and showed how it could lead to software that was easy to
extend or to develop incrementally (Parnas and Weiss 1979).

In the 1960s the fundamental concepts of object-oriented
programming, including objects, inheritance, and dynamic

Figure 2.46
ECMA “toaster model” (left) 
and OSGi framework 
layered design (right)
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binding, were invented by Ole-Johan Dahl and Kristen Nygaard
at the Norwegian Computing Center in Oslo (Nygaard and
Dahl 1981). The concepts were introduced in the program-
ming language Simula-67, which, although never widely used
itself, laid the foundation for the development of popular
object-oriented languages such as Smalltalk and C++. In 1986–
1987, two widely influential papers by Alan Snyder and Barbara
Liskov, respectively, tied together two concepts that had been
drifting apart: inheritance and encapsulation (Snyder 1986,
Liskov 1987). Liskov in particular argued convincingly that
undisciplined inheritance that violated objects’ abstractions
was harmful. Between them, they set the object-oriented com-
munity on its present path.

A software engineering demonstration project that paid spe-
cial attention to the use of separate architectural structures was
the A-7E avionics system built by the U.S. Navy in the 1980s. A
case study is presented in the book by Bass, Clements, and
Kazman (2003). The example employs decomposition (using
information hiding as the criterion [Parnas, Clements, and
Weiss 2001]), layers, and uses, and it shows how a subset is built
from the uses relation.

The authoritative source of information about the UML lan-
guage and notation is the specification published by the
Object Management Group (OMG 2009), which at the time of
writing is on version 2.2. However, there are many UML books
that are far more digestible. Two valuable references are The
Unified Modeling Language User Guide, by Booch, Rumbaugh,
and Jacobson (2005), and UML Distilled, by Martin Fowler
(2003). UML classes, packages, and their relations are espe-
cially relevant to module styles.

The seminal paper on aspect-oriented programming was
written by Gregor Kiczales and colleagues at Xerox PARC (Kic-
zales et al. 1997). It describes the concepts and terminology
that were later used to create AspectJ and other AOP lan-
guages. The second edition of the book by Ramnivas Laddad
(2008) is an excellent guide to AspectJ and provides a nice
introduction to AOP. Recently, aspect orientation has been
investigated in the realm of domain analysis, requirements
engineering, and software architecture. Resources about the
use of aspects in early phases of software development can be
found at early-aspects.net.

Data modeling is a well-established discipline. Entity-relationship
modeling was originally proposed by Peter Chen (1976). In
addition to Chen’s original paper, the book by C. J. Date
(2003) has been an important reference to relational theory,
normalization, and data modeling since the publication of the
first edition in 1975.
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3Component-and-
Connector Views

In this chapter, we look at these aspects of component-and-
connector (C&C) views:

• Elements, relations, and properties

• Purpose

• Notation

• Relation to other views

3.1 Overview
In this chapter we discuss C&C views in their most general
form, and we look at notations for representing C&C views. In
Chapter 4, we explore some important C&C styles. 

A C&C view shows elements that have some runtime pres-
ence, such as processes, objects, clients, servers, and data
stores. These elements are called components. Additionally,
component-and-connector views include as elements the path-
ways of interaction, such as communication links and proto-
cols, information flows, and access to shared storage. Such
interactions are represented as connectors in C&C views.

Component-and-connector views are ubiquitous in practice;
indeed, box-and-line diagrams depicting these views are often
the graphical medium of choice as a principal first-look expla-
nation of the architecture of a system. But such informal C&C
views can be misleading, ambiguous, and inconsistent. Some
problems follow from the usual pitfalls of visual documenta-
tion and are equally applicable to any of the view types dis-
cussed in this book. Other problems derive specifically from
the use of components and connectors to portray a system’s
execution structure. In this chapter, we provide guidelines for
documenting C&C views, and we highlight common pitfalls.
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Figure 3.1 illustrates the primary presentation of a C&C view
of a system’s runtime architecture. What is this diagram (and
the documentation that explains it) attempting to convey? It
shows a picture of the system as it appears at runtime. The sys-
tem contains a shared repository of customer accounts
(Account Database) accessed by two servers and an administra-
tive component. A set of client tellers can interact with the
account repository servers, embodying a client-server style.
These client components communicate among themselves by
publishing and subscribing to events. The purpose of the two
servers is to enhance availability: If the main server goes down,
the backup can take over. Finally, an administrative compo-
nent allows an administrator to access and maintain the
shared-data store.

Each of the three types of connectors shown in Figure 3.1
represents a different form of interaction among the con-
nected parts. 

• Client-server connectors allow a set of concurrent clients to
retrieve data synchronously via service requests. This variant
of the client-server style supports transparent failover to a
backup server. 

• The database access connector supports transactional,
authenticated access for reading, writing, and monitoring
the database. 

• The publish-subscribe connector supports asynchronous
event announcement and notification.

Each of these connectors represents a complex form of
interaction and will likely require nontrivial implementation
mechanisms. For example, the client-server connector type
represents a protocol of interaction that prescribes how clients
initiate a client-server session, how and when failover is achieved,
and how sessions are terminated. Implementation of this con-
nector will probably involve runtime mechanisms that detect
when a server has gone down, queue client requests, handle
attachment and detachment of clients, and so on. 

Connectors need not be binary. Two of the three connector
types in Figure 3.1 can involve more than two participants: the
publish-subscribe bus and the failover client-server connectors.

It may also be possible to carry out both qualitative and
quantitative analyses of system properties such as perfor-
mance, reliability, and security based on this view. For instance,
the design decision that causes the administrative user inter-
face to be the only way to change the database schema would
improve the security of the system. But that decision also might
affect serviceability or availability. For example, does the use of

The primary presenta-
tion is the (typically) 
graphical portion of an 
architecture view. 
Documentation that 
explains the primary 
presentation is called 
supporting documenta-
tion. Both are described 
in Chapter 10.

The system illustrated 
in Figure 3.1 is built from 
an amalgamation of 
different styles: client-
server is described in 
Section 4.3; the shared-
data style is described 
in Section 4.5; and 
publish-subscribe is 
described in Section 4.4. 
This picture is a result 
of combining views, 
which is discussed in 
Section 6.6.
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the administrative interface lock out the servers? Similarly, by
knowing properties about the reliability of the individual serv-
ers and the database, you might be able to produce numeric
estimates of the overall reliability of the system, using some
form of reliability analysis.

Here are some things to note about the nature of C&C
graphical documentation, as illustrated in Figure 3.1:

• It acts as a key to the associated supporting documentation
(not shown here), where details about the elements, rela-
tions, and their properties can be found.

Supporting documenta-
tion is discussed in 
Section 10.1.

Figure 3.1
A bird’s-eye-view of a sys-
tem as it appears at run-
time. This system contains 
a shared repository that is 
accessed by servers and an 
administrative component. 
A set of client tellers can 
interact with the account 
servers and communicate 
among themselves through 
a publish-subscribe 
connector.
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• It’s restricted to information that can be simply presented
in—and comprehended from—a single diagram.

• It’s explicit about its vocabulary of component-and-connec-
tor types in the diagram’s key.

• It indicates the number and kind of interfaces on its compo-
nents and connectors.

• It uses component-and-connector abstractions that may
have rich semantics and complex implementations.

The documentation explaining the diagram should elabo-
rate on the elements shown. Supporting documentation should
explain, for example, how Account Server-Backup improves the
availability of the system. Some of the elements of this Figure 3.1
may themselves represent subsystems that have their own sub-
architectures, shown elsewhere.

The combination of C&C diagrams and their supporting
documentation provide an essential vehicle for communicat-
ing an architect’s design intent, supporting reasoning about
the runtime behavior of the system, and justifying design deci-
sions in terms of their impact on relevant quality attributes.

3.2 Elements, Relations, and Properties of C&C Views
Table 3.1 summarizes the elements, relations, and properties
that can appear in C&C views. It is followed by a more detailed
discussion of these concepts, together with guidelines con-
cerning their documentation.

Table 3.1 Summary of C&C views

Elements • Components: principal processing units and data stores. A component has a 
set of ports through which it interacts with other components (via connectors).

• Connectors: pathways of interaction between components. Connectors 
have a set of roles that indicate how components may use a connector in 
interactions.

Relations • Attachments: component ports are associated with connector roles to 
yield a graph of components and connectors.

• Interface delegation: in some situations component ports are associated 
with one or more ports in an “internal” subarchitecture. Similarly for the 
roles of a connector. 

Constraints • Components can be attached only to connectors, not other components.
• Connectors can be attached only to components, not other connectors.
• Attachments can be made only between compatible ports and roles.
• Interface delegation can be defined only between two compatible ports 

(or two compatible roles).
• Connectors cannot appear in isolation; a connector must be attached to a 

component.
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3.2.1 Elements

The elements of a C&C view are components and connectors.
Each element in a C&C view of a system has a runtime manifes-
tation, consuming execution resources and contributing to the
execution behavior of that system. Attachment relations of a
C&C view associate components with connectors (via their
respective ports and roles) to form a graph that represents a
runtime system configuration.

Components

Components represent the principal computational elements
and data stores that are present at runtime. Each component
in a C&C view has a name. The name should indicate the
intended function of the component. The name also allows
you to relate the graphical element with any supporting docu-
mentation for that component.

Components have interfaces called ports. A port defines a
specific point of potential interaction of a component with its
environment. A port usually has an explicit type, which defines
the kind of behavior that can take place at that point of inter-
action. A component may have many ports of the same type. In
this respect, ports differ from interfaces of modules, whose
interfaces are never replicated. For example, a filter might
have several input ports of the same type to handle multiple
input streams, or a server might provide a number of request
ports for client interactions. The database in Figure 3.1 has two
ports for two kinds of access.

You can annotate a port with a number or range of numbers to
indicate replication. For example, a port annotated with “[3]”
stands for three occurrences of that port. A port annotated
with “[0..10]” means that there are from 0 to 10 instances of
that port. That form is useful when defining component types,
allowing component instances to bind the exact number, or for
components that dynamically create new points of interaction.

A component’s ports should be explicitly documented, by
showing them in the diagram and defining them in the dia-
gram’s supporting documentation.

What C&C 
Views Are For

• Showing how the system works
• Guiding development by specifying the structure and behavior of runtime 

elements
• Helping architects and others to reason about runtime system quality 

attributes, such as performance, reliability, and availability

Table 3.1 Summary of C&C views (continued )

Components are the 
principal computational 
elements and data 
stores that execute in a 
system.

A port is an interface of 
a component. A port 
defines a point of inter-
action of a component 
with its environment.

To indicate multiple 
ports of the same type 
in a diagram using an 
informal notation, you 
can draw each one sep-
arately or you can show 
a single port but append 
a bracketed number (for 
example, [5]) after the 
port’s name to indicate 
its degree of replication. 
UML provides a similar 
convention.
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A component in a C&C view may represent a complex sub-
system, which itself can be described as a C&C subarchitecture.
This subarchitecture can be depicted graphically in situ when
the substructure is not too complex, by showing it as nested
inside the component that it refines. Often, however, it is
documented separately. A component’s subarchitecture may
be in a style different from the one in which the component
appears.

When a component has such a substructure, you should also
document the relationship between the “internal” and “exter-
nal” ports. As we describe later, this relationship is captured
using an interface delegation relation.

Connectors

Connectors are the other kind of element in a C&C view. Sim-
ple examples of connectors are service invocation, asynchro-
nous message queues, event multicast, and pipes that represent
asynchronous, order-preserving data streams. But as we noted
earlier, connectors often represent much more complex forms
of interaction, such as a transaction-oriented communication
channel between a database server and a client, or an enter-
prise service bus that mediates interactions between collec-
tions of service users and providers.

Connectors have roles, which are its interfaces, defining the
ways in which the connector may be used by components to
carry out interaction. For example, a client-server connector
might have invokes-services and provides-services roles. A pipe
might have writer and reader roles. Like component ports, con-
nector roles differ from module interfaces in that they can be
replicated, indicating how many components can be involved
in its interaction. A publish-subscribe connector might have
many instances of the publisher and subscriber roles. 

A role typically defines the expectations of a participant in
the interaction. For example, an invokes-services role might
require that the service invoker initialize the connection
before issuing any service requests. The semantics of the inter-
action represented by a connector is often documented as a
protocol specification prescribing what patterns of events or
actions are allowed to take place over the connector.

Like components, complex connectors may in turn be
decomposed into collections of components and connectors
that describe the architectural substructure of those connec-
tors. For example, a decomposition of the failover client-server
connector of Figure 3.1 would probably include components
that are responsible for buffering client requests, determining
when a server has failed, and rerouting requests.

See Chapter 7 for a 
more complete discus-
sion of types of informa-
tion that can be used to 
define a port.

Section 6.1 contains 
more detail on guide-
lines for documenting 
hierarchical relation-
ships and refinement.

See Section 3.2.3 for 
more information on 
how to document sub-
structure using an inter-
face delegation relation.

A connector is a run-
time pathway of interac-
tion between two or 
more components.

A role is an interface of 
a connector. A role 
defines a point of inter-
action of a connector 
and indicates how com-
ponents may use a con-
nector in interactions.

A protocol specification 
or a pattern of events 
can be described using 
behavioral notations, 
described in Chapter 8.

Refinement is described 
in Section 6.1.
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ADVICE

Connectors
• Connectors need not be binary. That is, they need not have exactly two roles.

For example, a publish-subscribe connector (as illustrated in Figure 3.1)
might have an arbitrary number of publisher and subscriber roles. Even if the
connector is ultimately implemented using binary connectors, such as a pro-
cedure call, it can be useful to adopt n-ary connector representations in a
C&C view.

• If a component’s primary purpose is to mediate interaction between a set of
components, consider representing it as a connector. Such components are
often best modeled as part of the communication infrastructure.

• Connectors can—and often should—represent complex forms of interaction.
What looks like a semantically simple procedure call can be complex when
carried out in a distributed setting, involving runtime protocols for time-outs,
error handling, data marshaling, and locating the service provider—for exam-
ple, as provided by SOAP.

• Connectors embody a protocol of interaction. When two or more compo-
nents interact, they must obey conventions about order of interactions, locus
of control, and handling of error conditions and time-outs. The protocol of
interaction should be documented.

3.2.2 Component-and-Connector Types and Instances

The components and connectors depicted in a C&C view are
instances of component-and-connector types. A type is an incom-
pletely defined component or connector. Type definitions often
express a set of choices, such as using a multiplicity indicator
like [1..5] to indicate that a component may have from 1 to 5
ports.

An instance is the result of completing the definition by
binding the choices that the types create. Each instance must
conform to its type in terms of behavior, interfaces, substruc-
ture (if any), properties, and topological restrictions. As a
result of this conformance requirement, all instances of a given
type are more or less identical. For example, the type may
define a set of allowable behaviors. An instance can restrict this
set, perhaps through instantiation parameters, but an instance
can’t add behaviors. 

A C&C view’s primary presentation depicts only instances;
no component or connector types should appear in the view’s
primary presentation. Mixing types and instances in the same
diagram is generally ill-advised. Although it may seem conve-
nient (“I’ll just add a little inheritance information to clarify a

When documenting a 
C&C view:

• Make clear in the view 
what architecture 
style is being used. 
Refer the reader to 
the appropriate style 
guide for more infor-
mation about the style.

• Document any addi-
tional component or 
connector type spe-
cializations intro-
duced in the view.

It is usually not a good 
idea to mix types and 
instances in the same 
diagram.
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relationship between different instances”), it is more likely to
add confusion.

Types are found in style guides. However, type definitions
given in style guides, including the ones in this book, are too
general to sufficiently constrain an implementation or support
useful analysis. It would make no sense to instantiate them as
they are without specializing them first. Type definitions like
these define the essence of the elements of the style. For exam-
ple, a style guide for the client-server style will define the com-
ponent types client and server, define the connector type request/
reply connector, and specify how their interfaces differ (for example,
that clients make requests of servers, who in turn reply to clients).
Such abstract types, however, do not provide any application-
specific semantics for the components (for example, whether a
server supplies Web pages or processes banking transactions).

Types might specialize more general types in domain-
specific ways, such as a controller servlet that takes requests
from ATMs in a banking system, or a sensor component type,
used in an avionics application. Or they might be technology-
specific, such as an ASP.NET component, a Java servlet, an
Enterprise JavaBean (EJB), a MySQL database, or a database
connector. Like an abstract class in Java, these are usually still too
general to drive an implementation or support useful analysis.

Architects need to define application-specific specializations
of those types that contain enough information so that instances
that populate a view can be implemented and analyzed. We’ll
call these application-specific types. Document these types in your
view’s supporting documentation. Application-specific types
provide application-specific semantics, such as a detailed behav-
ior specification (such as showing how a request is processed)
or refined interfaces (such as refining the general notion of a
“request” with a specific set of request types). The type defini-
tion should also characterize the number of interface types
(ports for components, roles for connectors) that instances of
the type can have.

Component-and-connector types, whether introduced in
style guides or as application-specific specializations, are useful
to identify elements with common behavior, interfaces, sub-
structure, relations to implementation elements, and so on.
Localizing this information in a type definition (as opposed to
replicating it across each instance of an implied type) improves
understandability and simplifies the overall documentation.

In many cases the use of component-and-connector types
allows one to conveniently map a component type (and by
extension, all of its instances) to its implementation in a mod-
ule view. For example, if a set of name-lookup servers in a C&C

A style is a specialization
of another style if it is 
consistent with that 
style—that is, doesn’t 
violate it—and adds 
more constraints to its 
element types, relation 
types, and/or topologi-
cal restrictions. 

Document application-
specific types you 
introduce in the view’s 
element catalog, part of 
a view’s supporting 
documentation. Ele-
ment catalogs are dis-
cussed in Section 10.1.

This flow from a style’s 
types to application-
specific types to 
instances constitutes a 
spectrum of design, 
which is discussed in 
Section 6.1.3.
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view are defined as instances of the NameLookupServer type
(a specialization of the client-server style’s Server type), one
might expect to find a corresponding module that implements
the behavior of all instances of such a server. A mapping
between some module and the NameLookupServer type would
indicate that every instance of the NameLookupServer corre-
sponds to that module. 

ADVICE

Component-and-Connector Types
• When several components or connectors of a view share the same form and

behavior (beyond what is specified in the style), define a common, application-
specific type for them.

• Define application-specific types that cover all your components. This gives
the reader one place to look for all component-and-connector details, rather
than sometimes looking at type definitions and sometimes looking at
instance information.

• The definition of a component type or connector type should explain the gen-
eral computational nature and form of each of its instances.

• Application-specific types should provide enough information so that an
architecture built from their instances can be correctly implemented and use-
fully analyzed.

• The component-and-connector types instantiated in a particular C&C view
should be explained by referring to the appropriate style guide that enumer-
ates and defines them, or through a catalog of application-specific types
defined as part of the architecture.

• The definition of a component or connector type should characterize the
number and type of interfaces (ports for components, roles for connectors)
that instances of the type can have.

• A C&C view’s primary presentation depicts only component-and-connector
instances; no component types should appear in the view’s primary
presentation.

• When mapping between views, map modules to C&C types (not instances).

3.2.3 Relations

The primary relation within a C&C view is attachment. Attach-
ments indicate which connectors are attached to which com-
ponents, thereby defining a system as a graph of components
and connectors. Specifically, an attachment is denoted by asso-
ciating (attaching) a component’s port to a connector’s role. 

Mappings between 
C&C and module views 
are discussed in more 
detail in Section 3.5.
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A valid attachment is one in which the ports and roles are
compatible with each other, under the semantic constraints
defined by the style. For example, in a call-return architecture,
you should confirm that all “calls” ports are attached to some
call-return connector. At a deeper semantic level, you should
ensure that a port’s protocol is consistent with the behavior
expected by the role to which it is attached.

ADVICE

Use the following guidelines when attaching compo-
nents to connectors:

• You can depict attachment simply by connecting the
ports of components in the diagram. In this case, or in
any case where the context makes clear what roles
are being attached, you don’t need to represent roles
explicitly in the diagram. 

• Attach a connector to a port of a component, not
directly to a component.

• If it might not be clear that it is valid to attach a given
port to a given role, provide a justification in an anno-
tation in the diagram or in the rationale section for the
view.

• Attaching connectors between ports annotated with a
multiplicity factor (such as [5] or [0..10]) is a great
source of ambiguity. For example, if you connect a
port of multiplicity 3 to a port of multiplicity 22, what
does that mean? If you connect two ports with the
same multiplicity (greater than 1), which ports on one
component are connected to which ports on the
other? If you use this notation, explain what you mean.

A second kind of relation is interface delegation. When a com-
ponent or connector has a subarchitecture, it is important to
document the relationship between the internal structure and
the external interfaces of that component or connector. The
relationship can be documented using interface delegation
relations. Such relations map internal ports to external ports
(for components) or internal roles to external roles (for con-
nectors). Some notations provide specific graphical elements
to characterize this relationship. Figure 3.2 shows an example
of interface delegation in UML notation. UML “delegation
connectors” are used to represent interface delegation. 

It is possible to estab-
lish an interface delega-
tion between two ports 
of different types. It is 
also possible to relate 
multiple internal ports to 
a single external port. If 
you do either of these, 
make sure to explain 
what that delegation 
means and why it’s valid, 
in the element catalog 
entry for that view.

Describing C&C views 
with UML is covered in 
detail in Section 3.4.3 
and Appendix A.
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3.2.4 Properties

An element (component or connector) of a C&C view will have
various associated properties. Every element should have a
name and type. Additional properties depend on the type of
component or connector. The properties are needed to guide
the implementation and configuration of components and
connectors, but the architect should also define values for the
properties that support the intended analyses for the particu-
lar C&C view. For example, if the view will be used for perfor-
mance analysis, latencies, queue capacities, and thread priorities
may be necessary. The following are examples of some typical
properties and their uses:

• Reliability. What is the likelihood of failure for a given com-
ponent or connector? This property might be used to help
determine overall system reliability.

• Performance. What kinds of response time will the compo-
nent provide under what loads? What kinds of latencies and
throughputs can be expected for a given connector? This
property can be used with others to determine system prop-
erties such as response times, throughput, and buffering
needs.

• Resource requirements. What are the processing and storage
needs of a component or a connector? This property can be
used to determine whether a proposed hardware configura-
tion will be adequate.

• Functionality. What functions does an element perform?
This property can be used to reason about overall computa-
tion performed by a system.

• Security. Does a component or a connector enforce or pro-
vide security features, such as encryption, audit trails, or

Figure 3.2
A UML component diagram 
showing the subarchitec-
ture of a component called 
Catalog. UML delegation 
connectors associate the 
ports of Catalog with 
the ports of internal 
components.
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authentication? This property can be used to determine sys-
tem security vulnerabilities.

• Concurrency. Does this component execute as a separate pro-
cess or thread? This property can help to analyze or simu-
late the performance of concurrent components and
identify possible deadlocks.

• Tier. For a tiered topology, what tier does the component
reside in? This property helps to define the build and
deployment procedures, as well as platform requirements
for each tier.

Ports and roles also may have properties associated with
them. For example, maximum sustainable request rates may
be specified for a server port.

ADVICE

To illustrate what not to do, Figure 3.3 presents an example of a poorly docu-
mented C&C view diagram. 

Tiers are defined and 
discussed in Section 
4.6.2.

Figure 3.3
A poorly documented C&C view diagram. It does not have a key; it portrays an interface (assuming that 
“API” has the common meaning of an interface) as a component; it uses different shapes for the same type of 
component; it uses the same shape for different types of components and connectors; it confuses the context 
with the system to be built; its use of arrows is not explained; and its components do not have ports.

UI

Server1

API

CORBA Server2

Communication Substrate
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PERSPECTIVES

Are Complex Connectors Necessary?

In this book we treat connectors as first-class design elements for documenting
runtime-oriented views: Connectors can represent complex abstractions; they
have types and interfaces, or roles; and they require detailed semantic docu-
mentation. But couldn’t one simply use a mediating component for a complex
connector? For example, in Figure 3.4, the complex connector Connector 1
gets replaced by the component Component 1 and two (presumably) simpler
connectors. For instance, Connector 1 might be a pipe that implements buff-
ered data flow between components. On the other hand, Component 1 might be
a buffer, and Connector 1A and Connector 1B might be simple procedure calls
to read or write to the buffer.

In other words, are complex connectors needed? The answer is yes. Here’s why.

First, complex connectors are rarely realizable as a single mediating component.
Although most connector mechanisms do involve runtime infrastructure that
carries out the communication, that is not the only thing involved. In addition, a
connector implementation requires initialization and finalization code; special
treatment in the components that use the connector, such as using certain kinds
of libraries; global operating system settings, such as registry entries; and others.

Second, use of complex connector abstractions often supports analysis. For
example, reasoning about a data flow system is greatly enhanced if the connec-
tors are pipes rather than procedure calls or another mechanism, because well-
understood calculi are available for analyzing the behavior of data flow graphs.
Additionally, allowing complex connectors provides a single home where one
can talk about their semantics. For example, in Figure 3.4, I could attach a single
description of the protocol of interaction to the complex connector. In contrast,
the lower model would require me to combine the descriptions of two connec-
tors and a component to explain what is going on.

Figure 3.4
A complex connector and the alternative of representing it as a component with two simpler connectors

Connector 1
Component A Component B

Component A Component 1
Connector 1A Connector 1B

Component B



ptg

136 ■ Chapter 3: Component-and-Connector Views

Third, using complex connectors helps convey an architect’s design intent.
When components are used to represent complex connectors, it is often no
longer clear which components in a diagram are essential to the application-
specific computation and which are part of the mediating communication infra-
structure.

Fourth, complex connector abstractions can significantly reduce clutter in an
architecture model. Few would argue that the lower of the two diagrams in Fig-
ure 3.4 is easier to understand. Magnify this many times in a more complex dia-
gram, and it becomes obvious that clarity is served by using connectors to
encapsulate details of interaction.

—D.G.

3.3 What C&C Views Are For
Component-and-connector views are commonly used to show
developers and other stakeholders how the system works. The
C&C views (with associated behavior documentation) specify
the structure and behavior of the runtime elements. In partic-
ular, these views allow you to answer questions, such as the
following:

• What are the system’s principal executing components, and
how do they interact?

• What are the principal shared-data stores?

• Which parts of the system are replicated, and how many times?

• How does data progress through a system as it executes?

• What protocols of interaction are used by communicating
entities?

• What parts of the system run in parallel?

• How can the system’s structure change as it executes?

Component-and-connector views are also used to reason
about runtime system quality attributes, such as performance,
reliability, and availability. In particular, a well-documented
view allows architects to predict overall system properties,
given estimates or measurements of properties of the individ-
ual elements and interactions. For example, to determine
whether a system can meet its real-time scheduling require-
ments, you usually need to know the execution time of each
process component (among other things). Timing behavior
such as this would be represented as properties of the elements.
Similarly, documenting the reliability of individual elements
and communication channels supports an architect when esti-
mating or calculating overall system reliability. In some cases,

It’s a good idea to pro-
vide comprehensive 
behavior documenta-
tion for each compo-
nent (or component 
type). Each such model 
documents the possible 
behaviors of a compo-
nent. When combined 
with the topological 
information in a C&C 
view, you can trace pos-
sible behaviors through-
out the system, rather 
than just within a 
component.
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analyses such as these are supported by formal, analytical mod-
els and tools. In others, it is achieved by judicious use of rules
of thumb and past experience.

PERSPECTIVES

Choosing Connector Abstractions

If you’ve committed to a particular C&C style, then the
types of connectors to use in documenting a C&C view
are already prescribed. But in other cases the architect
has some freedom to determine what kinds of connec-
tors to use and how to represent them in documentation.
This choice often revolves around how much implemen-
tation structure to expose. On the one hand, a connector
might be used to encapsulate a complex interaction as a
single abstraction. On the other hand, a complex form of
interaction can be represented as a set of components
and connectors that implement it. 

To illustrate, consider two ways of documenting a publish-
subscribe system shown in Figure 3.5. The first version
shows five components communicating through an event
bus, which describes an interaction that ensures that each
published event is delivered to all subscribers of that
event. The second version shows the same five compo-
nents communicating with the assistance of a central-
ized dispatcher component responsible for distributing
events via procedure calls to the other components.

Figure 3.5
Two potential versions of a publish-subscribe system. In Version 1, all communica-
tion takes place over an event bus; in Version 2, communication occurs with the 
assistance of a dispatcher component.

The publish-subscribe 
style is described in 
Section 4.4.1.

C3

C1

C4 C5C3

C2 C1

C4 C5

C2

Version 1 Version 2

Publish-subscribeDispatcher
Event producer/
consumer

PortAnnounce-notify

Event
Dispatcher

Key
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There are several advantages to using the first approach:

• It simplifies the description, since there are fewer ele-
ments in the view. 

• It clearly distinguishes the parts of the architecture
that are used for interaction (the connectors) and the
parts that are used to provide the computational func-
tions of the system (the components). 

• It permits a variety of implementations to be used to
effect the event-based interactions. For instance,
instead of a single dispatcher, there could be several,
or alternatively each component could be responsible
for sending its events to the required listeners.

• It provides a natural way to decompose documenta-
tion into multiple views, where the specific implemen-
tation would be represented in its own view as a
refinement of the event bus connector.

On the other hand, the second approach has some
advantages:

• It clearly indicates what kinds of mechanisms are
being used to carry out event announcement. 

• It may better support reasoning about runtime proper-
ties, such as delays, order guarantees, and so on,
where knowledge of the specific mechanisms for dis-
patch is needed.

• It fits with what your chosen notation allows: For
instance, because UML does not provide a way to
represent rich connectors, we are forced to adopt the
second approach.

Thus the choice of connector abstraction will depend on
taste, needs for analysis, and the amount of implementa-
tion detail known to the architect when the architecture is
documented. In practice, however, documentation usu-
ally errs on the side of putting in too much detail, using
low-level communication mechanisms and additional
components instead of defining the higher-level interac-
tion abstractions that they represent.

—D.G.

Refinement is dis-
cussed in Section 6.1.
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3.4 Notations for C&C Views
3.4.1 Informal Notations

As always, box-and-line drawings are available to represent
C&C views. Figure 3.1 is an example of a C&C diagram that
uses an informal notation (explained in the diagram’s nota-
tion key). Although informal notations can convey limited
semantics, following some guidelines can lend rigor and depth
to the descriptions. The primary guideline is to assign each
component type and each connector type a separate visual
form (symbol), and to list each of the types in a key.

Beyond just naming the types, however, their meaning
should be specified. For example, Figure 3.1 shows a connec-
tor of type Publish-Subscribe, but the diagram does not show
the connector’s capacity, the type of data it can transmit,
whether or not delivery is guaranteed, or a host of other impor-
tant considerations. These details can be documented in the
style guide in which the type is defined, or as properties in the
C&C view’s element catalog.

Take special care with connectors. A common source of
ambiguity in most existing architecture documents is the
meaning of connectors, especially ones that use arrows as their
visual symbol. Make sure to say what the arrow’s direction
means.

3.4.2 Formal Notations

Most, if not all, architecture description languages (ADLs) can
be used to describe component-and-connector types, con-
straints on topologies of component-and-connector graphs,
and properties that can be associated with the elements of the
graph. Tools may then process an architecture description by
referring to the meanings of the types, the constraints, and the
properties. For example, some ADL-associated tools can tell you
if a set of processes can be scheduled so that, given the resources
of the CPU, they will all meet their processing deadlines.

3.4.3 Semiformal Notations: UML

This section introduces some basic UML modeling constructs
for representing components and connectors. Appendix A
goes into more depth about using UML to represent other fac-
ets of architecture.

Components in UML

UML components are a good semantic match to C&C components
because they permit intuitive documentation of important

Element catalogs docu-
ment the architecture 
elements that appear in 
a view. They are dis-
cussed in Section 10.1.

See “Perspectives: 
Quivering at Arrows”
on page 41, in the 
prologue.

Consider the following 
criteria if selecting an 
ADL: How standardized 
is it? What analysis or 
code generation does it 
enable? Does it lend 
itself only to represent-
ing certain styles, and if 
so, are those styles the 
ones you need for your 
architecture? Will it let 
you represent all of the 
views of the architec-
ture that you need? Is it 
extensible? How robust 
are its tools? Is it com-
mercially supported? Is 
there a large and active 
user community with 
whom you can interact?
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information such as interfaces, properties, and behavioral
descriptions. UML components also distinguish between com-
ponent types and component instances, which is useful when
defining view-specific component types.

Because C&C components that appear in a view are instances,
they should be represented using UML component instances,
as shown in Figure 3.6. The visual distinction between UML
component types and instances is found in the naming conven-
tion. Names that do not include a colon (:) are types; names
that include a colon are instances, with the instance name
appearing to the left of the colon. Anonymous instances, such
as the instance of Account Database in Figure 3.6, are shown by
starting the name with a colon.

You can define a component type in a UML diagram in a
style guide you’re writing or in a view’s element catalog for a
view-specific type. You should specify attributes common to all
instances on the component type. If creating a view-specific
type, you should link the type definition to a type defined in
your style guide, such as by placing a stereotype on the type def-
inition, as shown in Figure 3.7.

UML ports are a good semantic match to C&C ports. A UML
port can be decorated with a multiplicity, as shown in the left
portion of Figure 3.8, though this is typically done only on
component types. The number of ports on component
instances, as shown in the right portion of Figure 3.8, is typi-

Section 3.2.2 discusses 
types and instances of 
components and 
connectors.

The element catalog of 
an architecture view 
provides information 
about the elements in 
that view. Element cata-
logs are described in 
Section 10.1.

Figure 3.6
A UML representation of a 
portion of the C&C view 
originally presented in 
Figure 3.1. This fragment 
only shows how four com-
ponents are represented in 
UML. Main and Backup are 
instances of the same com-
ponent type (Account 
Server).

Main:
Account Server

: Account
Database

Backup:
Account Server

: Administrative

Key: UML

Figure 3.7
A UML representation of 
a C&C component type. 
The Account Server
component type is a 
specialization of the Server 
component type from the 
client-server style (see 
Section 4.3.1).

«Server»
Account Server

Key: UML
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cally bound to a specific number. Components that dynamically
create and manage a set of ports should retain a multiplicity
descriptor on instance descriptions.

UML provides a lollipop/socket notation for showing pro-
vided and/or required interfaces attached to ports. Each port
can have an arbitrary number of provided and required inter-
faces. Figure 3.9 shows the same components in Figure 3.8, but
now each port of the Account Database type includes one pro-
vided interface (the lollipop), which can be further elaborated
in UML by supplying additional information, such as methods
or attributes. The instance of Account Database on the right has
exactly two Server ports, and the interfaces are omitted. 

The lollipop/socket notation of UML can be confusing if
not used carefully. If the style of connector interaction is some
form of call-return, then the lollipop and socket correspond to
calls that are provided and required, respectively. In a client-
server connector, a single port might provide and require
something at the same time, in which case you would adorn the
same port with both a lollipop and a socket. But in other cases,
where “provides” and “requires” are the wrong intuition, the
notation should be avoided. In a pipe-and-filter system, for
example, what does a filter interface “provide” and what does
it “require?” In that case, just document the port by itself.

Even where appropriate, you normally omit lollipops and
sockets from a C&C view (which shows instances) and use them
only on the component type definitions. Often, full interface

Figure 3.8
A UML representation of 
the ports on a C&C compo-
nent type (left) and a com-
ponent instance (right). The 
Account Database com-
ponent type has two types 
of ports, Server and Admin
(denoted by the boxes on 
the component’s border). 
The Server port is defined 
with a multiplicity, meaning 
that multiple instances of 
the port are permitted on 
any corresponding compo-
nent instance. 

: Account
Database

«Repository»
Account Database

Server [1..5] Server Server

Admin Admin

Key: UML

Figure 3.9
Each port on the Account 
Database type now 
includes one supplied inter-
face (the lollipop), which 
can be further elaborated in 
UML by supplying addi-
tional information, such as 
methods or attributes. The 
instance of Account 
Database on the right has 
exactly two Server ports, 
and the interfaces are 
omitted.

Server[1..5]

Admin
«Repository»

Account Database

Server Server

Admin: Account
Database

Key: UML
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details will be provided with a component type definition, and
only ports will be shown in a C&C primary presentation. This
reduces visual clutter without losing the instances’ precise
interface definitions. 

Connectors in UML

While C&C connectors are as semantically rich as C&C compo-
nents, the same is not true of UML connectors. UML connectors
cannot have substructure, attributes, or behavioral descrip-
tions. This makes choosing how to represent C&C connectors
more difficult, as UML connectors are not always rich enough.

You should represent a “simple” C&C connector using a
UML connector—a straight line. Many commonly used C&C
connectors have well-known, application-independent seman-
tics and implementations, such as function calls or data-read
operations. If the only information you need to supply is the
type of the connector, then a UML connector is adequate. Call-
return connectors can be represented by a UML assembly con-
nector, which links a component’s required interface (socket)
to the other component’s provided interface (lollipop). You
can use a stereotype to denote the type of connector. If all con-
nectors in a primary presentation are of the same type, you can
note this once in a comment rather than explicitly on each
connector, to reduce visual clutter. Attachment is shown by
connecting the endpoints of the connector to the ports of
components. Figure 3.10 illustrates some of these points.

Connector roles cannot be explicitly represented with a
UML connector because the UML connector element does
not allow the inclusion of interfaces (unlike the UML port,
which does allow interfaces). The best approximation is to
label the connector ends and use these labels to identify role
descriptions that must be documented elsewhere.

If you also need to supply simple descriptive information,
such as attribute-value pairs, attach it to a UML connector by
using tagged values or a comment.

The primary presenta-
tion is the (typically) 
graphical portion of an 
architecture view, as 
described in Chapter 10.

Figure 3.10
A UML representation of a 
“simple” C&C connector 
between two components. 
The type of the connector is 
noted by a stereotype 
(<<DB Access>> in this 
case).

Server Server

Admin DB accessor

«DB Access»
: Account
Database :Administrative

Key: UML
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You should represent a “rich” C&C connector using a UML
component, or by annotating a straight-line UML connector
with a tag or other auxiliary documentation that explains the
meaning of the complex connector. 

Figure 3.11 shows an example of representing a C&C con-
nector using a UML component. In this approach, roles are
represented using UML ports. Attachment relations are repre-
sented by attaching the UML ports of the components and the
connector using a UML connector. Although it’s not ideal to
use the same graphical convention as for a C&C component, it
is sometimes necessary in UML. 

Sometimes it is better to use a straight line (possibly stereo-
typed) with a tag that explains the complex connector. For
example, suppose you have ten clients, each of which is talking
over the same nontrivial asynchronous protocol to some
server. Introducing ten extra components would make for a lot
of clutter, when a stereotyped straight-line connector would be
at least as clear.

A C&C Primary Presentation in UML

The C&C primary presentation found in Figure 3.11 is an
example of a combined view that combines the client-server,
publish-subscribe, and shared-data styles presented in Chapter 4.
Figures 3.12 and 3.13 show how to represent the same informa-
tion using UML.

Figure 3.12 defines the component-and-connector subtypes
that are view specific. Each type uses a UML stereotype to iden-
tify the corresponding component or connector type defined
in one of the three cited style guides. Multiplicities are attached

See “Perspectives: Are 
Complex Connectors 
Necessary?” on page 
135, in this chapter.

Figure 3.11
A UML representation of 
a “rich” C&C connector 
used to connect three 
components. The Publish-
Subscribe connector is 
represented using a UML 
component. Its roles are 
represented using UML 
ports. Attachments 
between C&C ports and 
roles is represented using 
UML connectors between 
the respective UML ports.

Pub

Pub Sub Sub Sub

SubSubSub

Pub Pub

Pub Pub

: Publish-Subscribe

c1: Client Teller cX: Client Teller cN: Client Teller

Figure 3.11
A UML representation of 
a “rich” C&C connector 
used to connect three 
components. The Publish-
Subscribe connector is 
represented using a UML 
component. Its roles are 
represented using UML 
ports. Attachments 
between C&C ports and 
roles is represented using 
UML connectors between 
the respective UML ports.

Pub

Pub Sub Sub Sub

SubSubSub

Pub Pub

Pub Pub

: Publish-Subscribe

c1: Client Teller cX: Client Teller cN: Client Teller
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to some of the ports to note where multiple connections are
permitted and to set bounds on the number of connections.
This information should be in the view’s element catalog.

Figure 3.13 shows the view’s primary presentation, as repre-
sented using UML. Like the Publish-Subscribe connector, the
Failover Request/Reply connector is represented using a UML
component; this allows the details of the failover semantics to
be formally documented, and it simplifies the representation
of an n-ary connector. 

In addition to the advice presented on representing basic C&C
concepts in UML, we had to decide how to represent the implied
variability from Figure 3.11. That figure gives the intuition of a
variable number of Client Teller components, any of which may
be connected to one or both of the Account Server components at
some point in time. 

Using a semiformal notation like UML forces us to be more
precise about the meaning that was largely implied in the
informal version. Representing a variable number of compo-
nents is not easy using a UML instance diagram. We opted for
a naming convention of using Client Teller components c1, cX,

Figure 3.12
A UML representation of 
component-and-connector
types for Figure 3.11. Each 
type uses a stereotype to 
link the view-specific 
subtypes to the types 
defined in the style guides.
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and cN to fill in for an arbitrary number of clients (1..N). The
meaning of this convention would have to be documented in
the view, as it is not a standard UML convention.

UML contains many of the right modeling elements to doc-
ument C&C components in an intuitive way, but it suffers from
visual blandness. Where an informal C&C notation could use
different shapes for different component types to highlight
important distinctions, all UML component types are graphi-
cally depicted using the same rectangular box. UML permits such
visual customization in theory, but tool support is lacking. Similarly,
different types of connectors cannot be quickly distinguished

Figure 3.13
A UML representation of 
the primary presentation 
found in Figure 3.11
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Server

Server Server
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Account Server
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by, for example, noting different line conventions; instead, the
reader must distinguish between textual descriptions on lines or
in boxes, which also tends to introduce visual clutter.

ADVICE

UML for C&C

• Use UML components and ports to model C&C com-
ponents and ports. 

• Always show a component’s ports explicitly, even
though UML doesn’t require it.

• Use a <<stereotype>> to indicate the type of a com-
ponent or connector instance in a view, if that type
was defined in a style guide. If the type is specific to a
view, its name appears after the colon in the instance
name.

• Represent a simple C&C connector with a straight-line
UML connector or (if it’s a call-return connector) with
a UML assembly connector (a lollipop/socket pair). 

• Represent a more complex C&C connector as a UML
component, possibly with substructure, or with a
straight-line UML connector annotated by a tag that
explains the meaning of the connector.

• Use the lollipop/socket connector in UML only for call-
return connectors. Avoid it otherwise.

• Don’t attach connectors directly to a component;
attach connectors to a specific port of a component.

PERSPECTIVES

Data Flow and Control Flow Models

Two representations that have long been used to docu-
ment software systems—for so long, in fact, that we
might consider them archaic today—are data flow and
control flow models. These models show how data and
control flow through a system during execution. Remem-
ber data flow diagrams from Structured Analysis?
They’re an example, and probably the best known exam-
ple, of a notation for a data flow model. Going back still
farther in time, flow charts are a notation for control flow
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models. Once ubiquitous forms of software documenta-
tion, both have receded in usage, but they can still be
found in pockets of practice. Many software engineers
trained in, for example, data flow diagrams see similar-
looking C&C views of architecture and ask “What’s the
difference?”

Plenty. First, if the nodes in the diagrams are not archi-
tecture elements—pieces of programs, for example—
then the diagrams are simply not architectural. But what
if the elements shown are architectural elements? Then
they can be said to be architecture diagrams, but they
are still not full-fledged architecture views. A C&C view
would show ports, feature-rich connectors with specified
connector protocols, behavioral and interface documen-
tation, mechanisms for variability, and design rationale.

Both data flow models and control flow models can be
seen as derivatives of a corresponding C&C view. You
can derive a data flow model from a C&C view by exam-
ining the connector protocols to determine in which
direction data can flow between components, then
replacing the C&C connectors that carry data with simple
one- or two-headed arrows indicating flow of data and
eliminating C&C connectors that don’t carry data. You can
take a similar approach to deriving a control flow model.

But why would you? First of all, replacing connectors
with arrows isn’t as easy as it sounds; see “Perspectives:
Quivering at Arrows” in Section P.5 for a discussion of the
difficulties associated with even a simple connector. Now
imagine replacing a complex connector with an arrow
when that connector involves exception handling, time-
outs, callbacks, or multistage negotiated protocols. 

Second, for all but the simplest architectures, it’s hard to
imagine you’d want an architecture document to contain
the derived models but not their full-fledged C&C view
counterparts. Granted, a data flow model or a control
model highlights only certain aspects of a view in order
to simplify discussion or to focus on specific properties,
but those properties can be highlighted in the full view.
And keeping them separate means having more documen-
tation to maintain, because it’s unlikely that a tool will
keep the view and the derived model consistent with each
other; you’ll have to do that manually when either changes.

Third, for most analysis that you’d want to perform using
a data flow or control flow model, you’re going to need

The flow chart is a most 
thoroughly oversold 
piece of program docu-
mentation. . . . The 
detailed blow-by-blow 
flow chart . . . is an 
obsolete nuisance suit-
able only for initiating 
beginners into algorith-
mic thinking.

—Fred Brooks, The
Mythical Man-Month
(1995)

See “Perspectives: 
Quivering at Arrows” on 
page 41, in the prologue.
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the information in the full C&C view that those models
throw away. For example, control flow diagrams are use-
ful for tracking down bugs in a federation of components.
But so are the protocol specifications that dictate how
those components interact.

Data flow and control flow models are only architectural
if their nodes are architecture elements. But even if they
are, they are at best only shadows of full-fledged archi-
tecture views. Think carefully before you invest in creat-
ing and maintaining them.

—D.G. and P.C.

3.5 Relation to Other Kinds of Views
Component-and-connector views differ from module views in
fundamental ways. In particular, the elements of a C&C view
represent instances of runtime entities, whereas the elements
of a module view represent implementation entities. For exam-
ple, consider a system that has 10 identical clients connected
to a single server. That’s 11 components and 10 connectors—
but exactly 2 modules (assuming the simplest mapping between
views).

An important consideration is how to relate the C&C and
module views of a system. Often, the relationship between a
system’s C&C views and its module views may be complex. 

• The same code module might be executed by many of the
elements of a C&C view. 

• A single component of a C&C view might execute code
defined by many modules. 

• A C&C component might have many points of interaction
with its environment, each defined by the same module
interface.

• Since not every module is necessarily shown in every mod-
ule view, a component in a C&C view may not map to any
module in a particular module view at all.

Figure 3.14 shows both a module view and a C&C view of the
same system:

• The module view represents a typical implementation that
one might find using the C programming language. In this
view, the relation between modules is uses, as described in
Chapter 2. The module main starts things off, using the facil-
ities of four modules—To-upper, To-lower, Split, and Merge—
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that do the bulk of the work. The main module determines
how inputs from one are fed to others, using a configura-
tion module, Config. To-upper, To-lower, Split, and Merge use
a standard I/O library (stdio) to carry out the communica-
tion. Note that from a code perspective, those worker mod-
ules do not directly use the services of one another, but
rather do so via the I/O library.

• The C&C view shows the same system described in the pipe-
and-filter style. Each of the components is a filter that trans-
forms character streams. Pathways of communication between
the components are explicit, indicating that during run-
time, the pipe connectors will mediate communication of
data streams among those components.

The mapping between these two views is illustrated in Table 3.2.
It shows which modules contribute to the implementation of
which C&C elements. As you can see, there is an m-to-n rela-
tionship for many of the elements of each view. 

Table 3.2 Mapping between module and C&C views for the 
example in Figure 3.14

C&C View Module View

System as a whole main

Split split, config, stdio

To-lower to_lower, config, stdio

To-upper to_upper, config, stdio

Merge merge, config, stdio

Each pipe stdio

The pipe-and-filter style 
is described in Section 
4.2.1.

The correspondence 
between the elements 
in a system’s module 
views and the elements 
in its C&C views should 
be documented as part 
of the documentation 
that applies to more 
than one view. This 
mapping between 
views is described in 
Section 10.2.

Figure 3.14
Component-and-
connector and module 
views of a simple system 
that accepts a stream of 
characters as input and 
produces a new stream of 
characters identical to the 
original but with uppercase 
and lowercase characters 
alternating

x y

Key Key

Filter Module x uses yPipe Port

C&C View Module View

main

MergeSplit

To-upper

To-lower

merge

stdioconfig

to_upperto_lowersplit
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In many situations, however, module and C&C views have a
more straightforward relationship. Indeed, systems that have
natural correspondences between these two kinds of views are
often much easier to understand, maintain, and extend. Here
are two examples:

• Each component has a type that can be associated with an
implementation module, such as a class. In this case the
name of the component type will typically be taken to be the
same as the corresponding module, making it trivial to
relate the two views.

• Each module has a single runtime component associated
with it, and the connectors are restricted to calls procedure
connectors. This would be the case for an object-oriented
implementation in which each class has a single instance. 

In addition to relations between C&C views and module
views, there is often a close correspondence between C&C
views and deployment views. Because C&C views represent
runtime elements, it is useful to relate these elements to the
physical platforms and communication channels on which
they execute using an allocation view.

3.6 Summary Checklist
• Component-and-connector views describe structures con-

sisting of elements that have runtime presence, such as pro-
cesses, objects, clients, servers, and data stores. Additionally,
C&C views include as elements the pathways of interaction,
such as communication links and protocols, information
flows, and access to shared storage.

• Component-and-connector views show instances, not types.
Style-specific types are defined in a style guide; application-
specific types are described in the view documentation.

• Components have interfaces, which are called ports.

• Connectors have interfaces, which are called roles.

• Connectors need not be binary: they may have more than
two roles. 

• If a component’s primary purpose is to mediate interaction
between a set of components, consider representing it as a
connector instead.

• Connectors can, and often do, represent complex forms of
interaction. What seems to be a semantically simple proce-
dure call can be complex when carried out in a distributed
setting, involving runtime protocols for time-outs, error
handling, and locating the service provider.

Deployment views are 
discussed in Section 5.2.
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• Be clear about which style you are using, by referring to an
appropriate style guide.

• Where helpful, define component-and-connector types spe-
cific to the view as specializations of the types defined in the
corresponding C&C style. These can help indicate semantic
relations between similar components, and to establish cor-
respondence between the module types that implement
their functionality. 

• Always show a component’s ports explicitly. Always attach a
connector to a port of a component, not directly to a
component.

• If it is not clear that it is valid to attach a given port with a
given role, provide a justification in the rationale section for
the view or mark the attachment to be revisited later.

• Make clear which ports are used to connect the system to its
external environment.

• Data flow and control flow models are best thought of as
projections of C&C views, but they are not views. When cre-
ating such models, be explicit about the semantic criteria
used to determine where the arrows go. Data flow and con-
trol flow arrows are at best approximations to the connectors,
which define more completely the components’ interactions.

• It is often important to understand the mapping between
components in a C&C view and their respective implemen-
tation units in module views. In general, this mapping is
many-to-many. 

• You can document a C&C style using a spectrum of formal-
ity, from informal box-and-line depictions to fully formal,
analyzable descriptions. UML is an example of a semiformal
notation for representing C&C styles.

3.7 Discussion Questions
1. It is said that a C&C view illustrates a system in execution.

Does this mean that it shows a snapshot of an execution, a
trace of an execution, the union of all possible traces, some
combination, or something else?

2. As we have mentioned, component is an overloaded term.
Discuss the relationship between a component in a C&C
view and (a) a UML component and (b) a component in
the sense of the component-based software engineering
community.

3. A communication framework, such as enterprise service
bus (ESB), CORBA, or COM, can be viewed as a connector
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among components or as a component with its own sub-
structure. Which is appropriate, and why?

4. Figure 3.15 shows an overview architecture diagram for an
electronic commerce store. Assume that you are new on
the job, without knowledge of the symbology the organiza-
tion uses, or perhaps you wrote this some time ago but now
have to go back and review the system. Critique the dia-
gram. List places where you think it is misleading, and list
the questions that need to be asked—and that the diagram
fails to answer—before you can understand its meaning.

5. After you have critiqued Figure 3.15 and have enumerated
the information you believe is missing, augment the dia-
gram to make it tell a coherent story. Did you decide that
the diagram is describing code-based entities, runtime enti-
ties, or both? Did you decide that the boxes called layers
are, in fact, layers, or something else? What did you decide
the arrows mean?

3.8 For Further Reading
We are awash in stories of architects who thought they could
plug two components together with a connector, only to find
out that the component didn’t implement the right protocol,
or was otherwise badly matched with the expectations of that
connector. This is why we prescribe writing a justification
where the matchup is less than obvious. For a thoughtful treat-

Figure 3.15
An overview architecture 
diagram. Where is it 
misleading? What 
questions does the 
diagram fail to answer?

Order
Processing

Logger Inventory

User Session Shopping Cart

Product Catalog

User

Presentation Layer
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ment of element mismatch, see the paper by Garlan, Allen,
and Ockerbloom (1995).

It is tempting to treat architecture simply as an assembly of
components, but there are great conceptual advantages to be
gained from elevating connectors to the status of first-class
architecture. Mary Shaw (1996b) makes an eloquent argument
for doing so. Shaw and Garlan (1996) treat software architec-
ture in terms of components and connectors and address con-
cerns such as constructing systems as assemblies of components.
Allen and Garlan (1997) lay out the semantic foundations for
connectors as first-class entities.

Component-and-connector views can provide a basis for for-
mal analysis of qualities such as performance, reliability, secu-
rity, and privacy. Garlan and Schmerl (2006) provide a broad
introduction to such analyses.

A swarm of architecture description languages were created
in the 1990s. Medvidovic and Taylor (1997) give a tour of them
and compare members of that generation. Today only a small
number deserve mention. Acme is of that earlier generation
(see www.cs.cmu.edu/~acme [Acme 2009]). The Architecture
Analysis and Design Language (AADL) is a direct descendant
of one from that generation. Appendix C gives an architecture-
oriented overview of AADL, and the Web site at aadl.info offers
full coverage. Yahoo! Pipes can be considered an ADL, albeit a
very style-specific one; see pipes.yahoo.com/pipes (Yahoo!
2010) and the Yahoo! Pipes example in Chapter 4.

www.cs.cmu.edu/~acme
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4A Tour of Some
Component-and-
Connector Styles

4.1 An Introduction to C&C Styles
A component-and-connector (C&C) style introduces a specific
set of component-and-connector types and specifies rules
about how elements of those types can be combined. Addition-
ally, given that C&C views capture runtime aspects of a system,
a C&C style is typically also associated with a computational
model that prescribes how data and control flow through sys-
tems designed in that style.

The choice of a C&C style (or styles) will usually depend on
the nature of the runtime structures in the system. For exam-
ple, if the system will need to access a set of legacy databases,
the style will likely be based on a shared-data style. Alterna-
tively, if a system is intended to perform data stream transfor-
mation, a data flow style will likely be chosen. 

The choice of style will also depend on the intended use of
the documentation. For example, if high performance is a crit-
ical property, the style will likely be chosen to enable analysis of
performance, so that trade-offs affecting that system quality
can be assessed.

Many C&C styles exist. To make sense of the space of these
styles, we begin by describing some broad categories of com-
monly used C&C styles, and then we consider in more detail
one or more example styles in each category.

The space of C&C styles is quite large. For example, C&C
styles can differ dramatically in terms of the types of the con-
nectors that they support. Styles based on asynchronous event
broadcast (such as publish-subscribe) are quite different from
those based on synchronous service invocation. Similarly, styles
may differ in terms of the types of components that they permit or
require. For instance, some styles require a database component

In Section 4.9 we pro-
vide references for 
reading about dozens of 
C&C styles.
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to be present. Other styles may require a registry component
to enable components to find others at runtime. Styles may dif-
fer in terms of topological restrictions, such as whether the
components are assigned to tiers. They may also differ in terms
of their level of domain specificity. For example, a style to sup-
port automotive control systems will likely involve connectors
that represent specific protocols for real-time coordination.
Similarly, there exist dozens of client-server styles that differ in
subtle (or not-so-subtle) ways, depending on the nature of the
application domain they are addressing. For example, some
client-server styles allow late binding of requests for services,
where the recipient of a request is determined dynamically;
others insist on a static configuration determined when a sys-
tem is built or deployed.

One way to impose some conceptual order on the space of
C&C styles is to consider several broad categories of styles, dif-
ferentiated primarily by their underlying computational
model. In this chapter we consider examples in four such
categories.

• Call-return styles. Styles in which components interact through
synchronous invocation of capabilities provided by other
components.

• Data flow styles. Styles in which computation is driven by the
flow of data through the system.

• Event-based styles. Styles in which components interact through
asynchronous events or messages.

• Repository styles. Styles in which components interact through
large collections of persistent, shared data.

Additionally we consider several crosscutting style issues,
such as the imposition of a tiered topology, and augmentations
that allow one to reason about concurrency.

Figure 4.1 provides a birds-eye view of part of the terrain.
This figure can be interpreted as a kind of C&C style specializa-
tion hierarchy. At the top is the most general and uncon-
strained form of C&C view: namely, one that uses generic
components and connectors, with no particular constraints on
topology, behavior, and element properties. Below this are the
general categories of C&C styles distinguished largely by their
underlying computational model. Below these are specializa-
tions of these general styles. Note that a specific style may spe-
cialize more than one general category, as is the case of the
service-oriented architecture (SOA) style.

Naturally this is only a partial representation of the space of
C&C styles: there are other general categories, and there are
many styles that are specializations of these categories. Addi-

Section 6.1.4 discusses 
how styles can be pro-
gressively specialized 
from generic styles to 
domain-specific styles 
and product line.

Section 4.6.1 describes 
communicating pro-
cesses, which is a way 
to add concurrency to a 
C&C style. Section 4.6.2 
describes the notion of 
tiers, which are com-
mon in some C&C 
architectures. 
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tionally, in most real systems several styles may be used
together, often from across categories. For example, enterprise
IT applications are frequently a combination of client-server
and shared-data styles.

4.2 Data Flow Styles
Data flow styles embody a computational model in which com-
ponents act as data transformers and connectors transmit data
from the outputs of one component to the inputs of another.
Each component type in a data flow style has some number of
input ports and output ports. Its job is to consume data on its
input ports and write transformed data to its output ports.

A variety of data flow styles appear in practice. In the early
days of computing, one common data flow style was “batch
sequential,” a style in which each component transforms all of
its data before the next component can consume its outputs.
Later a form of data flow style was invented in which compo-
nents run concurrently and data is incrementally processed:
the pipe-and-filter style. Today data flow styles are common in
domains where stream processing occurs, and where the over-
all computation can be broken down into a set of transforma-
tional steps.

Figure 4.1
A partial representation of the space of C&C styles
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See Section 6.6 for a 
discussion of docu-
menting a view that 
combines more than 
one style.
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4.2.1 Pipe-and-Filter Style

Overview

The pattern of interaction in the pipe-and-filter style is charac-
terized by successive transformations of streams of data. Data
arrives at a filter’s input ports, is transformed, and then is
passed via its output ports through a pipe to the next filter. A
single filter can consume from, or produce data to, multiple
ports. Modern examples of such systems are signal-processing
systems, systems built using UNIX pipes, the request-process-
ing architecture of the Apache Web server, the map-reduce
paradigm for search engines, Yahoo! Pipes for processing RSS
feeds, and many scientific computation systems that have to
process and analyze large streams of experimental data.

Elements, Relations, and Properties

The basic form of pipe-and-filter style, summarized in Table 4.1,
provides a single type of component—the filter—and a single

Table 4.1 Summary of the pipe-and-filter style

Elements • Filter, which is a component that transforms data read on its input 
ports to data written on its output ports. Filters typically execute 
concurrently and incrementally. Properties may specify processing 
rates, input/output data formats, and the transformation executed 
by the filter.

• Pipe, which is a connector that conveys data from a filter’s output 
ports to another filter’s input ports. A pipe has a single data-in and 
a single data-out role, preserves the sequence of data items, and 
does not alter the data passing through. Properties may specify 
buffer size, protocol of interaction, and data format that passes 
through a pipe.

Relations The attachment relation associates filter output ports with data-in 
roles of a pipe, and filter input ports with data-out roles of pipes.

Computational Model Data is transformed from a system’s external inputs to its external 
outputs through a series of transformations performed by its filters.

Constraints • Pipes connect filter output ports to filter input ports. 
• Connected filters must agree on the type of data being passed 

along the connecting pipe.
• Specializations of the style may restrict the association of compo-

nents to an acyclic graph or a linear sequence—sometimes called 
a pipeline.

• Other specializations may prescribe that components have certain 
named ports, such as the stdin, stdout, and stderr ports of UNIX 
filters.

What It’s For • Improving reuse due to the independence of filters
• Improving throughput with parallelization of data processing
• Simplifying reasoning about overall behavior
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type of connector—the pipe. A filter transforms data that it
receives through one or more pipes and transmits the result
through one or more pipes. Filters typically execute concur-
rently and incrementally. A pipe is a connector that conveys
streams of data from the output port of one filter to the input
port of another filter. Pipes act as unidirectional conduits, pro-
viding an order-preserving, buffered communication channel
to transmit data generated by filters. In the pure pipe-and-filter
style, filters interact only through pipes. 

Because pipes buffer data during communication, filters can
act asynchronously and concurrently. Moreover, a filter need
not know the identity of its upstream or downstream filters. For
this reason, pipe-and-filter systems have the nice formal prop-
erty that the overall computation can be treated as the func-
tional composition of the computations of the filters, allowing
the architect to reason about the end-to-end behavior as a sim-
ple composition of the behaviors of the parts.

ADVICE

Typical properties to document for pipes include 

• Pipe capacity (that is, buffer size)

• How end-of-data is signaled

• What form of blocking occurs when writing to a pipe whose buffer is full or
reading from a pipe that is empty

Properties of filters can include 

• Whether or not each filter is a separate process 

• The data stream transformation each performs

What the Pipe-and-Filter Style Is For

Systems conforming to a pipe-and-filter style are typically used
in data transformation systems, where the overall processing
can be broken down into a set of independent steps, each
responsible for an incremental transformation of its input
data. The independence of the processing done by each step
supports reuse, parallelization, and simplified reasoning about
overall behavior. 

Often such systems constitute the front end of signal-pro-
cessing applications. These systems typically receive sensor
data at a set of initial filters; each of these filters compresses the
data and performs initial filtering. “Downstream” filters reduce
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the data further and do synthesis across data derived from dif-
ferent sensors. The final filter typically passes its data to an
application, for example, providing input to modeling or visu-
alization tools. 

Analyses associated with pipe-and-filter systems include
deriving the aggregate transformation provided by a graph of
filters and reasoning about system performance: input/output
stream latency, pipe buffer requirements, and throughput.

Relation to Other Styles and Models

A pipe-and-filter view of a system is not the same as a data flow
model. In the pipe-and-filter style, lines between components
represent connectors, which have a specific computational
meaning: They transmit streams of data from one filter to
another. In data flow models, the lines represent relations,
indicating the communication of data between components.
Flows in a data flow model have little computational meaning:
They simply indicate that data flows from one element to the
next. This flow might be realized by a connector, such as a pro-
cedure call, the routing of an event between a publisher and a
subscriber, or data transmitted via a pipe. The reason that
these views might be confused is that the data flow model of a
pipe-and-filter style looks almost identical to the original pipe-
and-filter view.

Data flow styles are often combined with other styles by using
them to characterize a particular subsystem. A good example
of this is the filter processing chains of the Apache Web server.

Example of the Pipe-and-Filter Style: Yahoo! Pipes

“Rewire the Web” is the motto of Yahoo! Pipes, a composition
tool that lets Web users combine simple functions quickly and
easily into pipe-and-filter applications that aggregate and
manipulate content from around the Web. 

The basis of Yahoo! Pipes is the many RSS feeds available
from sites on the Internet. These data streams form the input
to the applications that users build, applications that combine
and manipulate the data in the streams to form useful results.
Many of the building blocks to perform general-purpose filter-
ing and manipulation of the data streams are made available in
the composition environment itself, rather like library functions.

For example, you can take an RSS stream from a financial
news site and filter it so that only news items related to stocks
that you own are shown. Or you can take an RSS stream from
a sports site and filter it so that you see news about your favorite
teams or athletes.

Data flow models are 
discussed in “Perspec-
tives: Data Flow and 
Control Flow Models,” 
on page 146, in 
Chapter 3.
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Yahoo! Pipes uses terminology not quite the same as that in
this book. It calls a complete application a pipe; the building
blocks are called modules. A filter is a special kind of module
that removes values from a stream based on given comparison
criteria.

Figure 4.2 shows an application that finds an apartment for
rent that is near a given type of business, such as a movie the-
ater. This is based on one of the teaching examples on the
Yahoo! Pipes Web site.

4.3 Call-Return Styles
Call-return styles embody a computational model in which
components provide a set of services that may be invoked by
other components.1 A component invoking a service pauses
(or is blocked) until that service has completed. Hence, call-
return is the architectural analog of a procedure call in pro-
gramming languages. The connectors are responsible for con-
veying the service request from the requester to the provider
and for returning any results.

1. The term service here designates a generic operation or function that can be
invoked via a call-return connector; it does not refer to services as in service-
oriented architecture. 

Figure 4.2
A Yahoo! Pipes application 
for finding apartments for 
rent near a given location 
(shown using the notation 
of the Yahoo! Pipes editor). 
The pipe-and-filter flow 
runs from top to bottom 
through the seven “mod-
ules” down the left-hand 
side (each representing 
what our pipe-and-filter 
style calls a filter); this is 
indicated by the thick solid 
lines (the pipes) connecting 
the output port of one to the 
input port of the next. The 
other “modules” supply 
inputs to the mainline com-
ponents; this is indicated 
by the thinner, hollow lines. 
The Fetch Feed compo-
nent uses the RSS output 
from an apartment-finder 
search; it is fed the search 
site URL and the search 
parameters by the helper 
modules to its right. The 
Location Extractor and 
the Filter component 
extract high-quality (well-
formed) addresses from the 
apartment-finder search. 
That stream feeds Yahoo! 
Local, which finds busi-
nesses of a given type (sup-
plied by its helper module) 
near a given location. (The 
For Each component 
applies the function shown 
in its interior to every item in 
the input stream.) The sec-
ond Filter removes list-
ings that aren’t a minimum 
distance from our search 
term. The Sort component 
orders the stream in 
ascending order of dis-
tance for viewing via the 
Pipe Output component.
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Call-return styles differ among each other in a variety of
ways. Some variants differ in terms of the behavior of their con-
nectors. For example, connectors in some call-return styles
may support error handling (such as when the service provider
is not available). Other differences relate to constraints on
topology. Some call-return architectures are organized in tiers.
Others partition the set of components into disjoint sets of
components that can make requests and those that can service
them.

Examples of call-return styles include client-server, peer-to-
peer, and representational state transfer (REST) styles. 

4.3.1  Client-Server Style

Overview

As with all call-return styles, client-server style components
interact by requesting services of other components. Request-
ers are termed clients, and service providers are termed serv-
ers, which provide a set of services through one or more of
their ports. Some components may act as both clients and servers.
There may be one central server or multiple distributed ones. 

Typical examples of systems in the client-server style include
the following:

• Information systems running on local networks, where the
clients are GUI applications (such as Visual Basic) and the
server is a database management system (such as Oracle)

• Web-based applications where the clients run on Web brows-
ers and the servers are components running on a Web
server (such as Tomcat)

Elements, Relations, and Properties

In the client-server style, summarized in Table 4.2, component
types are clients and servers. The principal connector type for
the client-server style is the request/reply connector used for
invoking services. When more than one service can be requested
on the same connector, a protocol specification is often used
to document ordering relations among the invocable services
over that connector. Servers have ports that describe the ser-
vices they provide. Clients have ports that describe the services
they require. Servers may in turn act as clients by requesting
services from other servers. A component that has both service-
request and service-reply ports can function as both a client
and a server simultaneously.

The computational flow of pure client-server systems is asym-
metric: clients initiate interactions by invoking services of servers.

The organization of 
components in tiers and 
multi-tier architectures 
are discussed in Sec-
tion 4.6.2.

Wikipedia provides a 
nice description of the 
REST architecture style, 
at en.wikipedia.org/
wiki/REST (Wikipedia 
2010b).

A protocol of interac-
tions can be described 
using notations such as 
sequence diagrams and 
state diagrams, which 
are covered in Chapter 8.
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Thus, the client must know the identity of a service to invoke
it, and clients initiate all interaction. In contrast, servers do not
know the identity of clients in advance of a service request and
must respond to the initiated client requests.

Service invocation is synchronous: the requester of a service
waits, or is blocked, until a requested service completes its
actions, possibly providing a return result. Variants of the cli-
ent-server style may introduce other connector types. For
example, in some client-server styles, servers are permitted to
initiate certain actions on their clients. This might be done by
allowing a client to register notification procedures, or call-
backs, that the server calls at specific times. In other systems
service calls over a request/reply connector are bracketed by a
“session” that delineates the start and end of a set of client-
server interactions.

Table 4.2 Summary of the client-server style

Elements • Client, which is a component that invokes services of a server 
component.

• Server, which is a component that provides services to client com-
ponents. Properties will vary according to concerns of the architect 
but typically include information about the nature of the server ports 
(such as how many clients can connect) and performance charac-
teristics (such as maximum rates of service invocation).

• Request/reply connector, which is used by a client to invoke ser-
vices on a server. Request/reply connectors have two roles: a 
request role and a reply role. Connector properties may include 
whether the calls are local or remote, and whether data is 
encrypted.

Relations The attachment relation associates client service-request ports with 
the request role of the connector and server service-reply ports with 
the reply role of the connector.

Computational Model Clients initiate interactions, invoking services as needed from servers 
and waiting for the results of those requests.

Constraints • Clients are connected to servers through request/reply connectors.
• Server components can be clients to other servers. 
• Specializations may impose restrictions:

– Numbers of attachments to a given port
– Allowed relations among servers

• Components may be arranged in tiers.

What It’s For • Promoting modifiability and reuse by factoring out common 
services

• Improving scalability and availability in case server replication is in 
place

• Analyzing dependability, security, and throughput
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What the Client-Server Style Is For

The client-server style presents a system view that separates cli-
ent applications from the services they use. This style supports
system understanding and reuse by factoring out common ser-
vices. Because servers can be accessed by any number of cli-
ents, it is relatively easy to add new clients to a system. Similarly,
servers may be replicated to support scalability or availability. 

ADVICE

Useful properties to document about components include whether new clients
and servers can be introduced dynamically, as well as any limitations on the
number of clients that can interact with a given server. Connector properties
deal with the request/reply protocol: How are errors handled? How are client-
server interactions set up and taken down? Are there sessions? How are servers
located? What kinds of middleware, if any, are relied upon?

Client-server system analyses include the following:

• Dependability. For example, to understand whether a system can recover
from a service failure

• Security. For example, to determine whether information provided by servers
is limited to clients with the appropriate privileges

• Performance. For example, to determine whether a system’s servers can
keep up with the volume and rates of anticipated service requests

Relation to Other Styles

Like many C&C styles, the client-server style decouples produc-
ers of services and data from consumers of those services and
data. Other styles, such as peer-to-peer, involve a round-trip
form of communication. However, these styles do not have the
asymmetric relationship between clients and servers found in
the client-server style.

Clients and servers are often grouped and deployed on dif-
ferent machines in a distributed environment to form a multi-
tier hierarchy. 

Examples of the Client-Server Style

The World Wide Web may be the best known example of a sys-
tem that is, at its heart, a client-server system. It is a hypertext-
based system that allows clients (Web browsers) to access infor-
mation from servers distributed across the Internet. Clients
access the information, written in Hypertext Markup Language
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(HTML), provided by a Web server using Hypertext Transfer
Protocol (HTTP). HTTP is a form of request/reply invocation.
HTTP is a stateless protocol; the connection between the client
and the server is terminated after each response from the server.

For another example, Figure 4.3 uses informal notation to
describe the client-server view of an ATM banking system
developed in the early 1990s. At that time, client-server archi-
tectures were the modern alternative to mainframe-based sys-
tems. (J2EE and .NET application servers didn’t exist and
multi-tier was not yet described as a style.) 

In this architecture, there are three types of components:

• The FTX server daemons are processes running in the back-
ground on the fault-tolerant UNIX (FTX) server. Each dae-
mon creates one or more socket ports using predefined
TCP ports, through which calls from client components
arrive.

• ATM OS/2 client processes are concurrent processes that
run on the ATMs, which were powered with the IBM OS/2
operating system. Although it can’t be inferred from the dia-
gram, each ATM runs one instance of the ATM main pro-
cess and one instance of the Reconfigure and update process.

Figure 4.3
Client-server architecture 
of an ATM banking system. 
The ATM main process
sends requests to Bank 
transaction authorizer
corresponding to user 
operations (such as 
deposit, withdrawal). It also 
sends messages to ATM 
monitoring server
informing the overall status 
of the ATM (devices, sen-
sors, and supplies). The 
Reconfigure and update 
process component 
sends requests to ATM 
reconfiguration server
to find out if a reconfigura-
tion command was issued 
for that particular ATM. 
Reconfiguration of an ATM 
(for example, enabling or 
disabling a menu option) 
and data updates are 
issued by bank personnel 
using the Monitoring 
station program.
Monitoring station 
program also sends peri-
odic requests to ATM 
monitoring server to 
retrieve the status of the 
range of ATMs monitored 
by that station.
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• The Windows application component was also a client com-
ponent. It was a Windows 3.x GUI program developed using
the Borland OWL API. Each instance was used by an opera-
tor to monitor a group of ATMs from his or her workstation.

When this system was developed, the TCP socket connector
was very often used for communication in client-server and dis-
tributed applications. Today HTTP is far more common. In the
protocol used in this TCP socket connector, the client opens a
connection to a server identified by an IP address and port
number. The client then sends a nonblocking request, after
which it may display in the UI a “Please wait…” message to the
user. Then the client calls an operation to receive the response
from the server. For both client and server, sending and receiv-
ing messages are separate steps. Therefore, the connector
implementation has to handle the correlation of request and
response messages, as well as time-outs and communication
errors.

4.3.2 Peer-to-Peer Style

Overview

In the peer-to-peer style, components directly interact as peers
by exchanging services. Peer-to-peer communication is a kind
of request/reply interaction without the asymmetry found in
the client-server style. That is, any component can, in princi-
ple, interact with any other component by requesting its ser-
vices. Each peer component provides and consumes similar
services, and sometimes all peers are instances of the same
component type. Connectors in peer-to-peer systems may
involve complex bidirectional protocols of interaction, reflect-
ing the two-way communication that may exist between two or
more peer-to-peer components.

Examples of peer-to-peer systems include file-sharing net-
works, such as BitTorrent and eDonkey; instant messaging and
VoIP applications, such as Skype; and desktop grid computing
systems.

Elements, Relations, and Properties

Table 4.3 summarizes the peer-to-peer style. The component
types in this style are peers, which are typically independent
programs running on network nodes. The principal connector
type is the call-return connector. Unlike in the client-server
style, the interaction may be initiated by either party: each peer
component acts as both client and server. Peers have interfaces
that describe the services they request from other peers and
the services they provide. The computational flow of peer-to-

The peer-to-peer archi-
tecture style has 
inspired new models for 
industrial production, 
community knowledge, 
political movement, 
property ownership, 
and an economic alter-
native to capitalism. 
See en.wikipedia.org/
wiki/Peer-to-peer_ 
(meme).
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peer systems is symmetric: Peers first connect to the peer-to-
peer network and then initiate actions to achieve their compu-
tation by cooperating with their peers by requesting services
from one another.

Often a peer’s search for another peer is propagated from
one peer to its connected peers for a limited number of hops.
A peer-to-peer architecture may have special peer nodes (called
ultrapeers, ultranodes, or supernodes) that have indexing or
routing capability and allow a regular peer’s search to reach a
larger number of peers.

Constraints on the use of the peer-to-peer style might limit
the number of peers that can be connected to a given peer or
impose a restriction about which peers know about which
other peers. 

What the Peer-to-Peer Style Is For

Peers interact directly among themselves and can play the role
of both service caller and service provider, assuming whatever
role is needed for the task at hand. This partitioning provides
flexibility for deploying the system across a highly distributed
platform. Peers can be added and removed from the peer-to-
peer network with no significant impact, resulting in great scal-
ability for the whole system.

Table 4.3 Summary of the peer-to-peer style

Elements • Peer component
• Call-return connector, which is used to connect to the peer network, 

search for other peers, and invoke services from other peers

Relations The attachment relation associates peers with call-return connectors.

Computational Model Computation is achieved by cooperating peers that request services 
of one another.

Properties Same as other C&C views, with an emphasis on protocols of interac-
tion and performance-oriented properties. Attachments may change 
at runtime.

Constraints • Restrictions may be placed on the number of allowable attachments 
to any given port, or role. 

• Special peer components can provide routing, indexing, and peer 
search capability.

• Specializations may impose visibility restrictions on which compo-
nents can know about other components.

What It’s For • Providing enhanced availability
• Providing enhanced scalability
• Enabling highly distributed systems, such as file sharing, instant 

messaging, and desktop grid computing
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Typically multiple peers have overlapping capabilities, such
as providing access to the same data. Thus, a peer acting as cli-
ent can collaborate with multiple peers acting as servers to
complete a certain task. If one of these multiple peers becomes
unavailable, the others can still provide the services to com-
plete the task. The result is improved overall availability. The
load on any given peer component acting as a server is
reduced, and the responsibilities that might have required
more server capacity and infrastructure to support it are dis-
tributed. This can decrease the need for other communication
for updating data and for central server storage, but at the
expense of storing the data locally.

Peer-to-peer computing is often used in distributed comput-
ing applications, such as file sharing, instant messaging, and
desktop grid computing. Using a suitable deployment, the
application can make efficient use of CPU and disk resources
by distributing computationally intensive work across a net-
work of computers and by taking advantage of the local
resources available to the clients. The results can be shared
directly among participating peers.

Relation to Other Styles

The absence of hierarchy means that peer-to-peer systems have
a more general topology than client-server systems.

Examples of the Peer-to-Peer Style

Gnutella is a peer-to-peer network that supports bidirectional
file transfers. The topology of the system changes at runtime as
peer components connect and disconnect to the network. A
peer component is a running copy of a Gnutella client pro-
gram connected to the Internet. Upon startup, this program
establishes a connection with a few other peers. The Web
addresses of these peers are kept in a local cache.

The Gnutella protocol supports request/reply messages for
peers to connect to other peers and search for files. Peers are
identified by their IP address, and the Gnutella protocol messages
are carried over dedicated UDP and TCP ports. To perform a
search, a Gnutella peer requests information from all of its con-
nected peers, which respond with any information of interest.
The connected peers also pass the request to their peers suc-
cessively, up to a predefined number of “hops.” All the peers
that have positive results for the search request reply directly to
the requester, whose IP address and port number go along
with the request. The requester then establishes a connection
directly with the peers that have the desired file and initiates
the data transfer using HTTP (outside the Gnutella network).

In late 2007, [Gnutella] 
was the most popular 
file sharing network on 
the Internet with an esti-
mated market share of 
more than 40%. 

—Wikipedia
(en.wikipedia.org/
wiki/Gnutella)
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Later versions of Gnutella differentiate between leaf peers
and ultrapeers. An ultrapeer runs on a computer with a fast
Internet connection. A leaf peer is usually connected to a small
number (say, three) of ultrapeers, and an ultrapeer is con-
nected to a large number of other ultrapeers and leaf peers.
The ultrapeers are responsible for routing search requests and
responses for all leaf peers connected to them.

Figure 4.4 shows part of a peer-to-peer view of a Gnutella net-
work using an informal C&C notation. For brevity, only two leaf
peers and four ultrapeers are identified. Each of the identified
leaf peers uploads and downloads files directly from other peers.

4.3.3  Service-Oriented Architecture Style

Overview

Service-oriented architectures consist of a collection of distrib-
uted components that provide and/or consume services. In
SOA, service provider components and service consumer com-
ponents can use different implementation languages and plat-
forms. Services are largely standalone: service providers and
service consumers are usually deployed independently, and
often belong to different systems or even different organizations.

Elements, Relations, and Properties

Table 4.4 summarizes the SOA style. The basic component
types in this style are service providers and service consumers,

Documentation of 
behavior is discussed in 
Chapter 8.

Figure 4.4
A C&C diagram of a 
Gnutella network, using 
informal notation
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which in practice can take different forms, from JavaScript run-
ning on a Web browser to CICS transactions running on a
mainframe.

In addition to the service provider and consumer compo-
nents that you develop, your SOA application may use special-
ized components that act as intermediaries and provide
infrastructure services:

• Service invocation can be mediated by an enterprise service bus
(ESB). An ESB routes messages between service consumers
and service providers. In addition, an ESB can convert mes-
sages from one protocol or technology to another, perform
various data transformations (for example, format, content,
splitting, merging), perform security checks, and manage
transactions. When an ESB is in place, the architecture fol-
lows a hub-and-spoke design, and interoperability, security,
and modifiability are improved. When an ESB is not in
place, service providers and consumers communicate to
each other in a direct point-to-point fashion.

• To improve the transparency of location of service provid-
ers, a service registry can be used in SOA architectures. The
registry is a component that allows services to be registered
and then queried at runtime. It increases modifiability by
making the location of the service provider transparent to
consumers and permitting multiple live versions of the same
service.

• An orchestration server (or orchestration engine) is a special
component that executes scripts upon the occurrence of a
specific event (for example, a purchase order request arrived).
It orchestrates the interaction among various service con-
sumers and providers in an SOA system. Applications with
well-defined business workflows that involve interactions
with distributed components or systems gain in modifiabil-
ity, interoperability, and reliability by using an orchestration
server. Many orchestration servers support the Business Pro-
cess Execution Language (BPEL) standard. 

The basic types of connectors used in SOA are these: 

• Call-return connectors. Two of the most common such connec-
tors are SOAP and REST:

– SOAP is the standard protocol for communication in
Web services technology. Service consumers and provid-
ers interact by exchanging request/reply XML messages,
typically on top of HTTP.

– With the REST connector, a service consumer sends syn-
chronous HTTP requests. These requests rely on the four

Including an ESB in your 
architecture of a service-
oriented system improves 
interoperability, secu-
rity, and modifiability.

There are many possibil-
ities for communication 
between components in 
an SOA architecture, 
such as SOAP, REST, 
JMS, MSMQ, and 
SMTP. Try to indicate in 
your C&C diagram what 
protocol or technology 
is used for each compo-
nent interaction by 
using labels or different 
arrow types.
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basic HTTP commands (post, get, put, and delete) to tell
the service provider to create, retrieve, update, or delete
a resource (a piece of data). Resources have a well-defined
representation in XML, JSON, or a similar language/
notation.

• Asynchronous messaging. Components exchange asynchro-
nous messages, usually through a messaging system such as
IBM WebSphere MQ, Microsoft MSMQ, or Apache ActiveMQ.
The messaging connector can be point-to-point or publish-
subscribe. Messaging communication typically offers great
reliability and scalability.

Components have interfaces that describe the services they
request from other components and the services they provide.
Components initiate actions to achieve their computation by
cooperating with their peers by requesting services from one
another.

In practice, SOA environments may involve a mix of the
three connectors listed above, along with legacy protocols and
other communication alternatives (such as SMTP).

Table 4.4 Summary of the service-oriented architecture style

Elements • Service providers, which provide one or more services through pub-
lished interfaces. Properties will vary with the implementation tech-
nology (such as EJB or ASP.NET) but may include performance, 
authorization constraints, availability, and cost. In some cases these 
properties are specified in a service-level agreement (SLA).

• Service consumers, which invoke services directly or through an 
intermediary.

• ESB, which is an intermediary element that can route and transform 
messages between service providers and consumers.

• Registry of services, which may be used by providers to register 
their services and by consumers to query and discover services at 
runtime.

• Orchestration server, which coordinates the interactions between 
service consumers and providers based on scripts that define busi-
ness workflows.

• SOAP connector, which uses the SOAP protocol for synchronous 
communication between Web services, typically over HTTP. Ports of 
components that use SOAP are often described in WSDL.

• REST connector, which relies on the basic request/reply operations 
of the HTTP protocol.

• Messaging connector, which uses a messaging system to offer 
point-to-point or publish-subscribe asynchronous message 
exchanges.

Relations Attachment of the different kinds of ports available to the respective 
connectors

continues
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What Service-Oriented Architectures Are Good For

The main benefit and the major driver of SOA is interoperabil-
ity. Because service providers and service consumers may run
on different platforms, service-oriented architectures often
integrate different systems and legacy systems. Service-oriented
architecture also offers the necessary elements to interact with
external services available over the Internet. Special SOA com-
ponents such as the registry or the ESB also allow dynamic
reconfiguration, which is useful when there’s a need to replace
or add versions of components with no system interruption. 

Example of a Service-Oriented Architecture

Figure 4.5 was taken from the example software architecture
document accompanying this book online, at wiki.sei.cmu.edu/
sad. It shows the SOA view of the Adventure Builder system
(Adventure Builder 2010). This system interacts via SOAP Web
services with several other external service providers. Note that
the external providers can be mainframe systems, Java systems,
or .NET systems—the nature of these external components is
transparent because the SOAP connector provides the neces-
sary interoperability. 

4.4 Event-Based Styles
Event-based styles allow components to communicate through
asynchronous messages. Such systems are often organized as a
loosely coupled federation of components that trigger behav-
ior in other components through events.

A variety of event styles exist. In some event styles, connec-
tors are point-to-point, conveying messages in a way similar to

Computational Model Computation is achieved by a set of cooperating components that 
provide and/or consume services over a network. The computation is 
often described as a kind of workflow model.

Constraints • Service consumers are connected to service providers, but interme-
diary components (such as ESB, registry, or BPEL server) may be used.

• ESBs lead to a hub-and-spoke topology. 
• Service providers may also be service consumers. 
• Specific SOA patterns impose additional constraints. 

What It’s For • Allowing interoperability of distributed components running on dif-
ferent platforms or across the Internet

• Integrating legacy systems
• Allowing dynamic reconfiguration

Table 4.4 Summary of the service-oriented architecture style (continued )
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call-return, but allowing more concurrency, because the event
sender need not block while the event is processed by the
receiver. In other event styles, connectors are multi-party,
allowing an event to be sent to multiple components. Such sys-
tems are often called publish-subscribe systems, where the
event announcer is viewed as publishing the event that is sub-
scribed to by its receivers. 

Figure 4.5
Diagram of the SOA view 
for the Adventure Builder 
system. The OPC (Order 
Processing Center) 
component coordinates the 
interaction with internal and 
external service consumers 
and providers
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4.4.1 Publish-Subscribe Style

Overview

In the publish-subscribe style, summarized in Table 4.5, com-
ponents interact via announced events. Components may sub-
scribe to a set of events. It is the job of the publish-subscribe
runtime infrastructure to make sure that each published event
is delivered to all subscribers of that event. Thus the main form
of connector in this style is a kind of event bus. Components
place events on the bus by announcing them; the connector
then delivers those events to the components that have regis-
tered an interest in those events.

The computational model for the publish-subscribe style is
best thought of as a system of independent processes or
objects, which react to events generated by their environment,
and which in turn cause reactions in other components as a
side effect of their event announcements.

Examples of systems that employ the publish-subscribe style
are the following:

• Graphical user interfaces, where a user’s low-level input
actions are treated as events that are routed to appropriate
input handlers

• Applications based on the model-view-controller (MVC)
pattern, where view components are notified when the state
of a model object changes

• Extensible programming environments, in which tools are
coordinated through events

• Mailing lists, where a set of subscribers can register interest
in specific topics

• Social networks, where “friends” are notified when changes
occur to a person’s Web site

Table 4.5 Summary of the publish-subscribe style

Elements • Any C&C component with at least one publish or subscribe port. 
Properties vary, but they should include which events are 
announced and/or subscribed to, and the conditions under which 
an announcer is blocked.

• Publish-subscribe connector, which will have announce and listen 
roles for components that wish to publish and/or subscribe to events.

Relations Attachment relation associates components with the publish-
subscribe connector by prescribing which components announce 
events and which components have registered to receive events.

Computational Model Components subscribe to events. When an event is announced by a 
component, the connector dispatches the event to all subscribers.
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Elements, Relations, and Properties

The publish-subscribe style can take several forms. In one com-
mon form, called implicit invocation, the components have pro-
cedural interfaces, and a component registers for an event by
associating one of its procedures with each subscribed type of
event. When an event is announced, the associated procedures
of the subscribed components are invoked in an order usually
determined by the runtime infrastructure. Graphical user-
interface frameworks, such as Visual Basic, are often driven by
implicit invocation: User code fragments are associated with
predefined events, such as mouse clicks.

In another publish-subscribe form, events are simply routed
to the appropriate components. It is the component’s job to
figure out how to handle the event. Such systems put more of
a burden on individual components to manage event streams,
but also permit a more heterogeneous mix of components
than implicit invocation systems do.

In some publish-subscribe systems, an event announcer may
block until an event has been fully processed by the system. For
example, some user-interface frameworks require that all views
be updated when the data they depict has been changed. This
is accomplished by forcing the component that announces a
“changed-data” event to block until all subscribing views have
been notified.

ADVICE

Useful properties to document for components include these: 

• Which events a component announces or subscribes to

• Conditions under which an announcer is blocked

Constraints All components are connected to an event distributor that may be 
viewed as either a bus—that is, a connector—or a component. Publish 
ports are attached to announce roles, and subscribe ports are attached 
to listen roles. Constraints may restrict which components can listen to 
which events, whether a component can listen to its own events, and 
how many publish-subscribe connectors can exist within a system.
A component may be both a publisher and a subscriber, by having 
ports of both types.

What It’s For • Sending events to unknown recipients, isolating event producers 
from event consumers

• Providing core functionality for GUI frameworks, mailing lists, bulle-
tin boards, and social networks

Table 4.5 Summary of the publish-subscribe style (continued )
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• Whether components can change their subscriptions dynamically

• Whether new event types can be created dynamically, or the event vocabu-
lary is fixed at build or deployment time

• Whether one can add new publishers to the system dynamically

Connector properties often describe the semantics of the event dispatch
mechanism:

• Can a subscriber queue up new events when it’s busy handling an event?

• Is the connector synchronous or asynchronous? 

• Do events have priorities? 

• Is temporal or causal ordering enforced? 

• Is event delivery reliable? 

• What are the semantics of each event? 

• Does the connector support other distributed component management, such
as starting and stopping publish-subscribe components at the same time?

What the Publish-Subscribe Style Is For

The publish-subscribe style is used to send events and messages
to an unknown set of recipients. Because the set of event recip-
ients is unknown to the event producer, the correctness of the
producer cannot depend on those recipients. Thus new recip-
ients can be added without modification to the producers. 

Publish-subscribe styles are often used to decouple user
interfaces from applications. They may also be used to inte-
grate tools in a software development environment: tools inter-
act by announcing events that trigger invocation of other tools.
Other applications include systems such as bulletin boards,
social networks, and message lists, where some dynamically
changing set of users are notified when the content that they
care about is modified. 

Relation to Other Styles

The publish-subscribe style is similar to a blackboard reposi-
tory style, because in both styles components are automatically
triggered by changes to some component. However, in a black-
board system, the database is the only component that gener-
ates such events; in a publish-subscribe system, any component
may generate events.

Implicit invocation is often combined with call-return in sys-
tems in which components may interact either synchronously
by service invocation or asynchronously by announcing events.
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For example, many service-oriented architectures and distrib-
uted object systems (such as CORBA and Java EE) support both
synchronous and asynchronous communication. In other
object-based systems, synchronous procedure calls are used to
achieve asynchronous interaction using the MVC pattern or
the observer pattern.

Example of the Publish-Subscribe Style

Figure 4.6 is a publish-subscribe view of the SEI ArchE tool.
There are three different publish-subscribe interactions in this
architecture:

1. Eclipse UI event manager acts as an event bus for user-inter-
face events (such as button clicks). Subscription informa-
tion—that is, what UI events are relevant to the system and
what components handle them—is defined at load time
when the event manager reads the SEI.ArchE.UI plug-in

config XML file. From then on a UI event generated by the
user working on a view or editor is dispatched via implicit
invocation to the action handler objects that subscribe to
that event.

2. The data manipulated in ArchE is stored using a rule
engine called Jess. Data elements are called facts. When a
user action creates, updates, or deletes a fact, that action
generates respectively an assert, modify, or retract fact

Sections 2.3.6 and 6.6.4 
have more information 
about the ArchE tool. 

Figure 4.6
Diagram for a publish-
subscribe view of the SEI 
ArchE tool
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event that is sent to Jess. When Jess processes that event,
changes to many other facts may be triggered. Jess also acts
as an event bus that announces changes to facts. In the
ArchE architecture, there is one component that sub-
scribes to all data changes: ArchE core listener.

3. ArchE keeps in memory copies of the fact data elements
persisted in the rule engine. These copies are observable
Java objects. User-interface screens (that is, views) that dis-
play those elements are observers of the fact data objects.
When facts in memory are created or updated, the views
are notified.

4.5 Repository Styles
Repository views contain one or more components, called
repositories, which typically retain large collections of persis-
tent data. Other components read and write data to the repos-
itories. In many cases access to a repository is mediated by
software called a database management system (DBMS) that
provides a call-return interface for data retrieval and manipu-
lation. MySQL is an example of a DBMS. Typically a DBMS also
provides numerous data management services, such as support
for atomic transactions, security, concurrency control, and
data integrity. In C&C architectures where a DBMS is used, a
repository component often represents the combination of
the DBMS program and the data repository. 

Repository systems where the data accessors are responsible
for initiating the interaction with the repository are said to fol-
low the shared-data style. In other repository systems, the
repository may take responsibility for notifying other compo-
nents when data has changed in certain prescribed ways. These
systems follow the blackboard style. Many database manage-
ment systems support a triggering mechanism activated when
data is added, removed, or changed. You can employ this fea-
ture to create an application following the blackboard style.
But if your application uses the DBMS for retrieving and
changing data in the repository but doesn’t employ triggers,
you’re following the pure shared-data style.

4.5.1 Shared-Data Style

Overview

In the shared-data style, the pattern of interaction is domi-
nated by the exchange of persistent data. The data has multi-
ple accessors and at least one shared-data store for retaining
persistent data.

The observer design 
pattern is described in 
the book by Gamma et 
al. (1995).
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Database management systems and knowledge-based sys-
tems are examples of this style. 

Elements, Relations, and Properties

The shared-data style, summarized in Table 4.6, is organized
around one or more shared-data stores, which store data that
other components may read and write. Component types
include shared-data stores and data accessors. The connector type
is data reading and writing. The general computational model
associated with shared-data systems is that data accessors per-
form operations that require data from the data store and write
results to one or more data stores. That data can be viewed and
acted on by other data accessors. In a pure shared-data system,
data accessors interact only through one or more shared-data
stores. However, in practice shared-data systems also allow
direct interactions between data accessors. The data-store com-
ponents of a shared-data system provide shared access to data,
support data persistence, manage concurrent access to data
through transaction management, provide fault tolerance,
support access control, and handle the distribution and cach-
ing of data values.

Specializations of the shared-data style differ with respect to
the nature of stored data: existing approaches include rela-
tional, object structures, layered, and hierarchical structures. 

Table 4.6 Summary of the shared-data style

Elements • Repository component. Properties include types of data stored, 
data performance-oriented properties, data distribution, number of 
accessors permitted. 

• Data accessor component.
• Data reading and writing connector. An important property is 

whether the connector is transactional or not.

Relations Attachment relation determines which data accessors are connected 
to which data repositories.

Computational Model Communication between data accessors is mediated by a shared-
data store. Control may be initiated by the data accessors or the data 
store. Data is made persistent by the data store.

Constraints Data accessors interact with the data store(s). 

What It’s For • Allowing multiple components to access persistent data
• Providing enhanced modifiability by decoupling data producers 

from data consumers
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What the Shared-Data Style Is For

The shared-data style is useful whenever various data items
have multiple accessors and persistence. Use of this style
decouples the producer of the data from the consumers of the
data; hence this style supports modifiability, as the producers
do not have direct knowledge of the consumers.

ADVICE

Useful properties to document about data stores include the following:

• Restrictions on the number of simultaneous connections to the data store.

• Whether or not new accessors can be added at runtime.

• Access-control enforcement policies.

• Whether concurrent access to the same data element is permitted, and if so,
what kinds of synchronization mechanisms are used.

• Administrative concerns, such as whether one modifies the types of data
stored, and if so, who has access, when those changes can be performed,
and via what interface.

• Replication of data in a distributed setting.

• Age of data.

• If the repository system supports both query-based and triggered modes of
interaction, it is important to clearly document what form of interaction is
intended, for example, by using different connector types.

Analyses associated with this style usually center on qualities
such as performance, security, privacy, availability, scalability,
and compatibility with, for example, existing repositories and
their data. In particular, when a system has more than one data
store, a key architecture concern is the mapping of data and
computation to the data. Use of multiple stores may occur
because the data is naturally, or historically, partitioned into
separable stores. In other cases data may be replicated over sev-
eral stores to improve performance and/or availability through
redundancy. Such choices can strongly affect the qualities noted
above.

Relation to Other Styles

This style has aspects in common with the client-server style,
especially the multi-tiered client-server. In information man-
agement applications that use this style, the repository is often
a relational database, providing relational queries and updates
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using client-server interactions. The clients of the relational
database (that is, the accessors) connect to the DBMS using a
network port and protocol specified by the DBMS. A bridge
module or DBMS driver, built into the client components, pro-
vides database operations. 

The shared-data style is closely related to the data model
style. While a shared-data view of the system depicts the data
repositories and their accessors, the data model shows how
data is structured inside the repositories, in terms of data enti-
ties and their relations. 

Akin to other C&C styles, the shared-data style is also related
to the deployment style. Very often systems that have a shared
repository are distributed applications where one or more ded-
icated server machines host the repositories. A deployment
view of the system shows the allocation of the repositories and
other components to the hardware nodes. 

Example of the Shared-Data Style

Figure 4.7 shows the diagram of a shared-data view of a corpo-
rate access-management system. There are three types of acces-

The data model style is 
described in Section 2.6.

Figure 4.7
The shared-data diagram of 
an enterprise access-man-
agement system. The cen-
tralized security realm is a 
repository for user 
accounts, passwords, 
groups of users, roles, per-
missions, and related infor-
mation. User IDs and 
passwords are synchro-
nized with external reposi-
tories shown on the top left. 
The accounts of the enter-
prise employees are cre-
ated/deactivated and 
permissions are granted/
revoked based on status 
changes in HR database.
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sor components: Windows applications, Web applications, and
“headless” programs (that is, programs or scripts that run in
the background and don’t provide any user interface).

4.6 Crosscutting Issues for C&C Styles
There are a number of concerns that relate to many C&C styles
in a similar way. It is helpful to treat these as crosscutting issues,
since the requirements for documenting them are similar for
all styles. One such issue is concurrency: indicating which com-
ponents in the system execute as concurrent threads or pro-
cesses. Another crosscutting issue is the use of tiers: aggregating
components into hierarchical groupings and restricting com-
munication paths between components in noncontiguous
groups. Another issue is dynamic reconfiguration: indicating
which components may be created or destroyed at runtime. 

In these and other cases, the crosscutting issues can be doc-
umented by augmenting the element types of a style with addi-
tional semantic detail to clarify how instances of those types
address the crosscutting issues. By adding this additional
detail, we effectively create a specialized variant of the original
style, because the augmentation will typically introduce new
constraints on the components and connectors, their proper-
ties, and system topologies.

4.6.1 Communicating Processes 

Communicating processes are common in most large systems
and necessary in all distributed systems. A communicating-pro-
cesses variant of any C&C style can be obtained by stipulating
that each component can execute as an independent process.
For instance, clients and servers in a client-server style are usu-
ally independent processes. Similarly, a communicating-processes
variant of the pipe-and-filter system would require that each fil-
ter run as a separate process. The connectors of a communicating-
processes style need not change, although their implementa-
tion will need to support interprocess communication. 

A common variant on this scheme (for components with
substructure) is to require that top-level components run as
separate processes but allow their internal components to run
in their parent’s process. Another variant is to use threads,
instead of processes, as the concurrency unit. Still other vari-
ants mix threads and processes.

A communicating-pro-
cesses style is any 
C&C style whose com-
ponents can execute as 
independent processes.
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For communicating-processes styles, there are additional
things that often must be documented, including the following:

• Mechanisms for starting, stopping, and synchronizing a set
of processes or threads

• Preemptability of concurrent units, indicating whether the
execution of a concurrent unit may be preempted by
another concurrent unit

• Priority of the processes, which influences scheduling

• Timing parameters, such as period and deadline

• Additional components, such as watchdog timers and
schedulers, for monitoring and controlling concurrency

• Use of shared resources, lock mechanism, and deadlock
prevention or detection techniques

Communicating processes are used to understand (1) which
portions of the system could operate in parallel, (2) the bun-
dling of components into processes, and (3) the threads of
control within the system. Therefore this style variant can be
used for analyzing performance and reliability, and for influ-
encing how to deploy the software onto separate processors.
Behavioral notations such as activity diagrams and sequence
diagrams are particularly useful to understand interactions
among elements running concurrently.

4.6.2 Tiers

The execution structures of many systems are organized as a
set of logical groupings of components. Each grouping is
termed a tier. The grouping of components into tiers may be
based on a variety of criteria, such as the type of component,
sharing the same execution environment, or having the same
runtime purpose.

The use of tiers may be applied to any C&C style, although
in practice it is most often used in the context of client-server
styles. Tiers induce topological constraints that restrict which
components may communicate with other components. Spe-
cifically, connectors may exist only between components in the
same tier or residing in adjacent tiers. The multi-tier style
found in many Java EE and Microsoft .NET applications is an
example of organization in tiers derived from the client-server
style.

Additionally, tiers may constrain the kinds of communication
that can take place across adjacent tiers. For example, some
tiered styles require call-return communication in one direc-
tion but event-based notification in the other.

The deployment style is 
described in Section 5.2.

Chapter 8 covers docu-
mentation of behavior.

A tier is a mechanism 
for system partitioning. 
Usually applied to cli-
ent-server-based sys-
tems, where the various 
parts (tiers) of the sys-
tem (user interface, 
database, business 
application logic, and 
so forth) execute on dif-
ferent platforms.

You can depict tiers 
graphically by overlay-
ing tier boundaries on 
top of an existing C&C 
diagram. Alternatively, 
or in addition, you can 
document tiers by asso-
ciating a property with 
each component to 
indicate the tier to which 
it belongs.
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Tiers are not components; they are logical groupings of
components.

Example of a Multi-tiered System

Figure 4.8 uses informal notation to describe the multi-tier
architecture of the Consumer Website Java EE application.
This application is part of the Adventure Builder system
(Adventure Builder 2010). Many component-and-connector
types are specific to the supporting platform, which is Java EE
in this case.

4.6.3 Dynamic Creation and Destruction

Many C&C styles allow components and connectors to be cre-
ated or destroyed as the system is running. For example, new
server instances might be created as the number of client
requests increases in a client-server system. In a peer-to-peer
system, new components may dynamically join the system by
connecting to a peer in the peer-to-peer network. Because any
style can in principle support the dynamic creation and
destruction of elements, this is another crosscutting issue.

Don’t confuse tiers with 
layers! Layering is a 
module style, while tiers 
apply to C&C styles. In 
other words, a layer is a 
grouping of implemen-
tation units while a tier is 
a grouping of runtime 
elements.

Figure 4.8
Diagram of the multi-tier view describing the Consumer Website Java EE application, which is part of the Adventure 
Builder system
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To document the dynamic aspects of an architecture, you
should add several pieces of information, including the following:

• What types of components or connectors within a style may
be created or destroyed. 

• The mechanisms that are used to create, manage, or destroy
elements. For example, component “factories” are a com-
mon mechanism for creating new components at runtime.

• How many instances of a given component may exist at the
same time. For example, some Web applications use a pool
of instances of Web server components, and the number of
instances in a pool is parameterized by a minimum and a
maximum value. 

• What is the life cycle for different component types. Under
what conditions new instances are created, activated, deacti-
vated, and removed. For example, some styles require that
all or part of a system be brought to a stable, “quiescent”
state before new components can be added.

4.7 Summary Checklist
• Component-and-connector styles specialize C&C views by

introducing a specific set of component-and-connector
types and by specifying rules about how elements of those
types can be combined. A C&C style is typically associated
with a computational model that prescribes how execution,
data, and control flow through systems in this style.

• Component-and-connector styles can be grouped into a
number of general categories on the basis of their underly-
ing computational model. Each of these categories contains
a variety of specific C&C styles, a number of which were illus-
trated in this chapter.

• In a pipe-and-filter system, filters process the data input seri-
ally and send the output to the next filter through a pipe.

• In client-server systems, client components make synchro-
nous requests to services from server components.

• In peer-to-peer solutions, many instances of the same com-
ponent cooperate to achieve the desired goal by exchang-
ing synchronous request/reply messages. 

• Service-oriented architecture involves distributed compo-
nents that act as service providers and/or service consumers
and are highly interoperable. Intermediaries such as ESB,
service registry, and BPEL server may be used.

Section 6.4.3 discusses 
documentation of 
dynamic systems.
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• In publish-subscribe systems, publishers send events to a
pub-sub connector that dispatches the event to all subscrib-
ers that have registered to receive that event. 

• The shared-data style shows how a shared data repository is
accessed for reading and/or writing by independent com-
ponents called accessors. 

• Many C&C views involve communicating components that
run as concurrent processes or threads. In these cases, it’s
important to document how these processes or threads are
scheduled or preempted, and how access to shared resources
is synchronized.

• Component-and-connector architectures can be structured
in tiers, which are logical groupings of components. The
multi-tier style found in Java EE and Microsoft .NET appli-
cations is a specialization of the client-server style 

4.8 Discussion Questions
1. Peer-to-peer, client-server, and other call-and-return styles

all involve interactions between producers and consumers
of data or services. If an architect is not careful when using
one of these styles, he or she will produce a C&C view that
simply shows a request flowing in one direction and a
response flowing in the other. What means are at the archi-
tect’s disposal to distinguish among these styles?

2. Some forms of publish-subscribe involve runtime registra-
tion; others allow only pre-runtime registration. How
would you represent each of these cases?

3. A user invokes a Web browser to download a file. Before
doing so, the browser retrieves a plug-in to handle that type
of file. How would you model this scenario in a C&C view?

4. If you wanted to show a C&C view that emphasizes the sys-
tem’s security aspects, what kinds of properties might you
associate with the components? With the connectors? 

5. Suppose that the middle tier of a three-tier system is a data
repository. Is this system a shared-data system, a three-tier
system, a client-server system, all of them, or none? Justify
your answer.

6. To help you see why layers and tiers are different, sketch a
layered view for a system you’re familiar with, and then
sketch a multi-tier client-server view for the same system.
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4.9 For Further Reading
There is not widespread agreement about what to call C&C
styles or how to group them. While this might seem like an
issue of importance only to the catalog purveyors, it has docu-
mentation ramifications as well. For instance, suppose you
choose a peer-to-peer style for your system. In theory, that
should free you of some documentation obligations, because
you should be able to appeal to a style catalog for details. How-
ever, it is difficult to find an authoritative source for the style
definition; different authors describe the same style with
slightly different component-and-connector types and proper-
ties. But many good style catalogs are available. The reader
interested in finding out more about a particular style can look
at the book by Shaw and Garlan (1996) and any of the five vol-
umes of the Pattern-Oriented Software Architecture books (Busch-
mann et al. 1996; Schmidt et al. 2000; Kircher and Jain 2004;
and Buschmann, Henney, and Schmidt 2007a and 2007b).
Wikipedia is also a good source of information about styles.

The SEI report titled Evaluating a Service-Oriented Architecture
(Bianco, Kotermanski, and Merson 2007) describes many dif-
ferent component and connector types available in SOA, and
it discusses how the different design alternatives affect the
quality attribute properties of the solution. A comprehensive
description of various event-based styles is found in the Enter-
prise Integration Patterns book (Hohpe and Wolff 2003). An
excellent description of blackboards and their history in sys-
tem design can be found in the article by Nii (1986). One of
the first systems to employ the blackboard style was a speech-
understanding system called Hearsay II. A more modern varia-
tion is provided by “tuple spaces,” as exemplified by the Linda
programming language (Gelernter 1985) and JavaSpaces tech-
nology (Freeman, Hupfer, and Arnold 1999). High Level
Architecture (HLA) uses a publish-subscribe mechanism as an
integration framework for distributed simulations (IEEE
1516.1 2000).

To learn more about Yahoo! Pipes, visit pipes.yahoo.com/
pipes.
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5Allocation Views and a Tour
of Some Allocation Styles

In this chapter, after a brief overview of allocation views, we
look at these aspects of allocation views and styles:

• Deployment style

• Install style

• Work assignment style

• Other allocation styles

5.1 Overview
Software elements in a software architecture interact with non-
software elements in the environment in which the software is
developed, deployed, and executed. Computing and communi-
cation hardware, file management systems, and development
teams all interact with the software architecture. Because of this,
the “set of structures needed to reason about the system” (from
our definition of software architecture given in the prologue)
includes structures that show the relations between software and
nonsoftware elements. It is through the mapping between the
software architecture and the hardware that the performance of
the system can be analyzed; it is through the mapping between
the software architecture and a file structure that the manage-
ment of the system in production can be done; and it is through
the mapping between the software architecture and the team
structure that project management activities can proceed. 

These structures have a first-class place in the Views and
Beyond approach, and this chapter focuses on the views and
styles that represent them. Allocation views present a mapping
between software elements (from either a module view or a
component-and-connector [C&C] view) and nonsoftware ele-
ments in the software’s environment. 

You can think of an allo-
cation view as the result 
of combining a software 
architecture view with a 
view from a different 
kind of architecture—for 
example, a hardware 
architecture or an orga-
nizational architecture. 
Section 6.6 describes 
techniques for combin-
ing otherwise-separate 
views, and why you 
might want to do so. 
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We begin by considering the most general form of the map-
ping between the software architecture and its environment.
We then identify three common allocation styles, as shown in
Figure 5.1.

• The deployment style describes the mapping between the
software’s components and connectors and the hardware of
the computing platform on which the software executes.

• The install style describes the mapping between the soft-
ware’s components and structures in the file system of the
production environment. 

• The work assignment style describes the mapping between
the software’s modules and the people, teams, or organiza-
tional work units tasked with the development of those
modules.

Table 5.1 summarizes the characteristics of the allocation
styles. The elements of allocation styles are software elements
plus environmental elements. Examples of environmental ele-
ments are a processor, a disk farm, a file or folder, or a group
of developers. The software elements come from a module or
C&C style.

These are not the only 
allocation styles; many 
others are possible and 
useful. Examples can 
be found in Section 5.5 
and “Perspectives: 
Coordination Views,” 
on page 209, in this 
chapter.

Figure 5.1
Three allocation styles are 
deployment (mapping soft-
ware architecture to the 
hardware of the computing 
platform), install (mapping it 
to a file system in the pro-
duction environment), and 
work assignment (mapping 
it to the teams in the devel-
opment organization). 
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The relation in an allocation style is the allocated-to relation.
We usually talk about allocation styles in terms of a mapping
from software elements to environmental elements, although
the reverse mapping would also serve the same purposes. A sin-
gle software element can be allocated to multiple environmen-
tal elements, and multiple software elements can be allocated
to a single environmental element. If these allocations change
over time, during either development or execution of the sys-
tem, then the architecture is said to be dynamic with respect to
that allocation. 

Software elements and environmental elements have prop-
erties in allocation styles. The specific properties you should
include in an allocation view will, as always, depend on the pur-
pose of that view. The usual goal of an allocation view is to com-
pare the properties required by the software element with the
properties provided by the environmental elements to deter-
mine whether the allocation will be successful or not. For
example, to ensure a component’s required response time, it
has to execute on (be allocated to) a processor that provides suf-
ficiently fast execution times, where “sufficiently fast” might be
defined in terms of a requirement that an IEEE 754 single-pre-
cision floating-point multiply must execute in 50 microsec-
onds. Or a computing platform might not allow a task to use
more than 10 kilobytes of virtual memory. In this case, an exe-
cution model of the software element in question can be used
to determine the required virtual memory usage.

The specific uses and notations for allocation styles are style
specific and are covered in their respective sections. 

5.2 Deployment Style
5.2.1 Overview

In the deployment style, software elements native to a C&C
style are allocated to the hardware of the computing platform

Table 5.1 Summary of the characteristics of the allocation styles

Overview Allocation styles describe the mapping between the software architecture and 
its environment.

Elements Software element and environmental element. A software element has prop-
erties that are required of the environment. An environmental element has 
properties that are provided to the software.

Relations Allocated-to. A software element is mapped (allocated to) an environmental 
element. Properties are dependent on the particular style.

Constraints Varies by style
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on which the software executes. A valid allocation ensures that
the requirements expressed by the software elements are satis-
fied by the characteristics of the hardware element(s). 

5.2.2 Elements, Relations, and Properties

Table 5.2 summarizes the characteristics of the deployment
style. Environmental elements in a deployment style are enti-
ties that correspond to physical units that store, transmit, or
compute data. Physical units include processing nodes (CPUs),
communication channels, memory stores, and data stores.

The software elements in this style are typically elements that
would be documented in a C&C view. When represented in a
deployment view, the software elements are assumed to run on
a computer. Therefore, software elements in this style corre-
spond to runtime entities of the computing platform (such as
processes, threads, ports, or shared memory).

The typical relation depicted in a deployment view is a spe-
cial allocated-to form that shows on which physical units the soft-
ware elements reside at a given moment in time. The relation
can be dynamic; that is, the allocation can change as the system

Table 5.2 Summary of the deployment style

Overview The deployment style describes the mapping of 
components and connectors in the software archi-
tecture to the hardware of the computing platform.

Elements • Software element: elements from a C&C view.
Useful properties to document include the signifi-
cant features required from hardware, such as pro-
cessing, memory, capacity requirements, and fault 
tolerance.

• Environmental elements: hardware of the comput-
ing platform—processor, memory, disk, network 
(such as router, bandwidth, firewall, bridge), and so 
on. Useful properties of an environmental element 
are the significant hardware aspects that influence 
the allocation decision.

Relations • Allocated-to. Physical units on which the software 
elements reside during execution. Properties 
include whether the allocation can change at 
execution time or not.

• Migrates-to, copy-migrates-to, and/or execution-
migrates-to if the allocation is dynamic. Properties 
include the trigger that causes the migration.

Constraints The allocation topology is unrestricted. However, the 
required properties of the software must be satisfied 
by the provided properties of the hardware.

Although the deployment 
style in its general form 
imposes no topological-
form restrictions, spe-
cializations (substyles) 
of the deployment style 
might. See Section 5.5 
for examples.
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executes. In this case, additional relations, such as the follow-
ing, may be shown:

• Migrates-to. A relation from a software element on one pro-
cessor to the same software element on a different proces-
sor, this relation indicates that a software element can move
from processor to processor but does not simultaneously
exist on both processors.

• Copy-migrates-to. This relation is similar to the migrates-to rela-
tion, except that the software element sends a copy of itself
to the new processor while retaining a copy on the original
processing element.

• Execution-migrates-to. Similar to the previous two, this rela-
tion indicates that execution moves from processor to pro-
cessor but that the code residency does not change. A copy
of a process exists on more than one processor, but only one
is active at any particular time. The execution of the process
“migrates” when the active process is changed.

It is also possible for the allocation to change over time as a
result of manual reconfiguration brought about by exercising
a variation point built in to the architecture.

The important properties of the elements are the significant
hardware features that affect the allocation of the software to
the physical units. How a physical unit satisfies a software ele-
ment requirement is determined by the properties of both. For
example, if a software element requires a minimum storage
capacity, any environmental element that has at least that capac-
ity is a candidate for a valid allocation.

Moreover, the types of analyses to be performed via a deploy-
ment view also determine the particular properties the ele-
ments must possess. For example, if a memory capacity analysis
is needed, the necessary properties of the software elements
must describe memory consumption aspects, and the relevant
environmental element properties must depict memory capac-
ities of the various hardware entities.

Below are some environmental element properties relevant
to physical units:

• CPU properties. The properties relevant to the various pro-
cessing elements (such as processor clock speed, number of
processors, memory capacity, bus speed, cache size, and
instruction execution speed).

• Memory properties. The properties relevant to the memory
stores (such as memory size and speed characteristics).

Section 6.4.3 describes 
how to document dyna-
mism and dynamic 
architectures.

Documenting variation 
points is discussed in 
Section 6.4.
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• Disk or other storage unit capacity. The storage capacity and
access speed of disk units: individual disk drives, disk farms,
and redundant arrays of independent disks (RAIDs).

• Bandwidth. The data transfer capacity of communication
channels.

• Fault tolerance. Multiple hardware units may perform the
same function, and these units may have a failover control
mechanism.

Properties that are relevant to software elements include the
following:

• Resource consumption. For example, a computation takes 32,123
instructions always, or at most, or on average, or under nom-
inal (error-free) conditions, and so on.

• Resource requirements and constraints that must be satisfied. For
example, a software element must execute in no more than
0.1 second.

• Safety critical. For example, this would be true if a software
element must always be running.

The following property is relevant to the allocation:

• Migration trigger. If the allocation can change as the system
executes, this property specifies what must occur for a migra-
tion of a software element from one processing element to
another.

5.2.3 What the Deployment Style Is For

A deployment view is useful for analyzing performance, avail-
ability, reliability, and security. Testers use this view to under-
stand runtime dependencies, and integrators use it to plan
integration and integration testing. A deployment view may
also be used to support cost estimation when evaluating pur-
chasing options for hardware.

Performance is tuned by changing the allocation of software
to hardware. Optimal or improved allocation decisions could
be those that eliminate bottlenecks on processors or that dis-
tribute work more evenly (for example, processor utilization is
roughly even across the system). Often performance improve-
ment is achieved by collocating deployment units that require
frequent and/or high-bandwidth communications with one
another. The volume and frequency of communication among
deployable units on different processing elements, which takes
place along the communication channels between those ele-
ments, is the focus for much of the performance engineering
of a system. The architect can employ additional hardware or
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replace hardware elements with more powerful versions when
requirements cannot be met no matter how the allocation is
optimized.

Availability and reliability are directly affected by the sys-
tem’s behavior in the face of faulty or failed processing ele-
ments or communication channels. If a processor or a channel
can fail without warning, copies of software components can
be placed on separate processors. If a warning will precede a
failure, then components can be migrated at runtime when a
failure is imminent. If every processing element has enough
memory to host a copy of every deployable unit, runtime
migration need not occur. When a failure occurs, a different
copy of the no-longer-available deployable unit becomes active,
but no migration of code occurs. 

Security and attack resistance are influenced by the configu-
ration of the hardware and the allocation of software to it.
Limit the services available on each host to limit exposure.
Firewalls and router and bridge protections can be employed
to limit access to sensitive areas. Physical security measures can
be used to limit exposure of a processor to physical attack.

Modern software architectures seek to make deployment
decisions transparent, and thus changeable. For example, a
goal is to carry out interprocess communication in exactly the
same fashion whether the processes reside on the same or on
different processors. If the deployment changes, the code
need not. Thus, although a deployment view is invaluable in
helping to analyze and achieve quality attributes, be careful
not to let the software implementers assume too much about
the deployment.

ADVICE

An incorrect use of a deployment view is to treat it as the entire software archi-
tecture of a system. A single view in this style, in isolation, is not a complete
description of a software architecture. Although this observation is true of every
style, allocation styles seem especially susceptible. When asked to show their
software architecture, architects sometimes present an impressive diagram that
shows a network of computers with all their properties and protocols used and
the software components running on those computers. Although these dia-
grams fill an important role by helping to organize the work and to understand
the software, they do not fully represent the software architecture.

Don’t try to force a relationship between modules and hardware units. For
instance, it is usually a design error to force each layer of a layered system onto
its own processor. (Remember that layers are not tiers.) 
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5.2.4 Notation for the Deployment Style

Informal Notations

Informal graphical notations contain boxes, circles, lines, arrows,
and so on to represent the software and environmental elements.
In many cases, stylized symbols or icons are used to represent the
environmental elements. The symbols are frequently pictures of
the hardware devices in question. Additionally, shading, color,
border types, and fill patterns are often used to indicate the type
of element. Software elements can be listed inside or next to the
hardware to which they’re allocated to show the allocated-to rela-
tion. If the deployment structure is simple, a table that lists the
software units and the hardware element on which each executes
may be adequate. Figure 5.2 shows an example of a deployment
view primary presentation using an informal notation. 

Figure 5.2
Example of a deployment view in an informal notation. This example comes from the U.S. Army Training Information 
Architecture-Migrated (ATIA-M) System and uses distinctive symbols for different types of hardware. The connecting 
lines are physical communication channels that allow the components to communicate with one another. The allocation 
of components is shown by overlaying their names on the symbol. The allocation of connectors is done by writing their 
names adjacent to the channels to denote the communication protocol. ATIA is a Java Platform, Enterprise Edition (Java 
EE) application comprising hundreds of components (mostly servlets and Enterprise JavaBeans [EJBs]). The ATIA 
architecture has a client-server multi-tier view with a Web GUI tier, a Web service tier, and an EJB tier. All components 
inside those tiers are deployed to WebLogic, as indicated by the annotation. NIPRNET is an Internet-like network owned 
by the Department of Defense.
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Formal Notations

The Architecture Analysis and Design Language (AADL) and
SysML are examples of architecture description languages that
provide formal notations for describing deployment views.
AADL provides a vocabulary for representing the hardware
and binding software to hardware elements such as processors,
memory, and connections. The language supports analysis of
performance, reliability, safety-critical, and security require-
ments. In SysML, graphical representation is supported using
a modified version of UML block diagrams. In addition, it pro-
vides a tabular form for representing deployment and other
forms of allocation. 

UML

In UML, a deployment diagram is a graph of nodes connected
by communication associations. Nodes correspond to processing
elements, usually having a memory and a processing capability.
Nodes may contain component instances, indicating that the
component resides on the node. Components can be connected
to each other by dependency arrows. In a UML deployment
diagram, components may contain objects, meaning that the
objects are part of those components. Migration of components
from node to node (or objects from component to component)
is shown by the <<becomes>> dependency stereotype. A node
is shown using a symbol that looks like a three-dimensional
box, with an optional name inside. Nodes are connected by
associations that stand for communication paths. The precise
nature of the communication path can be indicated by a ste-
reotype on the association (for example, <<10-T Ethernet>>,
<<RS-232>>). Properties are represented as attribute name-
value pairs (for example, processorSpeed = 300 mHz, memory =
128 MB). A deployment specification specifies the parameters
guiding deployment of a component, such as the mode of con-
currency (for example, thread, process, none).

Figure 5.3 shows an example of UML notation for a deploy-
ment view.

5.2.5 Relation to Other Styles

The deployment style is related to the C&C styles that provide
the software elements that are allocated to the hardware of the
computing platform. It is also closely related to the install style,
which shows the contents of the files deployed to hardware
nodes.

SysML and AADL are 
described in Appendi-
ces B and C, respectively.
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5.3 Install Style
5.3.1 Overview

The install style allocates components of a C&C style to a file
management system in the production environment. Once a
software system is implemented, the resulting files have to be
packaged to be installed on the target production platform
(such as a desktop computer or a server machine running an
application server). These files include libraries, executable
files, data files, log files, configuration and version control files,
license files, help files, deployment descriptors, scripts, and
static content (for example, HTML files and images). For a
large software system, the number of files installed in the pro-
duction environment can reach the thousands. These files
need to be organized so as to retain control over and maintain
the integrity of the system build and package process, as well as
to help deployers and operators locate and manipulate the
files when necessary. Configuration management techniques,
build tools, and installation tools usually help to get this job
done. But an architecture description shows how the installed
system is organized as a structure of files and folders, and
describing how software elements map to that structure is
important to assist developers, deployers, and operators.

The install style helps describe what specific files should be
used and how they should be configured and packaged to pro-
duce different versions of the system. Maintaining multiple
versions simultaneously is a common practice for many sys-
tems. Different versions of the same system may

Figure 5.3
A deployment view in UML, 
showing the hardware 
platform supporting a 
Java EE system. The 
<<deploy>> dependency 
shows which artifacts are 
deployed to which nodes. 
<<execution environment>> 
is a node that offers an 
environment to run specific 
types of components. To 
know what components are 
deployed to a specific 
node, you need to look at 
the install view to see what 
components go inside each 
artifact.
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• Support internationalization

• Offer different pricing (for example, a free version and a
commercial version)

• Accommodate customizations for different clients

• Support clients in a distributed system that still send old-ver-
sion message requests

Once the implementation is in place, configuration man-
agement tools and build scripts help to automate the process
of selecting, configuring, and packaging the right configura-
tion items for different versions. But the architecture describ-
ing this, possibly quite intricate, structure of files and folders
should be initially captured in an install view.

5.3.2 Elements, Relations, and Properties

Table 5.3 summarizes the principal characteristics of the install
style. Environmental elements in an install view are configura-
tion items: files and folders in a file system, which are orga-
nized in a tree structure. The software elements are C&C
components, such as processes, threads, servlets, or data stores.

Two relations in the install style are

• Allocated-to. A relation between components and configura-
tion items. This relation connects a component with the file
or folder that stores that component in the file system.

• Containment. A folder in the file system contains other fold-
ers and/or files. Likewise, a file (such as a zip file) may con-
tain other files and folders. Also, a given file or folder may
be contained in multiple files or folders—for example, for
multiple installed versions. 

Managing multiple ver-
sions involves not only 
the artifacts packaged 
for deployment but also 
implementation arti-
facts (such as source 
files). The implementa-
tion view, introduced in 
Section 5.5, describes 
the structure of files and 
folders in the develop-
ment environment. The 
implementation and 
install views together 
describe the structures 
containing all software 
artifacts that are version 
controlled.

Table 5.3 Summary of the install style

Overview The install style describes the mapping of components in the software archi-
tecture to a file system in the production environment.

Elements • Software element: a C&C component. Required properties of a software 
element, if any, usually include requirements on the production environ-
ments, such as a requirement to support Java or a database, or specific 
permissions on the file system.

• Environmental element: a configuration item, such as a file or a folder. Pro-
vided properties of an environmental element include indications of the 
characteristics provided by the production environments.

Relations • Allocated-to. A component is allocated to a configuration item.
• Containment. One configuration item is contained in another.

Constraints Files and folders are organized in a tree structure, following an is-contained-in
relation.
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As with the deployment style, the important properties of
the software and environmental elements of the install style are
those that affect the allocation of the software to configuration
items. For example, how a configuration management system
deals with histories and branches is a configuration item prop-
erty; a specific version of the Java runtime environment to use
might be a required property of a software component. An
install view might be designed to make extensive use of varia-
tion points, because installation requirements will likely be dif-
ferent on different platforms.

5.3.3 What the Install Style Is For 

Understanding the organization of the files and folders of the
installed software can help developers, deployers, and opera-
tors carry out the following tasks: 

• Create build-and-deploy procedures

• Navigate through a large number of files and folders that
constitute the installed system, to locate specific files that
require attention (such as a log file or configuration file)

• Select and configure files to package a specific version of a
software product line

• Update and configure files of multiple installed versions of
the same system

• Identify the purpose or contents of a missing or damaged
file, which is causing a problem in production

• Design and implement an “automatic updates” feature

The required properties of the software elements in the
install style can also be used to support the analysis of purchas-
ing options for production environments.

5.3.4 Notations for the Install Style

Any notation for an install view must show components, the
files and folders, and the mapping between them. The tree
structure organization of the files and folders should also be
shown. UML provides a number of built-in facilities to aid in
showing an install view, including the <<artifact>> stereotype
to denote a file (configuration item) and the <<manifest>>
artifact to indicate containment.

Figure 5.4 shows an install view diagram from the Duke’s
Bank application using an informal notation, and Figure 5.5
shows the same diagram rendered in UML.

Section 6.4 explains 
what variation points 
are and how to docu-
ment them.

Duke’s Bank is an exam-
ple application used in 
Sun’s online Java tuto-
rial. See java.sun.com/
j2ee/tutorial/1_3-fcs/
doc/Ebank.html.
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Figure 5.4
An install view in an informal notation, from the Duke’s Bank Java EE application. Java applications are usually deployed 
in Java archive (JAR) files. Like a zip file, a JAR file may contain other files. Enterprise JavaBean JAR files contain EJB 
classes and other files that the EJBs may need. Web archive (WAR) files contain Web components (servlets and Java-
Server Pages [JSPs]); very often, they also contain HTML, JPEG, and other files used in Web pages for “static content.” 
Enterprise archive (EAR) files are a packaging of zero or more JAR and zero or more WAR files. All server-side compo-
nents are inside DukesBankApp.ear, which is deployed to the application server. The diagram also shows that the client-
side BankAdmin Java application is deployed in app-client.jar, which is deployed to the admin user’s machine.

Figure 5.5
The install view of Figure 5.4 rendered in UML. The <<artifact>> stereotype denotes a file of any kind. The <<manifest>> 
stereotype indicates that a given component, class, or other artifact is inside a given artifact. 
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5.3.5 Relation to Other Styles

The install style is most strongly related to the C&C styles that
describe the software elements for the allocation. The deploy-
ment style is also closely related because it shows the hardware
elements where the files in an install view are deployed to. 

5.4 Work Assignment Style
5.4.1 Overview

The work assignment style allocates modules of a module style
to the groups and individuals who are responsible for the real-
ization of a system. This style defines the responsibility for
implementing and integrating the modules to the appropriate
development teams. The style is typically used to link activities
to resources to ensure that the modules are each assigned to
an individual or team. The architecture in combination with
process determines the actual allocations.

A common managerial tool is the work breakdown structure
(WBS). This tool defines a project and groups the project’s dis-
crete work elements in a way that helps organize and define
the total work scope of the project. Software WBSs have always
been based on some decomposition of the system being built
into parts: the modules of a module style.

Because work assignments represent a mapping of the soft-
ware architecture onto groups of humans, it is an important
allocation style. Teams—and hence work assignments—are
not simply associated with writing code that will run in the final
system. There are many more tasks that humans must perform:
configuration management, testing, evaluation of potential
commercial off-the-shelf products, ongoing product sustain-
ment, and so on.

Even if a module is purchased in its entirety as a commercial
product without the need for any implementation work, some-
one still has to be responsible for procuring it, testing it, and
understanding how it works, and someone has to “speak” for it
during integration and system testing. The team responsible
for that has a place in a work assignment view, just as do teams
responsible for implementing “homegrown” modules.

Moreover, software written to support the building of the
system—tools, environments, test harnesses, and so on—and
the responsible team have a first-class place in a work assign-
ment view.

5.4.2 Elements, Relations, and Properties

The elements of this style are software modules and the groups
of people in the development organization.
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In this style, the allocated-to relation maps from software ele-
ments to organizational units.

A well-formed work assignment relation has the property of
completeness—all work is accounted for—and no overlap—no
work is assigned to two places. Properties of the software ele-
ments may include a description of the required skill set,
whereas properties of the people elements may include pro-
vided skill sets.

Table 5.4 summarizes the characteristics of the work assign-
ment style.

5.4.3 What a Work Assignment Style Is For

The work assignment style shows the major units of software
that must be present to form a working system and who will
produce them, as well as the tools and environments in which
the software is developed (and their assignments to environmen-
tal elements). The work assignment style helps with planning
and managing team resource allocations, assigning responsi-
bilities for builds, and explaining the structure of a project—to
a new hire, for example. The work assignment style can give
each team its charter.

This style is the basis for work breakdown structures and for
budget and schedule estimates.

5.4.4 Notations for the Work Assignment Style

No special notations exist for showing work assignment views.
Among informal notations, a table showing software elements
and responsible teams is often sufficient.

Tabular notes are a very simple and clear form of description
for work assignment views. The architect doesn’t need to
choose the team but rather provide information to manage-
ment. Later, the actual team assignments can be added. 

Table 5.4 Summary of the work assignment style

Overview The work assignment style describes the mapping of the software architecture 
to the teams in the development organization.

Elements • Software element: a module. Properties include the required skill set and 
available capacity (effort, time) needed.

• Environmental element: an organizational unit, such as a person, a team, a 
department, a subcontractor, and so on. Properties include the provided 
skill set and the capacity in terms of labor and calendar time available.

Relations Allocated-to. A software element is allocated to an organizational unit.

Constraints In general, the allocation is unrestricted; in practice, it is usually restricted so 
that one module is allocated to one organizational unit.
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Figure 5.6 shows the primary presentation for a work assign-
ment view of a NASA system called ECS. In the decomposition
view for ECS, the highest level modules are called segments;
those are decomposed into units called subsystems.

5.4.5 Relation to Other Styles

The work assignment style is strongly related to the decompo-
sition style, because that is the most common basis for its allo-
cation mapping. A work assignment view may extend the
module decomposition by adding modules that correspond to
development tools, test tools, configuration management sys-
tems, and so forth, whose procurement and day-to-day opera-
tion must also be allocated to an individual or a team. 

A work assignment view is often combined with other views.
For example, team work assignments could be the modules in
a decomposition view, the layers in a layered view, the software
associated with tiers in an n-tier architecture, or the software asso-
ciated with tasks or processes in a multi-process system. You

ECS Element (Module)

Organizational UnitSegment Subsystem

Science Data 
Processing 
Segment
(SDPS)

Client Science team

Interoperability Prime contractor team 1

Ingest Prime contractor team 2

Data Management Data team

Data Processing Data team

Data Server Data team

Planning Orbital vehicle team

Flight
Operations
Segment
(FOS)

Planning and Scheduling Orbital vehicle team

Data Management Database team

User Interface User interface team

. . . . . . . . .

Figure 5.6
Work assignment view using a tabular notation. The left two columns echo the system’s module decomposition 
structure.

The decomposition 
style is discussed in 
Section 2.1.

Combining views is dis-
cussed in Section 6.6.
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could augment those views by annotating the various software
elements with the name of the team assigned to each. Or you
could document the assignments as an additional property of
the software elements.

The creation of a work assignment view—whether main-
tained separately or combined with another—enables the
architect and the project manager to give careful thought to
the best way to divide the work into manageable chunks. This
approach also helps keep explicit the need to assign responsi-
bility for all software, such as the development environment
that will not be part of the deployed system. A danger of com-
bining work assignments with other views is that the work
assignments associated with tool building may be lost; in many
situations, the ancillary software tools are not part of the actual
system and do not appear in any of other views.

PERSPECTIVES

Why Is a Work Assignment View Architectural?

A work assignment view maps software elements (modules) to environment ele-
ments (units in a development or acquisition organization). It shows who is
responsible for developing each piece of the system. Some people, when con-
fronted with our prescription to consider designing and documenting a work
assignment view as part of the architecture, balk. “Wait,” they say. “It is not part
of the architect’s responsibilities to assign work to people. That’s what project
management is for.” It’s a fair question.

About four years ago, I was part of a large U.S. government defense project that
was just getting off the ground. It was a system of large interacting systems,
each complex and, in several cases, unprecedented. The government decided
that it needed to choose a major contractor to develop a key part of this project,
and to oversee the development and integration of the rest of it. After that, it
needed to award participating contracts to many other companies to build the
other pieces of the system.

This project was predicted to comprise several tens of millions of lines of code,
with a price tag in the billions of dollars. Contracts, especially sizable ones, take
a long time to go through the competitive procurement process. There are mas-
sive “requests for proposals” publicly circulated, which precipitate massive bid
proposals in response, which in turn trigger massive source selection pro-
cesses. Even if there are no protests filed by any of the losing bidders, which
can send the process back to the beginning, it takes months or years to award
a contract and begin work. Government acquisition keeps legions of lawyers on
both sides gainfully employed.

Knowing all of this, the government agency procuring the system had a tangible
incentive to get the contract process under way as soon as possible. The clock
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was ticking; this system was going to replace several others whose withdrawal
from service had already been planned. Contracting for this project occupied
everyone’s attention for well over a year.

Eventually the prime contractor and the major subcontractors were in place,
and a huge sigh of relief was palpable throughout parts of Washington. “Now,”
said the project manager, “let’s find an architect to design the system.”

Do you see the flaw here? The first day on the job, the architect was confronted
with a de facto decomposition, based on contracting concerns. It is fair to say
that this was not the decomposition the architect would have wanted, and if he
had been able to say so earlier, the contracts awarded might well have been dif-
ferent. The architect was concerned with exploiting the inherent commonality
and managing the variation across the several versions of the system he knew
were going to be deployed. He was also concerned with injecting some com-
monality across the subsystems; in particular, he knew they all needed a com-
mon look and feel. He might have created an architecture element to provide
that. But with nothing in any of the contracts to cover this, he was reduced to
writing it into the architecture “guidelines,” which were not always followed with
hoped-for rigor. We know that the module decomposition structure of a soft-
ware system is primarily where its modifiability is created. It is doubtful that the
government contracting experts either possessed the domain expertise or con-
ducted a domain analysis to see what likely changes were in store and design
the decomposition accordingly.

This example and others make me believe that a work assignment view is an
important architectural contribution. And yet the skeptics have a point. Aren’t
we asking architects to make project management decisions? In this example,
project managers were making de facto architectural decisions, and the result,
predictably, was a poor architecture. The solution seems obvious: architects
and project managers should work together on this and other issues. In partic-
ular, the architect can inform management about the decomposition and the
skill set needed to ensure the successful development of each piece. Having the
architect involved in the beginning ensures that the module decomposition
drives the work assignments and not the other way around. Having a place for
a work assignment view all ready and waiting in the architecture document can
help the architect engage his or her project manager in a conversation about fill-
ing it in.

—P.C.

5.5 Other Allocation Styles
So far in this chapter you’ve seen that hardware, file manage-
ment systems, and team structure all interact with the software
architecture. We’ve shown a style that captures each of these
allocations from software to external-to-software structures.
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There are many other useful mappings of this variety. Here are
a few for you to consider:

• Implementation style. The implementation style describes how
the development environment is organized in a tree struc-
ture of files and folders and how modules from a module
view map to that structure. When you apply the implemen-
tation style to a system, the resulting implementation view
shows how files and folders should be arranged to host the
implementation units: classes, programs, scripts, test cases,
make files, documentation files, and any other artifacts cre-
ated when the system is developed. The implementation
view helps developers to navigate and locate development arti-
facts, and to place new artifacts in the proper place. The
implementation view also helps in the implementation of
version control and configuration management policies.
The implementation style is similar to the install style, but
instead of showing files and folders in the production envi-
ronment, it shows the organization of files and folders in the
development environment. A screenshot of your develop-
ment environment tool (which manages the implementa-
tion environment) often makes a very useful and sufficient
diagram for your implementation view.

• Data stores style. The data stores style describes the mapping
between the software’s data entities and the hardware of the
data servers on which the software resides. When you apply
the data stores style to a system, the resulting data stores
view shows how the tables containing data described in the
data model style are distributed over servers. It might show
to which servers stored procedures have been allocated. It
might show geographic distribution of the database or data-
base replication. It might also show the machines that host
data warehouses and the data stores that feed them. These
and other similar relations are important for addressing
concerns about data availability, resilience of data to physi-
cal attack or cyberattack, as well as how data accesses affect
overall system performance. The data stores style is similar
to a deployment style, except that (instead of C&C compo-
nents) it shows data entities allocated to hardware.

Other allocation styles are possible. You could define a
requirements-allocation style that maps between system
requirements and the software elements of the architecture
that satisfy them; that’s one way to document a mapping
between requirements and design. And for projects spread
across many teams and sites, a coordination view can be an
important tool to bring the architecture and the development
organization into alignment.

If your development 
organization will create 
multiple software sys-
tems and wants all of 
them to follow the same 
structure for the files 
and folders in the devel-
opment environment, 
you should document 
an implementation view 
that serves as a refer-
ence for all these soft-
ware projects.

Section 2.6 discusses 
the data model style.

Section 10.3 discusses 
ways to capture map-
pings from require-
ments to software.

See “Perspectives: 
Coordination Views” on 
page 209, in this chapter.
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There are also useful specializations of the styles discussed in
this chapter. For example:

• Specializing the deployment style. The deployment style as pre-
sented comes with no inherent topological restrictions, but
you might find certain patterns of deployment to be partic-
ularly useful. Microsoft publishes a “Tiered Distribution”
pattern, which prescribes a particular allocation of compo-
nents in a multi-tier architecture to the hardware they will
run on. This pattern specializes the generic deployment
style. If you adopt and document this pattern for your sys-
tem, the result will be a Tiered Distribution view. Similarly,
IBM’s WebSphere handbooks describe a number of what
they call “topologies” along with the quality attribute crite-
ria for choosing among them. There are 11 topologies (spe-
cialized deployment views) described for WebSphere
version 6, including the “single machine topology (stand-
alone server),” “reverse proxy topology,” “vertical scaling
topology,” “horizontal scaling topology,” and “horizontal
scaling with IP sprayer topology.”

• Specializing the work assignment style. You can also document
often-used team structure patterns as specializations of the
work assignment style. In Urdangarin et al. 2008, the
authors describe a number of team-organization approaches
for globally distributed Agile projects. Each constitutes a
specialized work assignment style:

– Platform style. In a software product line development,
one site is tasked with developing reusable core assets of
the product line, and other sites develop applications
that use the core assets. 

– Competence-center style. Work is allocated to sites depend-
ing on the technical or domain expertise located at a site.
For example, user-interface design is done at a site where
usability engineering experts are located. 

– Open-source style. Many independent contributors develop
the software product in accordance with a technical inte-
gration strategy. Centralized control is minimal, except
when an independent contributor integrates his code
into the product line.

They also identify two other organizational allocation
schemes that technically do not qualify as specializations of
the work assignment style, because they allocate something
other than modules to organizational units:

– Process-steps style. Work is allocated across the sites in accor-
dance with the phases of the software development process;

A style is a specializa-
tion of another style if it 
is consistent with that 
style—that is, doesn’t 
violate it—and adds 
more constraints to its 
element types, relation 
types, and/or topologi-
cal restrictions. 

See the MSDN Web site, 
msdn.microsoft.com/
en-us/library/
ms978694.aspx.

See the IBM Redbooks 
Web site, www.redbooks
.ibm.com/abstracts/
sg246446.html.

www.redbooks.ibm.com/abstracts/sg246446.html
www.redbooks.ibm.com/abstracts/sg246446.html
www.redbooks.ibm.com/abstracts/sg246446.html
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for example, design may be done at one site, develop-
ment at another site, and testing at yet another site.

– Release-based style. The first product release is developed at
one site, the second at another site, and so on. Often the
releases will be overlapped to meet time-to-market goals;
for example, one site is testing the next release, another
site is developing a later release, and yet another site is
defining or designing an even later release.

PERSPECTIVES

Coordination Views 

With Jim Herbsleb

A coordination view can be an important tool to bring the
architecture and the development organization into
alignment, particularly for projects spread across many
teams and sites.

The motivation for a coordination view stems from the
limitations of communication as a coordination mecha-
nism. Conway (1968) observed decades ago: “Any orga-
nization that designs a system will inevitably produce a
design whose structure is a copy of the organization’s
communication structure.” Small teams can coordinate
their work rather simply through frequent communica-
tion. But since the number of potential communication
paths increases as the square of the number of team
members, this strategy does not scale. The usual solu-
tion is to divide a system into parts that have limited,
well-specified interactions, so that developers working
on one part do not need to coordinate their work with
developers working on other parts. In the software
domain, Parnas (1972) observed long ago that in thinking
about criteria for partitioning code into modules, they
should be thought of not as subprograms but as “work
items” that can be assigned to teams. 

Modularization is an essential strategy for allowing
development projects to coordinate their work, but it is
generally not sufficient. Modules are not completely
independent—after all, they form a single system and
must therefore interact in some way—and for this reason,
the need for teams to coordinate is rarely eliminated
completely. In some cases, only minimal coordination will
be required, but in other cases, intensive coordination is
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necessary. The full picture is more complicated, as coor-
dination can happen through shared representations, by
prearranged plans and interfaces, and even by a shared
work history that enables teams to predict the actions of
other teams.

Just as the need to coordinate development work can
vary dramatically across modules, the capacity to coor-
dinate can vary dramatically across teams in a project.
The key to successful project coordination is to ensure
that the coordination required among teams never
exceeds the capacity of those teams to coordinate (Cat-
aldo et al. 2006). A coordination view is a tool that can be
used to help ensure this condition is not violated.

The key to a coordination view is representing complexity
and uncertainty in the relations between modules. Com-
plexity implies that a module and its interfaces are likely
to be difficult to understand and to use correctly. Uncer-
tainty means that potentially complicated communica-
tion and negotiation between teams and with architects
must occur as interfaces are worked out or the allocation
of functionality to modules is determined. Representing
complexity and uncertainty separately is important, since
the means for addressing them are generally quite differ-
ent. Complexity is generally addressed by detailed doc-
umentation, a tactic that is much less useful for handling
uncertainty. Frequent Agile-style communication is often
an effective way to address uncertainty, but it is easily
overwhelmed and ineffective at high levels of complexity.
It is important for a useful coordination view to represent
both.

One straightforward form a coordination view can take is
derived from matrices that represent the relations among
modules and the coordination capacities of the project
teams. Module relations are represented by two square
matrices (like dependency structure matrices), of dimen-
sion in the number of modules, with each entry taken
from the domain <0, 1, 2, 3>, representing an uncertainty
(UM) or complexity (CM) relation between two modules.
Zero values indicate modules are not related in any sub-
stantial way, while 1, 2, and 3 represent, respectively,
low, moderate, and high levels of complexity or uncer-
tainty in the interaction of the modules. Values can be
assigned in a variety of ways, for example by an expert
such as the lead architect. 

Dependency structure 
matrices are discussed 
in Section 1.4.3.
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These matrices can be used in conjunction with square
matrices representing the relevant coordination capacity
of pairs of development teams. The communication
capacity matrix (CCM) represents the ease and facility
with which two teams can be expected to communicate.
This expectation depends on such factors as facility in a
common language, cultural similarity, degree of overlap
in work hours, use of similar communication technolo-
gies, and past experience successfully communicating
with each other or similar teams. The documentation
capacity matrix (DCM) represents the ease and facility
with which two teams can be expected to create relevant
documentation and achieve a common understanding of
it. This expectation depends on such factors as experi-
ence with relevant notations (for example, are both
teams experienced in UML if that is the chosen format),
history of creating and maintaining detailed and accurate
documentation of APIs, and the demonstrated willing-
ness to publish and read documentation. For both matri-
ces, the values can again be taken from the domain
<0, 1, 2, 3>, representing approximate levels of commu-
nication or documentation capacity of pairs of teams. 

We now have four square matrices: two of dimension
number of modules (UM, CM), and two of dimension
number of teams (CCM, DCM). In order to compare
coordination needs with coordination capacities, it is
necessary to express both as relations among teams.
Some additional computation with UM and CM will
achieve this. All that is required is to use an allocation
view in the form of a binary matrix AM of teams by mod-
ules, where an entry of 1 indicates that a team is respon-
sible for a given module. The following multiplication
represents the degree to which each pair of teams can
expect to be required to coordinate uncertainties (where
AMT is the transpose of AM).

AM  UM  AMT = CRU

The product CRU is a square matrix of dimension in the
number of teams, where entries give an indication of the
extent to which each pair of teams is working on mod-
ules that interact with uncertain interfaces and/or uncer-
tain allocation of functionality. This indication is very
approximate, but a comparison of values in CRU and
CCM should give useful indication where much commu-
nication is going to be required (relatively large entries in
CRU) and little communication capacity exists (relatively

× ×
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small entries in comparable cells of CCM). Such mis-
matches should trigger discussions about how communi-
cation can be supported or how work can be reassigned
in order to sidestep communication problems. An analo-
gous computation substituting CM for AM and DCM for
CCM will provide a comparison of the need of teams to
coordinate through documentation and their capacity to
do so. 

Let’s illustrate with a small example. Let AM, a matrix of
dimension teams by modules, represent assignment of
code modules to teams for development. This is simply
a work assignment view. UM is an uncertainty matrix,
representing the lead architect’s judgment about the rel-
ative degree of uncertainty, for each pair of modules, of
the interface and the allocation of functionality between
the modules. CRU represents the extent to which each
pair of teams can expect to be required to coordinate
uncertainties.

CRU can now be compared with communication capac-
ities of the teams, CCM, or used to plan how the work is
assigned. It is a good bet, for example, because of the
work they are performing, teams 1 and 3 will require a
very robust communication capacity, if not collocation.
This because of the considerable uncertainty between
modules 1 and 3 as well as 3 and 5. Teams 2 and 3 will
have relatively little need to work out uncertainties,
meaning they can probably be located anywhere and will
need no special communication technologies. Teams 1
and 2 will have a moderate need to communicate, sug-
gesting they should work in time zones that allow over-
lapping work hours and have adequate teleconferencing
and perhaps instant-messaging technologies. Their coor-
dination success should be carefully monitored to ensure
they don’t get out of sync. 

Additional experience with coordination views will even-
tually tell us when this simple construction is sufficient,
and when more nuanced schemes, perhaps attuned to

Work assignment views 
are discussed in Sec-
tion 5.4.

× × =

AM

0 1 1 0 1
0 0 0 1 0
1 1 1 0 0

AMT

0 0 1
1 0 1
1 0 1
0 1 0
1 0 0

CRU

- 4 7
4 - 2
7 2 -

UM

- 0 3 0 0
0 - 0 1 1
3 0 - 1 3
0 1 1 - 2
0 1 3 2 -
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architecture styles or other key attributes, will add value.
We may also need more systematic ways of assigning
values to both need and capacity. Such issues are the
subject of ongoing research (Urdangarin et al. 2008;
Avritzer, Cai, and Paulish 2008).

5.6 Summary Checklist
• Allocation styles map software elements to elements in the

environment of the software.

• A deployment view describes the mapping of runtime soft-
ware elements to the hardware of the computing platform
on which the software executes.

• An install view describes the tree structure of files and fold-
ers in the production environment and how the software
components are mapped to that structure.

• A work assignment view describes the mapping of modules
onto the people, groups, or teams tasked with the develop-
ment of those modules.

5.7 Discussion Questions
1. Consider a network diagram created by the network admin-

istrator in the IT department of your organization. How
does that diagram compare with a deployment view? What
is missing? 

2. Suppose that you needed to map the modules under test to
the test harness that generates inputs, exercises the mod-
ules, and records the outputs. Sketch an allocation style
that addresses this concern.

3. In one project, short identifiers were assigned to every
module. A module’s full name consisted of its identifier,
prefixed by its parent’s identifier, separated by a period (.).
The project’s file structure was defined by a short memo-
randum stating the path name of a root directory and fur-
ther stating that each module would be stored in the
directory obtained by changing each period in the mod-
ule’s full name to a slash (/). Did this memorandum con-
stitute an implementation view for this system? Why or why
not? What are the advantages and disadvantages of this
scheme?

4. Suppose that your system can be deployed on a wide variety
of computing platforms and configurations. How would
you represent that?
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5. Besides the ones in this chapter, identify as many other
structures in the environment of a software system as you
can. Pick a few and answer the following: What software ele-
ments would map to it? Create an example primary presen-
tation for a corresponding view. Discuss to whom such a
view would be useful and what concerns it would address.

6. Many deployment tools and integrated development envi-
ronments provide views of the development and produc-
tion environments that allow you to easily understand and
navigate the tree structure of files and folders. Do you think
these tools can fill the need for creating install views or
implementation views in the architecture documentation?
Why so, or why not?

5.8 For Further Reading
Both the install style and the implementation style are aligned
with the broad topic of software configuration management
(SCM). An in-depth treatment of SCM is far beyond the scope
of this book, but you can begin investigating the topic by looking
at the documentation of SCM and version-control tools, such
as Subversion, CVS, Perforce, ClearCase, and Visual SourceSafe.
The Siemens Four View model defines a code architecture
view that explains how the software implementing the system
is organized into source, intermediate, and deployment com-
ponents and related decisions regarding build and installation
procedures and configuration management (Hofmeister, Nord,
and Soni 2000).

In the 1960s Conway (1968) formulated a law that the archi-
tectural structure mirrors the organizational structure. He
based his law on ease of communication within as opposed to
across groups. This law is an organizational articulation of cou-
pling and coherence. Architecture-based management of soft-
ware projects is also discussed in the book by Paulish (2002).
He has observed that accurate time and budget estimates
depend on basing them on the software architecture. This is
the place where a work assignment view comes into play; Paul-
ish’s observation has a strong intuitive base, as the time and
budget estimates depend on the work breakdown structure,
which in turn depends on the software architecture. More
recently, Avritzer and others have observed many different
organizational approaches to assign work in globally distrib-
uted teams (for example, product structure, process steps,
release-based, computing platform structure, competence cen-
ter, and open source) (Avritzer, Cai, and Paulish 2008).
Avritzer explicitly discussed assigning work in globally distrib-
uted teams.



ptg

215

P A R TBeyond Structure:
Completing the
Documentation

Part I presented a substantial repertoire of useful architecture
styles. An architect can choose from among these styles, pick
styles in other style catalogs, or design a new style. Once a style
is chosen, the view based on it needs to be designed and docu-
mented. The chapters in Part I presented ways to document
the elements and relations that populate a view.

But documenting a view involves more than just writing
down (or more often, drawing) the elements and their rela-
tions. Elements have interfaces, and those need to be docu-
mented so that teams developing other elements can interact
with them correctly. Elements have behavior, and confedera-
tions of elements have collective behavior, which needs to be
documented so that implementers know what the elements
they’re coding should do, and so that analysts can tell if the
architecture is satisfying the system’s behavioral requirements.
Architects need a way to explain their design—what drove
them to make the design decisions they did. Documenting
rationale is a critical but often underpracticed part of an archi-
tect’s duties. 

These and other kinds of information are important parts of
the architecture document. Part II deals with those. 

• Chapter 6 explores documentation techniques such as
refinement and chunking of information, context dia-
grams, creating and documenting combined views, docu-
menting variability and dynamism, and documenting the
rationale behind architectural decisions. 

• Chapter 7 tells how to document the interfaces of architec-
ture elements. It provides ways to document the existence of
interfaces, the syntax (or signature) of an interface, and the
semantics of an interface.

Great things are not 
done by impulse, but by 
a series of small things 
brought together.

—Vincent van Gogh
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• Chapter 8 explores another essential technique for archi-
tects: documenting the behavior of an element or an ensem-
ble of elements. Documenting behavior is an essential
counterpoint to documenting static structure. This chapter
covers the techniques and notations available for expressing
the behavior of elements, groups of elements, and the sys-
tem as a whole. 
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6
Beyond the Basics

This chapter contains guidelines for dealing with several
aspects of documentation that either span views or are not spe-
cific to any particular category of views:

6.1 Refinement. Refinement is a way to reveal more information
over time as it becomes available. Refinement reflects how
architectures develop over time, and it lets architects present
information in more or less detail to serve various audi-
ences. This section discusses two kinds: decomposition
refinement and implementation refinement.

6.2 Descriptive completeness. Does your architecture document
tell the truth, the whole truth, and nothing but the truth?
There may be good reasons why it doesn’t. 

6.3 Documenting context diagrams. A context diagram establishes
the boundaries for the information contained in a view. A
context diagram for the entire system defines what is and
is not in the system, thus setting limits on the architect’s
tasks. This section discusses how to document context dia-
grams, and how to tailor context diagrams for each view.

6.4 Documenting variation points. Some architectures provide
built-in variation points to facilitate building a family of
similar but architecturally distinct systems. Other architec-
tures are dynamic, in that the systems they describe change
their basic structure while they are running. 

6.5 Documenting architectural decisions. Why we made architec-
tural decisions the way we did is just as important as the
results of those decisions. This section discusses how to
record the rationale behind your design.
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6.6 Combining views. Prescribing a given set of rigidly parti-
tioned views is naive; there are times and good reasons for
combining two or more views into a single combined view.

6.1 Refinement
Architects need a way to carry out their designs and present
information in a view in manageable chunks. Refinement
allows the architect to present information in separate, digest-
ible pieces. A refinement elaborates on (adds information to)
an existing representation. Refinement allows the architect to
capture and present information with more or less detail. Less
detail is useful in early stages of design, and excellent for intro-
ductions, overviews, and early conceptualizing.

There are two important kinds of refinement: decomposi-
tion refinement and implementation refinement.

6.1.1 Decomposition Refinement

A decomposition refinement elaborates a single element to
reveal its internal structure and then recursively refines each
member of that internal structure. The text-based analogy of
this is the outline, whereby major sections (denoted by roman
numerals) are decomposed into subsections (denoted by capi-
tal letters), which are decomposed into sub-subsections
(denoted by Arabic numerals), and so forth.

Using decomposition refinements in a view carries an obli-
gation to maintain consistency with respect to the relation(s)
native to that view. For example, suppose that the relation
shown in Figure 6.1(a) is send-data-to. Because element B is
shown as both receiving and sending data, the refinement of B
in Figure 6.1(b) must show where data can enter and leave B:
in this case, via B1.

Refinement is the pro-
cess of gradually dis-
closing information 
across a series of 
descriptions.

Decomposition refine-
ment is a refinement in 
which a single element 
is elaborated to reveal 
its internal structure. 
Each member of that 
internal structure may 
be recursively refined.

Figure 6.1
(a) A hypothetical system 
consisting of three 
elements: A, B, and C. 
Arrows signify data flow.

(b) Element B is refined to 
show that it consists of 
elements B1, B2, B3, and 
B4. Because B has two 
inputs and one output, B’s 
decomposition refinement 
must satisfy that obligation. 
Children B1 and B3 receive 
the inputs; B3 produces the 
output.

A

B
C

B

B1 B2

B3 B4

(a) (b)
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Decomposition refinement is straightforward to depict in
UML if the UML construct representing the elements supports
nesting, such as a component or a package. Inside the refined
element, use delegation connectors to show the association
between the outer element’s interfaces and the inner ele-
ments. Figure 6.2 shows an example.

6.1.2 Implementation Refinement

Another kind of refinement, called implementation refinement,
shows the same system—or portion of the system—in which
many or all the elements and relations are replaced by new
ones, usually of a different type. Unlike a decomposition
refinement, the scope doesn’t zoom in, but remains fixed. The
implementation refinement reveals information showing how
the original construct will be realized.

For example, imagine two views of a publish-subscribe sys-
tem, as shown in Figure 6.3. In one view, components are con-
nected by a single event bus. In the refined view, the bus is
replaced by an event dispatcher to which the components
make explicit calls to achieve their event announcements.

Implementation
refinement is a refine-
ment in which some or 
all of the elements and 
relations are replaced 
by other, more imple-
mentation-specific, ele-
ments and relations.

Figure 6.2
Showing decomposition 
refinement in UML 2.x. 
Figure 6.2(b) is a decompo-
sition refinement of Figure 
6.2(a).
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(a)
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6.1.3 Spectrum of Design

Through the use of refinement, architects can manage the
specificity of their architecture documentation (and its under-
lying architecture design). This varies depending on a variety
of factors, such as the stage of design, the amount of resources
available to nail down the design and produce the correspond-
ing documentation, the audience for whom that documenta-
tion is being written, and the maturity of the system. The result
is a spectrum of design.

At the left end of the spectrum, the designs (and their doc-
umentation) are broad, very abstract, and unrefined. Early in
the design, broad information is all the architect has. Happily,
the documentation of these early design stages is not wasted.
Architects often need to convey broad architectural under-
standing quickly to an audience that includes nontechnical
stakeholders: sponsors, managers, chief information officers,
visitors, and others. Such stakeholders do not want to pore
over a complete architecture document. The description
doesn’t have to be precise, it may not even need to be com-
pletely accurate, and the intent is not to instill deep under-
standing in the audience. Sometimes the intent is to instill a
sense that the people doing the presentation know what
they’re talking about. 

Of course, other stakeholders (such as developers and those
who need to analyze specific properties of the architecture)
need the whole picture. They are the consumers of the docu-
mentation after detail and elaboration have been added

A marketecture . . . is a 
one page, typically 
informal depiction of the 
system’s structure and 
interactions. It shows 
the major components, 
their relationships and 
has a few well chosen 
labels and text boxes 
that portray the design 
philosophies embodied 
in the architecture. A 
marketecture is an 
excellent vehicle for 
facilitating discussion 
by stakeholders during 
design, build, review, 
and of course the sales 
process. It’s easy to 
understand and explain, 
and serves as a starting 
point for deeper analysis.

—Ian Gorton, Essential
Software Architec-
ture (2006, p. 6)

Figure 6.3
Version 2 is an implementa-
tion refinement of version 1, 
showing that the publish-
subscribe bus is actually 
realized by an event 
dispatcher.

C3

C1

C4 C5C3

C2 C1

C4 C5

C2

Version 1 Version 2

Event
Dispatcher

Key Event producer/
consumer

Announce-notify Port

Dispatcher Publish-subscribe
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through the progressive refinement that happens as the archi-
tect collects more information and makes more design decisions.

One of the specific ways that the design moves to the right
along the spectrum is through style specialization.

6.1.4 Style Specialization

When picking a style for a view, one important dimension of
choice is how specialized that style is. The more specialized a
style is, the more constrained the architecture design space
that uses it will be. In exchange for limiting the class of systems
that are in the scope of that style, specialization has a number
of benefits, including the following:

• Stronger guidance for the architect, through the inclusion
of constraints associated with the style

• The ability to exploit specialized analyses, by leveraging
semantic properties of the system, such as computational
model and style-specific properties

• Reuse of implementation, such as middleware to support
communication and common services for components in
that style

Figure 6.4 illustrates the idea for component-and-connector
(C&C) views. Moving to the right, styles become progressively
more specific and constrained. At the left end of the spectrum
are the most generic, and hence least constrained, styles.
There a C&C style uses only generic components and connec-
tors, allowing complete freedom of expression, but carrying
none of the benefits mentioned above. Here the vocabulary
consists of the generic categories of C&C style (call-return,
data flow, event-based, and others) that impose constraints
over component-and-connector types and support a specific
computational model. Moving farther to the right are special-
izations of those styles, such as the examples described in

I’ve often found the 
need for four different 
architecture presenta-
tions: the slides for the 
10-minute presentation, 
the slides for the 1-hour 
presentation, the 50-
page document, and 
finally the full document.

—Philippe Kruchten

“Advice: Building an 
Architecture Overview 
Presentation,” on page 
364 in Chapter 10, 
shows how to build a 
viewgraph presentation 
from a software archi-
tecture document.

Figure 6.4
Style specialization
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Chapter 4 (client-server, pipe-and-filter, publish-subscribe, tiered,
service-oriented, and more). 

Farther right are styles that make stronger commitments to
a particular domain, and typically provide an increasing basis
for code reusability. For example, a Java EE-based style special-
izes tiered systems, introducing component types such as serv-
let, Enterprise JavaBean, and container components, while
providing considerable implementation support for distribu-
tion, remote method invocation, transaction support, and per-
sistence. One step to the right we find further specialization of
the styles. For example, the Spring framework defines a spe-
cific way to implement Java EE applications, adopting patterns
such as inversion of control and model-view-controller, and
introducing element types such as Controller, View, and View-
Resolver. Farther to the right, we might see architecture styles
for product lines, which are targeted to the needs of systems
within a particular company.

The choice of a domain-specific style often relates to the
maturity of a family of architectures within a company, business
segment, or engineering domain. For example, in the early
days of client-server-based information systems, there was very
little architecture guidance and reusability, beyond the need
for clients, servers, and some form of remote invocation.
Developers of such systems had to rely on relatively primitive
forms of support for distributed communication, such as sock-
ets and remote procedure call. As the field matured, so did
frameworks such as .NET and Java EE, enabling far greater use
of infrastructure, exploitation of common services, and guid-
ance for construction of systems using these frameworks.

6.2 Descriptive Completeness
Related to refinement is the concept of descriptive completeness.
Figure 6.5 shows an architecture diagram for an imaginary sys-
tem. Element A is related to element B in some way—the dia-
gram does not disclose how—B is related to C, and C is related
to B. If you’re a “consumer” of this diagram, what can you con-
clude about whether A and C are related?

You might say A and C are not related, because the diagram
shows no arrow between A and C. Or you might say that this
diagram reveals no relationship between A and C, but it is pos-
sible that this information was considered too detailed or tan-
gential for the diagram. Subsequent documentation may reveal
that A and C share this relation.

Either answer might be correct, as each represents a differ-
ent strategy for documentation. The first strategy says that the

Descriptive complete-
ness is a property of 
architecture documen-
tation. Documentation 
has descriptive com-
pleteness if it docu-
ments all elements and 
relations in the system 
that are in the docu-
mentation’s scope.
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views are written with descriptive completeness; the second
says they are not.

The same question can be asked about elements. In Figure
6.5, can we then presume that A, B, and C are the only ele-
ments involved? If the figure reflects descriptive completeness,
then yes. Otherwise, no; perhaps in an elaboration or an aug-
mentation of this view, another element will be shown, as in
Figure 6.6. 

Why would an architect omit some elements and relations in
a view? There are some good reasons:

• It’s early in the design. We don’t know yet all the elements
and relations that are part of the solution. Or we don’t have
time to complete the diagram right now, so we focus on the
most important elements and relations.

• We want to show the most important parts of the view (and
may produce an accompanying refinement showing more

Figure 6.5
Element A is related to B, B 
is related to C, and C is 
related to B. What is the 
relation between A and C?

A

B

C

Figure 6.6
An elaboration to Figure 6.5 
showing an additional 
element, DA

B

C

D
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of the design separately). Perhaps it’s for an overview. Per-
haps an element or relation is used only in special situations
(such as error recovery) and we don’t want to clutter the
diagram to cover these special cases. Or maybe an element
or relation is simply deemed less important and is left out.

• We want to reduce clutter in our diagrams. Maybe the same
relation exists between most or all elements in the diagram,
so we explain that in text (perhaps in a comment box)
rather than graphically to avoid cluttering the diagram.

In Section P.5, we admonished you to explain your notation.
The issue of descriptive completeness is a special case of that.
You simply need to specify which of the two strategies your doc-
uments follow.

ADVICE

If you create a diagram that is not complete, here a few things you can do to
inform the reader:

• Use ellipses (“. . .”) to indicate in the diagram that there are other elements or
relations not shown. In the key, explain the meaning of the ellipses. Figure 6.7
is an example. 

Figure 6.7
Module decomposition diagram that is not complete, as indicated by the ellipses (“. . .”). For packages whose 
submodules are shown and there is no “. . .” , the reader can assume all submodules are displayed.
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• Use a comment box in the diagram to explain to the reader that not all ele-
ments or relations are being exhibited. Figure 6.8 is an example.

• Put a note in the key that says the diagram may not be complete and that
other elements or relations may exist in subsequent refinements.

6.3 Documenting Context Diagrams
The purpose of a context diagram is to depict the scope of a
view. Many, if not most, context diagrams in practice are top-
level context diagrams (TLCDs), but context diagrams are also
useful when an architecture document is explaining a subset of
the system, such as a subsystem or even a single architecture
element. Those smaller pieces have context as well, and under-
standing the context helps understand the subsystem or ele-
ment. Here, “context” means an environment with which the
part of the system interacts. 

Entities in the environment may be humans, other com-
puter systems, or physical objects, such as sensors or controlled

Figure 6.8
Module uses diagram that does not show all usage dependencies, as indicated by the comment box attached to 
package util. To avoid cluttering the diagram, the author decided to use that comment box instead of drawing 
<<use>> dependencies from all other packages to util. 
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A context diagram
defines the boundary 
between a system (or 
part of a system under 
consideration) and its 
environment, showing 
the entities in its envi-
ronment with which it 
interacts.

A top-level context 
diagram is a context 
diagram in which the 
scope is the entire 
system.



ptg

226 ■ Chapter 6: Beyond the Basics

devices. In the case of a context diagram for a subset of the
whole system—that is, when the context diagram is not a
TLCD—the entities in the environment may well be other enti-
ties that belong to the same system as the subset.

A context diagram is useful because it clarifies what are the
parts of the whole solution you have to develop. Sometimes an
organization is asked to develop a system that is part of a larger
system, and a context diagram (in this case, a TLCD) depicts
that. Sometimes supporting frameworks and libraries, external
Web services, off-the-shelf software, other systems of the same
organization, or some other tangential software is considered
outside the scope of the system being developed. A context dia-
gram clarifies what is in and what is out. 

6.3.1 Create Context Diagrams Using the Vocabulary of the View

Remember that your architecture document will consist of a
number of different views, and each view will include a context
diagram. Will each of these context diagrams be the same? No!
That would be unnecessary repetition.

Instead, let the vocabulary of the view—that is, its element
types and relation types—determine what its context diagram
should show. For example:

• The vocabulary of a decomposition view is “module” and “is
part of.” Sometimes an organization is asked to develop a
system that is part of a larger system, and a context diagram
depicts that. If so, then this relationship between what is
being developed and the larger system is shown in the con-
text diagram for the decomposition view. The system being
developed can be shown as nested inside the larger system.

A top-level context dia-
gram makes a good first 
introduction to a system 
and its architecture 
description. It can serve 
as the jumping-off point 
for delving into deeper 
architecture detail in any 
number of directions.

Describe the context of 
the system being devel-
oped using the vocabu-
lary of the view that 
you’re documenting.

A B

C
Our

system

Larger system
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• The vocabulary of a uses view is “module” and “uses.” The
context diagram for a uses view shows what external entities
use or are used by the system under development.

• The vocabulary of a layered view is “layer” and “is allowed to
use.” Sometimes the system being developed sits atop a layer
provided externally, or sometimes the system being devel-
oped is the infrastructure or computing layer that can be
used by application software developed elsewhere. In that
case, the context diagram for a layered view would show the
system under development as a layer above or below some-
body else’s layers.

• The vocabulary of any kind of C&C view is, generally speak-
ing, components and connectors and runtime interaction.
The context diagram of a C&C view will show runtime inter-
action between the system being developed and external
entities, specialized as appropriate. The “traditional” con-
text diagram is, in fact, a context diagram for a C&C view. 

A

B

C

Our

system

«use»

«use»

«use»

Our system

Network transport layer

Operating system
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• The vocabulary of a deployment view is the “is allocated to”
relation between software and runtime hardware. Thus the
context diagram for a deployment view will show any soft-
ware external to the system being developed that is also allo-
cated to the same hardware.

If you are documenting a view and the context diagram for
it does not apply—for instance, if you’re documenting a lay-
ered view and there are no external layers above or below the
system being developed—then simply mark the context dia-
gram for that view as “Not applicable.”

6.3.2 Content of a Context Diagram

Context diagrams show the following:

• A depiction of the system—or part of the system—whose
architecture is being documented.

• External entities.

• Relations with external entities that the system has. The
external entities are shown outside the distinguished sym-
bol for the system being described; the relations are
expressed in the vocabulary of the category of the contain-
ing view.

• A key that explains the notation used in the context dia-
gram, as is the case for all graphical figures.
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If the context diagram 
for a particular view 
doesn’t apply, mark it as 
“Not applicable.”

Use some sort of distin-
guished symbol, such 
as a thick outline or a 
hashed interior, to 
clearly denote the sys-
tem whose context is 
being shown.
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A pure context diagram does not disclose any architecture
detail about the system—it just appears as an undecomposed
block—although in practice, context diagrams may show some
internal structure of the system being put in context. Context
diagrams do not show any temporal information, such as order
of interactions or data flow. They do not show the conditions
under which data is transferred, stimuli fired, messages trans-
mitted, and so on.

6.3.3 Context Diagrams and Other Supporting Documentation

Context diagrams impart some obligations on the other sup-
porting documentation in a view.

• The view’s element catalog should include a description of
the external elements shown in the context diagram. You
should give a reference to the documentation in which the
external entities’ interfaces are documented.

• The view’s rationale section should explain the reasons for
drawing the boundary where it is. 

• If the system has an interface with its environment shown in
the context diagram, that interface needs to be “assigned”
to one of the system’s architecture elements. So every inter-
face between the system and its environment that appears in
a context diagram should also appear on one of the ele-
ments shown in the primary presentation.

6.3.4 Notations for Context Diagrams

Informal Notations

Informally, context diagrams consist of a circle-and-line or box-
and-line drawing, with the entity being defined depicted in the
center as a distinguished circle or box, the entities external to
it depicted as various shapes, and lines depicting relations con-
necting the entities as appropriate. 

Structured analysis, the software design discipline that
brought context diagrams into the mainstream, uses an infor-
mal notation to depict what we would call a C&C-type context
diagram. The system is represented by a distinguished symbol
in the middle, external entities are boxes, and the lines con-
necting them indicate data flow and runtime interaction. 

Because context diagrams are often used to explain systems
to people who know more about the externals of the application
than the internals, such diagrams can be quite elaborate and
use all sorts of idiomatic symbols for entities in the environment.

Figure 6.9 shows a context diagram created using an infor-
mal box-and-line diagram. Because the relation shown in the

Element catalogs are 
described in Section 
10.1.
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diagram is data flow (a runtime relation), we can tell that this
is the context diagram for a C&C view of some kind.

Context diagrams can be depicted easily using tables. This is
useful when there are too many interactions conveniently to
show graphically. For example, a table depicting the data flow
context diagram in Figure 6.9 would give the following:

• The identifier for each piece of data transferred across the
environment boundary (such as a message identifier)

• A description

• The element that sends it

• The element that receives it

• Some information about it, such as what you would find in
a data dictionary

Some software development standards prescribe a document
with a name such as “Interface Requirements Specification,”
whose contents consist chiefly of long tables describing mes-
sages sent to and from the system. These documents are effec-
tively context diagrams.

UML

UML does not have an explicit mechanism for a context dia-
gram. However, diagrams that are appropriate for the various
views are also good for showing the context of a given view.

Figure 6.9
Context diagram for a C&C 
view using an informal 
notation. The example is 
taken from the Adventure 
Builder system (Adventure 
Builder 2010).
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Recalling the principle that the context diagram for a view
should describe the context using the element-type/relation-
type vocabulary of the view that you’re documenting, the same
UML notation you use in a view’s primary presentation can be
used in that view’s context diagram.

For instance, you can use component diagrams to show a
C&C view’s context diagram. Or you can show the context dia-
gram of a decomposition view with nested packages. Or you
can show the context diagram of a layered view using packages
and <<allowed to use>> dependency arrows. And so forth.

A more general, though less informative, way to show con-
text in UML is with a combination of use case and class dia-
grams as shown in Figure 6.10. Here the system’s distinguished
symbol is an appropriately stereotyped class and environment
elements are shown as actors.

6.4  Documenting Variation Points
6.4.1 What Are Variation Points?

Variation points are places in the architecture where specific
instances of flexibility have been built in. The flexibility is
achieved by intentionally leaving specific architectural deci-
sions open, but in a way so that they can be easily bound later,
almost always by someone other than the architect. Architects
design variation points into an architecture to achieve variabil-
ity, which is the ability quickly to achieve change in preplanned
ways.

A variation point is a 
place in the architecture 
where a specific kind 
of flexibility has been 
built in.

Variability is the ability 
to quickly achieve 
change in preplanned 
ways.

Figure 6.10
Description of a system 
context, using a UML class 
diagram. The class stereo-
typed as <<subsystem>> 
depicts the system whose 
context is shown; Patient, 
Nurse, and Patient log are 
external entities. 
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Providing variation points in an architecture is desirable in
the following situations:

• Some set of decisions has not yet been made during the
design process for a single system, but options have been
explored.

• The architecture for a single system is prepared for envi-
sioned future changes.

• The architecture provides basic functionality that can be
extended easily.

• The architecture is for a family or product line of systems,
and the option taken will depend on the specifics of the par-
ticular member of the family to be constructed.

• The architecture is a reference architecture for a collection
of systems and contains explicit places where configurations
and extensions to the reference architecture can occur.

Variation points can occur at any place in an architecture.
They can affect elements and relations, the properties of those
elements and relations, as well as their behavior. They can even
affect the relations between views. For example, a simple ele-
ment may run on the same processor with other elements, but
a more complicated variant might need to run on its own ded-
icated processor.

Document variation points where they occur: in diagrams,
element catalogs, behavioral descriptions, interface descrip-
tions, and so forth. But fully describing the effects and ramifi-
cations of each variation point, as well as how to exercise the
choice offered by a variation point, is best done in one place,
called a variability guide.

Documenting variation points where they occur throughout
the architecture documentation has the advantage that the
description is available where it is needed. But it also has the
disadvantage that pretty soon no one has the complete over-
view of which variation points exist in the system. Just as an ele-
ment catalog serves as a complete repository of elements in a
view, the variability guide will list and explain all of the varia-
tion points in a view. 

6.4.2 Variation Mechanisms 

Architects design a variation point by selecting a variation
mechanism that can be exercised to achieve one of the options
provided. Some of the more prominent architecture variation
mechanisms include the following:

See “Coming to Terms: 
Product-Line Architec-
tures” on page 234 in 
this chapter.

A variability guide is 
the place in an architec-
ture document that 
explains what variation 
points have been 
designed into the archi-
tecture and gives advice 
about how to exercise 
them.

A variation mecha-
nism is a built-in soft-
ware mechanism for 
making a change that, 
when exercised, results 
in a new instance of the 
architecture. The place 
where a variation mech-
anism occurs marks a 
variation point.
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• Element substitution. Replacing the implementation of a
module or component with a different implementation that
still honors (or “realizes”) the same interface. This might
provide one version of a system with a feature that behaves
one way, whereas the second version’s feature would behave
in a different way.

• Component replication. Creating multiple instances of a com-
ponent to provide greater capability in some fashion. For
instance, Web-based systems may allow the deployment of
Web components to multiple machines and the configura-
tion of the number of instances on each machine. Such con-
figuration is tuned to achieve the desired throughput and
availability. 

• Optional inclusion. In some versions of a system, a compo-
nent might be present, whereas in another it might be omit-
ted. This allows a system to have, or not have, a particular
feature. Optional components are many times called plug-
ins or add-ons. 

• Frameworks. A framework is an abstraction in which common
code providing generic functionality can be selectively over-
ridden or specialized by user code providing specific func-
tionality. 

• Parameterization. To allow variation in a wide range of con-
structs. Common examples include values of file names,
URLs, user credentials, and lower-limit or upper-limit values.

• Element composition. Assembling new elements by putting
together existing elements. (A tool that does this is some-
times called a configurator.)

• Templates. Providing a generic body that is almost, but not
quite, complete. Downstream designers fill in the open
parts as needed. Templates are often for code, but they can
also be architectural: for instance, an architecture diagram
that has “empty” parts that need to be filled in.

• Inheritance. Defining generic classes and interfaces. Differ-
ent variations can be implemented (possibly by different
vendors) by creating specific subclasses or classes that real-
ize the interfaces. 

• Generator. A generator is a software program that takes as
input some specification of a desired program and pro-
duces as output a program that meets that specification. 

A framework is an 
abstraction in which 
common code provid-
ing generic functionality 
can be selectively over-
ridden or specialized by 
user code providing 
specific functionality. 
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COMING TO TERMS

Product-Line Architectures 

A product-line architecture is the poster child for architectures with built-in vari-
ation points. A software product line “is a set of software-intensive systems that
share a common, managed set of features satisfying the specific needs of a par-
ticular market segment or mission and that are developed from a common set
of core assets in a prescribed way” (Clements and Northrop 2001). Each product
in the product line may have a slightly different architecture; these architectures
are instances of the product-line architecture. The product-line architecture has
decisions that have been intentionally left open; the architecture for a product
(sometimes called a product architecture or an “instance” architecture) comes
about when a product builder exercises the variation mechanisms that the product-
line architect has put in place exactly for the purpose of building any one of a
number of specific products.

For example, in a product line of personal income tax software, some products
go to the Web and download the latest calculation software to reflect changes in
the tax code; others might not. Some products might offer secure login and
encryption to allow higher data confidentiality; others might not. And so forth.
Product-line designers deal with extensive feature lists, and an individual product
is usually defined by the features it does and does not support. Together, the fam-
ily of products covers all of the targeted market segments. Individual products are
differentiated by feature and price. A developer building one of these products for,
say, testing or shipping, will exercise the variation mechanisms in such a way as
to derive the desired product. For example, if the architect has chosen optional
inclusion as the variation mechanism, the product builder will check out the cal-
culation-downloading component and the encryption component and include
them in the build, if the product includes the corresponding features.

To design a product-line architecture, an architect relies heavily on the product
line’s scope, which is a statement of what all of the products in the product line will
have in common and the specific ways that they will vary from each other. Choos-
ing variation mechanisms involves a trade-off between the cost of building in the
variation mechanisms and the cost of exercising them. For example, a generator
that takes as input a description of the product you want and—poof!—produces
that product is usually very expensive to build but very cheap to use. There are
situations where the economics favor that approach, and others where they do not.

6.4.3 Dynamism and Dynamic Architectures

When the binding time of a variation point is runtime, we say
that this is a dynamic architecture. Architectures change dur-
ing runtime in response to user requirements or to better
enable the achievement of particular quality attributes. A Web

Adynamic architecture
is one in which architec-
ture variation points are 
exercised at runtime.
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browser that can go to a Web site, download a plug-in, and then
start using it to handle a new media type has a dynamic archi-
tecture; its runtime architecture comprises more components
after the download than before. An architecture can change
dynamically by creating (including) or deleting (dropping)
components and connectors, including replicas. For example,
when a new user enters an environment and wants new ser-
vices, components to provide those services would be created.
When the user leaves the environment, the components would
be deleted. The created component or connector may be a
replica or a singleton. In any case, the architect should docu-
ment the number of allowable replicas, the conditions under
which the creation or deletion occurs, and the connectors or
components that are created.

Another way an architecture can change dynamically is by
reallocation of resources or responsibilities. Components may
be moved from one processor to another to offer better perfor-
mance. Responsibilities may be shifted among components:
perhaps a backup could assume primary status in the event of
a failure. 

Happily, documenting a dynamic architecture is no differ-
ent than documenting other kinds of variation points; the
binding time is always runtime.

6.4.4 Documenting Variation Points

Variation points should be documented in two ways. First, their
existence should be noted in the appropriate places through-
out the view (primary presentation, element catalog, context
diagram, and so on) for the view in which they are visible. Sec-
ond, the variation point should be explained in the view’s vari-
ability guide.

To show a variation point in a diagram, you can attach an
annotation to the area affected by a variation point. With a suit-
able identifier (for example, “VP12”), the annotation can
point to the location in the variability guide where the varia-
tion point is explained in full. 

Other graphical approaches for showing the existence of
variation tend to depend on the variation mechanism that the
architect has chosen. For example:

• Element substitution. The UML relation “realizes” is a good
way to depict this by showing that an interface can be real-
ized by any number of implementations. Graphically, this is
shown in Figure 6.11.

• Component replication. In an informal graphical notation,
component replication is almost always documented show-

Showing variation 
points graphically can 
lead to diagrams that 
are cluttered and hard 
to read, especially if you 
try to show dependen-
cies among variations 
graphically. Instead, you 
can annotate your dia-
gram with a pointer to 
an entry in the variability 
guide (described in 
Section 10.1).
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ing shadow boxes: Almost always lacking are an indication
of the possible range of replication and when the actual
number is bound. Figure 6.12 includes this information in
the annotation; it could equally well have referred to the
variability guide.

• Optional inclusion. To show optional inclusion, you can
employ the notations for component replication; simply
confine the range of instances to 0 or 1.

• Creation and deletion of elements. Chapter 8 describes nota-
tions that can be used to indicate how elements can be cre-
ated and deleted when the system is executed. An example
is a UML sequence diagram, in which a time line under-
neath an object indicates the existence of that object.

• Reallocating resources. Some forms of reallocation of resources,
such as the migration of objects, can be described by a UML
stereotyped dependency <<becomes>>. The dependency tail
is on the original location of an object and the head is on
the subsequent location.

Figure 6.11
Element substitution as 
expressed by the “realizes” 
relation «interface»

Web Browser

Notation: UML

Internet
Explorer 6

Internet
Explorer 7

Firefox Chrome

Figure 6.12
Component replication 
using shadow boxes Variation point VP7: set by

build-time parameter 
“NbrOfSocketConnections”
(default=1..32)

Socket
Connection
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• Frameworks. Extension points need to be documented. An
extension point is a place in the framework where addi-
tional elements can be added or abstract elements can be
replaced with concrete ones. Each extension point is docu-
mented by an interface description of what the framework
provides and the extension requires.

The variability guide for a view should contain the following
information for each variation point that is present in the view: 

• Description of the variation point. What decision has been left
open by this variation point? The description should be
architectural (for example, a particular component can be
swapped in and out) but also meaningful to the stakehold-
ers (for example, choosing different implementations
results in different feature behavior). 

• Available options and their effects. What is the range of choices
available to exercise this variation point? What is the stake-
holder-visible effect of each? What are the architectural
effects of each option? 

• Condition of applicability. Each variation point has a condition
associated with it that describes a state that must be true for
a variation point to apply. For example, to create an enter-
tainment system for a car, the decision of which type of DVD
player to use depends on the decision that the system actu-
ally has a DVD player. 

• The binding time of an option. Possible binding times include
design time, compile time, link time, or runtime. If runtime,
more choices are possible: system start-up or restart time,
when the component containing the variation point starts,
or at other distinguished times during execution.

• How the option is exercised. This describes what someone has
to do in order to choose an option of the variation point: set
a build-time parameter, for instance, or replace one imple-
mentation of a module with another. This section is the
step-by-step “how-to” guide for making the choice presented
by the variation point.

• Dependencies among variation point options. Sometimes when
an option is chosen for one variation point, it constrains
other choices. For example, suppose your supply-chain
management system stores images of the items that are in
your inventory, and image format (such as JPEG or PNG) is
a variation point. Suppose customers can access your inven-
tory on a handheld device such as a pocket PC or cell
phone. The list of devices that your system supports con-
strains the image formats that can be used and vice versa.
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A variability guide can be conveniently presented as a table.
Figure 6.13 shows an example.

Variation Point

Affected
Element or 
Relation Variants Condition

Binding
Time

VP1: Host name of 
the SMTP server 
used by the system 
to send e-mail 
messages

emailer Any valid host 
name.

Whenever the 
SMTP host 
changes. Also used 
to switch between 
development and 
test environments. 

Load time

VP2: External stor-
age and content 
delivery services 
in use

filemanager List of Web ser-
vices; shall differ-
entiate whether 
the service is 
available in the 
development,
test, and/or 
production 
environments.

At least one storage 
service must be 
configured. A sub-
module that handles 
communication
with a given new 
service must be 
available prior to 
enabling a service. 

Load time

VP3: Access keys 
to storage and con-
tent delivery Web 
services

filemanager For each storage 
and content deliv-
ery service 
enabled (such as 
Scribd, S3, You-
Tube), there will 
be a set of access 
parameters (such 
as URL, user ID, 
password).

Only used if the cor-
responding service 
is enabled in VP2. 

Runtime

VP4: Performance-
monitoring switch

util; logging; 
aspects

True if the 
response time of 
requests needs to 
be monitored and 
recorded; false 
otherwise.
Must be config-
urable separately 
for development, 
test, and produc-
tion environments.

Must be set to true 
when the SLA is in 
effect or for debug-
ging purposes. If 
false, the corre-
sponding submod-
ules and artifacts 
may be excluded 
from the build. 

Build time

Figure 6.13
Excerpt from a variability guide showing variation points of a Web application. This variability guide is part of a module 
uses view (not shown), where the description of the affected elements is found.
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6.5 Documenting Architectural Decisions
With Jeff Tyree and Art Akerman

6.5.1 Why Document Architectural Decisions?

The process of developing a complex software architecture
involves making hundreds of big and small decisions. The
results of these decisions are reflected in the views that docu-
ment the architecture—the structures with their elements and
relations and properties, and the interfaces and behavior of
those elements—but most of the time the decisions themselves
are sadly neglected. And in that case, the rationale, especially
the rationale behind the most important decisions, is irrevoca-
bly lost.

Most decisions are made in a complex environment and
almost always involve trade-offs, and the environment and the
trade-offs are likely to be completely invisible to someone who
“inherits” the architecture. Generally, there were circum-
stances, constrained by cost and schedule, under which these
decisions made sense. However, looking back, after all the dust
has settled and the original system designers are long gone, we
have no context around the critical decisions; we have no his-
tory; we have no guidance from the architect to take us for-
ward. All we can do is just shake our heads (sometimes in
disbelief) and ask “What was he thinking?” Rationale tells us
exactly that: What he (or she) was thinking.

In the Views and Beyond approach, documenting architec-
tural decisions enjoys first-class status. When we introduce the
templates for software architecture documentation in Chapter
10, you will see that they contain dedicated places to record
architectural decisions. 

Documenting architectural decisions as you go results in an
architecture that is demonstrably aligned with the business and
technical goals of the system. This is a theme we have tried to
emphasize throughout the book. Documentation isn’t some-
thing you do after the architecture is finished. Documenting the
architecture helps you design the architecture. Documenting the
decisions as you make them helps you make them correctly.

6.5.2 A Template for Documenting Architectural Decisions

Following a minimalist approach, only those issues that need
addressing at various points in the life cycle should be addressed
and thus documented. For example, decisions with many
and far-reaching implications are prime candidates to be
documented.

Rationale is an expla-
nation of the reasoning 
that lies behind an 
architectural decision.

The life of a software 
architect is a long (and 
sometimes painful) suc-
cession of suboptimal 
decisions made partly in 
the dark.

—Philippe Kruchten
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What follows is a template for capturing essential informa-
tion about a key architectural decision.

1. Issue. State the architectural design issue being addressed.
This should leave no questions about the reason why this
issue is to be addressed now. 

2. Decision. Clearly state the solution chosen. It is the selection
of one of the positions that the architect could have taken.

3. Status. State the status of the decision, such as pending,
decided, or approved. (This is not the status of imple-
menting the decision.)

4. Group. Name a containing group. Grouping allows for fil-
tering based on the technical stakeholder interests. A sim-
ple group label, such as “integration,” “presentation,”
“data,” and so on can be used to help organize the set of
decisions. For example, the data architects reviewing the
decisions can focus only on the decisions classified as data. 

5. Assumptions. Clearly describe the underlying assumptions
in the environment in which a decision is being made.
These could be cost, schedule, technology, and so on.
Note that constraints in the environment (such as a list of
accepted technology standards, an enterprise architec-
ture, or commonly employed patterns) may limit the set
of alternatives considered.

6. Alternatives. List alternatives (that is, options or posi-
tions) considered. Explain alternatives with sufficient
detail to judge their suitability; refer to external documen-
tation to do so if necessary. Only viable positions should be
described here. While you don’t need an exhaustive list,
you also don’t want to hear the question “Did you think
about . . . ?” during a final review, which might lead to a
loss of credibility and a questioning of other architectural
decisions. Listing alternatives espoused by others also
helps them know that their opinions were heard. Finally,
listing alternatives helps the architect make the right deci-
sion, because listing alternatives cannot be done unless
those alternatives were given due consideration. 

7. Argument. Outline why a position was selected. This is
probably as important as the decision itself. The argument
for a decision can include items such as implementation
cost, total cost of ownership, time to market, and availabil-
ity of required development resources. 

8. Implications. Describe the decision’s implications. For exam-
ple, it may 

– Introduce a need to make other decisions

Like all templates in this 
book, use this one as a 
starting point. Add or 
subtract rows or sec-
tions so that it best fits 
your organization, your 
stakeholders, and their 
needs.
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– Create new requirements

– Modify existing requirements

– Pose additional constraints to the environment

– Require renegotiation of scope

– Require renegotiation of the schedule with the customers

– Require additional training for the staff
Clearly understanding and stating the implications of the

decisions has been a very effective tool in gaining buy-in.

9. Related Decisions. List decisions related to this one. A
traceability matrix or decision tree is useful, as is showing
complex relations diagrammatically such as with object
models. Useful relations among decisions include causal-
ity (which decisions caused other ones), structure (show-
ing decisions’ parents or children, corresponding to
architecture elements at higher or lower levels), or tem-
porality (which decisions came before or after others).

10. Related Requirements. Map decisions to objectives or require-
ments, to show accountability. Each architecture decision is
assessed as to its contribution to each major objective. We
can then assess how well the objective is met across all
decisions, as part of an overall architecture evaluation.

11. Affected Artifacts. List the architecture elements and/or
relations affected by this decision. You might also list the
effects on other design or scope decisions, pointing to the
documents where those decisions are described. You
might also include external artifacts upstream and down-
stream of the architecture, as well as management artifacts
such as budgets and schedules.

12. Notes. Capture notes and issues that are discussed during
the decision process.

ADVICE

Using the Template for Documenting Architectural Decisions

Assumptions (number 5 in the template). The architect should document key
assumptions he or she made when crafting the design. Assumptions are usually
about either environment or need. Assumptions about the environment docu-
ment what the architect assumes is available in the environment and what can
be used by the system being designed. Assumptions are also made about
invariants in the environment. For example, a navigation system architect might
make assumptions about the stability of the earth’s geographic and/or magnetic
poles. Finally, assumptions about the environment can pertain to the development

Let us change our tradi-
tional attitude to the 
construction of pro-
grams. Instead of imag-
ining that our main task 
is to instruct a computer 
what to do, let us con-
centrate rather on 
explaining to human 
beings what we want a 
computer to do.

—Donald Knuth
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environment: tool suites available or the skill levels of the implementation teams,
for example. Assumptions about need state why the design provided is suffi-
cient for what’s needed. For example, if a navigation system’s software interface
provides location information in a single geographic frame of reference, the
architect is assuming that it is sufficient and that alternative frames of reference
are not useful. 

Assumptions can play a crucial role in the validation of an architecture. The
design that an architect produces is a function of these assumptions, and writ-
ing them down explicitly makes it vastly easier to review them for accuracy and
soundness than trying to ferret them out by examining the design.

Alternatives (number 6). Unless mandated, do not explicitly register the name
of the person who suggested each alternative. Finding the best alternative for a
design problem should be seen as a team effort. The solution has collective
ownership; it’s not important that Carlos’s solution won over Julia’s.

Argument (number 7). Analysis or formal review results often make excellent
fodder for rationale, in that they illuminate goals and requirements driving the
architecture and provide the connection between those constraints and the
architectural decisions that satisfy them. If trade studies were performed to sup-
port a decision, or analysis performed to validate a decision, these can be con-
veniently referenced here.

6.5.3 Documenting Alternatives

Often, early and major architectural decisions involve select-
ing from among a set of available alternatives. A table shows
and quickly contrasts the pros and cons of each alternative.
Table 6.1 shows an example of a table comparing three strate-
gic options available to a financial organization trying to meet
the listed business objectives. 

6.5.4 Which Decisions to Document

Which of the hundreds or thousands of design decisions com-
prising an architecture should be documented? Certainly not
all of them. It’s simply too time-consuming, and many deci-
sions do not warrant the effort. So how do you select which
decisions are important enough to warrant documentation? 

The goal is to receive a positive “return on investment” for
the effort you expend recording the decision. That is, you
should document an architectural decision if, in your judg-
ment, you think it’s cheaper to capture it now than not captur-
ing it will be later. 

Alternatives are often 
conveniently docu-
mented using a table 
listing relevant objec-
tives or decision criteria 
and showing how well 
each alternative 
addresses them.

It is hard to claim that 
you know what you are 
doing unless you can 
present your act as a 
deliberate choice out of 
a possible set of things 
you could have done as 
well.

—E. W. Dijkstra (1972, 
pp. 39–41)
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Here are some guidelines to help you identify the architec-
tural decisions worth capturing. Document an architectural
decision if:

• It has an important effect on the system. For instance, it
strongly affects the system’s business goals, or one or more
system quality attributes (performance, availability, modifi-
ability, security, and the like). Or the decision has some
other widespread effect that will be difficult to undo. Or the
decision implies spending (or saving) a significant amount
of time (such as buying an expensive product).

• The design team spent significant time and effort evaluating
options before making a decision. For example, the deci-
sion comes after performing technical experiments or
implementing prototypes or trade-off studies. Or you per-
formed a focused group analysis or conducted a survey with
a user base or established some sort of user forum. 

• The decision is complex or confusing. For instance, the
decision seems not to make sense at first but becomes clear
when more background is considered. Or on several occa-
sions, you’ve been asked, “Why did you do that?” Or the
issue is confusing to new team members.

• Decisions that were unusual or unexpected should be docu-
mented because these are very likely to be broken by mistake
by people who would not have considered such a resolution.

Table 6.1 Analysis of alternatives for implementation of interactive approval processing

ID Concerns
Alternative 1: 
Re-architect System A

Alternative 2: 
Extend System B

Alternative 3: 
Replace System A

N1 Provide interactive 
approval of credit appli-
cations

Yes Yes Yes

N2 Deliver in 6 months Yes Yes No

N3 Reduce time to market 
for future enhancements

No Yes Yes

N4 Reduce costs No Yes No

N5 Reduce risks No Yes No

N6 Will not disrupt business 
operations

Unknown Unknown No

N7 System qualities No Yes Unknown

N8 Reuse existing infra-
structure, buy before 
build

Yes Yes No

N9 Use proven technologies Yes Yes No
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Often an architecture decision creates more issues. We doc-
ument these issues as implications, which automatically
become concerns for the new architecture decisions.

PERSPECTIVES

“It may sound like a lot of effort to do this, but here’s how we do it in the 
trenches.”

We’ve worked with dozens of architects who have written thousands of deci-
sions and conducted countless review sessions defending their technical rec-
ommendations and rationales. Did these efforts produce enough tangible
results? Did they justify the significant investments of time and resources that
were made? Would these architects have been better off spending more time
developing reference architectures, patterns, or standards? It is hard to tell. One
thing is certain, however: By demonstrating relentless focus on aligning archi-
tectures with business problems, by bringing partners and customers along on
a journey to develop the “right” solutions, and by being clear about the implica-
tions of their choices, we’ve seen architects build much stronger relations with
their business and IT stakeholders. It is difficult to accuse any of these architec-
ture teams of living in an ivory tower. Their work is well integrated with the strat-
egy, development, and operations of their respective companies. How do you
put a price on that?

Sometimes we do hear complaints from architects about the extra work
involved to document their decisions. In such cases we usually find that they’ve
gone too far, by documenting decisions that had very little impact or that had
no viable alternatives. We reiterate with them the intent of documenting deci-
sions, which has very little to do with the number of decisions captured. At the
end of our discussions, architects usually leave the room much happier. 

Modern enterprises have a characteristically flat organization and unclear lines
of authority. Such places gather highly intelligent people who live to challenge
the status quo, to innovate and to excel. Very seldom are people are given direct
orders anymore. It is even more seldom that they would follow such orders will-
ingly. The only way to drive change in such an environment is to obtain buy-in.
Architecture decisions and rationale are essential tools for achieving that goal.
Of course, even the most rational arguments are useless if we don’t consider
human factors, such as personal and organizational agendas, relationships,
trust, and so on. But having a strong rationale is a minimum requirement for suc-
cessful conversations.

—A.A. and J.T.
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6.5.5 The Payback for Documenting Architectural Decisions

Documenting architectural decisions can be seen as informing
the cost/benefit formula for architecture documentation given
in the prologue. That formula lets you decide whether the payback
for producing sound architecture documentation outweighs
the effort it takes to produce it. Documenting architectural
decisions, like architecture documentation at large, helps stake-
holders do their jobs more effectively and efficiently, avoid
wasting time on known technical dead ends, and maintain and
evolve the architecture in a manner consistent with its under-
lying design concepts and constraints. That savings is the pay-
back for the effort it takes for an architect to say, “This is what
I was thinking.”

Documenting the architecture will also help ensure that the
architecture is properly aligned with the prevailing business
and technical goals, by compelling the architect to document
that alignment as the architecture is being crafted. Here the
savings shows up as prevention of rework, which might be nec-
essary if the architecture were discovered to be the wrong one
for the job, because the architect didn’t understand what “the
job” actually was. 

Although maintainers and future architects are primary con-
sumers of architecture rationale, they are not the only stake-
holders. Developers can gain important insights from reading
the architect’s reasoning. Testers can design tests to validate
the architect’s precepts and assumptions. Customers can exam-
ine the documented architecture decisions to convince them-
selves that their business goals are being met by the design.
These stakeholders, and others, can read the rationale to make
sure their interests have been addressed. 

Here are some of the paybacks you can expect:

• Socializing decisions. Once a final architectural decision has
been reached, the team will need to socialize the result and
convince the rest of the organization that it has chosen
appropriately. The architecture decision template provides
a common language for discussing decisions. Reviewers can
easily see the status of the decision, the reasoning behind it,
and the impacts. In practice, this is more powerful than
reviewing, say, box-and-line diagrams. In practice, contro-
versial decisions should be socialized early and often. 

• External memory for the architect. The stakeholder with perhaps
the most vested interest in capturing the motivation and
background for design decisions is the architect. In the
maelstrom of developmental activities, the architect needs
some way to remember the conceptual path he or she has
taken, as well as a way not to repeat dead-end design paths.

Section P.2.4 in the pro-
logue shows a formula 
describing the payoff 
point for architecture 
documentation.
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• Conveying risk. Without properly documenting the major
decisions, understanding the implications of the architecture
is difficult. If recorded using a structure such as the one given
in Section 6.5.2, decisions describe more than just a solution.
They also communicate the essential risks and issues. The
team has information on where it should focus attention. 

• Heading off redundant discussion. Without documented ratio-
nale, stakeholders may ask the same questions about a decision
that have long been answered. People may still challenge some
decisions, but they will do so from a more informed footing.

• Supporting timely development. Each decision can be commu-
nicated separately, with a caveat that it is subject to change
due to the impacts of downstream work. As long as these
relations and risks are understood, a team can start using
the decisions. This provides the opportunity to let develop-
ment proceed in the face of not-fully-worked-out decisions.

• Support for communication. By turning the rationale into a
viewgraph presentation, management or business stake-
holders can understand the major architectural decisions
along with their implications. 

PERSPECTIVES

From Documenting Architectures to Architecting As Decision Making

With Rik Farenhorst

What is being proposed in this section reflects a decision-based school of
thought for how we go about laying down an architecture. Until now, the norm
has been to create an architecture and then document it, usually as a set of
views. Rationale, if captured at all, was an after-the-fact exercise in trying to
describe the reasoning behind a fait accompli.

But architecture can be seen as the outcome of a sequence of decisions, each
one rationally made in response to context and need. “Here is a major decision
we must make now,” they say. “Let’s write about it as we make it.” And they
capture both, at the same time, with tooling. 

Many architecture tools let you extend the underlying metamodel that the tools
provide out of the box. Akerman and Tyree (2005) have a metamodel for
describing architectural decisions that can be loaded into such tools. As shown
in Figure 6.14, the metamodel defines a direct association between require-
ments or stakeholder concerns, the architecture decisions that satisfy them,
and the architecture assets (systems, components, modules, interfaces, and so
on) that those decisions make manifest. “Architecture asset” is typically part of
an architecture tool’s default metamodel, and so provides the anchor point
between architecture decisions and architecture.
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Their metamodel goes on to elaborate each node. The node “decision” is elab-
orated to define the information fields laid out in Section 6.5.2. A “concern” can be
a required capability, a change case, a quality attribute, a risk, or a business need.

Now it becomes straightforward to include both decisions and views in a single
model for the architecture. The chosen solution is captured right along with the
rationale that produced it. Rationale behind a decision is no longer second-
class; the why and the what are two sides of the same coin.

This approach is in accord with a growing community of researchers in a field called
“architectural knowledge.” They focus on managing architectural design decisions,
their rationale, and related knowledge concepts (Araujo and Weiss 2002). The
approach described here is an example of this shift put into everyday practice.

—R.F.

PERSPECTIVES

An Ontology of Architecture Decisions

Philippe Kruchten, well known for his work in creating and describing the Rational
Unified Process, is one of the most experienced and thoughtful software archi-
tects in the world. Some extremely talented architects never share what they know.
Others share all the time, but without having the experience to back it up. When
I think of that rare group of architects who speak and write usefully and with
insight from years of front-line experience, Philippe is at the top of the list. A cur-
rent interest of his is the capturing and sharing of architecture knowledge, and
toward this end he has created a classification scheme for architectural decisions
(Kruchten 2004; Kruchten, Lago, and van Vliet 2006), summarized in Table 6.2.

Figure 6.14
Akerman and Tyree’s metamodel relates architecture decisions to architecture assets. (Adapted from A. Akermann 
and J. Tyree, “Position on Ontology-based Architecture,” Proceedings of the Fifth Working IEEE/IFIP Conference 
on Software Architecture [November 2005]. ©2005 IEEE)

Architecture Decision

Architecture Asset

Concern Roadmap

implemented byaddressed by

transforms

Key: UML
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Philippe also proposes an outline for describing an architectural decision. Here
are some descriptive items not contained in the outline we presented in Section
6.5.2. Add them to your template if you find them useful.

• Scope. Some decisions may have limited scope, in time, in the organization,
or in the design and implementation (see the overrides relationship, later in
this sidebar). By default (if scope is not documented) the decision is univer-
sal. Scope might delimit the part of the system, a life-cycle time frame, or a
part of the organization to which the decision applies.

• Author, Time Stamp, History. The person who made the decision, and when
the decision was taken. Ideally we collect the history of changes to a design

Table 6.2 Kruchten’s classification scheme for architectural decisions

Kind of Decision Description Examples

Existence
decisions
(“ontocrises”)

An existence decision states 
that some element/artifact will 
positively show up; that is, it 
will exist in the system’s 
design or implementation.
Structural decisions lead to 
the creation of architecture 
elements of some kind. 
Behavioral decisions decide 
how the elements interact.

• “The logical view is organized in 
three layers: data layer, business 
logic layer, and user-interface 
layer.” 

• “Communication between classes 
uses Remote Method Invocation 
(RMI).”

Ban or 
nonexistence
decisions
(“anticrises”)

This is the opposite of an 
existence decision, stating 
that some element will not 
appear in the design or imple-
mentation.

• “The system does not use MySQL 
as its relational database system.” 

• “The system does not reuse the 
flight management system from 
project ASIEW.” 

Property 
decisions
(“diacrises”)

A property decision states an 
enduring, overarching trait or 
quality of the system. Property 
decisions can be design rules 
or guidelines (when expressed 
positively) or design con-
straints (when expressed neg-
atively), as some trait that the 
system will not exhibit.

• “All domain-related classes are 
defined in Layer #2.” 

• “The implementation does not 
make use of open-source compo-
nents whose license restricts 
closed redistribution.” 

Executive
decisions
(“pericrises”)

These are the decisions that 
do not relate directly to the 
design elements or their qual-
ities, but are driven more by 
the business environment 
(financial) and affect the devel-
opment process (method-
ological), the people 
(education and training), the 
organization, and to a large 
extent the choices of technol-
ogies and tools.

• Process decisions: “All changes in 
subsystem exported interfaces 
(APIs) must be approved by the 
Change Control Board and the 
architecture team.” 

• Technology decisions: “The sys-
tem is developed using Java EE.” 

• Tool decisions: “The system is 
developed using the System Archi-
tect Workbench.” 
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decision. Important are the changes of state, or course, but also changes in
formulation or in scope, especially when we run incremental architecture
reviews. 

• Categories. A design decision may belong to one or more categories. The
list of categories is open ended; categories are useful for queries, and for cre-
ating and exploring sets of design decisions that are associated to a specific
concern or quality attribute. 

• Cost. Some design decisions have a cost associated with them, which is
useful to reason about alternatives. 

• Risk. Documented traditionally by exposure—a combination of impact and
likelihood factors—this is the risk associated with taking that decision. It is
often related to the uncertainty in the problem domain or to the novelty of the
solution domain, or to unknowns in the process and organization. If the
project is using a risk management tool, this should simply link to the appro-
priate risk in that tool.

As shown in Figure 6.15, Philippe has a richly defined notion of a decision’s
state:

• Idea. Just an idea, captured so as not to be lost, when doing brainstorming,
looking at other systems, and so on. It cannot constrain other decisions other
than ideas.

• Tentative. Allows running “what-if” scenarios, when playing with ideas. 

• Decided. Current position of the architect or architecture team; must be con-
sistent with other, related decisions.

• Approved. By a review, or a board (not significantly different than decided in
low-ceremony organizations). 

• Challenged. Previously approved or decided decision that is now in jeop-
ardy; it may go back to approved without ceremony, but it can also be
demoted to tentative or rejected. 

Figure 6.15
Kruchten’s state machine for an architectural design decision (Kruchten 2009)

Idea 0 Tentative 2 Decided 3 Approved 4

Rejected 1 Challenged 2

Obsolete 0
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• Rejected. Decision that does not hold in the current system; but we keep
such decisions around as part of the system rationale (see subsumes in the
next list).

• Obsolesced. Similar to rejected, but the decision was not explicitly rejected
(in favor of another one, for example) but simply became “moot”—for exam-
ple, as a result of some higher level restructuring.

Finally, Philippe has worked out the ways in which decisions can be related to
each other:

• Constrains. The decision “Must use Java EE” constrains the decision “Use
JBoss.”

• Forbids. Synonymous with excludes.

• Enables. The decision “Use Java” enables the decision “Use Java EE.”

• Subsumes. “All subsystems are coded in Java” subsumes “Subsystem XYZ
is coded in Java.”

• Conflicts With. “Must use .NET” conflicts with “Must use Java EE.” 

• Overrides. “The Comm subsystem will be coded in C++” overrides “The
whole system is developed in Java.”

• Comprises. Synonymous with is made of and decomposes into. “Design will
use UNAS as middleware” decomposes into “Rule: cannot use Ada tasking”
and “Message passing must use UNAS messaging services” and “Error log-
ging must use UNAS error logging services,” and so on. 

• Is Bound To. Decision A constrains decision B, and decision B constrains
decision A.

• Is an Alternative To. Decisions A and B address the same issue but propose
different choices.

• Is Related To. There is a relation of some sort between the two design deci-
sions, but it is not of any kind listed previously and is kept mostly for pur-
poses of documentation and illustration.

So, when you’re filling in your template for an architectural decision and you
come to the table row holding the decision’s scope, or its current state, or its
related decisions, you may want to refer to Philippe’s categories in these areas.

—P.C.

6.6 Combining Views 
The basic principle of documenting an architecture as a set of
separate views brings a divide-and-conquer advantage to the
task of documentation, but if the views were irrevocably differ-
ent, with no association with one another, nobody would be
able to understand the system as a whole. 
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Because all views in an architecture are part of that same
architecture and exist to achieve a common purpose, many of
them do have strong associations with each other. Managing
how views are associated is an important part of the architect’s
job, and documenting that association is an important part of
the documentation that applies beyond views.

6.6.1 Types of Associations Between Views

Views are associated with each other in a variety of ways.
In a many-to-one association (see Figure 6.16), multiple ele-

ments in one view are associated with a single element in
another view. Implementation units are frequently associated
with the runtime components they become. The association
should make clear which module maps to which component.

In a one-to-many association (see Figure 6.17), a single element
is associated from one view to multiple elements in another
view. For example, a shopping cart module maps to multiple
components in a tiered view of a Web store application.

Finally, a many-to-many association associates a set of ele-
ments in one view to a set of elements in another. This kind of
association reflects the inherent complexity in relating two
views to each other, each of which was crafted to show its own
important aspects that in many ways might be orthogonal to
those in the other view.

Figure 6.16
Many-to-one association. 
Multiple elements from one 
view are associated with a 
single element of another 
view. As shown here, two 
modules from a decompo-
sition view are designed to 
run in a single process, 
shown in the communicat-
ing-processes view.

Process 1

Module 1

Module 2

Communicating-Processes
View Decomposition View

Figure 6.17
One-to-many mapping. An 
element of one view can be 
associated with multiple 
elements in another view.

Element 1

View A View B

Element 2

Relation 1

Relation 2

Element 3

Element 4
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6.6.2 Combined Views

Sometimes the most convenient way to show a strong associa-
tion between two views is to collapse them into a single combined
view. A combined view nominally reduces the number of views
in an architecture document because it replaces the views that
it combines. 

Figure 6.16 showed how multiple modules might map to a
single process. Figure 6.18 shows how that mapping might be
documented using a combined view.

In Figure 6.17 we showed how an element of one view
mapped to more than one element of a second view. In Figure
6.19, we show how to represent this as a hybrid view. If Ele-
ments 2, 3, and 4, for example, are components of a C&C view
and Element 1 is the functionality to store and to retrieve data
within a component, designed as a class in a decomposition
view, mapping Element 1 onto Elements 2 and 3 makes those
elements “persistent components.” Combined views can be
very useful as long as you do not try to overload them with too
many mappings.

There are two ways to produce a combined view.

• Create an overlay that combines the information in what
would otherwise have been in two separate views. This works
well if the coupling between the two views is tight; that is,
there are strong associations between elements in one view
and elements in the other view. If that is the case, the struc-
ture described by the combined view will be easier to under-

A combined view is a 
view that contains ele-
ments and relations that 
come from two or more 
other views.

An overlay is a view 
that combines the pri-
mary presentations of 
two or more views fol-
lowed by supporting 
documentation for that 
combined primary 
presentation. 

Figure 6.18
Multiple elements from one 
view can be mapped to a 
single element of another 
view. Here Elements 1 and 
2 from a module view are 
designed to run in a single 
process—Element 3—
shown in the communicat-
ing-processes view. The 
resulting combined view 
shows all three elements of 
the module and communi-
cating-processes views, 
and their association as 
containment.

Element 3

Element 1

Element 2

Communicating-Processes
View Module View

Element 3

Element 1

Element 2

Combined View
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stand than the two views seen separately. For an example,
see the overlay of decomposition and uses diagrams shown
in Figure 6.20. In an overlay, the elements and the relations
keep the types as defined in their constituent styles.

• Create a hybrid style by combining two existing styles and
creating a style guide that indicates what styles were com-
bined and describes any new or hybrid element and relation
types, their properties, and constraints. Do this if the style is
important and will be used in a variety of analyses and com-
munication contexts in the system at hand or in other sys-
tems you expect to build. A view showing the hybrid style
applied to a system is a combined view.

In a hybrid style, element and relation types of the constit-
uent styles can “meld” into new types with new properties.
Therefore, hybrid styles require the definition of the result-
ing new element and relation types. For example, if a hybrid
style combines layered style and a communicating-processes
style, a new element type could be layered process, and this type
would need to be defined in the hybrid style’s style guide.

Similarly, the relation types of a hybrid style are derived
from the relation types of the constituent styles and their
associations. Not all relation types of the constituent styles
need to be preserved.

A hybrid style is useful to create if the style is used over and
over again in the same system or in the kinds of systems devel-
oped in your organization, and if many stakeholders need to
be familiar with it. 

A hybrid style is the 
combination of two or 
more existing styles. 
Hybrid styles are docu-
mented using a style 
guide, as shown in 
“Style Guides: A Stan-
dard Organization for 
Explaining a Style,” in 
Section I.1, in the intro-
duction to Part I. Hybrid 
styles are like other styles 
in that, when applied to 
a particular system, 
they produce views.

If you create a hybrid 
style, document it using 
a style guide, following 
a template like the one 
that appears in Section 
I.1, in the introduction to 
Part I.

Figure 6.19
In this example, mapping 
Element 1 of View A onto 
Elements 2 and 3 of View B 
resulted in a new type of 
element, depicted as a new 
shape. This required the 
definition of a new element 
type in a style.

Element 1

View A View B

Element 2

Relation 1

Relation 2

Element 3

Element 4

Element 2Element 3
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Element 4
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Sometimes, however, a combined view is created for a single,
short-term purpose: for analysis or communication, for exam-
ple. For these short-term purposes, creating the required doc-
umentation for a new style is burdensome overhead, and an
overlay will serve nicely.

So now an architect has three ways to establish the associa-
tion between otherwise stand-alone views:

• Document a mapping between separate views. Do this as
part of the documentation that applies beyond views.

• Create a hybrid style and then produce views of your archi-
tecture using that style.

• Create an overlay from two otherwise separate views.

In fact, there’s a fourth way that sometimes works well. Aug-
ment the property list of one view with a property that lets you
specify the important information from the second view. For
example, in a decomposition view, you can add “Organiza-
tional unit” and “Development folder” as properties to docu-
ment for each module. When you fill in those property values,
you effectively have a combined module decomposition, work
assignment, and implementation view. Or in a communicating-
processes view, you can add a property named “Processor” and
another named “Installation file.” The result is a combined
communicating-processes/deployment/install view.

Finally, you can think of allocation views such as those in
Chapter 5 as a kind of combined view. One of the views they
combine is not a view from software architecture, but rather a
view from outside—runtime hardware, development environ-
ment, or organization. 

6.6.3 When to Combine Views

The set of views used for a system is the result of a trade-off
between the clarity of many views, each of which has a small
number of concepts, and the reduced cost associated with hav-
ing a small number of views, each dealing with multiple concepts.

When considering a combined view, make sure that the asso-
ciation among the constituents is clear and straightforward.
Otherwise, these views are probably not good candidates to be
combined, as the result will be a complex and confusing view.
In this case, it would be better to manage the association sepa-
rately, as in a table that relates the views while keeping them
separate. A table has the space to make the complex associa-
tions among the constituents clear and complete. 

Even if the associations are strong, too many different con-
cepts clutter up combined views. Keys and the plethora of rela-
tions shown in the primary presentation all become difficult to

If two views can be 
associated with one 
another, you should 
show that association, 
whether using a hybrid 
style, an overlay, or a 
separate piece of the 
documentation showing 
the association.

If the association is 
clear and straightfor-
ward, and the combined 
view won’t be overly 
complex, and a con-
sumer group for the 
combined view has 
been identified, and that 
group is the same group 
consuming the constit-
uent views, then it 
makes sense to adopt 
the combined view in 
place of the separate 
constituents.
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understand. Before committing to a combined view, sketch it
to see whether it passes the “elevator speech” test: Could you
explain the idea behind it to someone in the time it takes to
ride an elevator up a dozen or so floors? 

Different groups of workers need different types of informa-
tion. Make your choice of views responsive to the needs of your
stakeholders. Before committing to a combined view, make
sure that there is a stakeholder “market” for it.

Tool support influences the choice and number of views.
The cost of maintaining multiple views is partially a function of
the sophistication of the available tools. If your tools under-
stand how a change in one view should be reflected in another
view, it is not necessary to manage this change manually. The
more sophisticated the tools, the more views can be supported.

These views often combine naturally:

• Various C&C views. Because C&C views all show runtime
relations of various types among components and connec-
tors of various types, they tend to combine well. Different
(separate) C&C views tend to show different parts of the sys-
tem, or tend to show decomposition refinements of compo-
nents in other views. The result is often a set of views that
can be combined easily.

• Deployment view with either service-oriented or communicating-
processes views. A service-oriented view shows services, and a
communicating-processes view shows processes. In both
cases, these are components that are deployed onto proces-
sors. Thus there is a strong association between the ele-
ments in these views.

• Deployment view and install view. The combined view shows
the installation files and what hardware elements they are
deployed to. 

• Decomposition view and any of work assignment, implementation,
uses, or layered views. The decomposed modules form the units
of work, development, and uses; and they populate layers. 

• Generalization and aspects. Both views deal with classes and
objects and the relations among them—hence, these are
two views with a strong association.

6.6.4 Examples of Combined Views

Decomposition, Uses, and Generalization

Figure 6.20 is the primary presentation for one view of the soft-
ware architecture for the SEI’s Architecture Expert (ArchE)
tool. This tool allows an architect to create the architecture
design for a system based on three types of input: quality
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attribute requirements, features of the system being designed,
and preexisting pieces of design. Internally, ArchE constructs
a representation of the responsibilities of the system and the
dependencies among them. ArchE is powered by reasoning
framework plug-ins that can create quality attribute models
and use them to analyze performance, modifiability, and other
properties. Based on the inputs—the results of quality attribute
analyses and responses provided by the architect to questions
that ArchE raises interactively—ArchE creates an architecture
design.

Figure 6.20 is the primary presentation of a combined view
showing ArchE’s module decomposition, uses, and generaliza-
tion. ArchE is an Eclipse-based tool that uses the Jess rule
engine. The <<plugin>> stereotype indicates that contained
modules are packaged as Eclipse plug-ins.

Figure 6.20
Decomposition-uses-generalization combined view for ArchE

Not part of ArchE UI. 
Will be developed 
separately for demo.
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Tiered Client-Server and Deployment

In Chapter 4, client-server was discussed as a C&C style. There
are many alternatives for allocating the components in each
tier to the supporting hardware infrastructure. The network
topology and the deployment structure of the software affect
several quality attributes, such as availability and throughput
(enhanced by replication and clustering of machines), and
performance (components on different machines require
remote calls to interact). 

Figures 6.21 and 6.22 show a multi-tier client-server view and
a deployment view, respectively, of a banking application. Fig-
ure 6.23 shows the combined view.

The use of tiers is 
explained in Section 
4.6.2. The deployment 
style is discussed in 
Section 5.2.

Figure 6.21
The multi-tier client-server view of the Duke’s Bank application
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6.7 Summary Checklist
• Refinement, the gradual disclosure of more-detailed infor-

mation, is a chunking mechanism. Decomposition refine-
ment reveals internal substructure. Implementation refinement
replaces elements with different elements showing different
element relation types that are closer to the actual realization.

• Documentation may or may not show all elements and rela-
tions; when some elements and relations are suppressed,
the view documentation should make it clear to the reader
that not everything is shown.

• A context diagram shows what’s in and what’s out of the sys-
tem under consideration and the external entities with which
the system interacts. 

• An architecture document does not have a single top-level
context diagram, but rather one in each view. Each such dia-
gram shows the interactions with the environment in the
vocabulary for that view. All show what’s in and what’s out.

• Document variation points by describing what elements and
relations have been designed with variation mechanisms,
and how to exercise those mechanisms. Document the vari-

Figure 6.23
A combined multi-tier client-server deployment view
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ation points where they occur, but explain them in a vari-
ability guide.

• Showing how views are associated with each other often
yields useful insights about the architecture. One alterna-
tive to do that is to list, possibly in a table, how elements in
one view are associated with elements in the other view.
Another alternative is combine different views into one by
creating an overlay. Yet another alternative is to produce a
view from a hybrid style, which is a combination of two or
more styles. 

• Views with a high correspondence are good candidates for
mapping, and views that complement each other are good
candidates for combining.

6.8 Discussion Questions
1. A user invokes a Web browser to download a file. Before

doing so, the browser retrieves a plug-in to handle that type
of file. Is this an example of a dynamic architecture? How
would you document it?

2. Suppose that communication across layers in a layered sys-
tem is carried out by signaling events. Is event signaling a
concern that is part of the layered style? If not, how would
you document this system?

3. Consider a shared-data system with a central database
accessed by several components in a client-server fashion.
What are your options for documenting the two-style
nature of this system? Which option(s) would you choose,
and why?

4. A bridging element is one that can appear in two separate
views. Both views will have room for documenting the ele-
ment’s interface and its behavior. Assuming that we do not
wish to document information in two places, how would
you decide where to record that information? Suppose that
the bridging element is a connector with one role for one
style and one role for another. Where would you record the
information then?

5. Sketch a top-level context diagram for a hypothetical sys-
tem as it might appear in the following views, assuming in
each case that the view is appropriate for that system: (a)
uses, (b) layered, (c) service-oriented, (d) client-server, and
(e) deployment.
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6.9 For Further Reading
Michael Jackson’s book on problem frames has a good chapter
on combining multiple problem frames (Jackson 2001). Although
it is cast in terms of the problem space, rather than the solution
space of architectures, many of the ideas carry over.

A robust community of researchers is interested in the capture
and use of architectural knowledge, a generalization of archi-
tectural decisions. The Sharing and Reusing Architectural
Knowledge (SHARK) series of workshops is a good place to
learn more; an online search will turn up current offerings and
past results (de Boer and Farenhorst 2008). An important research
project in capturing architectural knowledge is the GRIFFIN
project (griffin.cs.vu.nl) at VU University in Amsterdam.

The entries in the template for documenting architectural
decisions in Section 6.5 are based on IBM’s e-Business Refer-
ence Architecture Framework (Flurry and Vicknair 2001),
where architecture decisions are a key deliverable, and from
the REMAP and DRL metamodels (Akerman and Tyree 2005).
The template also leverages Kruchten’s work on an ontology of
software architecture design decisions (Kruchten 2009). Another
ontology is given by Komiya (1994). Both are well worth a look.
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7Documenting Software
Interfaces

In this chapter, we look at these aspects of interface documen-
tation:

• Standard organization

• Stakeholders

• Conveying syntactic information

• Conveying semantic information

• Examples of interface documentation

7.1 Overview
So far we have emphasized documenting architecture ele-
ments and their relations using various kinds of views. More
implicitly than explicitly, we have stated that of course all those
elements have interfaces through which they can interact with
each other. Interfaces are supremely architectural, for without
them one cannot perform analyses or system building—both
activities we want to do with an architecture. Therefore, a crit-
ical part of documenting a view includes documenting the
interfaces of the elements shown in that view. 

Modules, as discussed in Chapters 1 and 2, clearly have inter-
faces. As we said in Chapter 3, components also have inter-
faces, but they are often called ports. In this chapter, we will not
distinguish between module interfaces and component inter-
faces; the way you document them is the same.

Describing an element’s interface means making statements
about what other elements can depend on when using this ele-
ment. Designing an interface means deciding (and document-
ing with an interface document) which services and properties
should be externally visible and which should not. Everything

An interface is a 
boundary across which 
two elements meet and 
interact or communi-
cate with each other.

An interface document
is a specification of 
what an architect 
chooses to make pub-
licly known about an 
element in order for 
other entities to interact 
or communicate with it.
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that is externally visible becomes a contract, a promise to users
that the element indeed will fulfill its obligations. This on the
other hand also means that every implementation of the ele-
ment that does not violate the contract is a valid one.

An element is used by actors. Actors are other elements,
either internal or external to the system documented, that
interact with an element through its interface. Those interac-
tions can take a variety of forms, such as function or method
calls, Web service requests, remote procedure calls, data
streams, shared memory, and message passing. Most involve
the transfer of control and/or data. These points of interac-
tion with an element are called resources. Thus, an interface
consists of one or more resources available for consumption by
actors. If the element that provides that interface is a class, the
resources are typically called methods. 

An interaction extends beyond functionality and state changes.
For example, if element A calls element B, the amount of time
that B takes before returning control to A is part of B’s inter-
face because it may affect A’s behavior.

Let’s establish some principles about interfaces.

• All elements have interfaces. All software elements described in
any view interact with their environment. The architect
decides which aspects of the element’s interfaces need to be
documented.

• An element’s interface is separate from its implementation. This
principle is particularly useful when we want multiple imple-
mentations of an element (such as platform-specific imple-
mentations) that provide the same interface. 

• An element can have multiple interfaces. Each interface contains
a separate collection of resources that have a related logical
purpose, or represent a role that the element could fill, and
each collection serves a different class of actors. Multiple
interfaces provide a separation of concerns. A specific actor
might require only a subset of the resources provided. If the
element has multiple interfaces, this subset of resources
should be provided by one of the interfaces. Conversely, the
provider of an element may want to grant actors different
access rights, such as read or write, to prevent resource con-
tention or to implement a security policy. Multiple inter-
faces support different levels of access.

Multiple interfaces also support the evolution of ele-
ments that are publicly available or used by a large number
of actors. If the element’s interface changes, it may not be
feasible to modify everything that uses the old version. So

An element’s actors are 
the other elements, 
users, or systems with 
which it interacts.

A resource of an inter-
face represents a func-
tion, method, data 
stream, global variable, 
message end point, 
event trigger, or any 
addressable facility 
within that interface.
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you can support evolution by keeping the old interface and
adding a new one.

• Elements not only provide interfaces but also require interfaces. An
element interacts with its environment by making use of
resources or assuming that its environment behaves in a cer-
tain way. Without these required resources, the element
cannot function correctly. For example, an element may
require Internet connectivity. In this case the element
would specify that an actor can use a certain resource it pro-
vides only if Internet connectivity is present. Otherwise
some error indication will be delivered.

• Multiple actors may interact with an element through its interface
at the same time. Some interfaces don’t allow multiple concur-
rent interactions because of synchronization and multi-
threading issues. These restrictions can be made clear by
specifying the number of actors that can interact with an
element via a particular interface at the same time. 

• Interfaces can be extended by generalization. Many times, several
interfaces you are designing will include a common set of
resources. These resources can be placed in a separate inter-
face, and by using a generalization relation, you are indicat-
ing that children interfaces contain (and may extend) the
common resources. Examples of resources often shared by
several interfaces include the following: 

– An initialization operation

– A set of exception conditions, such as failing to have
called the initialization operation

– A standard way to handle exceptions, such as invoking a
named error handler

– A standard statement of semantics, such as persistence of
stored information

• Sometimes it’s useful to distinguish interface types from interface
instances in the architecture. Some components can provide
multiple instances of the same interface. Consider for exam-
ple a component that is an observer in the observer design
pattern. This component provides an interface with an
operation to be called when an observable component
sends a change notification. Thus far we have the interface
type. If the component is an observer of multiple different
observable components, then it may be useful to represent
that in the architecture using multiple instances of the
observer interface type.

See “Coming to Terms: 
Provided vs. Required 
Interfaces” on page 
264, in this chapter.
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COMING TO TERMS

Provided vs. Required Interfaces

Architecture elements provide services to other elements
through one or more interfaces. This concept of an ele-
ment and its interface is one of the enduring bedrock
concepts of software engineering. But architecture ele-
ments can, and often do, need specific services from
other elements in order to function correctly. To capture
this need, architects can document a required interface.

The information you need to document about what your
architecture element requires is the same as what you
should document for what it provides: resources, their
syntax and semantics, their error-handling behavior, their
quality attribute characteristics, and any variation points
they provide. In short, you can use the template given in
Figure 7.5, later in this chapter, for documenting an inter-
face that your element provides and (separately) an interface
that your element requires. You can even fill in the section on
rationale and design issues to record your decision-making
process for why your element needs what it needs.

Suppose another element provides just the resources you
need, or at least resources that are close enough to what
you need that you can use them successfully. Would you
document a required interface for your element then?
Probably not, opting instead to refer to the other element’s
provided interface, to say essentially, “I need that.”

But suppose no other element provides the resources
your element needs. Maybe there will be one, but its
designers are not as far along as you. In that case, it
makes much more sense for you to document a required
interface for your element, to guide the forthcoming
development. Once the element that will provide the
interface is designed, your required interface documen-
tation may become the documentation of the new ele-
ment’s provided interface. When the providing element
exists but you think its interface is likely to change sub-
stantially over time, or if you think that the element itself
might become unavailable, then documenting your
required interface also makes good sense. It can then be
used to guide and constrain the evolution of the other
element’s provided interface, or to shop for and qualify
potential replacement elements. Documenting an ele-

You can use the same 
template to document 
a required interface and 
a provided interface. 
The documentation of a 
required interface may 
become the documen-
tation of a provided 
interface once the ele-
ment that provides it 
is designed or 
implemented.
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ment’s required interfaces also makes that element’s
reusability much easier to judge, because you can imme-
diately see what resources it would expect to find should
it be moved to a new environment. 

Like all architecture documentation, a required interface
can be documented to the degree of specificity needed
to do the job. You might sketch out some resources and
trust the designers of the providing element to fill in the
details, to which you can then adapt your element.

Linking up required and provided interfaces (using, for
example, UML’s socket-and-lollipop notation) can give
confidence that in a system build, every element has
what it needs to work correctly. In UML a socket-and-
lollipop pair symbolizes that the interfaces are “compat-
ible,” meaning at least that the provided interface sup-
ports a superset of the operations and signals specified
in the required interface. That doesn’t tell you if the
requiring element uses all resources on the provider’s
interface, or only one or two.

7.2 Interface Documentation
Although an interface comprises all aspects of the interaction
an element has with its environment, what we choose to dis-
close about an interface—that is, what we document in an
interface’s documentation—is more limited. Writing down
every aspect of every possible interaction is not practical and
almost never desirable. Rather, you should expose only what
users of an interface need to know in order to interact with it.
Put another way, you choose what information is permissible
and appropriate for people to assume about the element.

The interface documentation tells what other developers
need to know about an interface in order to use it in combina-
tion with other elements. Note that a developer might observe
element properties that are an artifact of how the element is
implemented but that are not in the interface documentation.
Because these are not in the interface documentation, they are
subject to change, and developers use them at their own risk.

Also recognize that different people need to know different
kinds of information about the interface. You may have to pro-
vide separate sections in the interface documentation to
accommodate different stakeholders of the interface.

Interfaces are documented as part of a view. When a given
interface occurs in more than one view, choose one to hold the

Section 10.1 provides a 
documentation tem-
plate for views, which 
has a section reserved 
for documenting ele-
ment interfaces.
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interface documentation and refer to it in the other. Alterna-
tively, package the interface documentation separately and
have all views point to it. 

Sometimes interfaces in different views have a direct corre-
spondence but are not exactly the same. For example, the
interface of a module in a module view often corresponds
directly to the interface of a component in a component-and-
connector (C&C) view. In many cases, the module and the
C&C interfaces are identical, and documenting them in both
places would produce needless duplication. In that case, you
should document the interface in the view where the docu-
mentation will be more useful and make the other view refer
to it. For example, a programmatic interface that offers proce-
dure calls as resources will be most useful for implementers,
and they are likely to look for the documentation in module
views. On the other hand, an interface that corresponds to a
message end point in a system using asynchronous messaging
is probably more relevant in a C&C view that describes the
runtime interactions, queue capacities, and overall throughput.

In other cases, a module and a C&C interface map to each
other but are not identical. For example, a module view of a
service-oriented architecture (SOA) system may show a Java
class that provides an interface with five different operations.
Two of these operations correspond to the interface of a SOAP
Web service that is depicted in the C&C SOA view of the same
system. The other three operations correspond to the inter-
face of a REST Web service that is provided by a different com-
ponent in the C&C SOA view. Each of the two Web service
interfaces corresponds to only part of the module interface. In
addition, the Web service interfaces may expose properties
(such as availability or response time) not relevant in the mod-
ule view. The syntax of the resources and data types may also
differ due to the translation from the module implementation
language (Java) to the language of the Web service interface
(XML). In cases like this, you should document the interfaces
separately but also record the mapping between them.

ADVICE

Guidelines for Documenting an Interface

• Focus on how elements interact with their environ-
ments, not on how elements are implemented. Restrict
the documentation to effects that are externally
visible.

Section 10.2.1 
describes how to docu-
ment the mapping 
between views, which 
can contain the map-
ping between interfaces 
from different views.
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• Expose only what users of the interface need to know.
Including a piece of information in the documentation
is an implicit promise that the information is reliable
and stable. Once information is exposed, other ele-
ments may rely on it, and changes will have a more
widespread effect.

• Keep in mind who will be using the interface documen-
tation and what types of information they will need. Avoid
documenting more than is necessary. For example,
you probably need less detail in the interface docu-
mentation of a module used only by another developer
on the team than you need for an interface that is part
of a commercially available API. This chapter presents
the “maximum” approach, that is, a fully documented
interface. Depending on the importance of the inter-
face, you should decrease the amount of information
and the effort spent in the interface documentation. 

• When a given interface occurs in multiple views, doc-
ument it in one view and refer to it in the other, or doc-
ument the interface separately and make the views
point to this interface documentation.

• An interface in a module view and its equivalent coun-
terpart in a C&C view should be documented more
extensively only in the view where the documentation
will be more useful to the stakeholders. When inter-
faces in different views map to each other but are not
identical, you should document them separately and
document the mapping as well.

• Be as specific and as precise as you can, remember-
ing that interface documentation that can be inter-
preted differently by various parties is likely to cause
problems and confusion. 

An interface may or may not have an identity of its own. In
the simplest situation, an element A provides a single interface
that is not provided by any other element. This interface is
implicitly associated with element A and doesn’t need a
name—it’s the interface of A. Documenting the interface of A
is part of documenting element A. In another situation, an ele-
ment provides two or more different interfaces. Then it’s prob-
ably a good idea to identify the interfaces, as I1 or I2 for
example, and document them separately. There’s also the situ-
ation of a single interface that is provided by two or more ele-
ments. In that case, the interface should have an identity so

See “Coming to Terms: 
Signature, Interface, 
API” on page 280, in 
this chapter.
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that elements can refer to it, and the interface should be doc-
umented independently from the elements.

As in all architecture documentation, the amount of infor-
mation conveyed in the interface documentation may vary,
depending on the importance of the interface and on the stage
of the design process when the documentation is updated.

• Early in the design process, the interface might be scarcely
specified; for example, an order tracking module provides
an operation to locate an order. 

• Later, when the responsibilities of the elements become sta-
ble, the interface documentation is more fully elaborated;
for example, the order-tracking module provides the method
locateOrder(orderId) with some description about its semantics.

• Some time later, you may even refine the interface docu-
mentation with the final syntax for the method: OrderBean
locateOrderById(long orderId).

7.2.1 Showing the Existence of Interfaces in Diagrams

The existence of interfaces can be shown in the primary presen-
tations by using most graphical notations available for architec-
ture. Figure 7.1 shows an example using an informal notation.

The existence of an interface can be implied even without
using an explicit symbol for it. If there is a relation going from
element A to B and the relation type involves an interaction,1

that implies that the interaction takes place through the inter-
face of element B.

Figure 7.2 illustrates how interfaces are shown in UML. A
provided interface is depicted as a lollipop, and the socket sym-
bol is used for required interfaces (Figure 7.2(a)). Although it
shows the existence of an interface, the lollipop symbol reveals
little about the definition of an interface. UML interfaces can
be connected to classes, components, and packages.

Sometimes interfaces are depicted by themselves, with or
without an associated element. In UML, you can do that by
using the classifier box with the <<interface>> stereotype
instead of the lollipop. This alternative is particularly useful
when multiple elements implement the same interface.
Another benefit is that the resources of the interface can be
listed in the operations compartment. Figure 7.2(b) shows the
provided and required interfaces of class Garage Door as two
separate boxes. 

1.  Examples of relations that don’t involve an interaction include is a subclass
of and decomposition.
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ADVICE

Use an independent box for the interface in your primary
presentations if

• You wish to show the operations available in the pri-
mary presentation.

• You are making provisions for multiple elements that
realize the same interface.

Although it’s never wrong to show interfaces explicitly, be
careful not to increase the visual clutter of the diagrams. 

Figure 7.1
Graphical notations for 
interfaces typically show a 
symbol on the boundary of 
the icon for an element. 
Lines connecting interface 
symbols denote that the 
interface exists between 
the connected elements. 
Graphical notations like this 
can show only the exist-
ence of an interface, not its 
definition. (a) An element 
with multiple interfaces. For 
elements with a single 
interface, the interface 
symbol is often omitted. 
(b) Multiple actors at an 
interface. Internal client and 
External client both interact 
with Transaction Authorizer 
via the same interface. This 
interface is provided by 
Transaction Authorizer and 
required by both Internal 
client and External client.

Transaction
Authorizer

Internal
client

External
client

Admin

(a)

Element
(type unspecified)

Interaction
(type unspecified)Interface

(b)

Key

Figure 7.2
UML uses a lollipop to 
denote a provided interface, 
which can be appended to 
classes, components, and 
packages. Required inter-
faces are represented with 
the socket symbol, which is 
also appended to classes 
and other types of elements. 
UML also allows a class 
symbol to be stereotyped 
as an interface; a dashed 
line with a closed, hollow 
arrowhead shows that an 
element realizes an interface. 
The operations compart-
ment of the class symbol 
can be annotated with the 
interface’s signature infor-
mation: method names, 
arguments and argument 
types, and so on. Thus the 
diagram in (a) is equivalent 
to (b) in this figure. 

ISensor
Garage
Door

Garage
Door

«interface»
ISensor

«interface»
IMovement Control

ascend()
descend()
halt()

«use»

Notation: UML

IMovementControl

(a)

(b)
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When the diagram shows a module using an independent
interface, it indicates that any element implementing the inter-
face can be used. This is a useful means of expressing a partic-
ular kind of variability: the ability to substitute realizing elements,
as shown in Figure 7.3.

ADVICE

Multiple Interfaces

Elements having multiple interfaces raise some subtle design issues and some
important documentation issues. If an element interacts with more than one actor,
it’s usually best to show interfaces explicitly in your diagrams. If you don’t, a dia-
gram such as Figure 7.4(a) can be ambiguous: Does E have one interface or two?
Showing the interface symbol, as in Figure 7.4(b) or (c), resolves the ambiguity.

Figure 7.4
(a) Does element E have one interface or two? This diagram makes it difficult to determine at a glance. (b) By 
using the interface symbol, it’s clear that this element has one interface and that (c) this element has two interfaces.

(c)(b)(a)

E EE

Element
(type unspecified)

Interface Interaction
(type unspecified)

KEY

Figure 7.3
An interface can be shown 
separately from any element 
that realizes it, thus empha-
sizing the interchangeability 
of element implementa-
tions. OrderDao (and other 
classes not shown) require 
an object that implements a 
database connection, 
which is represented by the 
Connection interface. 
Many elements realize this 
interface, representing the 
interchangeable alterna-
tives of database connec-
tion implementations.

Notation: UML

OrderDao«interface»
Connection

«use»
getOrderById()
createOrder()
updateOrder()
deleteOrder()
...

open()
close()
executeSql()
...

MySQL
Database

Connection

Oracle
Database

Connection

SQL Server
Database

Connection
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7.3 A Standard Organization for Interface 
Documentation

Remember that an important principle for sound documenta-
tion prescribes using a standard organization. A standard orga-
nization lets you fill in what you know about an interface now
and indicate “TBD” for what you don’t yet know, thus provid-
ing a to-do list for the remaining work. This section suggests a
standard organization (that is, a template) for interface docu-
mentation (see Figure 7.5). 

The standard organization can be used to document each
interface of an architecture element. It consists of the follow-
ing sections: 

1. Interface Identity. When an element has multiple inter-
faces or when the same interface is provided by multiple
elements, name the interface. In other cases the identity of
the interface is the same as the identity of the element it’s
associated with. Some programming languages, such as C#
and Java, or frameworks, such as COM, even allow these
names to be carried through into the implementation. In
some cases merely naming an interface is not sufficient,
and the version of the interface must be specified as well.
For example, in a framework with named interfaces that
have evolved over time, it could be very important to know
whether you mean v1.2 or v3.0 of the persistence interface.

2. Resources. The heart of an interface document is the set of
resources provided to its actors. Resources are often opera-
tions (such as methods, procedures, and functions), but in
a more general notion of interface they can be other
things, such as data streams, shared data, and messaging

Like all templates in this 
book, you may wish to 
modify the one pre-
sented in this section to 
remove items not rele-
vant to your situation or 
to add items unique to 
your business. More 
important than which 
standard organization 
you use is the practice 
of using one.

Figure 7.5
Template for interface 
documentation Interface Documentation

Section 1. Interface Identity 
Section 2. Resources

For each resource: – Syntax
   – Semantics
   – Error Handling
Section 3. Data Types and Constants 
Section 4. Error Handling 
Section 5. Variability 
Section 6. Quality-Attribute Characteristics 
Section 7. Rationale and Design Issues 
Section 8. Usage Guide
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end points. In this section you should list the resources
and, for each resource, describe the following: 

– Resource Syntax. This is the resource’s signature, which
includes any information needed to write a syntactically
correct program that uses the resource. The signature
includes the name of the resource, names and data types
of arguments, if any, structure or data type of return val-
ues, if any, and so forth. 

– Resource Semantics. What is the result of using this resource?
What does the resource do from the perspective of the
actor invoking it? Semantics come in a variety of guises,
including:

i. Assignment of values to the parameters and returned
values, including their purpose and semantics. The
value assignment might be as simple as setting the
value of a return argument or as far-reaching as
updating a database table.

ii. Changes in the element’s externally visible state
brought about by using the resource. For example,
invoking a resource called open() on interface ICon-
nection may change the state of the connection to
enable it to start exchanging data. Are these changes
persistent or transient? If transient, what is the dura-
tion or termination condition?

iii. Events that will be signaled or messages that will be
sent as a result of using the resource.

iv. The side effects on other environmental elements as
the result of using this resource. For example, if you
ask a resource to destroy an object, trying to access
that object in the future through other resources
will produce quite a different outcome—an error—
as a result.

v. Humanly observable results. For example, calling a
program that turns on a display in a cockpit has a
very observable effect: the display comes on.

vi. Whether the execution of the resource will be
atomic or may be suspended or interrupted, and
whether the interaction is synchronous or asynchro-
nous, if such a distinction is applicable.

vii. Usage restrictions. Under what circumstances may
this resource be used? Perhaps data must be initial-
ized before it can be read, or perhaps a particular
method cannot be invoked unless another is invoked

Consider using precon-
ditions and postcondi-
tions for documenting 
resource usage restric-
tions and resource 
semantics. A precondi-
tion states what must 
be true before the inter-
action is permitted; a 
postcondition describes 
any state changes 
resulting from the 
interaction.
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first. Perhaps there is a limit on the number of actors
that can interact via this resource at any instant. Per-
haps there is a limit of one actor that has ownership
and is able to modify the element, whereas others
have only read access. Perhaps the resource is
thread safe; that is, it can be invoked simultaneously
by multiple actors. Perhaps the resource can be
invoked only when the authenticated user belongs
to a certain group or has certain access rights. Some
restrictions are less prohibitive; for example, Java
interfaces can list certain methods as deprecated,
meaning that users should not use them, as they will
likely be unsupported in future versions of the inter-
face. Usage restrictions are sometimes documented
by defining exceptions that will be raised if the restric-
tions are violated.

– Error Handling. Describe error conditions and excep-
tions that can be raised by the resource.

ADVICE

Guidelines for Documenting the Semantics of a Resource

• Write down only those effects that are visible to a user: the actor invoking the
resource, another element in the system, or a human observer of the system.
Ask yourself how a user can verify what you have said. If your semantics can-
not be verified, the effect you have described is invisible, and you haven’t
captured the right information. 

• Try to define the semantics of invoking a resource by describing ways other
resources will be affected. For example, in a stack object, you can describe
the effects of push(x) by saying that pop() returns x and that the value
returned by getStackSize() is incremented by 1.

• If you describe the semantics using prose, be as precise as you can. Be sus-
picious of all verbs. For every verb in the specification of a resource’s seman-
tics, ask yourself exactly what it means and how the resource’s users will be
able to verify it. Eliminate vague words, such as should, usually, and may. For
operations that position something in the physical world, be sure to define
the coordinate system, reference points, points of view, and so on, that
describe the effects.

• Clearly state any assumptions, preconditions, and bound values for parame-
ters. We should expect that users will use a resource in ways the designers
did not envision, and we should try to describe what the limits are.

• Avoid giving an example use in place of specifying the semantics. Usage is a
valuable part of interface documentation and merits its own section in the

See “Coming to Terms: 
Error Handling” on page 
277, in this chapter.
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documentation, but it is given as advice to users and should not be expected
to serve as a definitive statement of resources’ semantics. Strictly speaking,
an example defines the semantics of a resource for only the single case illus-
trated by the example. The user might be able to make a good guess at the
semantics from the example, but we do not wish to build systems based on
guesswork.

• Avoid giving an implementation in place of specifying the semantics. Do not
use code to describe the effects of a resource. 

3. Data Types and Constants. Sometimes we need to create
new data types (such as records, structs, classes, enumera-
tions, or unions) for the data passed to or returned by
resources in the interface. These data types may be defined
in the scope of the interface and should be described in the
interface documentation. For example, in an airline reser-
vation system, interface IReservation may provide a resource
makeReservation() that returns a new data type Reservation-
Record. This new data type described in the interface docu-
mentation may contain flight number, departure date and
time, seat assignment, class, fare, and other data elements.
If the data type is defined by another element, a reference
to the definition in that element’s documentation is suffi-
cient. In any case, programmers writing elements using
such a resource need to know (a) how to declare and assign
values to variables of the data type, (b) what operations and
comparisons may be performed on members of the data
type, and (c) how to convert values of the data type into
other data types, where appropriate.

Likewise, new constants are sometimes created in inter-
faces to hold commonly used values and make program-
ming against the interface more convenient. For example,
interface Sequencer of the Java sound API has an operation
setLoopCount(int count) to set the number of repetitions of
the loop for playback on a MIDI device. For convenience,
the interface defines a constant called LOOP_CONTINUOUSLY
that can be passed as an argument to that operation. 

4. Error Handling. Often you may want to use an error-han-
dling behavior that is common to all or many resources. In
that case, you can use this section to describe common
error-handling behavior instead of repeating the behavior
for every resource in section 2.
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ADVICE

For documenting the error handling for resources in
either section 2 or section 4 of interface documentation,
do the following:

• If only a few resources have error handling, describe it
in section 2.

• If most of the resources follow a common error-handling
procedure, describe it in section 4.

• If most of the resources follow a common error-handling
procedure but there are resource-specific variations,
such as error codes, describe the variations in section
2 and the error-handling procedure in section 4.

• If you are using an error-handling procedure that is
common for the whole system, describe the procedure
in the rationale section of the “beyond views” part of the
documentation (see Section 10.2). Resource-specific
information, such as error codes, still needs to be doc-
umented with the resource.

When describing error handling, keep in mind that there
are different kinds of errors. An architecture-oriented
classification of exceptions is summarized in Figure 7.6.
In the context of an element’s interface, exception condi-
tions are one of the following:

1. Errors on the part of an actor invoking the resource.

a. An actor sent incorrect or illegal information to the
resource, perhaps calling a method with a null
value parameter that should not be null. Associat-
ing an error condition with the resource is the pru-
dent thing to do.

b. The element is in the wrong state for the requested
resource. The element entered the improper state
as a result of a previous action or lack of a previ-
ous action on the part of an actor. An example of
the latter is invoking a resource before the ele-
ment’s initialization method has been called.

2. Software or hardware events that result in a violation
in the element’s assumptions about its environment.

a. A hardware or software error occurred that pre-
vented the element from successfully executing.
Processor failures, network not responding, and
inability to allocate more memory are examples of
this kind of error condition.

Chapter 10 presents a 
standard organization 
for documenting archi-
tecture views and the 
“beyond views” part of 
the architecture docu-
mentation, where you 
find sections for captur-
ing rationale.
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b. The element is in the wrong state for the requested
resource. The element’s improper state was brought
about by an event that occurred in the environ-
ment of the element, outside the control of the
actor requesting the resource. An example is try-
ing to read from a sensor or write to a storage
device that has been taken off-line by the sys-
tem’s human operator. 

5. Variability. Does the interface allow the element to be con-
figured in some way? These configuration parameters and how
they affect the semantics of the interactions in the interface
must be documented. Examples of variability include
capacities—such as of visible data structures—that can be
easily changed. Name and provide a range of values for
each configuration parameter, and specify the time when
its actual value is bound.

6. Quality Attribute Characteristics. You need to document
what quality attribute characteristics, such as performance
or reliability, the interface makes known to the element’s
users. This information may be in the form of constraints
on implementations of elements that will realize the inter-
face. The qualities you choose to concentrate on and make
promises about will depend on the context. If you’re devel-

Figure 7.6
A classification of exceptions associated with a resource on an element’s 
interface

Exceptions
associated with 
a resource

1. Errors on the part of 
the actor invoking the 
resource

1a. Incorrect 
information provided 
to the resource

2a. Hardware or software error 
occurred, preventing successful 
completion of operation

2. Hardware or software events that 
resulted in a violation of the element’s 
assumptions about its environment

1b. Element in wrong state for requested 
operation as result of previous action or 
lack of action on part of actor

2b. Environment event 
occurred that put the element 
in wrong state for operation

Class of
exceptions

Class-subclass
generalization

Key

Variability is discussed 
in detail in Section 6.4.
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oping an SOA application where services will be available to
external service users, a service-level agreement (SLA) may
be required. The SLA specifies quality properties for the
entire service or specific operations in the service interface.
For example, it may specify that certain operations should
provide a specific response time, availability level, and
capacity in terms of number of concurrent requests. 

7. Rationale and Design Issues. Like rationale for the archi-
tecture or architecture views at large, you should also record
the reasons behind the design of an element’s interface.
The rationale should explain the motivation behind the design,
constraints and compromises, alternative designs that were
considered and rejected and why, and any insight the archi-
tect has about how to change the interface in the future. 

8. Usage Guide. Section 2 documents the syntax and seman-
tics on a per-resource basis. This sometimes falls short of
what is needed. In many cases, it’s helpful to complement
that information with examples that show the usage protocol
for one or more resources of the interface. Code snippets
are common in the usage guide, but sequence diagrams
and other behavioral diagrams are also good choices, espe-
cially when a certain sequence of steps for the resource
usage is required. Try to craft some clear and simple exam-
ples of the most common ways the interface might be used. 

COMING TO TERMS

Error Handling

When designing an interface, architects naturally concentrate on documenting
how resources work in the nominal case, when everything goes according to
plan. The real world, of course, is far from nominal, and a well-designed system
must take appropriate action in the face of undesired circumstances. What hap-
pens when a resource is called with parameters that make no sense? What hap-
pens when the resource requires more memory, but the allocation request fails
because there isn’t any more? What happens when a resource never returns,
because it has fallen victim to a process deadlock? What happens when the
software is supposed to read the value of a sensor, but the sensor isn’t respond-
ing or is responding with gibberish?

Terminating the program on the spot seldom qualifies as “appropriate action.”
More desirable alternatives, depending on the situation, include various combi-
nations of the following:

• Returning a status indicator: an integer code—or even a message—that
reports on the resource’s execution, describing what, if anything, went wrong
and what the result was.

Behavior documentation 
is covered in Chapter 8.
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• Retrying, if the offending condition is considered transient. The program
might retry indefinitely or up to a preset number of times, at which point it
returns a status indicator.

• Computing partial results or entering a degraded mode of operation.

• Attempting to correct the problem, perhaps by using default or fallback val-
ues or alternative resources.

These are all reasonable actions that a resource can take in the presence of
undesired circumstances. If a resource is designed to take any of these actions,
that should simply be documented as part of the effects of that resource. But
many times, something else is appropriate. The resource can, in effect, throw
up its hands and report that an error condition existed and that it was unable to
do its job. This is where old-fashioned programs would print an error message
and terminate. Today, they often raise an exception, which allows execution to
continue and perhaps accomplish useful work. Modern programming lan-
guages provide facilities for raising exceptions and assigning handlers.

The right place to fix a problem raised by a resource is usually the actor that
invoked it, not in the resource itself. The element detects the problem; the actor
handles it. The actor might handle the exception by raising an exception of its
own and bubbling the responsibility back along the invocation chain until the
actor ultimately responsible is notified.

7.4 Stakeholders of Interface Documentation
In the prologue, we talked about stakeholders having special
needs and expectations of an architecture. Some of the stake-
holders of interface documentation and the kinds of informa-
tion they require are as follows:

• Developer of an element, who needs the most comprehensive
documentation of the interface the element provides. The
developer needs to see any assertions about the interface
that he or she will realize in the code. A special kind of
developer is the maintainer, who makes assigned changes to
the element and its interface.

• Tester of an element, who needs detailed information about all
the resources and functionality provided by an interface.
The tester can test only to the degree of knowledge embod-
ied in the interface description. If required behavior for a
resource is not specified, the tester will not know to test for
it, and the element may fail to do its job. 

• Developer using an interface, who needs detailed information
about the resources provided in the interface to implement
elements that will use it. A special case is the integrator, who
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puts the system together from its constituent elements and
has a stronger interest in the behavior of the resulting
assembly. In a software product-line context, this stake-
holder exploits the variability available in the elements to
build different products.

• Analyst, whose information needs depend on the types of
analyses conducted. For a performance analyst, for exam-
ple, the interface document should give information that
can feed a performance model, such as execution time
required by resources. 

• Architect looking for assets to reuse in a new system, who often
starts by examining the interfaces of elements from a previ-
ous system. The architect may also look in the commercial
marketplace to find off-the-shelf elements that can be pur-
chased and do the job. To see whether an element is a can-
didate, the architect is interested in the capabilities of the
interface resources, their quality attributes, and any variabil-
ity that the element provides.

• Project manager, who is likely to use interface documents for
planning purposes. Project managers can apply metrics
(such as function-point analysis) to gauge the complexity
and then infer estimates for how long it will take to develop
an element that realizes the interface. Project managers can
also spot special expertise that may be required, and this will
assist them in assigning the work to qualified personnel.

7.5 Conveying Syntactic Information
Often architects use a notation they’re familiar with or the
notation of the target implementation technology when speci-
fying the syntax of operations in an interface. A very common
choice is a C-like syntax, for example:

Order getOrderById(long orderId)

Most programming languages have built-in ways to specify
the signature of operations alone. C header (.h) files, and Java
and C# interfaces are examples. Some technologies also pro-
vide their own syntax for describing the interfaces. The Object
Management Group (OMG) Interface Definition Language
(IDL) is used in the CORBA technology to specify interfaces’
syntactic information. The Web services technology offers the
Web Services Description Language (WSDL). However, WSDL
is XML-based and would hardly be considered a good alterna-
tive to describe the signature of interface operations. 

In the architecture inter-
face documentation, it’s 
often a good idea to use 
a syntax that is close to 
the syntax that will be 
used in the implementa-
tion. However, these 
days many interfaces 
are totally or partially 
implemented using 
languages that are suit-
able for automated 
parsing and processing 
but may be cumbersome 
for human readers. 
XML and JavaScript 
Object Notation (JSON) 
are examples. Avoid 
using these languages 
in the architecture 
documentation.
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7.6 Conveying Semantic Information
Natural language is the most widespread notation for convey-
ing semantic information. In many cases, a few sentences suf-
fice to describe what an operation in the interface does and
what are the usage restrictions. In other cases, natural lan-
guage is not enough, and a formal language or notation can
prevent future integration errors. 

A relatively simple and effective method for expressing the
semantics of a resource in an interface is to write down its pre-
conditions and postconditions. They can be specified using
natural language, but Boolean algebra (that is, first-order
logic) is sometimes used to enhance precision. 

Traces are also used to convey semantic information by writ-
ing down sequences of interactions that describe the element’s
response to a specific use.

Semantic information often includes the behavior of an element
or one or more of its resources. In that case, notations for behav-
ior, such as sequence diagrams and statecharts, come into play.

COMING TO TERMS

Signature, Interface, API

Three terms people use when discussing element interactions are signature, API,
and interface. Often they use the terms interchangeably, with unfortunate conse-
quences for their projects. We have already defined an interface to be a boundary
across which two elements meet or communicate with each other, and we have
seen that documenting an interface consists of naming and identifying it, docu-
menting syntactic information, and documenting semantic information.

A signature deals with the syntactic part of documenting an interface. When an
interface’s resources are invokable procedures, each comes with a signature
that names the procedure and defines its parameters. Parameters are defined
by giving their order, data type, and, sometimes, whether their value is changed
by the procedure. A procedure’s signature is the information that you would find
about it, for instance, in the element’s C or C++ header file.

An API, or application programming interface, is a vaguely defined term that
people use in various ways to convey interface information about an element.
Sometimes people assemble a collection of signatures and call that an ele-
ment’s API. Sometimes people add statements about programs’ effects or
behavior and call that an API. An API for an element is usually written to serve
developers who use the element.

Signatures and APIs are useful but are only part of the story. Signatures can be
used, for example, to enable automatic build checking, which is accomplished by

The example of inter-
face documentation in 
Section 7.7.1 uses pre-
conditions and post-
conditions to help 
explain the semantics of 
each resource. 

Section 8.5 describes 
behavior notations such 
as sequence diagrams 
and statecharts.
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matching the signatures of different elements’ expectations of an interface, often
simply by linking different units of code. Signature matching will guarantee that a
system will compile and/or link successfully. But it guarantees nothing about
whether the system will operate successfully, which is, after all, the ultimate goal.

In September 1999, NASA lost a $125-million orbiter when it was about to enter
orbit around Mars. An undetected error in a data transfer between the Mars Cli-
mate Orbiter spacecraft team in Colorado and the flight navigation team in Cal-
ifornia caused the loss of the spacecraft. The error was a semantic mismatch in
the data for maneuvering the orbiter into Mars orbit: one team used English
units and the other used metric units.

A full-fledged interface is written for a variety of stakeholders and specifies the
full range of effects of each resource, including quality attributes. Signatures
and low-end APIs are simply not enough to let an element be put to work with
confidence in a system. A project that adopts them as a shortcut will pay the
price when the elements are integrated, if they’re lucky, but more than likely after
the system has been delivered to the customer.

7.7 Examples of Interface Documentation
Following are a couple of examples of interface documentation.

7.7.1 Zip Component API

The interface documentation that follows is for a hypothetical
Windows COM component that provides standard zip archive
operations. A client application can call the interface to create a
zip file and add files to it, extract files from a zip file, list the files
inside a zip file, and delete files from a zip file. The example is
inspired by publicly available components that offer similar func-
tionality, such as XZip (xstandard.com/en/documentation/xzip).

SAMPLE INTERFACE DOCUMENTAT ION

Section 1. Interface Identity

DSAVandBzip: Offers operations to compress, extract, list contents, and delete
files from a standard zip file.

Section 2. Resources

void Zip(string[] filesToZip, string zipFile, 
         bool savePath, int compressionLevel)

Compress the specified files and folder and add them to the specified zip file.
Does not put a file system lock on files when reading them. If the destination zip
file doesn’t exist, create it.
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Parameters:

• filesToZip: array with the names of the files or folders to be zipped. If an
item is a folder, all files and folders inside the folder are zipped recursively.

• zipFile: pathname to the destination zip file that will hold the zipped content.

• savePath: if true, the items in the zip file will keep the original pathname rel-
ative to the folder specified in filesToZip; if false, path information will be
removed.

• compressionLevel: varies from 1 (minimum compression, but faster to zip
and unzip) to 4 (maximum compression, but slower).

Preconditions:

• Files listed in filesToZip exist and are not locked.

• The folder where the specified zipFile is located already exists, the current
user has write permission on it, and there is enough disk space.

Postconditions:

• On success, the zip file is created and closed. The original files that were
zipped are also closed and remain unchanged.

Possible error codes: 201, 203, 206, 211, 215, 252, 300

void Zip(string[] filesToZip, string zipFile, bool
       savePath ) 

Same as Zip() using the default compressionLevel. See “Section 5. Variability.”

void Unzip(string zipFile, string destFolder, bool overwrite)

Extract and decompress all items inside the specified zip file and save them to
the specified destination folder. If a zipped file has a relative path associated to
it, the pathname is appended to the destination folder. If the corresponding sub-
folders don’t exist in the destination, they are created.

Parameters:

• zipFile: pathname to the destination zip file that holds the zipped content.

• destFolder: pathname to the folder where the zipped files will be 
extracted to.

• overwrite: if true, simply overwrite existing files and folders with the same
name in the destination folder.

Preconditions:

• Specified zip file is valid and nonempty.

• The destination folder already exists, the current user has write permission
on it, and there is enough disk space.
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Postconditions:

• The zip file is closed and its contents unchanged. The extracted files are
closed at the end and contain the exact content of the original file prior to
compression.

Possible error codes: 201, 206, 207, 252, 300

ZipItem[] GetItems(string zipFile) 

Get a list of the contents of the specified zip file. Return an array of ZipItem
objects in the order they were added to the zip file. Each zip item can be a file
or a folder. This operation does not involve decompressing the files.

Parameters:

• zipFile: pathname to the destination zip file that holds the zipped content.

Preconditions:

• Specified zip file is valid and nonempty.

Postconditions:

• The zip file is closed and its contents unchanged.

Possible error codes: 201, 206, 207

long ErrorCode

Global read-only variable that contains the error code of the last operation or
zero if the operation was successful. See “Section 4. Error Handling” for more
information.

Section 3. Data Types and Constants
• struct ZipItem—represents an item (file or folder) inside a zip file. Attributes:

– string Name: name of the file or folder

– string Path: path to the zipped item

– DateTime Modified: last modified on this date/time

– long OriginalSize: size in bytes of original file

– long CompressedSize: size in bytes of compressed file

– byte Type: indicates whether it’s a file or a folder. Use constants FOLDER
and FILE.

• const byte FOLDER = 1

• const byte FILE = 2

Section 4. Error Handling

Upon failure or when certain preconditions are not satisfied, all operations set
the ErrorCode global variable. Possible error codes are:
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• 201—Zip file is not valid.

• 203—Cannot create zip file.

• 206—Cannot allocate memory.

• 207—Cannot open zip file.

• 211—Cannot open file/folder to zip.

• 215—Zip file is same as the input file.

• 252—Cannot create files for swapping.

• 254—Unknown error when modifying zip file.

• 300—Disk is full or protected.

Section 5. Variability

• The component may be deployed as a Windows service or as a DLL to be
loaded by a caller application.

• Windows registry keys are used for configurable properties, which are read
by the component at load time:

– Default compression level

– Whether a log file is created with results of last operations

– Location of the log file

Section 6. Quality Attribute Characteristics

The compression level will affect performance and disk space. If the level
is higher, the zip or unzip operation will take longer. However, the operation
will require less disk space as the resulting compressed file is smaller. The
normal compression ratio obtained at compression level 4 is similar to the
ratio obtained using commercial data compression tools, such as WinZip or
WinRAR.

Operations that create or update a zip file require disk space for temporary files.
The amount of space is not bigger than the size of the zip file. 

The execution time of zipping a file is log-linear (n log n) proportional to the size
of the file.

The operations in the interface are thread safe and can be called by multiple
simultaneous users.

Section 7. Rationale and Design Issues

Different compression levels were created to improve the flexibility for users that
require maximum compression ratio versus users that need just a simple and
fast compression component. 
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Section 8. Usage Guide
• Example of calling the component to zip some files:

DllImport("DSAVandBzip.dll")
Public static extern void Zip(string[] filesToZip, string zipFile, bool 
savePath, int compressionLevel);
string[] myFiles = new string[3];
myFiles[0] = "C:\SEI\DSA\Chapter2.doc";
myFiles[1] = "C:\temp\new.css";
myFiles[2] = "C:\SEI\DSA\TOC.docx ";
Zip(myFiles, "C:\SEI\DSA\test.zip", true, 4);

7.7.2 Interface to a SOAP Web Service

The example software architecture document accompanying
this book online contains the architecture documentation for
the Adventure Builder application. See wiki.sei.cmu.edu/sad.
The OPC Uses View contains the documentation for the
OpcPurchaseOrderService and the OpcOrderTrackingService inter-
faces, which are SOAP-based Web services interfaces.

7.8 Summary Checklist
• All elements have interfaces.

• Many notations for interface documentation show only syn-
tactic information. Make sure to include semantic informa-
tion as well.

• Elements can have provided interfaces and required
interfaces.

• An element can have multiple interfaces and multiple
actors at each interface.

• An architect must carefully choose what information to put
in interface documentation, striking a balance between
usability and modifiability. Put information in an interface
document that you are willing to let people rely on. If you
don’t want people to rely on a piece of information, don’t
include it.

• In graphical depictions, show interfaces explicitly if ele-
ments have more than one interface or if you want to
emphasize the existence of an interface through which
interactions occur. Otherwise, interfaces can be implicit.

• Follow the template given in Figure 7.5 or create your own,
making sure to address the needs of the interface documen-
tation’s stakeholders.
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7.9 Discussion Questions
1. Think about your favorite Web browser. How many interfaces

does it have, and what actors are served by those interfaces?

2. Sketch a picture of the Web browser showing its interfaces
and its environment.

3. For one of the interfaces you described in question 1, list a
set of exceptions that the browser detects or, from your
experience, fails to detect but should.

4. What’s the difference between an interface and a connector?

5. What’s the difference between an interface and a port?

6. Is there a difference between module (as described in Chap-
ter 1) interfaces and component (as described in Chapter 3)
interfaces?

7. Why does UML have different symbols for interface and
port? In what situation, if any, would you attach an interface
to a port of a UML component?

8. Look at an interface description in the Javadoc (or doxy-
gen) documentation for a publicly available library and try
to identify the information that corresponds to the infor-
mation required by the sections of the template presented
in Figure 7.5. Is any information missing?

7.10 For Further Reading
An excellent foundation paper on exceptions, which lays the
groundwork for separating the concern of detecting an excep-
tion from the concern of handling an exception, is the one by
Parnas and Wuerges (1976).

Joshua Bloch has delivered at conferences an excellent talk,
titled “How to Design a Good API and Why It Matters,” which
contains practical guidelines regarding the design and docu-
mentation of APIs (Bloch 2006).

Mary Shaw has made the observation that we can’t have com-
plete interface documentation, because the cast of stakehold-
ers is too numerous and the range of information they need is
too broad. And in a world in which we get our components
from other sources and know precious little about them, good
interface documentation is even more rare. However, she
points out that we can and do accomplish useful work with
such incomplete knowledge. This is so because we can assign
confidence measures to individual units of information that we
pick up about a component from various sources. She calls
such a unit a “credential,” and she assigns it properties such as
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how we know it and what confidence we have in it (Shaw 1996a,
Scaffidi and Shaw 2007).

Interfaces are extremely important in service-oriented solu-
tions in general, and for applications that follow the software
as a service (SaaS) model. In SaaS, instead of paying for a soft-
ware license, customers pay for using the software, which
exposes an interface and is available via the Web. In such a sce-
nario, it’s common to provide a service-level agreement. Qual-
ity properties that are usually expressed in SLAs, notations for
SLAs, and mechanisms to monitor quality of service are dis-
cussed in the report by Bianco, Lewis, and Merson (2008).

Viewing interfaces as the set of assumptions that two compo-
nents are allowed to make about each other dates from early
work by Parnas (1971), echoed in later work about architec-
tural mismatch (Garlan, Allen, and Ockerbloom 1995). 
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8
Documenting Behavior

Documenting behavioral aspects of an architecture provides
many benefits both during development of the architecture
and during system maintenance. This information can be used
to gain understanding of a system, and it can also help stake-
holders reason about how a system built to the architecture will
be able to meet many of its quality-related goals. For example,
behavior documentation can identify potential deadlocks and
bottlenecks. Such documentation clarifies to developers the
steps and states involved in the operations.

Documenting an architecture requires behavior documen-
tation that complements structural views by describing how
architecture elements interact via their structures. Examples of
structural diagrams include module, component-and-connector
(C&C), and deployment diagrams. Structural relations pro-
vide a system view that reflects all potential interactions, few of
which will be active at any given instant during system execu-
tion. Many notations are available to capture system behavior. 

In this chapter, we recommend what aspects of behavior to
document, we explain why that behavior documentation can
be useful, and we show examples of how this documentation is
used during the earliest phases of system development. In
addition, we provide overviews and pointers to notations,
methods, and tools that are available to help practitioners doc-
ument system behavior.

8.1 Beyond Structure
Reasoning about characteristics such as a system’s potential to
deadlock, its ability to complete a task in the desired amount
of time, or its maximum memory consumption requires that

Architecture is frozen 
music.

—Johann Wolfgang von 
Goethe

With George Fairbanks
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the architecture description contain information about both
the characteristics of individual elements as well as patterns of
interaction among them. Behavior documentation adds infor-
mation that reveals things like the following:

• The ordering of interactions among the elements

• Opportunities for concurrency

• Time dependencies of interactions, such as at a specific
time (for example, “At 8 a.m.”) or after a period of time (for
example, “Every 30 ms.”).

• Possible states of the system or parts of the system

• Usage patterns for different system resources (such as mem-
ory, CPU, database connections, or network)

Sequence diagrams and statecharts found in UML are exam-
ples of notations that support capturing behavioral information.

8.2 How to Document Behavior
Documented behavior supports exploring the range of possi-
ble orderings of interactions, opportunities for concurrency,
and time-based interaction dependencies among system ele-
ments. In this section, we recommend steps you can take to
reap these benefits.

There are three things you need to do to capture system
behavior: (1) decide what kinds of questions the documenta-
tion should answer; (2) determine what behavioral informa-
tion is available or can be stated as constraints on downstream
developers; and (3) choose a notation.

8.2.1 Step 1: Decide What Kinds of Questions You Need to Answer

Determining what kinds of behavior to model depends on the
type of system being designed, the stage of development, and
the focus of the design effort. 

For example, consider a banking system. In such a system,
you focus on the order of events: credit, deposit, operation fee,
and logging in a money transfer operation. The behavior must
ensure that the transaction is atomic and that rollback proce-
dures are in place. On the other hand, in a real-time embed-
ded system, you need to say a lot about timing properties in
addition to the order of events. 

Early in the development you will want to talk about the ele-
ments and how they interact, not about the details of how
input data is transformed into outputs. It may also be useful to
say something about constraints on the transformational
behavior within elements, because that behavior affects the
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global behavior of the system. Later in the development, the
details should also be considered.

At a minimum you should model the stimulation of actions
and the transfer of information from one element to another.
In addition, you might want to model ordering constraints on
these interactions. Restrictions on the order and combinations
in which actions must occur should be documented if correct
behavior depends on it. Documentation that has more explicit
information about the constraints on interactions is more pre-
scriptive for developers and more precise for analysis, and
hence more likely to result in an implementation that will
exhibit the intended behavior.

As an example of the importance of focus, consider an
exploratory robot (or rover). If you’re creating a sequence dia-
gram to describe an interaction within the communication
subsystem, you may abstract (that is, omit) interactions with
the power management subsystem, because the diagram only
needs to clarify the interactions concerning the communica-
tion submodules. Defining the scope is particularly critical for
state-based diagrams. The first thing to ask is “This diagram
shows the states of what?” For example, in an ATM system, a
statechart can describe the states of the user screen, the money
dispenser, the communication channels, a bank account, a
bank card, the card reader, and so on. Each of these elements
has distinct states and transitions, and they may be related (for
example, if the card reader retains a card the user forgot to
pick up, an event may be triggered to deactivate the card). If
the scope of the state-based diagram is not well defined, you
may end up trying to model combined elements that together
have too many states. 

8.2.2 Step 2: Determine What Types of Information Are Available or 
Can Be Constrained

Types of Communication

Looking at a structural diagram that depicts two interrelated
elements, users of the documentation often ask “What does
the line connecting the elements mean? Is it showing flow of
data or control?” The answer should be in the diagram key. A
behavioral diagram provides a place to describe aspects of the
transfer of information and the stimulation of actions from
one element to another in more detail than you include in dia-
gram keys.

Table 8.1 shows some common examples of various types of
communication. In this table we identify three different impor-
tant characteristics of a type of communication. The first char-
acteristic is the general purpose of the communication. In

See “Perspectives: 
Quivering at Arrows” 
on page 41, in the 
prologue.
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some cases, the primary purpose is to exchange data. In others,
the primary purpose is to stimulate another element to signal
that a task is completed or that a service is required. Often,
however, a combination of the two is the main idea, as is the
case when an element stimulates another to deliver data or
when information is passed in messages or as parameters of
events.

A second characteristic indicates whether elements commu-
nicate via synchronous or asynchronous means. Remote proce-
dure call (RPC) is an example of synchronous communication.
The sender calls the receiver and is blocked until the receiver
responds. Messaging is an example of asynchronous communi-
cation. The sender does not concern itself with the state of the
receiver when sending a message or posting an event. Right
after the message is sent, the sender continues its execution
and is not blocked waiting for a response. In fact, the sender
and receiver may not be aware of each other’s identity.

Consider the telephone and e-mail as examples. If you make
a phone call to someone, the person has to be at the phone in
order for it to achieve its full purpose. That is synchronous
communication. If you send an e-mail message and go on to
other business, perhaps without concern for a response, the
communication is asynchronous. The distinction between syn-
chronous and asynchronous communication has implications
for the behavior of the transaction. An asynchronous call intro-
duces concurrency and is more suitable for loosely coupled
elements. The distinction also affects modifiability. Asynchro-
nous interactions are usually more complicated, especially
when the transaction needs a callback, which may require
establishing a callback end point and a mechanism for corre-
lating the original call to the callback message. 

Table 8.1 Types of communication

Synchronous Asynchronous

Data Local: Shared memory
Remote: Database

Stimulation Local: Procedure 
call, semaphore
Remote: RPC with-
out parameters

Local: Interrupt, signal, or 
event without parameters
Remote: Signal or event 
without parameters

Both Local: Procedure 
call
Remote: RPC with 
parameters

Local: Message, event 
with parameters
Remote: Message, event 
with parameters
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A third characteristic of the type of communication is
whether the call is local (within the same container or
machine) or remote. If it’s remote, the performance is worse,
because of the network overhead (even if the remote call reaches
a component within the same machine, there’s the overhead
of going through the stack of network layers). Remote calls are
also less reliable. A call or its response may not be delivered,
may get corrupted, or may arrive in the wrong order.

Constraints on Ordering

In the case of synchronous communication, you probably want
to say more than that there is two-way communication from A
to B. For instance, you may want to say whether the target of
the original message uses the assistance of other elements
before it can respond to the original request. 

You may want to be more specific about certain aspects of
the way an element reacts to its inputs. You may want to note
whether an element requires all or just some of its inputs to be
present before it begins calculating. Also, you may want to say
whether it can provide intermediate outputs or only final out-
puts. If a specific collection of events must take place before an
action of an element is enabled, that should be specified, as
should the circumstances (such as ordering) in which the
events or element interactions will be triggered. These types of
constraints on interactions provide information that is useful
for analyzing the design for functional correctness, as well as
for quality attributes.

Time-Based Stimulation

If any activities are specified to take place at specific times or
after certain intervals of time, some concept of time needs to
be introduced into your documentation. Time can be speci-
fied as either a point in time (that is, calendar based) or as a
duration (timer based). Duration can be based on either wall
time or task time. As an example of using a point in time, you
may specify that certain behavior is different on weekends or
holidays. As an example of using wall-time duration, you may
specify that every five minutes, the system should determine
how many people are logged in. As an example of task-based
duration, you may specify that a task can use one minute of
CPU time before being temporarily interrupted.

8.2.3 Step 3: Choose a Notation

Any language that supports documenting system behavior must
include constructs for describing sequences of interactions.
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Because a sequence is an ordering in time, it should be possi-
ble to show time-based dependencies. Sequences of interac-
tions and the triggered activities are displayed in the order they
are supposed to occur after certain stimulus arrives. Examples
of stimuli are the passage of time and the arrival of an event.
Examples of activities are computing and waiting. Constructs
that show time as a point—for example, 8:00 a.m.—and time
as duration—such as wait for 10 seconds—are normally also
provided. As documentation of behavior implicitly refers to
structure and uses structure, the structural elements of a view
are an essential part of the language. In most behavior docu-
mentation, therefore, you can find representations of the
following:

• Stimulus and activity

• Ordering of interactions

• Structural elements with some relations the behavior maps to

Two groups of behavior documentation are available. The
languages to support behavior documentation tend to fall into
one of two corresponding categories: traces and comprehen-
sive models.

• One type of documentation allows you to capture what hap-
pens through the structural elements of a system during a
scenario as traces. Traces are sequences of activities or inter-
actions that describe the system’s response to a specific stim-
ulus. Traces are by no means a complete behavioral model
of a system. However, the explicit enumeration of all traces
would generate a complete behavioral model, although this
isn’t remotely feasible in most systems. Traces are easier to
design and communicate because they have a narrow focus.

• Another type of documentation, often state based, shows
the complete behavior of a structural element or a set of ele-
ments. This is called a comprehensive model of behavior because
it is possible to infer all paths from initial state to final state.
Comprehensive behavioral models support documentation
of alternatives and repetitions to provide the opportunity of
following different paths through a system, depending on
runtime values. With this type of documentation, it is possi-
ble to infer the behavior of the elements for the arrival of
any possible stimulus.

A difference between the two approaches is the focus of the
documentation relative to individual elements. Traces are typ-
ically scoped to include all the system elements that are
involved in a particular scenario. However, as mentioned ear-

Use trace-oriented 
documentation if the 
goal is to describe the 
sequence of activities in 
the system in a specific 
scenario.

Use the comprehensive 
model type of documen-
tation when a complete 
behavioral understand-
ing is required, as is the 
case when performing a 
simulation or when 
applying static analysis 
techniques.
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lier, only a fraction of the behavior of any given element shows
up in any particular trace. Each comprehensive model, on the
other hand, is typically scoped to focus on all the behavior of a
particular element or group of elements. In order to reason
about system-wide behavior, you must look at multiple compre-
hensive models side by side.

Many languages and notations are available for both types of
behavior documentation. These differ in their emphasis on
certain aspects of the behavior, such as how ordering is identi-
fied, how much support is available for documenting timing,
what types of communication are easily modeled, and so on.

8.3 Notations for Documenting Behavior
In the subsections that follow, we provide cursory overviews of
several notations to show trace and comprehensive types of
behavioral specifications. The discussions are intended to pro-
vide a flavor of the particular notations and to motivate their
use. There are many ways in which the diagrams we present in
this section may be used together to support system under-
standing. Figure 8.1 shows a reasonable way to combine the
strengths of several notations.

8.3.1 Notations for Capturing Traces

Traces are sequences of activities or interactions that describe
the system’s response to a specific stimulus when the system is
in a specific state. A trace describes a sequence of activities or
interactions between structural elements of the system.
Although it is conceivable to describe all possible traces to gen-
erate the equivalent of a comprehensive behavioral model, it is
not the intention of trace-oriented documentation to do so. 

In this section, we describe four notations for documenting
traces: use cases, sequence diagrams, communication diagrams,

Figure 8.1
Using various types of behavior documentation together. (a) Begin by documenting an overview of the functional 
requirements as use case diagrams. (b) Then produce use case descriptions to document the events and actions that 
correspond to performing each use case. (c) Next, for each use case produce either a sequence diagram or a 
communication diagram to define the messages between envisioned architecture elements. (d) Finally, produce 
statecharts to complement the behavior documentation of the elements that have elaborate states and state transitions.

(a) (b) (c) (d)
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and activity diagrams. Communication diagrams were introduced
in UML version 2 and are based closely on the collaboration
diagram from UML version 1. Although other notations are
available, we have chosen these four as a representative sample.

Use Cases

Use cases describe how actors can use a system to accomplish
their goals. Use cases are frequently used to capture the func-
tional requirements for a system.

UML provides a graphical notation for use cases, as shown in
Figure 8.2, but it does not say how the text of a use case should
be written. The UML use case diagram can be used effectively
as an overview of the actors and the behavior of a system, but
most of your effort should go into producing the textual use
case description.

The use case description is textual, and it should contain:
the use case name and brief description, actor or actors who
initiate the use case (primary actors), other actors who partici-
pate in the use case (secondary actors), flow of events, alterna-
tive flows, and non-success cases. The use case description can
be enhanced with preconditions, postconditions, assumptions,
priority, and other information. A use case may include or
extend other use cases. Figure 8.3 shows an example of a use
case description for making a call in a telephone system.

All interactions in a use case are interactions between the
actors and the system; no interactions within the system are
shown. Human users are actors, but other computer systems
can also play the role of an actor. 

Figure 8.2
The UML use case diagram 
provides a quick overview 
of the system, actors, and 
the required behavior. This 
example shows some use 
cases in a telecommunica-
tion system. 
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Sequence Diagrams

A UML sequence diagram shows a sequence of interactions
among instances of elements pulled from the structural docu-
mentation. It shows only the instances participating in the sce-
nario being documented. A sequence diagram has two
dimensions: vertical, representing time, and horizontal, repre-
senting the various instances. The interactions are arranged in
time sequence from top to bottom. Figure 8.4 is an example of
a sequence diagram that illustrates the basic UML notation. In
practice, the notation you’ll find in sequence diagrams is often
simpler: return messages may not be there, execution occurrence
bars may not be drawn, a single type of arrow may be used for
all types of messages, and labels on messages may not exist.

Sequence diagrams are not explicit about showing concurrency.
If that is your goal, use activity diagrams instead. Although
instances in a sequence diagram can be running concurrently,
no assumptions can be made about ordering when a sequence
diagram depicts an instance sending messages at the “same
time” to different instances or, conversely, receiving multiple
stimuli at the “same time.”

Figure 8.5 shows a more interesting sequence diagram. It
demonstrates some features introduced in UML 2.0 that help
in communicating a design to developers: 

• Named frame. The optional frame around the diagram con-
tains the name of the sequence diagram, which in the exam-
ple is sdProcessOrder.

Name: Make a basic call
Description: Making a point-to-point connection between two phones. 
Primary actors: Caller
Secondary actors: Callee
Flow of events:
The use case starts when a caller places a call via a terminal, such as a cell phone. All 
terminals to which the call should be routed then begin ringing. When one of the terminals 
is answered, all others stop ringing and a connection is made between the caller’s termi-
nal and the terminal that was answered. When either terminal is disconnected—someone 
hangs up—the other terminal is also disconnected. The call is now terminated, and the 
use case is ended.
Exceptional flow of events:
The caller can disconnect, or hang up, before any of the ringing terminals has been 
answered. If this happens, all ringing terminals stop ringing and are disconnected, ending 
the use case.

Figure 8.3
Example use case description for making a basic call in a telephone system. This use case contains a main flow of events 
and one exceptional flow of events.

If your trace involves a 
mix of synchronous and 
asynchronous mes-
sages, use the different 
types of arrows in the 
UML sequence diagram 
notation to differentiate 
them and add the return 
messages for the syn-
chronous calls. 
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• Reference. An existing sequence diagram can be referenced
in other diagrams by using the frame with the upper-left
label “ref”. The example indicates that all interactions in the
referenced sequence diagram, CreditCardValidation, take place
right after ProcessOrderRPCService interacts with DaoOrder.

• Time constraint. The example specifies that the interaction of
Customer and GWTClientApp should take between one and five
seconds.

• Loop. The loop frame indicates that the interactions are
repeated in a loop. The expression after keyword “loop” in
the upper-left label defines the number of iterations. In the
example, the interactions in the loop frame are repeated for
each order item (it’s not shown in this diagram, but each
order contains a collection of order items).

• Alternatives. The frame with upper-left label “alt” contains
interactions that are executed only if the specified guard
condition (in square brackets) is true. The alt frame can be
segmented, and each segment can have a guard condition.
In the example, the alt frame has two segments, which
semantically correspond to an if-then-else construct. 

Figure 8.4
A simple example of a UML 
sequence diagram. Objects 
(that is, element instances) 
have a lifeline, drawn as a 
vertical dashed line along 
the time axis. The sequence 
is usually started by an 
actor on the far left. The 
instances interact by send-
ing messages, which are 
shown as horizontal 
arrows. A message can be 
a method or function call, 
an event sent through a 
queue, or something else. 
The message usually maps 
to a resource (operation) in 
the interface of the receiver 
instance. A filled arrowhead 
on a solid line represents a 
synchronous message, 
whereas the open arrow-
head represents an asyn-
chronous message. The 
dashed arrow is a return 
message. The execution 
occurrence bars along the 
lifeline indicate that the 
instance is processing or 
blocked waiting for a 
return. Because this 
sequence diagram explic-
itly shows the creation of 
the UserSession object, 
its box is inserted at the 
point where the creation 
takes place.
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Communication Diagrams

Like other trace notations, a UML communication diagram
shows ordered interactions among elements needed to accom-
plish a purpose. Whereas a sequence diagram shows order
using a time-line-like mechanism, a communication diagram
shows a graph of interacting elements and annotates each
interaction with a number denoting order. As in sequence dia-
grams, instances shown in a communication diagram are
instances of elements described in the accompanying struc-
tural documentation. Communication diagrams are useful
when the task is to verify that an architecture can fulfill the
functional requirements. The diagrams are not useful if the
understanding of concurrent actions is important, as when
conducting a performance analysis.

A communication diagram also shows relations among the
elements, called links (see Figure 8.6). Links show important
aspects of relations among those structural instances. Links
between the same instances in different communication dia-

Figure 8.5
Example of a UML sequence diagram for processing a purchase order on a Web store. This example exhibits some 
powerful features of the sequence diagram notation, such as time constraint, reference to another sequence diagram, 
loop, and conditional alternative messages. 
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grams can show different aspects of relations between the same
structural elements. 

Communication diagrams and sequence diagrams essentially
express the same information, though you may choose one or
the other based on how they highlight time sequences and ele-
ment relations. Sequence diagrams show time sequences explic-
itly, making it easy to see the order in which interactions occur;
communication diagrams indicate ordering by using numbers.
Communication diagrams can resemble the structural diagram
(such as a class diagram) they derive from and also make it easy
to see how elements are statically connected; sequence diagrams
do not clearly show static connections (such as use dependen-
cies) between elements.

Activity Diagrams

UML activity diagrams are similar to flow charts. They show a
business process as a sequence of steps (called actions) and
include notation to express conditional branching and con-
currency, as well as to show sending and receiving events.
Arrows between actions indicate the flow of control. Option-
ally, activity diagrams can indicate the architecture element or
actor performing the actions. One way to do that is by drawing
an activity partition (also called a swim lane) for each element

Figure 8.6
A UML communication dia-
gram for placing a three-
way call on a telephone 
system. Interactions are 
shown by lines between the 
instances labeled with a 
sequence number, the 
name of the resource being 
called, and an arrowhead 
that indicates the commu-
nication direction. The 
sequence numbers show 
which interactions follow 
which. Subnumbering can 
be used to show nested 
stimuli and/or parallelism. 
For example, the interac-
tion with a sequence num-
ber 2.1a is the first stimulus 
sent as a result of receiving 
stimulus number 2. The let-
ter a at the end means that 
another stimulus, 2.1b, can 
be performed in parallel. 
This numbering scheme 
may be useful for showing 
sequences and parallelism, 
but it tends to make a dia-
gram unreadable.
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and placing the actions performed by that element within the
corresponding partition. Figure 8.7 is an example of an activity
diagram that has six activity partitions. 

Another important feature of activity diagrams is the ability
to express concurrency. A fork node (depicted as a thick bar
orthogonal to the flow arrows) splits the flow into two or more
concurrent flows of actions. The concurrent flows may later be
synchronized into a single flow through a join node (also
depicted as an orthogonal bar). The join node waits for all
incoming flows to complete before proceeding. An alternative
is to use a merge node, which is depicted as a diamond with

Figure 8.7
Example of an activity diagram for processing an order in the Adventure Builder system (Adventure Builder 2010). The 
elements listed on the left are components from the top-level service-oriented view of the system. 
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multiple incoming flows. The merge node does not synchro-
nize the incoming flows; instead, as each flow completes, con-
trol is passed to the following action. 

Unlike sequence and communication diagrams, activity dia-
grams don’t show the actual operations being performed on
specific objects. Activity diagrams are very useful to broadly
describe the steps in a specific work flow. Conditional branch-
ing (shown with the diamond symbol) allows a single diagram
to represent multiple traces, although it’s not usually the
intent of an activity diagram to show all possible traces or the
complete behavior for the system or part of it. 

Other Trace-Based Notations

Use cases, sequence diagrams, communication diagrams, and
activity diagrams are perhaps the most commonly seen nota-
tions for capturing traces, but there are other notations that
have specialized purposes:

• A message sequence chart is a message-oriented representa-
tion containing the description of the communication between
instances. Simple message sequence charts look like sequence
diagrams but have a more specific definition and are a more
precise notation. The main area of application for a message
sequence chart is as an overview specification of the com-
munication behavior among interacting systems, especially
telecommunication switching systems. Message sequence
charts are often seen in conjunction with Specification and
Description Language (SDL), which is a comprehensive
behavioral notation. Whereas a message sequence chart
focuses on representing the message exchange between ele-
ments, such as systems and processes, SDL focuses on docu-
menting what does or should happen in an element. In that
respect, message sequence charts and SDL diagrams com-
plement each other.

• UML timing diagrams show state changes of one or more
objects along a time line. When two or more objects are
shown, the timing diagram can also display the messages
exchanged between them, similar to a UML sequence dia-
gram. Timing diagrams resemble digital signal diagrams in
that time progresses from left to right, but they have a rich
vocabulary of annotations to express timing constraints
between the events and message exchanges.

• Business Process Execution Language (BPEL) is a language
that supports creation of work flows that consist of interac-
tions among Web services. BPEL is an executable XML-
based language and hence not suitable for architecture
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design. However, BPEL tool environments usually provide a
graphical notation (for example, Business Process Model-
ing Notation, or BPMN) that can be used to create behav-
ioral diagrams that describe control and data flow through
the system. 

8.3.2 Notations for Capturing Comprehensive Models

Comprehensive models show the complete behavior of struc-
tural elements. Given this type of documentation, it is possible
to infer all possible paths from initial state to final state. The
state machine formalism is a good candidate for representing
the behavior of architecture elements because each state is an
abstraction of all possible histories that could lead to that state.
State machine languages allow you to complement a structural
description of the elements of the system with constraints on
interactions and timed reactions to both internal and environ-
mental stimuli.

In this section, we describe UML state machine diagrams.
Although other languages are available, we have chosen state
machine diagrams because they can describe behavior in a
form that captures the essence of what you wish to convey to
system stakeholders. State machines are also used in many dis-
ciplines of computer science (from compilers to data model-
ing) and are part of UML, so you are likely to find them in
modeling and drawing tools. State machine diagrams are also
available in development tools that allow you to design, simu-
late, and analyze your system, and sometimes generate code.

UML State Machine Diagrams

UML state machine diagram notation is based on the state-
chart graphical formalism developed by David Harel for mod-
eling reactive systems; they allow you to trace the behavior of
your system, given specific inputs. A UML state machine dia-
gram shows states represented as boxes and transitions
between states represented as arrows. The state machine dia-
grams help to model elements of the architecture that have
interesting or complex states. Figure 8.8 is a simple example
showing the states of a vehicle cruise control system. 

Each transition in a state machine diagram is labeled with
the event causing the transition. Optionally, the transition can
specify a guard condition, which is bracketed. When the event
corresponding to the transition occurs, the guard condition is
evaluated and the transition is enabled only if the guard is true
at that time. Transitions can also have consequences, called
actions or effects, indicated by a slash. When an action is
noted, it indicates that the behavior following the slash will be
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performed when the transition occurs. The states may also
specify entry and exit actions. 

UML state machine diagrams also support the nesting of
states. The outer state is called the composite state; inner states
are called substates. The composite state defines the scope of a
new state diagram, and the substates are related by transitions,
just as in a finite state machine. When the composite state is
entered, the initial state within the composite state is also
entered. Grouping substates into a composite state allows com-
mon behavior to be expressed concisely. Any behavior indi-
cated at the composite state level—depicted as transitions from
the composite state boundary rather than from any specific
substate—applies to all substates. A good use of this technique
is to indicate common error handling or termination behavior.
Figure 8.9 shows an example of this; the “user canceled order”
transition out of the “filling order” composite state (top right)
expresses that the transition can occur in any of the substates. 

In UML state machines, concurrency is represented by dividing
a composite state into regions. Each concurrent region con-
tains a state machine that is a grouping of substates. Regions
are shown separated by dotted lines. The state machine in Fig-
ure 8.9 shows three concurrent regions. When all regions
reach their final state, transition “all bookings confirmed” from
the composite state is triggered. This transition causes the
“e-mail customer” action to be executed. Alternatively, the sys-
tem can leave the composite state if any of the requests is not
satisfied or, as we mentioned before, if the user cancels the
order. UML’s state machine diagram notation contains many
other features not mentioned here, such as means of express-
ing choice, timing, and history. 

Other Comprehensive Notations

Formal languages such as Z, CSP, and FSP are popular in niche
domains with demanding requirements, such as safety-critical
systems. They are mathematical languages based on predicate

The boxes in a state 
machine diagram are 
states; they are not 
components or mod-
ules. The arrows are 
transitions; they are not 
connectors. A state 
machine diagram may 
model the states of the 
entire system, a compo-
nent, a collection of 
components, or an 
attribute of an object. 
Be clear as to what you 
are modeling before 
creating a state 
machine diagram.

State diagrams by defi-
nition are supposed to 
show all states and all 
transitions out of a 
state. For example, 
when an ATM is in state 
“Enter Pin”, you should 
show a transition for the 
case when the user 
walks away. Otherwise, 
the developer may not 
implement a time-out.

Decide what states your 
state diagram repre-
sents. Choosing a 
scope that is too broad 
may result in a diagram 
that is too big to under-
stand and analyze.

Don’t forget to indicate 
the initial state, and 
decide whether or not 
there is a final state.

Figure 8.8
UML state machine dia-
gram for the cruise control 
system of a motor vehicle. 
The transitions correspond 
to the buttons the driver 
can press or driving actions 
that affect the cruise con-
trol system.
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logic and set theory. These languages can be used to produce
precise behavioral models and permit rigorous analyses, such
as type checking, model checking, and proofs. However, they
include a large set of symbols, and expressions are written in
terms of predicate logic, making it difficult for some designers
to warm up to.

Other notations exist that are used in various niche areas.
Architecture Analysis and Design Language (AADL), which is
described in Appendix C, can be used to reason about runtime

Figure 8.9
A UML state machine diagram showing the states of an order in the Adventure Builder system (Adventure Builder 2010). 
Once the credit card is authorized, the order moves to the “filling order” composite state. The three regions represent 
concurrent, independent substates of filling the order. 
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behavior. Specification and Description Language (SDL) is
used in telephony. Koala is an architecture description lan-
guage designed with product-line architectures in mind; it pro-
vides support for variability in component selection and variety
of composition binding times.

8.4 Where to Document Behavior
Architects document behavior to show how an element behaves
when stimulated in a particular way or to show how an ensem-
ble of elements react to one another. In an architecture docu-
mentation package, where behavior is shown depends on what
is being shown. For example, in an architecture view: 

• Behavior has its own section in the element catalog. For a complex
transaction, you might describe how elements interact to
process requests using a sequence diagram.

• Behavior can be part of an element’s interface documentation. The
semantics of a resource on an element’s interface can
include the element’s externally visible behavior that occurs
as a result of using the resource. Or in the usage guide sec-
tion of an interface document, behavior descriptions can be
used to explain the effects of a particular usage pattern, that
is, a particular sequence of resources used.

• Behavior can be used to fill in the rationale section, which includes
results of analysis. Behavior descriptions are often a basis for
analysis, and the behaviors that were used to analyze the sys-
tem for correctness or other quality attributes can be
recorded here.

In the documentation that applies beyond views, the ratio-
nale for why the architecture satisfies its requirements can
include behavior documentation as part of the architect’s
justification.

8.5 Why to Document Behavior
Documentation of behavior is most commonly used for com-
munication among stakeholders during development and
maintenance activities. It can also be used for system analysis.
The types of analyses you perform and the extent to which you
check the quality attributes of your system are based on the
type of system you are developing. 

8.5.1 Driving Development Activities

Behavior documentation plays an important part in architec-
ture’s role as a vehicle for communication among stakeholders

Documenting interfaces 
is described in Chapter 7.

Documenting rationale 
is described in Section 
6.5.
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during system development activities. It’s probably safe to say
that every architect has drawn a sequence diagram (or some
similarly expressive diagram) on the whiteboard during a
meeting in order to make concrete their ideas about what com-
ponents need to exist and the interactions among those com-
ponents. These diagrams, along with associated rationale, should
be captured as part of the architecture’s documentation. The
process of designing the architecture helps the architect develop
an understanding of the internal behavior of system elements
and gross system structure, and it improves confidence that the
system will be able to achieve its goals. 

In the architecting process, system decomposition identifies
sets of subelements and defines both the structure and the
interactions among the subelements in a way that supports the
required behavior of the parent element. In many cases behav-
ior documentation is created to help reason about the interac-
tion of the subelements and their responsibilities, to see if the
decomposition is appropriate.

Trace-oriented diagrams, such as sequence diagrams, can be
created based on an implementation already in place. In that
case, the diagrams can help to spot bottlenecks, memory leaks,
and other defects, as well as identify opportunities for perfor-
mance improvements and refactorings.

8.5.2 Analysis

Behavior documentation allows you to reason about the com-
pleteness, correctness, and quality attributes of the software
system. Once the structure of an architecture view has been
identified and the interactions among elements have been
constrained, you need to look at whether the proposed system
will be capable of doing its job as planned. This is your oppor-
tunity to reason about both the completeness and the correct-
ness of the architecture. The behavior of the system can be
simulated to help reason about the architecture’s ability to sup-
port the range of functionality and related quality require-
ments of the system. Behavior documentation can be built as a
model that serves as input to the simulation.

The amount of information in the behavioral models
required to perform behavioral analysis varies greatly, depend-
ing on the level of certainty and precision required of the
result. Therefore, it is generally a good idea to do some type of
trade-off comparison to determine the cost/benefit involved
with applying certain types of architecture analysis techniques.
For any system, it is a good idea to identify and to simulate a set
of requirements-based scenarios. If you are developing a safety-
critical system, the application of more-expensive, formal analysis

If you’re spending a 
long time to find a bug 
in a specific transaction 
involving several mod-
ules, create a sequence 
diagram showing the 
relevant steps. The dia-
gram helps you and 
others to get a hold of 
the overall transaction 
and may expose erro-
neous interactions. This 
advice is particularly 
useful when the bug is 
not easily reproducible 
because of concurrency 
issues.
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techniques, such as model checking, is justified in order to
identify possible design flaws that could lead to safety-related
failures.

Documenting system behavior supports exploration of the
quality attributes of a system early in the development process.
Some techniques and tools are available or are being devel-
oped that can be used to predict, based on the architecture,
that the production of a system will exhibit specific measures
related to such quality attributes as performance, reliability,
and safety.

Architecture-based simulation is similar to testing an imple-
mentation in that a simulation is based on a specific use of the
system under specific conditions and with expectation of a cer-
tain outcome. Typically, a developer identifies a set of scenarios
based on the system requirements. These scenarios are similar
to test cases in that they identify the stimulus of an activity and
the assumptions about the environment in which the system is
running and describe the expected result. These scenarios are
played out against documented system models that support
relating system elements and the constraints on their interac-
tions. The results of “running the architecture” are checked
against expected behavior.

Whereas simulation looks at a set of special cases, system-
wide techniques for analyzing the architecture evaluate the
overall system: analysis techniques for things like change
impact, deadlock, safety, and schedulability. These techniques
require information about the behavior of the system and its
constituent elements in order to perform the appropriate anal-
yses. Dependencies between and within elements can be used
to identify potential execution paths, which are needed to eval-
uate quality attributes such as performance, and to identify
chains of uses relations to help evaluate modifiability.

8.6 Summary Checklist
• Documenting behavior adds semantic detail to elements

and their interactions that have time-related characteristics.
Behavioral models complement structural models by add-
ing information that reveals ordering of interactions among
the elements, opportunities for concurrency, and time depen-
dencies of interactions, such as at a specific time or after a
period of time.

• Constraints on the interaction between elements should be
documented. Document any ordering constraints on actions
or interactions. Document a clock if your system depends
on time.
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• Most behavioral languages include representations of stim-
ulus and activity, ordering of interactions, and structural
elements.

• Trace-oriented models consist of sequences of activities or
interactions that describe the system’s response to a specific
stimulus when in a specific state. They document the trace
of activities through a system described in terms of its struc-
tural elements and their interactions. Use cases, sequence
diagrams, communication diagrams, and activity diagrams
are trace-oriented modeling languages.

• Comprehensive models, often state based, show the com-
plete behavior of a structural element or set of elements.
UML state machine diagrams are a comprehensive behavior
modeling language.

• Behavior can be documented in the element catalog of a
view and in interface documentation, and it can be used to
fill in the design background section, which includes results
of analyses.

8.7 Discussion Questions
1. Consider a car radio with seek, scan, power on/off, and

preset station buttons, along with a manual tuning knob
and volume control and a digital frequency display. (a) Of the
languages and notations for describing behavior presented
in this chapter, which ones would be good candidates for
describing the behavior of this radio? Why? (b) Using one
of the languages you chose in the previous question, sketch
the behavior of the car radio.

2. Suppose that you wanted to make sure that your car radio
did not exhibit undesirable behavior in unusual circum-
stances, such as the display going blank when the driver
turns the frequency knob while holding down a preset but-
ton. What languages would you likely use to help in that
case, and why?

3. When would you choose to document behavior using trace
models or using comprehensive models? What value do
you get, and what effort is required, for each of them?

4. Draw a statechart for an automatic teller machine for each
of the following stakeholders: (a) a customer wanting to
deposit or withdraw money from an account; (b) a bank
executive wanting to track machine usage across the bank’s
territory; (c) a service technician sent to repair the
machine when it becomes inoperative for any reason; (d) a
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security monitor whose job it is to take appropriate action
when the machine’s money safe is open, the tilt alarm goes
off, or the machine stops communicating with the bank.
Discuss the differences among the four. If you wanted to
combine them to create a single overall statechart for the
machine, how would you go about it?

5. Documenting an architecture involves drawing various
views that must be consistent with each other. If a behavior
model shows a component sending a message to another,
there must be a connector between them, but connectors
are not shown on behavior diagrams. What other con-
sistency checks between views can you think of? In answer-
ing, consider views in each category: module, C&C, and
allocation.

6. Is Figure 8.10 a behavioral diagram? Why or why not?

Figure 8.10
The numbered arrows drawn on top of this network diagram show the sequence of steps to process a specific user 
transaction in terms of communicating elements. 
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8.8 For Further Reading
A rich source of behavior descriptions can be found in the
UML definition that is publicly available from the OMG. At
uml.org, you can find the UML specifications, which contain
definitions, descriptions, and examples of sequence and com-
munication diagrams, as well as example use cases and state
machine diagrams. You can also find several books that explain
UML and its usage in detail. Two seminal books that you will
find to be valuable references are The Unified Modeling Lan-
guage User Guide, by Booch, Rumbaugh, and Jacobson (2005)
and UML Distilled, by Martin Fowler (2003), which focuses on
the 20 percent of UML that you will use 80 percent of the time.

A good reference for statecharts is Modeling Reactive Systems
with Statecharts: The Statemate Approach, by Harel and Politi
(1998).

The BPEL specification can be found at oasis-open.org/
committees/wsbpel. The Object Management Group’s home
page for BPMN is bpmn.org.

Message sequence charts, especially combined with SDL dia-
grams, are most commonly used by the telecommunication
industry. The Web site of the International Telecommunication
Union, at itu.int, has references to resources needed to under-
stand and use message sequence charts and SDL. Additional
information and pointers to events, tools, and papers can be
found at the SDL Forum Society’s Web site, sdl-forum.org. 

Many books have been written about use cases. The book
from Ivar Jacobson that started the whole use case discussion is
Object-Oriented Software Engineering: A Use Case Driven Approach
(1992). This book can serve as a starting point to understand
what was originally meant by use cases and their underlying
concepts. Alistair Cockburn’s book Writing Effective Use Cases
(2000) provides practical guidance on avoiding pitfalls, struc-
turing collections of use cases, and organizing use cases into
goal levels.

The Z language was originally developed at Oxford University
in the late 1970s and has been extended by a number of groups
since then. Tools that help create and analyze specifications
have been developed by various groups and are available freely
over the Internet. A great resource for information and point-
ers is the Web archive found at formalmethods.wikia.com/
wiki/Z_archive. J. M. Spivey’s book The Z Notation: A Reference
Manual (1988) is available online at spivey.oriel.ox.ac.uk/
mike/zrm. It provides a good reference in terms of a standard
set of features. 
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AADL is a standard published by the Society of Automotive
Engineers (SAE). The SAE AADL team keeps an updated Web
site at aadl.info. An overview of AADL and its associated tools
is found in the technical note by Feiler, Gluch, and Hudak
(2006), as well as in Appendix C of this book.
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P A R T

Building the Architecture
Documentation

Parts I and II covered the kind of information that should
appear in architecture documentation. Part I covered styles,
with their attendant element and relation types, that architects
can use to engineer views. Part II covered other critical infor-
mation beyond elements and relations that should be docu-
mented.

Part III deals more directly with the care and feeding of the
architecture documentation itself. Exactly how does an archi-
tect decide what views to put into an architecture document?
How should the architecture document be organized, laid out,
divided into sections, and packaged? How should it be
reviewed for quality and fitness for stakeholder use?

These and other topics are the subject of Part III.

• Chapter 9 provides detailed guidance for choosing the set
of views to incorporate into a documentation suite, explores
examples of sets of views, and gives two short examples for
illustrating how to decide which views to use.

• Chapter 10 prescribes templates and detailed guidance for
documenting views and documenting information that
applies to more than one view.

• Chapter 11 presents a step-by-step approach for reviewing
an architecture document. The approach is focused on
involving the appropriate stakeholders and asking ques-
tions directed at making sure the document satisfies their
specific needs and concerns.
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9
Choosing the Views

As we have seen, a large part of designing the architecture for
a system consists of choosing and designing software struc-
tures, often as described in terms of architecture styles. Choos-
ing, for example, a service-oriented style for your system means
putting a service-oriented structure in place and populating it
with services and their interconnections. To the extent that
you write down that structure, and the interfaces and behavior
of the elements, you’ve created a view of your architecture,
because a view is a representation of a structure.

In other words, documenting your design decisions as you
make them (something we strongly recommend) produces
views, which are the heart of an architecture document. It is
most likely that these views are sketches more than finished
products ready for public release; this will give you the free-
dom to back up and rethink design decisions that turn out to
be problematic without having wasted time on cosmetic polish.
(In some cases, they might literally be sketches—see Figure 11.8
for an example.)

By the time you’re ready to release an architecture docu-
ment, then, you’re likely to have a fairly well worked-out collec-
tion of architecture views. At some point you’ll need to decide
which to take to completion, with how much detail, and which
to include in a release. You’ll also need to decide which views
can be usefully combined with others, so as to reduce the total
number of views in the document and reveal important rela-
tions among the views.

And that is the topic of this chapter: how an architect
decides on the views to include in the documentation package.

We have tried to explain the benefits of each kind of documen-
tation, to help you decide under what circumstances you would
want to produce it. Understanding which views to produce at

Poetry is a condensation 
of thought. You write in 
a few lines a very com-
plicated thought. And 
when you do this, it 
becomes very beautiful 
poetry. It becomes 
powerful poetry. 

—Chen Ning Yang, win-
ner of the Nobel Prize 
in Physics, 1957 
(quoted in Moyers 
1989, p. 313)

Combined views can be 
produced by defining a 
hybrid style, or by mak-
ing an overlay. These 
are discussed in Sec-
tion 6.6.
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what time and with how much detail can be reached only in the
concrete context of a project. You can determine which views
are required, when to create them, and how much detail to
include in order to make the development project successful if
you know the following:

• What people, and with what skills, are available

• With which standards you have to comply

• What budget is on hand

• What the schedule is

• What the information needs of the important stakeholders are

This chapter is about helping you make those determinations.
Once the entire documentation package has been assembled,
or at opportune milestones along the way, it should be reviewed
for quality, suitability, and fitness for purpose by those who are
going to use it.

9.1 Stakeholders and Their Documentation Needs
To choose the appropriate set of views, you must identify the
stakeholders that depend on software architecture documen-
tation. You must also understand each stakeholder’s informa-
tion needs.

The set of stakeholders will vary, depending on the organiza-
tion and the project. The list of stakeholders in this section is
suggestive but is not intended to be complete. As an architect,
one of your primary obligations is to understand who the stake-
holders are for your project. Similarly, the documentation needs
we lay out for each stakeholder are typical, but not definitive.
So take the following discussion as a starting point and adapt them
according to the needs of your project and your stakeholders.

Project managers care about schedule, resource assignments,
and perhaps contingency plans to release a subset of the system
for business reasons. To create a schedule, the project manager
needs information about the modules to be implemented, with
some information about their complexity, such as the list of
responsibilities, as well as dependencies that exist to other
modules, which may suggest a certain sequence in the imple-
mentation. This person is not interested in the design specifics
of any element or the exact interface beyond knowing whether
those tasks have been completed. But the manager is interested
in the system’s overall purpose and constraints; its interaction
with other systems, which may suggest an organization-to-
organization interface that the manager will have to establish;
and the hardware environment, which the manager may have

If you can’t afford to 
produce a particular 
part of the architecture 
documentation pack-
age, at least make sure 
you understand what 
the long-term cost will 
be for the short-term 
savings. Use the for-
mula in Section P.2.4 in 
the prologue to help you 
estimate the cost and 
benefit.

Chapter 11 covers the 
review of architecture 
documents by stake-
holders.

All fine architectural val-
ues are human values, 
else not valuable.

—Frank Lloyd Wright

Project 
managers
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to procure. The project manager might create or help create
the work assignment view, in which case he or she will need a
decomposition view to do it. 

As shown in Figure 9.1, a project manager, then, will likely
be interested in

• Module views: decomposition and uses and/or layered

• Allocation views: deployment and work assignment

• Other: top-level context diagrams showing interacting sys-
tems and system overview and purpose

Members of the development team, for whom the architecture
provides marching orders, are given constraints on how they
do their job. Sometimes a developer is given responsibility for
an element he or she did not implement, such as a commercial
off-the-shelf product. Someone still has to be responsible for
that element, to make sure that it performs as advertised and
to tailor it as necessary. This person will want to know the
following:

• The general idea behind the system. Although that informa-
tion lies in the realm of requirements rather than architec-
ture, a top-level context diagram or system overview can go
a long way to provide the information.

• Which element the developer has been assigned, that is,
where functionality should be implemented.

• The details of the assigned element, including the data
model with which it must operate.

• The elements with which the assigned part interfaces and
what those interfaces are.

• The code assets the developer can make use of.

Members of the 
development team

Figure 9.1
A project manager usually 
creates the work 
assignments and therefore 
needs some overview 
information of the software.
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• The constraints, such as quality attributes, legacy systems
interfaces, and budget, that must be met.

As shown in Figure 9.2, a developer, then, is likely to want to see

• Module views: decomposition, uses and/or layered, and
generalization

• Component-and-connector (C&C) views: various, showing
the component(s) the developer was assigned and the com-
ponents they interact with

• Allocation views: deployment, implementation, and install

• Other: system overview; a context diagram containing the
module(s) he or she has been assigned; the interface docu-
mentation of the developer’s element(s) and the interface
documentation of those elements with which they interact;
a variability guide to implement required variability; and
rationale and constraints

Testers and integrators are stakeholders for whom the architec-
ture specifies the correct black-box behavior of the pieces that
must fit together. A unit tester of an element will want to see
the same information as a developer of that element, with an
emphasis on behavior specifications. A black-box tester will
need to see the interface documentation for the element. Inte-
grators and system testers need to see collections of interfaces,
behavior specifications, and a uses view so they can work with
incremental subsets.

As shown in Figure 9.3, testers and integrators, then, are
likely to want to see

• Module views: decomposition, uses, and data model

• C&C views: all

Testers and 
integrators

Figure 9.2
Developers have interest 
mainly in the software itself 
and therefore create 
detailed module and C&C 
views and have some 
interest in allocation views.

D
ET

A
IL

Module Views C&C Views Allocation Views

Developer



ptg

9.1 Stakeholders and Their Documentation Needs ■ 319

• Allocation views: deployment; install; and implementation,
to find out where the assets to build the module are

• Other: context diagrams showing the module(s) to be tested
or integrated; the interface documentation and behavior
specification(s) of the module(s) and the interface docu-
mentation of those elements with which they interact

Designers of other systems with which this one must interoperate
are stakeholders. For these people, the architecture defines
the set of operations provided and required, as well as the pro-
tocols for their operation. As shown in Figure 9.4, these stake-
holders will likely want to see

• Interface documentations for those elements with which their
system will interact, as found in module and/or C&C views

• The data model for the system with which their system will
interact

Designers of 
other systems

Figure 9.3
Testers and integrators 
need context and interface 
information, along with 
information about where 
the software runs and how 
to build incremental parts.
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Tester or integrator 

Figure 9.4
Designers of other systems 
are interested in interface 
documentation and impor-
tant system behavior.
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• Top-level context diagrams from various views showing the
interaction

Maintainers use architecture as a starting point for mainte-
nance activities, revealing the areas a prospective change will
affect. Maintainers will want to see the same information as
developers, for they both must make their changes within the
same constraints. But maintainers will also want to see a
decomposition view that allows them to pinpoint the locations
where a change will need to be carried out, and perhaps a uses
view to help build an impact analysis to fully scope out the
effects of the change. Maintainers will also want to see design
rationale that will give them the benefit of the architect’s orig-
inal thinking and save them time by letting them see already
discarded design alternatives.

As shown in Figure 9.5, a maintainer, then, is likely to want
to see the views as mentioned for the developers of a system,
with special emphasis on

• Module views: decomposition, layered, and data model

• C&C views: all

• Allocation views: deployment, implementation, and install

• Other: rationale and constraints

Application builders in a software product line tailor the core
assets according to preplanned and built-in variability mecha-
nisms, add whatever special-purpose code is necessary, and
instantiate new members of the product line. Application
builders will need to see the variability guides for the various
elements, to facilitate tailoring. After that, application builders
need to see largely the same information as integrators do.

Figure 9.5
A maintainer has the same information needs as a developer but with a stronger 
emphasis on design rationale and variability.

Maintainers

Application
builders

A software product 
line is a set of software-
intensive systems shar-
ing a common, man-
aged set of features that 
satisfy the specific 
needs of a particular 
market segment or mis-
sion and that are devel-
oped from a common 
set of reusable core 
assets in a prescribed 
way. (Clements and 
Northrop 2001)
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As shown in Figure 9.6, a product-line application builder,
then, is likely to want to see the views mentioned for an integra-
tor, plus

• A variability guide, as given in module and/or C&C views

Customers are the stakeholders who pay for the development
of specially commissioned projects. Customers are interested
in cost and progress and convincing arguments that the archi-
tecture and resulting system will meet the quality and func-
tional requirements. Customers will also have to support the
environment in which the system will run and will want to
know that the system will interoperate with other systems in
that environment.

As shown in Figure 9.7, the customer, then, is likely to want
to see

• C&C views: the analysis results will be of particular interest

Customers

Figure 9.6
An application builder 
needs to understand what 
adaptations to make in 
order to build new 
products.

D
ET

A
IL

Module Views C&C Views Allocation Views

Application builder

Figure 9.7
A customer is interested 
mainly in how the software 
works in the desired 
environment.
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• Allocation views: work assignment view, no doubt filtered to
preserve the development organization’s confidential infor-
mation, and a deployment view

• Other: a top-level context diagram in one or more C&C views

End users do not need to see the architecture, which is, after all,
largely invisible to them. But they often gain useful insights about
the system, what it does, and how they can use it effectively by exam-
ining the architecture. If end users or their representatives review
your architecture, you may be able to uncover design discrepan-
cies that would otherwise have gone unnoticed until deployment.

To serve this purpose and as shown in Figure 9.8, an end
user is likely to be interested in

• C&C views: views emphasizing flow of control and transfor-
mation of data, to see how inputs are transformed into out-
puts; analysis results dealing with properties of interest, such
as performance or reliability

• Allocation views: a deployment view to understand how
functionality is allocated to the platforms with which the
users interact

Analysts are interested in the ability of the design to meet the
system’s quality objectives. The architecture serves as the fod-
der for architecture evaluation methods and must contain the
information necessary to evaluate such quality attributes as
security, performance, usability, availability, and modifiability.
For performance engineers, for example, architecture provides
the model that drives such analytical tools as rate-monotonic
real-time schedulability analysis, simulations and simulation
generators, theorem provers, and model checkers. These tools
require information about resource consumption, scheduling
policies, dependencies, and so forth.

End users

Analysts

Figure 9.8
An end user needs to have 
an overview of the soft-
ware, how it runs on the 
platform, and how it inter-
acts with other software.
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In addition to generalized analysis, architectures can be eval-
uated for the following and other quality attributes, each of
which suggests certain documentation obligations.

• Performance. To analyze for performance, performance engi-
neers build models that calculate how long things take. Plan
to provide a communicating-processes view to support per-
formance modeling. In addition, performance engineers are
likely to want to see a deployment view, behavior documen-
tation, and those C&C views that help to track execution.

• Accuracy. Accuracy of the computed result is a critical quality
in many applications, including numerical computations,
the simulation of complex physical processes, and many
embedded systems in which outputs are produced that
cause actions to take place in the real world. To analyze for
accuracy, a C&C view showing flow and transformation of
data is often useful because it shows the path that inputs
take on their way to becoming outputs, and it helps identify
places where numerical computations can degrade accuracy.

• Modifiability. To gauge the impact of an expected change, a
uses view and a decomposition view are most helpful. Those
views show dependencies and will help with impact analysis.
But to reason about the runtime effects of a proposed change
requires a C&C view as well, such as a communicating-processes
view, to make sure that the change does not introduce deadlock.

• Security. A deployment view is used to see outside connections,
as are context diagrams. A C&C view showing data flow and
security controls is used to track where information goes and
is exposed; a decomposition view is used to find where
authentication and integrity concerns are handled. Denial of
service is loss of performance, and so the security analyst will
want to see the same information as the performance analyst.

• Availability. A C&C communicating-processes view will help
analyze for deadlock, as well as synchronization and data
consistency problems. In addition, C&C views show how
redundancy, failover, and other availability mechanisms
kick in as needed. A deployment view is used to show possible
points of failure and backups. Reliability numbers for a mod-
ule might be defined as a property in a module view, which is
added to the mix.

• Usability. A decomposition view will enable analysis of system
state information presented to the user; help with determi-
nation of data reuse; assign responsibility for usability-related
operations, such as cut-and-paste and undo; and other things.
A C&C communicating-processes view will enable analysis of
cancellation possibilities, failure recovery, and so on.
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As shown in Figure 9.9, an analyst is likely to be interested in

• Module views: various

• C&C views: various, but especially those showing processes

• Allocation views: deployment

Infrastructure support personnel set up and maintain the infrastruc-
ture that supports the development, build, and production envi-
ronments of the system. You need to provide documentation about
the parts that are accessible in the infrastructure. Those parts are
usually elements shown in a decomposition, C&C, install, and/or
implementation view. A variability guide is particularly useful to
help set up the software configuration management environment.

As shown in Figure 9.10, infrastructure support people likely
want to see

• Module views: decomposition and uses

• C&C views: various, to see what will run on the infrastructure

Infrastructure
support
personnel

Figure 9.9
An analyst needs informa-
tion from all views. Depend-
ing on the specific analysis, 
other, more detailed infor-
mation might be required.
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Figure 9.10
Infrastructure support 
people need to understand 
the software artifacts 
produced to provide tool 
support.

D
ET

A
IL

Module Views C&C Views Allocation Views

Infrastructure support



ptg

9.1 Stakeholders and Their Documentation Needs ■ 325

• Allocation views: deployment and install, to see where the soft-
ware (including the infrastructure) will run; implementation

• Other: variability guides 

New stakeholders will want to see introductory, background,
and broadly scoped information: top-level context diagrams,
architecture constraints, overall rationale, and root-level views,
as shown in Figure 9.11. People new to the system will usually
want to see the same kind of information as their counterparts
who are more familiar with the system, but new people will
want to see it in less detail.

Future architects are the most avid readers of architecture doc-
umentation, with a vested interest in everything. After the cur-
rent architect has been promoted for producing the exemplary
documentation, the replacement will want to know all the key
design decisions and why they were made. As shown in Figure
9.12, future architects are interested in it all, but they will be

New stakeholders

Future architects

Figure 9.11
New stakeholders need to 
have the same information 
as their counterparts.
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New stakeholders

Figure 9.12
A future architect has 
strong interest in all 
the architecture 
documentation.

D
ET

A
IL

Module Views C&C Views Allocation Views

Architect



ptg

326 ■ Chapter 9: Choosing the Views

especially keen to have access to comprehensive and candid
rationale and design information.

Table 9.1 summarizes the documentation needs of the stake-
holders presented in this section.

9.2 A Method for Choosing the Views 
This section presents a three-step method for choosing the
views.

• Step 1. Build a stakeholder/view table. For this step, begin
by building a table for your project, like that in Table 9.1.

Enumerate the stakeholders for your project’s software
architecture documentation down the rows. Your stake-
holder list is likely to be different from the one in Table 9.1;
however, be as comprehensive as you can. For the columns,
enumerate the views that apply to your system. As discussed
in the prologue, some views (such as decomposition, uses,
and work assignment) apply to every system, while others
(various C&C views, the layered view) apply only to systems

Table 9.1 Summary of documentation needs
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Project managers s s s d d o s

Members of development team d d d d d d s s d d d d d s

Testers and integrators d d d d d s s s s d d s d s

Designers of other systems s d o

Maintainers d d d d d d s s d d d d d

Product-line application builders d d s o s s s s s s d s d s

Customers o o o s

End users s s o s

Analysts d d s d d s d s d d s d s

Infrastructure support personnel s s s s d d o s

New stakeholders x x x x x x x x x x x x x x x x

Current and future architects d d d d d d d s d s d d d d d d

Key: d = detailed information, s = some details, o = overview information, x = anything

At a minimum, expect 
to have at least one 
module view, at least 
one C&C view, and at 
least one allocation 
view in your architecture 
document.
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designed according to the corresponding styles. That is, you
can produce a layered view only if your system is layered; you
can produce a client-server view only if you used the client-
server style; and so on. For the columns, make sure to include
the views or view sketches you already have as a result of your
design work so far.

Once you have the rows and columns defined, fill in each
cell to describe how much information the stakeholder
requires from the view: none, overview only, moderate
detail, or high detail. The candidate view list going into step
2 now consists of those views for which some stakeholder has
a vested interest.

PERSPECTIVES

Listening to the Stakeholders

It is asking a lot of an architect to divine the specific needs of each stakeholder,
and so it is a very good idea to make the effort to communicate with stakeholders,
or people who can speak for those roles. Talk with them about how they will best
be served by the documentation you are about to produce. Practitioners of archi-
tecture evaluation almost always report that one of the most rewarding side
effects of an evaluation exercise comes from assembling an architecture’s stake-
holders around a table and watching them interact and build consensus among
themselves. Architects seldom practice this team-building exercise among their
stakeholders, but a savvy architect understands that success or failure of an
architecture comes from knowing who the stakeholders are and how their inter-
ests can be served. The same holds true for architecture documentation.

Before the architecture documentation effort begins, plan to contact your stake-
holders. This will, at the very least, compel you to name them. For a large project
in which the documentation is a sizable line item in the budget, it may even be
worthwhile to hold a half-day or full-day roundtable workshop. Invite at least one
person to speak for each stakeholder role of importance in your project. Begin
the workshop by having each stakeholder explain the kind of information he or
she will need to carry out his or her assigned tasks. Have a scribe record each
stakeholder’s answer on a flip chart for all to see. Then present a documentation
plan: the set of views you’ve chosen, the supporting documentation, and the
cross-view information you plan to supplement them with. Stakeholders may
not necessarily understand what the views mean that you present. Have some
examples ready to show how a specific view looks and what kind of information
it will show. Finally, perform a cross-check to find requested but missing infor-
mation and planned but unneeded documentation. Whether you hold a full-blown
workshop or talk to your stakeholders informally, the result will be vastly increased
buy-in for your documentation efforts and a clearer understanding on every-
one’s part of what the role of the architecture and its documentation will be.

Decide for which stake-
holders you need to 
provide architecture 
documentation. Under-
stand what type of infor-
mation they need and 
with how much detail. 
Use this information to 
decide what views are 
needed and how to 
structure them into view 
packages to support 
your stakeholders.
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The information that stakeholders need will not always align nicely with the infor-
mation the architect was planning to produce. This is why it’s so important to
ask the stakeholders what they need. But you also have to listen to the answers.

We once ran a workshop with an architecture team to fix some issues that had
arisen during an architecture evaluation. The evaluation revealed what we
thought was a very well documented architecture. But during the follow-up
workshop, the project manager raised the same issue over and over again:
“Give me the data that I need to create a reliable project plan. It doesn’t matter
how long the project lasts, as long as we can reliably meet our delivery promises.”

Each time, the chief architect made the same reply: “The information you need
is in the architecture document.” That statement was technically true, but not
particularly helpful. The project manager needed a uses view including a list of
module responsibilities. The architect provided it (using UML output from a
tool), but the manager wasn’t satisfied. “I cannot find the information in the doc-
ument,” he said. “I don’t understand what those symbols mean and I don’t have
time to spend searching the document.” The right documentation for him would
have been an extraction of the effort/dependency information of modules from
the UML model, rendered in plain text, and packaged separately.

Sadly, about a year later the project was canceled. The customer had lost faith
in the company’s ability to deliver what they promised.

In another case, we saw an architecture documented using the Kruchten 4+1
view set. The system was a typical three-tiered client-server architecture in
which the middle tier was a framework that defined the applications as plug-ins.
Once you knew that much, it was straightforward to come up with the views.
The customer, on the other hand, knew that he was responsible for the system’s
maintenance after it was delivered. He always made the same demand: “Tell me
what and where I have to change when I want to change the content of a spe-
cific Web page.” He clearly had a “page-oriented view” in mind. This need was
not satisfied by any of the views that had been documented using the very rea-
sonable 4+1 approach. He might have been well served by a view showing
which plug-ins or parts of plug-ins contributed to producing a Web page.

Keep an open mind when listening to your stakeholders. They’ll tell you what
they need. Many times it won’t be what you were planning to provide, but many
times (as in these two cases) what they need is easily produced from the infor-
mation you already have at hand. And it might make the difference between
success and failure.

—F.B. and P.C.

• Step 2. Combine views. The candidate view list from step 1
is likely to yield an impractically large number of views. This
step will winnow the list to manageable size.

Look for views in the table that require only overview, or
that serve very few stakeholders. See if the stakeholders

Section 6.6 discusses 
how to combine views, 
and which views are 
often easy and useful to 
combine.
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could be equally well served by another view having a stron-
ger constituency. 

When combining views it is useful to consider the costs
associated with producing and maintaining a view. There
are at least two sources of the cost. First is the cost required
to generate the view, and second is the cost required to
maintain it and keep it consistent with other views. 

• Step 3. Prioritize and stage. After step 2 you should have the
minimum set of views needed to serve your stakeholder
community. At this point you need to decide what to do first.
How you decide depends on the details specific to your
project, but here are some things to consider:

– Not all the information needs of all the stakeholders
must be satisfied to the full extent. Providing 80 percent
of the requested information goes a long way, and it
might be “good enough” so that the stakeholders can do
their job. Check with the stakeholder if a subset of infor-
mation would be sufficient. They typically prefer a prod-
uct that is delivered on time and in budget over getting
the perfect documentation.

– You don’t have to complete one view before starting
another. People can make progress with overview-level
information, so a breadth-first approach is often the best.

– Some stakeholders’ interests supersede others. A project
manager, or the management of a company with which
yours is partnering, often demands attention and infor-
mation early and often.

– If your architecture has not yet been validated or evalu-
ated for fitness of purpose, then documentation to sup-
port that activity merits high priority.

– Resist the temptation to relegate rationale documenta-
tion to the “do when we have time” category, because
rationale is best captured when fresh.

9.3 Example
This section provides an example of applying the procedure in
the previous section to select a set of views for a project.

ECS is a system for capturing, storing, distributing, processing,
and making available extremely high volumes of data from a
constellation of earth-observing satellites. By any measure, ECS
is a very large project. Many hundreds of people are involved
in its design, development, deployment, sustainment, and use.
Here is how the three-step view selection approach might have
turned out, had it been applied to the ECS software architecture.

The decomposition 
view is a particularly 
helpful view to release 
early. High-level 
decompositions are 
often easy to design, 
and with this informa-
tion the project man-
ager can start to build 
development teams, 
put training in place, 
scour the commercial 
markets or legacy 
repositories for modules 
that fill the bill, and start 
producing budgets and 
schedules.

Use view packets (dis-
cussed in Section 
10.1.3) as a mechanism 
to let you provide over-
views or less-detailed 
documentation to cer-
tain stakeholders.
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Step 1: Produce a Candidate View List

Stakeholders for the ECS architecture include the usual sus-
pects: the current and future architect, developers, testers and
integrators, and maintainers. But the size and complexity of
ECS, plus the fact that it is a government system whose devel-
opment is assigned to a team of contractors, add complicating
factors. In this case, there is not one project manager, but sev-
eral: one for the government and one for each of the contrac-
tors. Each contractor organization has its own assigned part of
the system to develop and, hence, its own team of developers
and testers. ECS relies heavily on commercial off-the-shelf
(COTS) components, so the people responsible for selecting
COTS candidate components, qualifying them, selecting the
winners, and integrating them into the system play a major
role. We’ll call these stakeholders COTS engineers.

The important quality attributes for ECS begin with perfor-
mance. Data must be ingested into the system to keep up with
the rate at which it floods in from the satellites. Processing the
raw data into more sophisticated and complex “data products”
must also be done every day to stay ahead of the flow. Finally,
requests from the science community for data and data analy-
sis must be handled in a timely fashion. Data integrity, security,
and availability round out the important list of quality attributes
and make the analysts concerned with these qualities impor-
tant architecture stakeholders.

ECS is a highly visible and highly funded project that attracts
oversight attention. The funding authorities require at least
overview insight into the architecture to make sure the money
over which they have control is being spent wisely. Finally, the
science community using ECS to measure and predict global
climate change also requires insight into how the system works,
so they can better set their expectations about its capabilities.

At least five of the component-and-connector views dis-
cussed in Chapter 4 and four of the module views of Chapter 2
apply to ECS. It is primarily a shared-data system. Its compo-
nents interact in both client-server and peer-to-peer fashion.
Many of those components are communicating processes. And
while the system is not actually built using pipes and filters, the
pipe-and-filter style is a very useful paradigm to provide an
overview to some of the stakeholders. (Information more
detailed than the overview will be in a different view, becoming
an implementation refinement of the pipe-and-filter view.)

Table 9.2 shows the stakeholders for the ECS architecture
documentation and the views useful to each. At this point, the
candidate view list contains 12 views.
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Step 2: Combine Views

As usual, the C&C views provided good candidates for combi-
nation. In the case of ECS, augmenting the shared-data view
with other components and connectors that interact in client-
server or peer-to-peer fashion allowed those three views to
become one. The communicating processes mapped straight-
forwardly to components in this combined view, allowing it to
be folded in as well. The pipe-and-filter view can be discarded;
the combined C&C view plus some key behavioral traces show-
ing the data pipeline from satellite to scientist would provide the
same intuitive overview to the less detail-oriented stakeholders.

Similarly, some of the module views were combined. Record-
ing uses information as a property of the decomposition view
yields a combination of the decomposition and uses views.

It would have been easy to combine the work assignment
and implementation views with decomposition as well. How-
ever, because of the large size of this project and the number
of different development organizations involved, the work
assignment view was kept separate. Also, this view was of key

Table 9.2 ECS stakeholders and architecture documentation they might find most useful

Module Views C&C Views Allocation Views

Stakeholder De
co

m
po

si
tio

n

Ge
ne

ra
liz

at
io

n

Us
es

La
ye

re
d

Pi
pe

-a
nd

-f
ilt

er

Sh
ar

ed
-d

at
a

Cl
ie

nt
-s

er
ve

r

Pe
er

-t
o-

pe
er

Co
m

m
un

ic
at

in
g-

pr
oc

es
se

s

De
pl

oy
m

en
t

Im
pl

em
en

ta
tio

n

W
or

k 
as

si
gn

m
en

t

Current and future architect d d d d s d d d d d s s

Government project manager d o o s o s o o o s d

Contractor’s project manager s o s s o s s s o d s d

Member of development team d d d d o d d d d s s d

Testers and integrators s s d s o d d d s s d

Maintainers d d d d o d d d d s s s

COTS engineers d s d d d d s d d

Analyst for performance d s d s o d d d d d

Analyst for data integrity s s s d o d d d d d

Analyst for security d s d d o s d d d d o o

Analyst for availability d s d d s s d o

Funding agency o o o o

Users in science community o o o o

             Key: d = detailed information, s = some detail, o = overview
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interest to managers and the funding agency, who did not want
to see details of the modules. Similarly, because a large number
of stakeholders interested in the module decomposition would
not be interested in how the modules were allocated to files in
the development environment, the implementation view was
also kept separate.

After this step, the following views remain:

• Three module views: decomposition/uses, layered, and
generalization

• One C&C view: shared-data/client-server/peer-to-peer/
communicating-processes

• Three allocation views: deployment, implementation, and
work assignment

We entered step 2 with 12 candidate views, too many to be effi-
ciently maintained. Now there are 7.

Step 3: Prioritize

To let the project begin to make progress required putting
contracts in place, which in turn required coarse-grained
decomposition. Turning out the higher levels of the decompo-
sition and work assignment views received the highest priority,
in order to meet these needs.

In ECS, the layering in the architecture was very coarse
grained and can be described quickly. Similarly, generalization
occurred largely in only one of the three major subsystems, was
also coarse grained, and was able to be described quickly.
These two views were given next priority.

The combined C&C view and the deployment view followed,
nailing down details of runtime interaction only hinted at by
the module views. This allowed analysis for performance to
begin.

Finally, because the implementation view can be relegated to
each contractor’s own internal development effort, it received
the lowest priority from the point of view of the overall system.

The result was four “full-fledged” views (decomposition,
work assignment, the combined C&C view, and deployment)
plus three minor ones that are coarse grained or can be
deferred.
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PERSPECTIVES

How Not to Introduce an Architecture

With John Klein

Several years ago, I was chief architect for a business unit at a large software
product development company. My manager, the vice president of engineering
for the business unit, approached me one spring day and challenged me to
define a single, unified architecture that could be applied to all current products
in our portfolio, and that would also support our best guess of future needs.
Recognizing the relationship between architecture and organization, he wanted
to use this new architecture as the basis for a major reorganization of the 300-
person software engineering team, and he wanted to roll out this reorganization
at an engineering management meeting planned for late summer. So, my team
of five architects had just 90 days to define enough of a system architecture that
our VP could build an organization around it.

After a stakeholder analysis, we determined that we needed to produce a num-
ber of views. Three of the views are described elsewhere in this book: 

• A decomposition view (which we called our “Information Hiding Module Guide)

• A uses view 

• A C&C communicating-processes view

In addition to these, we decided to create the following: 

• A “technology view,” which would be a type of allocation view that would
map modules to implementation technology (programming language and
middleware) 

• A “design model,” which was an information model for product configuration
and customization data 

• An “integration view,” to specify the external interfaces of our products

• A “Zoo of Examples,” which was “information beyond views” that showed
how to use the architecture to create products 

Our documentation plan also included an “Architecture Description Overview,”
which contained the stakeholder analysis, descriptions of each view, and a set
of roadmaps to help different stakeholders navigate the documentation.

We began by focusing on the Information Hiding Module Guide. We wanted to
meet our VP’s need to reorganize based on the architecture; the information hid-
ing decomposition provided a natural basis for structuring the development
organization. Also, we recognized that we were developing a software product-
line architecture, and we saw the value of structuring the information hiding
decomposition to encapsulate the variation points that the architecture would
support.
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We spent much of our 90-day schedule working on the Module Guide, essen-
tially a detailed decomposition view. We also completed the Architecture
Description Overview, which we thought clearly showed our vision for docu-
menting the architecture. Finally, we created a set of “marketecture” diagrams,
which we used to communicate the architecture to our executives.

As the deadline approached, the team was feeling proud of our efforts. We felt
we had achieved the goal of developing enough architecture to drive the reor-
ganization. Besides, we thought, nobody really expected us to create the entire
architecture in just 90 days! We felt we had done enough. 

Were we ever wrong!

On the appointed day, we presented the Architecture Description Overview and
Module Guide during an “all hands” conference call with the entire software
engineering team. There were some polite questions, but we sensed that there
was a lot of confusion among the team members. Our organization did not have
much exposure to architecture-centric practices. The idea of multiple views of
an architecture was understood by some but not all of the staff. Also, the
thought that you would incrementally release subsets of the architecture docu-
mentation was foreign. Finally, the first view we released showed the informa-
tion hiding structure, which the staff found difficult to grasp and appreciate. 

In retrospect, I realize that the decomposition view is simply a well-organized
“parts list” for all of the products in our product line. Of course people were con-
fused—we didn’t show which parts go into which products, didn’t describe how
to assemble the parts into products, and didn’t provide a picture of any of the
final built products. We confused the development team so much that most of
the development staff pointed to the Module Guide as “the architecture docu-
ment.” Here’s what we learned.

In most cases, the first release of documentation for an architecture will not be
complete and whole. Recommendations in this book, such as “Begin your doc-
umentation with a standard outline,” will help you and your stakeholders under-
stand the vision and the intended final structure of the documentation, but the
first time you release the documentation, people will read the parts you have
completed and try to make sense of them. 

Stage your architecture design and documentation to deliver coherent subsets
to stakeholders. Make each subset internally consistent and complete, and
present a chunk of the architecture that will make sense to your stakeholders.
Specifically, include some C&C views in early releases so that stakeholders can
understand how the system will function at runtime. This is usually a more nat-
ural perspective to begin reasoning about the system, as compared to a module
view showing design-time structure. 

Include in each stage subsets of several views, rather than the approach we
took of delivering views sequentially. Provide your stakeholders a complete
specification of a subset of the system: a “parts list” (module view), assembly
instructions (allocation view and “beyond views”), and a picture of the running
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system (C&C view). This allows them to make complete sense of each incre-
mental release of the architecture documentation. 

Failure to do these things may damage your credibility, stakeholders may lose
interest, and your project may fail, as ours eventually did.

9.4 Summary Checklist
• What views you choose depends on who the important

stakeholders are, what budget is on hand, what the schedule
is, and what skills are available. It also depends on what
structures are present in the architecture.

• You should expect to choose at least one of each of the three
different types of views: module, component-and-connec-
tor, and allocation.

• You should expect to combine some views to reduce the
number of views you have to create, keep consistent, and
maintain in your architecture document.

• Prioritize and stage your release of views to serve important
project needs early.

9.5 Discussion Questions
1. Suppose that your company has just purchased another

company and that you’ve been given the task of merging a
system in your company with a similar system in the pur-
chased company. What views of the other system’s architec-
ture would you like to see, and why? Would you ask for the
same views for both systems?

2. Some architects speak of a “security view” or documenta-
tion of a “security architecture.” What do you suppose they
mean? What might this consist of?

3. How would you make a cost/benefit argument for the
inclusion or exclusion of a particular view in an architec-
ture documentation package? If you could summon up any
data you needed to support your case, what data would you
want?

9.6 For Further Reading
Around 2001, practitioners at Nokia developed the Rapid7
approach to produce high-quality usable documentation in an
Agile environment. The central approach to Rapid7 is to hold
a stakeholder workshop at each document delivery milestone
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in the project. The workshop is facilitated to produce a docu-
ment outline that stakeholders will actually use. For more
information, see the paper by Kylmäkoski (2003).

A central theme of the book by Hofmeister, Nord, and Soni
(2000) is the coordinated use of separate (in their case, four)
views to engineer and document software systems. Their treat-
ment provides an excellent foundation for the philosophy
behind choosing the views: providing information to stake-
holders, and points of engineering leverage to the architect,
based on expected needs of the system being built.
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10Building the
Documentation Package

You now have everything you need to begin building the com-
plete documentation package. You have a repertoire of styles
from which you can construct views, a method for choosing the
most useful views to document, and insights about how to doc-
ument architecture information beyond structure: context,
diagrams, variability, interfaces, and behavior. This chapter
shows you how to put it all together.

First, we return once again to our fundamental principle of
documenting architectures: 

Documenting an architecture is a matter of documenting
the relevant views and then adding documentation that
applies to more than one view. 

Rule 4 for sound documentation, given in the prologue,
counsels us to use a standard organization for documents.
Combining these two foundations, this chapter provides stan-
dard document organizations for documenting architecture
views, along with the information that transcends views.

10.1 Documenting a View
Figure 10.1 shows the template for documenting a view.

10.1.1 A Standard Organization for Documenting a View

No matter what the view, the documentation for a view can be
placed into a standard organization consisting of these parts.
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Section 1. The Primary Presentation

The primary presentation shows the elements and relations of the
view. The primary presentation should contain the information
you wish to convey about the system—in the vocabulary of that
view—first. It should certainly include the primary elements
and relations but under some circumstances might not include
all of them. For example, you may wish to show the elements
and relations that come into play during normal operation but
relegate error handling or exception processing to the sup-
porting documentation. What information you include in the
primary presentation may also depend on what notation you use
and how conveniently it conveys various kinds of information.
A richer notation will tend to enable richer primary presentations.

The primary presentation is most often graphical. It might
be a diagram you’ve drawn in an informal notation using a sim-
ple drawing tool, or it might be a diagram in a semiformal or
formal notation imported from a design or modeling tool that
you’re using. The figures that illustrate diagrams from exam-
ple views in Chapters 2, 4, and 5 are all diagrams that would
appear in a primary presentation.

Drawings help people to 
work out intricate rela-
tionships between parts.

—Christopher
Alexander

If your primary presen-
tation is graphical, 
make sure to include a 
key that explains the 
notation.

Figure 10.1
View template 

Section 1. Primary Presentation

Section 2. Element Catalog

Section 2.A. Elements and Their Properties
 Section 2.B. Relations and Their Properties
 Section 2.C. Element Interfaces
 Section 2.D. Element Behavior

Section 3. Context Diagram

Section 4. Variability Guide

Section 5. Rationale

Template for a View
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Sometimes the primary presentation can be textual, such as
a table or a list. If that text is presented according to certain sty-
listic rules, they should be stated or incorporated by reference,
as the analog to the graphical notation key. Regardless of
whether the primary presentation is textual instead of graphi-
cal, its role is to present a terse summary of the most important
information in the view. 

The primary presentation may feature more than one dia-
gram. For example, suppose the system has two separate sub-
systems, each of which is built using the pipe-and-filter style. A
pipe-and-filter view of this system could have two diagrams in
its primary presentation. Each would show the pipe-and-filter
elements in one of the two subsystems.

To remind us that the primary presentation is only the start-
ing point for documenting a view, we call the graphical portion
of the view an architecture cartoon. We use the definition from
the world of fine art: A cartoon is a preliminary sketch of the
final work; it is meant to remind us that the picture, although
getting most of the attention, is not the complete description
but only a sketch of it. 

ADVICE

Use the organization described in this section as the
basis for your view template. Modify it as necessary to
make it appropriate for your organization’s standards and
the special needs of the development project at hand. Be
cautious about throwing out sections that you think you
don’t need; the presence of a section in the template can
prod you to think about the issue across the system,
whereas omitting the section will let you forget about it,
perhaps to the detriment of the system. For each section,
include a terse description of the contents of that section.

Whatever organization you choose for documenting your
views, explain it to your readers. In the Views and Beyond
template, this is done in section 2 of the template for
Documentation Beyond Views; see Section 10.2.

Even if some items are empty for a given view—for exam-
ple, perhaps no mechanisms for variability exist or no
relations other than those shown in the primary presen-
tation exist—include those sections, marked “none” or
“not applicable.” Don’t omit them, or your reader may
wonder whether it was an oversight.

An example of a textual 
primary presentation is 
shown in Figure 2.4, in 
Section 2.1.6.

Anarchitecture cartoon
is the graphical portion 
of a view’s primary pre-
sentation, without sup-
porting documentation.

If the view derives from 
one or more published 
styles or patterns, let 
the reader know. It is 
most convenient to do 
this by adding an anno-
tation to the primary 
presentation or (if it’s 
graphical) adding a note 
in the notation key. Be 
sure to cite the pub-
lished source and not 
just name the pattern or 
style, since many pat-
terns and styles with 
common names are 
described differently by 
different authors.

See “Not Every View 
Comes from a Pub-
lished Style or Pattern,” 
on page 343.
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Section 2. The Element Catalog

The element catalog details at least those elements depicted in
the primary presentation. For instance, if a diagram shows ele-
ments A, B, and C, then the element catalog needs to explain
what A, B, and C are and their purposes or the roles they play,
rendered in the vocabulary of the view. In addition, if elements
or relations relevant to this view were omitted from the primary
presentation, they should be introduced and explained in the
catalog. Specific parts of the catalog include the following:

a. Elements and their properties. This section names each ele-
ment in the view and lists the properties of that element.
Each style introduced throughout Part I listed a set of sug-
gested properties associated with that style. For example,
elements in a decomposition view might have the property
of “responsibility”—an explanation of each module’s role
in the system—and elements in a communicating-pro-
cesses view might have timing parameters, among other
things, as properties. Whether the properties are generic to
the style chosen or the architect has introduced new ones,
this is where they are documented and given values.

b. Relations and their properties. Each view has specific relation
type(s) that it depicts among the elements in that view.
Mostly, these relations are shown in the primary presenta-
tion. However, if the primary presentation does not show
all the relations, or if there are exceptions to what is
depicted in the primary presentation, this is the place to
record that information. Otherwise, this section will be
empty.

c. Element interfaces. This section documents element interfaces.

d. Element behavior. Some elements have complex interactions with
their environment. For purposes of understanding or analysis,
it is incumbent on the architect to specify element behavior.

Section 3. Context Diagram

A context diagram shows how the system or portion of the system
depicted in this view relates to its environment.

Section 4. Variability Guide

A variability guide shows how to exercise any variation points
that are a part of the architecture shown in this view.

Section 5. Rationale

Rationale explains why the design reflected in the view came to
be. The goal of this section is to explain why the design is as it

Section I.3, in the intro-
duction to Part I, dis-
cusses how to choose 
properties to document.

Documenting interfaces 
is covered in Chapter 7.

Documenting behavior 
is covered in Chapter 8.

Context diagrams are 
discussed in Section 6.3.

Using a variability guide 
to document architec-
ture variation points is 
covered in Section 6.4.4.

Documenting rationale 
is covered in Section 6.5.
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is and to provide a convincing argument that it is sound. The
use of a pattern or style in this view should be justified here.

Items 2–5 are called the supporting documentation and explain
and elaborate the information in the primary presentation.

PERSPECTIVES

From Context Diagrams to a Context View

With Nick Rozanski and Eoin Woods

We always include a system context diagram in any architecture description we
produce, although sometimes that’s just a reference to a context diagram
defined elsewhere. In our experience a good context diagram is an essential
part of an effective architecture document. The Views and Beyond approach
extends that basic piece of good practice to provide a different kind of context
diagram in every view.

However, it wasn’t until long after our book Software Systems Architecture
(2005) went to press that we realized that we were asking the same sorts of
questions when creating our context diagrams that we were asking when creat-
ing the architecture views, namely:

• Who are the stakeholders interested in the context diagram?

• What are their concerns?

• How can we document the system context in a way that illustrates how these
concerns are addressed by the architecture?

We realized that these questions, and their answers, are important enough to
merit full consideration on their own, rather than just being implicitly answered
in one or more context diagrams. We have therefore come to the conclusion that
we need to add an additional viewpoint to our viewpoint set, namely the system
context viewpoint.

Using a system context view gives us the opportunity to explain how key concerns
will be addressed by the system, and to set out the decision-making processes
we have gone through to finalize the scope. It often also enables us to identify
some key system-wide principles, constraints, and risks at an early stage.

The purpose of any sort of context diagram is to define what is in scope and out
of scope for the system, and how the system relates to its environment. In the-
ory all of this should be clearly understood and written down before the devel-
opment starts, but in practice this is often not the case. Scope often changes
during development, and these changes must be reflected in the context dia-
gram. The scope may not be documented anywhere, or if it is, this may be
vague or inconsistent. Even worse, there may be a number of different versions
of the “implied” scope of the system, which is a recipe for disaster. And the envi-
ronment may be far from fixed and understood.
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It is this reality that the system context viewpoint is designed to address, and as
such a context view is usually one of the first that the architect should produce.

Chapter 9 tells us that the first question we must answer when choosing our
views is “Who are the stakeholders?” For a system context view, the answer is
somewhat uncomfortable: “Pretty much all of them.” Obviously the acquirer
(sponsor) and users are interested in the scope, since this defines the extent of
the delivered system and the functionality it will and will not provide. Developers
need to know what the system comprises and, in particular, which external sys-
tems and organizations it will need to interact with.

Many other stakeholders also have concerns that will be addressed in a system
context view. For example, operational staff will need to understand the other sys-
tems that this system interacts with, so that they can begin to plan the processes
and tools they will need for its monitoring and support. Testers will need to under-
stand the inbound and outbound data flows so that they can start to think about
integration and preproduction testing, and plan the creation of appropriate stubs
and test harnesses. And key stakeholders in the other systems that interact with
this one may need to start work on changes to their interfaces, or make improve-
ments in their system’s scalability, availability, and response time.

To meet these concerns, a system context view should document:

• The key responsibilities of the system

• The identity and key responsibilities of external entities

• The main external interdependencies, including the expected external inter-
actions, the nature of the external connections, and high-level definitions of
the external interfaces

Within a system context view, context is modeled in a single (or sometimes sev-
eral) context model, which resemble “traditional” context diagrams, as described
in this chapter. These illustrate the system, the external entities, and the con-
nections between them. The system is usually represented as a “black box,”
without any of its internal details exposed—these may not be known at this early
stage anyway. Models may be annotated with logical or physical details of the
external systems and interfaces. Supplementary information is often produced
as well. This may include a list of the key functional capabilities that are in and
out of scope, a description of the key information flows, or a description of some
key interaction scenarios.

Because of the wide range of stakeholders and concerns, it is tempting to over-
load the context view models with as much information as possible: systems,
interfaces, hardware and software, organizational boundaries, constraints, and
more. However, this flies in the face of everything we know about good archi-
tecture documentation, and it is why the concept of views was introduced in the
first place. You should strive for a context view that has an even and consistent
level of focus, brings out all the key dependencies and interconnections, and
gets the right balance between brevity and accuracy. This is by no means easy,
but using multiple models—that is, multiple context diagrams—to convey dif-
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ferent kinds of context information is a good way to avoid overloading a single
model.

The system context view is produced at a very early stage in the development,
when there are many unanswered questions. There may also be a significant
amount of political positioning, maneuvering, and horse-trading of scope,
requirements, and plans going on. If it is used effectively, it is a very valuable
way to communicate architecture decisions and plans in a way that is meaning-
ful to a broad community of stakeholders and provides a solid foundation for the
architecture, design, and build.

ADVICE

Not Every View Comes from a Published Style or Pattern

Until now we have written about views as though they are nothing more than a
published style or pattern applied to a system: Take the element and relation
types defined in the style or pattern, make a bunch of instances, wire them
together following the restrictions of the pattern or style, and there you are.

And that works. Many very, very useful architecture views are exactly that (or as
we saw in Section 6.6, combinations of exactly that). Views such as layered,
service-oriented, client-server, peer-to-peer, and a host of others are found in
real-world architecture documents, and they derive precisely from the corre-
sponding styles or patterns in published references.

But not every view enjoys such a formal pedigree. First, real architects often
make specializations of “standard” or published styles and patterns to suit their
needs. For example, they may impose a particular protocol on client-server, or
layered callback, or service interactions over and above what is called for in a
published pattern. Second, real architects may use common element types and
wire them together using bare-minimum architecture mechanisms to suit their
needs. For example, a view showing a system’s fail-over policy might show
components designated as “primary” and “secondary” connected by a simple
call connector to a heartbeat monitor—even if that’s not a published style. 

What is the documentation obligation in this case? You could define a new style
or pattern that is exactly what (and as specialized as) you need, then cite it.
More convenient, however, is to describe the specializations you’ve made to a
published form or (if you’re really working from a new style) define the element
types and relation types in situ. A convenient place to do this is the element cat-
alog of the view in which your specialized form appears. The diagram in the pri-
mary presentation should make it clear (either through annotation or by
introducing new graphical elements that you’ll make sure to put in the key)
which elements or relations are your specializations. And you should explain
your choices in the rationale section.
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10.1.2 Useful Variations in the Standard Organization for a View

The standard organization for documenting a view presented
in the last section serves well in most cases. However, there are
some useful variations that may serve better in others. These
include the following:

Variation 1: Divide the View into View Packets

Views of large software systems can contain hundreds or even
thousands of elements with arbitrarily deep levels of nesting.
Showing these elements in a single presentation, along with
the relations among them, can result in a blizzard of informa-
tion that is indecipherable. Also, many stakeholders aren’t
interested in the entire view, just their little part of it. Or just
the broad picture bereft of much detail. In some organiza-
tions, you might want to impose access control on parts of a
view you don’t want your subcontractors to look at. 

If you need a way to present a view’s information in smaller
“chunks,” break it up into view packets. Each view packet can
show a fragment of the system with great depth of detail, or
broad areas of the system with shallower detail. The documen-
tation for a view, then, can consist of a set of view packets.

View packets make an excellent way to help the architect
carry out and record refinements as they are made as part of
the journey through the spectrum of design.

The same standard organization we used for a view also
works for a view packet. Just remember:

• The primary presentation shows the elements and relations
that populate the portion of the view shown in this view
packet, rather than the whole view. 

• The supporting documentation (element catalog, context
diagram, variability guide, and rationale) all explain just the
part of the architecture shown in the primary presentation.
The “environment” shown in the context diagram may well
be other elements that are internal to the overall system
whose architecture we’re documenting. 

• As an aid to readers’ navigation among view packets, it helps
to add a pointer to a view packet’s parent view packet as well
as its sibling and child view packets. (A “child” view packet
is one that shows a decomposition refinement of one or
more elements in its “parent” view packet.)

If you divide a view into view packets, preface the set with an
explanation of what view packets are provided and what part of

A view packet is the 
smallest bundle of view 
documentation you 
would show an individ-
ual stakeholder, such as 
a developer assigned to 
implement a small por-
tion of the system or a 
customer interested in 
an overview.

Refinement and the 
spectrum of design are 
discussed in Chapter 6. 
For an example of using 
view packets to record 
more and more detailed 
architectural decisions, 
see the sidebar “Using 
View Packets to Record 
Architecture Design 
Steps,” on the next 
page.

Decomposition refine-
ment is discussed in 
Section 6.1.1. 
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the system each one shows. One way to do this is to show the
context diagram for each included view packet, with parent/
child links among the diagrams, to help a reader navigate to
and identify the view packet he or she wants to see. 

ADVICE

Using View Packets to Record Architecture 
Design Steps

Throughout this book, we have tried to make the point
that architecture documentation is not just a necessary
afterthought of architecture design, but an important
contributor to the design process itself. View packets
make an excellent vehicle for storing architecture deci-
sions as they are made, making architecture design and
documentation go hand in hand.

We illustrate this concept using version 2 of the Attribute-
Driven Design (ADD) method. ADD is a step-by-step
architecture design method that relies on iteratively
choosing a part of the system to design, and then choos-
ing appropriate architecture styles, patterns, and tactics
to satisfy the architecturally significant requirements for
that part. The result of each ADD iteration can be recorded
in its own view packet. 

Since ADD is a sequential, step-by-step method, you
can also record the chronology of your design—what
decisions came before and after what other decisions.
This will be helpful if you need to change a design deci-
sion. You can easily see what design decisions you made
after the one in question, to determine if they need to
change as well.

Below are the rough steps of ADD, along with what you
should record in a view packet when you carry out each
one.

Step of ADD Method
Information to Record in a 
View Packet 

Step 1: Confirm there is 
sufficient requirements 
information.

None.

continues
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Notice how using view packets to hold design decisions
as you go obviates the question of what views to use
during architecture design. Your choice of architecture
patterns and styles binds you to a choice of views. If you
choose a service-oriented style when designing a sys-
tem (or portion of a system), you’ll document a service-
oriented view to capture its instantiation; if you choose a

Step 2: Choose an element 
of the system to design (for 
the first iteration of ADD, this 
“element” may well be the 
whole system).

Start with a new, blank view 
template. In the rationale sec-
tion, explain why you chose this 
element of the system. In the 
related view packets section, 
point to this element’s parent (if 
any), and chronological prede-
cessor (if any). Create a context 
diagram for the element based 
on what you know about its 
interactions with entities exter-
nal to it.

Step 3: Identify candidate 
architecture drivers.

Record the drivers in the ratio-
nale section.

Step 4: Choose a design 
concept that satisfies the 
architecture drivers.

Describe the design concept—
typically a choice of architec-
ture patterns or styles aug-
mented with tactics—in the 
rationale section, and say why 
you chose it.

Step 5: Instantiate architec-
ture elements and allocate 
responsibilities.

Capture the instantiation in the 
primary presentation. Describe 
the instantiated elements, rela-
tions, and element behavior in 
the element catalog.

Step 6: Define interfaces for 
instantiated elements.

Record preliminary interface 
definitions in the element 
catalog.

Step 7: Verify and refine 
requirements and make 
them constraints for instan-
tiated elements.

None. When you turn your 
design attention to one of those 
instantiated elements, its 
requirements and constraints 
will yield a set of drivers that 
you’ll record as step 3 of that 
future iteration.

Step 8: Repeat steps 2 
through 7 for the next ele-
ment of the system you wish 
to decompose.

None. The method terminates 
when all requirements and con-
straints have been allocated to 
(and satisfied by) architecture 
elements.

Step of ADD Method
Information to Record in a 
View Packet 

Don’t try to record all 
the information in pris-
tine, ready-for-prime-
time fashion. For one 
thing, ADD includes a 
back-up-and-try-again
option in step 4. (Per-
haps the design con-
cept you chose three 
iterations ago unwit-
tingly precluded meet-
ing the requirements 
you’re handling in the 
current iteration. You’ll 
have to back up and try 
again.) So don’t waste 
time making the infor-
mation beautiful. 
Instead, make it com-
prehensible. You can 
shine it up when you 
have an architecture 
you have confidence in.



ptg

10.1 Documenting a View ■ 347

layered style, you’ll document a layered view to capture
its instantiation; and so forth. Later, when you have a col-
lection of view packets representing a collection of views,
you can assemble them into collections that make sense
using the Choosing the Views approach of Chapter 9. 

Variation 2: Add a Section to Document the Behavior of the Whole 
Architecture Shown in the Primary Presentation of a C&C View

The primary presentation of a C&C view shows a group of
architecture elements (components and connectors) and their
runtime interactions. The element catalog contains the behav-
ior of those elements. But you’ll almost certainly want to docu-
ment the behavior of the group as a whole somewhere. Where?
Alternatives include the following:

• The behavior section of the view’s element catalog. This section is
primarily intended to capture the behavior of individual ele-
ments. You could add a special entry at the end to capture
the behavior of everything working together.

• A new section in the standard organization for a view. Architects
often show structure and the behavior of that structure next
to each other, affording equal status to both. Giving the
behavior its own section makes that easier.

• If you use view packets, you don’t need to change the template. The
group of components and connectors shown in a view
packet might well be a specialization of a single component
or connector shown in a parent view packet. In that case, its
behavior will be documented in the element catalog of the
parent view packet.

Variation 3: Combine the Primary Presentation and Context Diagram

Stripped to its essentials, a context diagram shows the system
being described along with external elements with which it
interacts or is related. As shown in Figure 10.2, the system is
depicted as a monolithic entity, starkly bounded, with no inter-
nal structure: a black box.

Showing the internal structure is the job of the primary pre-
sentation. While this represents a useful separation of con-
cerns in many cases, sometimes the primary presentation can
be more expressive if it contains external entities. Especially
with C&C views, combining the primary presentation with the
context diagram lets you see where the arrows begin and end,
which can help you ensure that none of the ties between sys-
tem internals and externals is overlooked. 

If you combine the pri-
mary presentation with 
context, make sure to 
indicate the system 
boundary. Either use a 
clear distinguished 
bounding symbol, and 
put that symbol in your 
key, or indicate clearly 
which elements are 
external to the system.
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It’s common to see external entities in primary presenta-
tions, but architects usually don’t bother indicating the fact
that some of the elements they’re showing are external. This
can be confusing. Figure 10.3 is an example of a cartoon that
combines a primary presentation with a context diagram. 

Figure 10.3
A context diagram and a primary presentation combined. Here, the external entities are denoted by symbols identified 
in the key.
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Figure 10.2
A pure context diagram 
shows the system, with no 
internal structure shown, 
and its relations to entities 
in its environment.

SYSTEM
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Variation 4: A View with a Multi-part Primary Presentation

Recall that the point of view packets was to keep from having
to present a massive (and massively complex) single diagram
of interest to almost no one. If for some reason your stakehold-
ers are not well served by dividing the view into view packets,
you can document the whole view using a series of diagrams in
its primary presentation—the diagrams that would have popu-
lated the view packets. The supporting documentation in sec-
tions 2–5, then, will explain those diagrams taken as a whole. If
you take this option, you’ll have to explain how the diagrams
relate to each other and/or how to navigate among them.

10.1.3 Avoiding Unnecessary Repetition Across Views or View 
Packets

Using the view or view packet template naively might result in
information being repeated in more than one place, violating
our injunction in Section P.5 to avoid unnecessary repetition.
Cases include the following:

A module or a component appears in more than one view.
For example, the same module might appear in a decomposi-
tion, uses, and generalization view. Rather than give its defini-
tion, properties, interface, and behavior in the element catalog
of every view in which it appears, you can do the following:

• Pick the view in which it seems most appropriate to capture
this information, and have the element catalogs in the other
views simply refer to it.

• Package the potentially redundant information separately
and have all views refer to it or automatically incorporate it.

• In the case of online documentation, have every view’s ele-
ment catalog link to the information.

The context diagram of a child view packet looks like the pri-
mary presentation of its parent. Suppose a view packet shows
an element without internal substructure, but you create
another view packet to show the decomposition refinement of
that element—that is, to reveal its internal substructure. Then
the context diagram for the second view packet is going to look
a lot like the primary presentation for the first. In that case,
make the context diagram a simple pointer to the first view
packet’s primary presentation. 

Global policies apply to many elements. Architects often
make decisions that apply to all the elements in a view, such as
“All components must write a human-readable message to a

Decomposition refine-
ment is covered in 
Section 6.1.1.
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log after the start and finish of every transaction.” To docu-
ment information like this, you can do any of the following:

• Add an annotation to the view showing the affected elements.

• Add an entry at the beginning of the element catalog.

• Add an entry to the behavior documentation.

• Explain the global policy in the architecture background sec-
tion of the documentation beyond views (see Section 10.2).

If you use view packets, you can document global policies in
either of two places:

• In the same place that lists the view packets in a view, you
can also put information common across all view packets, as
a way of “factoring out” commonality and putting it in one
place to avoid repetition. 

• In a view packet with the greatest scope and least depth. Then
all other view packets can “inherit” the common information.

10.2 Documentation Beyond Views

QUOTE

It may take you months, even years, to draft a single
map. It’s not just the continents, oceans, mountains,
lakes, rivers, and political borders you have to worry
about. There’s also the cartouche (a decorative box con-
taining printed information, such as the title and the car-
tographer’s name) and an array of other adornments—
distance scales, compass roses, wind-heads, ships, sea
monsters, important personages, characters from the
Scriptures, quaint natives, menacing cannibal natives,
sexy topless natives, planets, wonders of the ancient
world, flora, fauna, rainbows, whirlpools, sphinxes, sirens,
cherubs, heraldic emblems, strapwork, rollwork, and/or
clusters of fruit.

—Miles Harvey, The Island of Lost Maps: A True Story of
Cartographic Crime (2000, p. 98)

In many ways, an architecture is to a system what a map of the
world is to the world. Thus far, we have focused on capturing
the various architecture views of a system, which tell the main
story. In the words of Miles Harvey, they are the “continents,
oceans, mountains, lakes, rivers, and political borders” of the
map that we are drawing. But we now turn to the complement

Rozanski and Woods 
call information like this 
part of the “common 
design model.” See 
Section E.3.
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of view documentation, which is capturing the information
that applies to more than one view or to the documentation
package as a whole. Documentation beyond views corresponds
to the adornments of the map, which complete the story and
without which the work is inadequate.

10.2.1 A Standard Organization for Documenting Information 
Beyond Views

Documentation beyond views can be divided into two parts:

1. Information about the architecture documentation. How the doc-
umentation is laid out and organized so that a stakeholder
of the architecture can find the information he or she
needs efficiently and reliably.

2. Information about the architecture. Here, the information that
remains to be captured beyond the views themselves is a
short system overview to ground any reader as to the pur-
pose of the system, the way the views are related to one
another, an overview of and rationale behind system-wide
design approaches, a list of elements and where they
appear, and a glossary and an acronym list for the entire
architecture.

Figure 10.4 summarizes documentation beyond views.

Document Control Information

List the issuing organization, the current version number, the
date of issue and status, a change history, and the procedure
for submitting change requests to the document. Usually this
is captured in the front matter. Change-control tools can pro-
vide much of this information.

Figure 10.4
Summary of documenta-
tion beyond views

Section 1. Documentation Roadmap

Section 2. How a View Is Documented

Section 3. System Overview

Section 4. Mapping Between Views

Section 5. Rationale

Section 6. Directory — index, glossary, 
 acronym list

Template for Documentation

Beyond Views

Architecture

documentation

information

Architecture

information
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Section 1. Documentation Roadmap

The documentation roadmap tells the reader what informa-
tion is in the documentation and where to find it. 

A roadmap consists of four sections:

1. Scope and summary. Explain the purpose of the document
and briefly summarize what is covered and (if you think it
would help) what is not covered. Explain the relation to
other documents (such as downstream design documents,
or upstream system engineering documents).

2. How the documentation is organized. For each section in the
documentation, give a short synopsis of the information
that can be found there. An alternative to this is to use an
annotated table of contents. This is a table that doesn’t just
list section titles and page numbers, but also gives a synopsis
with each entry. It provides one-stop shopping for a reader
attempting to look up a particular kind of information.

3. View overview. The major part of the roadmap describes the
views that the architect has included in the package. For
each view, the roadmap gives

  i. The name of the view and what style it instantiates.

 ii. A description of the view’s element types, relation types,
and property types. This lets a reader begin to under-
stand the kind of information that is presented in the
view.

iii. A description of language, modeling techniques, or
analytical methods used in constructing the view.

4. How stakeholders can use the documentation. The roadmap fol-
lows with a section describing which stakeholders and con-
cerns are addressed by each view; this is conveniently
captured as a table. This section shows how various stake-
holders might use the documentation to help address their
concerns. Include short scenarios, such as “A maintainer
wishes to know the units of software that are likely to be
changed by a proposed modification. The maintainer con-
sults the decomposition view to understand the responsibil-
ities of each module in order to identify the modules likely
to change. The maintainer then consults the uses view to
see what modules use the affected modules (and thus
might also have to change).”

Section 2. How a View Is Documented

Adopting a standard organization means using it, but also
explaining it. This is where you explain the standard organiza-
tion you’re using to document views—either the one described

“Would you tell me, 
please, which way I 
ought to go from here?”

“That depends a good 
deal on where you want 
to get to,” said the Cat.

“I don’t much care 
where,” said Alice.

“Then it doesn’t matter 
which way you go,” said 
the Cat.

—Lewis Carroll, Alice in 
Wonderland

To be compliant with 
ISO/IEC 42010:2007 
(see Section E.1), you 
must consider the con-
cerns of at least users, 
acquirers, developers, 
and maintainers.
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in this chapter or one of your own. It tells your readers how to
find information in a view. 

If your organization has standardized on a template for a
view, as it should, then you can simply refer to that standard. If
you are lacking such a template, then text such as that in Sec-
tion 10.1.2 should appear in this section of your architecture
documentation.

Section 3. System Overview

This is a short prose description of the system’s function, its
users, and any important background or constraints. The pur-
pose is to provide readers with a consistent mental model of
the system and its purpose.

The system overview is, strictly speaking, not part of the
architecture—that is, it is not part of the designed solution. How-
ever, it is indispensable for understanding the architecture. If an
adequate system overview exists elsewhere, such as in the over-
all project documentation, you can incorporate it by reference.

Section 4. Mapping Between Views

Because all the views of an architecture describe the same sys-
tem, it stands to reason that any two views will have much in
common. Helping a reader understand the associations
between views will help that reader gain a powerful insight into
how the architecture works as a unified conceptual whole.
Being clear about the association by providing mappings
between views is key to increasing understanding.

The associations between elements across views in a particu-
lar architecture are in general many-to-many. For instance,
each module may map to multiple runtime elements, and each
runtime element may map to multiple modules. Sometimes
runtime elements of the system do not exist as code elements
at all, such as when they are imported at runtime or incorpo-
rated at build or load time. Sometimes modules, such as layers,
do not appear at runtime. In general, parts of elements in one
view correspond to parts of elements in another view.

There are three ways to document a mapping between views.

1. State a rule that lets a reader know how to look at two views
and see the association between elements in each. Naming
conventions often provide convenient rules for mappings.
The simplest rule is that if an element with the same name
appears in different module views, or two different C&C
views, it’s the same element. 

2. View-to-view associations can be conveniently captured as
tables, such as the one in Figure 10.5, taken from the
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Duke’s Bank example. List the elements of the first view in
some convenient lookup order. The table itself should be
annotated or introduced with an explanation of the associ-
ation that it depicts; that is, what the correspondence is
between the elements across the two views. Examples include
“is implemented by,” for mapping from a component-and-
connector view to a module view; “implements,” for map-
ping from a module view to a component-and-connector
view; “included in,” for mapping from a decomposition
view to a layered view; and many others.

3. The mapping can be shown graphically. An example is
shown in Figure 10.6.

For which views should you provide an explicit mapping?
(Mappings using naming conventions are implicit.) Begin with
these rules of thumb:

• Provide a mapping between the decomposition view and
every C&C view.

• Ensure at least one mapping between a module view and a
component-and-connector view.

• If your system uses more than one module view, map them
to each other.

Section 5. Rationale

This section documents the architectural decisions that apply
to more than one view. Prime candidates include documenta-
tion of background or organizational constraints or major

Duke’s Bank is an exam-
ple application used in 
Sun’s online Java tuto-
rial. See java.sun.com/
j2ee/tutorial/1_3-fcs/
doc/Ebank.html.

Allocation views (dis-
cussed in Chapter 5) 
also show mappings. 
They map between soft-
ware structures and 
nonsoftware structures 
in the system’s 
environment.

Use the guidelines in 
Section 6.5 to help you 
capture the key archi-
tecture decisions.

Figure 10.5
An excerpt from a mapping 
between views

Element in C&C View X Element in Module View Y

BankAdmin com.sun.ebank.appclient
com.sun.ebank.util
stubs from com.sun.ebank.ejb

Web browser ___

… …

WebUI web
com.sun.ebank.web
com.sun.ebank.web
stubs from com.sun.ebank.ejb

AccountControllerEJB com.sun.ebank.ojb
com.sun.ebank.util

AccountEJB com.sun.ebank.ojb
com.sun.ebank.util
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requirements that led to decisions of system-wide import. The
decisions about which fundamental architecture patterns or
styles to use are often described here.

Section 6. Directory

The directory is a set of reference material that helps readers
find more information quickly. It includes the following:

• Index. Include an index of the elements, relations, and prop-
erties that appear anywhere in the architecture documenta-
tion. The index should also distinguish between pages
where a term is used and the page where it is first defined.
A convenient way to do this is to embolden the page num-
ber on which the term is defined. (An online search capabil-
ity may obviate this need.)

• Glossary. The glossary defines terms used in the architecture
documentation that have special meaning. Often there is a
system-wide glossary; if that exists and suffices, it can be
incorporated by reference.

• Acronym list. Make sure to define the important acronyms
you use in the architecture documentation. Again, projects
often keep a system-wide acronym list, which can be incor-
porated by reference.

Figure 10.6
A graphical mapping between views. On the far right are UML packages that correspond to modules from a 
decomposition view. The <<manifest>> relations show the different JAR files (UML artifacts) inside which the modules 
are bundled for deployment. The <<deploy>> relations show how the JAR files (MySystem.ear, MySystem.war, and 
corporative.jar) are deployed to the production platform. The platform elements on the left are represented as UML 
nodes and come from the deployment view of the architecture. 

- Notation: UML 2.0
- In gray: packages that in Svn are  
 part of the corporative project
- other colors used for readability
- «manifest» means “contains”

srv-app5

«execution environment»
Oracle App Server 10g (Prod)

«web context»
My System

tcu.util

com.tcu.business

«deploy»

«manifest»
«manifest»

«manifest»

«manifest»

«manifest»

«manifest»
«deploy»

tcu.mysystem.presentation

Web::Mysystem

Web::SharedWeb::Siga

«artifact»
MySystem.ear

«artifact»
MySystem.war

«artifact»
corporative.jar

We are searching for 
some kind of harmony 
between two intangi-
bles: a form which we 
have not yet designed 
and a context which we 
cannot properly 
describe.

—Christopher Alexander

Include terms in the 
glossary that your 
stakeholders won’t nec-
essarily know, or terms 
whose meaning might 
not be the same among 
stakeholders.
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• Referenced material. This is the place to put references to
material cited throughout the architecture documentation.

10.2.2 Useful Variations in the Standard Organization for 
Documentation Beyond Views

Variation 1: Document How to Use the Architecture

You may wish to document “use cases” for the architecture—
that is, how to use the architecture to build applications. This
is especially helpful if the architecture is meant to be a prod-
uct-line architecture. People usually learn by internalizing
examples, so give a few. Start small; show how to build your
application’s equivalent of “hello, world!” and then work up.
Audiovisual media such as a video or a podcast can be useful in
demonstrating the use cases. 

Variation 2: Document the Major Design Approaches Taken

Architectures often have dominating “motifs” or design
approaches, and elegant ones almost always do. These
approaches often take the form of well-known architecture
styles or patterns, but other overarching motifs are possible as
well. For example, your architecture may dictate that elements
implementing new functions all have certain programs on
their interfaces, or share data or handle errors in a particular way.

QUOTE

[Architectural p]atterns are a means of documenting software architectures.
They can describe the vision you have in mind when designing a software sys-
tem. This helps others to avoid violating this vision when extending and modi-
fying the original architecture, or when modifying the system’s code. For
example, if you know that a system is structured according to the Model-View-
Controller pattern, you also know how to extend it with a new function: keep
core functionality separate from user input and information display.

—Buschmann et al. (1996, pp. 6–7)

Variation 3: Make a Single Element Catalog for the Whole Architecture

Because the same element might appear in more than one
view, there is a danger that its element catalog entries will be
redundant. An option is to take all of the element catalogs and
merge them into a single one for the whole architecture. This
“supercatalog” would belong in the “documentation beyond

See “Coming to Terms: 
Product-Line Architec-
tures” on page 234, 
Chapter 6.

The idea for using audio-
visual media to document 
architecture comes from 
Markus Voelter, coauthor 
of the (German) book 
Software Arkitektur. He 
was interviewed during 
the OOPSLA 2007 con-
ference. You can find 
the interview at 
infoq.com/interviews/
MarkusVoelterabout-
SoftwareArchitecture-
Documentation.
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views” part, because it obviously contains information common
to more than one view. 

Be careful if you take this option. Describing an element in
separate views tends to reinforce the specific role the element
plays in the architecture in each view, and that’s helpful. For
example, a module (in a decomposition view) is usually described
in terms of what kinds of changes it encapsulates against,
whereas the same module (in a uses view) is described in terms
of what it uses and the role it plays in incremental develop-
ment. The same element, showing up as a component in some
C&C view, would be described in terms of its interactions with
other elements and its runtime quality attribute properties.
Just giving an element a single element catalog entry runs the
risk of overlooking what it contributes to each view in which it
appears.

Variation 4: Add a Section to Record Open Questions

This is particularly helpful during early development. It pro-
vides a “to do” list for the architect, and it informs stakeholders
of the major unknowns (and hence possible areas of instabil-
ity) still in the architecture.

10.3 Documenting a Mapping to Requirements
In many projects, showing how the architecture satisfies
requirements is an important part of the documentation. This
helps to validate the architecture by showing that 

• No requirement was forgotten.

• No requirement was contradicted.

• Every architectural decision is either predicated on at least
one requirement or legitimately within the discretion of the
architect. (Not every architectural decision satisfies a stated
requirement.)

To facilitate validation, the architect records a mapping
between architectural decisions and requirements. Anyone
interested in a particular requirement should be able quickly
to find where in the architecture it is handled.

The mapping can be as detailed as the requirements them-
selves. Projects with formal requirements documents generally
have detailed mappings, whereas projects with informal or
fluid requirements (especially Agile projects) will have less
detailed mappings. Mappings are conveniently recorded in
tables such as in Figure 10.7.

A detailed mapping to 
requirements often 
changes quite frequently 
during a project’s life 
cycle. Consider captur-
ing the mapping in a 
database rather than a 
static document, to 
facilitate updates and to 
allow queries and 
searches to be run.
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Use Case UI Screen Architecture Solution and Architecture Notes

UC1
Create 
project

New ArchE 
Project dialog 
box

Project is an inherent abstraction in Eclipse and so is the 
navigator view. “Garage Door System” would be a project. 

For each project, a completely independent instance of 
“Jess rule engine (ArchE core)” is created (see Fig. d ). All 
the data for a given project is stored in file “Persisted fact 
base .txt)” (Fig. d ). There is one such file per project. Also, 
the exported design (“.xml file” in Fig. d ) is one per project.

There will be a user command to create a project triggered 
by a menu option, which will activate a specific action han-
dler (Fig. e). This action handler will open the New ArchE 
Project dialog box, which is one of the dialog boxes also in 
Fig. e.

Navigator view

UC2
CRUD
scenarios

Scenarios table 
view

Scenarios table view is one of the views and editors in Fig. e.
When the user selects the option to create a scenario, a 
specific action handler (see Fig. e) will be activated. This 
will open the Scenario dialog box, which is one of the dia-
log boxes in Fig. e. The action handler ultimately makes the 
call to “ArchE core façade,” which updates the core. The 
sequence of steps described for component “ArchE core 
façade” in Section G takes place.

Scenarios—
static filter 
dialog box

Scenario
dialog box

Scenario
Responsibility
Mapping table 
view

UC8
Export
design

Main menu 
option: File | 
Export Design

There is an action handler (Fig. e) that processes this user 
command. It uses the Save File As dialog box to ask for the 
name of the file. Then it calls “Design export” (Fig. e), which 
creates the “exported design” file. The external design tool 
is activated manually. Save File As 

dialog box

Generic
(not spe-
cific to a 
use case)

Question to User 
dialog box

A question in the Questions view corresponds to a “QA_” 
fact in the core. When the user double clicks an entry, there 
is an action handler responsible for processing the user 
command (Fig. e). It opens the “Question to User” dialog 
box, which is one of the dialog boxes in Fig. e. Answering 
a question causes the action handler to store a fact in the 
core. 

Questions table 
view

Figure 10.7
This figure shows an excerpt of the mapping between functional requirements (here, use cases) and architecture for the 
ArchE system. Because ArchE is a GUI desktop application, most of the use cases are mapped to one or more UI 
screens (second column). The third column describes how each use case is handled in the architecture. The figures 
mentioned in the description are primary presentations of the view(s) where the referenced element is defined. (Sections 
2.3.6 and 6.6.4 have more information about the ArchE tool.)
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You can document a mapping to requirements in any of the
following ways.

1. Put the mapping in a single place in the documentation, a new sec-
tion in the documentation beyond views. This option is good for
projects that have informal or fluid requirements or that do
not require fine-grained accounting of each requirement.
Putting the information in one place makes it is easy to
update and convenient for validation, and it doesn’t clutter
the documentation with information that is needed only
for a short while by just a few stakeholders. This option
most often takes the form of a table that maps a require-
ments reference to an architecture element, decision, or
section of the architecture document. An example is shown
in Figure 10.7.

2. Distribute the mapping throughout the architecture documenta-
tion. You could add a separate section to each view. Or you
could overlay every place in the architecture with a tag or
adornment that reflects a requirement—every primary pre-
sentation, element catalog, context diagram, or variability
mechanism. This option is good for projects with fine-
grained requirements that map to fine-grained architec-
tural decisions. The architect can record the requirements
addressed in the same place and at the same time as the
architecture decisions are made. It’s also reasonably conve-
nient if the documentation is in an electronic form that
allows us to switch the adornments on and off or (even bet-
ter) automatically extract, collect, and index them to pro-
duce an all-in-one-place summary.

3. Capture the mapping to requirements in a view of its own. This
option is explored in the sidebar “The Requirements View-
point.” Where might such a view belong in the Style Zoo?

– You could consider the requirements a “structure” in the
software’s environment as real as the organizational,
development, or execution structures. Thus, a mapping
to requirements could be considered a new kind of allo-
cation style, and documented as a kind of allocation
view. 

– You could consider the requirements as a set of concerns
that crosscut the architecture elements you’ve designed.
Thus, a mapping to requirements could be considered a
kind of aspect view. This option is good for projects with
fine-grained requirements that map to multiple archi-
tectural decisions or elements.
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ADVICE

The Requirements Viewpoint

With Peter Eeles

Beyond the approaches for capturing a mapping to
requirements outlined in this chapter, there are several
precedents for treating the requirements that influence
the architecture as a more first-class citizen in terms of
an architecture description. For example, there is Kruchten’s
“Plus One View” of architecture, whose scenarios “are in
some sense an abstraction of the most important
requirements” (Kruchten 1995). In “The Process of Soft-
ware Architecting” (Eeles and Cripps 2009), the authors
take this thinking further by introducing a more compre-
hensive requirements viewpoint. A requirements view,
based on this viewpoint, describes those requirements
that have shaped the architecture, and may include func-
tional requirements, quality attribute requirements, and
constraints.

The value of a requirements view, however, is not con-
fined to the identification of the subset of requirements
that are deemed to be architecturally significant; the
architecture description as a whole should explicitly
define how the architecture addresses each of these
requirements. Such “traceability” from architecture to
requirements can be particularly useful during architec-
ture reviews when the architect needs to justify their
decisions, or when the architect needs to remind them-
selves of the rationale for their decisions.

The architecturally significant requirements that you cap-
ture in a requirements view may be defined within the
current project that is responsible for developing the sys-
tem, or they may come from outside the project (such as
an enterprise architecture or an industry body defining
mandatory regulations). The solution architecture is derived
from both sets of requirements, as shown in Figure 10.8,
with the outermost ring representing requirements
defined outside the project, the inner ring representing
those requirements defined within the current project
(and that align with the requirements defined outside the

You can read about the 
4+1 approach in Sec-
tion E.2.

ISO 42010 defines 
viewpoint as a work 
product establishing the 
conventions for the con-
struction, interpretation, 
and use of architecture 
views and associated 
architecture models 
(ISO/IEC 42010:2007). 
ISO 42010 is described 
in Section E.1.

One place this traceabil-
ity might be captured is 
in the rationale section 
of your documentation. 
Documenting rationale 
is described in Section 
6.5.
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project), and the center representing the solution archi-
tecture that is shaped by both sets of requirements.

Elements defined within the project may include stake-
holder needs, system features, interfaces between the
system and external entities, functional requirements, a
glossary of terms, quality attribute requirements, and any
constraints on the solution. Elements defined outside the
project, but that also influence the architecture of the
system, may include a definition of the key concepts in
the business domain, business processes, business
rules, principles that inform and guide the way in which
the system will be created (such as “buy versus build”),
and a description of existing elements that comprise the
current IT environment and that may be used by, or con-
strain, the system under development. These elements
constitute the contents that you should capture and doc-
ument in a requirements view.

Figure 10.8
Elements of a requirements view (Eeles and Cripps 2009)

SOLUTION

Business
domain

concepts

Business
rules

External
system

interfaces

Quality
attribute 

requirements

Enterprise
architecture 
principles

Business
processes

System 
features

Solution 
constraints

Glossary

Stakeholder 
needs

Functional 
requirements

Existing IT 
environment
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PERSPECTIVES

A Mapping to Requirements: You Might Already Have It

Although a mapping between architecture and requirements has important
uses, I’ve observed over many years that it’s seldom produced unless contrac-
tually required. During early stages of the architecture, too much is in flux, and
keeping the mapping consistent is impractical. Toward the end, when the archi-
tecture is more stable, nobody has the time (or desire) anymore to put the map-
ping in. What’s a practitioner to do?

Existing products of the architecting process can be used to help define a map-
ping between requirements and architecture. Let us consider separately
requirements for quality attributes and requirements for functionality. Quality
attribute requirements are the main drivers of the architecture. Architecture doc-
umentation can be thought of to a large extent as describing how quality
attribute requirements are supported by the architecture. So the necessary
information is there, but it needs to be organized in a way that easily shows
which structures and/or behaviors apply to which quality attribute requirement.
You can attach a kind of container to each quality attribute requirement.
Depending on the tool support you have, the container might contain links to
the supporting diagrams (behavioral or structural) or other relevant sections of
the architecture document.

What about functional requirements? Usually an architecture document is not
deemed complete if it does not contain some description of how at least the
“essential” requirements are supported by the architecture, where essential
means those requirements that are the primary purpose of the system. So, for
example, if the system is a communication system, then one of the essential
functional requirements would be to establish connections. An essential func-
tional requirement of a sensor system would be to capture data and make it
usable for end users or other systems. Usually, even a large system does not
have very many essential requirements. In many cases architects will document
those essential functional requirements as use cases. To these you can attach
some behavioral descriptions, such as sequence diagrams or collaboration dia-
grams, that describe how the architecture elements with assigned responsibili-
ties interact with each other to provide the functionality needed. 

—F.B.

10.4 Packaging the Architecture Documentation
10.4.1 Packaging Schemes

You can use the templates in this chapter to create architecture
documentation structured in a variety of ways. Which option
you choose will depend on the size of the system, how you wish
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to package it for its stakeholders, and your organization’s stan-
dards and practices. 

Produce All One Package

Here is a suggested ordering for producing a single architec-
ture document:

1. Document control information

2. Documentation roadmap

3. How a view is documented

4. System overview

5. Views

6. Mapping between views

7. Rationale 

8. Directory

Produce Separate Documents

If a single document seems too unwieldy, there are a number
of ways to divide the documentation into more manageable
chunks. One way is to break the views out into their own docu-
ment. If you do that, then it makes sense to put the “How a view
is documented” section with them. Both documents should
have document control information.

Other arrangements are possible, such as putting every view
in its own document, grouping views by category (module,
C&C, allocation), or breaking out the mapping to require-
ments into its own document. You may also wish to divide the
documentation along architectural lines—a document per
subsystem, for example. Consult your stakeholders to find out
what would work best for them.

Produce Documentation Packages from Different Views

A view is a representation of a set of element types and relation
types applied to a system. If you break a view into view packets,
then every view packet in that view shares the same underlying
type. This is not always the most convenient documentation
package to give to a stakeholder. Stakeholders are often inter-
ested in, for example, shallow overviews of the whole system, or
holistic (that is, multi-view) insight and detail about a particu-
lar subsystem or layer. 

To serve stakeholders like these, you can put together a
package of information including view packets from different
views. For example, you can assemble a package that provides
a broad overview of the architecture by showing high-level view
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packets from various views. This can be followed by view pack-
ets that show deeper and deeper levels of the architecture,
again across views. The documentation roadmap for documen-
tation like this must tell the reader how to navigate through
the view packets. 

ADVICE

Building an Architecture Overview Presentation

Sooner or later, every architect has to give an oral overview of an architecture,
backed up by slides. Once built, the presentation is likely to be used often, intro-
ducing the architecture to managers, developers, sponsors, evaluators, cus-
tomers, and even visitors. What should such a presentation contain? The goal
is to help the audience gain an appreciation of the problem, see the solution(s)
chosen, understand why they were chosen, and gain confidence that the archi-
tecture is the right one for the job.

Here’s an outline for a five-part, one-hour overview containing anywhere from
20 to 35 slides.

1. Problem statement: 2–3 slides. State the problem the system is trying to
solve. List driving architecture requirements, the measurable quantities you
associate with them, and any existing standards/models/approaches for
meeting them. State any technical constraints, such as a prescribed operat-
ing system, hardware, or middleware.

2. Architecture strategy: 2 slides. Describe the major architecture challenges.
Describe the architecture approaches, styles, patterns, or mechanisms
used, including what quality attributes they address and a description of
how the approaches address those attributes.

3. System context: 1–2 slides. Include one or two whole-system context dia-
grams that clearly show the system boundaries and other systems with
which yours must interact.

4. Architecture views: 12–18 slides. Use the views you’ve chosen as the back-
bone of the presentation. For each view, include the top-level (that is, system-
wide) primary presentation and, depending on the amount of detail you want
to include, perhaps a few refined primary presentations as well. Naturally,
each should include a notation key.

An overview presentation is the one case for which a cartoon does not have
to be accompanied by the supporting documentation, but you will want to
have it available for answering questions.

For each slide showing a primary presentation, make a couple of accompa-
nying slides that explain (a) how the architecture shown supports the func-
tionality and achieves the system qualities that reside with that view and (b)
the rationale for choosing that design. You may wish to annotate or color
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some of the cartoons to show programmatic information about the ele-
ments, such as which elements are provided by third parties, the state of an
element’s development, the amount of risk posed by an element, or the
scheduled delivery or other milestone of an element. You need not include
every view in the presentation, but you should include at least one module
view, at least one C&C view, and at least one allocation view. 

Where views can be straightforwardly mapped to each other, include slides
that do so. This will be very useful in conveying the overall picture.

5. How the architecture works: 3–10 slides. Trace up to three of the most
important use cases. If possible, include the runtime resources consumed
for each use case. You should be able to extract the traces from your behavior
documentation in the form of, for example, sequence diagrams or statecharts.

Show the architecture’s capacity for growth with a trace of up to three of the
most important change scenarios. If possible, describe the change impact—
estimated size/difficulty of the change—in terms of the changed elements,
connectors, or interfaces.

Depending on the importance of each item, consider tracing a scenario that
illustrates any of the following: concurrency, failure recovery, error propaga-
tion, or key end-to-end data flows. Again, you should be able to extract this
information from your behavior documentation.

You may wish to have the following slides available to answer questions or to
help discussion but not make them part of the standard presentation:

• The set of stakeholders for the documentation and a sketch of the concerns
and information needs of each (2–3 slides)

• Glossary (1–2 slides)

Preface the whole package with a title slide, sprinkle outline slides throughout
to let the audience follow the outline of the presentation, end with a “for further
information” slide, and you’re done.

A good presentation can help an architect in many ways. Recorded on video, it
can free the architect from having to brief new hires or low-ranking visitors. It
can be handed to junior designers as a way to groom them for technical lead-
ership positions. And it helps establish a consistent vision of the architecture
throughout an organization, which makes every architect’s life easier.

10.4.2 Online Documentation, Hypertext, and Wikis

These days, Web-based documentation is becoming the norm.
Hyperlinking your documents can provide easy navigation in
and among them, as well as instant access to related docu-
ments, definitions, catalogs, and external references. Hyper-
linking also relieves you of all the problems associated with
keeping multiple copies of documents around: You make one
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copy and link to it wherever the information contained in it is
needed. (Recall the second rule of sound documentation:
Avoid unnecessary repetition.)

Prepared using a Web-based documentation tool, a docu-
ment can be structured as linked Web pages. Compared with
documents written with a text-editing tool, Web-oriented doc-
uments typically consist of short pages (created to fit on one
screen) with a deeper structure. One page usually provides
some overview information and has links to more-detailed
information. When done well, a Web-based document is easier
to use for people who just need to have some overview infor-
mation. On the other hand, it can become more difficult for
people who need detail. Finding information can be more dif-
ficult in multi-page, Web-based documents than in a single-file,
text-based document, unless a search engine is available.

Using readily available tools, it’s possible to create a shared
document that many stakeholders can contribute to. The host-
ing organization needs to decide what permissions it wants to
give to various stakeholders; the tool used has to support the
permissions policy. In the case of architecture documentation,
we would want all stakeholders to comment on and add clari-
fying information to the architecture, but we would want only
architects to be able to change it, or at least provide architects
with a “final approval” mechanism.

In a shared document environment, where every user is
allowed to (and is encouraged to) contribute, the workload is
distributed—an effect that is typically seen as very positive. The
concepts of author (one who creates and maintains the docu-
ment) and reader (one who only reads the document) are
diminished. Readers feel more empowered, and hence have a
stronger stake in the documentation. A special kind of shared
document is a wiki. A wiki is a collection of Web pages designed
to enable anyone with access to contribute or modify content.

COMING TO TERMS

Wiki

A wiki is a Web site that allows users freely to create and
edit Web-page content using any Web browser. A wiki
offers an alternative to using an editing tool paired with a
configuration management tool. A wiki, however, is not
an alternative to modeling or drawing tools.

Everyone who can use a Web browser and fill out Web-
based forms can view and edit the content of a wiki

Shared documentation, 
in a Web-based envi-
ronment, allows you to 
increase collaboration 
among stakeholders 
and avoid unnecessary 
repetition.

A wiki is a collection of 
Web pages designed to 
enable anyone with 
access to contribute or 
modify content, using a 
simplified markup lan-
guage. (Wikipedia 
2010c)
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page. A wiki supports hyperlinks and has a simple text
syntax for creating new pages and links between pages
“on the fly.” If you can suppress your desire for fancy for-
matting, wiki is a fast-to-learn, easy-to-use, and intuitive
editing environment. It allows novice users to produce
fairly nice-looking Web pages that are immediately avail-
able to all other users. A wiki also allows the reorganizing
of content. Pages can be reordered, and new pages can
be created to show the existing content in a different
order. When anyone makes changes to a page, everyone
can see what was changed. 

ADVICE

If you are going to use a wiki as the repository of your
software architecture, there are some practical consider-
ations and guidelines that may help. Here is a list of rec-
ommendations for the configuration and day-by-day use
of your wiki-based architecture document.

• The first step is to create a new wiki or define a page
for the architecture document in an existing wiki. It is
possible to automatically enforce a specific structure
for a wiki page, but not for an entire wiki. But it is highly
advisable to follow a standard organization like the
ones in this chapter, enforced by convention. Create
the initial page of the architecture documentation as a
list of links to the main topics. 

• Create one wiki page for each architecture view, and a
template for that page. Follow a convention to name
the views, so that it is easy to remember the names
when creating links (the view and its wiki page should
share the same name).

• Create one wiki page for each mapping between views,
so that each mapping can be edited independently.

• If you are using a drawing tool, such as Visio or Power-
Point, create one file for each diagram or one file for
each architecture view. Prefix the file with the name of
the view, replacing spaces with a standard character. 

• A wiki does not provide an editorial feature similar to
the Track Changes option in Word. The wiki option is
to add comments to the discussion page. An alterna-
tive that has proven to be effective when reviewing a
wiki page is this process:
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1. Copy the wiki page to a blank Word document.

2. Activate the Track Changes option.

3. Edit the Word document and add comments as
needed.

4. Send the Word document to the author of the wiki
page, who then can change the wiki page based
on the edits and comments in the review.

• It is very common for an element in the architecture to
appear in more than one view. Create the description
of that element in a separate page and include it by
reference in the element catalog of all pages that con-
tain that element.

• If you already have documentation created in Word
and want to migrate it to a wiki, there are macros/
scripts that can help. To find them, do a Web search
for “Word2Wiki” or “WordToWiki.”

10.4.3 Configuration Management

What book on documentation would be complete without
stressing the importance of keeping your documentation com-
plete and up to date? Recall the sixth rule of sound documen-
tation: “Keep documentation current but not too current.”
Nothing is worse than opening a set of architecture documen-
tation and trying to figure out if it represents the most recent
version of the system. 

Documents should be dated and versioned. If someone is
looking at several figures, it should be obvious at a glance
which figures are from the same version of the system. 

You probably think of software configuration management
systems more in terms of keeping track of the code associated
with your project, but we recommend that you think of the
documentation that you are creating as software too, and treat
it just as carefully as you do the code that derives from it.

In fact, the versions of the documentation and the code
should refer to each other. When looking at code, it should be
easy to determine which version of the architecture it reflects.

10.4.4 Follow a Release Strategy

Your project’s development plan should specify the process for
keeping the important documentation, including architecture
documentation, current. The architect should plan to issue
releases of the documentation to support major project mile-
stones, which usually means far enough ahead of the milestone
to give developers time to put the architecture to work. 

The process of includ-
ing a description by ref-
erence is called 
transclusion.
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Projects follow a rhythm, a drumbeat of incremental mile-
stones leading to eventual full release, and then entry into
maintenance and sustainment. Early in the life cycle, the
drumbeat tends to be much faster than after the system is
released or brought to market. Plan your releases of architec-
ture documentation to support the next beat of the drum. For
example, the end of each iteration or sprint or incremental
release could be associated with providing revised documenta-
tion to the development team.

PERSPECTIVES

Presentation Is Also Important

Throughout this book, we focus on telling you what to document. We do not
spend much, if any, time on how it should look—but not because form is unim-
portant. Just as the best-designed algorithm can be made to run slowly by
insufficient attention to detail during coding, so too the best-designed docu-
mentation can be made difficult to read by insufficient attention to presentation
details: for example, the style of writing, fonts, types and consistency of visual
emphasis, and the segmenting of information.

We have omitted these issues not because we think they are unimportant but
because presentation details are not our field of expertise. Universities offer
master’s degrees in technical communication, in information design, and in other
fields related to the presentation of material. We have been busy being software
engineers and architects and have never been trained in presentation issues.
Having denied expertise, however, I am now free to give some rules of thumb.

• Adopt a style guide for the documentation. The guide should specify such
particulars as fonts, numbering schemes, conventions with respect to acro-
nyms, captions for figures, and other such details. The guide should also
describe how to use the visual conventions discussed in the next several
points.

• Use visually distinct forms for emphasis. Word processors offer many tech-
niques for emphasis. Words can be bold, italic, large, or underlined. Using
these forms makes some words more important than others.

• Be consistent in using visual styles. Use one visual style for one purpose, and
do not mix purposes. That is, the first use of a word might be italicized, and
a critical thought might be expressed in bold, but do not use the same style
for both purposes, and do not mix styles.

• Do not go overboard with visuals. It is usually sufficient to use one form of
visual emphasis without combining them. Is bold less arresting to you than
bold red italic? Probably not.

• Try to distinguish different types of ideas with different visual backgrounds. In
this book, we attempted to put the main thread of discussion in the body of
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the book, with ancillary information as sidebars. We also made the sidebars
visually distinct, so that you would know at a glance whether what you were
reading was in the main thread or an ancillary thread.

The key ideas with respect to presentation are consistency and simplicity.

• Use the same visual language to convey the same idea: consistency.

• Do not try to overwhelm the user with visuals; you are documenting a com-
puter system, not writing an interactive novel: shoot for simplicity.

The goal of the architecture documentation, as we have stressed throughout
this book, is to communicate the basic concepts of the system clearly to the
reader. Using simple and consistent visual and stylistic rules is an important
aspect of achieving this goal.

—L.B.

PERSPECTIVES

Tooling Requirements

The benefits of having architecture documentation need to outweigh the costs
of producing it, or it won’t be produced. Throughout this book we have argued
forcefully for the benefits but have thus far paid little attention to the costs. The
lower the cost of the documentation, the more activities for which it becomes
worthwhile to produce documentation. 

Although the cost of documentation is primarily a human cost, the cost is
strongly related to the existence of appropriate tools that support the humans
in the production process. 

What would an ideal tool to support the documentation process look like? If
such a tool were to exist, the cost of producing documentation would be much
lower than it is today. This sidebar will discuss requirements for a tool that
reduces the human cost of producing documentation.

There are two primary requirements for an ideal documentation tool. 

1. The tool must generate documentation at the push of a button from informa-
tion already in the tool as a result of design or other project activities. No
information necessary for the documentation should need to be added to
the information already necessary for project activities. 

2. As the system evolves, the documentation simultaneously evolves. 

The requirement that the tool generates documentation at the push of a button
means that the tool must have information about each of the views in a variety
of different granularities and must have the beyond views information as well.
Being able to make connections between views requires that the tool have a
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sophisticated association capability. That is, given any two entities in the tool,
the architect can link them together with an appropriate annotation in a matter
of one or two button pushes or drags.

Limiting the number of user actions necessary means that the documentation
tool must be very flexible in terms of when a user of the tool can make a linkage.
This in turn means that no particular process should be imposed, because a
user may be in the middle of one activity when a stray thought arrives about
another linkage that should be made. Making the linkage and returning to the
original activity should require only one or two button pushes.

How would the tool help with specific parts of architecture documentation?
Here are some examples.

• Rationale. One portion of the documentation template is the rationale for par-
ticular decisions. If the rationale results from an automated analysis, then
linking the documentation tool to the analysis tool will make the necessary
information available. Otherwise, the rationale would need to be entered
manually or linked from an existing document.

• Mapping to requirements. Another set of information necessary for the doc-
umentation is linkage to requirements fulfillment. The requirements informa-
tion should also be available to the user of the documentation tool with one
or two button pushes.

• Elements and properties. Entities within the tool should have a collection of
attributes that include the views of which they are a portion and the proper-
ties needed for analysis. Hierarchies of entities will allow for viewing a design
at different points in the spectrum of design. Good navigation and search
capabilities are a must, and will allow for many different organizations of the
entities.

When the system is updated, it raises the possibility that the documentation
may need to be updated. The updating of the documentation should be as pain-
less as possible. Work-flow techniques can be used to determine whether the
architecture documentation needs to be updated to reflect changes in the sys-
tem and to alert the person(s) responsible for the documentation of a particular
portion of the architecture.

Because the documentation should be available at the push of a button and
because it will be evolving, the documentation tool will need to construct the
view packets dynamically. Different views at different granularities will require
different subsets of the information available. Information should be self-
contained with links to context and related information but at a size that will
localize changes to affect only the necessary information. For example, a mod-
ule’s responsibility might be decomposed into smaller responsibilities assigned
to submodules. A responsibility can then be linked to its parent and to its chil-
dren in a decomposition of responsibilities. It can also be linked to the modules
where it is realized, but it should exist as an independent entity, so that changes
to its description will have the fewest ripples.
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Finally, the tool should support multi-user access and editing. Developers will
need to access the tool to understand the architecture. Different people will be
responsible for modifying different portions of the documentation. Some people
will need only a simple drawing tool, and so the tool should either provide that
or be able to digest and process diagrams from such tools. Development is
more and more a global matter, and so the tool should support access from
around the globe.

As may be apparent by now, the ideal documentation tool will be just one por-
tion of an integrated design, project management, requirements, analysis, and
documentation tool, because these are roles that some of the consumers of the
documentation will fulfill. There may be additional roles that require integration
with other functions that occur during the development of the system.

The type of tool we described here does not currently exist, although the ideas
are drawn from various existing tools or prototypes. We hope the description
here will help speed the introduction of such a tool.

—L.B.

10.5 Summary Checklist
• A complete architecture documentation package consists of

a set of views, along with documentation of the information
that applies to more than one view.

• Document the views, and documentation beyond views,
using the templates in this chapter (tailored for your own
use if necessary) or one of your own making.

• A view consists of a primary presentation, an element cata-
log, a context diagram, a variability guide, and rationale.
The part after the primary presentation is called supporting
documentation.

• Documentation beyond views consists of document control
information, a documentation roadmap, a view template, a
system overview, mapping between views, rationale, and a
directory.

• Document the mapping between views by using a table
showing how elements of one view correspond to elements
of another. You can also show the mapping graphically.

• A view packet is a portion of a view that you would want to
show to a single stakeholder. A view packet includes a primary
presentation depicting a part of the system, and supporting
documentation that explains the primary presentation.

• Choose a scheme for capturing the mapping to require-
ments based on the nature of the requirements and stake-
holder need.
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10.6 For Further Reading
To read more about documenting architectures using a wiki,
see the technical note “Experience Using the Web-Based Tool
Wiki for Architecture Documentation,” by Felix Bachmann
and Paulo Merson (2005). You can also search for “wikis for
software engineering” to see the results of workshops and
research in this area.
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11Reviewing an Architecture
Document

QUOTE

The iconic American poet Emily Dickinson craved pointed reviews of her work. Here
is how she asked for one from a literary confidant in 1862 (Weeks and Flint 1957): 

Mr. Higginson, Are you too deeply occupied to say if my verse is alive?

The mind is so near itself it cannot see distinctly, and I have none to ask.

Should you think it breathed, and had you the leisure to tell me, I should feel
quick gratitude.

If I make the mistake, that you dared to tell me would give me sincerer honor
toward you.

I inclose [sic] my name, asking you, if you please, sir, to tell me what is true?

That you will not betray me it is needless to ask, since honor is its own pawn.

The prologue presented seven rules for sound documentation.
The rules concluded with this prescription:

Review documentation for fitness of purpose. Only the intended
users of a document will be able to tell you whether it contains
the right information presented in the right way. Enlist their aid.
Before a document is released, have it reviewed by representa-
tives of the community or communities for which it was written.

This chapter describes a procedure for doing just that. Like all
prescriptions in this book, you should use just as much of it as
you think will be beneficial, given the realities and circumstances
of your organization and project. For example, Scrum projects
often require a complete product (including requirements,

With David Emery and Rich Hilliard
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design, code, and test results) every 30-day sprint, with a plan-
ning session at the beginning and an evaluation at the end. The
question sets given in this chapter could serve as a quick checklist
for evaluating the documentation products along the way.

To be clear, we are not discussing how to evaluate an architecture;
there are several existing methods for that already. Rather, we are
evaluating the documentation of an architecture (one purpose of
which may be to support an architecture evaluation exercise).

11.1 Steps of the Procedure
This is a six-step procedure. The first step establishes the “why,
when, and who” of the review. Subsequent steps provide the
“what” and “how.”

Step 1: Establish the purpose of the review. An architecture
document (AD) review establishes whether the AD is fit for
some specific purpose by a set of identified stakeholders. Stat-
ing that purpose will focus the review participants and direct
the review. The questions you’ll ask about the document will be
different depending on the purpose you have in mind. The
sidebar “Why Review an Architecture Document?” provides
some examples of why the AD might be reviewed.

It is likely that any AD will need to be fit for more than one
purpose, and hence the review will be multi-faceted. The alter-
native is several smaller reviews, each with a single purpose. 

Knowing the “why” will help you identify the “who.” As part
of establishing the purpose, identify the stakeholders of the AD
who should be represented in the review. 

Knowing the “why” will also tell you the “when.” No matter
what life-cycle process you’re using, various review purposes
will align with certain project stages or milestones. To give an
idea of this, Table 11.1 shows a loosely defined set of broadly

Choose one or more of 
these purposes or craft 
your own. A review pur-
pose can be stated as a 
scenario that describes 
how a particular stake-
holder can successfully 
use the AD to carry out 
part of his or her job.

Table 11.1 Typical life-cycle phases and the AD reviews that are appropriate 
for each

Project Phase Typical Activities Review AD for . . .

Concept • Identifying stakeholders’ needs 
• Exploring concepts, propose 

viable solutions 
• Analyzing alternative architectures
• Preparing an architectural con-

cept (such as when assembling 
a bid for a contract)

• Communicating between 
acquirers and developers as a 
part of contract negotiations

• Capturing the right stakeholders 
and concerns

• Support for proposal
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applicable project phases, the typical activities in each phase,
and what you might wish to review the AD for in each case. Of
course, the particular life-cycle model your project uses will
lead to different phases, activities, and reviews. Carry out the
review with enough spare time to allow the AD to be modified
after the review to serve its purpose. 

ADVICE

Why Review an Architecture Document?

• Review the AD for conformance to a normative specification. This kind of
review is intended to discover if the AD conforms to some normative specifi-
cation that has been imposed on it. The focus is on the AD itself; the archi-
tecture it describes is deemphasized. For example, the AD may be required
(or claim) to conform to ISO/IEC 42010:2007, the U.S. Department of Defense
Architecture Framework (DoDAF), The Open Group Architecture Framework
(TOGAF), the Federal Enterprise Architecture Framework (FEAF), or other stan-
dards, guidelines, or templates mandated by the developing organization. A
conformance review will see if it does.

• Review the AD for its ability to support use of the architecture for its intended
purpose. This kind of review is carried out to see if stakeholders of the archi-
tecture can use the AD to do their jobs. The focus is on how well the AD
describes the architecture. Understandability and usability of the AD are
important review criteria. Examples include the following:

Development • Refining system requirements 
• Creating solution description 
• Building system or systems
• Verifying and validating system 

• Support for conformance to a nor-
mative specification

• Support for evaluation
• Support for development
• Support for input to generation and 

analysis tools
• Support for judging implementation 

conformance to architecture
• Support for project planning

Utilization • Operating the system to satisfy 
users’ needs 

• Support for help in tracking down 
operational errors

Support • Providing sustained system 
capability

• Support for system evolution in 
concert with the architecture and 
the associated business planning 
for evolution

Table 11.1 Typical life-cycle phases and the AD reviews that are appropriate 
for each (continued )

Project Phase Typical Activities Review AD for . . .
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– Can the AD support downstream software design, development, and evo-
lution? Can the AD enable effective communications among organizations
involved in the development, production, fielding, operation, and mainte-
nance of a system? Here, important concerns are comprehension and
completeness, as well as the precise conveyance of global design con-
cepts (and their rationale) so that all groups have the same mental model
of the architecture. 

– Can the AD support project planning, budgeting, and scheduling? Here,
the emphasis is on the ability to predict the size, complexity, risk, reuse
opportunities, and requirements for specific expertise.

– Can the AD support the development of a group of systems sharing a
common set of features and built from a common set of core assets? Here,
the emphasis may be on the specification in the AD of commonalities,
points of variation, and variation mechanisms built into the architecture.

– Can the AD support preparation of acquisition documents (such as
requests for proposals and statements of work)? Can the AD support
communications between acquirers and developers as a part of contract
negotiations? Here, the important concern is comprehension, so that all
groups have the same understanding of the architecture plan and the
architecturally significant requirements.

• Review the AD for its suitability to support architecture evaluation or analysis.
This kind of review is carried out to see if the AD provides sufficient informa-
tion to be able to predict system qualities by examining or analyzing the
architecture. Examples include the following:

– Can the AD support an architecture evaluation using a method such as the
SEI Architecture Tradeoff Analysis Method (ATAM)? Here, important con-
cerns are attention to quality attributes required of and provided by the
architecture, as well as evidence of feasibility—namely, that the architec-
ture can in fact be built under the budget and schedule allotted.

– Can the AD support analysis of alternative architectures? The AD must
have the qualities necessary to evaluate an architecture by itself but also
include sufficient rationale to provide in-depth qualitative insight about
whether the architecture is well suited to take the organization into the
future, so it can be compared with other candidates.

Step 2: Establish the subject of the review. This step involves
identifying the types of artifacts, the versions of the artifacts,
their sources, and the degree of completeness of the artifacts
necessary to conduct the review. Obviously, the AD needs to be
available. Use the purpose(s) laid out in step 1 to establish the
artifact collection required and then gather them for the
review. For example, if the AD is being reviewed for conform-
ance to a standard or to a framework, the normative require-
ments of the standards/framework should also be available. In

Chapter 9 describes 
how much information 
of various kinds is usu-
ally needed by different 
kinds of stakeholders.
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all cases, make sure that all reviewers are working from the
same version(s) of the artifact(s).

Step 3: Build or adapt the appropriate question set(s). This
step involves identifying the questions that your review will put
to the AD. If you already have a set of questions that meets the
purpose of your review, you can use it (perhaps with some mod-
ification). If not, you will have to construct it. Organizing ques-
tions as question sets allows them to be reused by providing
contextual information about the purpose and stakeholder
concerns that need to be addressed, as well as guidance for
obtaining and interpreting the results. Later in this chapter we
present a number of example question sets, each one designed
to serve a review purpose. If you choose to use existing ques-
tion sets, they need to be tailored for the purposes of the
review. Questions that are not relevant can be omitted. Gen-
eral questions can be made more specific according to the
technology of the project (for example, references to data per-
sistence may be replaced by references to an Oracle database).
The question set(s) that you pick will suggest a particular
approach, and the questions need to be formulated appropri-
ately. For example, will you use the active design review tech-
nique, a questionnaire or checklist given to stakeholders, some
sort of automated or measurement-based analysis, or some
other approach? 

Step 4: Plan the details of the review. Planning involves set-
ting a date for the review, as well as deciding on the time frame
and the basic format of the review. The time frame might allow
as much time as needed to answer questions or only a limited
amount of time, in which case the questions need to be priori-
tized. Time and resources will affect the format and “weight”
of the review. How the results will be communicated needs to
be determined and could affect the format and weight of the
required answers.

This step also involves identifying the actual review partici-
pants (not just abstract stakeholder roles) and securing their
participation. An initial assignment of questions to the review-
ers responsible for asking them and the stakeholders responsi-
ble for supplying the answers can be made at this time. As the
review is conducted, the initial priorities and stakeholder
assignments may change as a deeper understanding of the doc-
umentation is gained and the reviewers probe further into
applicable areas.

This step also involves handling the logistics for the review:
time and place of meeting(s), paying for everyone’s time, pro-
viding read-ahead materials, and so on.

A question set groups 
questions that collec-
tively address a nar-
rowly focused purpose 
for an AD review. Besides 
the questions them-
selves, a question set 
contains information to 
allow a user to ensure 
the question set is 
appropriate and to use it 
effectively. This informa-
tion includes the name, 
purpose, stakeholders 
and concerns, respon-
dents, expected answers, 
criticality, and advice.

Active design reviews 
are explained in the 
“Coming to Terms” 
sidebar on page 380, in 
this chapter.

There’s no limit on what 
can be inspected, so 
inspections should be 
limited to those items 
where the benefit is 
likely to be worth the 
cost. Consider the con-
text (rigor vs. scope vs. 
resources vs. time vs. 
costs) and be practical. 
A less formal walk-
through process may 
be adequate.

—Watts S. Humphrey 
(1989, p. 172)
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Step 5: Perform the review. Performing the review involves
posing the questions to the stakeholders involved in the review
and gathering their answers. Depending on the specific approach
chosen, this might involve an individual objective review,
where stakeholders also play the role of the reviewer and pose
questions to themselves; or an inspection, where a separate
review team poses questions to the stakeholders. Inspections
could take the form of an all-hands gathering, a number of
one-on-one meetings, or something in between; the meetings
could be face to face, or distributed and remote, using (for
example) online virtual meetings. After the results are gath-
ered, the evaluation considerations and criteria are applied, as
defined by the chosen question set(s). Although the reviewers
can make some preparations, not all the important issues can
be known beforehand. These issues need to be determined in
the initial part of the review and will influence the questions
and artifacts used as the reviewers dig deeper in these areas.

Step 6: Analyze and summarize the results. The intent of this
step is to aggregate the answers to the questions and then make
a qualitative determination of the overall impact of the AD
against the stakeholders and concerns. Results are not likely to
be a simple pass/fail but rather a more nuanced conclusion
concerning specific problems in specific parts of the AD.

COMING TO TERMS

Active Design Reviews

In an active design review, reviewers are actively engaged to exercise the artifact
they are reviewing, not just look it over and scan for defects. Here is what David
Weiss, one of the creators of the active design review technique, has to say
about them:

Starting in the early 1970s I have had occasion to sit in on a number of design
reviews, in disparate places in industry and government. I had a chance to see
a wide variety of software developers conduct reviews, including professional
software developers, engineers, and scientists. All had one thing in common:
the review was conducted as a (usually large) meeting or series of meetings at
which designer(s) made presentations to the reviewers, and the reviewers could
be passive and silent or could be active and ask questions. The amount, quality,
and time of delivery of the design documentation varied widely. The time that
the reviewers put in preparation varied widely. The participation by the reviewers
varied widely. (I have even been to so-called reviews where the reviewers are
cautioned not to ask embarrassing questions, and have seen reviewers silenced
by senior managers for doing so. I was once hustled out of a design review
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because I was asking too many sharp questions.) The expertise and roles of the
reviewers varied widely. As a result, the quality of the reviews varied widely. In
the early 1980s Fagin-style code inspections were introduced to try to amelio-
rate many of these problems for code reviews. Independently of Fagin, we
developed active design reviews at about the same time to ameliorate the same
problems for design reviews.

Active design reviews are designed to make reviews useful to the designers.
They are driven by questions that the designers ask the reviewers, reversing the
usual review process. The result is that the designers have a way to test whether
or not their design meets the goals they have set for it. To get the reviewers to
think hard about the design, active reviews try to get them to take an active role
by requiring them to answer questions rather than to ask questions. Many of the
questions force them to take the role of users of the design, sometimes making
them think about how they would write a program to implement (parts of) the
design. In an active review, no reviewer can be passive and silent.

We focus reviewers with different expertise on different sets of questions so as
to use their time and knowledge most effectively. There is no large meeting at
which designers make presentations. We conduct an initial meeting where we
explain the process and then give reviewers their assignments, along with the
design documentation that they need to complete their assignments.

Design reviews cannot succeed without proper design documentation. Informa-
tion theory tells us that error correction requires redundancy. Active reviews use
redundancy in two ways. First, we suggest that designers structure their design
documentation so that it incorporates redundancy for the purpose of consis-
tency checking. For example, module interface documentation may include
assumptions about what functionality the users of a module require. The func-
tions offered by the module’s interface can then be checked against those
assumptions. Incorporating such redundancy is not required for active design
reviews but certainly makes it easier to construct the review questions.

Second, we select reviewers for their expertise in certain areas and include
questions that take advantage of their knowledge in those areas. For example,
the design of avionics software would include questions about devices con-
trolled or monitored by the software, to be answered by experts in avionics
device technology, and intended to insure that the designers have made correct
assumptions about the characteristics, both present and future, of such
devices. In so doing, we compare the knowledge in the reviewers’ heads with
the knowledge used to create the design.

I have used active design reviews in a variety of environments. With the proper
set of questions, appropriate documentation, and appropriate reviewers, they
never fail to uncover many false assumptions, inconsistencies, omissions, and
other weaknesses in the design. The designers are almost always pleased with
the results. The reviewers, who do not have to attend a long, often boring, meet-
ing, like being able to go off to their desks and focus on their own areas of exper-
tise, with no distractions, on their own schedule. One developer who conducted
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an active review under my guidance was ecstatic with the results. In response
to the questions she used she had gotten more than 300 answers that pointed
out potential problems with the design. She told me that she had never before
been able to get anyone to review her designs so carefully.

Of course, active reviews have some difficulties as well. As with other review
approaches, it is often difficult to find reviewers who have the expertise that you
need and who will commit to the time that is required. Since the reviewers oper-
ate independently and on their own schedule, you must sometimes harass them
to get them to complete their reviews on time. Some reviewers feel that there is
a synergy that occurs in large review meetings that ferrets out problems that
may be missed by individual reviewers carrying out individual assignments. Per-
haps the most difficult aspect is creating design documentation that contains
the redundancy that makes for the most effective reviews. Probably the second
most difficult aspect is devising a set of questions that force the reviewer to be
active. It is really easy to be lured into asking questions that allow the reviewer
to be lazy. For example, “Is this assumption valid?” is too easy. In principle,
much better is “Give 2 examples that demonstrate the validity of this assump-
tion, or a counterexample.” In practice, one must balance demands on the
reviewers with expected returns, perhaps suggesting that they must give at
least one example but two are preferable.

Active reviews are a radical departure from the standard review process for
most designers, including architects. Since engineers and project managers are
often conservative about changes to their development processes, they may be
reluctant to try a new approach. However, active reviews are easy to explain and
easy to try. The technology transfers easily and the process is easy to standard-
ize; an organization that specializes in a particular application can reuse many
questions from one design review to another. Structuring the design documen-
tation so that it has reviewable content improves the quality of the design even
before the review takes place. Finally, reversing the typical roles puts less stress
on everyone involved (designers no longer have to get up in front of an audience
to explain their designs, and reviewers no longer have to worry about asking
stupid questions in front of an audience) and leads to greater productivity in the
review.

11.2 Sample Question Sets for Reviewing the 
Architecture Document

Posing and answering questions in a review is, of course, the
heart of the matter. This section discusses what is involved in
the formation of question sets—groups of questions that,
together, address a narrowly focused purpose for an AD review.
Besides the questions themselves, a question set must also con-
tain information to allow a user to make sure the question set
is appropriate and use it effectively, as shown below:
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1. Question Set Name. As an artifact to be reused, give the
question set a name by which it can be referred. 

2. Purpose. What review purpose does the question set address?

3. Stakeholders and Concerns. Who are the stakeholders, and
which of their concerns are being addressed by the ques-
tions? Making stakeholders and concerns a first-class
dimension of an AD review effectively elaborates the pur-
pose of the question set and informs the formulation of the
questions. (While we can’t expect all of an architecture’s
stakeholders to participate in a review, we want to make sure
that all of the important stakeholder roles are represented.)

4. Questions. This section contains the questions that consti-
tute the question set. For each question, give the following
information:

a. Respondents. To whom should each question be posed?
The questions might be addressed to the person speak-
ing for the AD. Usually this will be the architect. The
questions might be addressed to reviewers checking the
understandability of the AD by using it to answer ques-
tions about the architecture it describes. For instance, if
the AD should support project planning (a purpose)
and is being reviewed for such (using a “project plan-
ning” question set), the respondents would include those
concerned with project planning—technical managers.
If the AD should support development and is now being
reviewed for that, the respondents will certainly include
key developers. Questions about the AD itself can be
answered by examining the AD or analyzing it with a
tool (for example, automatically checking to make sure
that every cross-reference is defined).

The person(s) to whom a question is posed may or
may not be the same as the stakeholder(s) whose con-
cern the question addresses. Review participants may be
proxies for stakeholders.

b. Expected Answers. What answer(s) are we looking for?
A question set will also involve formulating a set of con-
siderations and criteria to help the reviewers evaluate
the AD based on the answers they receive. For example,
they might wish to understand not just the answers
given by the reviewers but also how much difficulty the
reviewers had coming up with those answers. They
might wish to understand the criteria the stakeholders
used for why they answered “Yes, we’re happy” or “No,
we’re not happy.”

A concise statement of 
the purpose can often 
be useful to capture in 
the name; for example, 
“Ready to support 
development.”
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The respondents should not be shown the expected
answers, to avoid biasing their answers.

c. Criticality. How critical is each question? The “wrong”
answer to some questions might halt a project until it’s
resolved, whereas the “wrong” answer to other ques-
tions might merely be something to watch over time.
The questions should come with guidance (perhaps a
weighting) to help establish their importance.

5. Advice. Provide additional useful information on how and
when the review should be conducted. You might relate
experience gained through using the question set in a
prior review.

Figure 11.1 provides a sample template that can be used when
constructing a question set.

Following are a few example question sets to serve specific
AD review purposes. (Some questions might apply to more
than one question set.) They are written in different styles to
illustrate the ways a question set may be used. For example, the
example question set for capturing the right stakeholders is
written in the active design review style, and the questions are
really directions to stakeholders to use the AD for some pur-
pose. The other example question sets are written as if an inter-
viewer is questioning a stakeholder. These could be adapted to
an active design review style or for the purposes of an individ-
ual objective review. Some questions that can be answered yes
or no are serving as filters, and when the answer is yes, it is
appropriate to ask follow-up questions of the form, “How do
you know?”

1. Question Set Name

2. Purpose

3. Stakeholders and Concerns

4a. Questions (organized by respondents)

4b. Expected Answers

4c. Criticality

5. Advice

Figure 11.1
Template for a question set
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11.2.1 Example Question Set for Capturing the Right Stakeholders 
and Concerns 

The Views and Beyond approach to architecture documenta-
tion uses the explicit identification of stakeholders and their
concerns to determine which views to include in the AD. Explic-
itly identifying stakeholders and concerns is also a requirement
of ISO/IEC 42010:2007. Therefore, a useful review of the AD
examines its choice of stakeholders and concerns to ensure that
the important ones are accounted for. Such a review could be
usefully carried out quite early, when the stakeholders and con-
cerns are documented but before the rest of the AD is created.

The questions in the example question set below are formu-
lated using the active design review technique.

See Section 9.1 for 
more information about 
stakeholders and their 
documentation needs.

1. Question Set Name: Capturing the right stakeholders and concerns

2. Purpose
The purpose of this question set is to gauge the appropriateness of the architect’s list 
of stakeholders and concerns and to review how well the stakeholders believe their 
interests and concerns have been captured.

3. Stakeholders and Concerns
All those with a substantial stake in the architecture should be involved or have their 
roles and concerns represented. 

4a. Questions

Respondents: All stakeholders
1. State your stakeholder role. List the set of concerns you have that pertain to the 

architecture whose AD is being reviewed.
2. Find and record all places in the AD where your stakeholder role is listed as being 

covered.
3. Find and record all places in the AD where your concerns are listed as being 

addressed.
4. Find and record all places in the framework used (if any) where your stakeholder 

role is listed as being addressed.
5. Find and record all places in the framework used (if any) where your concerns are 

listed as being addressed.
6. Record all concerns you have that are not listed as being covered in either the AD 

or any framework being used or that are listed in an unclear fashion. For each, 
state the impact of this omission or misunderstanding on project success.

7. For each of your concerns as a stakeholder, find and record the places in the AD 
where that concern is addressed (not just listed). Explain why you do or do not 
believe that the concern will be satisfied by the architecture.

8. Find and record the place in the AD that prioritizes the concerns. Explain why you 
do or do not agree with it. 

9. Record important stakeholders that you are aware of that are not listed and 
whose concerns are not represented in the AD.

10. State how you know that the architecture satisfies the concerns of the missing 
stakeholders and where this information can be found in the AD.
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11.2.2 Example Question Set for Supporting Evaluation

When an architecture is subjected to a comprehensive evalua-
tion, the AD is the vehicle for communicating the architecture
to the reviewers, or at least substantiating the architect’s pre-
sentation of the architecture. Therefore, it is useful to review
the AD before an architecture evaluation takes place to see if it
contains the necessary information to allow the evaluation to
go forward. By extension, such a review determines whether
the architecture is ready (complete enough) to be evaluated.

Respondents: Architect
11. Show where in the AD the generic stakeholders and concerns required by the 

framework in use (if any) have been listed and addressed.
12. State how you produced the list of stakeholders and their concerns.

4b. Expected Answers
Each stakeholder should be able to find where in the AD (and framework, if any) their 
role and concerns are listed and their concerns are addressed. Every relevant stake-
holder and concern should be covered; missing ones should be noted. All concerns 
should be tied to at least one stakeholder. The architect should provide a convincing 
argument that the process for identifying stakeholders and their concerns was ade-
quate.
In addition to producing satisfactory answers, the respondents should also note the 
ease or difficulty in using the AD to answer the questions.

4c. Criticality
Questions revealing missing stakeholders or missing concerns are the most critical.

5. Advice
This question set is especially appropriate for an active design review, in which an all-
hands meeting is not required. Individual reviewers representing different stakeholder 
roles and concerns can be engaged separately, perhaps even by telephone or elec-
tronic mail, to make sure their concerns are addressed in the AD.
By contrast, however, a similar review was carried out as a two-day all-hands work-
shop for a large U.S. defense project. The first half-day was used to present ISO/IEC 
42010:2007 terms and approaches. This was a long review because the project is 
large. Some 30–40 people were involved, and even then some stakeholder communi-
ties were overlooked.
On a small distance-learning project, a review for this purpose took 6 hours with a 
dozen people: 6 architects and 6 stakeholders. The agenda devoted 2–3 hours to the 
procedure and 3 hours to concerns.

1. Question Set Name: Supporting evaluation

2. Purpose
The purpose of this question set is to determine whether the architecture is ready to be 
evaluated. This helps ascertain whether evaluation stakeholders have sufficient informa-
tion to do their job and know when their job is completed. The emphasis is on the artifacts 
needed for analysis.
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3. Stakeholders and Concerns
The business manager is the spokesperson for the business goals the system is meant 
to support. These goals include what the customer wants to build and the objectives of 
the organization building the system. The business manager is concerned with how the 
technical solution supports the business goals.
The architect is concerned with whether the AD supplies sufficient information for analy-
sis and how usable the AD is in supporting an evaluation. The architect would like to use 
the AD to determine whether one alternative is better than another in terms of technical 
considerations, difficulty, and risk.
The team preparing to conduct an architecture evaluation is concerned with knowing 
what to evaluate and whether the AD supplies sufficient information for analysis.

4a. Questions

Respondents: Business manager, Architecture evaluation team
1. Are the business goals the system must satisfy clearly articulated and prioritized?
2. Is it clear how the business goals determine the requirements? Is there a mapping 

between business goals and requirements? Are the requirements prioritized accord-
ing to business importance?

3. Is there traceability between the business goals and the technical solution? That is, 
can you navigate from business goals to architecturally significant requirements 
(ASRs), to technical decisions and associated risks, and finally back to implications 
on achieving the business goals?

4. What criteria are used to determine whether the architecture is supporting the busi-
ness goals?

5. How might the system change over its lifetime of deployment (including retiring the 
system)?

Respondents: Architect, Architecture evaluation team
6. Is the context of the system (or subsystem) clearly defined?
7. Have the stakeholders and their concerns been clearly defined?
8. Have the requirements, constraints, standards, and quality-assurance policies been 

clearly defined?
9. Are the ASRs which the system must satisfy clearly articulated and prioritized 

according to their impact on the architecture? 
10. Are the ASRs clear and unambiguous? Are they “testable”? Have they been prioritized?
11. Is it clear which techniques the architect used to achieve the ASRs? Have alterna-

tives that were considered but not chosen been documented?
12. Is it clear how the architecture fulfills the other requirements that are not ASRs?
13. Has the AD identified the key decisions? If so, where are they?
14. Has the AD captured the rationale for key decisions? If so, where?
15. Can you describe the runtime resources consumed for each concern that affects the 

operation of the system? 
16. Can you describe the change impact (estimated size/difficulty of the change) for 

those modifiability concerns that lead to changed design elements? 
17. Can you determine the views necessary to analyze each ASR? Does the AD provide 

the views necessary to cover the ASRs?
18. Within each view, are its models clear? Are its models well-defined by the viewpoint?  

Do the models address the ASRs? Which ASRs are addressed by the models in this 
view (to the extent that the model provides enough information to determine whether 
the ASRs have been satisfied)?

Viewpoints, models, and correspondences are concepts in the ISO/IEC 42010 
standard, discussed in Section E.1.
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19. Are all ASRs addressed by either one or more models or one or more correspon-
dences among models?

20. Have the architects done any preliminary analysis? Have these results (including 
architecture issues and risks) been articulated? Where?

21. How will the architecture be introduced and retired within the business?
22. Is the current document complete in the sense that all the information is docu-

mented? If not, are there placeholders for what has yet to be documented along with 
descriptions of what still needs to be worked out?

23. Can you navigate through the material during the evaluation to show the decisions 
made to address stakeholders’ concerns? 

Respondents: Architecture evaluation team
24. Are the concepts and notations underlying the AD clearly explained (for example, is 

there a glossary of terms, key for diagrams)?
25. Have the scope and the objectives of the evaluation been clearly defined?
26. Is the context of the system (or subsystem) to be evaluated clearly defined?
27. Have the stakeholders and their concerns for the system (or subsystem) to be eval-

uated been clearly defined?
28. For each view, do you understand how to evaluate its contents?
29. For correspondences across views, do you understand how they are represented 

and how to evaluate them for accuracy and completeness?
30. Are the views sufficiently complete to support the intended analysis? Can you work 

around gaps identified by the architects?

4b. Expected Answers
The business manager and the architect should provide a convincing argument that the 
documentation captures the important analysis artifacts that allow one to navigate from 
business goals to architecturally significant requirements, to technical decisions and 
associated risks, and finally back to their implications on achieving the business goals.
The evaluation team should have a clear understanding of the objectives and scope of 
the evaluation. That understanding will determine what AD artifacts are needed and to 
what degree.

4c. Criticality
Questions revealing missing analysis artifacts (for example, architecturally significant 
requirements, architecture decisions) are the most critical. 
Questions indicating incompleteness or ambiguity in conducting the analysis are also critical.

5. Advice
Depending on the scope of the evaluation, there could be some overlap with the “Ques-
tion set for supporting development.” Analysis could include “buildability” or “feasibility 
in building the system as the customer describes it.” There is no overlap when evaluation 
is more narrowly scoped in the sense of identifying decision points and the rationale for 
selecting alternatives. In this case, the AD is treated as a sketch that shows alternatives 
rather than a blueprint from which to build the system. 
If the AD uses frameworks and viewpoints, then a question set for reviewing the choice 
of framework and viewpoints could be created and used in conjunction with this review. 
If the AD does not use these concepts explicitly, some of the questions could still be used 
to understand the documentation. 
The business manager and the architect share their answers to the questions with the 
evaluation team. The evaluation team may answer the questions separately to varying 
degrees of detail in order to validate the results.
The set of questions will be tailored according to the scope and objectives of the evalu-
ation (any combination of the system, stakeholders, ASRs, views, and decisions).
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11.2.3 Example Question Set for Supporting Development 

Architecture has value by driving a conforming implementa-
tion—that is, that the developers can follow the specifications
and constraints of the architecture. The purpose of a review
for supporting development is to determine whether there is
enough information in the architecture for the development
stakeholders to do their jobs. A closely related task is to deter-
mine if the AD is sufficient to determine whether a system’s
implementation actually conforms to the architecture described
in the AD. The emphasis there is on the ability of the AD to
identify conformance points for the implemented system, with
the expectation that a subsequent review or audit will actually
determine conformance of the system to the architecture
(described by the AD).

1. Question Set Name: Supporting development

2. Purpose
The purpose of this question set is to determine whether the AD contains enough infor-
mation to “drive” a conforming implementation. This helps ascertain whether develop-
ment stakeholders have sufficient information to do their job and know when their job is 
completed. The focus is less on analysis and more on comprehension and completeness 
of the AD.

3. Stakeholders and Concerns
Architects are concerned that their AD is ready to pass to developers.
Designers and implementers are concerned with knowing what to build—that is, what 
they must do in order to implement the architecture.
Software managers are concerned with estimating and/or predicting needed develop-
ment resources (budget, schedule).
Developers are concerned with when to enter test.
Testers are concerned with whether the AD supplies sufficient information to enable 
architecture-based testing and to determine when to exit test.
QA stakeholders are concerned with whether the AD supplies sufficient information to 
enable quality assurance and to know when they are done. A special kind of QA stake-
holder is the “conformance checker,” concerned with how to tell whether an implemen-
tation conforms to the architecture.
Integrators are concerned with whether the AD supplies sufficient information to plan 
integration.
Fielders are concerned with whether the AD supplies sufficient information to plan 
deployment.
Customers and program managers have indirect concerns about whether the AD is 
usable by developers and how the architecture is constrained by existing components.

4a. Questions

Respondents: Software manager
1. Can you identify the full set of implementation units (elements to be implemented)?
2. Can you determine which units require development (and integration and test) 

resources?



ptg

390 ■ Chapter 11: Reviewing an Architecture Document

3. For each unit requiring development, can you make predictions in terms of use of 
development resources, variance, and risk?

4. Can you determine development dependencies between implementation units?
5. Can you identify runtime dependencies between units?
6. Can you lay out a schedule for this development?
7. Can you lay out a schedule for an architecture prototype?
8. Can you tell if you have enough development resources?
9. Does the AD overconstrain the stakeholders (such as developers, integrators)?

10. Does the AD identify opportunities for parallel development? Can you identify units 
that can be implemented in parallel?

Respondents: Designers and implementers (including unit testers)
11. Can you identify the allowed and prohibited dependencies between implementation 

units?
12. Can you identify applicable architecture constraints, rules, principles, styles, 

patterns, and so on, on units or their aggregation?
13. Can you navigate from an implementation unit to its associated requirements 

(formal, derived, quality, performance, and design constraints)?
14. Can you determine a test approach for the set of implementation units?
15. Can you determine approaches for error handling, resource management, human-

computer interaction, data management and persistence, variation and variability 
(for example, across a product line or evolution over time), and so on?

16. Can you determine what is likely to change and how it impacts your design?
17. Can you tell how solid each decision is?
18. Can you tell what needs to change as the result of entering a new cycle?
19. Do you understand how conformance to the AD will be determined?
20. Does the AD identify opportunities for parallel development? Can you identify units 

that can be implemented in parallel?

Respondents: Integrators and fielders
21. Can you identify what units must be integrated?
22. Can you determine the resources needed to operate the unit?
23. Can you determine the integration test obligations?
24. Can you identify runtime (such as load, elaboration) dependencies between units?
25. Do you understand how conformance to the AD will be determined?

Respondents: Testers (not unit testing, but rather architecture-based testing)
26. Can you determine which units can be cost-effectively tested in isolation?
27. For each unit, can you determine what is needed (for example, data, special hard-

ware, other units) to test it?
28. For each unit, can you determine what constitutes test success criteria?
29. Can you test the system as a whole?

Respondents: QA stakeholders
30. Is the AD baselined?
31. Is there a history of changes to the AD?
32. Does the AD identify key decisions?
33. Does the AD capture the key decisions and design rationale?
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11.2.4 Example Question Set for Reviewing for Conformance to 
ISO/IEC 42010

This review assesses whether the AD conforms to the require-
ments of ISO/IEC 42010, Systems and Software Engineering—
Architecture Description.

34. Does the AD articulate “open decisions” deferred to implementation?
35. Are inconsistencies known and documented?
36. Are there known associations between each view’s models and developed/delivered 

artifacts? (For example, if we have a “deployment view” in the architecture, do we 
have a “packing list” for the system?)

37. Are specific conformance points identified in the views? For each such point, do we 
know which view and model captures this information and which artifact/artifacts 
must conform? Is there a documented method for checking conformance (for exam-
ple, inspection, developer test, formal qualification test)?

38. What questions, concerns, or issues have the developers raised during their work? 
How are these captured/resolved in the AD? How has the AD changed in response 
to these concerns? 

39. Are the test approaches and artifacts consistent with the AD? (Could include formal 
trace or an informal assessment. This is particularly associated with “use case” 
kinds of views, where you want the testers to test the known use cases that the 
architecture should have addressed.)

40. Is there a formal process for establishing conformance?
41. Does the content of the AD support this process?

Respondents: All stakeholders
42. Can you identify open, partially resolved, or unresolved issues in the AD?
43. Can you identify where automated tools will be used? Does the AD have the right 

content that is in a format that can be processed by the tools?

4b. Expected Answers
In all cases, the stakeholders should provide a convincing argument that the documen-
tation captures the important artifacts that allow one to implement the architecture.
In addition to producing satisfactory answers, the respondents should note the ease or 
difficulty in using the AD to answer the questions.

4c. Criticality
Questions revealing incompleteness or misunderstanding of artifacts are the most criti-
cal. In this case, the AD is treated as a blueprint from which to build the system or to 
which the built system must conform.

5. Advice
This question set might overlap with a question set that reviews the AD for its ability to 
support an architecture evaluation, in that the evaluation could analyze for “buildability” 
or “feasibility in building the system as the customer describes it,” which are, of course, 
among the developer concerns addressed here.
A subset of the question set may be used in a more specialized review for supporting 
planning.
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FOR MORE INFORMATION

ISO/IEC 42010:2007 is the ISO adoption of ANSI/IEEE 1471-2000, and it is
identical to that earlier standard. At the time of this book’s publication, a joint
revision of ISO/IEC 42010 and ANSI/IEEE 1471 was ongoing. The questions in
this question set reflect the expected form and content of the ISO/IEC 42010
revision, including new topics such as architecture frameworks and model
correspondences.

1. Question Set Name: Reviewing for conformance to ISO/IEC 42010

2. Purpose
This question set is used to assess the conformance of the AD to the requirements of the 
international standard ISO/IEC 42010. Conformance to the standard may be a prerequi-
site to acceptance of the AD as a deliverable or to other reviews.

3. Stakeholders and Concerns
Architects, acquirers, and architecture analysts all have the following concern: Does my 
AD meet all of the conformance points of the standard? Can conformance be verified?

4a. Questions

Respondents: Architects
1. Does the AD contain the appropriate administrative and overview data (date of issue, 

version status, issuing organization, change history, summary, scope, context, glos-
sary, and references)?

2. Does the AD contain architecture documentation required by the using organization?
3. Who are the specific stakeholders for this AD? Is there evidence the architect has 

given consideration to these stakeholder classes: users of the system, system 
acquirers, system developers, and system maintainers?

4. Are the stakeholders’ concerns captured? Does the AD show evidence of having 
considered the purposes of the system; the suitability of the architecture to achieve 
those purposes; the feasibility of constructing and deploying the system; the poten-
tial risks of system to its stakeholders throughout its life cycle; and the maintainabil-
ity and evolvability of the system?

5. Is every stakeholder and every concern covered by at least one viewpoint?
6. Is each viewpoint identified? Is there a definition for each viewpoint used in the AD? 

Does each viewpoint definition include: viewpoint name; identification of the stake-
holders addressed by that viewpoint; the architectural concerns framed by that 
viewpoint; and the model kinds used by the viewpoint? For each model kind, are the 
conventions, including any notations, languages, modeling techniques, and analyti-
cal methods, defined? 

7. If the viewpoint comes from an external source, is it fully defined and identified in 
that source? Is there an association between that viewpoint and the stakeholders’ 
concerns? Are models/modeling techniques identified? Does the viewpoint contain 
analysis techniques, rules, or constraints?

8. Is there a view for each viewpoint? Does the view correctly use/implement the mod-
els required by its viewpoint? Does the view cover the system under review? Is the 
view-viewpoint relationship one-to-one?
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11.3 An Example of Constructing and Conducting a 
Review

This section shows an example of constructing and carrying
out an AD review. The review was conducted to see if a project’s
AD was sufficient to support an architecture evaluation.

• Step 1: Establish the purpose of the review. The purpose was
to evaluate an AD to see if it was sufficiently complete and

9. Does each view contain an identifier, introductory information, configuration infor-
mation as defined by the using organization, and one or more models?

10. Are any known inconsistencies between views documented?
11. Are there correspondence rules? For each such rule, is there at least one correspon-

dence satisfying each rule?
12. Does the AD cite an existing architecture framework? Is each viewpoint in the frame-

work used in the AD? Does the AD capture all of the framework’s correspondence 
rules?

13. Does the AD contain the rationale for its architectural decisions, such as
• Selection of viewpoints and models/modeling techniques?
• Correspondence rules?
• Key decisions captured within each view?

Respondents: Acquirers and architecture analysts
14. Is the set of stakeholders and concerns complete?
15. Is the set of viewpoints both complete and minimal?
16. Is the set of correspondence rules (if used) appropriate?
17. Are the views complete? Do they communicate the key decisions?
18. Is the set of correspondences complete?
19. Does the rationale capture sufficient information to assist reviewers and architecture 

analysts in understanding the architecture and its decisions?
20. Do the set of viewpoints and/or the selected architecture framework match contrac-

tual requirements and/or institutional practices?

4b. Expected Answers
Positive answers are expected, as well as the ability of the participants to point out spe-
cific places in the AD to justify their positive answers.

4c. Criticality
For the purpose of ascertaining conformance, all requirements in ISO/IEC 42010 are of 
equal importance, and all are mandatory. (There are no tailoring options in the standard.)

5. Advice
“Complete” here is expected to be a value judgment in the review, rather than any for-
mally determined property. The stakeholders need to understand the context (including 
resource constraints) as part of evaluating “completeness.” Generally, “complete” should 
be interpreted as “good enough to meet our expectations for this system within the con-
text in which we are developing it.” These rules should not be required as having the 
architecture description account for every (software equivalent of a) nail in the structure.
Each item chosen above directly maps to conformance points in ISO/IEC 42010:2007. 
However, the terms in this section are taken directly from ISO/IEC FCD 42010:2010.
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consistent to support a formal evaluation of the architec-
ture. The chosen architecture evaluation method was the
Architecture Tradeoff Analysis Method (ATAM), which uses
a trained evaluation team to assess the consequence of
architecture decisions in light of quality attribute require-
ments and business goals. The evaluation team interacts
with the project’s architect and senior designers, as well as
important architecture stakeholders. The purpose of the
AD review is to ensure that those analysis artifacts (architec-
tural decisions, quality attributes, and business goals) are
well documented.

The “why” establishes the “who,” and in this case the
architecture evaluation team became the architecture doc-
umentation review team.

The “why” also establishes the “when,” and in this case, we
conducted the review in time for everyone to present their
results at the evaluation kick-off meeting. This meeting is a
standard part of the ATAM, in which the evaluation team
meets, discusses the architecture, agrees on team roles, and
makes the go/no-go decision.

• Step 2: Establish the subject of the review. The ATAM
requires the client to provide a presentation of the architec-
ture as well as the architecture documentation before the
evaluation exercise commences. In fact, these are used to
make a go/no-go decision: If the architecture is not suffi-
ciently mature, it cannot be reliably evaluated. In this case,
the client provided the ATAM team leader with copies of
both the presentation and the architecture document (in
this case called a “software design document”) one month
before the scheduled beginning of the evaluation.

• Step 3: Build or adapt the appropriate question set(s). The
ATAM go/no-go criteria led us to select the question sets for
(1) capturing the right stakeholders and concerns and (2)
supporting evaluation (see Section 11.2). If a framework
such as TOGAF had been used, the question set for reviewing
the choice of the framework and associated viewpoints would
have been included as well. We did not involve the business
manager or the architect in our review, but we did have
available a viewgraph presentation from each of them that
described the business drivers and architecture, respectively.

• Step 4: Plan the details of the review. The evaluation team
leader did double-duty as the review team leader. That
involved making sure all team members had the appropri-
ate artifacts: the architecture documentation and presenta-
tion and the right question sets. Since our evaluation team



ptg

11.4 Summary Checklist ■ 395

was geographically distributed, with members in five differ-
ent U.S. cities, we arranged the review process so that mem-
bers could work independently, at their own pace and
schedule. Everyone was asked to report their findings at the
kick-off meeting.

• Step 5: Perform the review. The reviewers checked the AD
to make sure that the following are documented: a list of the
stakeholders’ roles and concerns, the criteria the architect
used to produce that list, and how the architecture satisfies
the concerns. Each reviewer applied the questions against
the AD and recorded their answers. They were e-mailed to
the review leader before the kick-off meeting, so that he
could get a sense of the findings and make a preliminary
judgment as to the suitability of the AD.

• Step 6: Analyze and summarize the results. Each member of
the evaluation team provided answers to the team leader. It
took each person anywhere from one to four hours to com-
plete the question set. The evaluation leader examined the
answers, and in less than an hour was able to glean a team
consensus that the AD, while not perfect from the perspec-
tive of the question set, was sufficient to support an evalua-
tion. This impression was confirmed during a subsequent
telecon. The team leader, satisfied that the AD was suffi-
ciently developed to support an evaluation, decided to pro-
ceed. During the evaluation itself, 12 scenarios were
analyzed. In every case, the architect was able to use archi-
tecture information from the AD (in the form of a view-
graph presentation) to walk through the scenarios and
explain how the architecture did or did not support them.
In two cases, the evaluation team asked where a particular
piece of key information was documented, and the architect
was able to show its location in the AD. In all cases, the AD
supported the analysis, suggesting that the team’s conclu-
sion as to its suitability was well founded. 

11.4 Summary Checklist
• Review architecture documentation to ensure that the

architecture is effectively captured in a form that allows
stakeholders to understand and use the architecture in the
way it was intended.

• Choose questions based on the purpose of the review; three
examples of why the AD might be reviewed include: con-
formance to some normative specification, suitability to sup-
port use of the architecture for its intended purpose, and
suitability to support architecture evaluation or analysis.
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• Organize questions as question sets so they can be reused by
providing contextual information about the purpose and
stakeholder concerns that need to be addressed, as well as
guidance for obtaining and interpreting the results.

11.5 Discussion Questions
1. Suppose that you have been asked to review architecture

documentation for conformance to an architecture frame-
work such as DoDAF or TOGAF. Given this purpose, whom
among the stakeholders would you invite and when in the
life cycle would you hold the review? What questions or
question sets (if any) from those in this chapter would you
reuse? What additional questions would you ask?

2. Discuss the advantages and disadvantages of conducting an
AD review as a separate method or as a procedure that is
part of an existing method. For a project you have in mind,
which would you choose and why?

3. Knowing that you intend to review the architecture docu-
mentation, how might this influence your choosing the
views and building the documentation package? What cri-
teria would help you decide whether to incorporate reviews
as part of the documenting process or to conduct a separate
review activity upon completion of the documentation?

11.6 For Further Reading
An active design review (Parnas and Weiss 1985) is a technique
for carrying out guided documentation-based reviews. Some of
the example question sets provided in this report use the active
design review approach. 

SEI Active Reviews for Intermediate Designs (ARID) (Clem-
ents, Kazman, and Klein 2002) is a method for performing a
scenario-based stakeholder-centric review of a portion of archi-
tecture. The review is focused on whether the design is suffi-
cient for the software developers who will use it. ARID is based
on active design reviews and the ATAM. The elements of the
ARID method could be focused on documentation to create a
method to review documentation in line with the approach
described in this chapter. The question set for supporting
development is especially relevant. Active design reviews are a
most promising starting point. For example, active design
reviews call for recruiting different kinds of reviewers for dif-
ferent kinds of reviews. Support staff is often used, for instance,
to review for document consistency and completeness and for
conformance to a template. Active design reviews naturally go
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with the idea of a spectrum of review purposes, either as sepa-
rate reviews or as multiple purposes of a single review.

Architecture-centered software project planning (ACSPP)
(Paulish 2002) is another approach (like ARID) where a por-
tion of the architecture documentation is given to the develop-
ers who are asked to use it. In this case, they are asked to take
four hours to sketch an initial design of the subsystem they are
tasked with developing and to fill out a sheet of metrics docu-
menting the time and resources needed for the development
effort. The question set for supporting development would be
relevant for that part of the effort that involves understanding
the architecture.

The SARA report (SARA 2002) presents a useful generic
model for evaluating software architectures, and it is a good
starting point for reading on this subject. Particular methods,
such as the SEI’s ATAM, can be thought of as special cases of
the SARA model.
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EEpilogue:
Using Views and Beyond

with Other Approaches

The word architecture goes back through Latin to the Greek for “master
builder.” The ancients not only invented the word, they gave it its clear-
est and most comprehensive definition. According to Vitruvius—the
Roman writer, whose Ten Books on Architecture is the only surviving
ancient architectural treatise—architecture, is the union of “firmness,
commodity, and delight”; it is, in other words, at once a structural, prac-
tical, and visual art. Without solidity, it is dangerous; without useful-
ness, it is merely large-scale sculpture; and without beauty . . . it is not
more than utilitarian construction.
—Marvin Trachtenberg and Isabelle Hyman, Architecture: From
Prehistory to Post-Modernism/The Western Tradition (1986, p. 41)

This book has presented guidance, which we call the Views and
Beyond approach, for assembling a package of effective, usable
documentation for a software architecture. Using a basic set of



ptg

400 ■ Epilogue: Using Views and Beyond with Other Approaches

concepts (views and styles) and an organizing principle (mod-
ule views, component-and-connector (C&C) views, allocation
views), we have shown how to document a wide range of archi-
tecture-centric information: from structure to behavior to
interfaces to rationale. The book stands on its own as a com-
plete handbook for documentation.

But the book does not exist in a vacuum. Other writers, on
their own or under the auspices of large organizations or stan-
dards bodies, have prescribed specific view sets or other
approaches for architecture. There is now an ISO standard for
architecture documentation. Many people are writing about
how to document an “enterprise architecture.” It may not be
clear whether the advice in this book is in concert or in conflict
with these other sources. In some cases, it isn’t clear whether
there’s a relationship at all.

The purpose of this chapter is to answer the following
questions:

How do I use the Views and Beyond approach if I want to
produce software architecture documentation that . . .

1. . . . is compliant with the ISO standard for architec-
ture documents?

2. . . . adheres to the Rational Unified Process 4+1
approach to documentation?

3. . . . uses the Rozanski/Woods viewpoint set?

4. . . . supports an Agile development project?

Over and above these software-oriented variations, this chapter
also covers the U.S. Department of Defense Architecture Frame-
work (DoDAF), which is not intended for software architectures
but nevertheless is sometimes pressed into service in that way.

E.1 ISO/IEC 42010, née ANSI/IEEE Std 1471-2000
With Rich Hilliard and David Emery

E.1.1 Overview

ISO/IEC 42010 (or “eye-so-forty-two-ten” for short) is the ISO
standard, Systems and software engineering—Architecture descrip-
tion. The first edition of that standard was published in 2007. It
was the fast-track adoption by ISO of IEEE Std 1471-2000,
which was developed by an IEEE working group drawing on
experience from industry, academia, and other standards bod-
ies between 1995 and 2000. ISO 42010 is centered on two key
ideas: a conceptual framework for architecture description and

What ISO 42010 calls 
an architecture descrip-
tion is what the Views 
and Beyond approach 
calls an architecture
document. See “Com-
ing to Terms: Specifica-
tion, Representation, 
Description, Documen-
tation” on page 10, in 
the prologue, for why 
we chose the term we 
did. In this section, we 
will defer to the ISO’s 
terminology.
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a statement of what information must be found in any ISO
42010-compliant architecture description.1

Under ISO 42010, as in the Views and Beyond approach,
views have a central role in documenting software architec-
ture. The architecture description of a system includes one or
more views.

Figure E.1 illustrates the core concepts of architecture
description in the standard:

Under ISO 42010, an architecture description is a work product—
a concrete artifact (which could be a document or repository)
that documents the architecture of a system of interest. A sys-
tem of interest exists in some environment (containing other

1. Now that ISO has adopted the IEEE standard, the two organizations will
undertake a coordinated update to both the ISO and IEEE standards. This
section describes the standard as reflected by Committee Draft 1 (CD1),
dated January 2009 (ISO/IEC CD1 42010 2009). The material in this draft
had undergone substantial technical review within the working group but
had not been formally balloted at the time this chapter was written.

ISO 42010 defines a 
view as a “work product 
representing a system 
from the perspective of 
architecture-related 
concerns.”

ISO 42010 defines sys-
tem of interest as 
encompassing “individ-
ual applications, sys-
tems in the traditional 
sense, subsystems, 
systems of systems, 
product lines, product 
families, whole enter-
prises, and other aggre-
gations of interest.”

Figure E.1
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systems, humans, and so on), which motivates, constrains, and
interacts with the system of interest. ISO 42010 requires that an
architecture description contain the following:

• Identification of the stakeholders for the architecture and
the system of interest

• Identification of the architecture-related concerns of those
stakeholders

• A set of architecture viewpoints defined so that all of the
stakeholder concerns are covered by that set of viewpoints

• A set of architecture views, such that there is one view for
each viewpoint

• A set of architecture models from which the views are
composed

• Architecture rationale to record key decisions

ISO 42010 is based on the following tenets:

1. Architecture is an abstraction; the standard deals with the
work product used to capture an architecture, namely, the
architecture description.

2. An architecture description is inherently multi-view. No sin-
gle view is sufficient to capture an architecture because
architecture is multi-disciplinary, with multiple stakehold-
ers and multiple architecture-related concerns that the
architect must deal with.

3. It is useful to separate viewpoints (perspectives on the
architecture) from views (what is captured in the descrip-
tion of a specific architecture from the perspective of a
viewpoint for a system of interest). This distinction was
motivated by the body of existing practice that defines view-
points for a number of architecture-related concerns.
(However, the term viewpoint was introduced in the stan-
dard for this notion.)

4. There should be a viewpoint for each view. Just as every
map should have a legend, each view should have a view-
point explaining the conventions being used in that view.
Figure E.2 illustrates one possible template for a viewpoint.

5. An architecture description is driven by stakeholders’
architecture-related concerns, because these reflect the
issues the architect must deal with. Viewpoints are selected
for use in an architecture description to ensure coverage of
the identified architecture-related concerns.

ISO 42010 defines 
viewpoint as a work 
product establishing the 
conventions for the 
construction, interpre-
tation, and use of archi-
tecture views and 
associated architecture 
models.
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Viewpoint Name The name for the viewpoint, and any synonyms for the viewpoint.

Overview An abstract or brief overview of the viewpoint and its key features. 

Concerns A listing of the architecture-related concerns framed by this viewpoint. This is crucial information 
for the readers, because it helps them decide whether this viewpoint will be of use to them.

Anti-
Concerns

Optional. It can be useful to document the kinds of issues a viewpoint is not appropriate for.
Articulating anti-concerns may be a good antidote for certain overused notations. 

Typical 
Stakeholders

Optional. The typical audiences for views prepared using this viewpoint. Who are the usual stake-
holders for this kind of view? 

Model Types Identify each type of model used by the viewpoint.

Model
Languages

For each type of model used, describe the language, notation, or modeling techniques to be 
used. Each model language is a key modeling resource that the viewpoint makes available. Model 
languages provide the vocabularies for constructing the view. ISO/IEC 42010 does not specify 
how a modeling language is documented. It could be by reference to an existing modeling lan-
guage (such as SADT or UML) or technique (for example, M/M/4 queues from queuing theory); 
by providing a metamodel for the language to define the language’s core constructs; via a tem-
plate that users fill in; or by some combination of these methods.

Viewpoint 
Metamodels

Optional. A metamodel presents the conceptual entities, their attributes, and the relations that 
comprise the vocabulary of a type of model. There are different ways of representing ontologies 
(such as entity-relation diagrams, class diagrams). Any metamodel should capture:

• Entities. What are the major sorts of elements present in this type of model?

• Attributes. What properties do entities in this type of model possess?

• Relationships. What relations are defined among entities within this type of model?

• Constraints. What kinds of constraints are there on entities, attributes, or relations within this 
type of model?

Entities, attributes, relations, and constraints are all architecture elements in the sense of ISO/IEC 
42010.

Conforming
Notations

Identify an existing notation or model language to be used for this type of model.

Model
Correspondence 
Rules

The viewpoint may specify model correspondence rules. Each one may be documented here.

Operations on 
Views

Operations define the methods that may be applied to views and their models. Operations can 
be divided into categories:

• Creation methods are the means by which views are prepared using the viewpoint. These 
could be in the form of process guidance (how to start, what to do next), work product guid-
ance (templates for views of this type), heuristics, styles, patterns, or other idioms.

• Interpretive methods provide the means by which views are to be understood by readers and 
system stakeholders.

• Analysis methods are used to check, reason about, transform, predict, apply, and evaluate 
architecture results from this view.

• Implementation methods capture how to realize or construct systems using information from 
this view.

Examples Optional. This section provides examples for the reader.

Notes Optional. Any additional information users of the viewpoint may need.

Sources What are the sources for this viewpoint, if any? This may include author, history, literature refer-
ences, prior art, and more. 

Figure E.2
Template for a viewpoint
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One of the goals for the joint revision of ISO/IEC
42010:2007 was to align with existing ISO architecture efforts,
specifically GERAM (ISO 15704 2000) and RM-ODP (ISO/IEC
10746-2 1996). The use of these standards, and existing archi-
tecture approaches such as Kruchten’s “4+1” approach
(Kruchten 1995), Zachman’s Architecture Framework (Zachman
1987), and even the DoD Architecture Framework (DoDAF
2007), underscores the fact that many (if not most) practicing
architects operate within an architecture framework. Each of
these approaches could be considered as defining a set of view-
points, and in fact it was the existence of such approaches that
motivated the separation of viewpoint from view.

The standard also establishes requirements for creating and
documenting architecture frameworks. In the terms of the
standard, an architecture framework specifies a set of stakehold-
ers, a set of concerns, and viewpoints covering those concerns. 

E.1.2 42010 and Views and Beyond

If you want to use the Views and Beyond approach to produce
an ISO 42010-compliant architecture document, you certainly
can. The main additional obligation is to choose and docu-
ment a set of viewpoints and (to a lesser degree) address ISO
42010’s required information content. Table E.1 summarizes
the information required by the ISO 42010 standard and how
the Views and Beyond approach addresses each one. 

ADVICE

In ISO 42010, it is natural to talk about (for example) a “safety view” or a “secu-
rity view.” These are views (following from viewpoints) addressing the safety and
security concerns, respectively, of various stakeholders. In the Views and
Beyond approach, it is more natural to talk about a “service-oriented view” or a
“layered view.” In the Views and Beyond approach, you can put together a
package of documentation for a specific set of stakeholders based on their
needs by choosing the most applicable views, or even the most applicable view
packets from within the most applicable views, and assembling those. The
“What It’s For” section of the corresponding style guides will help you choose.
You can physically package those together to produce, say, a safety or security
documentation “view.”

To satisfy the obligation of ISO 42010 of documenting a set of viewpoints, use
the information in the “What It’s For” section of the style guide. See the intro-
duction to Part I.

To satisfy the information content required by ISO 42010, use the templates
described in Chapter 10.

The Rational Unified 
Process and Kruchten’s 
“4+1” approach are dis-
cussed in Section E.2.

DoDAF is discussed in 
Section E.5.

ISO 42010 defines an 
architecture framework
as “conventions and 
common practices for 
architecture description 
established within a 
specific domain or 
stakeholder community.”
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Table E.1 ISO 42010 information requirements and how we address them

ISO 42010 Information Requirement Views and Beyond Location

Identification and overview information, as 
appropriate to stakeholder, project, and orga-
nization needs. For example: summary, con-
text, glossary, references, and change 
history.

Several items in this category amount to 
good bookkeeping. Context is addressed in 
the context diagrams; the other items are 
prescribed in the standard organizations of 
Chapter 10.

Stakeholders and concerns. Identify architec-
turally relevant stakeholders. At a minimum 
consider customers, users, operators, 
acquirers, suppliers, developers, and main-
tainers. Identify their architecture-related 
concerns. At a minimum consider system 
purposes, suitability of architecture to meet 
purposes, feasibility of construction, poten-
tial risks throughout life cycle, maintainability, 
deployability, and evolvability. 

The documentation roadmap called for in 
Section 10.2 captures information about 
stakeholders and their concerns—specifi-
cally, how they will use the documentation 
package. For ISO 42010 compliance, make 
sure the stakeholders and concerns include 
those named in the left-hand column.

Viewpoints. For each viewpoint, the following 
must be specified:
• The viewpoint name
• The subset of identified architecture-

related concerns (from above) framed by 
this viewpoint

• The identification of each type of architec-
ture model used by this viewpoint

• For each type of model: the languages, 
notations, rules, constraints, modeling 
techniques, analytical methods, or opera-
tions to be used in creating and interpret-
ing the view 

• Rationale for selection of the viewpoint
• Any additional information, such as com-

pleteness and correctness checks, evalua-
tion criteria, heuristics, or guidelines

We define several commonly used module, 
C&C, and allocation styles. Each style guide 
defines the concepts—elements, relations, 
and properties—that should be used in doc-
umenting a system in accordance with the 
style. It contains information about useful 
notations and modeling techniques for that 
style. Each style guide also contains a sec-
tion noting what it’s for, which should help 
users in deciding what concerns will be 
addressed by the style. 
All of this information in a style guide consti-
tutes an implicit viewpoint definition, but the 
standard requires including an explicit set in 
your document, either directly or by refer-
ence. You can easily accommodate this 
requirement by adding a section for view-
point definitions to the “documentation 
beyond views” template in Section 10.2. 
There, you can reproduce or refer to the spe-
cific style guide information as needed.

Views. Each view must include:
• A view identifier
• Overview and configuration information as 

required by project or organization
• One or more architecture models covering 

the whole system from the viewpoint

Chapter 10 discusses the information that 
should be documented for a view.

A record of all inconsistencies among views, 
preferably accompanied by an analysis of 
consistency among all views.

In Chapter 6, we discuss techniques for doc-
umenting relations among views, which is 
then recorded in the “documentation beyond 
views” part of the package, as detailed in 
Chapter 10.

Rationale for the key architectural decisions 
made, preferably accompanied by evidence 
of alternatives considered and rationale for 
the choices made.

Reserved spots for rationale are provided in 
each view, in the documentation beyond 
views, and in interface documentation.



ptg

406 ■ Epilogue: Using Views and Beyond with Other Approaches

E.2 Rational Unified Process/Kruchten 4+1
The Rational Unified Process (RUP) introduces a five-view
approach to documenting software architectures, based on
Kruchten’s 4+1 approach.

1. The logical view contains the most important design classes.

2. The implementation view captures the architectural deci-
sions made for the implementation.

3. The process view documents the tasks—processes and
threads—involved.

4. The deployment view documents the various physical
nodes for the most typical platform configurations.

5. The use case view or “plus-one view” contains use cases and
scenarios of architecturally significant behavior.

The RUP describes the use case view as a representation of
an architecturally significant subset of the use case model,
which documents the system’s intended functions and its envi-
ronment. The use case view serves as a contract between the
customer and the developers and represents an essential input
to activities in analysis, design, and test. It also serves as a
design check on the other views: It is incumbent upon the
architect to show how each of the other views correctly sup-
ports the use cases in the use case view. If they do, then this sug-
gests that they are correct and consistent with each other.

E.2.1 RUP/4+1 and Views and Beyond

If you want to use the Views and Beyond approach to docu-
ment a 4+1 architecture, you can easily do so.

• Documenting a logical view of the RUP can be done by
using certain module or C&C styles. A union of the decom-
position style, the uses style, and the generalization style
allows you to represent the structural part of the logical view
by using such elements as subsystems and classes, whereas a
C&C style (which one depends on the design you chose)
allows you to represent the runtime aspects by using compo-
nents and ports.

• An implementation view can be represented by using a com-
bination of the decomposition style, the layered style, the
uses style, and the generalization style. The implementation
view represents implementation elements, such as imple-
mentation subsystems and components. The RUP distin-
guishes between a design and an implementation model to
separate general design aspects from implementation aspects
introduced by the use of a specific programming language.

The decomposition 
style is covered in 
Section 2.1.

The uses style is cov-
ered in Section 2.2.

The generalization style 
is covered in Section 2.3.
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To describe the relations between elements of the design
model and the implementation model, the mapping should
be documented. To show how the implementation elements
are stored in a file system during development, use the
Views and Beyond implementation view.

• The RUP process view provides a basis for understanding
the process organization of a system, illustrating the decom-
position of a system into processes and threads and perhaps
also showing the interactions among processes. The process
view also includes the mapping of classes and subsystems
onto processes and threads. To accommodate the process
view, define a style that uses components such as those
defined in the C&C communicating-processes style—task,
process, thread—and specific refinements of the communi-
cation connectors, such as RPC or broadcast. To describe
the relations between processes and elements, such as sub-
systems and classes, the mapping among them should be
documented.

• A RUP deployment view describes one or more physical net-
work—hardware—configurations on which the software is
deployed and runs. This view also describes the allocation of
processes and threads—from the RUP process view—to the
physical nodes. The deployment style is a good match for
the RUP deployment view. The RUP deployment view also
allows you to assign deployment units to nodes. A deploy-
ment unit consists of a build—an executable—documents,
and installation artifacts. It is a packaging of implementa-
tion elements for selling and/or downloading purposes. To
achieve this, you can define a style showing implementation
elements—subsystems/classes—and how they are packaged
as deployment units.

Finally, use cases are a vehicle for describing behavior, and
behavior is a part of every view’s supporting documentation.
Consequently, you can document use cases as behavior docu-
mentation for the system or parts of it. You can also document
the use case view in the mapping to requirements.

Table E.2 reconciles the prescribed Rational Unified Process
views with our advice in this book.

Beyond its five views, RUP does not prescribe other kinds of
documentation, such as interface documentation, rationale,
or behavior of ensembles. It doesn’t call for a documentation
roadmap, a mapping between views, view templates, or style
guides. But it certainly does not rule these things out, either, so
don’t forget to add them.

The implementation 
style is discussed in 
Section 5.5.

The C&C communicating-
processes style is cov-
ered in Section 4.6.1.

The deployment style is 
covered in Section 5.2.

Behavior documentation 
is covered in Chapter 8.

The mapping of an 
architecture to its 
requirements is covered 
in Section 10.3.
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You are free to consider additional views that may be impor-
tant in your project’s context, and you should do so. You
should augment the primary presentation of each view with
the supporting documentation called for in Section 10.2.1,
and you should complete the package by writing the documen-
tation that applies beyond views, as described in Section 10.2.
The result will be a RUP-compliant set of documentation hav-
ing the necessary supporting information to complete the
package.

E.3 Using the Rozanski and Woods Viewpoint Set
With Nick Rozanski and Eoin Woods

In 2005, the two coauthors of this section, Nick Rozanski and
Eoin Woods, wrote a very useful book on the design and docu-
mentation of software systems architecture (Rozanski and
Woods 2005). In it, they prescribed a useful set of six view-
points (in the ISO 42010 sense) to be used in documenting
software architectures. The six viewpoints, based on an exten-
sion of the Kruchten 4+1 set, are shown in Figure E.3.

The views specified by their viewpoint set are the following:

• The functional view documents the system’s functional ele-
ments, their responsibilities, interfaces, and primary inter-
actions. A functional view is the cornerstone of most
architecture documents and is often the first part of the doc-
umentation that stakeholders try to read. It drives the shape
of other system structures such as the information structure,
concurrency structure, deployment structure, and so on. It
also has a significant impact on the system’s quality proper-
ties, such as its ability to change, its ability to be secured, and
its runtime performance.

Table E.2 Relating Views and Beyond to RUP

To Achieve This RUP View Use This Views and Beyond Approach

Use case view Adopt use cases to specify behavior, either associated with any of 
the views or as part of the documentation beyond views.

Logical view Use a module style that shows generalization, uses, and decompo-
sition for structural aspects, and a C&C style for the runtime 
aspects.

Implementation view Use a module style that contains implementation elements. Use an 
implementation view to show allocation to development files.

Process view Use a style such as the communicating-processes style.

Deployment view Use the deployment style, one of the allocation styles.
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• The information view documents the way that the architec-
ture stores, manipulates, manages, and distributes informa-
tion. The ultimate purpose of virtually any computer system is
to manipulate information in some form, and this viewpoint
develops a complete but broad view of static data structure
and information flow. The objective of this analysis is to
answer the important questions around content, structure,
ownership, latency, references, and data migration.

• The concurrency view describes the concurrency structure of
the system and maps functional elements to concurrency
units to clearly identify the parts of the system that can exe-
cute concurrently and how this is coordinated and con-
trolled. This entails the creation of models that show the
process and thread structures that the system will use and
the interprocess communication mechanisms used to coor-
dinate their operation.

• The development view describes the architecture that sup-
ports the software development process. Development views
communicate the aspects of the architecture of interest to
those stakeholders involved in building, testing, maintain-
ing, and enhancing the system.

• The deployment view describes the environment into which
the system will be deployed, including capturing the depen-
dencies the system has on its runtime environment. This
view captures the hardware environment that the system
needs, the technical environment requirements for each
element, and the mapping of the software elements to the
runtime environment that will execute them.

Figure E.3
The Rozanski and 
Woods viewpoint set (from 
Rozanski and Woods 2005, 
p. 213)
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• The operational view describes how the system will be oper-
ated, administered, and supported when it is running in its
production environment. For all but the simplest systems,
installing, managing, and operating the system is a signifi-
cant task that must be considered and planned at design
time. The aim of the operational view is to identify system-
wide strategies for addressing the operational concerns of
the system’s stakeholders and to identify solutions that
address these.

COMING TO TERMS

Architecture Perspectives

An architecture perspective defines a number of activ-
ities, tactics and guidelines for a set of related quality prop-
erties. For example, a resilience perspective might include
activities such as confirming availability requirements
and schedule; estimating the availability of individual
components; and deriving the overall platform and ser-
vice availability. It might include tactics for achieving high
availability, such as use fault-tolerant hardware; use clus-
tering and load balancing: and use software availability
solutions such as redundant logging and up-to-the-minute
data restoration. Notice that a perspective is somewhat
more restrictive than a viewpoint as defined in ISO 42010.

Architecture perspectives formalize an activity that good
architects do as a matter of course, namely, ensuring that
a system exhibits the right quality attribute properties,
such as resilience, scalability, security, or extensibility.

This typically requires consideration of the system across
a number of its architecture views. For example, achiev-
ing good performance requires consideration of the sys-
tem’s functional and concurrency structures, the way it
manages and accesses information, and how it is
deployed on physical hardware and software.

Having started to design the architecture of the system,
and documented the architecture in a number of views,
the architect therefore applies the perspective to the
views to assess its capabilities against those quality
properties. Applying a perspective does not result in a
new view, but rather, it may result in a number of modifi-
cations to existing views to help address stakeholder
concerns.

An architecture per-
spective is “a collection 
of activities, tactics, and 
guidelines that are used 
to ensure that a system 
exhibits a particular set 
of related quality prop-
erties that require con-
sideration across a 
number of the system’s 
architectural views” 
(Rozanski and Woods 
2005).

See Section 9.1 for 
more information about 
stakeholders and their 
documentation needs.
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Applying perspectives enables the architect to identify
any weaknesses or omissions in the architecture, and to
suggest enhancements or extensions to it. This leads to
insights into the architecture (for example, understanding
better where its single points of failure are), improve-
ments to it (such as adding redundant hardware or software
components to reduce the likelihood of catastrophic fail-
ure), and artifacts (such as service availability models).

If you wish to document perspectives prescribed by the
Rozanski and Woods approach, you can do so by sup-
plementing your documentation as follows:

The template for documentation beyond views includes
a documentation roadmap. Supplement this roadmap
with a description of the perspectives applied to the
architecture. These descriptions can be found in the per-
spective catalog and can be included in the roadmap
directly or by reference. Complement the mapping between
views with a mapping between perspectives and views.
Stakeholders wishing to understand how their concerns
are met can look at the applicable perspectives to see
which views are involved.

The template for a view packet is the place to record
more-detailed information. Capture the explanation for
design decisions that resulted from the application of the
perspective under rationale, and capture references to
the concern that motivated the perspective under other
information.

E.3.1 Rozanski and Woods Viewpoints and Views and Beyond

This set of viewpoint definitions is not prescriptive about the
notations or modeling approaches that should be used in each
view. Instead, the viewpoints define the type(s) of models
expected in each view and the information that should be cap-
tured in each, suggesting possible modeling approaches for
each. Therefore, it is perfectly possible to use this viewpoint set
in conjunction with the documentation approaches described
by the Views and Beyond approach. 

• A functional view contains a functional structure model,
comprising a set of functional elements, interfaces offered
by the elements, connectors between the elements, and
external entities that the system’s elements interact with.
Such a functional view can be documented using a C&C

See Figure 10.4 in 
Section 10.2 for the 
template for documen-
tation beyond views.

See Figure 10.1, in 
Section 10.1, for the 
template for a view.
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style, using components and ports to model the functional
elements and their interfaces and connectors to link them
together.

• An information view may contain a wide variety of models
related to the information in the system, including static
data structure models, information flow models, informa-
tion life-cycle models, and data ownership models. Here,
the data model view directly applies. Data flow can also be
documented as a C&C or module style.

• A concurrency view may contain a system-level concurrency
model, showing architecturally significant process and
thread structures, and a state model, showing the valid states
and transitions of any system elements with complex life
cycles. The concurrency model may contain processes, pro-
cess groups, threads, and interprocess communication
mechanisms. The state models contain the familiar state
machines, made up of states, transitions, events, and
actions. The concurrency model can be documented using
the C&C communicating-processes style, and as mentioned
earlier when discussing documenting behavior, state models
can be naturally captured as state machines.

• A development view may contain a module structure model
(showing how the implementation modules are organized),
common design models (describing system-wide design
conventions), and codeline models (explaining how the
source code is organized and built). Of these, the module
structure model can be very naturally captured using the
module decomposition, uses, or layered styles, while the
allocation implementation style may well be helpful in rep-
resenting a codeline model. The common design model
(dealing with functions such as initialization, termination
and restart, and message logging) can be captured in the
architecture background section of the view packet tem-
plate under assumptions that pertain to the development
environment. These assumptions place design constraints
on the developers to maximize commonality across element
implementations. These constraints might be recorded in
textual form or in the form of design patterns using more
specific notations (such as UML).

• A deployment view may contain a runtime platform model,
showing how the system is deployed to production; a net-
work model, showing its networking requirements; and
technology dependency models, showing the requirements
that the system has on its runtime environment. Of these,

Data model views are 
described in Section 2.6.
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the runtime platform model and network model are both
naturally documented using the allocation deployment
style. The technology dependency models simply record the
technology dependencies of each part of the deployment
environment (that is, required libraries, middleware, and so
on). These can be captured using a uses style (represented
as a simple table).

• Finally, an operational view can contain models relating to sys-
tem installation, system migration strategy, operational con-
figuration management approach, administration, and system
support. These models capture requirements of the operat-
ing environment that influence the architecture. Like any
other requirements, they can be part of the documentation
beyond views. Solutions can be captured in one or more
existing views such as the allocation install style, a C&C repos-
itory style, or the uses style, showing guidelines for monitor-
ing and message logging.

Table E.3 summarizes the discussion.

Table E.3 Relating Views and Beyond to the Rozanski and Woods 
viewpoint set

To Achieve This 
R&W View Use This Approach

Functional One or more C&C styles.

Information Data model style; data flow can be documented as 
a C&C style.

Concurrency C&C communicating-processes style.

Development Decomposition or layered style (to represent the 
structure model). 
Implementation style (to represent the codeline 
model).

Documentation of assumptions (to represent the 
common design model).

Deployment Deployment style (runtime platform and network 
models).
Uses style (technology dependency model).

Operational Install style; operational requirements can be part 
of the documentation beyond views, and solutions 
can be associated with any of the views.

The data model style is 
covered in Section 2.6.

The communicating-
processes style is cov-
ered in Section 4.6.1.

The layered style is cov-
ered in Section 2.4.

The implementation 
style is covered in Sec-
tion 5.3.

Documentation of 
assumptions is part of 
rationale. See Section 6.5.

The deployment style is 
covered in Section 5.2.

Documentation beyond 
views is covered in Sec-
tion 10.2.
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E.4 Documenting Architecture in an Agile Development 
Project

E.4.1 Overview

“Agile” refers to an approach to software development that
emphasizes rapid and flexible development and deemphasizes
project and process infrastructure for their own sake. Figure
E.4 shows the “manifesto” for Agile software development that
has served since 2001 as the movement’s Desiderata.

There are many different methodological instantiations of
the Agile approach. These include Extreme Programming
(Beck and Andres 2004), Scrum (Schwaber 2001), Feature-
Driven Development (Palmer and Felsing 2002), and Crystal
Clear (Cockburn 2004). Practices that show up in one or more
of the Agile methods include the following: 

• User stories. Text specifies functional requirements describ-
ing the actions of people.

• Test-driven development. Developers create automated tests at
the same time they write the tested code. 

• Short iterations. The development plan consists of short iter-
ations (a few weeks); also called sprints. 

• Pair programming. Developers work in pairs, where one is typ-
ing the code and the other reviews the code looking for
defects and ways to improve the design. 

• Refactoring. As part of the implementation cycle, code is
refactored to improve the internal structure and maintain-
ability without altering the externally visible behavior. 

For some, agility is used as an excuse to avoid disciplined
development. The Dilbert cartoon in Figure E.5 represents
this early view of the Agile world.

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

– Individuals and interactions over processes and tools
– Working software over comprehensive documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

Figure E.4
The Manifesto for Agile 
Software Development 
(Agile Alliance 2002a)
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In fact, saying that Agile development is antithetical to doc-
umented development is simply not true, if indeed it ever was. 

A related misconception is that in Agile, coding starts on day
one of the project. In practice, the first iteration can go by with
no production code written at all. This happens because the
team is sorting out design alternatives and conducting technical
experiments with different frameworks, platforms, or technologies.

The key goal of design and modeling in Agile projects is not
to avoid designing, but to avoid “big design up front” (BDUF).
Broad and far-reaching architecture strategies are worked out
up front, but many other design decisions can be deferred until
needed. They can be written down whenever they are made. 

Documented design decisions in Agile projects tend to be (but
are not always) fewer in number and coarser in granularity
than design decisions documented in traditional projects. This
comes about because Agile developers are expected to have
design skills, and Agile designers and architects are expected
to have coding skills. So the communication of design deci-
sions is shorter and denser; it’s rather like telling a story to a
member of your family as opposed to a complete stranger.

E.4.2 Agile Development and Views and Beyond

The Views and Beyond and Agile philosophies agree strongly
on a central point: If information isn’t needed, don’t docu-
ment it. All documentation should have an intended use and
audience in mind, and be produced in a way that serves both.
One of the fundamental principles of technical documentation
is “Write for the reader.” That means understanding who will
read the documentation and how they will use it. If there is no
audience, there is no need to produce the documentation.

Architecture view selection is an example of applying this
principle. The Views and Beyond approach prescribes produc-
ing a view if and only if it addresses the concerns of an explic-
itly identified stakeholder community.

A recent survey shows 
that Agile teams are 
more likely to build 
models than traditional 
teams (Ambysoft 2008). 

Use a standard organi-
zation in order to 
employ documentation 
as a receptacle to hold 
the results of design 
decisions as they are 
made.

The Seven Rules for 
Sound Documentation 
are given in Section P.5. 
of the prologue

View selection is cov-
ered in Chapter 9.

Figure E.5
Agile, as some imagined it. 
(DILBERT: © Scott Adams / 
Dist. by United Feature 
Syndicate, Inc.)
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Another central idea to remember is that documentation is
not a monolithic activity that holds up all other progress until
it is complete. The view selection method given in Chapter 9
prescribes producing the documentation in prioritized stages
to satisfy the needs of the stakeholders who need it now.

Cockburn expresses a similar idea this way: “The correct
amount of documentation is exactly that needed for the
receiver to make her next move in the game. Any effort to
make the models complete, correct, and current past that
point is a waste of money” (Cockburn 2002). The trick is know-
ing who the receivers are and what moves they need to make.
Remember that the receiver might be a maintainer whose job
begins long after the system is first fielded and the develop-
ment team is disbanded.

With that in mind, the following is the suggested approach
for producing Views and Beyond-based architecture documen-
tation using Agile principles:

1. Adopt a template or standard organization to capture your
design decisions.

2. Plan to document a view if (but only if) it has a strongly
identified stakeholder constituency.

3. Fill in the sections of the template for a view, and for informa-
tion beyond views, when (and in whatever order) the infor-
mation becomes available. But only do this if writing down
this information will make it easier (or cheaper or make suc-
cess more likely) for someone downstream doing their job.

Actually, this three-step approach is the entire Views and
Beyond approach in a nutshell: Have a template. Fill it in as
you go. Only write down what’s worth writing down. For an
Agile project, the emphasis shifts to the guidance about not
doing things, which is implied by the “only if” clauses.

Beyond this strategic guidance, you can also use the follow-
ing advice:

• Stop designing as soon as you feel you’re ready to start coding.
Don’t worry about creating an architectural design docu-
ment and then a finer-grained design document. Produce
just enough design information to allow you to move on to
code. Capture the design information in a format that is
simple to use and simple to change—a wiki, perhaps. In the
next sprint, you can expand the existing design as needed
in order to capture design decisions required to implement
the features listed for that sprint.

• Don’t feel obliged to fill up all sections of the template, and certainly
not all at once. We still suggest you define and use rich tem-

See the formula for the 
economics of docu-
mentation in Section 
P.2.4 of the prologue. 

Using a wiki to capture 
an architecture is dis-
cussed in Section 
10.4.2.
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plates because they may be useful in some situations. But
you can always write “N/A” for the sections for which you
don’t need to record the information (perhaps because you
will convey it orally). 

Using a view template such as the one in Section 10.1, the
ultimate simplification is to add the primary presentation
and leave all other sections marked as “N/A”. In Agile
teams, modeling sometimes happens as brief discussions by
the whiteboard. In your view, the primary presentation may
have a digital picture of the whiteboard and nothing more.
Further information about the elements (element catalog),
rationale discussion (architecture background), variability
mechanisms being used (variability guide), and all else will
be communicated verbally to the team—at least for now.
Later on, if you find out that it’s useful to record a piece of
information about an element, a context diagram, rationale
for a certain design decision, or something else, you can
replace the “N/A” with the corresponding piece of informa-
tion.

• If it’s not worth updating the design, throw it away. As an exam-
ple, suppose you created a sequence diagram that became
part of the architecture documentation. In the implementa-
tion, you started off following what’s in the sequence diagram.
However, you found better ways to implement that transac-
tion and the end result turned out to be fairly different from
the sequence diagram. The original diagram fulfilled its pri-
mary purpose by guiding the initial implementation. What
should you do with the diagram now? You can:

– Leave it as is. This is the worst option, because now the
documentation will be at odds with the implementation.
Nothing makes a reader flee from documentation faster
than the discovery that it is out of date, and now the
reader won’t trust any other part of the architecture doc-
umentation, either.

– Update the diagram. This is the ideal option, given you
have time for that. The updated diagram will help main-
tainers who will need to understand that part of the
implementation.

– Remove or cross off the diagram. This option is the realistic
choice in many projects. The diagram is out of date;
you’re better off removing it or marking it as out of date
or no longer authoritative (Figure E.6 shows an example)
so it won’t mislead readers of the documentation. In
Agile projects, code, code comments, and associated unit
tests often serve as the authoritative documentation for
local (element-specific) designs.

The fourth principle of 
sound documentation 
in the prologue tells us 
that it’s better to write 
“N/A” or “TBD” than 
leave sections blank. 
You shouldn’t remove 
the section headers 
either; otherwise, your 
document will end up 
with a different structure 
than the template.

Sequence diagrams can 
be used to document 
behavior. Sequence 
diagrams are covered in 
Section 8.3.2.
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• Many times, sketches are all you need. Don’t spend time crafting
the neatest diagram using the latest and richest notation
available. Don’t spend money on sophisticated modeling
tools if you just need to draw simple diagrams. In many
Agile projects, especially the ones with small, collocated
teams, the true value of design diagrams comes from draw-
ing them, which forces you to think through the issues; once
the issues are solved, the documentation can be refined.
Many times the design is represented as a sketch on a white-
board or piece of paper. Figure E.7 shows an example. 

If a sketch successfully 
conveys the design to 
the development team, 
you can use it as the pri-
mary presentation in an 
architecture view. 

Figure E.6
The architect decided not 
to update this diagram, but 
he didn’t want to delete it 
either. So he marked the 
diagram to prevent others 
from consuming out-of-
date information.

Figure E.7
Sketch of a C&C view on 
the whiteboard
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E.5 U.S. Department of Defense Architecture 
Framework
With Don O’Connell

E.5.1 Overview of DoDAF

The DoDAF is the U.S. Department of Defense’s framework
standard on how to document an architecture. According to
the DoD:

The DoDAF provides the guidance and rules for developing,
representing, and understanding architectures based on a com-
mon denominator across DoD, Joint, and multinational bound-
aries. It provides insight for external stakeholders into how the
DoD develops architectures. The DoDAF is intended to ensure
that architecture documentation can be compared and related
across programs, mission areas, and, ultimately, the enterprise,
thus, establishing the foundation for analyses that supports
decision-making processes throughout the DoD.

The DoDAF defines a set of products that act as mechanisms for
visualizing, understanding, and assimilating the broad scope
and complexities of an architecture description through
graphic, tabular, or textual means. These products are orga-
nized under four views: [operational view (OV), systems and
services view (SV), technical standards view (TV), and all-view
(AV)]. Each view depicts certain perspectives of an architecture
as described below.

The OV captures the operational nodes, the tasks or activities
performed, and the information that must be exchanged to
accomplish DoD missions. It conveys the types of information
exchanged, the frequency of exchange, which tasks and activi-
ties are supported by the information exchanges, and the
nature of information exchanges. . . .

The SV captures system, service, and interconnection function-
ality providing for, or supporting, operational activities. DoD
processes include warfighting, business, intelligence, and infra-
structure functions. The SV system functions and services
resources and components may be linked to the architecture
artifacts in the OV. These system functions and service resources
support the operational activities and facilitate the exchange of
information among operational nodes. . . .

The TV is the minimal set of rules governing the arrangement,
interaction, and interdependence of system parts or elements.
Its purpose is to ensure that a system satisfies a specified set of
operational requirements. The TV provides the technical sys-
tems implementation guidelines upon which engineering spec-
ifications are based, common building blocks are established,
and product lines are developed. It includes a collection of the
technical standards, implementation conventions, standards
options, rules, and criteria that can be organized into profile(s)
that govern systems and system or service elements for a given
architecture. . . .

In this section, all quoted 
material and figures 
come from DoDAF 2007 
(online at 
www.defenselink.mil/
cio-nii/docs/
DoDAF_Volume_I.pdf). 

The U.K. Ministry of 
Defence employs a 
similar framework 
called MoDAF.

www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf
www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf
www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf
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[The AV captures the] overarching aspects of an architecture that
relate to all three views. The AV products provide information
pertinent to the entire architecture but do not represent a dis-
tinct view of the architecture. AV products set the scope and
context of the architecture. The scope includes the subject area
and time frame for the architecture. The setting in which the
architecture exists comprises the interrelated conditions that
compose the context for the architecture. These conditions
include doctrine; tactics, techniques, and procedures; relevant
goals and vision statements; concepts of operations (CONOPS);
scenarios; and environmental conditions.

The relations among these views are shown in Figure E.8.

Figure E.8
All-view describes the over-
all context of the system. 
Operational views are 
largely contextual, con-
cept-of-operations, and 
capability diagrams and 
tables. Systems and ser-
vices views are largely the 
nodes and interconnectiv-
ity, with numerous products 
showing various functions 
and behaviors. Technical 
standards views are about 
current and future technical 
standards.

All-View
Describes the Scope and Context (Vocabulary) of the Architecture

Operational 

View

Identifies What Needs to Be 

Accomplished and Who Does It

Systems and 

Services View

Relates Systems, Services, and 

Characteristics to Operational Needs

Technical Standards 

View

Prescribes Standards 

and Conventions

• What Needs to Be Done
• Who Does It
• Information Exchanges 
 Required to Get It Done

• Systems and Services That 
 Support the Activities and 
 Information Exchanges

• Specific System 
 Capabilities Required to 
 Satisfy Information 
 Exchanges

• Technical Standards Criteria 
 Governing Interoperable 
 Implementation/Procurement 
 of the Selected System 
 Capabilities
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E.5.2 DoDAF and Software Architecture

Although DoDAF is quite reticent about pronouncing what
kind of architecture it was intended to capture—software? sys-
tem? enterprise?—it is quite clear that it was not intended to
capture software architectures. 

Generally speaking, DoDAF views provide the following rel-
evant software architecture information.

1. Context and scope of the architecture

2. Key capabilities provided by the system, the key mission
threads, the operational nodes and their mission activities

3. The system nodes and primary data flows, the networks that
connect those nodes, and the allocation of functionality to
those system nodes

4. Optionally, performance, availability, information assur-
ance, and interoperability behaviors

5. Deployment views, showing major software components
and where they reside

6. Services, along with their capabilities and constraints

E.5.3 DoDAF and Views and Beyond

Table E.4 shows all of the DoDAF products, arranged by type
of view. DoDAF is not a particularly suitable framework for soft-
ware architecture; nevertheless, if you need to produce DoDAF
documents, the rightmost column tells you the place in Views
and Beyond documentation where you can record it.

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to 
capture their information

View
Framework
Product

Framework
Product Name 

General
Description Views and Beyond Equivalent

All View AV-1 Overview and 
Summary
Information

Scope, purpose, 
intended users, 
environment 
depicted, analytical 
findings

This is accounted for in the doc-
umentation roadmap and sys-
tem overview given in the 
documentation beyond views 
section, as well as the analytical 
findings to support rationale for 
major design decisions.

Documentation beyond 
views is covered in Section 
10.2.

Documenting rationale is 
covered in Section 6.5.

AV-2 Integrated 
Dictionary

Architecture data 
repository with defi-
nitions of all terms 
used in all products

Glossary

continues



ptg

422 ■ Epilogue: Using Views and Beyond with Other Approaches

Operational OV-1 High-Level 
Operational
Concept
Graphic 

High-level graphical/
textual description of 
operational concept

This makes a good part of the sys-
tem overview given in the docu-
mentation beyond views.

Documentation beyond views is 
covered in Section 10.2.

OV-2 Operational 
Node
Connectivity
Description

Operational nodes, 
connectivity, and 
information
exchange need lines 
between nodes

Context diagram in a view packet 
whose scope is the node

Context diagrams are discussed 
in Section 6.3.

OV-3 Operational 
Information
Exchange Matrix 

Information exchanged 
between nodes and 
the relevant attributes 
of that exchange 

C&C view showing information 
exchange

OV-4 Organizational 
Relationships
Chart

Organizational, role, 
or other relations 
among organizations

A work assignment view is similar. 
Showing relations among organiza-
tions in a work assignment view is 
analogous to showing the relations 
among hardware nodes in a deploy-
ment view.

Work assignment views are 
covered in Section 5.4.

Deployment views are covered 
in Section 5.2.

OV-5 Operational 
Activity Model 

Capabilities, opera-
tional activities, rela-
tions among 
activities, inputs, and 
outputs; overlays can 
show cost, perform-
ing nodes, or other 
pertinent information

These are all descriptions of 
required behavior and not of archi-
tecture constructs.

Documenting behavior is 
covered in Chapter 8.

OV-6a Operational 
Rules Model 

One of three prod-
ucts used to describe 
operational activity—
identifies business 
rules that constrain 
operation

OV-6b Operational 
State Transition 
Description

One of three prod-
ucts used to describe 
operational activity—
identifies business 
process responses 
to events

OV-6c Operational 
Event-Trace 
Description

One of three prod-
ucts used to describe 
operational activity—
traces actions in a 
scenario or 
sequence of events

OV-7 Logical Data 
Model

Documentation of 
the system data 
requirements and 
structural business 
process rules of the 
Operational View

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to 
capture their information (continued )

View
Framework
Product

Framework
Product Name 

General
Description Views and Beyond Equivalent
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Systems
and
Services

SV-1 Systems 
Interface
Description,
Services
Interface
Description

Identification of 
systems nodes, sys-
tems, system items, 
services, and service 
items and their inter-
connections, within 
and between nodes

C&C views showing systems, ser-
vices, and interconnections

SV-2 Systems 
Communications
Description,
Services
Communications
Description

Systems nodes, sys-
tems, system items, 
services, and service 
items and their 
related communica-
tions laydowns

SV-3 Systems-
Systems Matrix, 
Services-
Systems Matrix, 
Services-
Services Matrix

Relations among 
systems and ser-
vices in a given archi-
tecture; can be 
designed to show 
relations of interest, 
e.g., system-type 
interfaces, planned 
vs. existing inter-
faces, etc.

Mapping between views; specifi-
cally a mapping between C&C 
views showing systems and C&C 
views showing services. 

Documenting a mapping 
between views is covered in 
Section 10.2.

SV-4a Systems 
Functionality
Description

Functions performed 
by systems and the 
system data flows 
among system 
functions

Functions performed by the system 
and its services can be docu-
mented in a decomposition view.

Decomposition views are 
covered in Section 2.1.

SV-4b Services 
Functionality
Description

Functions performed 
by services and the 
service data flow 
among service 
functions

SV-5a Operational 
Activity to 
Systems
Function
Traceability 
Matrix

Mapping of system 
functions back to 
operational activities 

Mapping to requirements

Mappings to requirements are 
discussed in Section 10.3.

SV-5b Operational 
Activity to 
Systems
Traceability 
Matrix

Mapping of systems 
back to capabilities 
or operational 
activities

SV-5c Operational 
Activity to 
Services
Traceability 
Matrix

Mapping of services 
back to operational 
activities

SV-6 Systems Data 
Exchange
Matrix, Services 
Data Exchange 
Matrix

Provides details of 
system or service 
data elements being 
exchanged between 
systems or services 
and the attributes of 
that exchange

C&C views showing the systems 
and services, and their informa-
tion exchange and performance 
characteristics

continues

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to 
capture their information (continued )

View
Framework
Product

Framework
Product Name 

General
Description Views and Beyond Equivalent
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Systems 
and
Services
(conitnued )

SV-7 Systems 
Performance
Parameters
Matrix, Services 
Performance
Parameters
Matrix

Performance charac-
teristics of Systems 
and Services View 
elements for the 
appropriate time 
frame(s)

SV-8 Systems 
Evolution
Description,
Services
Evolution
Description

Planned incremental 
steps toward migrat-
ing a suite of systems 
or services to a more 
efficient suite, or 
toward evolving a 
current system to a 
future implementation

Rationale supporting architec-
ture decisions made to prepare 
for the evolution

Documenting rationale is 
covered in Section 6.5.

SV-9 Systems 
Technology 
Forecast, 
Services
Technology 
Forecast

Emerging technolo-
gies and software/
hardware products 
that are expected to 
be available in a given 
set of time frames 
and that will affect 
future development 
of the architecture

SV-10a Systems Rules 
Model, Services 
Rules Model

One of three products 
used to describe sys-
tem and service func-
tionality—identifies
constraints that are 
imposed on systems/
services functionality 
due to some aspect 
of systems design or 
implementation

Behavior documentation, part of 
the C&C views showing the ele-
ments whose behavior is being 
documented

Behavior documentation is 
covered in Chapter 8.

SV-10b Systems State 
Transition 
Description, Ser-
vices State Tran-
sition
Description

One of three prod-
ucts used to describe 
system and service 
functionality—identi-
fies responses of a 
system/service to 
events

SV-10c Systems Event-
Trace Descrip-
tion, Services 
Event-Trace 
Description

One of three prod-
ucts used to describe 
system or service 
functionality—identi-
fies system/service-
specific refinements 
of critical sequences 
of events described 
in the Operational 
View

SV-11 Physical Schema Physical implemen-
tation of the Logical 
Data Model entities, 
e.g., message for-
mats, file structures, 
physical schema

Data model view

Data model views are 
covered in Section 2.6.

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to 
capture their information (continued )

View
Framework
Product

Framework
Product Name 

General
Description Views and Beyond Equivalent
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Generally, the following parts are missing from DoDAF to
support a software architecture documentation: 

1. Business environment and business drivers.

2. Architecture requirements in the form of quality attributes,
plus customer inputs and prioritization of these attributes.

3. Architecture patterns and tactics, and the requirements
that they address.

4. Module views showing the build-time relations and depen-
dencies.

5. The SV views show a functional view of the architecture
design. What is missing are the following notions:

a. Infrastructure (messaging, system management, failure
detection and recovery, and so on).

b. Design patterns and other approaches to accomplish
the quality attribute requirements.

c. Dynamic nature of deployments.

d. The OV-5 views are about mapping operational needs
to functions. Software is often not built to these one-to-
one mappings; thus, the mapping is not really possible.
This mapping can be misleading.

6. Detailed software component interfaces. These are typi-
cally missing if the DoDAF views are describing a system of
systems. These are also typically missing if DoDAF views are
not constructed by software architects.

7. C&C view showing processes and threading of the software
components. The notion of threads, interthread communi-
cations, multiple processes, and protected data is not
supported.

Technical 
Standards 

TV-1 Technical Stan-
dards Profile 

Listing of standards 
that apply to Sys-
tems and Services 
View elements in a 
given architecture

These standards are primarily 
intended to address interoperability 
among systems in the architecture. 
Using Views and Beyond, you can 
list standards in the view(s) in which 
they apply. The “relations” part of 
the element catalog is a good spot 
for this. 

TV-2 Technical Stan-
dards Forecast

Description of 
emerging standards 
and potential impact 
on current Systems 
and Services View 
elements, within a 
set of time frames

Table E.4 DoDAF (v1.5) products and how the Views and Beyond approach can be used to 
capture their information (continued )

View
Framework
Product

Framework
Product Name 

General
Description Views and Beyond Equivalent
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E.5.4 A Strategy to Use DoDAF to Document Software Architecture

DoDAF, for all its attention to architecture, is a poor choice to
represent software architecture. Its views were not created to
support software architecture, and so unsurprisingly, they do a
poor job of it. DoDAF simply speaks a different language, the
language of systems and system-of-systems design. It is possible
to shoehorn DoDAF into use by replacing its notion of “system”
with the software architecture notion of “component,” but if you
do that, make sure that all of your readers are in on the trick. 

A charitable thing to say is that while DoDAF is certainly not suf-
ficient for software architecture, some DoDAF products are useful
in representing software architectures. So here’s a broad strategy:

• Include system-level behavior documentation as part of the
DoDAF operational architecture view, concentrating on use
cases that depict information exchange. Include this docu-
mentation in the “operational activity sequence and timing
descriptions” products.

• Include element-level behavior documentation as part of
the DoDAF systems architecture view. Include this docu-
mentation in the “systems activity sequence and timing
descriptions” products.

• Include allocation views as part of the DoDAF system archi-
tecture view, where “physical resources” are documented.

• Include various module and C&C views as part of the
DoDAF technical architecture view, appealing to it as the
repository of “rules governing the arrangements, interac-
tion, and interdependence of system parts” and “the criteria
that describe compliant implementations.”

• For the information contained in the beyond views part of the
documentation, DoDAF provides slots for overview and sum-
mary information and a dictionary. Use the former to hold the
documentation roadmap, the view template, the system over-
view, and system-wide rationale. The latter can be home to the
mapping between views, the element directory, and the glossary.

Specific DoDAF products that are useful for software archi-
tecture include the following:

• SV-5, which might be the starting point for a 4+1-style logical
view.

• OV-2 and OV-3, where information exchange is covered. 

• AV-1 and OV-1, which provide contextual views, and those
are useful for software.

• OV-7 and SV-11, which show the logical data model and
implementation of the data model. 
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DoDAF  2 .0

As this book was going to publication, DoDAF version 2.0 was on the verge of
release. Its goal, according to the DoD, is 

to include further guidance on planning, developing, managing, maintaining, and
governing architectures through a coherent semantic and structural metamodel.
This version will place greater emphasis on a “data-centric” approach that facilitates
the use of architecture by a wider variety of decision makers and will include addi-
tional information on federation for improved enterprise decisions.

Figure E.9, taken from the DoDAF 1.5 definition document, shows the evolution
of DoDAF.

Figure E.9
Progression culminating in DoDAF version 2.0
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E.6 Where Architecture Documentation Ends
Early in this book, we examined the question of where archi-
tecture ends and nonarchitectural design begins. A related
question is where architecture documentation ends and other
documentation issues begin. Architectures of all stripes exist.
Security architectures, enterprise architectures, reference archi-
tectures, installation architectures: the list is endless.

Some of the terms are clearly in scope. Reference architec-
tures, for instance, appeared in our discussion of documenting
variation points in Chapter 6; the essence of a reference archi-
tecture is its ability to be tailored to the needs of any of a family
of systems. Security architectures, although not addressed as
such, are covered by making sure that a security specialist can
find information of analytical use in one or more of the “nor-
mal” styles, such as those presented in Part I.

But some writers undoubtedly incorporate into architecture
some aspects of system documentation that are outside the
scope of this book. We completely agree with Boehm et al.
(1999) that architecture is not an island and should be related
to other important system development documents; however,
all the organizations, templates, and guidelines in the Views
and Beyond approach were created to capture software architec-
tures. The artifacts we’ve prescribed let you capture “the set of
structures needed to reason about the system, which comprise
software elements, relations among them, and properties of
both,” quoting from our definition of software architecture we
gave at the outset.

How does the guidance in this book relate to architectures
that occupy outlying regions of the topic area? To the extent
that these “architectures” depend on architecture structures as
captured by styles and views, the principles in this book hold.
But writing down system installation procedures, for example,
is not architectural. Nevertheless, the principles for sound
documentation extend well beyond the realm of “mainline”
architectures. Involvement of stakeholders, letting the uses of
documentation guide its contents, controlling repetition, using
a standard organization, avoiding ambiguity: these and other
principles form the foundation of a high-quality documenta-
tion task.

Many other topics in software engineering are related to
documenting software architecture. Chief among them is the
general topic of software architecture. Other topics that you want
to be aware of but that are outside the scope of this book are
architecture description languages, commercial components,
hypertext documentation, and configuration management. 
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E.7 A Final Word
Helping practitioners do their job more effectively is the goal
of this book. We wanted to help an architect answer the ques-
tion, “What do I do now?” Communicating the architecture is
as important a task as creating it, for without effective commu-
nication, the architecture is nothing.

Architectures are too complex to be communicated all at
once, just as a high-dimension object cannot be seen or
grasped in its entirety in our three-dimensional world. As a way
to divide and conquer complexity, views are by far the most
effective means of architecture communication that we know.
Styles and views establish a specialized and shared vocabulary,
allow reuse of technical knowledge and practice from one sys-
tem to the next, and facilitate analysis and prediction. Relating
the views to one another and making the documentation
accessible to its stakeholders completes the communication
obligation to the present stakeholders. Capturing the rationale
and why things are the way they are completes the communi-
cation obligation to the future.

That is the essence of documentation: recognizing and dis-
charging the architect’s obligations to the community of stake-
holders, present and future, whose needs the architecture is
intended to serve. We hope that we have provided guidance
that will lead to high-quality products and that is also practical
and flexible enough to be useful in the resource-constrained,
never-enough-time environments in which all architects labor.

And we look forward to discovering what’s on the horizon.

E.8 For Further Reading
The Internet contains a wealth of information about RUP,
DoDAF, and ISO 42010. A good starting point for RUP is Phil-
ippe Kruchten’s original paper proposing the 4+1 approach
for architecture; it is still the best introduction to that concept
(Kruchten 1995). 

The Web site Agile Modeling Practices, at agilemodeling.com/
practices.htm, is a good repository for information about Agile
practices. Other foundation works for Agile development
include the following:

• Resources produced by the Agile Alliance:

– “Manifesto for Agile Software Development,” at 
agilemanifesto.org (Agile Alliance 2002a)

– The Agile Alliance Web site: agilealliance.org (Agile 
Alliance 2002b) 
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– “Principles Behind the Agile Manifesto,” at 
agilemanifesto.org/principles.html (Agile Alliance 2002c)

• Kent Beck and Cynthia Andres’s book Extreme Programming
Explained: Embrace Change (2nd edition) (Beck and Andres
2004).

• Alistair Cockburn’s books: 

– Agile Software Development (Cockburn 2002)

– Crystal Methodologies (Cockburn 2001)

– Crystal Clear: A Human-Powered Methodology for Small Teams
(Cockburn 2004)

• Stephen Palmer and John Felsing’s book A Practical Guide to
Feature-Driven Development (Palmer and Felsing 2002).

• Ken Schwaber’s book Agile Software Development with Scrum
(Schwaber 2001).

• The Rozanski and Woods viewpoint set is described in detail
in their book Software Systems Architecture (Rozanski and Woods
2005).
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AUML—Unified Modeling
Language

A.1 Introduction
The Unified Modeling Language (UML) is a standardized
visual language for modeling software designs. Originally cre-
ated to merge a number of similar-but-different notations for
object-oriented modeling, UML has grown to become the de
facto standard for representing software designs in systems of
all kinds. The purpose of this appendix is to show how UML
should be used to describe different kinds of information
found in software architecture documentation: module views,
component-and-connector (C&C) views, allocation views, behav-
ior documentation, and interfaces.

The appendix should work as a quick refresher to the UML
diagrams and symbols that you may use or may find in architec-
ture documentation. It’s not intended to be a UML tutorial.
It’s assumed that you are familiar with basic UML concepts
such as classes, packages, dependencies, and messages. 

UML retains many of the characteristics that trace back to its
object-oriented origins, but object-oriented abstractions are not
always the best tools for describing software architectures. For
example, UML has no notation for a layer, context diagram, or
rich connector. Many changes were incorporated in the 2.0 revi-
sion of UML, some motivated by a need for improved architec-
ture abstractions. Language elements such as connectors and
ports were introduced to address some problems. Other ele-
ments were enriched to improve their suitability; for example,
UML components now share many features with classes, such as
the ability to add interfaces and behavioral descriptions. 

The result is that today’s 2.x versions of UML are better suited
to documenting architectures than earlier versions, but there
are still some gaps between UML and architecture abstractions,

For a more in-depth 
explanation of the dif-
ferent UML diagrams, 
consult the UML books 
referenced in Section 
2.9.
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particularly for C&C views. This appendix focuses on guidance
for documenting software architectures using UML, indepen-
dent of whether UML is the best choice for each architecture
documentation piece.

UML provides 14 types of diagrams divided into two catego-
ries: structure diagrams and behavior diagrams. Figure A.1
shows the hierarchy of UML 2.2 diagram types. For each con-
crete diagram type, the small icons indicate the kinds of infor-
mation the diagram is better suited to convey.

ADVICE

You probably won’t find anyone who uses all 14 types of diagrams to document
a software system. It is not a goal to try. Pick a subset chosen to match the mod-
eling tasks you have at hand. Try to use UML diagrams that your readers are
familiar with and express the right meaning. Avoid any temptation to show off
your UML knowledge by using uncommon UML symbols. Otherwise you may
fail to communicate the design.

Section 3.4.3 discusses 
the problems with using 
UML concepts to repre-
sent C&C abstractions.

Figure A.1
UML 2.2 diagram types
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The meaning of any UML symbol can be further specialized
by using stereotypes. A stereotype is a domain-specific or tech-
nology-specific label shown within guillemets (also known as
“angle brackets”) that can be applied to existing UML elements
and relations. The diagrams in this appendix use standard UML
stereotypes where possible. However, several stereotypes are
introduced to represent types of elements or relations specific
to a style (such as <<layer>>).

A.2 Documenting a Module View
Module views show architecture structures where the elements
are implementation units, or modules. Modules should be rep-
resented in UML as packages, classes, or interfaces. The following
subsections describe how UML should be used to document
different module styles and which UML symbols are most appro-
priate for showing modules and their relations in each style.

A.2.1 Decomposition Style

Modules, as described in Chapter 1, are typically represented
in UML as packages or classes. In UML, decomposition of
modules in submodules is shown by nesting packages, classes,
or interfaces inside packages. Figure A.2 shows an example.

A.2.2 Uses Style

This style describes usage dependencies among modules. In
UML, dependencies are shown using the dependency arrow.

The UML standard ste-
reotypes are listed in 
Annex C of the UML 
specifications (version 
2.2). The UML standard 
is maintained by the 
Object Management 
Group (OMG), and the 
specifications can be 
downloaded from 
uml.org.

The module decompo-
sition style is described 
in Section 2.1.

Figure A.2
UML packages and classes 
are used in decomposition 
views.

com.foo.project.gwt.client

controller App ApplicationFacade

ApplicationMediatorview model
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Use the UML usage dependency (<<use>>) to show usage
between packages, classes, or interfaces in a uses view. Figure
A.3 shows examples of uses relations in UML.

A.2.3 Generalization Style

Modules in a generalization view should be represented using
classes and interfaces. Generalization (is-a relation) between
modules is shown in UML using the generalization (class
inheritance) arrow. Another form of is-a relation, interface
realization, is shown using the interface realization arrow. Fig-
ure A.4 shows an example.

A.2.4 Layered Style

UML doesn’t have a built-in notation for layers. Because a layer
is a grouping of modules, the natural alternative is to use pack-
ages, stereotyped as <<layer>>. The allowed-to-use relation
between layers should be shown as a stereotyped UML depen-
dency. Figure A.5 shows an example.

A.2.5 Aspects Style

In aspect-oriented software development, a module that is
responsible for a crosscutting concern (such as international-

The uses style is 
described in Section 2.2.

The generalization style 
is described in Section 
2.3.

The layered style is 
described in Section 2.4.

Figure A.3
UML dependencies are 
used in module uses views. «interface»
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Figure A.4
UML class inheritance (on 
the left) is used in generali-
zation views. UML interface 
realization (on the right) is 
also a kind of is-a
relationship.
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ization) is called an aspect. UML doesn’t have a built-in notation
for aspects. You should use classes, stereotyped as <<aspect>>,
to represent aspects. The crosscuts relation from aspects to classes,
packages, and other aspects can be shown graphically using a
stereotyped dependency arrow. However, because crosscuts rela-
tions are often numerous, a less-cluttered alternative is to use
annotations to define what each aspect crosscuts. Figure A.6
shows an example.

A.2.6 Data Model Style

You should document a data model in UML using a class dia-
gram. Classes should have the standard <<entity>> stereotype.

The aspects style is 
described in Section 2.5.

Figure A.5
Stereotyped packages can 
represent layers in UML.
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«layer»
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«layer»
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Figure A.6
Aspects can be 
represented in UML as 
stereotyped classes. The 
crosscuts relation can be 
shown graphically or (to 
reduce visual clutter) with 
annotations.
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A special constraint can be used to indicate the attributes that
form the primary key (PK) of an entity. Figure A.7 shows an
example.

PERSPECTIVES

UML Class Diagrams: Too Much, Too Little

You may have noticed that UML class diagrams can be
used in nearly all of the module styles covered in Chapter 2,
and you might conclude that a single class diagram can
represent all your module views, and maybe more.

In fact, it can. UML class diagrams are a veritable semantic
smorgasbord, able to show generalization, dependency,
module decomposition, general entity-relationship infor-
mation, aspect modules, and interface realization. Figure
A.8 compiles the UML symbols for the elements and rela-
tions usually found in class diagrams.

Good, right? Class diagrams sound like the Rosetta
Stone of architecture diagrams. What else do we need?

Well, plenty. First of all, using a single class diagram to
represent all possible information undercuts the primary
usefulness of views. Views give us different perspectives
on the various architecture structures of a system, and
one of the greatest sources of confusion in architecture
diagrams is the unplanned, haphazard amalgamation of
various kinds of information in the same diagram. 

Of course, not every view needs to be primitive or stand
by itself. A source of great clarity and insight in architec-

The data model style is 
described in Section 2.6.

Figure A.7
UML classes and their 
associations can be used 
for data modeling. 
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Figure A.8
A summary of UML 
symbols used in module 
views.
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ture documentation comes when a small number of
views are carefully and consciously chosen to be wed,
showing various kinds of information at once and how
they overlap and interplay. 

But what is produced by using all the class diagram’s
relations in a single view? The result would be the “inherits/
depends-on/uses/data model/realizes/decomposition” view,
which—unless your system were very small—would
probably be too busy to read and too bewildering to
understand. Instead, try to document the module views
separately, using the restricted forms of class diagrams
dictated by the module styles. Combine two views only if
it makes sense to do so.

Are class diagrams rich enough to give us all we need in
any module view? No. If your architecture is object-ori-
ented, it’s natural to think of it first and foremost in those
terms: a collection of classes instantiated as objects that
interact at runtime. You might be wondering whether you
really need to document your module view as anything
but that. Maybe, you think, when push com‘es to shove,
the only thing you give your architecture stakeholders is
a set of UML class diagrams. But you need more.

First, trying to represent behavior with a class diagram is
out of the question. You’ll need sequence diagrams,
activity diagrams, state machine diagrams, or other behav-
ior diagrams. Second, class diagrams—even as rich as

Section 6.6 explains 
how to choose and to 
document combined 
views.
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they are—are fundamentally about attributes and opera-
tions of classes, and code relations. Class diagrams
have no way to represent temporal information and are
not suitable to capture design rationale, variability, data
flow, context (what modules are external to the system),
and other important information that should be recorded
in a module view. 

UML class diagrams are a foundational piece of notation
for module-based views. But like all good tools, they
aren’t for every job.

—D.G. and P.M.

A.3 Documenting a Component-and-Connector View
C&C components should be represented using UML compo-
nent instances in object diagrams or component diagrams;
C&C component types should be represented using UML com-
ponents in a component diagram. Component types and
instances should not be represented in the same diagram.

Component types and instances are distinguished in UML
by the same convention used to distinguish classes and objects:
names that do not include a colon (“:”) are types, and names
that include a colon are instances, with the instance name
appearing to the left of the colon and the type name appearing
to the right of the colon. Anonymous instances can be docu-
mented by not including an instance name to the left of the
colon and are typically used when there’s only one instance of
that type or the instance name is not significant.

C&C component ports should be represented using UML
ports. UML provided and required interfaces can be attached
to ports to provide additional information, but this is usually
done on component types, not instances. Ports should have an
identifier and may have a multiplicity indicator. 

Figure A.9 shows examples of representing a component
type and instances. Components should be stereotyped to indi-
cate the name of the corresponding component type from the
style guide used for the view being documented. For example,
in Figure A.9, the Catalog component type that is represented
is a subtype of the server type defined in the client-server style
in Chapter 4.

C&C connectors can be represented in a few ways in UML,
largely depending on the amount of information you want to
document in UML (as opposed to prose) or the degree to
which you want to convey the connector’s semantics. The two

To avoid ambiguity, 
always add UML ports 
to explicitly represent a 
component’s points of 
interaction. You should 
label those ports. If you 
think representing the 
ports in the diagram is 
not necessary (perhaps 
because each compo-
nent has only one port), 
it’s OK to omit the UML 
ports and attach con-
nectors directly to com-
ponents. But use this 
simplification with cau-
tion, and consider men-
tioning your convention 
with a phrase in the dia-
gram’s key. 
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primary options for representing a C&C connector are a UML
connector and a UML component, as shown in Figure A.10. 

1. A UML connector is an undecorated line. The connector’s
type should be denoted by adding a stereotype that identi-
fies it. Unfortunately, UML connectors cannot have sub-
structure, properties, or behavioral descriptions, limiting
what can be documented using UML. For example, because
formal interfaces (like UML interfaces or ports) cannot be
added, connector roles cannot be represented. Their pres-
ence can be indicated by labeling the connector ends.

Figure A.10
C&C connectors represented using a UML connector and a UML component. In the top portion of this figure, a C&C 
connector is represented using a UML connector, with the type of the connector identified by the <<RPC>> stereotype. 
In the bottom portion, the same C&C connector is represented using a UML component. The type of C&C connector is 
identified in this case by the anonymous instance’s type name (:RPC), which is a subtype of the style guide provided 
<<request/reply>> type. The UML component version allows the connector’s roles to be explicitly represented using 
UML ports.
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instances represented 
using UML components. 
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subtype of server from the 
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and required interfaces to 
document its ports. The 
Online Services port 
includes a multiplicity, con-
straining how many 
instances of that port may 
be on any instance of the 
Catalog component type. 
lib1 and lib2 are 
instances of the Catalog
component type. lib1
includes explicit documen-
tation of component ports, 
for example, specifying that 
it has two instances of the 
Online Services port. 
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the number of instances of 
Online Services to be 
documented elsewhere.
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Alternatively, their presence can be inferred when attached
to explicit component ports that unambiguously match a
connector role.

2. A UML component, unlike a UML connector, can have
substructure, properties, and behavioral descriptions, mak-
ing it a better choice when such information needs to be
documented for a C&C connector. UML ports are used to
represent connector roles, just as they are used to represent
component ports.

There are two variations on the UML connector strategy that
can be useful in particular situations; these options are shown
in Figure A.11.

• A navigable end (an arrowhead) can be shown on one end
of a UML connector to identify a direction associated with
an interaction. The documentation should identify the mean-
ing of such arrowheads, as multiple interpretations are often
possible (for example, does it represent the initiation of an
interaction or the direction in which data is passed?). This
option is less useful when connectors represent bidirectional
interactions, such as protocols. Tool support, however, is not
always available for this option (connector tool support in
general is inconsistent). Instead, to use this option, you may
have to use a UML association rather than a UML connector
in order to add a navigable end.

• A UML assembly connector can be used in place of a simple
connector. Assembly connectors are drawn using a ball-and-
socket notation (the explicit connection of the provided
and required interface symbols). This representation maps
naturally to connectors between simple provided and required
interfaces (such as simple call-return connectors). This option

See “Perspectives: 
Quivering at Arrows” on 
page 41, in the prologue.

Figure A.11
Two variations of using a 
UML connector to repre-
sent a C&C connector. The 
top variation uses a naviga-
ble end (the arrowhead) to 
convey the general direc-
tion of the interaction. The 
bottom variation uses the 
ball-and-socket notation 
for an assembly connector 
to convey the attachment 
to provided and required 
interfaces of component 
ports.

adding navigable end to a connector

using the ball-and-socket notation
for an assembly connector
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is less useful when connectors do not match a provided/
required intuition (for example, when an input port of a fil-
ter in a pipe-and-filter architecture does not clearly map to
either a provided or required interface) or when connec-
tors represent bidirectional interactions.

Simple representations, based on UML connectors, are
good options when a connector has well-known semantics and
implementations, such as procedure calls or data-read opera-
tions. When you need to do more than simply identify a con-
nector type, a UML component representation is a good
option. This option allows the explicit representation of con-
nector roles, behavior, and substructure. However, some impor-
tant properties can be represented without resorting to the use
of UML components.

Tagged values can be used, as shown in Figure A.12, to asso-
ciate attribute values with a UML connector. To use this approach,
you create a stereotype for the connector type and define
attributes that become associated with the stereotype. These
attributes are called tagged values in UML and are shown in a
comment box. Some UML tools allow you to create stereotypes
(such as <<JMS>>) and define their attributes with name and
data type (for example, queueID : String; capacity : integer;
persistent : Boolean). Then each time the stereotype is used,
the tool allows you to select the stereotyped element or rela-
tion and enter the values of the attributes in a properties box.
In such cases, comment boxes will not appear in the diagram.

Component or connector substructure should be repre-
sented in UML using nested UML components and UML del-
egation connectors, as shown in Figure A.13. The UML
components representing the substructure of a component
(or connector) are nested within that UML component. The
ports of the outer UML component are associated with the cor-
responding ports of the inner UML components using UML
delegation connectors. A UML delegation connector is shown
as a solid line with an open arrowhead. The arrowhead on a
UML delegation connector should point inward when relating

The relationship 
expressed by UML del-
egation connectors is 
called interface delega-
tion and is described in 
Section 3.2.3. Nesting 
and interface delegation 
are how UML repre-
sents decomposition 
refinement, which is dis-
cussed in Section 6.1.1.

Figure A.12
C&C connectors can be 
represented as stereotyped 
UML connectors with 
tagged values. In this 
example the connector 
<<JMS>> represents the 
use of the Java Message 
Service, which allows you 
to define different kinds of 
message queues.

«sessionbean»
:OrderFillerEJB

«message-driven
bean»

:NotificationsMDB

«JMS»

queueID=NotificationsQueue
capacity=20
persistent=True



ptg

442 ■ Appendix A: UML—Unified Modeling Language

ports that are both “provides” ports, and point outward when
relating ports that are both “requires.”

When documenting a specific C&C view in UML, you should
use a stereotype to identify the type of each component and
connector, ensuring a clear relationship to the component and
connector types defined in the style guides used to create the
view. If application-specific subtypes of these types have been
defined, those types should be identified in the names of the
instances (appearing to the right of the colon). For example,
Figure A.14 shows a UML diagram of a pipe-and-filter view. Fil-
ters are represented as UML components with the <<filter>>
stereotype, and pipes are represented as UML connectors with
the <<pipe>> stereotype. These stereotypes associate each
instance with its type from the pipe-and-filter style guide. Each

The pipe-and-filter style 
is described in Section 
4.2.1.

Figure A.14
UML diagram of a pipe-and-filter view. Filters are shown as stereotyped UML components, and pipes are stereotyped 
UML connectors. Four tagged values (“capacity”, “end-of-data”, “when-full”, and “when-empty”) indicate important 
properties of each pipe. 

capacity = 40
end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 30 sec and retry

capacity = 50
end-of-data = ”EOT” String
when-full = block for 2 sec and retry
when-empty = block for 20 sec and retry capacity = 10

end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 60 sec and retry

capacity = 40
end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 30 sec and retry
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Figure A.13
Substructure of a UML 
component. Delegation 
connector arrows associate 
the external ports with 
ports of internal 
components.
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filter is further associated with an application-specific subtype
of filter, such as XmlToObject or Process Payment. The <<pipe>>
stereotype defines four tagged values to indicate important
properties of pipes.

A.4 Documenting an Allocation View
Allocation views present mappings between software elements
(from module or C&C views) and environmental elements.
Environmental elements are nonsoftware elements (such as
hardware nodes) that are somehow associated to the software
elements of the system being designed. This section provides
guidance on how to document environmental elements in
UML and the mappings between software and environmental
elements.

A.4.1 Deployment Style

The environmental elements of a deployment view are hardware
elements, such as processors, memory, and network elements.
These elements can be represented in UML deployment dia-
grams using UML nodes. A node is a computational resource,
such as a laptop computer, a server machine, a router, or a
mobile device. Figure A.15 shows examples of nodes.

To document a deployment view of your architecture, map
the software elements (elements from a C&C view) to the
nodes representing hardware elements in a UML deployment
diagram. You can connect UML component instances to nodes
using a nonstandard stereotyped dependency (such as <<allo-
cated to>>), as illustrated in Figure A.16. 

When documenting a 
software element in any 
allocation view, be sure 
to use a UML represen-
tation that is consistent 
with how you repre-
sented that same ele-
ment in another view. 
For example, if you doc-
ument module Transac-
tionMgr in a uses view 
with a class, do not rep-
resent the Transaction-
Mgr module in an 
implementation view 
with a package.

You should add a ste-
reotype to each node to 
identify different cate-
gories of computing 
hardware, communica-
tion appliances, and 
other devices, as shown 
in Figure A.15.

Figure A.15
UML nodes are used to 
represent hardware 
elements in a deployment 
view.

«router»
rtr3

«blade server»
srvpatrol

Figure A.16
Using a stereotyped 
dependency to show that a 
component is allocated 
(that is, deployed) to a 
specific node

«allocated to»«component»
: Catalog

«linux quad»
app-srv2a
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In many cases your software system will have a large number
of components deployed to the same hardware node. Trying to
draw all these UML components connected to the nodes may
clutter your UML deployment diagram. In that case, you may
have to resort to documenting the complete allocation of com-
ponents to nodes in a diagram annotation, in the element cat-
alog of the view, or in a table that maps nodes to components. 

Another alternative in representing the allocation of compo-
nents to nodes is explicitly to represent the packaging of com-
ponents into files (such as zip, setup, or jar files) for deployment.
These files should be represented in a UML deployment dia-
gram as artifacts. A UML <<artifact>> is a stereotyped class that
typically represents a file, such as a script, executable, configu-
ration file, bundle file, source file, XML file, or PDF document.
The standard <<manifest>> stereotyped dependency indicates
that a given element (such as a component) is manifested in an
<<artifact>>; that is, the artifact contains the concrete physical
representation of that element. UML also provides a stereo-
typed dependency, <<deploy>>, to indicate that an artifact is
deployed to (that is, installed on) a node. Thus, we can show
that a component is allocated to a node using an artifact as an
intermediary. Figure A.17 shows three equivalent ways to repre-

Figure A.17
Three UML alternatives that show a component that is packaged into an artifact and the node to which the artifact is 
deployed. In the first alternative (top), the <<manifest>> relation shows what components are encapsulated in an artifact, 
and the <<deploy>> relation shows what node an artifact is deployed to. In the second alternative (center), the 
association of components to artifacts is shown via <<manifest>>, and deployment of an artifact to a node is shown by 
nesting. In the third alternative (bottom), deployment of artifacts is shown separately by listing the names of artifacts 
inside a node (this notation is a shorthand for nesting artifacts inside nodes, but it is not supported by some UML tools). 
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sent that allocation in a UML diagram. The criteria to choose
among these options include graphical convenience and sup-
port in the UML tool being used. 

Using the alternatives shown in Figure A.17 will lead you to
a view that combines the deployment and the install styles. This
is because a UML deployment diagram includes some informa-
tion you would typically find in an install view. For example, a
deployment file in a UML deployment diagram is not an ele-
ment of the deployment style as described in Section 5.2, but
rather the install style, as described in Section 5.3. 

Deployment views often also show the communication chan-
nels between hardware elements. In a UML deployment dia-
gram, nodes are connected to each other by communication
paths, as shown in Figure A.18. These paths can have stereo-
types to distinguish different kinds of communication chan-
nels (such as Internet, LAN, wireless, HTTP). Multiplicity can
be used to indicate the number of instances of the node at
each end of the communication path. 

A.4.2 Install and Implementation Styles

The environmental elements that are the focus of the install
and implementation styles described in Chapter 5 are files and
directories. These elements can be represented by UML
artifacts, which are found in UML deployment diagrams. In an
install view, the software elements mapped to the UML artifacts
will typically be UML components in a C&C view. In an imple-
mentation view, the software elements will typically be classes
or packages that are the modules in a module view of the
architecture.

To show that a given software element is mapped to a UML
artifact, we use the same <<manifest>> stereotyped depen-
dency discussed for the deployment style. This <<manifest>>
relationship represents that the artifact contains the concrete
physical representation of the software element. 

Section 6.6 discusses 
combined views.

Figure 5.3, in Section 
5.2.4, is an example of 
a UML deployment 
diagram.

Figure A.18
UML nodes are connected 
by communication paths 
that can optionally show 
multiplicity. 
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app-server2a db-server1
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Web client
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The containment relation that exists for files and directories
in the install and implementation styles can be shown for UML
artifacts by nesting the artifacts. 

Implementation views typically show the tree structure of
files and folders in the development environment; install views
show the tree structure of the installed application. A UML
artifact naturally represents a file, but not a folder (directory),
in the file system. An alternative is to create a stereotype to spe-
cialize the standard UML artifact to represent a file system
directory. Figure A.19 is an example of an install view using reg-
ular artifacts for files and stereotyped <<dir artifacts>> for folders.

A.4.3 Work Assignment Style

In the work assignment style, the environmental elements are
people or organizational units. The software elements are
modules. UML doesn’t have a diagram type that is intended to
show work assignment information. However, if you choose
UML, you should represent a work assignment view with a
package diagram, using actors and packages. Figure A.20 shows
a simple example. The packages represent modules from a

The implementation 
style is described in 
Section 5.5. The install 
style is described in 
Section 5.3. 

Figure A.19
Simple example of a UML diagram for an install view 
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module view, and the actors are the organizational units you’re
assigning the work to. Stereotyped dependencies indicate the
activities being assigned.

ADVICE

Avoid UML Ambiguity Traps

UML offers some very wide-ranging modeling constructs, many of which have
semantics that are open to broad interpretation. That makes it easy to create
UML diagrams that, while correct, fail to convey your architectural decisions
with precision or (worse) convey the wrong notion altogether. Four cases war-
rant special admonition:

• Overusing class diagrams. This topic is covered separately in the sidebar
“UML Class Diagrams: Too Much, Too Little,” in Section A.2.6.

• Using dependency arrows in a C&C diagram. It is possible to use a UML
dependency to represent a connector with an arrow. This is a bad idea!
Dependency is a relation typically found in a module view to depict a static
relation between code elements, not in a C&C view, where relations represent
runtime interactions. A dependency arrow in a C&C view may cause confu-
sion by making your view look like a combination (an unintentional one) of
C&C views and module views. Plus, depends on is usually just the wrong
concept for a C&C view. Architects tend to use this arrow when they want to

Figure A.20
Simple example of work assignment shown with UML symbols 
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imply directionality, as in a pipe-and-filter view, to show flow of information.
But the whole point of that style is to create an architecture where the filters
are independent of each other. Depends on is exactly the wrong thing to say
(and draw) in a pipe-and-filter view. 

• Careless use of associations. In a module view of the architecture, you may
find modules represented as UML classes with UML associations between
them. A navigable association from X to Y usually means that X and Y can
interact in some way, and/or the state of an X object contains one or more
(depending on the multiplicity) references to Y objects. Figure A.21 is an
example of a UML class diagram with associations. We have observed that
architects sometimes use association (improperly, in our opinion) to signify a
uses relation. Before you use an association to connect classes in a module
view, ask yourself whether the association represents just a uses relation. If it
does, represent it using a <<use>> dependency instead. If it doesn’t, make
sure it’s clear to the stakeholders what the associations represent.

• Using types instead of instances. Figure A.22 shows a component type
(Catalog) being deployed to a hardware node. Although UML allows this,
what does it mean? It might mean that all instances of the type are deployed
to the node, or any one instance, or one particular instance, or something
else. You can use a type name as shorthand for one or more instances—as
long as you explain it. If you take this option, add an explanation to the dia-
gram’s key to say what you mean.

Figure A.21
Examples of UML associations between classes. Cardinality (multiplicity) is indicated by a numeric label at 
the association end (“*” represents “many”). The hollow diamond indicates an aggregation association, which 
is a logical part-whole relation. An association may imply a usage dependency relation in the direction of the 
navigability arrow. 
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Ambiguities like these should be avoided wherever possible for the benefit of all
stakeholders of the documentation.

A.5 Documenting Behavior
UML offers a wide variety of diagram types to model system
behavior. Many of them are mentioned in Chapter 8 in this
book. Behavior diagrams complement the structure diagrams
found in module, C&C, and allocation views. For instance, a
UML class diagram showing classes and packages and their usage
dependencies can be the primary presentation of a uses view.
A sequence diagram can describe the behavior of the modules
(classes in the class diagram) when executing a specific trace
or scenario. Table A.1 summarizes the types of behavior dia-
grams available in UML and when to use each one.

Figure A.22
Allocating a component type to a node

«allocated to»
«component»

Catalog

«linuxquad»
app-srv2a

Table A.1 UML behavior diagram types

UML Diagram Definition

Activity diagram Use to describe a work flow of the system as a sequence of actions. It 
can show branch conditions and concurrent actions. 

Sequence
diagram

Use to show the explicit sequence of messages between architecture 
elements and participants of a specific trace. It can show conditional 
segments of the trace, loops, and parallel segments.

Communication
diagram

Use to show the sequence of messages between architecture elements 
in a specific trace. 

Timing diagram Use to capture state changes along a strict time line, as well as timing 
constraints. Particularly useful to model real-time systems.

Interaction over-
view diagram

Use to compose workflows following the activity diagram notation, where 
the actions are themselves interaction diagrams (such as sequence dia-
grams or activity diagrams). 

State machine 
diagram

Use to model the behavior of architecture elements by specifying their 
states and all possible transitions between states.

Use case 
diagram

Use to show actors and the use cases that they can perform. Use cases 
represent functionality of a system or parts of it.
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The following subsections give a brief overview of each type
of UML behavioral diagram and show the most useful symbols
used in each diagram. 

A.5.1 Activity Diagram

UML activity diagrams are flow charts. You should use them to
describe the sequence of actions performed in a given business
process of the system. They are particularly useful to describe
business flows that involve concurrency (that is, actions exe-
cuted in parallel). Figure A.23 shows symbols commonly used
in UML activity diagrams. 

When using an activity diagram to describe the behavior of
the system, you can indicate which architecture element per-
forms each action using activity partitions (“swim lanes”). If
there is an interaction between two swim lanes, there should be
a relation or connector between the corresponding architec-
ture elements in the primary presentation where these ele-
ments are defined. Figure A.24 shows an example of an activity
diagram. In this example, Depth Meter, Dive Tracker, and Ther-
mometer could be modules from a module view or components
from a C&C view. 

A.5.2 Sequence Diagram

The UML sequence diagram should be used to describe graph-
ically the sequence of interactions among architecture elements

Section 8.3.2 describes 
UML activity diagrams 
as a behavioral notation. 

Figure A.23
Symbols used in UML 
activity diagrams 
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in a particular trace or scenario of the system. The participants
in a sequence diagram are UML objects. These participants
may be instances of UML classes that are modules in a module
view, or UML component instances from a C&C view. If the
sequence diagram shows a message from one participant to
another, there should be a <<use>> dependency or a connec-
tor between the corresponding classes or components in the
module or C&C view, respectively. 

The basic notation for sequence diagrams is shown in Figure
A.25. There are also different types of frames that can be used
to organize the diagrams and express conditional flows and
loops. Figure A.26 shows some of the different kinds of frames
available. Figure A.27 shows the notation for timing con-
straints, parallel traces, and coregions, which are useful to
describe behaviors in systems with strict deadlines and concur-
rent tasks. 

Chapter 8 has some 
examples of sequence 
diagrams (see Figures 
8.4 and 8.5). Another 
example can be found in 
the software architecture 
document that accom-
panies this book online 
at wiki.sei.cmu.edu/
sad/index.php/
Workflowmanager_
Module_Uses_View.

Figure A.24
Example of a UML activity 
diagram. It shows the flow 
of activities performed by a 
simple diving computer 
that registers depth of the 
diver (based on the water 
pressure) and the water 
temperature. Depth Meter,
Dive Tracker, and 
Thermometer are 
architecture elements.
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Sometimes an object receives a call when it’s already execut-
ing another call. This reentrant call is represented by an over-
lapping execution occurrence bar, as shown in Figure A.28. 

A special case of a reentrant call is when the object makes a
call to itself. The notation for self calls is not defined in the

Figure A.25
Basic notation for UML 
sequence diagrams actor (usually

starts the
sequence)

object

lifeline

synchronous
message

asynchronous
message

execution occurrence
(object is executing or
waiting for a response)

object
destruction

return
message

Figure A.26
Some of the frames 
available in the UML 
sequence diagram notation
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Figure A.27
UML sequence diagram 
notation for timing 
constraint, parallel traces, 
and coregions 
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UML specifications. A common alternative is to use an overlap-
ping execution occurrence and a self message (see Figure
A.29(a)). Showing the new execution occurrence is especially
useful if you want to indicate other calls that are made within
that execution. A valid simplification is to show the self mes-
sage but omit the overlapping execution occurrence bar (Fig-
ure A.29(b)). The third alternative, also valid, is to simply
indicate in a comment box that an internal call takes place at
that point (Figure A.29(c)).

A.5.3 Communication Diagram

Akin to sequence diagrams, communication diagrams should
be used to describe the sequence of interactions among archi-
tecture elements in a specific trace or scenario. The architec-
ture elements may be objects (instances of classes from a
module view) or component instances from a C&C view. The
notation for UML communication diagrams is straightforward,
as shown in Figure A.30. 

A communication diagram shows a particular trace. There is
a line between two objects if they interact in that trace. The line
is labeled with an arrow, an operation name, and a number 1,
2, 3, and so on, to indicate the order of the interactions. In

Section 8.3.1 contains a 
subsection about com-
munication diagrams, 
with an example.

Figure A.28
Showing reentrant calls in a 
UML sequence diagram

reentrant
call

Figure A.29
Options to show self calls in 
a UML sequence diagram

(a) (b) (c)

call
getConnection()

getConnection()getConnection()
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reality the numbering is not that simple. If an operation call is
number n in the sequence and if the execution of that call trig-
gers another call, this new call will be numbered n.1. If there’s
a third nested call, it will be n.1.1, and so forth successively.
Once all nested calls within the execution of n are complete,
call n+1 takes place. Figure A.31 illustrates this idea, showing a
simplistic communication diagram on the left and the equiva-
lent sequence diagram on the right.

A.5.4 Timing Diagram

A UML timing diagram is particularly useful when you need to
describe how the architecture elements interact and change
state along a strict time line, as in real-time systems. A timing
diagram is a trace-oriented notation; that is, each diagram
depicts the behavior of the architecture for a particular trace
or scenario. 

A timing diagram shows the state changes of one or more
objects along a horizontal time scale. These objects may repre-
sent modules from a module view or component instances
from a C&C view. If the diagram shows multiple objects, in
addition to state changes, the timing diagram can display the
messages between objects that cause state changes. The dia-
gram can also display duration constraints to emphasize partic-
ular timing restrictions. Figure A.32 gives an example of a
timing diagram.

Section 8.3.2 describes 
the difference between 
trace-oriented and 
comprehensive model 
notations.

Figure A.30
Basic notation for UML 
communication diagrams object

1:m()
call between two objects;
the operation called is m();
the number indicates the
ordering of messages in
the diagram

Figure A.31
Notional example of 
communication diagram 
and corresponding 
sequence diagram that 
illustrates how calls are 
numbered in a 
communication diagram 
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A.5.5 Interaction Overview Diagram

UML interaction overview diagrams can be used to describe
behavior in architecture views that show interactions of large-
scale elements. They are useful to compose existing sequence
diagrams, communication diagrams, and other interaction
diagrams.

The interaction overview diagram uses the basic notation of
activity diagrams to show a composition of work flows; the
actions in an interaction overview diagram are replaced with
interaction diagrams or references to interaction diagrams
(defined elsewhere in the documentation). An interaction dia-
gram (see Figure A.1) can be a sequence diagram, a communi-
cation diagram, a timing diagram, or an interaction overview
diagram. Thus, an interaction overview diagram can have deci-
sion diamonds, initial and final nodes, and fork and merge

Figure A.32
Example of UML timing dia-
gram showing the state 
changes and messages for 
a successful “commit” 
transaction in the two-
phase commit protocol 
when there are two partici-
pants (workers). A duration 
constraint indicates the 
coordinator can wait up to 5 
seconds for the “yes” (or 
“no”) response from a 
worker.
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nodes for concurrency. However, instead of rounded rectan-
gles for actions, we have frames that either define an interac-
tion diagram inline or reference an existing one. Figure A.33
is an example of an interaction overview diagram where two
interaction diagrams (sequence diagrams in this case) are shown
inline, and two other interaction diagrams are referenced.

Figure A.33
Example of an interaction 
overview diagram for the 
automatic updates feature 
of an ATM
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A.5.6 State Machine Diagram

State machine diagrams should be used to model the behavior
of architecture elements or groups of elements that go
through multiple states and transitions that are clearly identi-
fiable. A state machine can describe possible states and transi-
tions for modules from a module view, components from a
C&C view, hardware elements or communication channels
from a deployment view, and so on. The UML notation for
state diagrams is very rich. In addition to the basic symbols for
states and transitions, the notation allows the representation of
other useful information, such as the following:

• Initial and final (pseudo-) states.

• Composite states, which are states that have one sub-state
machine or multiple concurrent sub-state machines (multi-
ple regions). 

• A history (pseudo-) state that represents the fact that a sub-
state machine “remembers” its last state when control comes
back to it. A history state has a transition to the “default”
state that becomes active when the sub-state machine is
entered for the first time. 

• Guard constraints on transitions. When the event that fires
a transition occurs, the transition is enabled only if the
guard constraint evaluates to true. 

• Entry and exit actions on states, which represent behavior that
is executed when the state is entered or exited, respectively.

• Effect on a transition, which is behavior executed when the
transition fires. 

Figure A.34 shows the basic elements of the UML notation
for state machine diagrams. Figure A.35 is an example of a
state machine diagram. 

Chapter 8 discusses 
UML state machines as 
a notation for behavior 
documentation. Fig-
ures 8.8 and 8.9 in that 
chapter show other 
examples of UML state 
machine diagrams.

Figure A.34
Notation for UML state 
machine diagrams

event [guard] / effect

H

state

state

transition

initial state
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A.5.7 Use Case Diagram

You should create use case diagrams to specify the features,
operations, or actions available in the system, that is, what the
system is supposed to do. The actors involved in each use case
are also indicated. Actors are human or nonhuman entities
outside the system. A typical use case does not show architec-
ture elements but rather an overview of the behavior the system
provides. Thus, use cases frequently capture the functional
requirements for a system.

Figure A.35
UML state machine diagram for a car stereo that has an AM/FM tuner and a CD player. The events correspond to the 
user action of pressing the power, eject, “FM AM,” or “CD” button, or inserting a disc. The history states tell that the FM 
tuner is activated when the stereo is turned on for the first time, and from then on the system will remember whether the 
radio (FM or AM) or the CD was playing last.

on

Radio playing

FM tuner
playing

CD playing

AM tuner
playing

CD loading

off

H

H

FM AM
button

FM AM
button

CD button
[no CD in]

eject button
[CD in] /
ejectDisc()

eject button
[no CD in]

CD
inserted

FM AM
button

[valid CD]

[invalid CD] /
ejectDisc()

eject button /
ejectDisc()

eject button /
ejectDisc()

FM AM
button

CD button
[CD in]

power
button

power
button

Section 8.3.1 discusses 
use cases as a notation 
for behavior documen-
tation. Figure 8.2 is an 
example of use case 
diagram.
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The basic notation for use case diagrams consists of use case
ovals and actors, and straight lines to show the associations of
actors to use cases. You can draw a rectangle around a group of
use cases to demarcate the functionality of a subject (a system or
subsystem). It’s also possible to use generalization to show hier-
archies of actors or use cases. Figure A.36 shows the basic nota-
tion for use case diagrams. 

Two relations that can be specified between use cases are
these:

• Extend. If use case A extends use case B, the behavior speci-
fied by A is conditionally inserted into B. Imagine that use
case B has an extension point where use case A can be
“plugged in.” If a certain condition—often specified in a
comment note—is true, use case A is executed. Use case B
remains independent of A. Figure A.37 shows an example.

• Include. The behavior of the included use case is inserted into
the including use case(s). The included use case is not
optional and the including use case depends on it. An
included use case can be used to factor out behavior that can
be reused by multiple use cases. Figure A.37 shows an example.

Figure A.36
Symbols used in UML use 
case diagrams use case

actor

association

generalization

subject (system)
boundary

Figure A.37
On the left is an example of 
the extend relation in a 
UML use case diagram. 
The behavior in “Reset 
password” is conditionally 
inserted into an appropriate 
spot in “Sign in,” but “Sign 
in” remains independent of 
“Reset password.” On the 
right is an example of the 
include relation. Behavior in 
“Print receipt” is inserted 
into the behavior of “With-
draw” and “Deposit”—they 
depend on the execution of 
“Print receipt.”

user clicked
“Forgot
password”

«extend»

«include»

«include»

Print
receipt

Withdraw

Deposit

Sign in

Reset
password
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A.6 Documenting Interfaces
Architectural elements of different kinds have interfaces
across which they interact and communicate with each other.
Interfaces of modules and components are represented differ-
ently in UML.

Module interfaces should be documented using UML pro-
vided and required interfaces. When a module provides (that
is, realizes or implements) an interface, this should be depicted
as a provided interface in UML (a lollipop symbol). An inter-
face can also be represented in UML as a stereotyped class,
which makes it easier to see operations and attributes of the
interface. A realization arrow is used to indicate that a given
module provides that interface. Figure A.38 shows both alter-
natives for depicting provided interfaces. 

To indicate that a module requires an interface, you should
use a UML required interface (a socket symbol) attached to
the class representing the module. It is common to avoid doc-
umenting required interfaces as sockets; instead, a provided
interface can be represented by drawing a <<use>> depen-
dency from the module requiring the interface to that inter-
face. Figure A.39 shows both options. 

Interfaces in C&C views are called ports (component inter-
faces) and roles (connector interfaces). Component ports
should be represented using UML ports, optionally aug-
mented with UML interfaces (both provided and required, as
for modules). A port can include any number of provided and
required interfaces, in any combination. UML interfaces can
be attached to a port when you want to indicate the operations
or attributes provided or required at that port. Ports can also
include a multiplicity (typically only on component types),
restricting how many occurrences of that port can be found on
any corresponding instance.

Chapter 7 discusses the 
documentation of soft-
ware interfaces. Section 
7.2.1 provides advice 
on how to represent 
interfaces in diagrams, 
including UML diagrams. 

Section 3.4.3 has an 
advice box about repre-
senting components, 
ports, and connectors 
in UML.

OCL is an OMG stan-
dard, and the specifica-
tions can be found at 
omg.org/spec/OCL.

Figure A.38
Two alternatives for show-
ing in UML that an interface 
(IObservable in this exam-
ple) is provided (that is, 
realized or implemented) 
by a class 
(NavigationSystemStatus)

Subscribe(IObserver
subscriber)

«interface»
IObservable

Navigation
System
Status

IObservable

Navigation
System
Status

provided interface
(lollipop)

interface as 
stereotyped class
and interface 
realization
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Representing connector roles is more difficult in UML.
When connectors are represented using UML connectors,
UML ports cannot be used. Instead, roles can be at best iden-
tified by labeling the connector ends. When connectors are
represented using UML components, however, UML ports can
be used to represent roles (just as for component ports).

ADVICE

UML interfaces describe the syntax of operations and attributes. To capture
semantics, error conditions, and quality attributes of the interface resources,
you can use comment boxes in the diagram or the element catalog of your
architecture view. Semantics and usage constraints on an interface can also be
documented using the Object Constraint Language (OCL). OCL is a formal
declarative language that operates on UML models. 

PERSPECTIVES

UML Tools

The landscape of UML tools is populated with a wide range of commercial and
free tools. When I teach software architecture to practitioners, I’m often asked
what the best UML tools are. I always reply with the usual answer: “It depends.”
And it really does. UML tools these days do much more than create UML mod-
els and diagrams. Some tools offer:

• Reverse engineering

• Code generation

Figure A.39
Two alternatives for 
showing in UML that an 
interface is used (that is, 
required) by a class

Scheduled
Service

Scheduled
Service

Advise(int duration)
Unadvise()

«interface»
ITimer

Logger

required
interfaces
(socket)

the «use» 
dependencies
point to the
required
interfaces

«use»

«use»

ILogging

ILogging

ITimer
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• Model-driven architecture (MDA) compliance

• Compiling and debugging code

• Requirements mining

• Project management aid

• Designing aid

• Support to software development processes (such as the Rational Unified
Process)

• Code complexity analysis and automatic refactorings

• Modeling using other languages (such as Business Process Modeling Nota-
tion, or BPMN, and entity-relationship diagrams)

• Impact analysis

• Calculation of winning lottery numbers (No, not that.) 

I’ve been involved in the evaluation of UML tools several times. As a practitioner,
I work with UML tools on a daily basis. Currently I work with three or four differ-
ent tools in different projects, and I can’t help thinking at times how much I wish
I had that other tool in front of me. Extra time you and your peers spend because
you are not using the best tool for the job usually costs far more than the tool
itself. So, choosing wisely may spare you a lot of pain and cash in the long run. 

There are basically two categories of UML tools (or software design tools in gen-
eral): modeling tools and drawing tools. A UML modeling tool will allow you to
draw UML diagrams and will catalog in a model all elements and relations that
you define in the context of a project. Thus, when you add a message from
object “:A” to “:B” in a sequence diagram, the tool can prompt you to choose
one of the operations you previously defined for class “B” in a class diagram.
On the other hand, a drawing tool or diagramming tool will let you draw UML
diagrams without creating a model underneath. The whiteboard or piece of
paper where you sketch design diagrams is the simplest form of drawing tool.
A sophisticated one is, for example, Microsoft Visio with Pavel Hruby’s UML 2
stencil (available at softwarestencils.com/uml). 

Many organizations apply a lot of effort to adopt a UML tool. Some of them buy
a powerful UML modeling tool, configure the tool on everybody’s machine, train
the people, and then what happens? Months later they realize that only 10 or 15
percent of what the tool offers is used, or most people simply use the tool as a
drawing tool. The first step to choose a UML tool is to define the evaluation cri-
teria, which should be based on well-thought-out requirements. Here are some
recommendations for your next quest for the right UML tool:

• The requirement can’t be just “I need a good UML tool.” The tool should have
the features you need. Examples: you may need a tool that does both reverse
engineering and code generation (round-trip engineering); you may be look-
ing for a UML tool that has timing diagrams—not all UML tools support all
UML diagrams.
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• The requirements should come from the people who are going to use the tool.
Sometimes management buys a tool to “help out” without consulting with the
target tool users.

• The tool should match the skill set of the people who need to use it. 

• Consider the geographic distribution of your team. Some tools have better
support for distributed teams. 

• If you have a software development process in place, the tool should support
the process. It’s much harder to try to adapt the process to fit the tool.

• Think about the cost of tool support. For free tools, a popular product with a
large user base represents greater hopes of finding solutions for the prob-
lems you may encounter.

• Don’t blindly trust tool advertisements and published tool rankings. The eval-
uators ranked the tools against their criteria, not yours. 

As you may have suspected, for several reasons I’ll close this sidebar without
expressing my preference for any UML modeling tool. The fun is in finding the
right one . . . for you. Just remember that the right tool is the one that makes
your job easier. 

—P.M.
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BSysML—Systems
Modeling Language

Although not intended as a dedicated architecture description
language, the Systems Modeling Language (SysML) provides
sufficient constructs to meet many of the needs of a systems
engineer. The engineer can represent the topology of the
hardware and allocate software units to those hardware units.
It is possible to represent the various architecture views needed
to document a software architecture and particularly to show
combined views of hardware and software.

SysML is a general-purpose systems-modeling language intended
to support a broad range of analysis and design activities for
systems-engineering applications. Systems engineers begin
with a general problem statement, evolve toward a more spe-
cific problem statement, and eventually allocate portions of
the problem to various solution elements. SysML is defined so
that sufficient detail can be specified to support a variety of
automated analysis and design tools. 

SysML is a standard maintained by the Object Management
Group (OMG) and was developed by OMG in cooperation
with the International Council on Systems Engineering
(INCOSE). SysML was developed as a profile of the Unified
Modeling Language (UML). Being a profile means that SysML
reuses much of UML, but it also provides the extensions neces-
sary to meet the needs of systems engineers. The extensive
overlap facilitates the interactions between systems engineers
writing in SysML and software engineers writing in UML.
SysML retains the extensibility of UML by including the UML
elements necessary to define the SysML constructs.

The SysML standard defines several diagram types, shown in
Table B.1. The first column lists those UML diagram types that
SysML reuses unchanged. The second column lists those UML

With John D. McGregor
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diagram types that have been modified. The third column lists
those diagram types unique to SysML. As a convention, SysML
diagrams have an enclosing frame with a diagram type designa-
tor. The two or three letters following each name in the table
form the designator used in the enclosing frame of each dia-
gram to identify the diagram type. A SysML model is composed
of several diagram instances, usually from several different dia-
gram types.

B.1 Architecture Documentation
A SysML model is an aggregation of diagram instances, which
together completely describes the target. SysML can be used to
construct an ISO/IEC 42010-compliant description, or it may
describe the architecture of the system in one model. A SysML
model is typically organized using packages, each of which
defines a namespace. A package contains a set of diagrams and
may import diagrams from other packages. SysML supports
the standard definitions of viewpoint and view and has stereo-
types for each one. In SysML, a view is represented as a package
that contains information conforming to a specific viewpoint.
Figure B.1 shows an example of a viewpoint and three con-
forming views described in a SysML block diagram.

B.2 Requirements
SysML provides a means of establishing traceability among
requirements and from requirements to their implementation
as described in the architecture. Figure B.2 illustrates these
relations. Requirements are related to each other for a variety
of reasons, including one requirement being derived from
another. A requirement can be related to the elements that sat-
isfy the requirement through the satisfy relationship. This tech-
nique links the requirements to the architecture; for example,
Payment is represented in both Figure B.2 and Figure B.3.

Table B.1 SysML diagram types

As Is Modified Unique

Sequence (sd) Activity (act) Requirements (req)

State (stm) Block (bdd) Parametric (par)

Use case (uc) Internal block (ibd)

Package (pkg)
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Figure B.1
SysML block diagrambdd [package] block [block]

«view»
Management

«conform» «conform» «conform»

«view»
Computation

«view»
Conceptual

«viewpoint»
Analysis

stakeholders : ”Domain expert, Business analyst”

purpose : “show a structural view”

concerns : “need a complete picture of domain”

languages : “SysML”

methods :

Figure B.2
SysML requirement 
diagram

req [package] Requirements [Requirements ]

«requirement»
Ensure correct fair exchange of product and payment

Text : ” The system must ensure that users receive the correct 
product for the product they submit”

Id : “NF-001”

«requirement»
Turn On Exact Change Light

Text : ” To ensure fairness turn on the exact change 
light when it is not possible to give change”

Id : “NF-001-D001”

«testcase»
ExactChange…

«satisfy»

«block»
Payment

«deriveReqt»
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B.3 Documenting a Module View
Table B.2 provides a mapping of the requirements of a Views
and Beyond module view to the SysML block diagram. The
block is a SysML model element that is similar to a class in
UML. The block diagram illustrates the relations among a set
of blocks, including the usual is a, depends on, and is part of. This
is basic structural information that will be referenced by other
views. Figure B.3 shows an is-a module view using the SysML
block diagram.

Table B.2 Mapping the concepts of a module view to SysML

Module SysML

Module Block

Is-a, is-part-of, depends-on
relations

All these relations

Name, responsibilities, imple-
mentation information

Name, operations, and properties

Properties of relations Name, visibility, and numerous 
other properties, plus the possibil-
ity of defining additional ones

Figure B. 3
Generalization view in 
SysML

bdd [package] block3 [block3]

«block»
Product

operations

constraints

parts
references

values
+ price : float

properties
+ Property1

«block»
Payment

operations

constraints

parts
references

values
# date : EDate

# amountPaid : float

properties

«block»
Currency

operations

constraints

parts
references

values
properties

«block»
Credit

operations

constraints

parts
references

values
properties

Module view

1

+product +payment

«generalization» «generalization»

1
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B.4 Documenting a Component-and-Connector View
The block and internal block diagrams can be used together to
provide a C&C view. The block diagram is used to define the
component types and their relations. The internal block dia-
gram is used to represent the component instances and their
connections. Table B.3 shows the mapping of the require-
ments of a C&C view to SysML. Figure B.4 shows a C&C view of
the blocks in Figure B.3.

Table B.3 Mapping the concepts of a C&C view to SysML

C&C SysML

Principal processing units and 
data stores
Interaction mechanisms

Blocks and parts

Attachments Flow ports and item flows

Connector Connector; connectors connect 
out port to an in port

Name of component, type, and 
other properties
Name of connectors, type, and 
other properties

Name, type, and any properties 
from the block
Name only; other properties can 
be added either by a comment or 
by a stereotype

No fixed topology Topology to fit the problem

Figure B.4
Internal block diagramibd [block] internalBD [IBD]

Instance of 
Product

Instance of 
Payment

approvePayment

product

creditCardPayment
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B.5 Documenting an Allocation View
Systems engineers use allocation relations to associate many
different types of information. SysML has several ways to show
various types of allocation. The most common allocation view
allocates the software to hardware. Table B.4 gives a mapping
of the allocation view requirements onto a SysML internal
block diagram. 

Table B.4 Mapping of allocation view concepts to SysML

Allocation SysML

Software element, environment element A block is stereotyped to represent hardware; 
a description of the software allocated to that 
hardware is added.

Allocated-to relations For this allocation the relation is runs on.

Software element has required properties. 
Environmental element has provided 
properties. 

Both the software element and the hardware 
element have more complete descriptions in 
other diagrams that provide this information.

Properties depend on style. The properties are defined elsewhere.

Topology varies by style. Pairwise match of “from” and “to” elements

Figure B.5
Allocation of software to 
hardware in SysML

ibd [block] internalBD2 [IBD]

«hardware»

coinAcceptor

allocatedFrom

«software»

CoinDriver

«hardware»

VendingProcessor

allocatedFrom

«software»

Vending

«hardware»

billAcceptor

allocatedFrom

«software»

BillDriver

«hardware»

creditCardAcceptor

allocatedFrom

«software»

CardDriver
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Figure B.5 shows the “allocatedFrom” partition in a block
definition. It is also possible to have an “allocatedTo” partition,
giving two-way traceability. Allocations can also be specified on
a large number of other model elements. SysML adds a table
style for allocation; see Table B.5 for an example.

B.6 Documenting Behavior
SysML has two ways to model behavior: the sequence and activ-
ity diagrams. The sequence diagram usually portrays a single
path or scenario. It is unchanged from the UML definition.
The activity diagram, in both SysML and UML, can represent
a complete algorithm, but the SysML activity diagram has
added a number of extensions that support describing a
broader range of behaviors more accurately. These additions
include the ability to represent inputs and outputs at various
points along the paths of the diagram, and the ability to model
an activity as a first-class entity that can appear in a class dia-
gram and can participate in specification/generalization rela-
tions. Figure B.6 shows a small activity diagram.

Table B.5 Table view of allocation

Type Name End Relation End Type Name

Activity CoinDriver From Allocate To Block coinAcceptor

Activity BillDriver From Allocate To Block billAcceptor

Figure B.6
A SysML activity diagramactivity

updateTotal

CancelAction

Behavior description
Hardware event trace

CoinInsertEvent

BillInsertEvent

CreditCardInsertEvent

Cancel
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B.7 Documenting Interfaces
SysML provides an interface model element in the block dia-
gram type. The interface can also have associated constraints.
As with all of the SysML diagram types, constraints may be
added to any of the elements in a diagram, usually to specify
the semantics of the element to which the constraint is
attached. In Figure B.7, a constraint is used to capture the
semantics of one dependency of the View interface. 

B.8 Summary
A number of commercial and open-source tools support
SysML. The Topcased project (topcased.org) provides editors
for both the graphical and XML-based syntaxes of SysML.
Commercial tools such as Rhapsody, MagicDraw, and Enter-
prise Architect support SysML.

At this writing, SysML version 1.2 is the latest release. As the
use of SysML expands, expect that many change requests will
be submitted and the language will evolve to more fully meet
the needs of the systems-engineering community. Changes to
UML may also be reflected in SysML, because they share a
large portion of their metamodels.

Figure B.7
Interface documentation in 
SysML

bdd [package] mvc [mvc]

«dependency»

«dependency»

«dependency»

«interface»
Model

+ notify ()
+ register ()
+ unregister ()

«interface»
View

+ update ()

«interface»
Controller

+ mouseEvent ()
+ keyboard ()

Interface
documentation

{only data needed 
for this view  }
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C
AADL—

The SAE Architecture
Analysis and Design

Language

C.1 Introduction
The Architecture Analysis and Design Language (AADL) (SAE
AADL 2010) was developed as an SAE International industry
standard with participation from European and U.S. avionics,
aerospace, automotive, and medical device industry. SAE Inter-
national is the largest standards provider for the avionics and
automotive industry. AADL was first approved by more than 20
member organizations and published in November 2004 (SAE
2004/2009). In January 2009 a revision was published as SAE
document AS5506A, based on feedback from industrial expe-
rience with AADL. 

The AADL standard defines a textual and graphical lan-
guage to represent the runtime architecture of software sys-
tems as a component-based model in terms of tasks and their
interactions, the hardware platform the system executes on,
possibly in a distributed fashion, and the physical environment
it interfaces with, such as a plane, car, medical device, robot,
satellite, or collections of such systems. This core language
includes properties concerning timing, resource consumption
in terms of processors, memory, network, deployment alterna-
tives of software on different hardware platforms, and trace-
ability to the application source code. AADL is extensible
through user-defined properties and sublanguage annexes.
The standard includes a set of annex documents published as
SAE AS5506/1 (SAE 2006) that defines the AADL Meta-Model
and XMI model interchange format for AADL, as well as the
Error Modeling Annex as a standardized extension to support
fault modeling and reliability and dependability analysis. Other
extensions, such as for security, behavior, and architectures such
as ARINC653 exist as draft standards and working documents.

With Peter Feiler
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A UML profile of AADL is being standardized jointly with an
Object Management Group (OMG) initiative (OMG 2009).

AADL provides several categories of components: 

• A generic abstract component used for conceptual modeling
and for specifying architecture templates or patterns

• Software components such as the following:

– Thread to represent schedulable concurrent tasks

– Thread group to support grouping of threads into groups
with a common interface

– Process to represent protected address spaces

– Data to model application data types and static data com-
ponents

– Subprogram and subprogram groups to represent applica-
tion functions and libraries of functions

• Hardware components such as the following:

– Processor to execute threads

– Virtual processor to represent virtual machines and hierar-
chical schedulers

– Memory to represent storage hardware

– Bus to represent buses and networks used to support
communication between hardware components

– Virtual bus to represent protocols and virtual channels

– Device to represent components of the physical system
such as an engine or a camera

• System to support hierarchical grouping of both software
and hardware components 

The AADL standard associates specific semantics to each of
the component categories; for example, it defines the execu-
tion semantics of threads in terms of a hybrid automaton.
AADL imposes a containment relationship on components of
different categories. For example, threads and thread groups
must be contained in a process. Processes and hardware com-
ponents and system components can be contained in system
components. Interaction relations are expressed through con-
nections, and associations are expressed through reference
properties.

The property and annex annotations of the AADL model
support the generation of analytical models for different qual-
ity attributes from the same architecture model, as shown in
Figure C.1 (Lewis and Feiler 2008). 
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C.2 Documenting a Module Style
Although AADL does not use the term “module,” AADL can
represent units of implementation and relations among them.
An AADL model is organized into packages, each of which
defines a namespace. Packages can be placed into a nested
naming hierarchy similar to Java packages. A package contains
component specifications and may specify use of components
from other packages. A package has a public part containing
component specifications accessible to other packages and a
private part containing component specifications local to the
package. The package and its component specifications are
maintained in an XMI representation based on the standard-
ized AADL Meta-Model and have both a textual and graphical
presentation. The graphical presentation may show subsets of
the underlying model according to a specific view point. 

Component types can be defined in terms of other compo-
nent types through an extends relation (expressed by the
extends keyword in textual AADL). This relation corresponds
to the generalization concept in UML. This permits an incom-
plete component type that acts as a template to be refined by
completing the specification of features and properties, and to
be extended with additional features. These component types
effectively represent a family of interfaces for a component. 

Multiple component implementations can be associated
with a component type through a realization relation expressed
by naming the type as part of the implementation specifica-
tion. They represent variants of a component. Implementa-
tions themselves can be refinements and extensions of other

Figure C.1
Multiple dimensions of 
architecture analysis in 
AADL

ARCHITECTURAL
MODEL

REAL-TIME
PERFORMANCE
Deadlock/Starvation
Latency
Execution Time/Deadline

SECURITY
Intrusion
Integrity
Confidentiality

DATA QUALITY
Temporal Correctness
Data Precision/Accuracy
Confidence

RELIABILITY
& SAFETY
MTBF
FMEA
Hazard Analysis

RESOURCE
CONSUMPTION
Bandwidth
CPU Time
Power
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implementations. These incomplete component types and
component implementation can be explicitly parameterized.
This allows us to model architecture patterns, reference archi-
tectures, and families of system architectures (Feiler et al.
2004, Feiler 2007, Feiler et al. 2009).

Figure C.2 shows the specification of a landing gear with fea-
tures indicating that it requires access to an electrical power
source, a hydraulic power source, and a signal flow. The com-
ponent as well as its features can have properties. In our example,
the landing gear has a weight property, a property providing
traceability to a requirement, and an indication of the
intended tier in a multi-tier architecture. The properties of the
landing gear features indicate their electrical and hydraulic
power requirements.

A graphical view of this component specification is shown in
Figure C.3. It shows the landing gear with its features on the
right. At the bottom is a property viewer that shows the prop-
erties associated with the landing gear specification. You can
create a new component specification by selecting the appro-
priate component category from the palette on the left and by
adding features from the palette into the component type.

Users can define data types using the AADL data component
type. Such data type specifications can be placed in a separate
package, which we call DataDictionary in our example in Fig-
ure C.4. This specification may characterize the data type in
source code with properties relevant at the architecture level,
such as the size of the data type, its source file, its base type rep-
resentation, and constraints on the data value and its measure-
ment unit. Data component types can have provided subprogram
features to reflect methods on classes. The internal details of
such data types may have been declared in a programming lan-
guage or expressed in a data modeling notation such as UML
class diagrams, or they can be expressed in AADL.

system LandingGear
  features
    ElectricalSupply: requires bus access ElectricalPower
        { SEI::PowerBudget => access 6000.0 w;};
    HydraulicPower: requires bus access HydraulicPressure {
      SAVI:: PressureBudget => access 300.0 psi;
      };
    Signals: requires bus access SignalFlow;
  properties
    SAVI::requirement => "Req 3";
    SEI::NetWeight => 30000.0 kg;
  SAVI::SystemTier => tier2;
end Landing Gear

Figure C.2
Specification sheet of a 
landing gear
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A component implementation acts as a blueprint of the real-
ization of a component. Figure C.5 illustrates such a blueprint
for the implementation of a flight manager process. It consists
of several threads as subcomponents of the process. Connec-
tions indicate how these threads communicate with each other
and with components outside the process through the features
of the process interface, which are shown on the left. In this
case the port group graphic is expanded to show the elements
of the port group, such that individual ports of the port group
can be connected. 

package DataDictionary
    public
  data NavSignalData
  properties
    Source_Data_Size => 2 Bytes;
    Source_Text => ("DataDictionary.java");
    Data_Model::Base_Type => data BaseTypes::uint16;
    Data_Model::Real_Range => 0.0 .. 255.8;
    Data_Model::Measurement_Unit => "km";
  end NavSignalData;

Figure C.4
User-defined data types

Figure C.3
Graphical view of 
component specification
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C.3 Documenting a Component-and-Connector View
Each AADL component category has well-defined semantics,
many of which correspond to components in a component-
and-connector (C&C) view. For example, AADL threads model
concurrent tasks or active objects that represent sequential
execution of source code. A thread is bound to a virtual proces-
sor or processor for execution. AADL threads can be dis-
patched periodically or triggered by events or the arrival of
messages. In the latter case, a thread may execute aperiodically,
that is, in response to the arrival of an event or message. If the
thread is already active, newly arriving events or messages are
queued. A thread may execute sporadically; that is, it will respond
to events and messages, but its execution will be limited to a
maximum rate. A thread may have a dispatch protocol called
timed; that is, it will respond to events or messages like an ape-
riodic thread, but it will time out after a specified period if no
event or message arrives. A thread may be declared with a
hybrid dispatch protocol; that is, it executes periodically and it
responds to events and message arrivals. A thread may be dis-
patched as a background thread; that is, it is dispatched once
and executes until completion. The semantics of these dis-
patch protocols and the scheduling states of threads, such as
suspended, ready, and running, are defined precisely in the
standard using hybrid automata.

An example of a component specification for a process is
shown in Figure C.6. An AADL process represents a space par-
tition; that is, it provides runtime address space protection
from other processes. It illustrates that at every level of the
component hierarchy, we specify the complete interface of a
component and its subcomponents to outside components. It
also illustrates the use of port groups to indicate a collection of
ports through which this process interacts with other software

Figure C.5
Component blueprint of a 
flight manager
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components. The interaction with other components will be
specified through a single port group connection instead of
separate connections for each port.

The details of interaction in terms of ports are specified sep-
arately in a port group type declaration that can be placed in a
separate AADL package, as shown in Figure C.7. In our exam-
ple, one port group consists of two incoming ports and four
outgoing ports. 

Port-based communication may be in the form of messages
(AADL event data port), in the form of events (AADL event port),
and in the form of state data (AADL data port). Event data ports
and event ports have queues associated with them. In addition,
arrival of messages or events can trigger the dispatch of a
thread according to its dispatch protocol. Data ports and event
data ports are typed with user-defined data types, and only
ports with compatible data types can be connected.

In AADL the connection concept is used to connect compo-
nent ports, subprogram features, or access features. Connec-
tions can have properties, such as properties that indicate the
desired protocol or quality of service provided by a protocol,
such as guaranteed delivery. The connection is then bound to
a virtual bus or bus that acts as the logical connector in terms of
protocols, or a physical connector to perform the communication

process prFlightManager
  features
    toFGS: port group Integrator::FGS::FMS::ICD::FMS_To_FGS;
    other_FMS_A: port group Integrator::FGS::FMS::ICD::FMS_CrossPlg;
    other_FMS_B: port group Integrator::FGS::FMS::ICD::FMS_CrossSkt;
end prFlightManager

Figure C.6
Software process with port groups

Package Integrator::FGS::FMS::ICD
    public
  -- with DataDictionary
  port group FMS_to_FGS
    features
      fuelFlow: in data port DataDictionary::FuelFlowData;
      navSignal: in data port DataDictionary:: NavSignalData;
      guidanceOut: out data port DataDictionary:: GuidanceData;
      fpDataOut: out data port DataDictionary:: FPData;
      navDataOut: out data port DataDictionary:: NavData;
      dmy: out event data port;
  end FMS_to_FGS;

Figure C.7
Port group specifications
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between different hardware components of the sender and
receiver.

AADL supports directional flow through ports and connec-
tions. The threads may perform periodic sampled processing
of signal streams, such as control systems, including communi-
cation timing semantics that ensure deterministic sampling.
Threads may also perform data-driven message processing,
processing of discrete events, and periodic processing of
alarms. In addition to port-based communication, AADL sup-
ports modeling of access to shared data components with con-
currency control—for example, blackboard architectures—
and shared access to bus components for communication
between hardware components. Finally, AADL supports inter-
action between threads and with devices through subprogram
calls to model service calls. 

AADL distinguishes between a set of component specifica-
tions and blueprints and an instance of a system model. An
instance model is the result of instantiating a top-level system
implementation recursively. Typically, such a system consists of
the application software, the computing platform, and the
physical environment. The AADL standard has defined a sepa-
rate XMI representation of an instance model that analysis
tools can operate on directly, or from which analytical models
and runtime executives can be generated. 

The instance model represents the complete component
containment hierarchy, as illustrated in Figure C.8. Connec-
tion instances are between the components that are the leaves
of the component hierarchy, for example, between thread
instances or between processor instances and bus instances.
The AADL standard does not require the full component con-
tainment hierarchy to be reflected in the instance model;
instance models may be flattened to include only component
instances with connection instances.

AADL supports the instantiation of incomplete system mod-
els. This allows such models to be analyzed early in the devel-
opment life cycle and the analyses revisited as the model is
refined. For example, only one process has been expanded to
the thread level. For such a model we can still perform resource
budget analysis by rolling up the data from threads and com-
paring it against the resource budgets of the processes. Those
budgets are compared against the capacity available through
the hardware.

AADL supports the analysis of critical flows throughout a sys-
tem by providing the capability to specify end-to-end flows and
annotating them with relevant flow properties, such as latency,
precision, and confidentiality. An end-to-end flow is specified



ptg

C.4 Documenting a Deployment View ■ 481

in terms of a sequence of component flow specifications and
connections. A component flow specification specifies a flow
from a component input (port) to one of its outputs (ports)
without having to expose the component implementation.
This allows end-to-end flow analysis, such as latency analysis, to
be performed on systems of systems based on specified flow
properties, while implementations of individual systems can be
separately validated to ensure they meet the specified flow
property.

C.4 Documenting a Deployment View
A complete AADL model of an embedded system includes soft-
ware components, computer hardware components, and com-
ponents of the physical system. The application software has to
be deployed on the computer hardware in order for us to be
able to perform analysis of operational quality attributes, such
as meeting timing, performance, reliability, safety-criticality,
and security requirements.

Figure C.9 shows a graphical representation of the deployment
view, as it is often found in architecture documents. It shows
the computer hardware components and the software compo-
nents placed inside them to indicate that they are bound to the
respective hardware component. This deployment information

Figure C.8
Component containment hierarchy of system instance model
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is recorded through properties for processor binding, memory
binding, and connection binding. This deployment informa-
tion can be declared as a collection of property values at the
top of the model and refer to both the processes and threads
to be bound to processors, memory, and buses. 

C.5 Documenting Behavior
AADL supports modeling of a variety of system behaviors. The
AADL mode and mode transition concept allows users to spec-
ify operational modes, different property values for different
modes, and different runtime configurations of components
and connection for different modes. For example, it can
define different sets of threads and port connections during
the taxiing mode of an aircraft and a cruise mode. 

AADL modes can also be used to define different fault-tolerant
configurations. This is illustrated by the architecture redun-
dancy pattern shown in Figure C.10. It shows a replicated compo-
nent with an observer to determine its health. The replicated
component can be a software component or a hardware com-
ponent. In a hot standby pattern, both the primary and the
backup components are active in primary and backup mode;
in a passive backup pattern, only one of the components is
active at a time. Event-triggered mode transitions the dynamic
aspects of switching between these configurations. These
architecture patterns can be associated with the architecture as
aspects without cluttering the primary functional view. 

The AADL property set mechanism allows users to introduce
new properties in support of certain analyses. For example, the
security behavior of security frameworks, such as the Bell

Figure C.9
Graphical representation of 
a deployment view
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LaPadula and Chinese Wall frameworks, can be expressed as
properties on existing AADL model concepts (Hansson and
Feiler 2008). Figure C.11 illustrates the definition of security
classifications as an enumeration type that is then used to
define security properties with values of that type.

AADL also supports the use of a sublanguage in AADL
model annotations. Figure C.12 shows the specification of an
error state machine using the AADL Error Model Annex sub-
language (Rugina et al. 2008). This error machine specifies
fault-free states and error state, intrinsic faults and error prop-
agations with probability of occurrence, and conditions under
which error states can change.

An error state machine is associated with a component type
or component implementation. As a result, this error state
machine is attached to each instance of this component. The
error state machines of different components interact by prop-
agating errors based on the logical and physical connectivity as
well as the deployment of software to hardware. 

AADL also has a draft Behavior Annex standard that was due
to be published at the time of this writing. The focus of this

property set Security_types is
  -- The levels of security that are applicable to the system.
  -- We require the use of the enumeration type because it
  -- forces an order on the levels, but with the limitation that
  -- the order is a total linear order.
  -- 
  -- Here we use the standard military/governmental classifications.
Classifications:
  type enumeration (unclassified, confidential, secret, top_secret);

Figure C.11
User-defined properties

Figure C.10
Dual redundancy pattern
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annex is to support the specification of component interaction
behavior and discrete state behavior within components.

C.6 Documenting Interfaces
A component type declares the interface of a component to
other components, provides a specification of services, and
presents its resource requirements on the hardware platform.
The AADL feature concept is used to represent both provided
and required features through which the component interacts
with other components. AADL supports three types of interac-
tions between components: (1) port-based flow of data, events,
and messages from one component to another; (2) communi-
cation through shared access to a common resource, such as a
shared data component; and (3) calls on subprograms to
request services with returning results. AADL also supports the
concept of a flow specification to represent the flow through a
component without requiring access to its implementation.
Flow specifications can have properties such as the expected
latency of a flow through the component. They support end-to-
end flow analysis of large-scale systems.

C.7 Summary
AADL supports modeling of the static structure and interaction
topology, as well as the dynamic nature of system architectures.

error model basic
features
    Error_Free: initial error state;
    Failed: error state;
    Crashed: error state;
    Fail: error event {occurrence => poisson 10e-3};
    Repair: error event {occurrence => poisson 0.0001};
    KO: in out error propagation {occurrence => fixed p};
    OK: in out error propagation {Occurrence => fixed 0.2-p};
end basic;

error model implementation basic.nominal
transitions
    Error_Free -[Fail]-> Failed;
    Failed -[Repair]-> Error_Free;
    Error_Free -[in KO]-> Failed;
    Failed -[out KO]-> Failed;
    Error_Free-[in KO]-> Failed;
    Failed-[out OK]->Crashed;
end basic.nominal;

Figure C.12
An example of the Error Model Annex sublanguage
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The dependencies and the hierarchy reflected in the AADL
model are a good basis for analysis of quality attributes that
focus on the design of an architecture, such as modifiability.
AADL models include the task and communication architec-
ture of application software, the runtime architecture and
hardware platform, and the deployment of the former on the
latter to support the analysis of operational quality attributes,
such as availability.

The AADL standard includes a standard interchange format
for models in terms of XMI. This interchange format facilitates
integration with existing tools and interchange of AADL mod-
els between projects and organizations. There is an open-
source tool set for AADL (called OSATE) (SAE AADL 2010)
based on Eclipse, as well as commercial tool support. A num-
ber of architecture analysis tools as well as automatic genera-
tors of runtime executives have been integrated with these
AADL tool sets.



ptg

This page intentionally left blank 



ptg

487

Acronyms

AADL Architecture Analysis and Design Language

ACSPP Architecture-centered software project planning

AD Architecture documentation

ADD Attribute-Driven Design

ADL Architecture description language

ADR Active design review

AOP Aspect-oriented programming

AOPA Aircraft Owners and Pilots Association

AOSD Aspect-oriented software development

API Application programming interface

ArchE Architecture Expert

ARID Active Reviews for Intermediate Designs

ASR Architecturally significant requirement

ATAM Architecture Tradeoff Analysis Method

ATIA U.S. Army Training Information Architecture System

ATM Asynchronous transfer mode

AV All-view

BDUF Big design up front

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

C&C Component and connector

CCM CORBA component model

CLR Common Language Runtime

CM Complexity
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CONOPS Concepts of Operations

CORBA Common Object Request Broker Architecture

COTS Commercial off-the-shelf

DBMS Database management system

DCM Data collection module

DoD U.S. Department of Defense

DoDAF Department of Defense Architecture Framework

DSM Dependency structure matrix

ECS EOSDIS Core System 

ERD Entity-relationship diagram

FEAF Federal Enterprise Architecture Framework

FOS Flight Operations Segment

FTX Fault-tolerant UNIX

HLA High-Level Architecture

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDL Interface Definition Language (CORBA)

IEEE Institute of Electrical & Electronics Engineers

INCOSE International Council on Systems Engineering

IP Internet Protocol

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JSON JavaScript Object Notation

JSP JavaServer Pages

JVM Java Virtual Machine

MVC Model-view-controller

OMG Object Management Group

OSATE Open-source AADL tool environment

OV Operational view

OWL Ontology Web language

RAID Redundant array of independent disks

RMI Remote Method Invocation

RUP Rational Unified Process

SaaS Software as a service

SAE Society of Automotive Engineers

SARA Software architecture review and assessment
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SCM Software configuration management

SDL Specification and Description Language

SDPS Science Data Processing Segment

SHARK Sharing and Reusing Architectural Knowledge

SLA Service-level agreement

SOA Service-oriented architecture

SV Systems and services view

SysML Systems Modeling Language

TCP Transmission Control Protocol

TDDT Training and Doctrine Development Tool

TLCD Top-level context diagram

TOGAF The Open Group Architecture Framework 

TV Technical standards view

UM Uncertainty

UML Unified Modeling Language

UTMC Unit Training Management Configuration

WBS Work breakdown structure

WSDL Web Services Definition Language

XML Extensible Markup Language
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Actors the other elements, users, or systems with which an
element interacts.

Allocation style a kind of style that describes the mapping of
software units to elements of an environment in which the
software is developed or executes.

Architectural (architecture) pattern “an architectural pattern
expresses a fundamental structural organization schema
for software systems. It provides a set of predefined sub-
systems, specifies their responsibilities, and includes rules
and guidelines for organizing the relationships between
them” (Buschmann et al. 1996, page 12). 

Architecture cartoon the graphical portion of a view’s pri-
mary presentation, without supporting documentation.

Architecture description language (ADL) a language for rep-
resenting a software and/or system architecture. ADLs are
usually graphical languages that provide semantics that
enable analysis and reasoning about architectures, often
using associated tools.

Architecture framework “conventions and common prac-
tices for architecture description established within a specific
domain or stakeholder community” (ISO/IEC 42010:2007).
TOGAF and DoDAF are examples of architecture frameworks.

Architecture perspective “a collection of activities, tactics,
and guidelines that are used to ensure that a system exhib-
its a particular set of related quality properties that require
consideration across a number of the system’s architec-
tural views” (Rozanski and Woods 2005).

Architecture stakeholder someone who has a vested interest
in the architecture.
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Architecture style specialization of element and relation
types, together with a set of constraints on how they can be
used.

Bridging element an element that is common to two views
and is used to provide the continuity of understanding
from one view to the other. A bridging element appears in
both views and has supporting documentation, usually a
mapping between views, that makes the correspondence
clear, perhaps by showing the combined picture.

Combined view a view that contains elements and relations
that come from two or more other views.

Communicating-processes style any C&C style whose compo-
nents can execute as independent processes.

Component-and-connector (C&C) style a kind of style that
introduces a specific set of component and connector
types and specifies rules about how elements of those types
can be combined. Additionally, given that C&C views cap-
ture runtime aspects of a system, a C&C style is typically
also associated with a computational model that prescribes
how data and control flow through systems designed in
that style.

Components the principal computational elements and data
stores that execute in a system.

Connector a runtime pathway of interaction between two or
more components.

Context diagram a representation that defines the boundary
between a system (or part of a system under consider-
ation) and its environment, showing the entities in its envi-
ronment with which it interacts.

Data integrity a property ensuring consistency and accuracy
of the data shared across all applications in a system.

Decomposition refinement a refinement in which a single
element is elaborated to reveal its internal structure. Each
member of that internal structure may be recursively
refined.

Dependency structure matrix (DSM) a table that shows mod-
ules as the row and column headers; a cell is nonzero if
and only if there is a dependency between the row’s mod-
ule and the column’s module.

Descriptive completeness a property of architecture docu-
mentation; a document has descriptive completeness if it
documents all elements and relations in the system that
are in the documentation’s scope.

Dynamic architecture an architecture in which architecture
variation points are exercised at runtime.
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Element an architecture building block native to a style. An
element can be a module, a component or connector, or
an element in the environment of the system whose archi-
tecture we are documenting. The description of an ele-
ment tells what role it plays in an architecture, lists its
important properties, and furnishes guidelines for effec-
tive documentation of the element in a view. 

Entity in a data model, a particular instance of an entity set
or entity type (for example, Earth is an entity of entity set
Planet).

Filter a component in the pipe-and-filter style that transforms
data read on its input ports to data written on its output ports.
Filters typically execute concurrently and incrementally.

Framework a framework is an abstraction in which common
code providing generic functionality can be selectively
overridden or specialized by user code providing specific
functionality. See also architecture framework.

Hierarchical element any kind of element that can consist of
like-kind elements. A module is a hierarchical element
because modules consist of submodules, which are them-
selves modules. A task or a process is not a hierarchical
element.

Hybrid style the combination of two or more existing styles.
Hybrid styles, when applied to a particular system, produce
views.

Implementation inheritance the definition of a new imple-
mentation based on one or more previously defined
implementations. The new implementation is usually a
modification of the ancestors’ behavior.

Implementation refinement a refinement in which some or
all of the elements and relations are replaced by other,
more implementation-specific, elements and relations.

Interface a boundary across which two elements meet and
interact or communicate with each other.

Interface document a specification of what an architect
chooses to make publicly known about an element in
order for other entities to interact or communicate with it.

Interface inheritance the definition of a new interface based
on one or more previously defined interfaces. The new
interface is usually a subset of the ancestors’ interface(s).

Layer a grouping of modules that together offer a cohesive
set of services to other layers. The layers are related to each
other by the strictly ordered relation allowed to use.

Module an implementation unit of software that provides a
coherent set of responsibilities.
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Module style a kind of style that introduces a specific set of
module types and specifies rules about how elements of
those types can be combined. 

Overlay a combination of the primary presentations of two
or more views followed by supporting documentation for
that combined primary presentation.

Pipe a connector in the pipe-and-filter style that conveys
streams of data from the output port of one filter to the
input port of another filter without changing values or the
order of the data.

Port an interface of a component. A port defines a point of
interaction of a component with its environment.

Property additional information about elements and rela-
tions. When an architect documents a view based on that
style, the properties will be given values. Property values
are often used to analyze an architecture for its ability to
meet quality attribute requirements.

Question set questions that collectively address a narrowly
focused purpose for an architecture document review.
Besides the questions themselves, a question set contains
information to allow a user to ensure the question set is
appropriate and to use it effectively. This information
includes the name, purpose, stakeholders and concerns,
respondents, expected answers, criticality, and advice.

Rationale an explanation of the reasoning that lies behind
an architecture decision.

Refinement the process of gradually disclosing information
across a series of descriptions.

Relation a definition of how elements cooperate to accom-
plish the work of the system. The description of a relation
names the relations among elements and provides rules
on how elements can and cannot be related.

Resource a function, method, data stream, global variable,
message end point, event trigger, or any addressable facil-
ity within an interface.

Responsibility a general statement about an architecture ele-
ment and what it is expected to contribute to the architec-
ture. This might include the actions that it performs, the
knowledge it maintains, or the role it plays in achieving the
system’s overall quality attributes or functionality.

Role an interface of a connector. A role defines a point of
interaction of a connector and indicates how components
may use a connector in interactions.

Software architecture the set of structures needed to reason
about the system, which comprises software elements, rela-
tions among them, and properties of both.
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Software product line a set of software-intensive systems shar-
ing a common, managed set of features that satisfy the spe-
cific needs of a particular market segment or mission and
that are developed from a common set of reusable core
assets in a prescribed way.

Specialization a style is a specialization of another style if it is
consistent with that style—that is, doesn’t violate it—and
adds more constraints to its element types, relation types,
and/or topological restrictions.

Stakeholder see architecture stakeholder.
Stereotype a type of modeling element in UML that extends

the semantics of the metamodel. Stereotypes must be
based on certain existing types or classes of the meta-
model. Stereotypes may extend the semantics but not the
structure of preexisting types and classes. Certain stereo-
types are predefined in UML; others may be user defined.

Style guide the description of an architecture style that spec-
ifies the vocabulary of design (sets of element and relation-
ship types) and the rules (sets of topological and semantic
constraints) for how that vocabulary can be used.

Substyle a specialization of another style if it is consistent
with that style—that is, doesn’t violate it—and adds more
constraints to its element types, relation types, and/or
topological restrictions. 

Subsystem a part of a system that (1) carries out a function-
ally cohesive subset of the overall system’s mission, (2) can
be executed independently, and (3) can be developed and
deployed incrementally.

System a collection of entities (elements, components, models,
and so forth) that are organized for a common purpose.

System of interest ISO 42010 defines “system of interest” as
encompassing “individual applications, systems in the tra-
ditional sense, subsystems, systems of systems, product
lines, product families, whole enterprises, and other aggre-
gations of interest.”

Tier a mechanism for system partitioning. Usually applied to
client-server-based systems, where the various parts (tiers)
of the system (user interface, database, business applica-
tion logic, and so forth) execute on different platforms.

Top-level context diagram a context diagram in which the
scope is the entire system.

Topology a definition of constraints on how elements and
relations can be associated in a particular style.

Unified Modeling Language (UML) a graphical language for
visualizing, specifying, constructing, and documenting the
artifacts of a software system.
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Uses relation a form of dependency that exists between two
modules. A uses B if the correctness of A depends on the
presence of a correct implementation of B.

Variability the ability quickly to achieve change in pre-
planned ways.

Variability guide the place in an architecture document that
explains what variation points have been designed into the
architecture and gives advice about how to exercise them.

Variation mechanism a built-in software mechanism for mak-
ing a change that, when exercised, results in a new instance
of the architecture. The place where a variation mecha-
nism occurs marks a variation point. 

Variation point a place in the architecture where a specific
kind of flexibility has been built in. 

View a representation of a set of system elements and rela-
tions among them.

View packet the smallest bundle of view documentation you
would show an individual stakeholder, such as a developer
assigned to implement a small portion of the system or a
customer interested in an overview.

Viewpoint ISO 42010 defines a viewpoint as a work product
establishing the conventions for the construction, inter-
pretation, and use of architecture views and associated
architecture models. 

Virtual machine sometimes called an abstract machine, a col-
lection of modules that form an isolated cohesive set of ser-
vices that can execute programs.

Wiki a collection of Web pages designed to enable anyone
with access to contribute or modify content, using a simpli-
fied markup language.
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