A
v

Documenting
Software
Architectures

Iz

Views
and
Beyond

A

SEIl SERIES IN SOFTWARE ENGINEERING

SECOND EDITION

Paul Clements + Felix Bachmann « Len Bass
Pavid Garlan + James Ivers « Reed Little
Paulo Merson « Robert Nord ¢ Judith Stafford



Software
Architecture
Document

Set of Relevant

Information That

consists of

Applies to More

Than One View
(Section 10.2)

is documented
using

consists of

v

v

Template for
Information Beyond
Views

(Section 10.2)

(see inside back
cover)

View Template
(Section 10.1)
(see inside back

1. Documentation
Roadmap

2. How a View Is
Documented

3. System Overview

4. Mapping
Between Views

5. Rationale

6. Directory

cover)

Views consists of
includes
one or
more
-P{ View }
is chosen
to document
based on
Structures Designed
into the Architecture
is chosen using
v to document
based on
Meeting
Documentation
Stakeholders’ Needs
(Chapter 9)
. consists of
View Packets P
(Section 10.1.2) ~ may be
divided
into
v

is documented

1. Primary Presentation

2. Element Catalog
a. Elements and Their Properties (Chapters 1-5)
b. Relations and Their Properties (Chapters 1-5)
c. Element Interfaces (Chapter 7)
d. Element Behavior (Chapter 8)

3. Context Diagram (Section 6.3)

4. Variability Guide (Section 6.4)

5. Rationale (Section 6.5)

Key

= -

Concept A has relationship “label” with Concept B.




|

View

(Prologue Section P.3)

when applied to a
system, yields a

( Style

k

L (Prologue Section P4)

chosen for
use by
architect to
achieve

[ Quality Attributes ]

|

may may may may combines
be be be be one or
\ 4 v v more
Module Style Component-and- Allocation Style Hybrid Style
(Chapters 1 and 2) Connector Style (Chapter 5) (Section 6.6)
(Chapters 3 and 4)
such as such as such as
0 0 N
Decomposition Pipe-and-Filter Deployment
= Style = | Style = Style
(Section 2.1) (Section 4.2.1) (Section 5.2)
- @ | - @
0 Y N
N Uses Style Client-Server > Install Style
(Section 2.2) Ly | Style (Section 5.3)
A [
—_— (Section 4.3.1) J—
A
Generalization — Work
| Style PEeEicPEaT )| Assignment
(Section 2.3) | Style iz
(Section 4.3.2) (Section 5.4)
Layered Style R
B . ) i
(Section 2.4) Service-Oriented Other Allocations
Architecture >
) > u (Section 5.5)
N Aspects Style Style ) \ )
(Section 2.5) (Section 4.3.3)
A
0
Publish-
Data Mods| | Subscribe Style
| Style (Section 4.4.1)
(Section 2.6) o
0
Shared-Data
| Style Key
(Section 4.5.1)
0
Ly Multi-tier Style
(Section 4.6.2) Concept A has relationship “label” with Concept B.

[ —




Praise for the First Edition of Documenting Software Architectures

“For many years, box and line diagrams have decorated the text that describes system
implementations. These diagrams can be evocative, sometimes inspirational, occasionally
informative, but are rarely precise and never complete. Recent years have brought appreci-
ation for the importance of a deliberate structural design, or architecture, for a system. Now,
in Documenting Software Architectures, we have guidance for capturing that knowledge,
both to aid design and—perhaps more significantly—to inform subsequent maintainers,
who hold over half the total cost of a system’s software in their hands. Half of this cost goes
into figuring out how the system is organized and where to make the change. A documented
architecture is the essential roadmap for the system, leading the maintainer through the
implementation jungle.”

—Mary Shaw, Alan J. Perlis Professor of Computer Science, Carnegie Mellon University
Coauthor of Software Architecture: Perspectives on an Emerging Discipline

“Multiple software architecture views are essential because of the diverse set of stakeholders
(users, acquirers, developers, testers, maintainers, inter-operators, and others) needing to
understand and use the architecture from their viewpoint. Achieving consistency among
such views is one of the most challenging and difficult problems in the software architecture
field. This book is a tremendously valuable first step in defining analyzable software architec-
ture views and frameworks for integrating them.”

—Barry Boehm, TRW Professor of Software Engineering
Director, USC Center for Software Engineering

“There is probably no better set of authors to write this book. The material is readable. It uses
humor effectively. It is nicely introspective when appropriate, and yet in the end it is forthright
and decisive. The philosophical elements of the book are fascinating. The authors consider
concepts that few others even are aware of, present the issues related to those concepts,
and then resolve them! This is a tour de force on the subject of architectural documentation.”

—Robert Glass, Editor-in-Chief, Journal of Systems and Software
Editor/Publisher, The Software Practitioner

“We found this book highly valuable for our work with our business units and would recom-
mend it to anyone who wants to understand the needs for and improve their skills in describ-
ing software architectures for complex systems.”

— Steffen Thiel, Robert Bosch Corporation



“Since our projects involve numerous stakeholders, documenting the architecture from var-
ious views is of particular importance. For this task, this book provides pragmatic and well-
structured guidance and will be an important reference for industrial practice.”

—Martin Simons, Daimler Chrysler Research and Technology

“Software architecture is an abstract representation of the most essential design decisions.

It is expressed using concepts that are not directly visible in software implementation. How

to identify these decisions? How to represent them? How to find the concepts that make

complex software understandable? This excellent book is written by a group of expert archi-

tects sharing their experience and understanding of useful architectural concepts, essential

design decisions, and practical ways to represent architectural views of complex software.”
—Alexander Ran, Principal Scientist of Software Architecture, Nokia

“| particularly appreciate the major theme of the book: that a software architecture consists
of a variety of different structures, each defined by a set of elements and a relationship
among those elements. | further appreciate the authors pointing out why the diagrams that
seem so beloved by today’s software designers are often deceptive and of little value. (I fre-
quently say that in software engineering every diagram takes a thousand words to explain
it.) It was also refreshing to see an explanation of why ‘levels of abstraction,” a favorite term
of many software designers, is an empty phrase. These are just a few of the elements that
made me impatient to see this book published.”
—David Weiss, Director of Software Technology Research, Avaya Laboratories

“The authors have written a solid book that discusses many of the most important issues
facing software designers. They point out many decisions that can be considered, dis-
cussed, and made before coding begins to provide guidance for the programmers. These
issues are far more important than most of the decisions that programmers focus on. Prop-
erly made and documented, the decisions discussed in this book will guide programmers
throughout the remainder of the software development process.”

—David Parnas, Director of the Software Engineering Programme, McMaster University
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These pictures are meant to entertain you. There is
no significant meaning to the arrows between the boxes.

—A speaker at a recent software architecture conference, coming to a
complex but ultimately inadequate boxes-and-lines-everywhere
viewgraph of her system’s architecture and deciding that trying to
explain it in front of a crowd would not be a good idea

Id like to start with a diagram. It’s a bunch of shapes
connected by lines. Now | will say some impressive words:
synchronized digital integrated dynamic e-commerce space.
Any questions?

—Dilbert, making a viewgraph presentation

At the end of the day, | want my artifacts to be enduring.

My goal is to create a prescriptive, semi-formal architectural
description that can be used as a basis for setting
department priorities, parallelizing development, [managing]
legacy migration, etc.

— A software architect for a major financial services firm
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About the Cover

The cover shows a bird’s wing, a motif chosen because it has
much in common with software architecture. Rather than
appeal to the overused analogy of house architectures, we find
physiological systems to be a richer metaphor for software and
system architectures. Among such systems, a bird’s wing is one
of the most compelling examples.

How would you “document” a bird’s wing for someone who
did not know what it was? A bird’s wing, like a software system,
can be shown by emphasizing any of a number of structures—
nerves, feathers, bones, blood vessels, muscles; each structure
must be compatible with the others and must work toward ful-
filling a common purpose. Feathers are elements that, at a
glance, appear to be replicated countless times across the wing;
on closer inspection, however, the feathers reveal a rich sub-
structure of their own and small but systematic variations. All
feathers are almost alike, but no two are identical.

The wing exhibits strong quality attributes: lightness in
weight, aerodynamic sophistication, outstanding thermal pro-
tection. The wing’s reliability, cycling through millions of
beats, is unparalleled. Unlike a house, which mostly just sits
there, the essence of a wing is in its dynamic behavior. In coarse
terms, the wing extends, flaps, and retracts; in finer terms, the
bird commands movements almost too subtle to see, control-
ling pitch, roll, and yaw with exquisite finesse. For millennia,
humans have tried to comprehend the wing by examining its
parts and from different points of view. But the whole wing is
much more than the sum of its elements and structures: It is in
the whole that beauty and grace emerge alongside breathtak-
ing performance. Falcon wings deliver so much speed that fal-
cons have evolved thick tears that won’t evaporate during a
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200-mph dive, and they have developed a special structure just
inside their nostrils to keep the slipstream from ramming into
their lungs. Insect eaters such as swallows routinely endure 14
times the pull of gravity, and they do it dozens of times a day.
The common starling, merely an average flier, can slip through
the air at 120 body lengths per second; by comparison, the fast-
est known aircraft, the SR-71 “Blackbird,” can manage only
about 32 (Wright 2003).

Structure, substructure, replication with variation, dynamic
behavior, critical quality attributes, and emergent properties of
the entire system: All these aspects are important to capture
when documenting a software architecture. We haven’t learned
how to document beauty and grace yet, but for that we substi-
tute the documentation of what the designer had in mind. For
software, we can do this. For the wing of a bird, we can only
admire the result.




Foreword to the
Second Edition

A colleague of mine, in the market for a home, fell in love with
an older property that had been designed by a student of
Frank Lloyd Wright himself. Curious about its history, its struc-
ture, its evolution, he contacted the local planning office,
which happily and quickly provided him with a copy of the
original blueprints.

Why, my friend asked me, can we get the drawings for a
house that’s several decades old, but we are unable to see the
architecture of software written last year?

In this book, the authors offer some pragmatic wisdom that
helps attend to my friend’s lament.

The theory and the practice of the architecture of software-
intensive systems are in a very vibrant phase. The early work of
Mary Shaw and David Garlan in particular gave rise to software
architecture as an identifiable domain of study, and in the
years since, we’ve seen the emergence of architecture-as-an-
artifact as a mainstream concern for the development and evo-
lution of systems. This has manifest itself in notations such as
the Unified Modeling Language (which was explicitly influ-
enced by Philippe Kruchten’s 4+1 model view of software archi-
tecture) as well as a panoply of architectural frameworks, such
as The Open Group Architecture Framework and the Depart-
ment of Defense Architecture Framework. Add to these meth-
ods such as IBM’s Unified Process and, at another extreme, the
Federal Segment Architecture Methodology, and it is clear that
architecture-as-an-artifact has found an important role in the
reasoning about and governing of software-intensive systems.

There are some things we can say with confidence. Every sys-
tem has an architecture. All complex systems are hierarchical
in nature, but also exhibit other patterns of regularity. There’s
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an intimate dance that occurs between the processes of archi-
tecting and of implementation. And, to understand and rea-
son about the architecture of a software-intensive system, one
has to consider multiple views from the perspectives of specific
concerns from multiple classes of stakeholders.

The most commonly used notation and tool for describing a
system’s architecture is a boxes-and-lines sketch created on a
whiteboard. Such documentation is both expeditious and use-
ful, but it is neither enduring nor rigorous nor complete. In
this book the authors offer the definitive reference on the doc-
umenting of the architecture of software-intensive systems, in
ways that are enduring and rigorous and complete. And useful,
by the way!

I remember reading the first edition of this book, and
e-mailing my compliments to the authors for producing such a
comprehensive reference. Well, they've outdone themselves.
This new edition is brighter, shinier, more complete, more
pragmatic, more focused than the previous one, and I wouldn’t
have thought it possible to improve on the original. As the field
of software architecture has grown over these past decades,
there is much more to be said, much more that we know, and
much more that we can reflect upon of what’s worked and
what hasn’t—and the authors here do all that, and more.

So, my hope for you, dear reader, is this: May the software
you write today have an architecture that your children’s chil-
dren may discern and celebrate.

—Grady Booch
IBM Fellow



Foreword to the
First Edition

Ten years ago, I was brought in to lead the architecture team
of a new and rather ambitious command-and-control system.
After some rocky beginnings, the architectural design work
started to proceed full speed, and the architects were finally
forging ahead, inventing and resolving and designing and try-
ing, almost in a euphoric state. We had many brainstorming
sessions, filling whiteboards with design fragments and note-
books with scribblings; various prototypes validated or invali-
dated our reasoning. As the development team grew in size,
the architects had to explain the principles of the nascent
architecture to a wider and wider audience, consisting of not
only new developers but also many parties external to the
development group. Some were intrigued by this new concept
of a software architecture. Some wanted to know how this
architecture would impact them: for planning, for organizing
the teams and the contractors, for delivery of the system, for
acquisition of some of the system parts. Some parties wanted to
influence the design of this architecture. Further removed
from development, customers and prospects wanted a peek,
too. So the architects had to spend hours and days describing
the architecture in various forms and levels and tones to varied
audiences, so that each party could better understand it.

Becoming this center of communication slowly stretched
our capacity. On the one hand, we were busy designing the
architecture and validating it; on the other hand, and at the
same time, we were communicating to a large audience what it
was and why it was that way and why we did not choose some
other solution. A few months into the project, overwhelmed,
we even began having a difficult time agreeing among our-
selves about what it was we had actually decided.
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This led me to the conclusion that “if it is not written down,
it does not exist.” This became sort of a leitmotiv in the archi-
tecture team for the following two years. As the ancient Chi-
nese poet Lao-Tsu says in the Tao Te Ching:

Let your workings remain a mystery.
Just show people the results.
(Tablet #36)

The architecture could be whatever we had talked about,
argued, imagined, or even drafted on a board, and so on. But
the architecture of this system was only what was described in
one major document: the Software Architecture Document (SAD).
Architectural elements and architectural decisions not cap-
tured in this document simply did not exist. This one rule— “If
it is mot in the SAD, it does not exist. —became our incentive to
evolve and to keep the document up-to-date, almost to the
week; there was also an incentive to not include anything and
everything and untried ideas, as this was the project’s definite
arbiter.

The SAD rapidly became a central element in the life of the
project. It became our best display window for showing off our
stuff, our comfort when we were down, and our shield when
attacked.

The key problem we faced at the time was: What do we doc-
ument for a software architecture? How do we document it?
What outline do we use? What notation? How much or how lit-
tle? There were few exemplars of architectural description for
systems as ambitious as ours. Driven by necessity, we improvised.
We made some mistakes and corrected some. We discovered
rapidly that architecture is not flat but rather a multidimen-
sional reality, with several intertwined facets, and some facets—
or views—of interest to only a few parties. We found out that
many readers would not even open a document that weighed
more than a pound, and we would have a difficult time updat-
ing it anyhow. We realized that without capturing the reasons
for our choices, we were doomed to reconstruct them again
and again, every time a new stakeholder with a sharp mind
came around. We picked a visual notation, not too vague and
fuzzy but not too esoteric and convoluted, either, in order to
not discourage most parties.

Today, software architects have a great starting point for
deciding how to document their software architectures. You
have it in your hands. The authors went through many experi-
ences similar to mine and extracted the important lessons
learned. They read many software architecture documents.



Foreword to the First Edition

They reviewed the academic literature, studied all the pub-
lished books, checked the standards, and synthesized all this
wisdom in this handbook: the essential things you need to
know to define your own software architecture document. You
will find guidance for the scope of software architecture; its
organization; the techniques, tools, and notation to use or not
to use; and comparisons, advice, and rules of thumb. In here,
you’ll find the templates to get you started and the continuing
guidance for when you get lost or despairing on the way.

This book is of immense value. The description and commu-
nication of software architecture is quite crucial to its many
stakeholders, and this handbook should save you months of tri-
als and errors, lots of undeserved hassle, and many costly mis-
takes that could potentially jeopardize the whole endeavor. It
will become an important reference on the shelf of the soft-
ware architect.

—Philippe Kruchten
Director of Process Development
Rational Software Canada, Vancouver
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Preface

The purpose of this book is to answer the following question:

How do you document an architecture so that others can success-
Sully use it, maintain it, and build a system from it?

The audience for this book includes all the people involved
in the production and consumption of architecture documen-
tation. The goal of this book is to help you decide what infor-
mation about an architecture is important to capture and to
provide guidelines, notations, and examples for capturing it.
We intend this book to be a practitioner-oriented guide to the
various kinds of information that constitute an architecture.
We give practical guidance for choosing what information
should be documented and show—with examples in various
notations, including but not limited to the Unified Modeling
Language (UML)—how to describe that information in writ-
ing so that others can use it to carry out their architecture-
based work: implementation, analysis, and recovery. We also
show how to create a comprehensive software architecture doc-
ument that others can use.

Although piles of books exist about how to use a particular
notation (UML comes to mind), we believe what an architect
really needs is guidance in which architecture and its stake-
holders are the first-class citizens, and language is relegated
more appropriately to a supporting role. That’s what we’ve
tried to provide with this book.

Languages and Tools for Architecture

Commercial languages and tool suites are available for capturing
design information, especially in the realm of object-oriented
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systems. Some of these tools are bound up with associated
design methods, notations, and commercial products. Some
tools are aimed at points in the design space other than archi-
tecture. If you have decided to adopt one of these tools and/
or notations, will this book relate to you?

Very few things become obsolete faster than references to
specific tools, so we’ve avoided those. Instead, we have concen-
trated on the information you should capture about an archi-
tecture. We believe that is the approach you should take, too:
Concentrate on the information you need to capture, and then
figure out how to capture it using an available tool. Almost all
tools provide ways to add free-form annotations to the building
blocks they provide; if all else fails, these annotations will let
you capture and record information in ways you see fit.
Remember that not all the people for whom architecture doc-
umentation is prepared will be able to use the tool environ-
ment you’'ve chosen or understand the commercial notation
you’ve adopted.

Having said that, however, we acknowledge that a few stan-
dard languages and notations have come to dominate, chief
among them UML. And so this book provides a plethora of
examples showing UML 2 representing the architecture views
we cover, as well as other concepts such as refinement and
behavior. If you have chosen UML as your modeling language,
you’ll feel at home.

Appendix A contains a summary of UML’s visual notation
and its applicability to document the concepts in this book.
Appendices B and C summarize the Systems Modeling Lan-
guage (SysML) and the Architecture Analysis and Design
Language (AADL), respectively. Our purpose is not to teach
these languages, but to offer a quick refresher for those famil-
iar with them and a flavor-providing introduction for every-
one else.

What’s New in the Second Edition

¢ A number of new architecture styles have entered the main-
stream, and this edition talks about documenting those.
These include service-oriented architectures, multi-tier
architectures, and architectures for aspect-oriented systems.
We also treat the architecture-level documentation of a soft-
ware system’s data model, as well as its installation and pro-
duction environment, as first-class styles.



This edition is much more Agilefriendly, orienting its
advice to be consistent with the Agile Manifesto’s entreaty to
value working software over comprehensive documentation.

We treat the systematic documentation of rationale with
much greater depth, reflecting best industrial practices.
We’ve added a new chapter about reviewing an architecture
document to make sure it’s serving its stakeholders as
intended.

The suggested templates for architecture documentation
have several improvements, reflecting years of use and feed-
back. They are also more flexible, and we lay out different
options for arranging your documentation.

We have replaced the comprehensive example of a docu-
mented software architecture with a new one. The architec-
ture is for a Web-based service-oriented system, more in
today’s industrial mainstream. To make the book smaller
and allow us to maintain the example over time, we put the
example online. And many of our in-line examples have
been replaced or updated.

Since the first edition was published, the Unified Modeling
Language has graduated to version 2.0 and beyond. That
opened up new possibilities for more straightforwardly doc-
umenting various architecture constructs, especially compo-
nents and connectors. Where necessary, our figures are
updated to reflect the new constructs.

This edition has concise appendices summarizing three
important languages and notations useful for documenting
architectures: UML, AADL, and SysML. Each appendix con-
stitutes a mini-reference guide on the language.

Finally, this edition reflects the experience we’'ve gained
with Views and Beyond in the intervening years since the
first edition was published. This experience has come from
creating documented architectures for very challenging sys-
tems, and helping other people do so. It also comes from
using architecture documentation in practice, such as when
we evaluate other organizations’ software architectures.
Finally, it has come from interacting with more than a thou-
sand participants in our two-day industrial course based on
the book. These interactions with practicing software archi-
tects have let us make our advice more prescriptive and
crisp and reflect the problems and situations that architects
face daily.

Preface
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Complete Example of a Software Architecture Document
Online

You can see a fully worked-out example of a software architec-
ture document using the approaches and templates described
in this book at wiki.sei.cmu.edu/sad.

—P.C.
Austin, Texas

—FB., L.B.,D.G.,,J.I, RL.,R.N.
Pittsburgh, Pennsylvania

—P.M.
Brasilia, Brazil

—Js.

Boston, Massachusetts
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Reader's Guide

Audience

There are three primary audiences for this book.

1.

Software architects who are charged with producing archi-
tecture documentation for software projects. For these peo-
ple we tried to answer the question “What information do I
need to capture about my architecture, and what notations
and techniques are available for communicating it clearly
and usefully in a timely fashion?”

Stakeholders of an architecture who must digest and use
the documentation they receive from the architect or archi-
tecture team. A software architect can provide this book as
a companion to his or her documentation, pointing con-
sumers to specific sections that explain documentation-
organizing principles, notations, concepts, or conventions.

People who wish to learn introductory concepts about soft-
ware architecture. By establishing the purposes and uses of
software architecture (and hence, its documentation), and
by establishing a basic set of concepts important in the cre-
ation and communication of architecture, this book serves
as an introduction to the subject.

We assume basic familiarity with the concepts of software

engineering. In many cases, we will sharpen and solidify basic
concepts that you already know, such as architecture views, archi-
tecture styles, and interfaces.

Stylistic Conventions

The book’s core message is contained in the main flow of the text.
But we also provide extra information in the margins, including
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¢ Definitions: Where we introduce a term such as view, we
make it bold and underlined; a margin note adjacent to that
line gives the definition. These terms are also listed in the
glossary at the end.

]| e

Aview is arepresen-
tation of a set of
system elements
and relationships
among them.

¢ Nuggets of practical advice.

XY

400

'@

Xy,
Every graphical presen-
tation should include a
key that explains the
notation used.

e Pointers to sources of additional information, either within
this book or outside.

%

The prologue contains
an introduction to the
basic architecture con-
cepts used in this book.

¢ Jlluminating quotes that we hope will add to the fullness of
the message.

R T—

A good notation should
embody characteristics
familiar to any user of
mathematical notation:
Ease of expressing con-
structs arising in prob-
lems, suggestivity,
ability to subordinate
detail, economy, ame-
nability to formal proofs.

—Ken lverson (1987,
p. 341)

Adpvice that won’t fit into a margin note will be called out in
the body of the text. Longer diversions occur as sidebars,
which are visually distinguished passages that appear at the
end of a section. “Coming to Terms” sidebars tackle issues of



terminology, while “Perspectives” sidebars are observations or
background information written and signed by one or more of
the authors.

At the end of each chapter, you can find

¢ A summary checklist that highlights the main points and
prescriptive guidance of the chapter

¢ A set of discussion questions that can serve as the basis for
classroom or brown-bag-lunch-group conversation

¢ “For Further Reading,” a section that offers references for
more in-depth treatment of related topics

A glossary appears at the end of the book.

How to Read and Use This Book
All architects should

¢ Read the introduction to PartI, to gain an understanding of
styles and views, and to get a glimpse of the collection of
styles discussed in this book.

* Browse Chapters 1-5 to gain a deeper understanding of the
views that might be used in your documentation. Later,
once you’ve chosen a set of views to document, you can read
about them in more depth as needed.

¢ Read Chapter 10, to learn the organizational scheme for a
documentation package.

¢ Read Chapter 9, to learn how to choose the important views
for a particular system. This will let you plan your documen-
tation package, matching your stakeholders and the uses
your documentation will support with the kind of informa-
tion you need to provide.

* Browse the sections in Chapter 6 to learn about document-
ing variability, context diagrams, and other helpful con-
cepts. Come back and concentrate on these as needed.

* Read Chapters 7 and 8 to learn about documenting software
interfaces and documenting behavior of a system.

¢ Consult Chapter 11 to see how your architecture document
should be reviewed, so that you can better position it for a
successful review by giving reviewers the information they
need.

¢ Ifyouare interested in making your documentation compli-
ant with other prescriptive methods, such as IBM Rational’s
4+1 approach or ISO/IEC 42010, consult the epilogue.

Reader’s Guide
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An architecture stakeholder using an architecture docu-
ment written with the precepts of this book may wish to consult
this book to gain a deeper understanding. You should

¢ Read Chapter 10 to gain a better understanding of the lay-
out of the document, and how the layout achieves coverage
of the architectural information being conveyed.

¢ Consult other chapters as necessary to provide more insight
into specific parts of the architecture document. For exam-
ple, you may wish to read the introduction to Part I to learn
about module, component-and-connector, and allocation
styles, and then consult the chapter on a specific style.

Read Chapter 11 if your job is to conduct or participate in a
review of the architecture document.

Stakeholders
read
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Readers who wish to learn introductory concepts about soft-
ware architecture should

¢ Read the prologue to learn what software architecture is,
why it is important, and the critical role of documentation
in a development project.

¢ Read the introduction to Part I, to gain an understanding of
styles and views, and to get a glimpse of the collection of
styles discussed in this book.

¢ Read Chapters 1-5 to become familiar with some architec-
ture styles that are widely used in modern software systems.

* Browse Chapters 7 and 8 to learn about the important archi-
tecture concepts of interfaces and behavior.

¢ Consult Chapter 10 to see a format for an architecture
document.

* Browse the appendices to help you understand the exam-
ples in the book if you’re not familiar with the notations.
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Prologue:
Software Architectures and
Documentation

The prologue establishes a small but fundamental set of con-
cepts that will be used throughout the book. We begin with
short overviews of software architecture (Section P.1) and
architecture documentation (Section P.2), and then we go on
to discuss the following topics:

e Section P.3: Architecture views

® Section P.4: Architecture styles (and their relation to archi-
tecture patterns) and the classification of styles into three
categories: module styles, component-and-connector styles,
and allocation styles

e Section P.5: Rules for sound documentation

P1 A Short Overview of Software Architecture

P1.1  Overview

Software architecture has emerged as an important subdisci-
pline of software engineering. Architecture is roughly the pru-
dent partitioning of a whole into parts, with specific relations
among the parts. This partitioning is what allows groups of
people—often separated by organizational, geographical, and
even time-zone boundaries—to work cooperatively and pro-
ductively together to solve a much larger problem than any of
them could solve individually. Each group writes software that
interacts with the other groups’ software through carefully
crafted interfaces that reveal the minimal and most stable
information necessary for interaction. From that interaction
emerges the functionality and quality attributes—security,
modifiability, performance, and so forth—that the system’s
stakeholders demand. The larger and more complex the sys-

e

The software architec-
ture of a computing
system is the set of
structures needed to
reason about the sys-
tem, which comprise
software elements, rela-
tions among them, and
propetrties of both.
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Many projects make the
mistake of trying to
impose a single parti-
tion in multiple compo-
nent domains, such as
equating threads with
objects, which are
equated with modules,
which in turn are
equated with files. Such
an approach never suc-
ceeds fully, and adjust-
ments eventually must
be made, but the dam-
age of the initial intent is
often hard to repair. This
invariably leads to prob-
lems in development
and occasionally in final
products.

—Jazayeri, Ran, and
van der Linden (2000,
pp. 16-17)

tem, the more critical is this partitioning—and hence, archi-
tecture. And as we will see, the more demanding those quality
attributes are, the more critical the architecture is.

A single system is almost inevitably partitioned simulta-
neously in a number of different ways. Each partitioning
results in the creation of an architectural structure: different
sets of parts and different relations among the parts. Each is
the result of careful design, carried out to satisfy the driving
quality attribute requirements and the most important busi-
ness goals behind the system.

Architecture is what makes the sets of parts work together as
a coherent and successful whole. Architecture documentation
help architects make the right decisions; it tells developers how
to carry them out; and it records those decisions to give a sys-
tem’s future caretakers insight into the architect’s solution.

P1.2 Architecture and Quality Attributes

For nearly all systems, quality attributes such as performance,
reliability, security, and modifiability are every bit as important
as making sure that the software computes the correct answer.
A software system’s ability to produce correct results isn’t help-
ful if it takes too long doing it, or the system doesn’t stay up
long enough to deliver it, or the system reveals the results to
your competition or your enemy. Architecture is where these
concerns are addressed. For example:

¢ Ifyou require high performance, you need to

— Exploit potential parallelism by decomposing the work
into cooperating or synchronizing processes.

— Manage the interprocess and network communication
volume and data access frequencies.

— Be able to estimate expected latencies and throughputs.
— Identify potential performance bottlenecks.

¢ If your system needs high accuracy, you must pay attention
to how the data elements are defined and used and how
their values flow throughout the system.

¢ If security is important, you need to
— Legislate usage relationships and communication restric-
tions among the parts.

— Identify parts of the system where an unauthorized intru-
sion will do the most damage.

— Possibly introduce special elements that have earned a
high degree of trust.
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¢ If you need to support modifiability and portability, you
must carefully separate concerns among the parts of the sys-
tem, so that when a change affects one element, that change
does not ripple across the system.

¢ If you want to deploy the system incrementally, by releasing
successively larger subsets, you have to keep the dependency
relationships among the pieces untangled, to avoid the
“nothing works until everything works” syndrome.

The solutions to these concerns are purely architectural in
nature. It is up to architects to find those solutions and com-
municate them effectively to those who will carry them out.
Architecture documentation has three obligations related to
quality attributes. First, it should indicate which quality attribute
requirements drove the design. Second, it should capture the
solutions chosen to satisfy the quality attribute requirements.
Finally, it should capture a convincing argument why the solu-
tions provide the necessary quality attributes. The goal is to
capture enough information so that the architecture can be
analyzed to see if, in fact, the system (s) derived from it will pos-
sess the necessary quality attributes.

What Is Software Architecture?

If we are to agree on what it means to document a soft-
ware architecture, we should establish a common basis
for what it is we’re documenting. No universal definition
of software architecture exists. The Software Engineering
Institute’s Web site collects definitions from the literature
and from practitioners around the world; so far, more
than 150 definitions have been collected.

It seems that new fields try to nail down standard defini-
tions or their key terms as soon as they can. As the field
matures, basic concepts become more important than
ironclad definitions, and this urge seems to fade. When
object-oriented development was in its infancy, you
could bring any OO meeting to a screeching halt by put-
ting on your best innocent face and asking, “What
exactly is an object?” This largely ended when people
realized that the scatter plot of definitions had an appar-
ent (if unarticulated) centroid, from which very useful
progress could be made. Sometimes “close enough” is,
well, close enough.

Chapter 10 will show
where in the documen-
tation to record the driv-
ing quality attribute
requirements, the solu-
tions chosen, and the
rationale for those
solutions.

R —

Software architecture is
the set of design deci-
sions which, if made
incorrectly, may cause
your project to be
cancelled.

—Eoin Woods (SEI
2010)

You can read the SEI
collection of definitions,
or contribute your own,
at www.sei.cmu.edu/
architecture.


www.sei.cmu.edu/architecture
www.sei.cmu.edu/architecture
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This seems to be the case with software architecture.
Looking at the major attempts to nail down its definition
gives us a good glimpse at our own centroid. With that in
mind, here are a few influential definitions:

By analogy to building architecture, we propose the follow-
ing model of software architecture: Software Architecture =
{Elements, Form, Rationale}. That is, a software architec-
ture is a set of architectural (or, if you will, design) elements
that have a particular form. We distinguish three different
classes of architectural elements: processing elements;
data elements; and connecting elements. The processing
elements are those components that supply the transfor-
mation on the data elements; the data elements are those
that contain the information that is used and transformed;
the connecting elements (which at times may be either
processing or data elements, or both) are the glue that
holds the different pieces of the architecture together.
(Perry and Wolf 1992, p. 44)

... beyond the algorithms and data structures of the com-

putation; designing and specifying the overall system
structure emerges as a new kind of problem. Structural
issues include gross organization and global control struc-
ture; protocols for communication, synchronization, and
data access; assignment of functionality to design ele-
ments; physical distribution; composition of design ele-
ments; scaling and performance; and selection among
design alternatives. (Garlan and Shaw 1993, p. 1)

The structure of the components of a program/system,
their interrelationships, and principles and guidelines gov-
erning their design and evolution over time. (Garlan and
Perry 1995, p. 269)

An architecture is the set of significant decisions about the
organization of a software system, the selection of the
structural elements and their interfaces by which the sys-
tem is composed, together with their behavior as specified
in the collaborations among those elements, the composi-
tion of these structural and behavioral elements into pro-
gressively larger subsystems, and the architecture style
that guides this organization—these elements and their
interfaces, their collaborations, and their composition.
(Booch, Rumbaugh, and Jacobson 1999, p. 31)

The fundamental organization of a system embodied in its
components, their relations to each other, and to the envi-
ronment, and the principles guiding its design and evolu-
tion. (IEEE 1471 2000, p. 9)

The software architecture of a program or computing sys-
tem is the structure or structures of the system, which
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comprise software elements, the externally visible proper-
ties of those elements, and the relations among them. By
“externally visible properties,” we are referring to those
assumptions other components can make of a compo-
nent, such as its provided services, performance charac-
teristics, fault handling, shared resource usage, and so on.
(Bass, Clements, and Kazman 2003, p. 27)

The set of principal design decisions governing a system.
(Taylor, Medvidovic, and Dashofy 2009, p. xv)

A few other “mainstream” definitions have emerged
since then, but they are largely restatements and recom-
binations of the ones we just listed. The centroid seems
to have stabilized.

That centroid takes a largely structural perspective on
software architecture: Software architecture is com-
posed of elements, connections or relations among
them, and, usually, some other aspect or aspects, such
as (take your pick) configuration; constraints or seman-
tics; analyses or properties; or rationale, requirements, or
stakeholders’ needs.

These perspectives do not preclude one another, nor do
they represent a fundamental conflict about what soft-
ware architecture is. Instead, they represent a spectrum
in the software architecture community about the empha-
sis that should be placed on architecture: its constituent
parts, the whole entity, the way it behaves once built, or
the building of it. Taken together, they form a consensus
view of software architecture.

In this book we use a definition similar to the one from
Bass, Clements, and Kazman (2003). We chose it
because it helps us know what to document about an
architecture. The definition emphasizes the plurality of
structures present in every software system. These
structures, carefully chosen and designed by the archi-
tect, are the key to achieving and reasoning about the
system’s design goals. And those structures are the key
to understanding the architecture. Therefore, they are the
focus of our approach to documenting a software archi-
tecture. Structures consist of elements, relations among
the elements, and the important properties of both. So
documenting a structure entails documenting those
things.

5
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What’s the Difference Between Architecture and
Design?

The question of how architecture is different from design
has nipped at the heels of the software development
community for years. It is a question | often hear when
teaching an introductory course on architecture. It mat-
ters here because the question deals with what we
should put in an architecture document and what we
should put somewhere else.

The first thing we can say is that clearly architecture is
design, but not all design is architecture. That is, many
design decisions are left unbound by the architecture
and are happily left to the discretion and good judgment
of downstream designers and even implementers. The
architecture establishes constraints on downstream
activities, and those activities must produce artifacts—
finer-grained designs and code—that comply with the
architecture.

It’s tempting to stop there, but if you’re paying attention
you’ve seen that we’ve just translated the question: Archi-
tecture consists of architectural design decisions, and all
others are nonarchitectural. So what decisions are
nonarchitectural? That is, what design decisions does the
architect leave to the discretion of others?

To answer this question, we return to the primary pur-
pose of architecture, which is to assure the satisfaction
of the system’s quality and behavioral requirements and
business goals. The architect does this by making design
decisions that manifest themselves in the system’s archi-
tectural structures.

Thus, architectural decisions are ones that permit a sys-
tem to meet its quality attribute and behavioral require-
ments. All other decisions are nonarchitectural.

Clearly any design decisions resulting in element proper-
ties that are not visible—that is, make no difference out-
side the element—are nonarchitectural. A typical example
is the selection of a data structure, along with the algo-
rithms to manage and access that data structure.

You may have been hoping for a more concrete answer,
such as “the first three levels of module decomposition
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are architectural, but any subsequent decomposition is
not.” Or, “the classes, packages and their relations in a
UML class diagram are architectural, but sequence dia-
grams are not.” Or “defining the services of an SOA sys-
tem is architectural, but designing the internal structure
of each service provider component is not.”

But those don’t work because they draw arbitrary and
artificial boundaries. Attempts like that to be practical
end up being impractical because true architecture bleeds
across those boundaries.

Here are some more sometimes-heard artificial definitions.

First, “architecture is the small set of big design deci-
sions.” Some people define “small set” by insisting that
an architecture document should be no more than 50
pages. Or 80. Or 30. Their feeling, apparently, is that
architecture is the set of design decisions that you can
squeeze into a given page quota, and everything beyond
that is not. This is, of course, utter nonsense.

Another oft-heard nonanswer is “architecture is what you
get before you start adding detail to the design.” Termi-
nology often directs our thinking, rather than serves it. A
pernicious example that puts us in the wrong mind set is
“detailed design.” Detailed design is what many people
say follows architecture. The term is everywhere, and
needs to be stamped out. It implies that the difference
between architectural and nonarchitectural design is
something called “detail.” Architecture is apparently not
allowed to be detailed, because if it is, well, you’re doing
detailed design then, aren’t you? Never mind that we
have no idea how to measure “detail” nor to set a thresh-
old for when there is too much of it to be architectural. If
your design starts to look “detailed” then you aren’t doing
architecture and you’ll be reported to the Detailed Design
Police for overstepping your authority. More utter nonsense.

It’s true that some architectural design decisions may
lack much specificity; that is, they preserve freedom of
choice for downstream designers. Some architectural
design decisions may not be “decisions” at all, but broad
constraints. Plug-ins that populate your Web browser are
an example. No architecture nails down the complete set,
but the architecture does constrain new ones to meet
certain standards and interfaces. Or the architect might
describe an element by saying, “The element delivers its
computational result through this published interface, is

o
L
@)

QKA

Don’t use the term
“detailed design”! Use
“nonarchitectural
design” instead.
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]| e

A hierarchical element
is any kind of element

that can consist of like-
kind elements. A module
is a hierarchical element
because modules consist
of submodules, which

are themselves modules.
Atask or a process is not
a hierarchical element.

thread-safe, puts no more than three messages on the
network per invocation, and returns its answer in less
than 20 ms.” The team implementing that element is free
to make whatever design decisions they wish as long as
they satisfy the architect’s prescription for it.

On the other hand, some architectural decisions can be
quite “detailed,” such as the adoption of specific proto-
cols, an XML schema, or communication or technology
standards. Such decisions are usually made for pur-
poses of interoperability or various flavors of modifiability
(such as scalability or extensibility).

Even interfaces of elements, which some decry as “obvi-
ously” outside the realm of architecture, can be supremely
architectural. For instance, in a service-oriented architec-
ture (SOA), components interact through published inter-
faces. Important design decisions made when defining
these interfaces include the granularity of the operations,
the data format, and the type of interaction (synchronous
or asynchronous) for each operation. Or consider an ele-
ment that processes data from a real-time sensor. Mak-
ing this element’s interface process a stream as opposed
to individual data elements will make an enormous differ-
ence in the ability of the element (and hence the system)
to meet real-time performance requirements. This deci-
sion cannot be left up to the element’s development
team; everything depends on it.

A legitimate question about detail does arise when con-
sidering modules and other hierarchical elements:
When do you stop? When have you designed enough
levels in the hierarchy? Are submodules enough, or does
the architect need to design sub-sub-sub-submodules?
Here’s a good test of our claim for when architecture
stops. Module decomposition is about achieving inde-
pendent development and modifiability. Both are achieved
by carefully assigning coherent responsibilities to each
module. When the modules you’ve designed are fine-
grained enough to satisfy the system’s modifiability and
independent development requirements, you’ve dis-
charged your obligation as an architect.

Finally, what is architectural is sensitive to context. Sup-
pose the architect identifies an element but is content to
sketch the element’s interface and behavior in broad
terms. If the element being prescribed is very large and
complex, the team developing it may choose to give it an
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internal substructure of its own, which for all the world
looks like an architecture. And within the context of that
element, it is. But in the context of the overall system, the
substructure is not architectural but merely an internal
design decision made by the development team for that
element.

To summarize, architecture is design, but not all design is
architectural. The architect draws the boundary between
architectural and nonarchitectural design by making
those decisions that need to be bound in order for the
system to meet its development, behavioral, and quality
goals. All other decisions can be left to downstream
designers and implementers. Decisions are architectural
or not, according to context. If structure is important to
achieve your system’s goals, that structure is architec-
tural. But designers of elements, or subsystems, that you
assign may have to introduce structure of their own to
meet their goals, in which case such structures are archi-
tectural: to them but not to you.

And (repeat after me) we all promise to stop using the
phrase “detailed design.” Try “nonarchitectural design”
instead.

—PC.

P2 A Short Overview of Architecture Documentation
P.2.1 Why Document Software Architecture?

Even the best architecture, most perfectly suited for the job,
will be essentially useless if the people who need to use it do
not know what it is, cannot understand it well enough to apply
it, or (worst of all) misunderstand it and apply it incorrectly. All
of the effort, analysis, hard work, and insightful design on the
part of the architecture team will have been wasted. They
might as well have gone on vacation for all the good their
architecture will do.

Creating an architecture isn’t enough. It has to be commu-
nicated in a way to let its stakeholders use it properly to do
their jobs. If you go to the trouble of creating a strong architec-
ture, you must go to the trouble of describing it in enough
detail, without ambiguity, and organized so that others can
quickly find needed information.

Documentation speaks for the architect. It speaks for the
architect today, when the architect should be doing other things
besides answering a hundred questions about the architecture.

R S—

Doing business without
advertising [or design-
ing an architecture with-
out documenting it] is
like winking at a girl in
the dark. You know
what you’re doing, but
nobody else does.

—Steuart Henderson
Britt
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And it speaks for the architect tomorrow, when he or she has
left the project and now someone else is in charge of its evolu-
tion and maintenance.

Documentation is often treated as an afterthought, some-
thing people do because they have to. Maybe a contract
requires it. Maybe a customer demands it. Maybe a company’s
standard process calls for it. In fact, these may be legitimate
reasons. But none of them are compelling enough to produce
high-quality documentation. Why should the architect spend
valuable time and energy just so a manager can check off a
deliverable?

The best architects produce the best documentation not
because it’s “required,” but because they see that it is essential
to the matter at hand: producing a high-quality product, pre-
dictably and with as little rework as possible. They see their
immediate stakeholders as the people most intimately involved
in this undertaking: developers, deployers, testers, and analysts.

But the best architects also see documentation as delivering
value to themselves. Documentation serves as the receptacle to
hold the results of design decisions as they are made. A well-
thought-out documentation scheme can make the process of
design go much more smoothly and systematically. Documen-
tation helps the architect while the architecting is in progress,
whether in a six-month design phase or a six-day Agile sprint.

Specification, Representation, Description,
Documentation

What shall we call the activity of writing down a software
architecture for the benefit of others or for our own ben-
efit at a later time? Leading contenders are documenta-
tion, representation, description, and specification. None
of these terms has a standardized meaning in our field:
the difference between them is unclear. For the most
part, we use documentation throughout this book, and
we want to explain why.

Specification tends to connote an architecture rendered
in a formal language. Now, we are all for formal specs.
But formal specs are not always practical, nor are they
always necessary. Sometimes, they aren’t even useful:
How, for example, do you capture in a formal language
the rationale behind your architectural decisions, and

why would you try?
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Representation connotes a model, an abstraction, a rendi-
tion of a thing that is separate or different from the thing
itself. Is architecture something more than what some-
one writes down about it? Arguably yes, but it’s certainly
pretty intangible in any case. We felt that raising the issue
of a model versus the thing being modeled would only
elicit needlessly diverting questions best left to those
whose hobby, or calling, is philosophy: Does an abstrac-
tion of a tree falling in a model of a forest make a repre-
sentation of a sound? This does not seem like the start of
a productive conversation.

Description has been staked out by the architecture
description language (ADL) community, and more
recently by the standards community coming up with
mandates for how to write down an architecture. It’s curi-
ous that the people you’d think would be the most formal
shagged the least rigorous sounding term of the bunch.
(The next time you board a jet, sit in front of a computer-
controlled X-ray machine, or watch the launch of a billion-
dollar space vehicle your tax dollars paid for, ask yourself
whether you hope the control software has been speci-
fied to the implementers, or merely described.) We
eschewed description, then, because it all at once
sounds too formal—we didn’t want people to think that
writing down an architecture requires an architecture
description language—and too informal. Descriptions
can be notoriously vague, such as when your friends
describe the blind date they set you up with. Sometimes
we need a little more specificity in our lives, and certainly
we need it in our architectures.

That leaves documentation. Documentation connotes
the creation of an artifact: namely, a document, which
may of course consist of electronic files, Web pages, a
shapshot of a whiteboard, or paper. Thus, documenting
a software architecture becomes a concrete task: pro-
ducing a software architecture document. Viewing the
activity as creating a tangible product has advantages.
We can describe good architecture documents and bad
ones. We can use completeness criteria to judge how
much work is left in producing this artifact and determin-
ing when the task is done. Planning or tracking a project’s
progress around the creation of artifacts, or documents,
is an excellent way to manage. Making the architecture
information available to its consumers and keeping it up
to date reduces to a solved problem of configuration

ADLs are discussed in
Section 3.4.2 and in the
For Further Reading
section of Chapter 8.
For an overview of
ADLs, see the work by
Stafford and Wolf
(2001).
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Section 6.1.3 (“Spec-
trum of Design”)
discusses how archi-
tecture documentation
captures the very
abstract to the very
detailed.

%

In Chapter 9, the docu-
mentation’s expected
uses, along with the
documentation obliga-
tions each use imparts,
become the basis for
helping an architect
plan the documentation
package.

Chapter 9 discusses
planning the contents
of a documentation
package. Chapter 11
discusses reviewing
documentation.

control. Documentation can be formal or not, as appro-
priate, and may contain models or not, as appropriate.
Documents may describe, or they may specify. Hence,
the term is appropriately general.

No matter what you call it, the essence of the activity is
writing down—and keeping current—the results of architec-
tural decisions so that the stakeholders of the architecture—
people who need to know what it is to do their job—have
the information they need in an accessible, nonambigu-
ous form.

P2.2 Uses and Audiences for Architecture Documentation

Architecture documentation must serve varied purposes. It
should be sufficiently abstract to be quickly understood by new
employees. It should be sufficiently concrete to serve as a blue-
print for construction. It should have enough information to
serve as a basis for analysis.

Architecture documentation is both prescriptive and
descriptive. For some audiences, it prescribes what should be
true, placing constraints on decisions yet to be made. For other
audiences, it describes what is true, recounting decisions
already made about a system’s design.

The best architecture documentation for, say, performance
analysis may well be different from the best architecture docu-
mentation we would wish to hand to an implementer. And
both of these will be different from what we putin a new hire’s
“welcome aboard” package or a briefing we put together for an
executive. The process of documentation planning and review
needs to ensure support for all the relevant needs.

We can see that many different kinds of people are going to
have a vested interest in an architecture document. They hope
and expect that the architecture document will help them do
their respective jobs. Understanding their uses of architecture
documentation is essential, as those uses determine the impor-
tant forms.

Fundamentally, architecture documentation has three uses.

1. Architecture serves as a means of education. The educational
use consists of introducing people to the system. The peo-
ple may be new members of the team, external analysts, or
even a new architect. In many cases, the “new” person is the
customer to whom you’re showing your solution for the
first time, a presentation you hope will result in funding or
go-ahead approval.
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2. Architecture serves as a primary vehicle for communication among
stakeholders. An architecture’s precise use as a communica-
tion vehicle depends on which stakeholders are doing the
communicating. Some examples are described in Table P.1.

Perhaps one of the most avid consumers of architecture
documentation is none other than the architect in the
project’s future. The future architect may be the same person
as the present one, or he or she may be a replacement, but
in either case he or she is guaranteed to have an enormous
stake in the documentation. New architects are interested
in learning how their predecessors tackled the difficult
issues of the system and why particular decisions were made.
Even if the future architect is the same person, he or she will
use the documentation as a repository of thought, a store-
house of design decisions too numerous and hopelessly
intertwined ever to be reproducible from memory alone.

Even in the short term, documenting an architecture
helps in the process of designing the architecture. First, the
documentation provides dedicated compartments for
recording various kinds of design decisions as soon as they
are made. Second, the documentation gives you a rough
but helpful way to gauge progress and the work remaining:
As “TBD”s disappear from the document, completion
draws near. Finally, documentation provides a framework
for systematic attack on designing the architecture. Key
design decisions, usually made early, should be written
down so that the shadow they cast on subsequent design
decisions is explicit and remembered.

In our organization, a development group writes design
documents to communicate with other developers, exter-
nal test organizations, performance analysts, the techni-
cal writers of manuals and product helps, the separate
installation package developers, the usability team, and
the people who manage translation testing for interna-
tionalization. Each of these groups has specific ques-
tions in mind that are very different from the ones that
other groups ask:

e \What test cases will be needed to flush out functional
errors?

e Where is this design likely to break down?

e (Can the design be made easier to test?

]| e

A stakeholder of an
architecture is someone
who has a vested interest
in it. (Many of an archi-
tecture’s stakeholders
are listed in Table P1.)

Chapter 9 is about how
stakeholders’ needs will
help determine the con-
tents of the architecture
documentation.

Stakeholders (explicitly or
implicitly) drive the whole
shape and direction of the
architecture, which is
developed solely for their
benefit and to serve their
needs. . . . Without stake-
holders, there would be
no point in developing the
architecture because
there would be no need
for the system it will turn
into, nor would there be
anyone to build it, deploy
it, run it, or pay forit. . . .
Architectures are created
solely to meet stake-
holder needs.

—Rozanski and Woods
(2005, p. 21)
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Get the habit of analysis—
analysis will in time
enable synthesis to
become your habit of
mind.

—Frank Lloyd Wright

—Kathryn Heninger Britton (Hoffman and Weiss 2001,

How will this design affect the response of the system
to heavy loads?

Are there aspects of this design that will affect its per-
formance or ability to scale to many users?

What information will users or administrators need to
use this system, and can | imagine writing it from the
information in this design?

Does this design require users to answer configuration
questions that they won’t know how to answer?

Does it create restrictions that users will find onerous?
How much translatable text will this design require?

Does the design account for the problems of dealing
with double-byte character sets or bi-directional
presentation?

pp. 337-338)

3. Anrchitecture serves as the basis for system analysis and construction.
— Axchitecture tells implementers what to implement.

— For those interested in the ability of the design to meet

the system’s quality objectives, the architecture docu-
mentation serves as the fodder for evaluation. The archi-
tecture documentation must contain the information
necessary to evaluate a variety of attributes, such as secu-
rity, performance, usability, availability, and modifiability.
Analyses of each one of these attributes have their own
information needs.

For system builders who use automatic code-generation
tools, the documentation may incorporate the models
used for generation.

Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they

might use it
Name Description Use for Architecture Documentation
Analyst Responsible for analyzing the Analyzing satisfaction of quality
architecture to make sure it meets  attribute requirements of the system
certain critical quality attribute based on its architecture.

requirements. Analysts are often
specialized; for instance, perfor-
mance analysts, safety analysts,
and security analysts may have
well-defined positions in a project.
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Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they
might use it (continued)

Name Description Use for Architecture Documentation

Architect Responsible for the development Negotiating and making trade-offs
of the architecture and its docu- among competing requirements and
mentation. Focus and responsibil-  design approaches. A vessel for
ity is on the system. recording design decisions. Provid-

ing evidence that the architecture
satisfies its requirements.

Business Responsible for the functioning of  Understanding the ability of the

manager the business/organizational entity ~ architecture to meet business goals.
that owns the system. Includes
managerial/executive responsibil-
ity, responsibility for defining busi-
ness processes, and more.

Conformance Responsible for assuring con- Basis for conformance checking, for

checker formance to standards and pro- assurance that implementations
cesses to provide confidenceina  have been faithful to the architectural
product’s suitability. prescriptions.

Customer Pays for the system and ensures Assuring required functionality and
its delivery. The customer often quality will be delivered, gauging
speaks for or represents the end progress, estimating cost, and set-
user, especially in a government ting expectations for what will be
acquisition context. delivered, when, and for how much.

Database Involved in many aspects of the Understanding how data is created,

administrator

Deployer

Designer

Evaluator

Implementer

data stores, including database
design, data analysis, data model-
ing and optimization, installation
of database software, and moni-
toring and administration of data-
base security.

Responsible for accepting the
completed system from the devel-
opment effort and deploying it,
making it operational, and fulfilling
its allocated business function.

Responsible for systems and/or
software design downstream of
the architecture, applying the
architecture to meet specific
requirements of the parts for
which they are responsible.

Responsible for conducting a for-
mal evaluation of the architecture
(and its documentation) against
some clearly defined criteria.

Responsible for the development
of specific elements according to
designs, requirements, and the
architecture.

used, and updated by other archi-
tectural elements, and what proper-
ties the data and database must
have for the overall system to meet
its quality goals.

Understanding the architectural ele-
ments that are delivered and to be
installed at the customer’s or end
user’s site, and their overall respon-
sibility toward system function.

Resolving resource contention and
establishing performance and other
kinds of runtime resource consump-
tion budgets. Understanding how
their part will communicate and inter-
act with other parts of the system.

Evaluating the architecture’s ability
to deliver required behavior and
quality attributes.

Understanding inviolable constraints
and exploitable freedoms on devel-
opment activities.

continues
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Table P.1 Some of the stakeholders of architecture documentation, their roles, and how they
might use it (continued)
Name Description Use for Architecture Documentation
Integrator Responsible for taking individual Producing integration plans and pro-
components and integratingthem,  cedures, and locating the source of
according to the architecture and  integration failures.
system designs.
Maintainer Responsible for fixing bugs and Understanding the ramifications of a
providing enhancements to the change.
system throughout its life (includ-
ing adaptation of the system for
uses not originally envisioned).
Network Responsible for the maintenance Determining network loads during

administrator

Product line
manager

Project
manager

Representative
of external
systems

System

engineer

Tester

User

and oversight of computer hard-
ware and software in a computer
network. This may include the
deployment, configuration, main-
tenance, and monitoring of net-
work components.

Responsible for development of
an entire family of products, all
built using the same core assets
(including the architecture).

Responsible for planning,
sequencing, scheduling, and allo-
cating resources to develop soft-
ware components and deliver
components to integration and
test activities.

Responsible for managing a sys-
tem with which this one must
interoperate, and its interface with
our system.

Responsible for design and devel-
opment of systems or system
components in which software
plays a role.

Responsible for the (independent)
test and verification of the system
or its elements against the formal

requirements and the architecture.

The actual end users of the sys-
tem. There may be distinct kinds
of users, such as administrators,
superusers, and so on.

various use profiles and understand-
ing uses of the network.

Determining whether a potential new
member of a product family is in or
out of scope and, if out, by how
much.

Helping to set budget and schedule,
gauging progress against estab-
lished budget and schedule, and
identifying and resolving develop-
ment-time resource contention.

Defining the set of agreement
between the systems.

Assuring that the system environ-
ment provided for the software is
sufficient.

Creating tests based on the behavior
and interaction of the software ele-
ments.

Users, in the role of reviewers, might
rely on architecture documentation
to check whether desired functional-
ity is being delivered. Users might
also refer to the documentation to
understand what the major system
elements are, which can aid them in
emergency field maintenance.
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P2.3 Architecture Documentation and Quality Attributes

If architecture is largely about the achievement of quality
attributes, and if one of the main uses of architecture docu-
mentation is to serve as a basis for analysis (to make sure the
architecture will achieve its required quality attributes), where
do quality attributes show up in the documentation? There are
five major ways:

1.

4.

Any major design approach (such as an architecture pat-
tern or style) chosen by the architect will have quality
attribute properties associated with it. Client-server is good
for scalability, layering is good for portability, an informa-
tion-hiding-based decomposition is good for modifiability,
services are good for interoperability, and so forth. Explain-
ing the choice of approach is likely to include a discussion
about the satisfaction of quality attribute requirements and
trade-offs incurred. Look for the place in the documenta-
tion where such an explanation occurs. In our approach,
we call that rationale.

Individual architectural elements that provide a service
often have quality attribute bounds assigned to them. Con-
sumers of the services need to know how fast, secure, or
reliable those services are. These quality attribute bounds
are defined in the interface documentation for the ele-
ments, sometimes in the form of a Quality of Service con-
tract. Or they may simply be recorded as properties that the
elements exhibit.

Quality attributes often impart a “language” of things that
you would look for. Security involves things like security lev-
els, authenticated users, audit trails, firewalls, and the like.
Performance brings to mind buffer capacities, deadlines,
periods, event rates and distributions, clocks and timers,
and so on. Availability conjures up mean time between fail-
ure, failover mechanisms, primary and secondary function-
ality, critical and noncritical processes, and redundant
elements. Someone fluent in the “language” of a quality
attribute can search for the kinds of architectural elements
(and properties of those elements) that were put in place
precisely to satisfy that quality attribute requirement.

Architecture documentation often contains a mapping to
requirements that shows how requirements (including quality
attribute requirements) are satisfied. If your requirements
document establishes a requirement for availability, for
instance, then you should be able to look up that require-
ment by name or reference in your architecture document
to see the place(s) where that requirement is satisfied.

- N—

For more on styles and
patterns, see “Coming

to Terms: ‘Architecture

Style’ and ‘Architecture
Pattern’ ” on page 32, in
this chapter.

%

Documenting rationale
is covered in Section 6.5.

Interface documentation
is covered in Chapter 7.

Properties are discussed
in Section 1.3, in the
introduction to Part I.

%

Documenting a map-
ping to requirements is
covered in Section 10.3.
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The documentation
roadmap is described in
Section 10.2.

I —

The man who stops
advertising to save
money is like the man
who stops the clock to
save time. [The same
could be said for the
architect who stops
documenting.]

—Thomas Jefferson

5. Every quality attribute requirement will have a constituency
of stakeholders who want to know that that quality attribute
requirement is going to be satisfied. For these stakeholders,
the architect should provide a special place in the docu-
mentation’s introduction that either provides what the
stakeholder is looking for or tells the stakeholder where in
the document to find it. It would say something like “If you
are a performance analyst, you should pay attention to the
processes and threads and their properties (defined
[here]), and their deployment on the underlying hardware
platform (defined [here]).” In our documentation approach,
we put this here’s-what-you’re-looking-for information in a
section called the documentation roadmap.

P2.4 Economics of Architecture Documentation

We’d all like to make our stakeholders happy, of course. Giddy,
in fact. So why is producing high-quality architecture docu-
mentation often relegated to the “I'll do it if I have time” cate-
gory of an architect’s many tasks? Why do project managers
often fail to insist that architecture documentation accompany
the other archival artifacts produced during development?
The answer, of course, is that an architecture document, let
alone one that induces giddiness, costs time and money.

Project managers are, by and large, rational people. (No,
seriously, they are.) They are willing to invest resources in activ-
ities that yield demonstrable benefit, and not so much other-
wise. As architects, we should be able to make a business case
for producing and maintaining architecture documentation.
And here it is: Activities that the project manager is going to
have to fund will be less costly in the presence of high-quality,
up-to-date documentation than they would otherwise.

A formula to show the savings looks like this:

ZOVer all activities A (Cost of Awithout AD — Cost of A with AD) > Cost of AD,

where “Cost of A without AD” and “Cost of A with AD” are the
cost of performing activity A without and with (respectively) an
architecture document. “Cost of AD” is the cost of producing
and maintaining the architecture documentation. In other
words, the payback from good architecture documentation
should exceed the effort to create it. Payback is measured in
terms of effort saved.

This formula gives us a way to think about documentation,
its effort, and its payoff. When deciding whether you should
produce a particular piece of documentation, ask yourself how
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much effort it will take to do so, and what activities will be
cheaper as a result. By choosing even a small number of key
activities that will benefit from the presence of documentation,
you should be able to make a convincing back-of-the-envelope
argument that the effort invested will more than pay for itself.

And if you can’t—that is, if the effort doesn’t pay for itself—
then you shouldn’t expend it. Put your resources elsewhere.

The formula is nicely general; it does not require that you
actually enumerate all the activities involved. The ones that are
not affected by the presence or absence of architecture docu-
mentation at all simply wash out of the formula. But other
activities such as coding, re-engineering, launching a change
effort, and so on should have significant cost savings.

P2.5 The Views and Beyond “Method”

We call our approach to documentation Views and Beyond.
This is to emphasize that we use the concept of a view—
explained in the next section—as the fundamental organizing
principle for architecture documentation, but also because we
go beyond views to include additional information that
belongs in an architecture document.

Views and Beyond is not actually a method. It does not have
a sequence of steps, with entry and exit criteria for each.
Rather, it is more a collection of techniques that carry out an
underlying philosophy. The philosophy is that an architecture
document should be helpful to the people who depend on it
to do their work (far from least of which is the architect). The
techniques can be bundled into a few categories:

1. Finding out what stakeholders need. If you don’t do this,
you’re going to end up with documentation that may serve
no one.

2. Providing the information to satisfy those needs by record-
ing design decisions according to a variety of views, plus the
beyond-view information.

3. Checking the resulting documentation to see if it satisfied
the needs.

4. Packaging the information in a useful form to its stakeholders.

While items 3 and 4 denote document-centric activities,
items 1 and 2 denote activities that should be carried out in
conjunction with performing the architecture design. That is,
we don’t want Views and Beyond to be an architecture documen-
tation method; rather, we want it to help the architect identify
and record the necessary design decisions as they are made.
Documentation should be the helpful result of making an

- —

Chapter 9 covers a way
to use stakeholder

needs to determine the
views you include in your
architecture document.

Chapter 11 covers
reviewing documentation.

Chapter 10 covers
packaging and organiza-
tion of documentation.
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Don’t consider architec-
ture documentationas a
task separate from
design; rather, make it
an essential part of the
architecture design pro-
cess, serving as a ready
vessel for holding the
output of architectural
decisions as soon as
those decisions are made.
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[W]e have come to value
... working software
over comprehensive
documentation.

—The Agile Manifesto
(Agile Alliance 2002)

Section E.4 in the
epilogue elaborates on
architecture documen-
tation in an Agile
environment.

architecture decision, not a separate step in the architecture
process. The more that documentation is treated like a follow-
on to design, with its own separate method, the less likely it is
to be done at all.

P2.6 Views and Beyond in an Agile Environment

It is an unfortunate myth that Agile development and docu-
mentation (particularly architecture documentation) are at
odds with each other. They aren’t, and there are many exam-
ples of Agile leaders saying exactly that. Nevertheless, it is pos-
sible to interpret the advice in this book as prescribing a
heavyweight and cumbersome approach to documentation.
You can imagine an architect lagging hopelessly behind the
project, which has gone on to deliver the product while he or
she is still struggling to complete a Views-and-Beyond-style doc-
umentation package from six iterations ago. Neither the archi-
tect (nor this book) would likely be invited back to the next
project.

Here is some advice that applies to all projects but especially
to Agile projects: The Views and Beyond approach provides
guidance for documenting many kinds of architecture infor-
mation: structures, elements, relations, behavior, interfaces,
rationale, traces to requirements, style guides, system context,
and a whole lot more. But nowhere is it written that you have
to do all of that. Decide what is useful (you can use the formula
in Section P.2.4 to help you decide). Then, for example, if you
decide that documenting the rationale behind a certain design
decision is going to pay off in the future, then you can use the
available guidance to help you do it. If you decide that docu-
menting certain views is useful, then you can use the available
guidance to help you do it. And so forth.

Choose what’s useful and cost-effective to document. Docu-
ment that. Period.

P2.7 Architectures That Change Faster Than You Can Document
Them

When your Web browser encounters a file type it’s never seen
before, odds are that it will go to the Internet, download the
appropriate plug-in to handle the file, install it, and reconfig-
ure itself to use it. Without even needing to shut down, let
alone go through the code-integrate-test development cycle,
the browser is able to change its own architecture by adding a
new component.

Service-oriented systems that utilize dynamic service discov-
ery and binding also exhibit these properties. More challenging
systems that are highly dynamic, self-organizing, and reflective
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(meaning self-aware) are on the horizon. In these cases, the
identities of the components interacting with each other can-
not be pinned down, let alone their interactions, in any static
architecture document.

Another kind of architectural dynamism, equally challeng-
ing from a documentation perspective, is found in systems that
are rebuilt and redeployed with great rapidity. Some develop-
ment shops, such as those responsible for commercial Web
sites, build and “go live” with their system many dozens of times
every single day.

Whether an architecture changes at runtime, or as a result
of a high-frequency release-and-deploy cycle, both share some-
thing in common with respect to documentation: They change
much faster than the documentation cycle. In either case,
nobody is going to hold up things until a new architecture doc-
ument is produced, reviewed, and released.

But knowing the architecture of these systems is every bit as
important, and arguably more so, than for systems in the world
of more traditional life cycles. Here’s what you can do if you're
an architect in a highly dynamic environment:

1. Document what is true about all versions of your system.
Your Web browser doesn’t go out and grab just any piece of
software when it needs a new plug-in; a plug-in must have
specific properties and a specific interface. And it doesn’t
just plug in anywhere, butin a predetermined location in the
architecture. Record those invariants as you would for any
architecture. This may make your documented architecture
more a description of constraints or guidelines that any
compliant version of the system must follow. That’s fine.

2. Document the ways the architecture is allowed to change.
In the previous examples, this will usually mean adding new
components and/or replacing components with new
implementations. In the Views and Beyond approach, the
place to do this is called the variability guide.

3. Make your system capture its own architecture-of-the-
moment automatically. When your Web browser or SOA sys-
tem crashes, your recovery team is going to want to know
exactly what configuration was running when the problem
occurred. This ability can run the spectrum from primitive
(write changes in a log file) to sophisticated (drive a real-
time display of the components and their interactions,
much like what is found in network service centers).

%

Using a variability guide
to document an archi-
tecture’s variation
points is covered in
Section 6.4.
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A view is a representa-
tion of a set of system
elements and the rela-
tionships associated
with them.

&

For more information
about the bird wing
analogy, see “About the
Cover” on page Xxxi.

%

Chapter 9 shows how to
choose the relevant
views. Section 10.1
shows how to document
aview, and Section 10.2
shows how to docu-
ment the information
that applies to more
than one view.

. N—

Layered views are cov-
ered in Section 2.4.
Deployment views are
covered in Section 5.2.

P.3 Architecture Views

Perhaps the most important concept associated with software
architecture documentation is that of the view. A software
architecture is a complex entity that cannot be described in a
simple one-dimensional fashion. Our analogy with the bird
wing proves illuminating. If you are interested in any but the
most superficial understanding, then no single rendition of a
bird wing will do. Instead, you need many: feathers, skeleton,
circulation, muscular views, and many others. Which of these
views is the “architecture” of the wing? None of them. Which
views convey the architecture? All of them.

In this book, we use the concept of views to give us the most
fundamental principle of architecture documentation, illus-
trated in Figure P.1:

Documenting an architecture is a matter of documenting
the relevant views and then adding documentation that
applies to more than one view.

What are the relevant views? It depends on your goals. As we
saw previously, architecture documentation can serve many
purposes: a mission statement for implementers, a basis for
analysis, the specification for automatic code generation, the
starting point for system understanding and asset recovery, or
the blueprint for project planning.

Different views also expose different quality attributes to dif-
ferent degrees. Therefore, the quality attributes that are of
most concern to you and the other stakeholders in the system’s
development will affect the choice of what views to document.
For instance, a layered viewwill tell you about your system’s port-
ability, a deployment view will let you reason about your system’s
performance and reliability, and so forth.

Different views support different goals and uses. This is funda-
mentally why we do not advocate a particular view or collection

Figure P.1

A documentation package
for a software architecture
can be composed of one or
more view documents and
documentation that
explains how the views
relate to one another,
introduces the package to
its readers, and guides
them through it.
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of views. The views you should document depend on the uses
you expect to make of the documentation. Different views will
highlight different system elements and/or relations.

It may be disconcerting that no single view can fully repre-
sent an architecture. Additionally, it feels somehow inadequate
to see the system only through discrete, multiple views that may
or may not relate to one another in any straightforward way.
The essence of architecture is the suppression of information
not necessary to the task at hand, and so it is somehow fitting
that the very nature of architecture is such that it never pre-
sents its whole self to us but only a facet or two at a time. This is
its strength: Each view emphasizes certain aspects of the system
while deemphasizing or ignoring other aspects, all in the inter-
est of making the problem at hand tractable. Nevertheless, no
one of these individual views adequately documents the software
architecture for the system. That is accomplished by the com-
plete set of views along with information that transcends them.

The documentation for a view contains

¢ A primary presentation, usually graphical, that depicts the
primary elements and relations of the view

¢ An element catalog that explains and defines the elements
shown in the view and lists their properties

¢ A specification of the elements’ interfaces and behavior

¢ Avariability guide explaining any built-in mechanisms avail-
able for tailoring the architecture

¢ Rationale and design information
The documentation that applies to all of the views contains

¢ An introduction to the entire package, including a reader’s
guide that helps a stakeholder find a desired piece of infor-
mation quickly

¢ Information describing how the views relate to one another,
and to the system as a whole

¢ Constraints and rationale for the overall architecture

¢ Such management information as may be required to effec-
tively maintain the whole package

A Short History of Architecture Views

Nearly all modern approaches to designing and docu-
menting architectures rely on the concept of an architec-
tural view. Where did this concept come from?
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An object-oriented pro-
gram’s runtime struc-
ture often bears little
resemblance to its code
structure. The code
structure is frozen at
compile-time; it con-
sists of classes in fixed
inheritance relation-
ships. A program’s run-
time structure consists
of rapidly changing net-
works of communicat-
ing objects. In fact, the
two structures are
largely independent.
Trying to understand
one from the other is
like trying to understand
the dynamism of living
ecosystems from the
static taxonomy of
plants and animals, and
vice versa.

—Gamma et al. (1995,
p. 22)

%

Section 10.1 substan-
tially elaborates this
outline.

Section 10.2 substan-
tially elaborates this
outline.
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To see how the 4+1
views correspond to
views described in this
book, see Section E.2 of
the epilogue.

The Siemens Four View
model is explained in
the book by Hofmeister,
Nord, and Soni (2000).

More than three decades ago, David Parnas
(1974) observed that software consists of many
structures, which he defined as partial descrip-
tions showing a system as a collection of parts
and showing some relations among the parts. This defi-
nition largely survives in architecture papers today. Par-
nas identified several structures prevalent in software. A
few were fairly specific to operating systems, such as the
structure that defines what process owns what memory
segment, but others are more generic and broadly appli-
cable. These include the module structure, in which the
units are work assignments and the relation is is-a-part-
of or shares-part-of-the-same-secret-as; the uses struc-
ture, in which the units are programs, and the relation is
depends on the correctness of; and the process struc-
ture, in which the units are processes, and the relation is

gives computational work to.
&= L. ilar to building architecture, a variety
T of views of a system are required.
Each view emphasizes certain architectural aspects that
are useful to different stakeholders or for different pur-
poses (Perry and Wolf 1992).

1 Later, Philippe Kruchten (1995) of the Rational
. Software Corporation wrote an influential paper
describing four main views of software archi-
tecture (logical, process, development, physi-
cal) that can be used to great advantage in system
building, along with a distinguished fifth view that ties the
other four together by showing how they satisfy key use
cases: the “4+1” approach to architecture. The 4+1
approach has since been embraced as a foundation
piece of the Rational Unified Process.

Quite a bit later, DeWayne Perry and
Alexander Wolf recognized that, sim-

@_ At about the same time,
j' &g Dilip Soni, Robert Nord, and
R Christine Hofmeister of Sie-
mens Corporate Research
made a similar observation about views of architecture
they found in use in industrial practice (Soni, Nord, and
Hofmeister 1995). They wrote about the conceptual view,
module interconnection view, execution view, and code
view. These views, which correspond more or less to
Kruchten’s four views, have become known as the Sie-
mens Four View model for architecture.

»
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Other “view sets” have emerged since these. In their
book Software Systems Architecture, Rozanski and
Woods (2005) advocate using functional, information,
concurrency, development, deployment, and operational
views. Philips Research, the R&D arm of the giant Dutch
electronics company, has created the “CAFCR” model of
architecture, which calls for five views: the customer,
application, functional, conceptual, and realization views.

In the year 2000, the IEEE adopted a standard (IEEE
1471-2000) for architecture descriptions. Unlike approaches
that prescribe a fixed set of views, this standard advo-
cates creating your own views that best serve the stake-
holders and their concerns associated with your system.
(The Views and Beyond approach also advises flexibility
in choosing your view set.)

P4 Architecture Styles

Recurring forms have been widely observed, even if written for
completely different systems. These forms occur often enough
that they are worth writing and learning about in their own
right. We call these forms architecture styles. (In this book, we
usually just say styles.) Styles have implications for architecture
documentation and deserve definition and discussion in their
own right.

Styles allow one to apply specialized design knowledge to a
particular class of systems and to support that class of system
design with style-specific tools, analysis, and implementations.
The literature is replete with a number of styles, and most
architects have a wide selection in their repertoires.

For example, we’ll see that modules can be arranged into a
useful configuration by restricting what each one is allowed to
use. The resultis alayered style that imparts to systems that use
it qualities of modifiability and portability. Different systems
will have a different number of layers, different contents in
each layer, and different rules for what each layer is allowed to
use. However, the layered style is abstract with respect to these
options and can be studied and analyzed without binding them.

For another example, we’ll see that clientserver is a com-
mon architecture style. The elements in this style are clients,
servers, and the protocol connectors that depict their interaction.
When used in a system, the client-server style imparts desirable
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IEEE 1471-2000 is
now known as ISO/IEC
42010:2007. We
describe this standard
in Section E.1 of the
epilogue.

| e

An architecture style is
a specialization of ele-
ment and relation types,
together with a set of
constraints on how they
can be used.

In all processes of life
people imitate, and so
must artists. They are
influenced by their peers
as by their antecedents
because this is the way
of organic development.
Late Beethoven and early
Schubert, for instance,
are almost indistinguish-
able; while Brahms took
certain themes, note for
note, from Beethoven;
and Shakespeare stole
nearly all of his plots—all
the good ones certainly.

—Agnes de Mille, Amer-
ican dancer and cho-
reographer (Atlantic
1956)



26 ™ Prologue: Software Architectures and Documentation

The layered style is
described in Section 2.4.

The client-server style is

described in Section 4.3.1.

v A e

A style guide is the
description of an archi-
tecture style that speci-
fies the vocabulary of
design (sets of element
and relationship types)
and the rules (sets of
topological and semantic
constraints) for how that
vocabulary can be used.

The contents of a style
guide are given in Sec-
tion 1.2, in the introduc-
tion to Part |. Section
6.1.4 discusses how to
create and document a
new style.

%

Combining views is an
important concept cov-
ered in Section 6.6.

v B e

A bridging element is
an element that is com-
mon to two views and is
used to provide the
continuity of under-
standing from one view
to the other. A bridging
element appears in both
views and has support-
ing documentation,
usually a mapping
between views, that
makes the correspon-
dence clear, perhaps by
showing the combined
picture.

properties to the system, such as the ability to add clients with
little effort. Different systems will have different protocols, dif-
ferent numbers of servers, and different numbers of clients
each can support. However, the client-server style is abstract
with respect to these options and can be studied and analyzed
without binding them.

Some styles are applicable in every software system. For
example, every system is decomposed into modules to divide
the work; hence, the decomposition style applies everywhere.
Other examples of “universal styles” are uses, deployment, and
work assignment. Some styles occur only in systems in which
they were explicitly chosen and designed in by the architect:
layered, service oriented, and multi-tier, for example.

Choosing a style, whether it’s one covered in this book or
somewhere else, imparts a documentation obligation to record
the specializations and constraints that the style imposes and
the characteristics that the style imparts to the system. We call
this piece of documentation a style guide. The obligation to
document a style can usually be discharged by citing a descrip-
tion of the style in the literature: this book, for example. If you
invent your own style, however, you should write a style guide
for it because it will help you and your peers to apply that style
in other systems.

No system is built exclusively from a single style. On the con-
trary, every system can be seen to be an amalgamation of many
different styles. Some (such as decomposition and work assign-
ment) occur in every system, but in addition to these, systems
can exhibit a combination of one or more “chosen” styles as
well.

Even restricting our attention to component-and-connector
styles, it’s possible for one system to exhibit several styles in the
following ways:

¢ Different “areas” of the system might exhibit different styles.
For example, a system might use a pipe-and-ilter style to
process input data but route the result to a database that is
accessed by many elements. This system would be a blend of
pipe-and-filter and shared-data styles. Documentation for
this system would include (1) a pipe-and-filter view that
showed one part of the system and (2) a shared-data view
that showed the other part. In a case like this, one or more
elements must occur in both views and have properties of
both kinds of elements. (Otherwise, the two parts of the sys-
tem could not communicate with each other.) These bridging
elements provide the continuity of understanding from one
view to the next. They likely have multiple interfaces, each
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providing the mechanisms for letting the element work with
other elements in each of the views to which it belongs. The
filter/ database connector in Figure P.2 is an example.

¢ An element playing a part in one style may itself be com-
posed of elements arranged in another style. For example,
a service provider in an SOA system might, unknown to
other service providers or its own service users, be imple-
mented using a multi-tier style. Documentation for this sys-
tem would include an SOA view showing the overall system,
as well as a multi-tier view documenting that server, as illus-
trated in Figure P.3.

¢ Finally, the same system might simply be seen in different
lights, as though you were looking at it through filtered
glasses. For example, a system featuring a database reposi-
tory, as in Figure P.4, may be seen as embodying either a
shared-data style or a clientserver style. The glasses you
choose will determine the style that you “see.”

In the last case, your choice of style-filtered glasses depends,
once again, on the uses to which you and your stakeholders
intend to put the documentation. For instance, if the shared-
data style is more easily understood by the stakeholders that
will consume that view, you might choose it. If you need the
perspective afforded by more than one style, however, you have
a choice. You can document the corresponding views separately,
or you can combine them into a single view that is, roughly
speaking, the union of what the separate views would be.

This combined view is
called an overlay. Over-
lays are discussed in
Section 6.6.

—t 1

Key

Filter Database Accessor
o0—o0 o—> <+—>
Pipe Filter/ Accessor

database connector
connector

Figure P.2

A system combining a
pipe-and-filter style with a
shared-data style. The
“filter/database connector”
is a bridging element.



28 1 Prologue: Software Architectures and Documentation

Figure P.3

A system combining two
styles. Here a service
provider is composed
internally in a multi-tier
style.
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Figure P.4

This system could be in the
shared-data style, or the
client-server style,
depending on your
perspective.
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Although no fixed set of views is appropriate for every system,
broad guidelines can help us gain a footing. Architects need to
think about their software in three ways simultaneously:

Three Categories of Styles

1. How itis structured as a set of implementation units

2. How it is structured as a set of elements that have runtime
behavior and interactions

3. How it relates to nonsoftware structures in its environment

Each style we present in this book falls into one of these
three categories:

1. Module styles
2. Component-and-connector (C&C) styles
3. Allocation styles

When we apply a style to a system, the resultis a view. Module
views document a system’s principal units of implementation.
C&C views document the system’s units of execution. And allo-
cation views document the relations between a system’s soft-
ware and nonsoftware resources of the development and
execution environments.

Module, Component

In this book, we rely on three categories of styles: mod-
ule, component-and-connector, and allocation. This three-
way distinction allows us to structure the information
we’re presenting in an orderly way and, we hope, allows
you to recall it and access it in an orderly way, so that you
can write an architecture document that presents its
information in an orderly way. But for this strategy to suc-
ceed, the distinctions have to be meaningful. Two of the
categories rely on words for which we give precise
meanings, but which are not historically well differenti-
ated: module and component.

Like many words in computing, these two have mean-
ings outside our field. Furthermore, both terms have
come to be associated with movements in software engi-
neering that have overlapping goals.

During the 1960s and 1970s, software systems increased
in size and were no longer able to be produced by one
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A selection of module
styles is presented in
Chapter 2. A selection
of C&C styles is pre-
sented in Chapter 4. A
selection of allocation
styles is presented in
Chapter 5.

T
ho
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XY

One of the best ways to
avoid confusion in your
architecture is to be
meticulous about
making it clear whether
each architecture ele-
ment is a module or a
component.



30

Prologue: Software Architectures and Documentation

person. It became clear that new techniques were
needed to manage software complexity and to partition
work among programmers. To address such issues of
“programming in the large,” various criteria were intro-
duced to help programmers decide how to partition their
software. Encapsulation, information hiding, and abstract
data types became the dominant design paradigms of
the day. Until this movement, computer programs were
largely about calculating the correct answer, but thought
leaders were now saying that how you structure your
code determines other important properties of the system.
Module became the carrier of their meaning. The 1970s
and 1980s saw the advent of “module interconnection
languages” and features of new programming languages
such as Modula modules, Smalltalk classes, and Ada
packages. Today’s dominant design paradigm—object-
oriented programming—has these module concepts at
its heart. Components, by contrast, are in the limelight
with component-based software engineering and the
component-and-connector perspective in the software
architecture field.

Both movements aspire to achieve rapid system con-
struction and evolution through the selection, assembly,
and wholesale replacement of independent subpieces.
Both modules and components are about the decompo-
sition of a whole software system into constituent parts.
But beyond that, the two terms take on different shades
of meaning.

¢ A module refers first and foremost to a unit of imple-
mentation. Parnas’s foundational work in module
design (Parnas 1972) used information hiding as the
criterion for allocating responsibility to a module.
Information that was likely to change over the lifetime
of a system, such as the choice of data structures or
algorithms, was assigned to a module, which had an
interface through which its facilities were accessed.
Modules have long been associated with source code,
but information models, XML files, config files, BNF
files for parsers, and other implementation artifacts
are all perfectly fine modules.

¢ A component refers to a runtime entity. Szyperski says
that a component “can be deployed independently
and is subject to composition by third parties”
(Szyperski 1998, p. 30). The emphasis is clearly on the
finished product and not on the implementation con-
siderations that went into it. Indeed, the operative




model is that a component is delivered in the form of
an executable binary only: Nothing upstream from that
is available to the system builder.

In short, a module suggests implementation units and
artifacts, with less emphasis on the delivery medium and
what goes on at runtime. A component is about units of
software active at runtime with no visibility into the imple-
mentation structure.

Who cares? If every module turned into exactly one com-
ponent at runtime, it would be easy to sweep the differ-
ence under the rug. But this is often far from reality! In
many systems, a single module might turn into many
components, or it might take many modules to turn into
a single component. An easy way to see this is to imag-
ine a trivially simple client-server system. Suppose our
system has a single server, which at runtime serves up
some interesting piece of data to ten interested clients,
all of which do the same thing. This system has eleven
components but only two modules. The server module
maps 1:1 onto the server component S1. The client mod-
ule maps 1:10 to the client components C1-C10. Failing
to distinguish between modules and components makes
it too easy to blithely assume that every unit of implemen-
tation turns into exactly one unit of execution. It isn’t so.

Our use of the terms in this book reflects their pedigrees.
Module styles described in this book reflect implementa-
tion artifact considerations: decompositions that assign
parts of the problem to units of design and implementation,
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Figure P.5

A client-server system
might consist of two
modules but eleven
components.
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Section 10.2 describes
how to document the
mapping between a
system’s modules and
its components. Sec-
tions 1.5 and 3.5 dis-
cuss how modules and
components relate to
each other.

layers that reflect what uses are allowed when software
is being written, and classes that factor out commonality
from a set of instances. Modules in these styles are often
units of source code, but there’s also the data model
style, where the module is a model of the data that the
system manipulates. Of course, all these module styles
have runtime implications; that’s the end game of soft-
ware design, after all. C&C styles described in this book
focus on how processes interact and data travels around
the system during execution.

In many architectures, there is a one-to-one mapping
between modules and components. Further, the module
and its component counterpart are usually given the same
name in this case. This makes it tempting to believe that
the modules and components are the same, which in
turn makes it tempting to believe there is no difference.
Don’t be tempted. Although a one-to-one mapping does
no harm, the truth is that the module and component are
different elements sharing the same name. In such an
architecture, the module will show up in a module view,
and a component with the same name will show up in
one or more component-and-connector views.

Modules and components represent the current bedrock of
the software engineering approach to rapidly constructed,
easily changeable software systems. As such, modules
and components serve as fundamental building blocks
for creating and documenting software architectures.

“Architecture Style” and “Architecture Pattern”

What do the two terms mean?

In this book we use “architecture style” as the term for a
package of design decisions that explains a generic design
approach for a software system. Another term for a similar
concept, used by many architects and authors, is “architec-
ture pattern.” What is the difference between these two
concepts and why did we choose style over pattern?

An architecture style is a “specialization of element and
relation types, together with a set of constraints on how
they can be used” (Bass, Clements, and Kazman 2003).




An architecture pattern “expresses a fundamental
structural organization schema for software systems”
(Buschmann et al. 1996, p. 12). It is, above all, a pattern,
which in the context of architecture “describes a partic-
ular recurring design problem that arises in specific
design contexts, and presents a well-proven generic
scheme for its solution. The solution scheme is specified
by describing its constituent components, their respon-
sibilities and relations, and the ways in which they collab-
orate” (Buschmann et al. 1996, p. 8).

An essential part of an architecture pattern is its focus on
the problem and context as well as how to solve the
problem in that context. That last part we’ll call the archi-
tecture approach. An architecture style focuses on the
architecture approach, with more lightweight guidance
on when a particular style may or may not be useful. Very
informally, we can put it this way (where the arrow means
“suggests”):

¢ Architecture pattern: {problem, context} —
architecture approach

¢ Architecture style: architecture approach

How did these two terms come about?

“Architecture style” as we use it today traces to some
early writing from the formative days of software archi-
tecture study.

In 1990 and 1991, Mary Shaw was noticing and
describing recurring architecture concepts she
z, found in many systems. She called these
~ “elements of a design language for software
architecture” or “design idioms” (Shaw 1990, 1991). In
1992 Dewayne Perry and Alexander Wolf wanted to
“build an intuition” about the still-new field of software
architecture (Perry and Wolf 1992). Looking around at
other kinds of architecture —network architecture, com-
puter architecture, and others—they hit upon building
architecture as rich in fertile (and borrowable) concepts.
One of those concepts was architecture style. Like
Shaw before them, they were also noticing recurring
design forms in software architectures, and they saw that
this would be a useful term to appropriate to describe
those forms. Styles, then, were observed phenomena,
approaches (manifest in the kinds of elements and rela-
tions employed) that the authors noticed were being
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Thus, we find in building
architecture some fun-
damental insights about
software architecture:
multiple views are
needed to emphasize
and to understand dif-
ferent aspects of the
architecture; styles are a
cogent and important
form of codification that
can be used both
descriptively and pre-
scriptively; and, engi-
neering principles and
material properties are
of fundamental impor-
tance in the develop-
ment and support of a
particular architecture
and architectural style.

—Perry and Wolf (1992)

[In building architecture,]
architectural styles
classify architecture in
terms of form, tech-
niques, materials, time
period, region, etc. . ..
leading to a terminology
such as Gothic “style.”

—Wikipedia (2010a)
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“An architectural pattern
expresses a fundamental
structural organization
schema for software
systems. It provides a
set of predefined sub-
systems, specifies their
responsibilities, and
includes rules and
guidelines for organiz-
ing the relationships
between them.”
(Buschmann et al. 1996,
p. 12)

We must not forget that
the wheel is reinvented
so often because it is a
very good idea; I've
learned to worry more
about the soundness of
ideas that were
invented only once.

—D. L. Parnas (1996)

used over and over. The emphasis was on discovery and
categorization of utilized forms.

In 1996 Frank Buschmann and his colleagues
at Siemens made the inevitable connection
between two powerful concepts: software
architecture and design patterns (the latter hav-
ing electrified software engineering the previous year).
Their book, Pattern-Oriented Software Architecture, Vol-
ume 1: A System of Patterns (Buschmann et al. 1996;
PoSA, for short), is where the term architectural pattern
was first used. Followed over the years by (at this writing)
four sequels, the PoSA series does for architects what
Design Patterns (Gamma et al. 1995) did for designers
and programmers.

Both design patterns and (software) architec-
ture patterns owe their meaning to the building
architect Christopher Alexander, who in the
1970s wrote several books detailing architec-
ture approaches to solve common building design prob-
lems. People love to sit next to windows, he wrote, so
make every room have a place where they can comfort-
ably do so. People love balconies, he wrote, but obser-
vations show they won’t spend time on a balcony less
than 10 feet wide. So make your balconies at least 10
feet wide. People love outdoor spaces, he wrote, but not
if they’re in the shadow of a building. So in the northern
hemisphere put your courtyards on the south side. He
called these design nuggets patterns: “a three-part rule,
which expresses a relation between a certain context, a
problem, and a solution” (Alexander 1979, p. 247). The
patterns community (of whatever flavor) has tried to
remain faithful to his meaning.

Why do patterns seem more specific?

It has turned out, not as a matter of the intrinsic nature of
these things but rather as a matter of practice, that the
published architecture patterns tend to be more con-
straining—that is, they embed more design decisions—
than the published architecture styles. Patterns often
look “more detailed” or “less abstract” than styles. Styles
tend to tell people what the element and relation types of
interest are, and give topological constraints: Put layers
on top of layers; pipes connect to filters, not pipes; and
so on. Patterns tend to be more specific, showing
instances of the element type interacting with each other.




That’s because the collectors of styles were motivated to
find commonality where none had been observed before.
Broad categories are more inclusive. Pattern writers have
tended to record very specific and context-dependent prob-
lems; hence their solutions are correspondingly specific.

Architects can use this de facto distinction to their
advantage. For instance, if you’re handling a lot of data
in your system, you might want to consider a style (the
shared-data style is a good candidate) and ask yourself
if the element and relation types are what you need: That
is, do you really need a database? Yes? OK, now go look
for a more constrained architecture approach (which
might very well be given as a pattern).

Why did we use “architecture style” in this book?

In this book, which is about documenting software architec-
tures and not so much about designing them, we concen-
trate on presenting a variety of solution approaches—
architecture styles—so that we can show how to document
systems built using them. In a software architecture docu-
ment, one doesn’t document a pattern, one documents an
application of it—that is, the instantiated solution approach.

How do | document the use of a style or pattern in a software
architecture document?

Architects can use either patterns or styles as a starting
point for their design. They might be published in existing
catalogs, stored in an organization’s proprietary repository
of standard designs, or created specifically for the prob-
lem at hand by the architect. In either case, they provide
a generic (that is, incomplete) solution approach that the
architect will have to refine and instantiate.

First, record the fact that the given style or pattern is
being used. Then say why this solution approach was
chosen—why it is a good fit to the problem at hand. If the
chosen approach comes from a pattern, show that the
problem at hand fits the problem and context of the pat-
tern. If the chosen approach comes from a style, explain
why the style does the needed job.

Using a pattern or a style means making successive
design decisions that eventually result in an architecture.
These design decisions manifest themselves as newly
instantiated elements and relations among them. The
architect can document a snapshot of the architecture at

P.4  Architecture Styles ™ 35

The shared-data style is
described in Section
4.5.1.

S —

The software architec-
ture document tem-
plates in Chapter 10 will
provide a place for all of
this information.

%

The concept of making
successively more
constrained design
decisions is called a
“spectrum of design”
and is discussed in Sec-
tion 6.1.3.
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Styles are described
using a common set of
information; this layout
is called a style guide.
The style guide we use
to describe the styles
covered in this book is
explained in the intro-
duction to Part I.
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These are the rules for
any technical documen-
tation, including soft-
ware architecture
documentation:

1. Write documentation
from the reader’s
point of view.

2. Avoid unnecessary
repetition.

3. Avoid ambiguity.

4. Use a standard
organization.

5. Record rationale.

6. Keep documentation
current but not too
current.

7. Review documentation
for fitness of purpose.

R —

The consumer isn’t a

moron. She is your wife.

—David Ogilvy, writing
about advertising

each stage. How many stages there are depends on
many things, not the least of which is the ability of read-
ers to follow the design process in case they have to
revisit it in the future.

Summary

Architecture styles represent observed architecture
approaches. A style description does not generally include
detailed problem/context information. Architecture pat-
terns do. An architecture approach might be docu-
mented (and several are) as an architecture style and an
architecture pattern. Both styles and patterns are a set of
prepackaged design decisions involving the choice of
element types, relation types, properties, and constraints
on the topology and interaction among the elements via
the relations. Both provide vocabularies that shortcut
explanation and allow greatly facilitated communication
(“My system is layered.” “Ah, | understand. What are the
layers?”), and help chart a course to the satisfaction of
specific quality attribute requirements. Both can be used
in combination—it is a rare system that uses only one
style or one architecture pattern. And both represent
essential elements of an architect’s vocabulary.

P5 Seven Rules for Sound Documentation

Architecture documentation is much like the documentation
we write in other facets of our software development projects.
As such, it obeys the same fundamental rules for what distin-
guishes good, usable documentation from poor, ignored doc-
umentation. We close the prologue with seven rules for sound
software documentation. Use this checklist when you write
technical documentation. (You can also use it when you read
technical documentation: the rules provide objective criteria
for judging a document’s quality, and they let you say some-
thing constructive in a critical review.)

Rule 1: Write Documentation from the Reader’s Point of View

This rule simply reminds us to keep the end game in mind as
we produce our documentation: Make your document serve its
stakeholders and their intended uses of it. It is surprisingly easy
to forget that rule in the midst of looming deadlines, an over-
flowing e-mail queue, and a cell phone that won’t shut up.
The great computing scientist Edsger Dijkstra (1930-2002),
the inventor of many of the software engineering principles we
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now take for granted, once said that he would happily spend
two hours pondering how to make a single sentence clearer.
He reasoned that if the paper were read by a couple of hun-
dred people—a decidedly modest estimate for someone of
Dijkstra’s caliber—and he could save each reader a minute or
two of confusion, it was well worth the effort. Professor Dijk-
stra’s consideration for the reader reflects his classic manners,
but it also gives us a new and useful concept of the effort asso-
ciated with a document. Usually we just count how long it takes
to write. Dijkstra taught us to be concerned with how long it
takes to use. Writing a document that a reader finds easy to use
will help tilt the economics of documentation in our favor, as
defined in the formula in Section P.2.4.

Writing for the reader is just plain polite, but it has a practi-
cal advantage as well. A reader who feels that the document
was written with him or her in mind appreciates the effort but,
more to the point, will come back to the document again and
again in the future. Documents written for the reader will be
read; documents written for the convenience of the writer will
not. All of us like to shop at stores that seem to want our busi-
ness, and we avoid stores that do not. This is no different.

Tips on how to write for the reader include:

¢ Find out who your readers are, what they know, and what
they expect of the document. Have an informal chat with
some representatives of various kinds of readers and see
what their expectations are. Don’t make uninformed
assumptions about what your readers know.

¢ Avoid stream of consciousness writing. If you find yourself
writing things down in the order they occur to you, without
an overall organizational plan, stop. Work out where spe-
cific kinds of information should go and put them where
they belong. Make sure that you know what question(s) are
being answered by each section of a document.

¢ Avoid unnecessary insider jargon. The documentation may
be read by someone new to the field or from a company that
does not share the same jargon. Add a glossary to define
specialized terms.

¢ Avoid overuse of acronyms. Resist using an acronym when
the spelled-out phrase is short or it appears only a few times.
Always provide a dictionary that decodes whatever acronyms
you do use.

Rule 2: Avoid Unnecessary Repetition

Each kind of information should be recorded in exactly one
place. This makes documentation easier to use and much easier

| have made this letter
rather long only
because | have not had
time to make it shorter.

—Blaise Pascal, French
mathematician, phys-
icist, and moralist

I —

The true measure of a
man is how he treats
someone who can do
him absolutely no good.

— Attributed to Samuel
Johnson
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Rozanski and Woods’s
book Software Systems
Architecture (2005) lists
the following properties
of an “effective archi-
tectural description”:
correctness, sufficiency,
conciseness, clarity,
currency, and precision.



38 Prologue: Software Architectures and Documentation

The data flow diagrams
... don’t seem to be
much use. They’re just
vague pictures suggest-
ing what someone
thinks might be the
shape of a system to
solve a problem, and no
one’s saying what the
problem is. [T]he big
picture isn’t much use if
it doesn’t say anything
you can understand.
You’re all just guessing
what Fred’s diagram
means. It wouldn’t
mean anything at all to
you if you didn’t already
have a pretty good idea
of what the problem is
and how to solve it.

—A character in a
parable about data
flow diagrams written
by Michael Jackson
(1995)

to change as it evolves. It also avoids confusion: information
that is repeated is likely to be in a slightly different form, and
now the reader must wonder “Was the difference intentional?
If so, what is the meaning of the difference? Did the author
change one place and forget to update the other?”

It should be a goal that information never be repeated. How-
ever, at times the cost to the reader of not repeating informa-
tion in the other places where it’s needed is high. Readers
don’t like to flip pages or click hyperlinks unnecessarily. The
information may be repeated in two or more different places
for clarity or to make different points. Also, expressing the
same idea in different forms is often useful for achieving a
thorough understanding. If keeping the information separate
comes at too high a cost to the reader, repeat the information.

In a document maintained and viewed online, hyperlinks
make this rule easier to follow. For example, each term can be
hyperlinked to its definition; a concept can be hyperlinked to
an explanation or elaboration.

Beware Notations Everyone “Just Knows”

Rule 3 admonishes us to avoid ambiguity. “A well-
defined notation with precise semantics,” we say, “goes
a long way toward eliminating whole classes of linguistic
ambiguity from a document.” Here we want to empha-
size the part about “precise semantics.” Just having a
well-defined notation is not enough.

Consider data flow diagrams. Years ago Michael Jackson
wrote a wonderful Socratic dialogue that showed how a
data flow diagram is largely incapable of conveying use-
ful information about a software design unless you
already have a pretty good idea what the design is by the
time you start looking at it (Jackson 1995, pp. 42-47; we
reprinted the dialogue in Chapter 11 of the first edition of
this book [Clements et al. 2003)). Data flow diagrams, for
heaven’s sake! They’ve been around for decades. Can it
really be that nobody understands what they mean?
Jackson was able to show convincingly how easily they
can be misinterpreted.

Consider layer diagrams. Layered systems were first
described more than four decades ago. We’ve all seen
them; we’ve all written them. Yet how many times have
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we stopped to ask exactly what they mean? A layer dia-
gram is about the only graphical representation of archi-
tecture in which position is significant. Box 1 on top of
Box 2 is quite a different system than Box 2 on top of Box
1. What does it mean, exactly, that some rectangles are
stacked up on top of each other? “Oh, the programs on
top can call programs below” is an answer | often get
when | ask this question in class. Well, can programs at
the top call any programs below, or just the programs in
the next lower layer? Ask this question in a room full of
professional software engineers, and (if my experience
teaching to these groups is any measure) you’ll usually
get one-third nods, one-third head shakes, and one-third
looking as though you just told them the sun is made of
really shiny cheese. Can programs in a layer call other
programs in the same layer? Generally the same
response. And everyone, absolutely everyone, forgets to
tell me that programs below are not allowed to call pro-
grams above, which is a rather important thing to
remember about layers.

So, surprise: Simple layer diagrams are inherently ambig-
uous. Common variants, such as what | call “layers with
a sidecar,” where a vertical box is smooshed up against
the stack on one side, are even more ambiguous. (The
good news is that they can be easily disambiguated.)

A well-defined notation is one in which you can look at an
example and tell whether it’s a legal example of using the
notation or not. Layers and data flow diagrams both have
this property. But neither, traditionally presented, have
precise enough semantics to be unambiguous.

Notations like this, where software engineers “just know”
what they mean, are the most dangerous. We all might
“know” what a layer diagram means. The problem is that
what | “know” it means will be different from what you
“know” it means, and different still from what the archi-
tect meant. So we’ll all go merrily along with no hint of a
problem until late in the project when our errors in under-
standing may cause us to miss a deadline or suffer an
operating failure.

—PC.
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It is far better to be
explicit and wrong than
to be vague.

—Frederick Brooks, Jr.
(1995, p. 259)

S S—

Clarity is our only
defense against the
embarrassment felt on
completion of a large
project when it is dis-
covered that the wrong
problem has been
solved.

—C. A. R. Hoare (1985,
p. 85)

Rule 3: Avoid Ambiguity

Ambiguity occurs when documentation can be interpreted in
more than one way and at least one of those ways is incorrect.
The most dangerous kind of ambiguity is undetected ambigu-
ity. Here, each reader will think he or she understands the doc-
ument, but unwittingly each reader will come to different
conclusions about what it is saying.

Following two of the other rules will help you avoid ambiguity:

¢ By avoiding needless repetition (rule 2), you avoid the
“almost but not quite alike” form of ambiguity.

¢ Reviewing the document with members of its intended audi-
ence (rule 7) will help spot and weed out ambiguities.

A well-defined notation with precise semantics goes a long
way toward eliminating whole classes of linguistic ambiguity
from a document. This is one area where standard languages
and notations help a great deal, but using a formal language
isn’t always necessary. Simply adopting a set of notational con-
ventions and then using them consistently and rigorously will
help eliminate many sources of ambiguity. But if you do adopt
a notation, then the following corollary applies:

We have several things to say about box-and-line dia-
grams masquerading as architecture documentation.

e Don’t be guilty of drawing one and claiming that
it's anything more than a start at an architecture
description.

¢ |f you draw one yourself, make sure that you explain
precisely what the boxes and lines mean.

e If you see one, ask its author what the boxes mean
and what, precisely, the arrows connote. The result is
usually illuminating, even if the only thing illuminated is
the author’s confusion.

Rule 3a: Explain Your Notation

The ubiquitous box-and-line diagrams that people always draw
on whiteboards are one of the greatest sources of ambiguity in
architecture documentation. Although not a bad starting
point, these diagrams are certainly not good architecture doc-
umentation. First, most such diagrams suffer from ambiguity.
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Are the boxes supposed to be modules, objects, classes, ser-
vices, clients, servers, databases, processes, functions, tiers, pro-
cedures, processors, or something else? Do the arrows mean
calls, uses, data flow, I/O, inheritance, communication, pro-
cessor migration, or something else?

Make it as easy as possible for your reader to determine the
meaning of the notation. The best way to do this is always to
include a key in your diagrams. If you’re using a standard visual
language defined elsewhere, the key can simply name it or
refer readers to the source of the language’s semantics. Even if
the language is standard or widely used, different versions
often exist. Let your reader know, by citation, which one you're
using. For example, “Key: UML 2.0” is a perfectly fine key, and
it puts readers and authors on the same page. For a home-
grown informal notation, include a key to the symbology. This
is good practice because it compels you to understand what the
pieces of your system are and how they relate to one another;
it’s also courteous to your readers.

Quivering at Arrows

Many architecture diagrams with an informal notation
use arrows to indicate a directional relationship among
architecture elements. Although this might seem like a
good and innocuous way to indicate that two elements
interact, it creates a great source of confusion in many
cases. What do the arrows mean?

Consider the following architecture snippet:

Cl F—| C2

What does the arrow mean? Here are some possibilities:

e (C1 calls C2.

¢ Data flows from C1 to C2.

e (1 instantiates C2.

¢ (C1 sends a message to C2.

e C1 is a subtype of C2. (Usually C2 would be posi-
tioned above C1, but that is not mandatory.)

S
£
(@7

Every diagram in the
architecture documen-
tation should include a
key that explains the
meaning of every sym-
bol used. The key
should identify the nota-
tion. If a predefined
notation is being used
(such as UML), the key
should name it and if
necessary cite the doc-
ument that defines the
version being used.
Otherwise, the key
should define the sym-
bology and the mean-
ing, if any, of colors,
shapes, position, and
other information-carry-
ing aspects of the dia-
gram. If your diagram
uses color but the color
has no particular mean-
ing or is only there to
enhance readability, say
so in the key.

If you define an informal
notation for your dia-
grams, try to use the
same notation consis-
tently across diagrams
of the same type. Use
different symbols for
different types of ele-
ments and relations. For
example, if you used a
rounded rectangle for
Web components in a
diagram, avoid using a
different shape for Web
components in other
diagrams.
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SOAP and REST are
defined in Section 4.3.3.
In previous versions of
the SOAP specification,
SOAP was an acronym,
but this is no longer the
case. See www.w3.org/
TR/soap12-part1/#intro.

e (2 is a data repository and C1 is writing data to C2.

e Conversely, C1 is a repository and C2 is reading data
from C1.

Any of these might make sense, and people use arrows
to mean all these things and more, often using multiple
interpretations in the same diagram.

Suppose we know the arrow indicates that component
C1 calls component C2. If your system uses different
kinds of calls, it’s a good idea to differentiate them in the
diagrams. In particular, it is important to distinguish syn-
chronous from asynchronous calls, and local from
remote calls. Both aspects may have implications for
behavior, performance, modifiability, and reliability of the
interaction. It may also be useful to differentiate the tech-
nology used to implement the call when the solution will
accommodate different ones. For example, a synchro-
nous remote call can be implemented via a Web service
such as SOAP, REST, Java RMI, or .NET remoting,
among other options. To differentiate the types of inter-
action in the diagram, use distinct arrowheads (open,
closed, solid, hollow) and lines (solid, dotted, dashed,
double).

Suppose that we know that C1 calls C2. Sometimes we
feel tempted to also show a data flow between the two.
We could use the preceding figure and assume the arrow
indicates data flow (instead of “calls”), but if C2 returns a
value to C1, shouldn’t an arrow go both ways? Or should
a single arrow have two arrowheads? These two options
are not interchangeable. A double-headed arrow typi-
cally denotes a symmetric relationship between two ele-
ments, whereas two single-headed arrows suggest two
asymmetric relationships at work. In either case, the dia-
gram will lose the information that C1 initiated the inter-
action. Suppose that C2 also invokes C1. Would we need
to put two double-headed arrows between C1 and C27?
When a component C1 calls a component C2, C1 may
pass data as arguments to C2 and C2 may return data
back to C1. Therefore, it’s often a better idea to use the
arrow to indicate the call’s relation rather than data flow;
otherwise the diagram may easily end up full of double-
headed arrows that don’t tell much.

Although arrows are often used to indicate interactions,
often one can avoid confusion by not using them where
they are likely to be misinterpreted. For example, one can
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use lines without arrowheads. Sometimes physical
placement, rather than lines, can convey the same infor-
mation. For example, a layer A on top of a layer B indi-
cates that modules in A can use modules in B. Nesting
one element inside another often means “is part of.”

Finally, a good key is essential for understanding the
meaning of arrows, even ones that represent “simple”
interactions such as “calls.” A useful arrow, suitably
explained in the key, will leave no doubt as to which is the
calling end and which is the called end of a call-return
connector, and which way the data flows.

—D.G. and PM.

Rule 4: Use a Standard Organization

Establish a standard, planned organization scheme, make your
documents adhere to it, and ensure that readers know about it.
A standard organization, also called a template, offers many
benefits.

It helps the reader navigate the document and find specific
information quickly. Thus, this benefit is also related to the
write-for-the-reader rule.

It also helps the document writer plan and organize the con-
tents. The writer doesn’t have to start with a blank page
when answering the question “What topics and in what
order should I have in this document?” The template
already provides an outline of the important topics to cover.

It allows the writer to record information as soon as it’s
known. For example, pieces of section 4 may be written
before sections 1-3 are there.

It reveals what work remains to be done by the number of
sections labeled “ITBD” (to be determined) or “To Do.”

It embodies completeness rules for the information; the sec-
tions of the document constitute the set of important aspects
that need to be conveyed. Hence, the standard organization
can form the basis for a first-order validation check of the
document at review time.

Corollaries to this rule are these:

Organize documentation for ease of reference. Software docu-
mentation may be read from cover to cover at most once,
probably never. But a document is likely to be referenced
hundreds or thousands of times. Do what you can to make
it easy to find information quickly. Adding a table of contents,

%

Section 1.2, in the intro-
duction to Part |, con-
tains a standard
organization for a style
guide. Sections 10.1
and 10.2 contain a stan-
dard organization that
we recommend for doc-
umenting views and
information beyond
views. Chapter 7 contains
a standard organization
for the documentation
of a software interface.

P —

Take any long explana-
tions of figures that are
in the main text and
move these to the fig-
ures’ captions. In-text
explanations would
serve first-time readers
well, but putting expla-
nations in captions will
serve second-time
readers better: When
they see a figure they’re
looking for they won’t
have to go search the
text for its explanation.

—Instructions to the
editors of this book,
explaining one way in
which we tried to
organize the book for
ease of reference
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Don’t leave sections
blank. Mark them as
“not applicable” or “to
be determined,” as
appropriate. Better:
“Not applicable
because [reason]” and
“To be determined by
[date or milestone].”

R —

“Well, it’s an idea, and
even abad ideais better
than none,” said Master
Li. “Error can point the
way to truth, while
empty-headedness can
only lead to more
empty-headedness or
to a career in politics.”

—Barry Hughart, Bridge
of Birds (1984)

Section 6.5 discusses
the documentation of
rationale.

an index, a glossary, and an acronym list are all good ways
to help readers look up specific information.

2. Don’t leave any section blank; mark as “I'BD” what you don’t yet
know or “NA” what you know is not applicable. Many times, we
can’t fill in a document completely because we don’t yet
know the information, or because decisions have not been
made, or because we didn’t yet have time to do it. In that
case, mark the document accordingly (for example, “ITBD”
or “To Do”). Templates are by nature generic and hence
comprehensive. If a given section of the template does not
apply for the document you’re creating, mark it as “NA.” If
the section is blank, the reader will wonder whether the
information is coming later or whether it is indeed sup-
posed to be blank. Thus this advice is related to the rule
about avoiding ambiguity.

Rule 5: Record Rationale

Architecture is the result of making a set of important design
decisions, and architecture documentation records the out-
comes of those decisions. For the most important decisions,
you should record why you made them the way you did. You
should also record the important or most likely alternatives
you rejected and state why. Later, when those decisions come
under scrutiny or pressure to change, you will find yourself
revisiting the same arguments and wondering why you didn’t
take another path. Recording your rationale will save you enor-
mous time in the long run, although it requires discipline to
record your rationale in the heat of the moment.

Of course, not every single design decision should have the
rationale captured in the architecture documentation. If a
design decision is key to achieve a quality requirement of the
system, its rationale is probably worth capturing. If a design
decision required a long meeting with stakeholders, that’s a
good decision to capture. If you conducted technical experi-
ments and studies or created prototypes to evaluate design
alternatives, the conclusions of this effort should be captured
as rationale for the chosen alternative. Keep in mind that one
week, one month, or one year from now, you may not remem-
ber why you did things that way, and other people will not
know either.

Rule 6: Keep Documentation Current but Not Too Current

Documentation that is incomplete or out of date does not
reflect truth, does not obey its own rules for form and internal
consistency, and is not used. Documentation that is kept cur-
rent and accurate is used. Why? Because questions about the
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software can be most easily and most efficiently answered by
referring to the appropriate document. Documentation that is
somehow inadequate to answer the question needs to be fixed.
Updating it and then referring the questioner to it will deliver
a strong message that the documentation is the final, authori-
tative source for information.

During the design process, on the other hand, decisions are
made and reconsidered with great frequency. Revising docu-
mentation to reflect decisions that will not persist is an unnec-
essary expense.

Your development plan should specify particular points at
which the documentation is brought up to date or the process
for keeping the documentation current. For example, the end
of each iteration or sprint, or each incremental release, could
be associated with providing revised documentation. Every
design decision should not be recorded and distributed the
instant it is made; rather, the document should be subject to
version control and have a release strategy, just as every other
artifact does.

Rule 7: Review Documentation for Fitness of Purpose

Only the intended users of a document will be able to tell you
whether it contains the right information presented in the
right way. Enlist their aid. Before a document is released, have
it reviewed by representatives of the community or communi-
ties for which it was written.

P.6 Summary Checklist

¢ The goal of documenting an architecture is to write it down
so that others can successfully use it, maintain it, and build
a system from it.

e Documentation exists to further architecture’s uses as a
means of education, as a vehicle for communication among
stakeholders, and as the basis for analysis.

* Documenting an architecture is a matter of documenting
the relevant views and then adding documentation that
applies to more than one view.

* Documentation should pay for itself by making develop-
ment activities less costly.

* Module styles help architects think about their software as a
set of implementation units. C&C views help architects
think about their software as a set of elements that have
runtime behavior and interactions. Allocation views help
architects think about how their software relates to the non-
software structures in its environment.

Summary Checklist 1 45

L%

i
Even with the best
intentions, sometimes
budget and schedule
preclude conscientious
updating of an architec-
ture document as the
system undergoes
change. In that case, as
happens all too often,
the code becomes the
final source of authority.
Try to use the formula in
Section P.2.4 to justify
maintaining the docu-
ment by making a case
that doing so is worth
the investment. If that
fails, then at least mark
the sections of the doc-
ument that are out of
date so that readers can
still have confidence in
the remainder.

Chapter 11 covers
reviewing architecture
documents.
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An architecture style is a specialization of elements and rela-
tions, together with a set of constraints on how they can be
used. A style defines a family of architectures that satisfy the
constraints.

Some styles are applicable in every software system. Other
styles occur only in systems in which they were explicitly cho-
sen and designed in by the architect.

Follow the seven rules for sound documentation.

1. Write documentation from the point of view of the
reader, not the writer.

Avoid unnecessary repetition.

Avoid ambiguity. Always explain your notation.
Use a standard organization.

Record rationale.

Keep documentation current but not too current.

N o Otk N

Review documentation for fitness of purpose.

P.7 Discussion Questions

1.

Think of a technical document that you remember as being
exceptionally useful. What made it so?

Think of a technical document that you remember as being
dreadful. What made it so?

List several architectural aspects of a system you’re familiar
with, and state why they are. List several aspects that are not
architectural, and state why they are not. List several
aspects thatare “on the cusp,” and make a compelling argu-
ment for putting each into “architectural” or “nonarchitec-
tural” categories.

If you visit Seoul, Korea, you might see the following sign
presiding over one of the busy downtown thoroughfares:
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What does it mean? Is the information this sign conveys
structural, behavioral, or both? What are the elements in
this system? Are they more like modules or like compo-
nents? What qualities about the notation make this sign
understandable or not understandable? Does the sign con-
vey a dynamic architecture, or dynamic behavior within a
static architecture? Who are the stakeholders of this sign?
What quality attributes is it attempting to achieve? How
would you validate it, to assure yourself that it was satisfying
its requirements?

5. How much of a project’s budget would you devote to soft-
ware architecture documentation? Why? How would you
measure the cost and the benefit?

P.8 For Further Reading

The full treatment of software architecture—how to build one,
how to evaluate one to make sure it’s a good one, how to
recover one from a jumble of legacy code, and how to drive a
development effort once you have one—is beyond the scope of
this book. However, general books on software architecture are
plentiful. Several authors provide good coverage: Bass, Clem-
ents, and Kazman (2003); Hofmeister, Nord, and Soni (2000);
Shaw and Garlan (1996); Bosch (2000); and Gorton (2006).
Also, Jeff Garland and Richard Anthony’s Large-Scale Software
Architecture: A Practical Guide Using UML is a good resource
(Garland and Anthony 2003).

The Software Engineering Institute’s software architecture
Web page—at www.sei.cmu.edu/architecture—provides a wide
variety of software architecture resources and links, including
a broad collection of definitions of the term (SEI 2010).

One of the goals of documentation is to provide sufficient
information so that an architecture can be analyzed for fitness
of purpose. For more about analysis and evaluation of software
architectures, see the book by Clements, Kazman, and Klein
(2002).

The seven rules of sound documentation are adapted from
a paper by Parnas and Clements (1986), which also espouses a
philosophy directly relevant to this book. That paper holds
that although system design is almost always subject to errors,
false starts, and resource-constrained compromises, systems
should be documented as though they were the product of an
idealized, step-by-step, smoothly executed design process. That
is the documentation that will be the most helpful in the long
run. This book is consistent with that philosophy, in that it lays
out what the end state of your documentation should be.
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If you want a deeper appreciation of the field of architecture
and its roots, then diving into some of the early papers will be
worth your time:

David Parnas (1974) first made the observation that software
can be described by many structures, not just one. This insight
led directly to the concept of views that we use today. Architec-
ture views in general, and “4+1 views” in particular, are a fun-
damental aspect of the Rational (now IBM Rational) Unified
Process for object-oriented software (Kruchten 1995).

An early paper on software architecture that tied us to build-
ing architecture and our “architecture styles” to the architec-
ture styles of buildings is by Perry and Wolf (1992).

A tour de force in style comparison is found in the paper by
Shaw (1995), in which the author examines 11 different previ-
ously published solutions to the automobile cruise-control
problem and compares each solution through the lens of
architecture style. Chapter 3 of the book by Shaw and Garlan
(1996) continues the theme. A number of example problems
are presented. For each one, several architecture solutions are
presented, each based on the choice of a different style. These
side-by-side comparisons not only reveal qualities of the styles
themselves, but also richly illustrate the overall concept.

For encyclopedic catalogs of architecture patterns, see the
Pattern-Oriented Software Architecture series of books by the fol-
lowing authors: Buschmann et al. (1996); Schmidt et al.
(2000); Kircher and Jain (2004); and Buschmann, Henney,
and Schmidt (2007a and 2007b). Also see Martin Fowler’s
book Patterns of Enterprise Application Architecture (2002).

Smith and Williams (2002) include three chapters of princi-
ples and guidance for architecting systems in which perfor-
mance is an overriding concern.



A Collection of Software
Architecture Styles

The starting point of architecture design is most often a preex-
isting package of design decisions. Very few architects design
systems completely by closing their eyes, thinking hard, and
conjuring up a brand-new design.

A most useful package of design decisions is the architecture
style. Chapters 1-5 present a range of important and widely
used architecture styles. The emphasis here is on how to docu-
ment a view that results from the use of a style.

.1 Three Categories of Styles

Chapters 1-5 are organized along the lines of the three catego-
ries of styles we discussed in the prologue: module styles
(Chapters 1 and 2), component-and-connector (C&C) styles
(Chapters 3 and 4), and allocation styles (Chapter 5). Plan for
your documentation package to include at least one module
view, at least one component-and-connector view, and at least
one allocation view.

Modules are the primary elements of module styles. A mod-
ule is an implementation unit that provides a coherent set of
responsibilities. A module might take the form of a class, a col-
lection of classes, a layer, an aspect, or any decomposition of
the implementation unit. Every module has a collection of
properties assigned to it. These properties are intended to
express the important information associated with the mod-
ule, as well as constraints on the module. Sample properties
are responsibilities, visibility information, and author or
owner. The relations that modules have to one another include
is part of, depends on, and is a.

]| e

A module style is akind
of style that introduces
a specific set of module
types and specifies
rules about how ele-
ments of those types
can be combined.

Module styles are
described in Chapters 1
and 2.
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]|

A component-and-
connector style is a
kind of style that intro-
duces a specific set of
component and con-
nector types and speci-
fies rules about how
elements of those types
can be combined. Addi-
tionally, given that C&C
views capture runtime
aspects of a system, a
C&C style is typically
also associated with a
computational model
that prescribes how
data and control flow
through systems
designed in that style.

C&C styles are described
in Chapters 3 and 4.

]| e

An allocation style is a
kind of style that

describes the mapping
of software units to ele-
ments of an environment
in which the software is
developed or executes.

Allocation styles are
described in Chapter 5.

]|

A style guide is the
description of an archi-
tecture style that speci-
fies the vocabulary of
design (sets of element
and relationship types)
and rules (sets of topo-
logical and semantic
constraints) for how that
vocabulary can be used.

Component-and-connector styles express runtime behavior.

They are described in terms of components and connectors. A
component is one of the principal processing units of the exe-
cuting system. Components might be services, processes,
threads, filters, repositories, peers, or clients and servers, to
name a few. A connector is the interaction mechanism among
components. Connectors include pipes, queues, request/reply
protocols, direct invocation, event-driven invocation, and so
forth. Components and connectors can be decomposed into
other components and connectors. The decomposition of a
component may include connectors and vice versa.

Allocation styles describe the mapping of software units to
elements of an environment in which the software is developed
or executes. The environment might be the hardware, the file
systems supporting development or deployment, or the devel-
opment organization(s).

.2 Style Guides: A Standard Organization for Explaining
a Style

Styles presented together for comparison and selection should
be described consistently with each other. In this way, an archi-
tect can better make an informed decision about which one(s)
to use. This is an application of the fourth rule for sound doc-
umentation: Use a standard organization. The outline used for
describing a style is called a style guide.

The styles in Chapters 1-5 are presented using the form of a
style guide. Below is the outline for that style guide.

1. Overview. The overview in a style guide explains why
this style is useful. It discusses what it is about a system
that the style addresses and how it supports reasoning
about systems.

2. Element types, relation types, and properties.

a. Elements are the architecture building blocks
native to the style. A style guide defines one or
more element types, instances of which will popu-
late an architecture that uses that style.

b. Relations determine how the elements work
together to accomplish the work of the system. A
style guide defines one or more relation types that
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apply to the style’s element types. An architecture
using the style will describe the relations (instances
of the relation type) that determine how the ele-
ments can work together, and any important prop-
erties of those relations. The style guide provides
rules on how elements can and cannot be related.

Constraints. This section of the style guide lists the rules
for putting the elements and relations together to
form a valid instance of the style. For example, in a
pipe-and-filter style, a pipe is allowed to attach to a fil-
ter, but not to another pipe. In a layered style, the lay-
ers are laid out adjacently in a stack, not scattered
about randomly. In a work-assignment style, every soft-
ware unit has to be allocated to at least one organiza-
tional element.

What it’s for. This section of the style guide describes the
kind of reasoning supported by views in the style. The
intent is to help the architect understand to what pur-
pose(s) a view in this style may be put. This might be
how using the style helps in the development process
(for example, the “uses” style is good for reasoning
about modifiability). Or it might be about how the style
helps the product (for instance, pipe-and-filter yields
good performance when processing a series of data
elements).

Notations. This section of the style guide will give
descriptions of graphical and/or textual representa-
tions that are available and useful to document views in
the style. Different notations will also support the con-
veyance of different kinds of information in the view.

Relation to other styles. This section of the style guide
describes how views derived from this style might be
related to views derived from different styles. For exam-
ple, views from two different styles might convey different
but related information about a system, and the archi-
tect would like a way to choose which one to use. This
section might also include warnings about other views
with which a particular view is often confused, to the
detriment of the system and its stakeholders. (Layers and
tiers are a good example of this. They are fundamen-
tally different, but are often [mis]used interchangeably.)

Examples. This section provides or points to an example
of a documented view derived from the given style.

]| e

An element is an archi-
tecture building block
native to the style. An
element can be a mod-
ule, a component or
connector, or an ele-
ment in the environment
of the system whose
architecture we are doc-
umenting. The descrip-
tion of an element tells
what role it plays in an
architecture, lists its
important properties,
and furnishes guide-
lines for effective docu-
mentation of the
element in a view.

A relation defines how
elements cooperate to
accomplish the work of
the system. The
description of a relation
names the relations
among elements and
provides rules on how
elements can and can-
not be related.

A property contains
additional information
about elements and
relations. A style defini-
tion includes the prop-
erty name and
description. When an
architect documents a
view based on that
style, the properties will
be given values. Prop-
erty values are often
used to analyze an
architecture for its abil-
ity to meet quality
attribute requirements.
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When documenting a
view, decide on the list
of properties to docu-
ment about the elements
in that view. Choose
properties that will aid
the analysis you wish
the documentation to
support. Documentinga
view, then, includes
documenting the values
for the properties you
chose.

&

Section 6.6 discusses
which styles go together
well to produce com-
bined views.

1.3 Choosing Which Element and Relation Properties to
Document

The discussion in Chapters 1-5 heavily emphasizes styles,
which are documented in published style guides. But as you
read about the styles in Part I, remember that the end game is
to produce views based on the chosen style. Recall that a view
is a representation of a style applied to a particular system—in
this case the system whose architecture is being documented.

One of the tasks in documenting a view is deciding which
properties of elements to document. Recall from our preced-
ing discussion of style guides that properties are additional
information about the elements and their relations that are
useful to document. The styles of Chapters 1-5 are each
described with a set of properties likely to be useful; consider
them suggestions.

Properties almost always include the name of the element as
well as some description of its role or responsibility in the
architecture. For example, properties of a layer—an element
of the layered style, which is one of the module styles—should
include the layer’s name, the units of software the layer con-
tains, and the nature of the capabilities that the layer provides.
A layered view will then, for each layer, specify its name, the
units of software it contains, and the capabilities it provides.

Beyond these basic properties, however, are properties that
will support architecture-based analysis. If you want to analyze
an architecture for performance, then properties in some
views probably should include an element’s best- and worst-
case response times, or the maximum number of events an ele-
ment can service per time unit. If you want to analyze an archi-
tecture for security, then you probably want to document
properties that explain levels of encryption and authorization
rules for different elements and relations.

So: If you care about quality attribute x, then define proper-
ties that will let you analyze for xin the views that are related to
achieving x.

Also as you read Chapters 1-5, remember that a view may
represent more than one style. In fact, this is the norm. Since
all nontrivial software systems employ many styles at once,
mandating that each view come from just one style would
result in a plethora of views and a very thick architecture doc-
ument. Some styles can be fruitfully combined, and that com-
bination used to create a view. Component-and-connector styles
in particular tend to combine well, and many architects pro-
duce a single component-and-connector view for their system
that reflects all of the C&C styles they used.
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By learning the “pure” (uncombined) styles, however, you
can make more informed choices about which ones to com-
bine. Each comes with its own vocabulary (of element and rela-
tion types); you can use these vocabularies to build meaningful
combined views that carry forward the pedigree of each of
their constituent styles.

1.4 Notations for Architecture Views

Notations for documenting views differ considerably in their
degree of formality. Roughly speaking, there are three main
categories of notation:

1. Informal notations. Views are depicted (often graphically)
using general-purpose diagramming and editing tools and
visual conventions chosen for the system at hand. The
semantics of the description are characterized in natural
language and cannot be formally analyzed.

2. Semiformal notations. Views are expressed in a standardized
notation that prescribes graphical elements and rules of
construction, but does not provide a complete semantic
treatment of the meaning of those elements. Rudimentary
analysis can be applied to determine if a description satis-
fies syntactic properties. Unified Modeling Language (UML)
is a semiformal notation in this sense.

3. Formal notations. Views are described in a notation that has
a precise (usually mathematically based) semantics. Formal
analysis of both syntax and semantics is possible. There are
a variety of formal notations for software architecture avail-
able, although none of them can be said to be in wide-
spread use. Generally referred to as architecture description
languages (ADLs), they typically provide both a graphical
vocabulary and an underlying semantics for architecture
representation. In some cases these notations are special-
ized to particular styles. In others they allow many styles, or
even provide the ability to formally define new styles. The
usefulness of ADLs lies in their ability to support automa-
tion through associated tools—automation to provide use-
ful analysis of the architecture, or automation to assist in
code generation.

Determining which form of notation to use involves making
several trade-offs. Typically more-formal notations take more
time and effort to create, but they repay this effort in reduced
ambiguity and better opportunities for analysis. Conversely,
more-informal notations are easier to create, but they provide
fewer guarantees.
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Think carefully about
the choice of design
notation for each dia-
gram in your architec-
ture documentation.
Consider available tool
support, the knowledge
and the needs of the
documentation stake-
holders, and the pur-
pose of the diagrams
(for example, imple-
mentation guidance,
analysis, or model and
code generation). Some
architecture informa-
tion can be docu-
mented more effectively
with other notations.
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An architecture
description language
is a language for repre-
senting a software and/
or system architecture.
ADLs are usually graph-
ical languages that pro-
vide semantics that
enable analysis and rea-
soning about architec-
tures, often using
associated tools.

Appendix C describes
one particular architec-
ture description lan-
guage, called AADL, in
depth. The “For Further
Reading” section of
Chapter 3 provides
resources for learning
about other ADLs.



54 1 Part I: A Collection of Software Architecture Styles

PR S

There is no greater
impediment to the
advancement of knowl-
edge than the ambiguity
of words.

—Thomas Reid, Scot-
tish philosopher

We’ll see examples of views rendered in these different kinds
of notations throughout Part L.

1.5 Examples

Throughout this book, but especially in Part I, we will present
many examples of architecture documentation fragments
extracted from real systems. When you look at these examples,
please keep in mind the following notes:

¢ The goal is for you to understand the kinds of information
the example conveys and how the chosen notation is used
to depict different types of elements and relations.

¢ The goal is usually not for you to understand the meaning of
the specific elements and relations, that is, the responsibilities
they satisfy. Any software system uses acronyms and internal
jargon that become part of the vocabulary of the stakehold-
ers familiar with that system. The examples in the book should
allow you to recognize what information the architect wanted
to capture without knowing the meaning of these terms.

¢ For each example, the piece extracted from the original
architecture documentation is typically just a diagram. To
that diagram we add a brief description with information
that can’t really be inferred by the diagram alone. This
information comes from other parts of each system’s archi-
tecture documentation that are not reproduced in the book.
A diagram is not enough to document a view!

¢ We chose diagrams that we think are good examples of dif-
ferent styles and notations. However, they may not be perfect
with respect to notation choice and usage, diagramming
aesthetics, and quality of the design itself.

¢ Very often architecture diagrams do not show a single style
in its pure form. In many of our examples, you will be able
to find vestiges of styles other than the one the diagram is
illustrating. That’s normal.

¢ The example does not necessarily show the latest version of
the design.



Module Views

In this chapter, we look at these aspects of module views:
¢ Elements, relations, and properties

® Purpose

¢ Notation

e Relation to other views

1.1 Overview

In this chapter and the next, we look at ways to document the
module structures of a system’s software. Such documentation
enumerates the principal implementation units, or modules,
of a system, together with the relations among these units. We
refer to these descriptions as module views. As we will see, these
views can be used for each of the purposes outlined in the pro-
logue: education, communication among stakeholders, and
the basis for construction and analysis.

The way in which a system’s software is decomposed into
manageable units remains one of the important forms of sys-
tem structure. At a minimum, it determines how a system’s
source code is decomposed into units, what kinds of assump-
tions each unit can make about services provided by other
units, and how those units are aggregated into larger ensem-
bles. It also includes global data structures that impact and are
impacted by multiple units. Module structures often deter-
mine how changes to one part of a system might affect other
parts and hence the ability of a system to support modifiability,
portability, and reuse.

It is unlikely that the documentation of any software archi-
tecture can be complete without at least one module view.

R S—

The architect must be a
prophet . .. a prophetin
the true sense of the
term . . . if he can’t see
at least ten years ahead
don’t call him an
architect.

—Frank Lloyd Wright
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Table 1.1 Summary of the module views

Elements Modules, which are implementation units of software that provide a coherent
set of responsibilities.

Relations e |s part of, which defines a part/whole relationship between the submodule—

the part—and the aggregate module—the whole.

e Depends on, which defines a dependency relationship between two mod-
ules. Specific module styles elaborate what dependency is meant.

¢ /s a, which defines a generalization/specialization relationship between a
more specific module—the child—and a more general module—the parent.

Constraints Different module views may impose specific topological constraints.

What It's For ¢ Providing a blueprint for construction of the code
¢ Facilitating impact analysis
¢ Planning incremental development
e Supporting requirements traceability analysis
¢ Explaining the functionality of the system and the structure of the code base

e Supporting the definition of work assignments, implementation schedules,
and budget information

¢ Showing the structure of information to be persisted

o

A module is an imple-
mentation unit of
software that provides
a coherent set of
responsibilities.

A responsibility is a
general statement
about an architecture
element and what it is
expected to contribute
to the architecture. This
includes the actions
that it performs, the
knowledge it maintains,
the decisions it makes,
or the role it plays in
achieving the system’s
overall quality attributes
or functionality.

We begin by considering module views in the general form.
Table 1.1 summarizes the discussion in the following sections
about the elements, relations, constraints, and purpose of the
module views. In Chapter 2 we provide this information specific
to each of a number of often used module styles.

1.2 Elements, Relations, and Properties of Module
Views

1.21

System designers use the term module to refer to a wide variety
of software structures, including programming language
units—such as C programs, Java or C# classes, Delphi units,
and PL/SQL stored procedures—or simply general groupings
of source code units—such as Java packages or C# namespaces.
In this book, we adopt a much broader definition.

We characterize a module by enumerating its set of respon-
sibilities, which are foremost among a module’s properties.
This broad notion of responsibilities is meant to encompass
the kinds of features that a unit of software might provide: that
is, its functionality and the knowledge it maintains.

Modules can be aggregated and decomposed. Each of the
various module styles identifies a different set of modules and
relations, and then aggregates or decomposes these modules
based on relevant style criteria. For example, the layered style

Elements
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identifies modules and aggregates them based on an allowed-to-
use relation, whereas the generalization style identifies and
aggregates modules based on what they have in common.

1.2.2 Relations

Module views have the following types of relations:

® s part of. The is-part-of relation defines a part/whole rela-
tionship between the submodule—the part—and the aggre-
gate module—the whole. In its most general form, the -
part-of relation simply indicates aggregation, with little
implied semantics.

® Depends on. A depends on B defines a dependency relation
between A and B. Many different specific forms of depen-
dency can be used in module views. Later, we look at four in
particular: uses, allowed to use, crosscuts, and data entity rela-
tionships, in the module uses, layered, aspect, and data
model styles, respectively. The logical association between
classes (in a UML class diagram, for example) also depicts a
dependency between the classes.

¢ JIsa.The is-arelation defines a generalization/specialization
relationship between a more specific module—the child—
and a more general module—the parent. The child is able
to be used in contexts in which the parent is used. Later, we
look at this relation in more detail in the generalization
style. Object-oriented inheritance and interface realization
are special cases of the is-a relation.

1.2.3 Properties

Properties of modules that help to guide implementation or
are input to analysis should be recorded as part of the support-
ing documentation for a module view. The list of properties
may vary but is likely to include the following:

® Name. A module’s name is, of course, the primary means to
refer to it. A module’s name often suggests something about
its role in the system: a module called “account_mgr,” for
instance, probably has little to do with numeric simulations
of chemical reactions. In addition, a module’s name may
reflect its position in a decomposition hierarchy; the name
“A.B.C,” for example, refers to a module C that is a submod-
ule of a module B, itself a submodule of A.

® Responsibility. The responsibility property of a module is a
way to identify its role in the overall system and establishes
an identity for it beyond the name. Whereas a module’s
name may suggest its role, a statement of responsibility

In Chapter 2, the is-
part-of relation is
refined to a decomposi-
tion relation in the
decomposition style.

In Chapter 2, the
depends-on relation is
refined to “uses” in the
uses style, “allowed to
use” inthe layered style,
and “crosscut” in the
aspect style.

In Chapter 2, the is-a
relation is refined to
generalization in the
generalization style.
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% *
Documenting software

interfaces is discussed
in Chapter 7.

establishes it with much more certainty. Responsibilities
should be described in sufficient detail to make clear to the
reader what each module does.

Visibility of interface(s). When a module has submodules,
some interfaces of the submodules may have internal pur-
poses; that is, the interfaces are used only by the submod-
ules within the enclosing parent module. These interfaces
are not visible outside that context and therefore do not
have a direct relationship to the parent interfaces. Different
strategies can be used for those interfaces that have a direct
relationship to the parent interfaces. The strategy shown in
Figure 1.1(a) is encapsulation. The parent module provides
its own interfaces and maps all requests to the capabilities
provided by the submodules. The facilities of the enclosed
modules are not available outside the parent. Alternatively,
the interfaces of an aggregate module can be a subset of the
interfaces of its submodules. The aggregate module selec-
tively exposes some of the interfaces of the submodules.
Layers and subsystems are often defined in this way. For
example, if module C is an aggregate of modules A and B,
C’s implicit interface will be a subset of the interfaces of
modules A and B (see Figure 1.1(b)).

Implementation information. Because modules are units of
implementation, it is useful to record information related to
their implementation from the point of view of managing
their development and building the system that contains
them. Although this information is not, strictly speaking,
architectural, it may be useful to record it in the architec-

Figure 1.1

(@) Module C provides its
own interface, hiding the
interfaces of modules A
and B. (b) Module C
exposes a subset of the
interfaces of modules A
and B as its interface.

? ? O O
17 777 I 11

A B A B

(a) (b)

Key
D Module Module interface
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ture documentation where the module is defined. Imple-
mentation information might include

— Mapping to source code units. This identifies the files that
constitute the implementation of a module. For example,
amodule named Account, if implemented in Java, might
have several files that constitute its implementation:
IAccount,java (an interface), Accountlmpl,java (an imple-
mentation of Account functionality), AccountBean.java
(a class to hold the state of an account in memory),
AccountOrmMapping.xml (a file that defines the map-
ping between AccountBean and a database table—
objectrelational mapping), and perhaps even a unit test
AccountTest.java.

— Test information. The module’s test plan, test cases, test
scaffolding, and test data are important to store.

— Management information. A manager may need informa-
tion about the module’s predicted schedule and budget.

— Implementation constraints. In many cases, the architect will
have a certain implementation strategy in mind for a
module or may know of constraints that the implementa-
tion must follow. This information is private to the mod-
ule and hence will not appear, for example, in the
module’s interface.

Module styles may have properties of their own in addition to
these. Also, you may find other properties useful that are not listed.

1.3 What Module Views Are For

Expect to use module views for

® Construction. A module view can provide a blueprint for the
source code and the data store. In this case, the modules
and physical structures, such as source code files and direc-
tories, often have a close mapping.

® Analysis. Two important analysis techniques are require-
ments traceability and impact analysis. Because modules
partition the system, it should be possible to determine how
the functional requirements of a system are supported by
module responsibilities. Some functional requirements will
be met by a sequence of invocations among modules. Docu-
menting such sequences shows how the system is meeting its
requirements and identifies any unaddressed requirements.
Impact analysis, by contrast, helps to predict the effect of
modifying the system. Module views that show dependen-
cies among modules or layers provide a good basis for
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In addition to identifying
the implementation
units, one also needs to
identify where they
reside in a project’s fil-
ing scheme: a directory
or folder in a file system,
a URL in an intranet, or
a location in a configu-
ration management
system’s storage space.
Thisinformationis in the
purview of the imple-
mentation style, dis-
cussed in Section 5.5.

Section 10.3 discusses
documenting the map-
ping between require-

ments and architecture.
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Expect to use compo-
nent-and-connector
and allocation views,
not module views, to
analyze performance,
reliability, and other
runtime qualities.

%

Figure 2.4 is an example
of a textual notation for
modules, using indenta-
tion to indicate is part of.

impact analysis. Modules are modified as a result of prob-
lem reports or change requests. Impact analysis requires a
certain degree of design completeness and integrity of the
module description. In particular, dependency information
has to be available and correct in order to create useful
results.

* Communication. A module view can be used to explain the
system’s functionality to someone not familiar with the sys-
tem. The various levels of granularity of the module decom-
position provide a top-down presentation of the system’s
responsibilities and therefore can guide the learning pro-
cess. For a system whose implementation is already in place,
module views, if kept up to date, are very helpful, as they
explain the structure of the code base to a new developer on
the team—much more effective than providing the URL to
the version management system repository and asking him
or her to browse the source files and read the code. Thus,
up-to-date module views are very useful during system main-
tenance.

On the other hand, it is difficult to use the module views to
make inferences about runtime behavior, because these views
are just a static partition of the functions of the software. Thus,
amodule view is not typically used for analysis of performance,
reliability, or many other runtime qualities. For those, we typi-
cally rely on component-and-connector and allocation views.

1.4 Notations for Module Views
1.4.1 Informal Notations

A number of notations can be used to present a module view.
One common informal notation uses boxes to represent the
modules, with different kinds of lines between them represent-
ing the relations. Nesting is used to depict aggregation, and
arrows typically represent a depends-on relation. In Figure 1.1
(in Section 1.2.3), for example, nesting represents aggrega-
tion, and lollipops indicate interfaces.

A second common form of informal notation is a simple tex-
tual listing of the modules with descriptions of the responsibil-
ities. Various textual schemes can be used to represent the is-
part-of relation, such as indentation, outline numbering, and
parenthetical nesting. Other relations may be indicated by key-
words. For example, the description of module A might
include the line “Imports modules B, C,” indicating a depen-
dency between module A and modules B and C.
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Software modeling notations, such as UML, provide a variety of
constructs that can be used to represent modules. Figure 1.2
shows some examples for modules using UML notation. Figure

1.3 shows how the three basic relations native to module views

are denoted using UML.

UML has a class construct, which is the object-oriented spe-
cialization of a module as described here. UML packages are

Appendix A describes
how UML can be used
to show different mod-
ule views, as well as
C&C and allocation

N styles.
used to represent an aggregation of modules. UML packages
Figure 1.2
Examples of module
CommonDialog | abstract class notation in UML. A module
System.lO.Log package o may be represented as a
(italics)
class or a package. More
specific types of modules
class with provided can be indicated with
interface stereotypes (as in
SaveFileDialog class UlElement O Figure 1.4).
|Animatable
SaveFileDialog
class showing ) ;
i i interface not
Fllsmarrne attnbli_te and ey ehovn as
- compartments Animatable | iolipop
ShowDialog() P
OnFileOk(...)
Figure 1.3
Examples of module
com.sun.ebank.web relations in UML
Dispatcher
—— p
com.sun.ebank.web.taglib T
is-part-of | depends-on
relation «se» relation
\i,
Dispatcher Context
p Listener BeanManager
«interface»
Account Observer
A two forms of
is-a relation (class
I inheritance and
| interface realization)
|
Checking Savings Admin
Account Account AccountView
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Stereotype is a UML
extension mechanism
that allows the definition
of a new type of model-
ing element or relation
based on an existing
UML element or relation.

£

i
Try to become familiar
with UML standard ste-
reotypes, as well as
other stereotypes com-
monly used in your
organization.

e A

A dependency struc-
ture matrix is a table
that shows modules as
the row and column
headers; a cell is non-
zero if and only if there
is a dependency
between the row’s mod-
ule and the column’s
module.

Section 2.2.4 has exam-
ples and more informa-
tion about DSMs.

Section 2.6.4 has exam-
ples and more informa-
tion about ERDs.

can represent, for example, layers, subsystems, and collections
of implementation units that live together in the implementa-
tion namespace.

UML was originally created to model object-oriented systems.
It is now considered a general-purpose modeling language. As
a result, UML elements and relations are generic; that is, they
are not specific to implementation technologies or platforms.
But you can define stereotypes to specialize the UML symbols.
A stereotype is a UML extension mechanism and is repre-
sented in diagrams as a label in guillemets («stereotype label»).
Figure 1.4 shows some examples. If used correctly, stereotypes
make your UML diagrams more expressive. The UML specifi-
cation provides a number of standard stereotypes, but you can
also create your own.

1.4.3 Dependency Structure Matrix

A dependency structure matrix (DSM) is a table that shows
modules as the column and row headings and dependencies as
the table cells. The DSM is built as a square matrix (thatis, a
matrix with same number of rows and columns) where ele-
ment # is nonzero if there is a dependency between module ¢
and module jin the architecture.

Some tools that create DSMs can automatically interchange
between class diagrams or box-and-line diagrams and DSMs.
DSM-based tools are more commonly used for architecture
management and enforcement for systems that are already
implemented—the DSM is obtained by reverse-engineering
the code.

1.4.4 Entity-Relationship Diagram

An entity-relationship diagram (ERD) is a notation specifically
used for data modeling. It shows data entities that require a rep-
resentation in the system and their relationships. These rela-
tionships can be one-to-one, one-to-many, or many-to-many.

Figure 1.4

Examples of UML elements
and relations with
stereotypes

«subsystem» «iew» «layer»
Communication AccountForm Presentation
A T

1 1

! «allowed to use»

«sends event to» ]
1

! Y4
«interface» «layer»
IAnimatable CUEEE o i
AccountEntity BusinessLogic
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1.5 Relation to Other Views

Module views are commonly mapped to component-and-con-
nector views. The implementation units shown in module
views have a mapping to components that execute at runtime.
Sometimes, the mapping is quite straightforward, even one-to-
one. More often, a single module will be replicated as part of
many runtime components and a given component could map
to several modules.

Module views also provide the software elements that are
mapped to the diverse nonsoftware elements of the system
environment in the various allocation views.

A common problem is the overloading of module views with
information pertaining to other views. This can be quite useful
when done in a disciplined fashion but can also lead to confu-
sion. For example, showing a remote procedure call connec-
tion in a module view is implicitly introducing the “connector”
concept from a component-and-connector view. The module
views are often confused with views that demonstrate runtime
relations. A module view represents a static partitioning of the
software implementation units; therefore, multiple instances
of objects—data repositories and networks, for example—are
not shown in this view.

1.6 Summary Checklist

® Modules pertain to the way in which a system’s software is
decomposed into manageable units of responsibilities,
which is one of the important forms of system structure.

* Modules are related to one another by forms of is-part-of,
depends-on, and is-a relations.

¢ A module view provides a blueprint for the source code and
the data model.

¢ Expect to have at least one module view in your documenta-
tion package.

* You should not depend on a module name to define the
functional duties of the module: use the responsibility prop-
erty.

¢ Document module interface(s) to establish a module’s role
in the system.

® Module views are commonly mapped to component-and-
connector views. In general, a module may participate in
many runtime components.

%

Components are dis-
cussed at length in
Section 3.2.

%

Allocation views are
described in Chapter 5.
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1.7 Discussion Questions

1. What is it possible and not possible to say about data flow
by looking at a module view? What about control flow?
What can you say about which modules interact with which
other modules?

2. Which properties of a module might you think of as worthy
of having special notational conventions to express them,
and why? For example, you might want to color a commer-
cial-off-the-shelf module differently from modules devel-
oped in-house.

3. The depends-on relation among modules is very general.
What specific types of dependencies might be reflected in
a module view?

4. A primary property of a module is its set of responsibilities.
How do a module’s responsibilities differ from the require-
ments that it must satisfy?

5. When documenting a particular system, you might wish to
combine modules into an aggregate, to market them as a
combined package, for example. Would this package itself
be a module? That is, are all aggregates of modules them-
selves modules?

6. Would you show libraries or frameworks on which your sys-
tem depends as modules in your module views?

1.8 For Further Reading

DeRemer and Kron (1976) describe programming-in-the-
small languages for writing modules and a “module intercon-
nection language” for knitting those modules together. Prieto-
Diaz and Neighbors (1986) present a survey of module inter-
connection languages that are specifically designed to support
module interconnection, and they include brief descriptions
of some software development systems that support module
interconnection.

The chapter on the Module Architecture View in the book
by Hofmeister, Nord, and Soni (2000) describes a view of a sys-
tem in terms of modules and layers and how to represent them
in UML.



A Tour of Some
Module Styles

In this chapter, we look at six important module styles:

® The decomposition style, used to show the structure of mod-
ules and submodules (that is, containment relations among
modules)

® The uses style, used to indicate functional dependency rela-
tions among modules

® The generalization style, used to indicate specialization rela-
tions among modules

® The layered style, used to describe the allowed-to-userelation in
arestricted fashion between groups of modules called layers

® The aspects style, used to describe particular modules called
aspects that are responsible for crosscutting concerns

* The data model style, used to show the relations among data
entities

2.1 Decomposition Style
2.1.1 Overview

By taking the elements and the properties of module views and
focusing on the is-part-of relation, we get the decomposition
style. A decomposition view describes the organization of the
code as modules and submodules and shows how system respon-
sibilities are partitioned across them. Almost all architects begin
with the decomposition style. Architects tend to attack a prob-
lem with divide-and-conquer techniques, and a decomposition
view records their campaign.

65
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See “Coming to Terms:
Subsystem” on page 73,
in this chapter.

%

The element catalog of
an architecture view
provides various informa-
tion about the elements
in that view. Element
catalogs are described
in Section 10.1.

The criteria used for decomposing a module into smaller
modules include:

o Achievement of certain quality attributes. For example, to support
modifiability, the information-hiding design principle calls
for encapsulating changeable aspects of a system in separate
modules, so that the impact of any one change is localized.

® Build-versus-buy decisions. Some modules may be bought in
the commercial marketplace, reused intact from a previous
project, or obtained as open-source software. These mod-
ules already have a set of responsibilities implemented. The
remaining responsibilities then must be decomposed around
those established modules.

*  Product line implementation. To support the efficient implemen-
tation of products of a product family, it is essential to distin-
guish between common modules, used in every or most
products, and variable modules, which differ across products.

® Team allocation. To allow implementation of different respon-
sibilities in parallel, separate modules that can be allocated
to different teams should be defined. The skills of develop-
ers also influence the decomposition. For example, if spe-
cialized Web developers are available, modules that handle
the Web UI should be kept separate.

A useful design heuristic holds that a module is small
enough if it could be discarded and begun again if the pro-
grammer (s) assigned to implement it left the project.

A decomposition view may represent the first pass at a
detailed architecture design; the architect may subsequently
introduce other types of relations and module specializations.
The decomposition view defines the modules that may appear
in uses, layered, generalization, and other module-based views.

2.1.2 Elements, Relations, and Properties

Table 2.1 summarizes the characteristics of the decomposition
style. Elements of the decomposition style are modules, as
described in Section 1.2. Some modules that aggregate other
modules can be called subsystems. The principal relation, the
decomposition relation, is a form of the is-part-ofrelation and has
as its primary constraint the guarantee that an element can be
a part of at most one aggregate.

The module decomposition may define whether the sub-
modules are visible within only the aggregate module—the
parent—or also to other modules. The visibility of submodules
can be described in the view’s element catalog or conveyed
graphically, for example by showing interface lollipops inside
or outside the aggregate module, as in Figure 1.1.
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Table 2.1 Summary of the decomposition style

Overview The decomposition style is used for decomposing a system into units of
implementation. A decomposition view describes the organization of the
code as modules and submodules and shows how system responsibilities
are partitioned across them.

Elements Module

Relations Decomposition relation, which is a form of the is-part-of relation. The doc-

umentation should specify the criteria used to define the decomposition.

Constraints * No loops are allowed in the decomposition graph.
¢ A module can have only one parent.

What It’s For ¢ To reason about and communicate to newcomers the structure of soft-

ware in digestible chunks
¢ To provide input for work assignment
¢ To reason about localization of changes

2.1.3 What the Decomposition Style Is For

A decomposition view presents the responsibilities of a system
in intellectually manageable pieces that are refined to convey
more and more details. Therefore, this style is well suited to
support the learning process about a system. Besides the obvi-
ous benefit for the architect to support the design work, this
style is an excellent learning and navigation tool for newcom-
ers to the project and other people who do not necessarily have
the whole functional structure of the system memorized. The
grouping of responsibilities shown in this style also builds a
useful basis for defining configuration items within a configu-
ration management framework.

A decomposition view most often serves as the input for the
work assignment view of a system, which maps parts of a soft-
ware system onto the organizational units, or teams, that will
be implementing and testing them. A decomposition view also
provides some support for analyzing effects of changes, but
because this view does not show all the dependencies among
modules, you cannot expect to do a complete impact analysis.
Here, views that elaborate the dependency relations more
thoroughly, such as the uses style described later, are required.

2.1.4 Notations for the Decomposition Style
Informal Notations

In informal notations, modules in the decomposition style are
usually depicted as named boxes that contain other named
boxes. Decomposition may also be shown by listing the module
names and using indentation to indicate is part of, as in Figure
2.4 (in Section 2.1.6).

%

Refinement is covered
in Section 6.1.

%

The work assignment
style is presented in
Section 5.4.
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Section 3.5 also dis-
cusses the mapping
between modules and
components. Document-
ing the mapping is
described in Section
10.2.

The nesting notation can use a thick border suggesting
opaqueness—and explained in the key—indicating that chil-
dren are not visible outside the parent. If a visual notation is not
available for indicating visibility, it can be defined textually, as is
done for other properties.

umML

In UML, the package construct can be used to represent mod-
ules that contain other modules. A package can contain classes
and other packages; the class box is normally used for the
leaves of the decomposition.

In UML, decomposition is depicted in one of two ways:

Modules may be nested, as in Figure 2.1.

2. A succession of two diagrams can be shown, with the sec-
ond a depiction of the contents of a module shown in the
first. Figures 2.2 and 2.3 (in Section 2.1.6) illustrate this
approach.

Other properties, such as the modules’ responsibilities, are
given textually, perhaps using an annotation. Stereotypes can
provide additional information for the type of the module.

2.1.5 Relation to Other Styles

Itis possible, and often desirable, to map between a decompo-
sition view and one or more component-and-connector views.
For now, it is sufficient to say that the point of providing such
a mapping is to indicate how the software implementation
structures map onto runtime structures: generally, a many-to-
many relationship. The same module might implement all or
parts of several components or connectors. Conversely, one com-
ponent might require several modules for its implementation.

Figure 2.1

In UML, module
decomposition is shown by
nesting, with the aggregate
module shown as a
package.
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The decomposition style is closely related to the work assign-
ment style, a kind of allocation style. The work assignment style
maps modules resulting from a decomposition to a set of teams
responsible for implementing and testing those modules.

2.1.6 Examples Using the Decomposition Style
Adventure Builder

The example software architecture document that accompanies
this book online contains an example of a decomposition view
for the Adventure Builder (2010) system. See wiki.sei.cmu.edu/sad.

The ATIA-M System

Army Training Information Architecture-Migrated (ATIA-M)
is a large Web-based, Java EE application that supports training
in the U.S. Army. It has “thick clients”: Windows desktop appli-
cations developed using .NET (C#) that communicate with the
server-side Java EE components using Web services technology.

Figure 2.2 shows the top-level module decomposition for the
entire ATIA-M system, itself a module. The code is divided into
three large modules:

e Windowsapps contains the code of the thick clients. The
three submodules correspond to Training and Doctrine
Development Tool (TDDT), Unit Training Management
Configuration (UTMC), and a separate submodule with
common code used by the different Windows applications.
TDDT and UTMC were the two Windows applications orig-
inally planned, but others could be added.

® ATIA server-side Web modules contains all non-Java modules
that would be deployed to server machines. The Web mod-
ules include JavaServer Pages (JSP) files, JavaScript and
HTML code, and applets.

® ATIA server-side Java modules contains all Java source code in
ATIA that would run on application servers. This module
does not include JSP, JavaScript, HTML, applet, or thick-
client code.

The decomposition of Windowsapps into three submodules
is shown in Figure 2.2. The decomposition of ATIA server-side
Java modules, on the other hand, was captured in another
module view diagram, shown in Figure 2.3.
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e —

The work assignment
style is described in
Section 5.4.

Figure 2.2 is the first of
many examples of
architecture documen-
tation fragments from
real systems. When
examining these exam-
ples, keep in mind the
considerations stated in
Section 1.5, in the intro-
duction to Part I. The
descriptions of the
elements we provide
cannot be derived from
the figures; rather, they
rely on additional docu-
mentation that would
accompany the dia-
grams in an architecture
document.
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ATIA-M

Windowsapps

Common code
for thick clients

TDDT uTMmC
Windows app Windows app
ATIA server- ATIA server-
side Web side Java
modules modules

Notation: UML

Figure 2.2
Top-level decomposition
view for the ATIA system

ATIA server-side Java modules

1 —1 —1
«subsystem» .
adlsc controller business
1 — 1
«subsystem»
servlet il e
— — —
client facades entity
1 1 ] ]
objects test «subsystem» taglibs
tdc
]
«subsystem»
CES
1 1 1 1
webservice portal security common
LN

Notation: UML|

Figure 2.3

Refinement of ATIA-M
server-side Java modules
showing how it is further
decomposed into
submodules
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A-7E Avionics System

An example of the decomposition style comes from the A-7E
avionics software system described in Chapter 3 of the book by
Bass, Clements, and Kazman (2003). Figure 2.4 shows the pri-
mary presentation part of the view. The figure names the ele-
ments and shows the is-part-of relation among them for the A-7E
system. The decomposition relation is conveyed by indentation.

In this example, the criterion for decomposition is the infor-
mation-hiding principle, which holds that there should be a
module to encapsulate responsibilities likely to change together.
A module’s responsibilities, then, are described in terms of the
information-hiding secrets it encapsulates.

This diagram shows that in A-7E, the first-order decomposi-
tion produced three modules: Hardware Hiding, Behavior
Hiding, and Software Decision Hiding. Each of these modules
is decomposed into two to six submodules, which are in turn
decomposed, and so forth, until the granularity is fine enough
to be manageable.

The A-7E decomposition view documentation describes the
responsibilities of the three highest-level modules in the ele-
ment catalog as follows:

* Hardware Hiding Module: The Hardware Hiding Module
includes the procedures that need to be changed if any part
of the hardware is replaced by a new unit with a different
hardware /software interface but with the same general
capabilities. This module implements “virtual hardware” or
an abstract device that is used by the rest of the software.
The primary secrets of this module are the hardware/soft-
ware interfaces. The secondary secrets of this module are
the data structures and algorithms used to implement the
virtual hardware.

® Behavior Hiding Module: The Behavior Hiding Module
includes procedures that need to be changed if there are
changes in requirements affecting the required behavior.
Those requirements are the primary secret of this module.
These procedures determine the values to be sent to the vir-
tual output devices provided by the Hardware Hiding Module.

* Software Decision Hiding Module: The Software Decision Hid-
ing Module hides software design decisions that are based
upon mathematical theorems, physical facts, and program-
ming considerations such as algorithmic efficiency and
accuracy. The secrets of this module are not described in
the requirements document. This module differs from the
other modules in that both the secrets and the interfaces
are determined by software designers. Changes in these
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S —

The primary presenta-
tion is the (typically)
graphical portion of an
architecture view, as
described in Chapter 10.
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Hardware Hiding Module

Extended Computer Module
Data Module

Input/Output Module
Computer State Module
Parallelism Control Module
Program Module

Virtual Memory Module
Interrupt Handler Module
Timer Module

Device Interface Module

Air Data Computer Module

Angle of Attack Sensor Module
Audible Signal Device Module
Computer Fail Device Module
Doppler Radar Set Module

Flight Information Displays Module
Forward Looking Radar Module
Head-Up Display Module

Inertial Measurement Set Module
Input-Output Representation Module
Master Function Switch Module
Panel Module

Projected Map Display Set Module
Radar Altimeter Module

Shipboard Inertial Nav System Module
Slew Control Module

Switch Bank Module

TACAN Module

Visual Indicators Module

Waypoint Info. System Module
Weapon Characteristics Module
Weapon Release System Module
Weight on Gear Module

Behavior Hiding Module

Function Driver Module
Air Data Computer Module
Audible Signal Module
Computer Fail Signal Module
Doppler Radar Module
Flight Information Display Module
Forward Looking Radar Module
Head-Up Display Module
Inertial Measurement Set Module
Panel Module
Projected Map Display Set Module
Shipboard Inertial Nav System Module
Visual Indicator Module
Weapon Release Module
Ground Test Module
Shared Services Module

Mode Determination Module
Panel I/0 Support Module
Shared Subroutine Module
Stage Director Module
System Value Module

Software Decision Hiding Module

Application Data Type Module
Numeric Data Type Module
State Transition Event Module

Data Banker Module
Singular Values Module
Complex Event Module
Filter Behavior Module

Physical Models Module
Aircraft Motion Module
Earth Characteristics Module
Human Factors Module
Target Behavior Module
Weapon Behavior Module

Software Utility Module
Power-Up Initialization Module
Numerical Algorithms Module

System Generation Module
System Generation Parameter Module
Support Software Module

Figure 2.4

The decomposition of the A-7E software architecture results in three top-level modules (Hardware Hiding, Behavior
Hiding, and Software Decision Hiding) and is-part-of relations (Bass, Clements, and Kazman 2003, p. 59). In this
presentation, is part of is indicated by textual indentation.
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modules are more likely to be motivated by a desire to
improve performance or accuracy than by externally imposed

73

N
5
changes. ‘.,3
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The A-7E decomposition view documentation then goes on to  If you use a module

describe the second-level modules. decomposition struc-
ture to organize your

In the case of the A-7E architecture, the second-level module  project, you will find it

structure was enshrined in many ways: Design documentation,  useful to focus on a
configuration-controlled files, test plans, programming teams,

specific level of the hier-
archy as your organizing

review procedures, and project schedule and milestones all  mgtif, chosen based on
were pegged to this second-level module structure as their unit ~ amanageable granularity.

of reference.

Subsystem

When documenting a module view of a system, you may choose to identify cer-
tain aggregated modules as subsystems. A subsystem can be pretty much any-
thing you want it to be, but it often describes a part of a system that (1) carries
out a functionally cohesive subset of the overall system’s mission, (2) can be
executed independently, and (3) can be developed and deployed incrementally.
The software system of a Mars exploratory robot, for example, may be divided
into subsystems responsible for:

e Communication

¢ Motion

e Power management

¢ Navigation

¢ Monitoring its own health and status

Not just any portion of a system is a subsystem. In our exploratory robot exam-
ple, a math utility library is certainly a portion of a system and an aggregation of
modules and even has coherent functionality. But the library is unlikely to be
called a subsystem, because it lacks the ability to operate independently to do
work that’s recognizably part of the overall system’s purpose.

Subsystems do not partition a system into completely separate parts, because
some parts are used in more than one subsystem. For example, suppose that
the exploratory robot system has the layered design shown in Figure 2.5. In this
case, a subsystem consists of one segment from the top layer, as well as any
segments of any lower layers that it needs in order to carry out its responsibilities.
A subset of the system formed in this way is often called a slice, or a vertical slice.

The “more or less independent” nature of a subsystem makes it ideal for dividing
up a project’s work. You may, for example, ask an analyst to examine the perfor-
mance of a subsystem. A subsystem can often be fielded and accomplish useful
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Power

Navigation | Motion management Communication | Monitoring

utility libraries

interprocess communication

device drivers

Figure 2.5
Layered design of a hypothetical exploratory robot system

work before the whole system is complete. A subsystem makes a convenient
package to hand off to a team or a subcontractor to implement. The fact that it
executes more or less independently allows that team to work more or less
independently even through testing.

In the UML world, <<subsystem>> is a stereotype of component. It represents
a large-scale component that embodies other components. According to the
UML 2.2 specification, a subsystem is:

A unit of hierarchical decomposition for large systems. A subsystem is commonly
instantiated indirectly. Definitions of subsystems vary widely among domains and
methods, and it is expected that domain and method profiles will specialize this
construct.

In previous versions of UML, <<subsystem>> was a stereotype of package
and still today it is common to find packages with that stereotype in UML dia-
grams. Regardless of the notation used, a subsystem can represent a group of
modules (implementation units) or a group of components with runtime
presence.

You may decide to identify subsystems in your design. If you do, make sure that
your rationale explains why you chose the ones you did.

m 2.2 Uses Style

Usesisaformofdepen- 221 Overview

dency that can exist . 1
between two modules. The uses style results when the depends-on relation is specialized
A uses B if the correct- to uses. A module wuses another module if its correctness

ness of A depends on depends on the correctness of the other. Whereas the module
the presence of a correct

implementation of B. decomposition style shows only the organization of the imple-



mentation units as modules and submodules, a uses style goes
one step further to reveal which modules use which other mod-
ules. This style tells developers what other modules must exist
for their portion of the system to work correctly. This style
enables incremental development and the deployment of use-
ful subsets of full systems.

2.2.2 Elements, Relations, and Properties

Table 2.2 summarizes the characteristics of the uses style. The
elements of this style are the modules as described in Section 1.2.
We define a specialization of the depends-on relation to be the
uses relation, whereby one module requires the correct imple-
mentation of another module for its own correct functioning.
This view makes explicit which modules use which other mod-
ules to achieve their responsibilities.

2.2.3 What the Uses Style Is For

This style is useful for planning incremental development, sys-
tem extensions and subsets, debugging and testing, and gaug-
ing the effects of specific changes. Figure 2.6 shows the
primary presentation of a uses view and how it can help with
incremental development. To define incremental subsets,
modules should be defined at the right level of granularity. In
the example, admin. core may not need the entire dao package,
only a submodule of it; the diagram should then show the sub-
modules of dao.

Table 2.2 Summary of the uses style

2.2 Uses Style
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Overview The uses style shows how modules depend on each other; it is helpful for plan-

ning because it helps define subsets and increments of the system being

developed.
Elements Module

Relations The uses relation, which is a form of the depends-on relation. Module A uses
module B if A depends on the presence of a correctly functioning B to satisfy

its own requirements.

Constraints The uses style has no topological constraints. However, if uses relations
present loops, broad fan-out, or long dependency chains, the ability of the

architecture to be delivered in incremental subsets will be impaired.

What It’'s For e Planning incremental development and subsets
¢ Debugging and testing
e Gauging the effect of changes
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Figure 2.6

In this uses view, suppose
the incremental
development plan called for
module admin.client in the
next release. Based on the
uses relation, the diagram
highlights what other
modules need to be
present: admin.core, dao,
and util.

S —

See “Coming to Terms:
Uses” on page 81, in
this chapter, for more
about loops in the uses
relation.

#

Decomposition refine-
ment is discussed in
Section 6.1.
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The uses view also helps in managing the dependencies of a
system that is being built or maintained. The goal of this task is
to keep complexity under control and avoid degradation in
the modifiability of the system due to the addition of undesir-
able dependencies.

2.2.4 Notations for the Uses Style
Informal Notations

The wuses relation can be documented as a two-column table,
with using elements on the left and the elements they use listed on
the right. Alternatively, informal graphical notations can show
the relation by using the standard box-and-line diagram with a
key. For defining subsets, a tabular—that is, nongraphical—
notation is sometimes a better alternative. Itis easier to look up
the detailed relations in a table than to find them in a diagram,
which can rapidly grow too cluttered to be helpful unless the
diagram is partitioned using decomposition refinement.

Semiformal Notations

UML
The uses style is easily represented in UML. UML packages can

be used to represent modules; the uses relation is depicted as a
dependency with the stereotype <<use>>. In Figure 2.7(a), the
User Interface module has a uses dependency on the Data
Access module.
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(a)

(b)

(c)

1 1
User «use» Data
Interface Access
Notation: UML
1 1
User Interface
Data
_| _| «wuse» =
___________________________ 7 Access
A B A
\\\ ] //« use»
«use» |
Cc ¥ .
Notation: UML
data queries
User Interface O—|
Data
[ ] Access
A B ‘_/-"'/admin
\“\_ _| /'/ «wuse»
«use» A
X C e
Notation: UML

Dependency Structure Matrix
The uses relation can be documented as a square matrix, with

the modules listed as rows and columns. A mark in the " col-
umn and j™ row indicates that module 7 uses module j. This
simple representation has evolved and been used in auto-
mated tools to create dependency structure matrices (DSMs).

A diagram like the UML package diagram in Figure 2.8 can
be seen as a directed graph; the packages are the vertices and
the dependencies are the edges. A DSM is the matrix represen-
tation of a directed graph. The cell corresponding to column i
and row jis nonzero if there is an edge from vertex i to vertex
j in the graph (that is, module i uses module j). Figure 2.9
shows the DSM for the UML diagram in Figure 2.8.

Figure 2.7

(@) The User Interface mod-
ule is an aggregate module
with a uses dependency on
the Data Access module.
We use UML package nota-
tion to represent modules
and the specialized form of
depends-on arrow to indi-
cate a uses relation.

(b) Here is a variation of Fig-
ure 2.7(a) in which the User
Interface module has been
decomposed into modules
A, B, and C. At least one of
the modules must depend
on the Data Access module
or the decomposition
would not be consistent.

(c) In UML we can represent
the uses relations and also
show interfaces explicitly.
This version shows that the
Data Access module has
two interfaces, which are
used by modules B and C,
respectively. Both the
socket lollipop connection
and the <<use>> depen-
dency connected to the lol-
lipop indicate uses
relations.

Ny
Lo
(@7,

K

DSMs need akey too! In
the key, say whether a
value in row i and col-
umn j means that mod-
ule i depends on
module j or module j
depends on module i.
Both alternatives are
possible.
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Figure 2.8
UML package diagram
showing <<uses>> -
dependencies client Notation: UML
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2.2.5 Relation to Other Styles

The uses style also goes hand in hand with the layered style,
with its allowed-to-use relation. An allowed-to-use relation usually
comes first and contains coarse-grained directives defining the
degrees of freedom for implementers. Once implementation
choices have been made, the uses view emerges and governs
the production of incremental subsets.

When a module contains submodules, the decomposition
requires that any uses relation involving the aggregate module
be mapped to a submodule using that relation. In Figure 2.7(b),
the User Interface module is decomposed into modules A, B,
and C. At least one of the modules must depend on the Data
Access module; otherwise, the decomposition is not consistent.

A uses view can also show interfaces explicitly. In Figure
2.7(c), the Data Access module has two interfaces, which are
used by modules B and C, respectively.

2.2.6 Examples Showing the Uses Style
Adventure Builder

The example software architecture document accompanying
this book online contains an example of a uses view for the
Adventure Builder (2010) system. See wiki.sei.cmu.edu/sad.

The ATIA-M System

Figure 2.10 shows the diagram from a top-level uses view for
the ATTA-M system (it also shows decomposition). In the archi-
tecture documentation, it could have superseded the decom-
position view (see Figure 2.2) for the same system.

ECS

EOSDIS Core System (ECS) is a NASA system. A constellation
of satellites collect measurements about Earth and send the
data to ground stations. ECS controls spacecraft and instru-
ments, processes data, and produces refined data that are
stored in several distributed data centers and made available to
scientists around the world. Figure 2.11 is a small excerpt of a
uses view’s primary presentation from the ECS system. The
notation is textual, using the tabular format mentioned earlier.
Like most primary presentations, this one names only the ele-
ments; they are defined in the view’s supporting documenta-
tion (not shown here).
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Chapter 7 has more
information about
interfaces.
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Figure 2.10
Top-level uses view for the
ATIA-M system
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Notation: UML

Element
Science Data Processing Segment
Ingest Subsystem
INGST CSCI

Uses This Element

ADSRV CSCl in the Interoperability Subsystem
STMGT CSCl in the Data Server Subsystem
SDSRV CSClI in the Data Server Subsystem
DCCI CSCI in the Communications Subsystem

(Continue for other CSCls within the Ingest Subsystem)

Data Server Subsystem
DDIST CSCI

MCI CSCI in the System Management Subsystem
DCCI CSCI in the Communications Subsystem
STMGT CSCl in the Data Server Subsystem
INGST CSCl in the Ingest Subsystem

(Continue for other CSCls within the Data Server Subsystem)
(Continue for other subsystems within the Science Data Processing Segment)

(Continue for other ECS segments)

Figure 2.11

Excerpt of the ECS system uses view, documented as a table. The left column mirrors the system’s module

decomposition structure.
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Uses

Two of the module styles that we present in this book—the uses style and the
layered style—are based on one of the most underutilized relations in software
engineering: uses. The uses relation is a form of the depends-on relation. A unit
of software P, is said to use another unit P, if Py’s correctness depends on a
correct implementation of P, being present.

The uses relation resembles, but is decidedly not, the simple calls relation pro-
vided by most programming languages. Here’s why.

e A program P4 can use program P, without calling it. P4 may assume, for
example, that P, has left a shared device in a usable state when it finished
with it. Or Py may expect P, to leave a computed result that it needs in a
shared variable. Or Py may be a process that sleeps until P, signals an event
to awaken it.

¢ A program P4 might call program P, but not use it. If P, is an exception han-
dler that was passed as a parameter’ for P4 to call when it detects an error,
P4 will usually not care what P, does. P4 does not use P, because its own
correctness does not depend on P..

So uses is not calls or invokes. Likewise, uses is different from other depends-
on relations, such as includes, which deals with compilation dependencies but
need not influence runtime correctness.

Because the uses relation takes many forms, a uses view usually cannot be
automatically derived from other architecture views nor extracted from source
code. To enjoy its benefits, the architect must engineer the relations and docu-
ment the uses view explicitly.

The careful engineering of the uses relation imparts a powerful capability to a
development team: It enables the building of small subsets of a total system.
Early in the project, this allows incremental development, a development para-
digm that allows early prototyping, early integration, and early testing. At every
step along the way, the system carries out part of its total functionality, even if
far from everything, and does it correctly. Fred Brooks (1995) writes about the
“electrifying effect” on team morale when the system first succeeds at doing
something. Absent incremental development, nothing works until everything
works, and we are reduced to the waterfall model of development. Subsets of
the total system are also useful beyond development. They provide a safe fall-
back in the event of slipped schedules: It is much better for the project manager
to offer the customer a working subset of the system at delivery time rather than
apologies and promises.

. Or perhaps it calls a program whose name was bound by a parameter at system-generation time or a pro-
gram whose name it looks up via a name server. Many schemes are possible.
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Here’s how it works. Choose a program that is to be in a subset; call it P4. In
order for P4 to work correctly in this subset, correct implementations of the pro-
grams it uses must also be present. So include them in the subset. For them to
work correctly, their used programs must also be present, and so forth. The sub-
set consists of the transitive closure of P4’s uses.? Conceptually, you pluck P4
out from the uses graph and then see what programs come dangling beneath
it. There’s your subset.

Loops in the relation—that is, for example, where P uses P,, P, uses P3, and
P3 uses Pqy—are the enemy of simple subsets. A large uses loop necessitates
bringing in a large number of programs—every member of the loop—into any
subset joined by any member. “Bringing in a program” means, of course, that it
must be implemented, debugged, integrated, and tested. But the point of incre-
mental development is that you’d like to bring in a small number of programs to
each new increment, and you’d like to be able to choose which ones you bring
in and not have them choose themselves. Generally speaking, any long list of
used programs (caused by long dependency chains or broad fan-out in the rela-
tion) detracts from the ability to field small increments. They also decrease mod-
ifiability, because a change to a module could very well ripple into modules that
it uses.

Besides managing subsets, the uses relation is also a helpful tool for debugging
and integration testing. If you discover a program that’s producing incorrect
results, the problem is going to be either in the program itself or in the programs
that it uses. The uses relation lets you instantly narrow the list of suspects. In a
similar way, you can employ the relation to help you gauge the effects of pro-
posed changes. If a program’s external behavior changes as the result of a
planned modification, you can backtrack through the uses relation to see what
other programs may be affected by that modification.

2.3 Generalization Style
2.3.1 Overview

Even though this style
shares the terms parent
and child with the
decomposition style,
they are used differently.
In decomposition, a
parent consists of its
children. In generaliza-
tion, parents and chil-
dren have things in
common.

The generalization style results when the is-arelation is employed.
This style is useful when an architect wants to support exten-
sion and evolution of architectures and individual elements.
Modules in this style are defined in such a way that they cap-
ture commonalities and variations. When modules have a gen-
eralization relationship, the parent module is a more general
version of the child modules. (The parent module owns the
commonalities, and the variations are manifested in the chil-
dren.) Extensions can be made by adding, removing, or chang-

2. Of course, calls and other depends-on relations must be given their due. If a program in the subset calls,
includes, or inherits from another program but doesn’t use it, the compiler is still going to expect that
program to be present. But if it isn’t used, there need not be a correct implementation of it: a simple stub,
possibly returning a pro forma result, will do just fine.
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ing children; a change to the parent will automatically change
all the children that inherit from it, which could support evo-
lution if the change is appropriate for all the children.

Generalization may represent inheritance of either inter-
face, implementation, or both. Within an architecture descrip-
tion, the emphasis is on sharing and reusing interfaces and not
so much on implementations.

2.3.2 Elements, Relations, and Properties

Table 2.3 summarizes the characteristics of the generalization
style. The element of the generalization style is the module;
the relation is generalization, which is the is-a relation defined
in Section 1.2. In this relation, one module is a generalization
(parent) of other modules (children), and these other mod-
ules are specializations of the first.

A module can be abstract. Such a module does not contain
a complete implementation. Modules that are children of an
abstract module need to provide the necessary implementa-
tions or else they should be abstract as well.

A module that inherits information is referred to as a descen-
dant; the module providing the information is an ancestor.
Cycles are not allowed. That is, a module cannot be an ances-
tor or a descendant of itself.

The fact that module A inherits from module B using ¢nterface
realization is a promise that module A complies to interface B.
This strategy is useful when variants of a module with different

Table 2.3 Summary of the generalization style
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Overview The generalization style employs the is-a relation to support extension and

evolution of architectures and individual elements. Modules in this style are

defined in such a way that they capture commonalities and variations.
Elements Module. A module can have the “abstract” property to indicate it does not

contain a complete implementation.

Relations Generalization, which is a specialization of the js-a relation. The relation can
be further specialized to indicate, for example, if it is class inheritance,

interface inheritance, or interface realization.

Constraints ¢ A module can have multiple parents, although multiple inheritance is often

considered a dangerous design approach.

e Cycles in the generalization relation are not allowed; that is, a child module
cannot be a generalization of one or more of its ancestor modules in a view.

WhatIt's For e Expressing inheritance in object-oriented designs
* Incrementally describing evolution and extension
e Capturing commonalities, with variations as children
e Supporting reuse
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Chapter 7 discusses how
to document interfaces.

implementations are needed and one implementation of the
module can substitute for another implementation with little
or no effect on other modules. In object-oriented designs, class
inheritance indicates that a module inherits behavior from its
ancestors and may modify it to achieve its specialized behavior.
Interface inheritance is also possible when we want a child inter-
face that adds operations to the list of operations defined by
the parent interface.

2.3.3 What the Generalization Style Is For

The generalization style can be used to support

® Object-oriented designs. The generalization style is the pre-
dominant means for expressing an inheritance-based,
object-oriented design for a system.

e [Extension. It is often easier to understand how one module
differs from another, well-known module rather than to try
to understand a new module from scratch. Thus, generali-
zation is a mechanism for producing incremental descrip-
tions to form a full description of a module.

® Local change or variation. One purpose of architecture is to
provide a stable global structure that accommodates local
change or variation. Generalization is one approach to
define commonalities on a higher level and to define varia-
tions as children of a module.

® Reuse. Finding reusable modules is a by-product of the other
purposes. Suitable abstractions can be reused at the inter-
face level alone, or the implementation can be included as
well. The definition of abstract modules creates an opportu-
nity for reuse.

2.3.4 Notations for the Generalization Style
UML

Expressing generalization lies at the heart of UML. Modules
are typically shown as classes or interfaces. Figure 2.12 shows the
basic notation available in UML for class or interface inheritance.
Figure 2.13 shows how UML expresses interface realization.

2.3.5 Relation to Other Styles

Inheritance and interface realization relationships comple-
ment other module relations and are often found in module
views along with uses relations and package decompositions.
But for designs that involve a complex hierarchy of modules, it
is useful to show inheritance relationships in a diagram sepa-
rate from other types of relationships.
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Shape

Notation: UML

Polygon Circle Spline c o

Figure 2.12

In UML, class or interface
inheritance is represented
by a solid line with a closed,
hollow arrowhead. UML
allows an ellipsis (. . .) in
place of a submodule,
indicating that a module
can have more children
than shown and that
additional ones are likely.
Module Shape is the parent
of modules Polygon, Circle,
and Spline, each of which is
in turn a subclass, child, or
descendant of Shape.
Shape is more general; its
children are specialized
versions. The arrow points
toward the more general
entity.

«interface»
Printable

| Printable
|
| i
|

Order Order
Confirmation Confirmation

Notation: UML

2.3.6 Examples Using the Generalization Style
ArchE

Figure 2.14 shows part of a generalization view from the SEI
Architecture Expert (ArchE) tool. This tool allows an architect
to create the architecture design for a system based on quality
attribute requirements, feature requirements, and preexisting
pieces of design. Internally, ArchE uses a rule engine that
manipulates data elements called facts. Various operations are
performed on any Fact object; other operations are specific to
the subclasses of Fact.

PetStore

Figure 2.15 shows part of the generalization view of the Pet-
Store application. This is a multi-tier, Web-based application

Figure 2.13

Interface realization
(sometimes called interface
implementation) is also a
kind of generalization. It
can be expressed in UML in
two ways: (1) a dashed line
with a closed hollow
arrowhead going from the
module to the interface it
realizes; (2) a lollipop
symbol for the interface
connected to the module
thatimplements it. Thus the
two notations in the figure
are equivalent. However,
the one on the left is more
convenient when multiple
modules realize the same
interface.
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Figure 2.14

The primary presentation
for ArchE’s generalization
view. This system uses
internally a rule engine, and
many operations are
defined on a class called
Fact. In addition, specific
functionality exists to deal
with different kinds of facts
and hence the generaliza-
tion in this figure. The
classes shown here also
appear in other diagrams,
which show the attributes
and operations available in
each class, as well as uses
relations among these and
other modules that are part
of the system.

ScenarioRespVO

S, /
FunctionVO

java.util.Observable

]

Fact

id :int
type : String

FunctionRespVO

RelationshipVO

Notation: UML

QuestionToUserVO

ResponsibilityVO

ParameterVO

Figure 2.15

Part of the primary
presentation of the
generalization view for the
PetStore application. It
shows a hierarchy of
classes that represent
events in the system, and
an interface realization. The
package on the right is part
of a Web application
framework (waf), which
offers an event-handling
service. An application
such as PetStore has to
define the application-
specific events. The events
are used for the interaction
of other modules in the
system (not shown)
following the model-view-
controller pattern.

petstore::

controller::events

Notation: UML

CartEvent
waf::event
SignOnEvent
CustomerEvent [ EventSupport

CreateUserEvent

OrderEvent

Order
EventResponse

>

«interface»
EventResponse




that implements an online pet store. The generalization view
shows several important hierarchies in the system (Figure 2.15
shows a subset of them).

2.4 Layered Style
2.41 Overview

The layered style, like all module styles, reflects a division of
the software into units. In this case, the units are layers. Each
layer represents a grouping of modules that offers a cohesive
set of services. There are constraints on the allowed-to-use rela-
tionship among the layers: the relations must be unidirec-
tional. The layered view of architecture, shown with a layer
diagram, is one of the most commonly used views in software
architecture. However, it often is poorly defined, and so often
misunderstood. Because true layered systems promote modifi-
ability and portability, architects have an incentive to show
their systems as layered, even if they are not.

Layers completely partition a set of software, and each parti-
tion—through a public interface—provides a cohesive set of
services. But that’s not all. Figure 2.16, which is intentionally
vague about what the units are and how they interact, shows
three divisions of software—you’ll have to take our word that
each division provides a cohesive set of services—but none of
them constitutes a layering. What’s missing?

Layering has one more fundamental property: The layers
are created to interact according to a strict ordering relation.
Herein lies the conceptual heart of layers. If (A, B) is in this
relation, we say that the implementation of layer A is allowed
to use any of the public facilities provided by layer B.

By uses, we mean the very specific term defined in Section
2.2 for the uses style, but the definition has some loopholes. If
A is implemented using the facilities in B, is it implemented
using only B? Maybe or maybe not. For example, assume that
layers are depicted horizontally, one on top of the other. Some
layering schemes allow a layer to use the public facilities of any
lower layer, not just the nearest lower layer. Other layering
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v B

A layer is a grouping of
modules that together
offer a cohesive set of
services to other layers.
The layers are related to
each other by the
strictly ordered relation
allowed to use.

e

Element A uses ele-
ment B if A’s correct-
ness depends on a
correct implementation
of B being present.

OO
O o

Figure 2.16

Three different divisions of
software. Is any of them
layered?



88 Il Chapter 2: A Tour of Some Module Styles

D
(70
@7

VK2

Remember that a sys-
tem with a uses relation
from a lower layer to a
higher layer is not a lay-
ered system, strictly
speaking.

schemes have so-called layers that are collections of utilities
and can be used by any layer. But no architecture that can be validly
called layered allows a layer to use, without restriction, the facilities of
a higher layer. Allowing unrestricted upward usage destroys the
desirable properties that layering brings to an architecture;
this will be discussed shortly. Usage in layers generally flows
downward. A small number of well-defined special cases may
be permitted, but these should be few and regarded as excep-
tions to the rule. Hence, the architecture in Figure 2.17 resem-
bles a layering but is not.

Figure 2.17 shows why layers have been a source of ambiguity
for so long: architects have been calling such diagrams layered
when they are not. There is more to layers than the ability to
draw separate parts on top of each other.

In some cases, modules in a very high layer might be
required to directly use modules in a very low layer where nor-
mally only next-lower-layer uses are allowed. The layer diagram
or an accompanying document will have to show these excep-
tions. The case of software in a higher layer using modules in
a lower layer that is not just the next lower layer is called layer
bridging. If many of these are present, the system is poorly struc-
tured, at least with respect to the portability and modifiability
goals that layering helps to achieve. Systems with upward usages
are not, strictly according to the definition, layered. However,
in such cases, the layered style may represent a close approxi-
mation to reality and also conveys the ideal design that the
architect was trying to achieve.

Layers cannot be derived by examining source code. Layers
are logical groupings that are wonderful aids in creating and
communicating the architecture, but often they are not explic-
itly delimited in the source code. The source code may disclose
what uses what, but the relation in layers is allowed to use.

Figure 2.17

There may be three layers
here, but this is not a design
in the layered style, which
forbids upward uses.

Key

v L 1 tayer

Ly C —» Allowed to use




Some of the criteria used in defining the layers of a system
are an expectation that they will evolve independently on dif-
ferent time scales, that different people with different sets of
skills will work on different layers, and that different levels of
reuse are expected of the different layers.

2.4.2 Elements, Relations, and Properties

Table 2.4 summarizes the characteristics of the layered style.

The elements of a layered view are layers. A layer is a cohesive
collection of modules, each of which may be invoked or
accessed. The modules in a layer can be anything: from mod-
ules that implement Web services to assembly-language sub-
routines to shared data. A requirement is that the modules
have an interface by which their services can be triggered or
accessed.

The relation among layers is allowed to use. For two layers hav-
ing this relation, any module in the first is allowed to use any
module in the second. Module A is said to use module B if A’s
correctness depends on B being correct and present.

Layers have the following properties, which should be docu-
mented in the element catalog accompanying the layer diagram.

® Contents. The description of a layer should provide guide-
lines to what modules should be in a layer and how to imple-
ment them. It can also explicitly list the software modules

Table 2.4 Summary of the layered style
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Element catalogs are
described in Section
10.1.

Overview The layered style puts together layers (groupings of modules that offer a
cohesive set of services) in a unidirectional allowed-to-use relation with each
other.

Elements Layer. The description of a layer should define what modules the layer
contains.

Relations Allowed to use, which is a specialization of the generic depends-on rela-

tion. The design should define the layer usage rules (for example, “A layer
is allowed to use any lower layer.”) and any allowable exceptions.

Constraints e Every piece of software is allocated to exactly one layer.
e There are at least two layers (typically three or more).
¢ The allowed-to-use relations should not be circular (that is, a lower layer

cannot use a layer above).
What It’s For ¢ Promoting modifiability and portability

¢ Managing complexity and facilitating the communication of the code struc-

ture to developers
¢ Promoting reuse
¢ Achieving separation of concerns
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Section 2.4.4 has more
information about seg-
mented layers.

See also “Perspectives:
Calling Higher Layers”
on page 100, in this
chapter.

vovn B

A virtual machine is a
collection of modules
that form an isolated,
cohesive set of services
that can execute pro-
grams. It's sometimes
called an abstract
machine.

See “Coming to Terms:
Virtual Machines” on
page 99, in this chapter.

See “Coming to Terms:
Signature, Interface,
API” on page 280, in
Chapter 7.

contained by each layer. Each module should be assigned to
exactly one layer. Layers typically have labels that are descrip-
tive but vague, such as “network communications layer” or
“business rules layer”; a description is needed that identifies
the complete contents of every layer.

o The software a layer is allowed to use. Is a layer allowed to use
only the layer below, any lower layer, or some other? If a
layer is segmented horizontally, are modules in a segment
permitted to use modules in another segment of the same
layer? This part of the documentation must also explain
exceptions, if any, to the usage rules implied by the geometry.

You should document the rationale for the choice of layer
partitioning. Explain how each layer provides a cohesive set of
responsibilities. This description helps to assign future mod-
ules to one layer or the other.

Suppose that module Py is allowed to use module Py. Should
Py be in a lower layer than Py, or should they be in the same
layer? Layers are not a function of just who uses what, but are
the result of a conscious design decision that allocates modules
to layers, based on such considerations as cohesion and the
nature of likely changes. In general, P| and Py should be in the
same layer if they are likely to be ported to a new application
together or if together they provide different aspects of the
same virtual machine to a usage community.

The preceding is an operational definition of cohesion. The
cohesion explanation can also serve as a portability guide,
describing the changes that can be made to each layer without
affecting other layers.

2.4.3 What the Layered Style Is For

Layers help to bring quality attributes of modifiability and
portability to a software system. A layer is an application of the
principle of information hiding. The theory is that a change to
a lower layer can be hidden behind its interface and will not
impact the layers above it. As with all such theories, both truth
and caveats are associated with it. The truth is that this tech-
nique has been used with great success to support portability.
Machine, operating system, or other platform dependencies
are hidden within a layer; as long as the interface for the layer
does not change, technology-specific or product-specific parts
can be exchanged, and the upper levels that depend only on
the interface will work successfully.

The caveat is that ¢nferface means more than just the applica-
tion programming interface (API) containing program signa-
tures. An interface embodies all the assumptions that an



external entity—in this case, a layer—may make. Changes in a
lower layer that affect, say, a performance assumption will leak
through its interface and may affect a higher layer.

A common misconception is that layers introduce additional
runtime overhead. Although this may be true for naive imple-
mentations, sophisticated compile/link/load facilities can reduce
additional overhead.

We have already mentioned that in some contexts, a layer
may contain unused services. These unused services may need-
lessly consume a runtime resource, such as memory to store
the unused code or a thread that is never launched. If these
resources are in short supply, a sophisticated compile/link/
load facility that eliminates unused code will be helpful.

Layers are part of the blueprint role that architecture plays
for constructing the system. Knowing the layers in which their
software resides, developers know what services they can rely
on in the coding environment. Layers might define work
assignments for development teams, although not always.

Layers are part of the communication role played by architec-
ture. In a large system, the number of modules and the depen-
dencies among them rapidly expand. Organizing the modules
into layers with interfaces is an important tool for managing
complexity and communicating the structure to developers.

Grouping into layers those modules that have the same tech-
nology abstraction or are cohesive with respect to their respon-
sibilities helps to assign the implementation work across more
specialized teams. For example, the modules in a presentation
layer can be assigned to skilled GUI developers.

Layers help with the analysis role played by architecture.
They support the analysis of the impact of changes to the
design by enabling some determination of the scope of
changes.

Layers that provide a virtual machine promote portability.
For this reason, it is important to scrutinize the interface of
such layers to ensure that portability concerns are addressed.
The interface should not expose functions that are dependent on
a particular platform; these functions should be hidden behind
a more abstract interface that is independent of platform.

Because the ordering relationship among layers has to do
with “implementation allowed to use,” the lower the layer, the
fewer the facilities available to it. That is, the “worldview” of
lower layers tends to be smaller and more focused on the com-
puting platforms. Lower layers tend to be built using knowl-
edge of the operating systems, communications channels,
databases, and the like. These platform-specific layers are
largely independent of the particular application that runs on
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See “Coming to Terms:
Virtual Machines” on
page 99, in this chapter.
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them; they make the application more easily portable to a dif-
ferent platform.

2.4.4 Notations for the Layered Style
Informal Notations

Stack
Layers are almost always drawn as a stack of boxes. The allowed-

to-use relation is denoted by geometric adjacency and is read
from the top down, as in Figure 2.18 (note that the key could
have said, “A layer is allowed to use any lower layer”).

Layering is thus one of the few architecture styles in which
connection among components is shown by geometric adja-
cency and not an explicit symbology, such as an arrow,
although arrows can be used, as in Figure 2.19.

Segmented Layers
Sometimes layers are divided into segments denoting a finer-

grained aggregation of the modules. Often, this occurs when a
preexisting set of units, such as imported modules, share the
same allowed-to-use relation. When this happens, the creator of
the diagram must specify what usage rules are in effect among
the segments. Many usage rules are possible, but they must be
made explicit. In Figure 2.20, the top and the bottom layers are

Figure 2.18
Stack of boxes notation for
layered designs A
Key
B
L tayer
c A layer is allowed to use
the next lower layer.
Figure 2.19
Layered design with
allowed-to-use relations A
shown with arrows
A
B
Key
A [ 1 tayer
© — Allowed to use
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segmented. Segments of the top layer are not allowed to use
each other, but segments of the bottom layer are. If you draw
the same diagram without the arrows, it will be harder to dif-
ferentiate the usage rules within segmented layers. Layered
diagrams are often a source of ambiguity because the diagram
does not make explicit the allowed-to-use relations.

Rings

A notational variation is to show layers as a set of concentric cir-
cles, or rings. The innermost ring corresponds to the lowest
layer; the outermost ring, the highest layer. A ring may be sub-
divided into sectors, meaning the same thing as the corre-
sponding layer being segmented.

There is no semantic difference between a layer diagram
that uses a stack of rectangles and one that uses the rings par-
adigm, except when segmented layers have restrictions on the
allowed-to-use relation within the layer. In Figure 2.21, assume
that ring segments that touch are allowed to use one another
and that layer segments that touch are allowed to use one
another. You cannot “unfold” the ring diagram to produce a
stack diagram, such as the one on the right, with exactly the

Figure 2.20
Layered design with
segmented layers

B1 B2 B3

Figure 2.21

A layered design shown as
concentric rings and as a
stack of boxes. Are these
two representations
equivalent?
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same meaning, because circular arrangements allow more adja-
cencies than do linear arrangements. (In the layer diagram, Bl
and B3 are separate; in the ring diagram they are adjacent.)
Cases like this are the only ones in which a ring diagram can
show a geometric adjacency that a stack picture cannot.

Layers with a Sidecar
Many architectures that are described as layered look some-

thing like Figure 2.22. This type of notation could mean one of
two things: (1) Modules in D can use modulesin A, B, or C. (2)
Modules in A, B, or C can use modules in D. (Technically, the
diagram might mean that both are true, although this would
arguably be a poor layered architecture.) The creator of the
diagram must specify which usage rules pertain. A variation
like this makes sense only for single-level usage rules in the
main stack, that is, when A can use only B and nothing below.
Otherwise, D could simply be made the bottommost layer in the
main stack, and the “sidecar” geometry would be unnecessary.

In some cases, the layered architecture is depicted as a three-
dimensional figure, to represent a layer that is accessible to all
other layers, as shown in Figure 2.23.

Figure 2.22

Layers with a “sidecar.” The
key should make clear what
is allowed to use and be
used by software in the box
on the side.

Figure 2.23
Three-dimensional layered
diagram trying to show that
layer D can be used by all
other layers. The picture
could just as well be
showing that D can use all
other layers. The ambiguity
should be resolved by an
annotation, or in the key.

B1 B2 B3




Such layers on the side often represent utility libraries or
platform services (such as the operating system or runtime
environment).

Size and Color
Sometimes layers are colored to denote which team is respon-

sible for them or to denote another distinguishing feature.
Sometimes layers use different colors just to improve readabil-
ity. Size is sometimes used to give a vague idea of the relative
size of the modules constituting the various layers. If they carry
meaning, size and color should be explained in the key accom-
panying the layer diagram.
UML
UML has no built-in primitive corresponding to a layer. How-
ever, layers can be represented in UML as stereotyped pack-
ages, as shown in Figure 2.24. A package is a general-purpose
mechanism for organizing elements into groups, and it suits
the notion of layers. The allowed-to-use relation can be a stereo-
typed dependency between layer packages.

Access dependencies are not transitive. If package 1 can
access package 2 and package 2 can access package 3, it does
not automatically follow that package 1 can access package 3.
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Appendix A discusses
how to use UML classes
and packages to repre-
sent layers and more.

«layer» A

1
«allowed to use»
1

I v
«layer» B
1 1 1
«segment» «segment» «allowed «segment»
B1 B2 to use» B3

«allowed to use»
1

| V

«layer» C

Notation: UMLE

Figure 2.24

Documenting segmented
layers in UML. If segments
in alayer are allowed to use
each other, then <<allowed
to use>> dependencies
must be added among
them as well.
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Section 2.1.6 has more
information about the
module decomposition
in the A-7E avionics
system.

2.4.5 Relation to Other Styles

Layer diagrams are often confused with other architecture
styles when information orthogonal to the allowed-to-use rela-
tion is introduced without conscious decision.

1.

Module decomposition. Layers in a layered view and modules
in a decomposition view are always related but almost never
correspond one-to-one with each other. A layer may com-
prise more than one module. Two submodules of a module
may be part of different layers. In any case, you should pro-
vide a mapping between layers and the modules in the
decomposition view. If a module occurs in more than one
layer, you can indicate this by using colors or fill patterns,
as in Figure 2.25.

In this example, once again borrowing from the A-7E
architecture described previously, the mapping between
layers and modules is not one-to-one. In this architecture,
the criterion for partitioning into modules was the encap-
sulation of likely changes. The shading of the elements
denotes the coarsest-grain decomposition of the system
into modules; that is, Function Driver and Shared Services
are both submodules of the Behavior Hiding module.
Hence, in this system, layers correspond to parts of highest-
level modules. It’s also easy to imagine a case in which a
module constitutes a part of a layer.

Tiers. Layers are often confused with the tiers in a multi-tier
architecture. Layers are not tiers. The layered style shows

Figure 2.25

A diagram showing layers
and modules from a
decomposition view from
the A-7E software
architecture

Function Driver

Shared Services

Data Banker Physical Models Filter Behaviors

Device Interfaces

Software Utilities

Application DataTypes

Extended Computer

Key

Software decision-
hiding module

Behavior-hiding
module

Hardware-hiding
module

Software in a layer is allowed to use software in the same
or any lower layer.




groupings of implementation units and hence is a kind of
module style. The multi-tier style is a component-and-con-
nector style because tiers congregate runtime components.

3. Module “uses” style. Because layers express the allowed-to-use
relation, there is a close correspondence to the uses style.
Of course, no uses relation is allowed to violate the allowed-
to-use relation. If incremental development or the fielding
of subsets is a goal, the architect will begin with a broad
allowed-to-usespecification. That specification gives the guide-
lines for designing with actual uses relations any subset of
interest.

2.4.6 Examples Using the Layered Style
UNIX System V

A classic layered design is the UNIX System V operating sys-
tem, as shown in Figure 2.26. The lower layers form the system
kernel; top layers are user programs or libraries that access the
kernel through system calls. The system call interface layer iso-
lates the kernel implementation details and provides a virtual
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Section 4.6.2 discusses
tiers.

The uses style is cov-
ered in Section 2.2.
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See “Perspectives:
Using a DSM to Main-
tain a Layered Architec-
ture” on page 101, in
this chapter, for a
description of how lay-
ered architectures can
be identified in a DSM
based on existing code.
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Figure 2.26

The primary presentation of
a layered view of the UNIX
System V operating system
implementation (adapted
from Bach 1986)
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R —

This is the approach of
stratified design, the
notion that a complex
system should be struc-
tured as a sequence of
levels that are described
using a sequence of
languages. Each level is
constructed by combin-
ing parts that are
regarded as primitive at
that level, and the parts
constructed at each
level are used as primi-
tives at the next level.

—H. Abelson and
G. Sussman, Struc-
ture and Interpreta-
tion of Computer
Programs (1996)

machine to user programs. The file subsystem is responsible
for managing files (devices are treated as files), administering
free space, controlling access, and reading/writing data. The
process control subsystem is responsible for process schedul-
ing, interprocess communication, process synchronization,
and memory management. The hardware control layer is
responsible for handling interrupts and communicating with
the machine.

This design is presented in Chapter 2 of the classic book by
Maurice Bach, The Design of the UNIX Operating System (Bach 1986),
where a candid observation is made: “The diagram serves as a
useful logical view of the kernel, although in practice the ker-
nel deviates from the model because some modules interact
with the internal operations of others.” All such exceptions
should be noted in your documentation.

Java EE Application

Figure 2.27 is the primary presentation of the layered view of a
set of integrated, multi-tier, Web-based applications that use
the Java EE platform. All user operations in these applications
follow this layered design. The topmost layer has presentation
classes, which are servlets and JavaServer Faces (JSF) action
classes. Servlet and JSF are Java component technologies for
developing Web components. The second layer has controller
classes, which implement the sequence of steps to carry on the
functionality of a use case. An example of a controller class is
CtlRetrievePtoDays. Controller classes interact with business
service classes, which encapsulate the core business logic asso-
ciated with domain objects. An example of a service class is
SvcFullTimeEmployee. The lowermost layer has data access
objects. These modules handle all interaction with the rela-
tional database.

There are two sets of auxiliary modules that are presented as
sidecar layers. On the left are presentation data transfer
objects (DTOs). They are simple classes that contain basic
attributes corresponding to data elements required in differ-
ent user screens. The right sidecar layer has the corporate
DTOs and plain old Java objects (POJOs). Like presentation
DTOs, these classes have a set of attributes to hold data. In this
design, DTOs have attributes required by a particular transac-
tion, whereas POJOs correspond to data entities stored in the
database.

The key drivers for this layered design are modifiability and
portability, which is achieved with separation of concerns. On
top is the presentation layer. Changes to the user interface are
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used by the other layers to

hold and transfer data.

addressed in that layer. If the technology used to implement
the UI has to change from servlet and JSF to, say, Google Web
Toolkit and Flash, this layer has to be rewritten, but the other
layers should remain unchanged. The second layer imple-
ments the logic to handle the user actions by wiring the calls to
services in the third layer, which is the core business logic layer.
The bottom layer isolates database access operations and also
enhances portability. If the application is migrated to a differ-
ent database management system with a different SQL dialect,
all modifications required would be confined to that layer.

Virtual Machines

A virtual machine, sometimes called an abstract machine, is a collection of mod-
ules that form an isolated, cohesive set of services that can execute programs.
Early use of the term referred to a more abstract stand-in for a real computer,
but current use includes virtual machines that have no direct correspondence to
any real machine. Interpreters are good examples of virtual machines. The Com-
mon Language Runtime (CLR) of the Microsoft .NET platform is an example of
a virtual machine. It provides services to execute bytecode produced by com-
piling C# or other .NET programming languages. The CLR converts the byte-
code into code that is native to the operating system underneath. The Java
Virtual Machine (JVM) does the same thing for the Java language. An operating
system itself is a virtual machine that allows the execution of native code on the
underlying hardware. Thus, a virtual machine is a software layer that can exe-
cute “programs,” which can be sequences of calls to facilities of the virtual
machine’s interface. Hence some authors regard layers and virtual machines as
synonyms.
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Calling Higher Layers

We have been emphatic in saying that upward uses invalidate layering. We
made allowances for documented exceptions but implied that too many of
those would get you barred from the Software Architect’s Hall of Fame.

Seasoned designers, however, know that in many elegantly designed layered
systems, all kinds of control and information flow upward along the chain of lay-
ers, with no loss of portability, reusability, modifiability, or any of the other qual-
ities associated with layers. In fact, one of the purposes of layers is to allow for
the “bubbling up” of information to the units of software whose scope makes
them the appropriate handlers of the information. One approach to error han-
dling illustrates this upward flow. Suppose that we have a simple three-layer
system, as in Figure 2.28. Say that program P, in A uses program Pg in B, which
uses program P¢ in C. If P¢ is called in a way that violates its specification, Pg
needs a way to tell Pg, “Hey! You called me incorrectly!” At that point, (1) Pg can
either recognize its own mistake and call P¢ again, this time correctly, or take
another action; or (2) Pg can realize that the error resulted because it was called
incorrectly—perhaps it received bad data—by Px. In the latter case, Pg needs a
way to tell Py, “Hey! You called me incorrectly!”

A Key

L tayer

The layer on top is allowed
B e to use the next lower layer.
O Program

©
R — = Uses
Figure 2.28

Layered design showing programs inside and their usage dependencies

Callbacks are a mechanism to manifest the protestation. We do not want P
written with knowledge about programs in B or Pg written with knowledge about
programs in A, as this would limit the portability of layers C and B. Therefore,
the names of higher-level programs to call in case of error are passed downward as
parameters. Then the specification for, say, Pg includes the promise that in case
of error, it will invoke the program whose name has been made available to it.

Other situations where callbacks can be used include:

¢ When Pp uses Pg to obtain data to present in the user interface but P, also
wants Pg to announce future changes to the data. In other words, P, sub-
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scribes to events that can be emitted by Pg and provides to Pg the name of
the operation that will handle the events.

* When Py uses Pg and the interaction is asynchronous, but P, needs to
receive a response once Pg is done processing the request. In this case Py
provides Pg the name of the operation to call.

So there we have it: data and control flowing downward and upward in an ele-
gant error-handling scheme that preserves the best qualities of layers. So much
for our prohibition about upward uses. Right?

Wrong. Upward uses are still a bad idea, but the scheme we just described
doesn’t have any. It has upward data flow and upward invocation but not uses.
The reason is that once a program calls its error handler, its obligation is dis-
charged. The program does not use the error handler, because its own correct-
ness depends not a whit on what the error handler does. This is how the
callback mechanisms, built in to some programming languages, work and still
allow true layered systems to be written in those languages.

Although this may sound like a mere technicality, it is an important distinction.
Uses is the relation that determines the ability to reuse and to port a layer; “calls”
or “sends data to” is not. Architects need to know the difference and need to
convey the precise meaning of the relations in their architecture documentation.

—PC. and PM.

Using a DSM to Maintain a Layered Architecture

Tools based on the dependency structure matrix claiming to be the solution to
managing complexity in large software projects have recently been capturing
the attention of program analysts and software architects. The DSM concept
has been adopted for use in software engineering from its origins with Donald
Steward as the Design Structure System (Steward 1981), which he devised in
1967 to help manage complexity in the nuclear power industry. Over the past 15
years the DSM has been used in a wide variety of industries to aid in systems
engineering and analysis as well as project planning and management.

When layer A depends on layer B and layer B depends on layer A, there is a
codependence between these two layers, a situation that is forbidden in a lay-
ered architecture. In a DSM, circular dependencies are immediately visible as
marked cells on both sides of the matrix’s diagonal. A layered architecture is
clearly discernable because the corresponding DSM is a lower triangular matrix
(that is, one in which all the marked cells are below the diagonal). For example,
consider the layered architecture in Figure 2.29. The key indicates that a layer is
allowed to use only the next lower layer, so it’s a strictly layered design. The
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corresponding DSM is shown in Figure 2.30(a). If a layer were allowed to use any
lower layer, the DSM would be similar to Figure 2.30(b). When cells above the
diagonal are marked, the architect can see the circular dependency and focus
on what to change to reach the goal of a layered architecture.

Ul presentation
controller Key
business logic [ ] vayer
Any layer is allowed to use only
data access the next lower layer.
Figure 2.29
Simple layered architecture
5 2| - 5 2| .
q S|l =2 a . S|l = 2 o
using |8 |22 g using [ 8| 2| 2| g
layer |G| 2|28 layer | §| 2| @] S
o0 = (] n = ()
°|5|lcE|e ol 5| =
used a|o|2|8 used a|lo| g8
layer 5 ! layer ) o
Ul presentation Ul presentation
controller 1 controller 1
business logic 1 business logic | 1 |1
data access 1 data access 1(1|1
(a) (b)

Figure 2.30
DSM showing (a) strictly layered design and (b) layered design

In practice, layered designs are more complex. Figure 2.31 shows the layered
design that was introduced in Figure 2.27, now with Java packages added for
each layer. The DSM for this design is shown in Figure 2.32. In a DSM tool, the
architect can mark the dependencies that violate the layered design: the high-
lighted cells above and below the diagonal in Figure 2.32. During the implemen-
tation of the system, the tool can create a DSM from the code and highlight any
violations. If other constraints on interdependencies have been indicated by the
architect, those will also be visible using the DSM representation. With good
tool support, continuous integration builds can be subjected to DSM analysis,
and architecture violations can be caught immediately. DSM tools also generally
allow the user to perform “what-if” analysis by simulated restructuring of the
system, providing immediate insight into the impact that a suggested change
would have on the system’s structure.
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Figure 2.32
DSM for a layered design. The highlighted cells above and below the diagonal represent dependencies that are
not allowed

—J.S. and PM.
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If you haven’t docu-
mented a commonality,
itisn’t likely to be one by
the time you get done
implementing.

—D. L. Parnas

See “Coming to Terms:
Aspect-Oriented Pro-
gramming” on page
107, in this chapter.

2.5 Aspects Style

2.5.1 Overview

The aspects style is a module style used to isolate in the archi-
tecture the modules responsible for crosscutting concerns.

When we implement software modules in general, the busi-
ness logic code ends up intermixed with code that deals with
crosscutting concerns. For example, if you’re writing a bank
automation system, there may be modules such as Account,
Customer, and Atm. The Account module ideally would con-
tain only the code to deal with the bank account business logic
(open/close account, deposit, withdraw, transfer, and so on).
Butin practice we have to add code to handle crosscutting con-
cerns, such as access control, transaction management, and
logging.

The aspects style prescribes that the modules responsible for
the crosscutting functionality should be placed in one or more
aspect views. These modules are called aspects, based on the
terminology introduced by aspect-oriented programming (AOP).
The aspect views should contain information to bind each
aspect module to the other modules that require the crosscut-
ting functionality.

The aspects style is particularly useful when you plan to use
AOP in the implementation. However, it’s also applicable when
crosscutting functionality will be implemented in traditional
ways through class inheritance and interfaces, macro insertion,
dependency injection, utility libraries, or other alternatives.
The goal of designing and implementing crosscutting con-
cerns in separate aspect modules is to improve modifiability of
the modules that deal with the business domain functionality.

2.5.2 Elements, Relations, and Properties

Table 2.5 summarizes the characteristics of the aspects style.
The elements in the aspects style are aspect modules. As men-
tioned in Section 2.5.1, an aspect is a special type of module
introduced by AOP. It contains the crosscutting code that
affects other specific modules in the system.

The relation found in the aspects style is usually called cross-
culs. An aspect crosscuts a module if the aspect contains cross-
cutting functionality that will affect the module. An aspect may
contain the same properties of a regular module. In addition,
it may contain a property that describes what target modules
are affected by that aspect; in AOP terms, this property is called
pointcut specification.
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Table 2.5 Summary of the aspects style

Overview The aspects style shows aspect modules that implement crosscutting con-
cerns and how they are bound to other modules in the system.

Elements Aspect, which is a specialized module that contains the implementation of a
crosscutting concern

Relations Crosscuts, which binds an aspect module to a module that will be affected by
the crosscutting logic of that aspect

Constraints e An aspect can crosscut one or more regular modules as well as aspect

modules.

¢ An aspect that crosscuts itself may cause infinite recursion, depending on
the implementation.

What It’s For ¢ Modeling crosscutting concerns in object-oriented designs
¢ Enhancing modifiability

2.5.3 What the Aspects Style Is For

The aspects style can be used to model the implementation of
crosscutting concerns. It promotes modifiability by increasing
modularity and avoiding the tangling of crosscutting function-
ality and business domain functionality.

2.5.4 Notations for the Aspects Style
UML

Although UML does not have built-in symbols for aspects, it is
a common choice for aspect views. In UML aspect modules are
usually represented as stereotyped classes in a class diagram, as
shown in Figure 2.33. Especially when the target implementa-
tion platform supports AOP, showing aspect modules as stereo-
typed classes makes sense because aspects are structurally
similar to classes: they may contain attributes and operations,
and they may extend another aspect in an inheritance relation.

The crosscut relation could be represented as a stereotyped
dependency going from the aspect to each module it crosscuts.
However, this alternative does not scale: by definition an aspect
provides crosscutting functionality, and hence it may crosscut
too many modules. Drawing a line between the aspect module
and each of the crosscut modules is impractical in nontrivial
systems and would clutter the diagrams. A better alternative is
simply to omit the c¢rosscut relation from the diagrams. Instead,
just add a comment to the aspect module to characterize (in
natural language or in a formal syntax) what other modules
this aspect crosscuts. Figure 2.34 shows an example. Not showing
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Figure 2.33
Aspect modules are often
reppreseme i oML o «aspect» «aspect»
classes with stereotype TransactionManagement Internationalization
<<aspect>>.
Notation: UML
Figure 2.34
Instead of trying to draw a
line from each aspect to
every module it crosscuts, «aspect» «aspect»

we simply add a comment
box that characterizes what
modules will be crosscut.

TransactionManagement Internationalization

= ’
\

\

\

\

Crosscuts calls to any operation Crosscuts any
within an EJB that contains the calls to the Notation:
Locale library UML

@transactional annotation

the crosscut relation in the diagram actually makes sense
because in an AOP implementation, the developer doesn’t
have to identify each target class for a given aspect. The archi-
tecture representation should not be more detailed than the
implementation!

2.5.5 Relation to Other Styles

In general, aspects allow inheritance. The aspects style may be
combined with the generalization style when we want to show
a hierarchy of aspects.

2.5.6 Examples Using the Aspects Style

Figure 2.35 is from the aspects view of an application called
IkeWiki. The design prescribes the use of aspects for transac-
tion management, exception handling, authorization check,
and enforcement of architecture constraints. Drawing a line
for each crosscut relation would be impractical, so the architect
opted simply to indicate with comments what other modules
should be crosscut by each aspect.
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Figure 2.35

Primary presentation for the aspects view of the IkeWiki application. This Java EE application implemented with the
Spring framework and Google Web Toolkit uses aspects for some crosscutting concerns. The TransactionManagement
aspect makes sure all requests received by the server will close the transaction and release database resources properly,
performing a rollback when an exception occurs. The ExceptionHandling aspect has code to log the error to the
database, send e-mail notification if applicable, and wrap the exception with a proper user message to be displayed by
the client application. This aspect is woven into server-side classes that are either threads or entry points to process
HTTP requests. The AuthorizationCheck aspect is used to check if the current user has permission to execute a specific
method. The Enforcement aspect is different from the others. It doesn’t exactly implement a crosscutting concern, but
rather it scans the source code at compile time looking for violations of the layered design, as well as violations of several
coding policies.

COMING TO TERMS

Aspect-Oriented Programming

Aspect-oriented programming is an evolutionary implementation paradigm that
complements object-oriented programming and facilitates the implementation
of crosscutting concerns. Aspectd is probably the most widely known AOP
package. Other implementations include Spring AOP, JBoss AOP, AspectC++,
and Aspect#.

Suppose the bank automation example is implemented using a regular object-
oriented language. The solution would contain classes such as Account, Cus-
tomer, and Atm. In these classes, the code to handle crosscutting concerns
such as logging or transaction management is tangled with the business logic
code, making the classes more difficult to maintain. Moreover, the lines of code
found in class Account to handle transaction management are very similar if not
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equal to the lines of code that handle the same concern in Customer, Atm, and
other classes. The code for a particular concern is scattered across several
classes; that poses a modifiability problem. Suppose you need to change the
signature of a method used for logging. You’ll need to change the correspond-
ing lines of code in all classes where logging is needed. Code tangling and code
scattering in traditional object-oriented applications is notionally represented in
Figure 2.36.

code scattering

code
tangling ——
Account Customer Atm
Key
Code to handle access control
Class Code to handle logging
code

mmmmmm  Code to handle transaction management

Figure 2.36

The traditional object-oriented implementation of a bank automation system would have several classes where
the business logic is tangled with code that handles crosscutting concerns, such as access control, logging, and
transaction management. In addition, the code that handles a particular crosscutting concern is repeated and
scattered across several classes.

AOP brings an ingenious solution to improve modularity and resolve the code
tangling and code scattering problems. The crosscutting code is factored out
from the classes and placed in a special module called aspect, as represented
in Figure 2.37. An aspect has two important parts: advices and pointcut speci-
fications. Advices contain the code for the crosscutting concerns. Such code
will be injected at certain points (called join points) of the classes through a pro-
cess called weaving, carried on by the AOP compiler. The pointcut specifica-
tions contain declarations that map to specific sets of join points in the target
classes. In the aspect code, advices are associated to pointcut specifications
to let the AOP compiler know where exactly each advice code will be injected
in the target classes.

AOP is the programming component of the larger aspect-oriented software
development (AOSD) movement, which strives to factor out otherwise-redundant
commonality in all kinds of software activities, including requirements engineer-
ing, design, and testing.
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Figure 2.37

In the aspect-oriented implementation of the same bank automation system, the classes don’t contain code for
logging, access control, transaction management, and other crosscutting concerns. The code to handle these
concerns is now inside aspect modules. Classes such as Account, Customer and Atm contain the business logic
only. The AOP compiler will use the weaving process to insert the code inside aspects at the locations in the
classes where it's needed.

2.6 Data Model

2.6.1 Overview

Data modeling is a common activity in the software develop-
ment process of information systems. The output of this activ-
ity is the data model, which describes the static information
structure in terms of data entities and their relationships. For
example, in a banking system, entities typically include
Account, Customer and Loan. Account has several attributes,
such as account number, type (savings or checking), status,
and current balance. A relationship may dictate that one cus-
tomer can have one or more accounts, and one account is asso-
ciated to one or two customers. The data model is often
represented graphically in entity-relationship diagrams (ERDs)
or UML class diagrams.

The first draft of an architecture view typically has very little
detail. Over time, as design decisions are made, the view is elab-
orated until the architect considers there’s enough informa-
tion captured in that architecture view. The same thing
happens with the data model. Data modeling spans the evolu-
tion of the high-level model that displays the data entities in a
given business domain into a model that shows details of how
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the data is stored, for example, in a relational database man-
agement system. As a result, different organizations focus the
modeling and documentation effort on different stages of the
data model evolution. Thus organizations sometimes use qual-
ifiers to the data model to distinguish these stages. Examples
of qualifiers include:

Conceptual. The conceptual data model abstracts implemen-
tation details and focuses on the entities and their relation-
ships as perceived in the problem domain. Figure 2.38
shows a fragment of a conceptual data model.

Logical. The logical data model is an evolution of the con-
ceptual data model toward a data management technology
(such as relational databases). It is typically the subject of
normalization (see Section 2.6.2). Figure 2.39 shows an
example of a logical data model.

Physical. The physical data model is concerned with the
implementation of the data entities. It incorporates optimi-
zations that may include partitioning or merging entities,
duplicating data, and creating identification keys and
indexes. For example, in Figure 2.40 a column named total-
Price was likely added to the entity Order as a performance
optimization, since the total price could also be obtained by
reading all order items and adding up their prices.

Figure 2.38

First draft of a conceptual
data model. This and the
next two diagrams are
fragments of an online
order-processing system at
different stages.

|2l Tt
o || 1

Figure 2.39

Logical data model that has
evolved from the
conceptual data model in
Figure 2.38
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FK# = Foreign key (bold means
1# = Index required column)
Figure 2.40

Physical data model that was created by adding implementation details and optimizations to the logical data model in
Figure 2.39

In an early stage, the architecture documentation may contain
the data model with the key entities and important relation-
ships. Later on, this initial model is superseded by the detailed
model approved by the data administrators.

2.6.2 Elements, Relations, and Properties

Table 2.6 summarizes the characteristics of the data r.n.odel st).fle. See “Coming to Terms:
The elements in a data model are called data entities or sim-  Entity” on page 118, in

ply entities. Any distinguishable object that contains informa-  this chapter.

tion to be stored or represented in the system can be an entity.

Table 2.6 Summary of the data model style

Overview The data model describes the structure of the data entities and their
relationships.

Elements Data entity, which is an object that holds information that needs to be stored or
somehow represented in the system. Properties include name, data attributes,
primary key, and rules to grant users permission to access the entity.

Relations e One-to-one, one-to-many, and many-to-many relationships, which are logi-
cal associations between data entities
e Generalization/specialization, which indicate an is-a relation between entities
* Aggregation, which turns a relationship into an aggregate entity

Constraints Functional dependencies should be avoided.

What It’s For e Describing the structure of the data used in the system
¢ Performing impact analysis of changes to the data model; extensibility analysis
¢ Enforcing data quality by avoiding redundancy and inconsistency
e Guiding implementation of modules that access the data
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Properties of entities may include:

Name of the entity.
Description of the meaning and significance of the entity.

List of data attributes of the entity. For example, a Car entity
may have attributes year, manufacturer, model, mileage,
price, and license. Each attribute may have properties, such
as data type, size, and whether it’s a required attribute or
not.

The attribute (or attributes) used to uniquely identify an
entity (that is, the primary key).

Whether an entity is weak. A weak entity, also known as a
dependent entity, depends on the existence of another
entity to exist. For example, an Orderltem requires the
existence of a PurchaseOrder in Figure 2.40.

Constraints and invariants on the values of individual or
combined attributes. For example, “Returning date cannot
be prior to arrival date.”

Rules that will be used to grant permissions to users or user
groups to access the entity.

Expected number of entity instances and growth rate.

Other properties concern the physical data model and are

specific to the target implementation platform of the data
model. Examples include:

List of attributes that should be indexed to optimize access
time.

List of attributes that should be encrypted or compressed.

Whether the entity should become a database view instead
of a table. A view is a virtual table that is defined by a SQL
query command on one or more tables.

Whether the entity should become a materialized view,
which means it will be implemented as a database table that
stores a subset of the data copied from a master table. Like
a regular view, the subset is defined by a query command.

List of database triggers that will be implemented for that
entity. A trigger is a special procedure that is automatically
executed by the database management system when data is
inserted, updated, or deleted.

There are three types of relations found in data models:

Relationship. Used to designate a logical association between
entities. It is usually qualified by the cardinality of the partic-



ipant entities: one-to-one, one-to-many, or many-to-many. In
addition, a relationship can be identifying or nonidentifying.
An identifying relationship from A to B means that the exist-
ence of B depends on the existence of A; that s, the primary
key of B contains the primary key of A.

* Generalization/specialization. Indicates an is-a relation between

entities. For example, entity Insurance is a generalization of

different types of insurances; at the same time, entities Car
Insurance and House Insurance are specializations of entity
Insurance.

® Aggregation. An abstraction that turns a relationship between
entities into an aggregate entity (Smith and Smith 1977).
For example, a relationship between a patient, a physician,
and a date can be abstracted as an aggregate entity called
Appointment. In practice, this relation is rarely used.

Conceptually, there are no topological constraints with
respect to the relations in a data model. However, the database
normalization technique imposes restrictions on the data
model based on the dependencies between entity attributes.
Normalization is used by data administrators to avoid duplica-
tion of information, in order to safeguard the consistency
(integrity) of the data. Figures 2.41 and 2.42 show an example
of normalization.
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For an explanation of
the normalization tech-
nique and description of
the various normal
forms, refer to the clas-
sic book by C. J. Date,
An Introduction to Data-
base Systems (1999).

Empld | Name Position ProjNo | ProjDesc Start End

100 Simpson | Analyst 23 DB design Apr-02 | Jul02

140 Beeton Technician | 14 Network cabling | Sep-02 | Oct-02
160 Davis Technician | 14 Network cabling | Sep-02 | Nov-02
36 Network testing | Nov-02 | Dec-02
190 Berger DBA 45 Physical design | Aug-02 | Nov-02
ProjectAssignment 48 Space allocation | Nov-02 | Dec-02
PK | Empld INTEGER 100 Simpson | Analyst 25 Reports Oct-02 | Nov-02
PK |ProjNo |INTEGER 110 Covino | Analyst 31 Forms Mar-02 | May-02

Name VARCHAR(80) » 25 Reports May-02 | Jul-02
Position | VARCHAR(80) 120 Brown Analyst 11 Order entry Jul-02 Sep-02
ProjDesc | VARCHAR(80) 180 Smith Programmer| 31 Forms Sep-02 | Nov-02

Start DATETIME 25 Reports May-02 | Jul-02

End DATETIMVE 200 Rogers Programmer| 11 Order entry Sep-02 | Oct-02
12 Inventory control| Oct-02 | Dec-02
13 Invoicing Nov-02 | Dec-02

100 Simpson | Analyst 31 Forms Aug-02 | Oct-02

130 Clemens | Analyst 23 DB design Apr-02 | Jun-02

Figure 2.41
Entity ProjectAssignment before normalization, along with sample data (adapted from Ponniah 2007). The attributes that

uniquely identify a project assignment (that is, the primary key) are Empld and ProjNo.
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Employee ProjectAssignment Project
PK Empld INTEGER PK,FK1 Empld INTEGER BO | PK | ProjNo INTEGER
| O< PK,FK2 ProjNo INTEGER
Name VARCHAR(80) ProjDesc | VARCHAR(80)
FK1 | Positionld INTEGER Start DATETIME
End DATETIME
|
| Legend
| Ad———<B For each A there are 0 or more Bs,
! each B is related to exactly one A
# Entity
Position For each A there are 0 or more Bs,
. 4 \ A +—— o< B eachBisrelated to exactly one A,
PK | Bositionld INTEGER Column As PK is needed as part of B's PK
PositionDesc | VARCHAR(80) PK=Primary key = me
FK# = Foreign key
Figure 2.42

Data model for ProjectAssignment after normalization. One of the rules of normalization is that non-key attributes should
have functional dependencies to the whole primary key only. Attribute ProjDesc has a functional dependency to ProjNo,
which is not the whole primary key. After this and other violations of the normalization rules were fixed, this is the

resulting data model diagram.

2.6.3 What the Data Model Is For

The data model facilitates stakeholder communication during
domain analysis and requirements elicitation. But foremost,
the data model is the blueprint for the implementation of the
data entities, for example, in a relational database.

A carefully created data model also helps to achieve perfor-
mance requirements in a software system. In data-centric appli-
cations, access to the data usually represents a significant
amount of the time to process user requests. The architect and
the data administrator should understand what kinds of data
access operations will be more critical to the system and what
their performance requirements are. Driven by these require-
ments, denormalizations, optimizations, and other design
decisions are applied to the data model, aiming at improved
system performance. Examples of these design decisions include:

* Merging two entities to avoid an expensive outer join or
union operation in a query

¢ Adding a derived attribute to avoid scanning an entire data
table to obtain the derived value

¢ Creating an index on attributes that are often parameters in
a query

¢ Changing the granularity (such as table row or page) and
type (such as optimistic) of locks on certain entities to avoid
contention and deadlocks

After the software system is implemented, even when the
data model is carefully created, it’s common to find perfor-



mance bottlenecks in data access operations. To remove these
bottlenecks, the data model comes in handy once again, in a
task called query optimization.

In information systems, the data model is essential input to
modifiability analysis. To analyze the impact of required modi-
fications to a system, one cannot look exclusively at the code
structure. Many modifications require altering the data model
and hence its physical implementation. Modifications to the
data model can be costly, as they may require changing the
code of multiple applications that share the same data. A sim-
ple change such as making a certain attribute of an entity man-
datory (for example, requiring a customer’s date of birth) may
require changes to all screens and functions that allow creating
or updating that information. Versioning and redeployment of
applications is more complicated when data model changes
are involved. Moreover, larger data model modifications, such
as merging with the data model of a legacy system, may also
require the implementation of extract, transform, and load
(ETL) operations to fix the data itself. Indeed, the data model
is an important input to data warehouse projects and to the
integration of data schemas required by some business part-
nerships (for example, an airline company needs to share data
with a car rental company).

The data model is an architecture view that should ideally be
created with a thorough understanding of incremental devel-
opment plans, future extensions, and integration of data
across information systems. Data is a valuable asset, and the
existence of an enterprise data model and a data administra-
tion group helps to enforce data integrity. If a new system
needs to retrieve sales information, the enterprise data model
may already contain that information. The architect of the new
system may not be aware of the data entities that hold sales
information, but the data administrator should and can point
out those entities instead of creating new ones in the database.
Disparate, redundant data contribute to poor data quality.

Based on the data model, data modeling tools can generate
scripts to create the physical database. Some tools can also gen-
erate application code to access the data tables, classes to hold
the data, forms for end users to enter data, message schemas,
and simple reports.

Finally, the data model can help application developers to
write code to access the database. It is easier to understand an
entity-relationship diagram than to browse through the table
creation commands or the database management system
dictionary.
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Data integrity refers to
the consistency and
accuracy of the data
shared across all appli-
cations in a system.
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2.6.4 Notations for the Data Model Style

The data model can be described graphically using informal or
semiformal visual notations that include:

¢ Peter Chen’s entity-relationship diagram notation (Chen
1976)

¢ Crow’s foot entity-relationship diagram notation
e IDEF1X
e UML class diagram

The first three notations are ERD variations, and the last one
is the UML alternative to ERD. Crow’s foot and UML class dia-
grams are more widely used in industry and more commonly
supported by tools.

Crow’s Foot ERD Notation

One of the most popular ERD notations for relationships uses
lines with special symbols at each end to indicate cardinality.
These symbols include a dash (indicating one), a ring (indicat-
ing zero), and a crow’s foot (indicating many). The crow’s foot
ERD notation was initially used in the 1980s by Richard Barker
(1990), as well as in the Information Engineering approach
developed by James Martin and Clive Finkelstein (1981). The
symbology found in today’s tools provides slight variations on
Baker’s original notation and the Information Engineering
notation. Figure 2.43 shows an example.

Figure 2.43

Data model (simplified) of a
human resource system
using crow’s foot ERD
notation

Employee pH-—-——————————— O+ Department
Key Cardinality:
i —+H— Exactly one
Entity
—O+ Zero orone
x Weak ——}< One or more
entity —Q< Zero or more
D nden
e 00 | . Nonidentifying relationship
Identifying relationship




umML

The data model can be represented as a UML class diagram,
where the classes correspond to data entities. The attribute
compartment lists the entity attributes, and the operation com-
partment is empty. UML associations represent the relation-
ships between entities and the multiplicity intervals shown at
both ends of the association lines (for example, “1..#”) indicate
the cardinality of the relationship. Figure 2.44 shows an example.

UML was originally created for object-oriented modeling,
not for data modeling. Therefore, it doesn’t provide built-in
mechanisms for indicating primary keys, weak entities, or for-
eign keys. In addition, class diagrams are more flexible than
ERDs. For example, a class Order may include a list of items as
an attribute, whereas in an ERD, Item would naturally be a sep-
arate entity. Some constraints are needed in order to use UML
class diagrams as an ERD alternative.

2.6.5 Relations to Other Styles

The entities in the data model are intrinsically connected to
some of the modules in other module views, especially the
modules that contain the in-memory representation of the
data. In object-oriented systems that use a relational database
to store data, we typically find classes that correspond to the
persisted entities. The mapping is not always one-to-one,
because the relational paradigm is fundamentally different
from the object-oriented paradigm. This problem is known as
the objectrelational impedance mismatch (Ambler 2006) and
is addressed by object-relational mapping (ORM) tools and
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The Object Management
Group has a draft spec-
ification for an Information
Management Meta-
model that contains a
UML 2 profile for entity-
relationship modeling. It
is available online at
omgwiki.org/imm.

«entity» 1% 0..1 «entity»
Employee Department
1
Key Cardinality:
1 Exactly one
Class
0..* _0"1 Zero or one
i 1.%
«entity» W One or more
Dependent
0..* Zero or more

Figure 2.44

Data model (simplified) of a
human resource system
shown as a UML class
diagram
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B —

Mapping between
views is discussed in
Section 10.2.

frameworks, such as Hibernate for Java and LLBLGen for
Microsoft .NET.

The architect may find it useful to indicate what modules (in
a module view), what components (in a component-and-con-
nector view), or even what use cases from the functional
requirements do use which data entities. Such mapping of the
data model to other views can be recorded as a table, as
described in Section 10.2. Moreover, the architect can indicate
whether each element creates, reads, updates, or deletes data

The shared-data style is
covered in Section 4.5.1.

The deployment style is

(CRUD, for short) from each data entity. This generic map-
ping can be represented as a CRUD matrix.

The data model describes the structure of data entities and
relationships that will typically be deployed to a shared-data-
store component such as an Oracle database. Data stores are
typically depicted in a shared-data view of the architecture,
along with the other runtime components that access them.
Also, a deployment view typically shows what machine(s) the
data stores are allocated to. Documenting the mapping of enti-
ties in a data model to different data stores and respective
described in Section5.2.  machines is especially useful when the solution uses distrib-
uted or replicated databases.

2.6.6 Examples

Figure 2.45 shows the data model reconstructed and adapted
from the Microsoft NET Pet Shop application (Microsoft 2002),
a Web store that keeps a catalog of pets and takes purchase orders
from registered Web users. The data is persisted in a relational
database. The majority of the functionality consists of retrieving,
creating or updating the data elements shown in the data model.

Entity

The elements in the data model style are data entities or, as most data admin-
istrators and developers call them, entities. The original paper that proposed the
entity-relationship model initially describes an entity in a purely conceptual way:
an entity is a “thing” that can be distinctly identified (Chen 1976). Later in the
paper, the author adds a practical caveat: “From now on, we shall consider only
the entities and relationships (and the information concerning them) which are
to enter into the design of a database.” Thus an entity can be related to any
object in the real world: a car, a person, an event, a company, and so on. But for
practical reasons, data modeling in general is concerned with only those entities
and their respective attributes that are relevant to the software system and
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hence will be represented in the system, possibly in the database. The same
focus is true in the context of software architecture documentation.

Strictly speaking, an entity is a particular instance of an entity set or entity type.
For example, Earth is an entity of entity set Planet. For simplicity, most people
don’t make that distinction and refer to entity sets as entities.

Figure 2.45
Supplier Item Notation: Data model for the Pet
@>Suppld @-=ltemld Information Shop application using
Name Productld Engineering Information Engineering
Status ListPrice crow’s foot ERD notation
Addr1 o - UnitCost
Addr2 Supplier | Cartltem
City Status ' @-ltemld
State Name @=Userld
Zip Image of  Name y,
Phone Type "
$ Price
I Categoryld
v Productld
. IsShoppingCart
I Quantity
Product | '
@>Productld ! .
Categoryld E ! -+
Name [ User
Descn L = ItemID @->Userld
Image Quantity Password
UnitPrice PasswordFormat
?15 MobilePin
i Email
] PasswordQuestion
H PasswordAnswer
H IsApproved
CreatedDate
Category LastLoginDate
Order LastPwdChangedDate
@=>Categoryld [@Orderld Comment
Name Userld PasswordSalt
Descn OrderDate Username
ShipAddr1
ShipAddr2
ShipCity
ShipState
ShipZip
e
BillAddr1
@-Orderld BillAddr2
LineNum BillCity
OrderTimestamp BillState
Status BillZip
BillCountry
Courier
TotalPrice

BillToFirstName
BillToLastName
ShipToFirstName
ShipToLastName
AuthorizationNumber
Locale
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2.7 Summary Checklist

A decomposition view shows how responsibilities are allo-
cated across modules and submodules.

A uses view shows how modules depend on one another.
This view helps achieve incremental development and is
especially suitable for performing change-impact analysis.

A generalization view relates modules by showing how one
is a generalization or specialization of the other. This view is
widely used in object-oriented systems, where inheritance is
used to exploit commonality among modules.

A layered view divides a system into groups of modules that
provide cohesive responsibilities. These groups are called
layers and relate to each other unidirectionally by the
allowed-to-userelation. A layered design helps a system achieve
portability and modifiability.

An aspects view shows special modules called aspects, which
are responsible for crosscutting concerns. This view is par-
ticularly useful if the system implementation is going to use
AOP.

A data model view describes the structure of the data used
in the system in terms of data entities and their relation-
ships. It guides implementation and helps to improve per-
formance and modifiability in data-centric systems.

2.8 Discussion Questions

1.

Can you think of a system that cannot be described using a
layered view? If a system is not layered, what would this say
about its allowed-to-use relation?

How does a UML class diagram relate to the styles given in
this chapter? Does that diagram show decomposition, uses,
generalization, or another combination?

We consciously chose the term generalization to avoid the
multiple meanings that the term ¢nheritance has acquired.
Find two or three of these meanings, compare them, and
discuss how each is a kind of generalization. (Hint: You may
wish to consult books by Booch and Rumbaugh, respectively.)

Suppose that your system will include commercial off-the-
shelf (COTS) software modules. In which module views
might you show them and why?

Would you create a data model using an entity-relationship
notation for a system that will not contain a database? In
what situations and why?
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Applications/Bundles
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Security
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Class Loading |
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| OS Hardware |

6. Crosscutting concerns have been implemented in object-
oriented systems without using AOP constructs. Would you
create an aspect view for your system if your implementa-
tion will not use AOP? Would you use aspect modules in
your design in this case?

7. The two layered diagrams in Figure 2.46 are from real sys-
tems. The first is called the ECMA “toaster model,” which
has slots for pluggable tools. The second is the layered
architecture of the OSGi framework. How is the allowed-to-
userelation represented in these diagrams? How would you
create the key to each diagram so that any ambiguity in the
notation is removed?

2.9 For Further Reading

Most of the styles in this chapter can be traced to a founda-
tional paper in the annals of the software engineering litera-
ture. An architect interested in the roots of the discipline may
find the original ideas refreshing in their simplicity and pur-
posefulness. These papers, seen as a group, express the then-
revolutionary idea that there is more to a computer program
than getting the right answer: how it is structured also matters.
In 1968, Edsger Dijkstra wrote about designing an operating
system as a set of abstract virtual machines, giving us the concept
of layers (Dijkstra 1968). David Parnas showed how decompos-
ing a system into modules based on likely changes, as opposed
to steps in the processing, resulted in systems vastly easier to
modify (Parnas 1972). Parnas also introduced the uses relation
and showed how it could lead to software that was easy to
extend or to develop incrementally (Parnas and Weiss 1979).
In the 1960s the fundamental concepts of object-oriented
programming, including objects, inheritance, and dynamic

Figure 2.46

ECMA “toaster model” (left)
and OSGi framework
layered design (right)
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binding, were invented by Ole-Johan Dahl and Kristen Nygaard
at the Norwegian Computing Center in Oslo (Nygaard and
Dahl 1981). The concepts were introduced in the program-
ming language Simula-67, which, although never widely used
itself, laid the foundation for the development of popular
object-oriented languages such as Smalltalk and C++. In 1986—
1987, two widely influential papers by Alan Snyder and Barbara
Liskov, respectively, tied together two concepts that had been
drifting apart: inheritance and encapsulation (Snyder 1986,
Liskov 1987). Liskov in particular argued convincingly that
undisciplined inheritance that violated objects’ abstractions
was harmful. Between them, they set the object-oriented com-
munity on its present path.

A software engineering demonstration project that paid spe-
cial attention to the use of separate architectural structures was
the A-7E avionics system built by the U.S. Navy in the 1980s. A
case study is presented in the book by Bass, Clements, and
Kazman (2003). The example employs decomposition (using
information hiding as the criterion [Parnas, Clements, and
Weiss 2001]), layers, and uses, and it shows how a subset is built
from the wuses relation.

The authoritative source of information about the UML lan-
guage and notation is the specification published by the
Object Management Group (OMG 2009), which at the time of
writing is on version 2.2. However, there are many UML books
that are far more digestible. Two valuable references are The
Unified Modeling Language User Guide, by Booch, Rumbaugh,
and Jacobson (2005), and UML Distilled, by Martin Fowler
(2003). UML classes, packages, and their relations are espe-
cially relevant to module styles.

The seminal paper on aspect-oriented programming was
written by Gregor Kiczales and colleagues at Xerox PARC (Kic-
zales et al. 1997). It describes the concepts and terminology
that were later used to create Aspect] and other AOP lan-
guages. The second edition of the book by Ramnivas Laddad
(2008) is an excellent guide to Aspect] and provides a nice
introduction to AOP. Recently, aspect orientation has been
investigated in the realm of domain analysis, requirements
engineering, and software architecture. Resources about the
use of aspects in early phases of software development can be
found at early-aspects.net.

Data modeling is a well-established discipline. Entity-relationship
modeling was originally proposed by Peter Chen (1976). In
addition to Chen’s original paper, the book by C. J. Date
(2003) has been an important reference to relational theory,
normalization, and data modeling since the publication of the
first edition in 1975.



Component-and-
Connector Views

In this chapter, we look at these aspects of component-and-
connector (C&C) views:

¢ Elements, relations, and properties
® Purpose
¢ Notation

e Relation to other views

3.1 Overview

In this chapter we discuss C&C views in their most general
form, and we look at notations for representing C&C views. In
Chapter 4, we explore some important C&C styles.

A C&C view shows elements that have some runtime pres-
ence, such as processes, objects, clients, servers, and data
stores. These elements are called components. Additionally,
component-and-connector views include as elements the path-
ways of interaction, such as communication links and proto-
cols, information flows, and access to shared storage. Such
interactions are represented as connectors in C&C views.

Component-and-connector views are ubiquitous in practice;
indeed, box-and-line diagrams depicting these views are often
the graphical medium of choice as a principal first-look expla-
nation of the architecture of a system. But such informal C&C
views can be misleading, ambiguous, and inconsistent. Some
problems follow from the usual pitfalls of visual documenta-
tion and are equally applicable to any of the view types dis-
cussed in this book. Other problems derive specifically from
the use of components and connectors to portray a system’s
execution structure. In this chapter, we provide guidelines for
documenting C&C views, and we highlight common pitfalls.

123
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The primary presenta-
tion is the (typically)
graphical portion of an
architecture view.
Documentation that
explains the primary
presentation is called
supporting documenta-
tion. Both are described
in Chapter 10.

%

The system illustrated
in Figure 3.1 is built from
an amalgamation of
different styles: client-
server is described in
Section 4.3; the shared-
data style is described
in Section 4.5; and
publish-subscribe is
described in Section 4.4.
This picture is a result
of combining views,
which is discussed in
Section 6.6.

Figure 3.1 illustrates the primary presentation of a C&C view
of a system’s runtime architecture. What is this diagram (and
the documentation that explains it) attempting to convey? It
shows a picture of the system as it appears at runtime. The sys-
tem contains a shared repository of customer accounts
(Account Database) accessed by two servers and an administra-
tive component. A set of client tellers can interact with the
account repository servers, embodying a client-server style.
These client components communicate among themselves by
publishing and subscribing to events. The purpose of the two
servers is to enhance availability: If the main server goes down,
the backup can take over. Finally, an administrative compo-
nent allows an administrator to access and maintain the
shared-data store.

Each of the three types of connectors shown in Figure 3.1
represents a different form of interaction among the con-
nected parts.

¢ C(lientserver connectors allow a set of concurrent clients to
retrieve data synchronously via service requests. This variant
of the clientserver style supports transparent failover to a
backup server.

e The database access connector supports transactional,
authenticated access for reading, writing, and monitoring
the database.

¢ The publish-subscribe connector supports asynchronous
event announcement and notification.

Each of these connectors represents a complex form of
interaction and will likely require nontrivial implementation
mechanisms. For example, the client-server connector type
represents a protocol of interaction that prescribes how clients
initiate a clientserver session, how and when failover is achieved,
and how sessions are terminated. Implementation of this con-
nector will probably involve runtime mechanisms that detect
when a server has gone down, queue client requests, handle
attachment and detachment of clients, and so on.

Connectors need not be binary. Two of the three connector
types in Figure 3.1 can involve more than two participants: the
publish-subscribe bus and the failover client-server connectors.

It may also be possible to carry out both qualitative and
quantitative analyses of system properties such as perfor-
mance, reliability, and security based on this view. For instance,
the design decision that causes the administrative user inter-
face to be the only way to change the database schema would
improve the security of the system. But that decision also might
affect serviceability or availability. For example, does the use of
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the administrative interface lock out the servers? Similarly, by
knowing properties about the reliability of the individual serv-
ers and the database, you might be able to produce numeric
estimates of the overall reliability of the system, using some
form of reliability analysis.

Here are some things to note about the nature of C&C
graphical documentation, as illustrated in Figure 3.1:

¢ It acts as a key to the associated supporting documentation
(not shown here), where details about the elements, rela-
tions, and their properties can be found.

Figure 3.1

A bird’s-eye-view of a sys-
tem as it appears at run-
time. This system contains
a shared repository that is
accessed by servers and an
administrative component.
A set of client tellers can
interact with the account
servers and communicate
among themselves through
a publish-subscribe
connector.

%

Supporting documenta-
tion is discussed in
Section 10.1.
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Table 3.1

* It’s restricted to information that can be simply presented
in—and comprehended from—a single diagram.

¢ It’s explicit about its vocabulary of component-and-connec-
tor types in the diagram’s key.

¢ Itindicates the number and kind of interfaces on its compo-
nents and connectors.

¢ It uses component-and-connector abstractions that may
have rich semantics and complex implementations.

The documentation explaining the diagram should elabo-
rate on the elements shown. Supporting documentation should
explain, for example, how Account Server-Backup improves the
availability of the system. Some of the elements of this Figure 3.1
may themselves represent subsystems that have their own sub-
architectures, shown elsewhere.

The combination of C&C diagrams and their supporting
documentation provide an essential vehicle for communicat-
ing an architect’s design intent, supporting reasoning about
the runtime behavior of the system, and justifying design deci-
sions in terms of their impact on relevant quality attributes.

3.2 Elements, Relations, and Properties of C&C Views

Table 3.1 summarizes the elements, relations, and properties
that can appear in C&C views. It is followed by a more detailed
discussion of these concepts, together with guidelines con-
cerning their documentation.

Summary of C&C views

Elements

Relations

Constraints

Components: principal processing units and data stores. A component has a
set of ports through which it interacts with other components (via connectors).

Connectors: pathways of interaction between components. Connectors
have a set of roles that indicate how components may use a connector in
interactions.

Attachments: component ports are associated with connector roles to
yield a graph of components and connectors.

Interface delegation: in some situations component ports are associated
with one or more ports in an “internal” subarchitecture. Similarly for the
roles of a connector.

Components can be attached only to connectors, not other components.
Connectors can be attached only to components, not other connectors.
Attachments can be made only between compatible ports and roles.

Interface delegation can be defined only between two compatible ports
(or two compatible roles).

Connectors cannot appear in isolation; a connector must be attached to a
component.
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Table 3.1 Summary of C&C views (continued)

What C&C
Views Are For

¢ Showing how the system works

elements

e Guiding development by specifying the structure and behavior of runtime

* Helping architects and others to reason about runtime system quality
attributes, such as performance, reliability, and availability

3.2.1

The elements of a C&C view are components and connectors.
Each elementin a C&C view of a system has a runtime manifes-
tation, consuming execution resources and contributing to the
execution behavior of that system. Attachment relations of a
C&C view associate components with connectors (via their
respective ports and roles) to form a graph that represents a
runtime system configuration.

Elements

Components

Components represent the principal computational elements
and data stores that are present at runtime. Each component
in a C&C view has a name. The name should indicate the
intended function of the component. The name also allows
you to relate the graphical element with any supporting docu-
mentation for that component.

Components have interfaces called ports. A port defines a
specific point of potential interaction of a component with its
environment. A port usually has an explicit type, which defines
the kind of behavior that can take place at that point of inter-
action. A component may have many ports of the same type. In
this respect, ports differ from interfaces of modules, whose
interfaces are never replicated. For example, a filter might
have several input ports of the same type to handle multiple
input streams, or a server might provide a number of request
ports for client interactions. The database in Figure 3.1 has two
ports for two kinds of access.

You can annotate a port with a number or range of numbers to
indicate replication. For example, a port annotated with “[3]”
stands for three occurrences of that port. A port annotated
with “[0..10]” means that there are from 0 to 10 instances of
that port. That form is useful when defining component types,
allowing component instances to bind the exact number, or for
components that dynamically create new points of interaction.

A component’s ports should be explicitly documented, by
showing them in the diagram and defining them in the dia-
gram’s supporting documentation.

e A o

Components are the
principal computational
elements and data
stores that execute in a
system.

v A o

A port is an interface of
a component. A port
defines a point of inter-
action of a component
with its environment.
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To indicate multiple
ports of the same type
in a diagram using an
informal notation, you
can draw each one sep-
arately or you can show
asingle port but append
a bracketed number (for
example, [5]) after the
port’s name to indicate
its degree of replication.
UML provides a similar
convention.
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See Chapter 7 for a
more complete discus-
sion of types of informa-
tion that can be used to
define a port.

Section 6.1 contains
more detail on guide-
lines for documenting
hierarchical relation-
ships and refinement.

See Section 3.2.3 for
more information on
how to document sub-
structure using an inter-
face delegation relation.

]| e

A connector is a run-
time pathway of interac-
tion between two or
more components.

 en B o

Arole is an interface of
a connector. A role
defines a point of inter-
action of a connector
and indicates how com-
ponents may use a con-
nector in interactions.

S —

A protocol specification
or a pattern of events
can be described using
behavioral notations,
described in Chapter 8.

Refinementis described
in Section 6.1.

A component in a C&C view may represent a complex sub-
system, which itself can be described as a C&C subarchitecture.
This subarchitecture can be depicted graphically in situ when
the substructure is not too complex, by showing it as nested
inside the component that it refines. Often, however, it is
documented separately. A component’s subarchitecture may
be in a style different from the one in which the component
appears.

When a component has such a substructure, you should also
document the relationship between the “internal” and “exter-
nal” ports. As we describe later, this relationship is captured
using an interface delegation relation.

Connectors

Connectors are the other kind of element in a C&C view. Sim-
ple examples of connectors are service invocation, asynchro-
nous message queues, event multicast, and pipes that represent
asynchronous, order-preserving data streams. But as we noted
earlier, connectors often represent much more complex forms
of interaction, such as a transaction-oriented communication
channel between a database server and a client, or an enter-
prise service bus that mediates interactions between collec-
tions of service users and providers.

Connectors have roles, which are its interfaces, defining the
ways in which the connector may be used by components to
carry out interaction. For example, a client-server connector
might have invokes-services and provides-services roles. A pipe
might have writer and reader roles. Like component ports, con-
nector roles differ from module interfaces in that they can be
replicated, indicating how many components can be involved
in its interaction. A publish-subscribe connector might have
many instances of the publisher and subscriber roles.

A role typically defines the expectations of a participant in
the interaction. For example, an invokes-services role might
require that the service invoker initialize the connection
before issuing any service requests. The semantics of the inter-
action represented by a connector is often documented as a
protocol specification prescribing what patterns of events or
actions are allowed to take place over the connector.

Like components, complex connectors may in turn be
decomposed into collections of components and connectors
that describe the architectural substructure of those connec-
tors. For example, a decomposition of the failover client-server
connector of Figure 3.1 would probably include components
that are responsible for buffering client requests, determining
when a server has failed, and rerouting requests.




3.2 Elements, Relations, and Properties of C&C Views = 129

Connectors

e Connectors need not be binary. That is, they need not have exactly two roles.

For example, a publish-subscribe connector (as illustrated in Figure 3.1)
might have an arbitrary number of publisher and subscriber roles. Even if the
connector is ultimately implemented using binary connectors, such as a pro-
cedure call, it can be useful to adopt n-ary connector representations in a
C&C view.

If a component’s primary purpose is to mediate interaction between a set of
components, consider representing it as a connector. Such components are
often best modeled as part of the communication infrastructure.

Connectors can—and often should —represent complex forms of interaction.
What looks like a semantically simple procedure call can be complex when
carried out in a distributed setting, involving runtime protocols for time-outs,
error handling, data marshaling, and locating the service provider—for exam-
ple, as provided by SOAP.

Connectors embody a protocol of interaction. When two or more compo-
nents interact, they must obey conventions about order of interactions, locus
of control, and handling of error conditions and time-outs. The protocol of

interaction should be documented.

3.2.2 Component-and-Connector Types and Instances

The components and connectors depicted in a C&C view are
instances of component-and-connector fypes. A type is an incom-
pletely defined component or connector. Type definitions often
express a set of choices, such as using a multiplicity indicator
like [1..5] to indicate that a component may have from 1 to 5
ports.

An instance is the result of completing the definition by
binding the choices that the types create. Each instance must
conform to its type in terms of behavior, interfaces, substruc-
ture (if any), properties, and topological restrictions. As a
result of this conformance requirement, all instances of a given
type are more or less identical. For example, the type may
define a set of allowable behaviors. An instance can restrict this
set, perhaps through instantiation parameters, but an instance
can’t add behaviors.

A C&C view’s primary presentation depicts only instances;
no component or connector types should appear in the view’s
primary presentation. Mixing types and instances in the same
diagram is generally ill-advised. Although it may seem conve-
nient (“I’ll just add a little inheritance information to clarify a
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When documenting a
C&C view:

* Make clear in the view
what architecture
style is being used.
Refer the reader to
the appropriate style
guide for more infor-
mation about the style.

Document any addi-
tional component or
connector type spe-
cializations intro-
duced in the view.

It is usually not a good
idea to mix types and

instances in the same

diagram.
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]| e

Astyle is a specialization
of another style if it is
consistent with that
style—that is, doesn’t
violate it—and adds
more constraints to its
element types, relation
types, and/or topologi-
cal restrictions.

L7

i
Document application-
specific types you
introduce in the view’s
element catalog, part of
a view’s supporting
documentation. Ele-
ment catalogs are dis-
cussed in Section 10.1.

This flow from a style’s
types to application-
specific types to
instances constitutes a
spectrum of design,
which is discussed in
Section 6.1.3.

relationship between different instances”), it is more likely to
add confusion.

Types are found in style guides. However, type definitions
given in style guides, including the ones in this book, are too
general to sufficiently constrain an implementation or support
useful analysis. It would make no sense to instantiate them as
they are without specializing them first. Type definitions like
these define the essence of the elements of the style. For exam-
ple, a style guide for the client-server style will define the com-
ponent types client and server, define the connector type request/
reply connector; and specify how their interfaces differ (for example,
that clients make requests of servers, who in turn reply to clients).
Such abstract types, however, do not provide any application-
specific semantics for the components (for example, whether a
server supplies Web pages or processes banking transactions).

Types might specialize more general types in domain-
specific ways, such as a controller servlet that takes requests
from ATMs in a banking system, or a sensor component type,
used in an avionics application. Or they might be technology-
specific, such as an ASP.NET component, a Java servlet, an
Enterprise JavaBean (E]JB), a MySQL database, or a database
connector. Like an abstract class in Java, these are usually still too
general to drive an implementation or support useful analysis.

Architects need to define application-specific specializations
of those types that contain enough information so that instances
that populate a view can be implemented and analyzed. We’ll
call these application-specific types. Document these types in your
view’s supporting documentation. Application-specific types
provide application-specific semantics, such as a detailed behav-
ior specification (such as showing how a request is processed)
or refined interfaces (such as refining the general notion of a
“request” with a specific set of request types). The type defini-
tion should also characterize the number of interface types
(ports for components, roles for connectors) that instances of
the type can have.

Component-and-connector types, whether introduced in
style guides or as application-specific specializations, are useful
to identify elements with common behavior, interfaces, sub-
structure, relations to implementation elements, and so on.
Localizing this information in a type definition (as opposed to
replicating it across each instance of an implied type) improves
understandability and simplifies the overall documentation.

In many cases the use of component-and-connector types
allows one to conveniently map a component type (and by
extension, all of its instances) to its implementation in a mod-
ule view. For example, if a set of name-lookup servers in a C&C
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view are defined as instances of the NameLookupServer type
(a specialization of the client-server style’s Server type), one
might expect to find a corresponding module that implements
the behavior of all instances of such a server. A mapping
between some module and the NameLookupServer type would
indicate that every instance of the NameLookupServer corre-
sponds to that module.

Component-and-Connector Types

¢ When several components or connectors of a view share the same form and

S —

Mappings between
C&C and module views
are discussed in more
detail in Section 3.5.

behavior (beyond what is specified in the style), define a common, application-
specific type for them.

Define application-specific types that cover all your components. This gives
the reader one place to look for all component-and-connector details, rather
than sometimes looking at type definitions and sometimes looking at
instance information.

The definition of a component type or connector type should explain the gen-
eral computational nature and form of each of its instances.

Application-specific types should provide enough information so that an
architecture built from their instances can be correctly implemented and use-
fully analyzed.

The component-and-connector types instantiated in a particular C&C view
should be explained by referring to the appropriate style guide that enumer-
ates and defines them, or through a catalog of application-specific types
defined as part of the architecture.

The definition of a component or connector type should characterize the
number and type of interfaces (ports for components, roles for connectors)
that instances of the type can have.

A C&C view’s primary presentation depicts only component-and-connector
instances; no component types should appear in the view’s primary
presentation.

When mapping between views, map modules to C&C types (not instances).

3.2.3 Relations

The primary relation within a C&C view is attachment. Attach-
ments indicate which connectors are attached to which com-
ponents, thereby defining a system as a graph of components
and connectors. Specifically, an attachment is denoted by asso-
ciating (attaching) a component’s port to a connector’s role.
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It is possible to estab-
lish an interface delega-
tion between two ports
of different types. It is
also possible to relate
multiple internal ports to
a single external port. If
you do either of these,
make sure to explain
what that delegation
means and why it’s valid,
in the element catalog
entry for that view.

Describing C&C views
with UML is covered in
detail in Section 3.4.3
and Appendix A.

A valid attachment is one in which the ports and roles are
compatible with each other, under the semantic constraints
defined by the style. For example, in a call-return architecture,
you should confirm that all “calls” ports are attached to some
call-return connector. At a deeper semantic level, you should
ensure that a port’s protocol is consistent with the behavior
expected by the role to which it is attached.

Use the following guidelines when attaching compo-
nents to connectors:

* You can depict attachment simply by connecting the
ports of components in the diagram. In this case, orin
any case where the context makes clear what roles
are being attached, you don’t need to represent roles
explicitly in the diagram.

e Attach a connector to a port of a component, not
directly to a component.

¢ [f it might not be clear that it is valid to attach a given
port to a given role, provide a justification in an anno-
tation in the diagram or in the rationale section for the
view.

¢ Attaching connectors between ports annotated with a
multiplicity factor (such as [5] or [0..10]) is a great
source of ambiguity. For example, if you connect a
port of multiplicity 3 to a port of multiplicity 22, what
does that mean? If you connect two ports with the
same multiplicity (greater than 1), which ports on one
component are connected to which ports on the
other? If you use this notation, explain what you mean.

A second kind of relation is interface delegation. When a com-
ponent or connector has a subarchitecture, it is important to
document the relationship between the internal structure and
the external interfaces of that component or connector. The
relationship can be documented using interface delegation
relations. Such relations map internal ports to external ports
(for components) or internal roles to external roles (for con-
nectors). Some notations provide specific graphical elements
to characterize this relationship. Figure 3.2 shows an example
of interface delegation in UML notation. UML “delegation
connectors” are used to represent interface delegation.
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3.24 Properties

An element (component or connector) of a C&C view will have
various associated properties. Every element should have a
name and type. Additional properties depend on the type of
component or connector. The properties are needed to guide
the implementation and configuration of components and
connectors, but the architect should also define values for the
properties that support the intended analyses for the particu-
lar C&C view. For example, if the view will be used for perfor-
mance analysis, latencies, queue capacities, and thread priorities
may be necessary. The following are examples of some typical
properties and their uses:

® Reliability. What is the likelihood of failure for a given com-
ponent or connector? This property might be used to help
determine overall system reliability.

® Performance. What kinds of response time will the compo-
nent provide under what loads? What kinds of latencies and
throughputs can be expected for a given connector? This
property can be used with others to determine system prop-
erties such as response times, throughput, and buffering
needs.

® Resource requirements. What are the processing and storage
needs of a component or a connector? This property can be
used to determine whether a proposed hardware configura-
tion will be adequate.

* Functionality. What functions does an element perform?
This property can be used to reason about overall computa-
tion performed by a system.

® Security. Does a component or a connector enforce or pro-
vide security features, such as encryption, audit trails, or

Figure 3.2

A UML component diagram
showing the subarchitec-
ture of a component called
Catalog. UML delegation
connectors associate the
ports of Catalog with

the ports of internal
components.
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Tiers are defined and

authentication? This property can be used to determine sys-
tem security vulnerabilities.

e Concurrency. Does this component execute as a separate pro-
cess or thread? This property can help to analyze or simu-
late the performance of concurrent components and
identify possible deadlocks.

¢ Tier. For a tiered topology, what tier does the component

discussed in Section reside in? This property helps to define the build and

4.6.2.

deployment procedures, as well as platform requirements

for each tier.

Ports and roles also may have properties associated with
them. For example, maximum sustainable request rates may
be specified for a server port.

To illustrate what not to do, Figure 3.3 presents an example of a poorly docu-
mented C&C view diagram.

API v

| Communication Substrate

Figure 3.3

A poorly documented C&C view diagram. It does not have a key; it portrays an interface (assuming that

“API” has the common meaning of an interface) as a component; it uses different shapes for the same type of
component; it uses the same shape for different types of components and connectors; it confuses the context
with the system to be built; its use of arrows is not explained; and its components do not have ports.
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Are Complex Connectors Necessary?

In this book we treat connectors as first-class design elements for documenting
runtime-oriented views: Connectors can represent complex abstractions; they
have types and interfaces, or roles; and they require detailed semantic docu-
mentation. But couldn’t one simply use a mediating component for a complex
connector? For example, in Figure 3.4, the complex connector Connector 1
gets replaced by the component Component 1 and two (presumably) simpler
connectors. For instance, Connector 1 might be a pipe that implements buff-
ered data flow between components. On the other hand, Component 1 might be
a buffer, and Connector 1A and Connector 1B might be simple procedure calls
to read or write to the buffer.

Component A Component B
Connector 1

¥

Component A Component 1 Component B
Connector 1A Connector 1B
Figure 3.4

A complex connector and the alternative of representing it as a component with two simpler connectors

In other words, are complex connectors needed? The answer is yes. Here’s why.

First, complex connectors are rarely realizable as a single mediating component.
Although most connector mechanisms do involve runtime infrastructure that
carries out the communication, that is not the only thing involved. In addition, a
connector implementation requires initialization and finalization code; special
treatment in the components that use the connector, such as using certain kinds
of libraries; global operating system settings, such as registry entries; and others.

Second, use of complex connector abstractions often supports analysis. For
example, reasoning about a data flow system is greatly enhanced if the connec-
tors are pipes rather than procedure calls or another mechanism, because well-
understood calculi are available for analyzing the behavior of data flow graphs.
Additionally, allowing complex connectors provides a single home where one
can talk about their semantics. For example, in Figure 3.4, | could attach a single
description of the protocol of interaction to the complex connector. In contrast,
the lower model would require me to combine the descriptions of two connec-
tors and a component to explain what is going on.
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structure.

—D.G.

Third, using complex connectors helps convey an architect’s design intent.
When components are used to represent complex connectors, it is often no
longer clear which components in a diagram are essential to the application-
specific computation and which are part of the mediating communication infra-

Fourth, complex connector abstractions can significantly reduce clutter in an
architecture model. Few would argue that the lower of the two diagrams in Fig-
ure 3.4 is easier to understand. Magnify this many times in a more complex dia-
gram, and it becomes obvious that clarity is served by using connectors to
encapsulate details of interaction.
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It's a good idea to pro-
vide comprehensive
behavior documenta-
tion for each compo-
nent (or component
type). Each such model
documents the possible
behaviors of a compo-
nent. When combined
with the topological
information in a C&C
view, you can trace pos-
sible behaviors through-
out the system, rather
than just within a
component.

3.3 What C&C Views Are For

Component-and-connector views are commonly used to show
developers and other stakeholders how the system works. The
C&C views (with associated behavior documentation) specify
the structure and behavior of the runtime elements. In partic-
ular, these views allow you to answer questions, such as the
following:

* What are the system’s principal executing components, and
how do they interact?

¢ What are the principal shared-data stores?

* Which parts of the system are replicated, and how many times?

¢ How does data progress through a system as it executes?

¢ What protocols of interaction are used by communicating
entities?

¢ What parts of the system run in parallel?

How can the system’s structure change as it executes?

Component-and-connector views are also used to reason
about runtime system quality attributes, such as performance,
reliability, and availability. In particular, a well-documented
view allows architects to predict overall system properties,
given estimates or measurements of properties of the individ-
ual elements and interactions. For example, to determine
whether a system can meet its real-time scheduling require-
ments, you usually need to know the execution time of each
process component (among other things). Timing behavior
such as this would be represented as properties of the elements.
Similarly, documenting the reliability of individual elements
and communication channels supports an architect when esti-
mating or calculating overall system reliability. In some cases,



3.3 What C&C Views Are For 137

analyses such as these are supported by formal, analytical mod-
els and tools. In others, it is achieved by judicious use of rules
of thumb and past experience.

Choosing Connector Abstractions

If you’ve committed to a particular C&C style, then the
types of connectors to use in documenting a C&C view
are already prescribed. But in other cases the architect
has some freedom to determine what kinds of connec-
tors to use and how to represent them in documentation.
This choice often revolves around how much implemen-
tation structure to expose. On the one hand, a connector
might be used to encapsulate a complex interaction as a
single abstraction. On the other hand, a complex form of
interaction can be represented as a set of components
and connectors that implement it.

To illustrate, consider two ways of documenting a publish- The publish-subscribe
subscribe system shown in Figure 3.5. The first version ;tg(';k')sndfjfﬂ”bed in

shows five components communicating through an event
bus, which describes an interaction that ensures that each
published event is delivered to all subscribers of that
event. The second version shows the same five compo-
nents communicating with the assistance of a central-
ized dispatcher component responsible for distributing
events via procedure calls to the other components.

Version 1 Version 2

‘ Event
Dispatcher

C3 Cca

Key I:I Event producer/ . . )
consumer O Dispatcher T Publish-subscribe

Announce-notify | | Port

Figure 3.5

Two potential versions of a publish-subscribe system. In Version 1, all communica-
tion takes place over an event bus; in Version 2, communication occurs with the
assistance of a dispatcher component.




138 1 Chapter 3: Component-and-Connector Views

S —

Refinement is dis-
cussed in Section 6.1.

There are several advantages to using the first approach:

¢ |t simplifies the description, since there are fewer ele-
ments in the view.

¢ |t clearly distinguishes the parts of the architecture
that are used for interaction (the connectors) and the
parts that are used to provide the computational func-
tions of the system (the components).

e |t permits a variety of implementations to be used to
effect the event-based interactions. For instance,
instead of a single dispatcher, there could be several,
or alternatively each component could be responsible
for sending its events to the required listeners.

¢ [t provides a natural way to decompose documenta-
tion into multiple views, where the specific implemen-
tation would be represented in its own view as a
refinement of the event bus connector.

On the other hand, the second approach has some
advantages:

¢ |t clearly indicates what kinds of mechanisms are
being used to carry out event announcement.

¢ |t may better support reasoning about runtime proper-
ties, such as delays, order guarantees, and so on,
where knowledge of the specific mechanisms for dis-
patch is needed.

e |t fits with what your chosen notation allows: For
instance, because UML does not provide a way to
represent rich connectors, we are forced to adopt the
second approach.

Thus the choice of connector abstraction will depend on
taste, needs for analysis, and the amount of implementa-
tion detail known to the architect when the architecture is
documented. In practice, however, documentation usu-
ally errs on the side of putting in too much detail, using
low-level communication mechanisms and additional
components instead of defining the higher-level interac-
tion abstractions that they represent.

—D.G.
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3.4 Notations for C&C Views
3.4.1

As always, box-and-line drawings are available to represent
C&C views. Figure 3.1 is an example of a C&C diagram that
uses an informal notation (explained in the diagram’s nota-
tion key). Although informal notations can convey limited
semantics, following some guidelines can lend rigor and depth
to the descriptions. The primary guideline is to assign each
component type and each connector type a separate visual
form (symbol), and to list each of the types in a key.

Beyond just naming the types, however, their meaning
should be specified. For example, Figure 3.1 shows a connec-
tor of type Publish-Subscribe, but the diagram does not show
the connector’s capacity, the type of data it can transmit,
whether or not delivery is guaranteed, or a host of other impor-
tant considerations. These details can be documented in the
style guide in which the type is defined, or as properties in the
C&C view’s element catalog.

Take special care with connectors. A common source of
ambiguity in most existing architecture documents is the
meaning of connectors, especially ones that use arrows as their
visual symbol. Make sure to say what the arrow’s direction
means.

Informal Notations

3.4.2 Formal Notations

Most, if not all, architecture description languages (ADLs) can
be used to describe component-and-connector types, con-
straints on topologies of component-and-connector graphs,
and properties that can be associated with the elements of the
graph. Tools may then process an architecture description by
referring to the meanings of the types, the constraints, and the
properties. For example, some ADL-associated tools can tell you
if a set of processes can be scheduled so that, given the resources
of the CPU, they will all meet their processing deadlines.

3.4.3 Semiformal Notations: UML

This section introduces some basic UML modeling constructs
for representing components and connectors. Appendix A
goes into more depth about using UML to represent other fac-
ets of architecture.

Components in UML

UML components are a good semantic match to C&C components
because they permit intuitive documentation of important

%

Element catalogs docu-
ment the architecture
elements that appear in
a view. They are dis-
cussed in Section 10.1.

%

See “Perspectives:
Quivering at Arrows”
on page 41, in the
prologue.
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Consider the following
criteria if selecting an
ADL: How standardized
is it? What analysis or
code generation does it
enable? Does it lend
itself only to represent-
ing certain styles, and if
so, are those styles the
ones you need for your
architecture? Will it let
you represent all of the
views of the architec-
ture that you need? Is it
extensible? How robust
are its tools? Is it com-
mercially supported? Is
there a large and active
user community with
whom you can interact?
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Section 3.2.2 discusses
types and instances of
components and
connectors.

The element catalog of
an architecture view
provides information
about the elements in
that view. Element cata-
logs are described in
Section 10.1.

information such as interfaces, properties, and behavioral
descriptions. UML components also distinguish between com-
ponent types and component instances, which is useful when
defining view-specific component types.

Because C&C components that appear in a view are instances,
they should be represented using UML component instances,
as shown in Figure 3.6. The visual distinction between UML
component types and instances is found in the naming conven-
tion. Names that do not include a colon (:) are types; names
that include a colon are instances, with the instance name
appearing to the left of the colon. Anonymous instances, such
as the instance of Account Database in Figure 3.6, are shown by
starting the name with a colon.

You can define a component type in a UML diagram in a
style guide you’re writing or in a view’s element catalog for a
view-specific type. You should specify attributes common to all
instances on the component type. If creating a view-specific
type, you should link the type definition to a type defined in
your style guide, such as by placing a stereotype on the type def-
inition, as shown in Figure 3.7.

UML ports are a good semantic match to C&C ports. A UML
port can be decorated with a multiplicity, as shown in the left
portion of Figure 3.8, though this is typically done only on
component types. The number of ports on component
instances, as shown in the right portion of Figure 3.8, is typi-

Figure 3.6

A UML representation of a
portion of the C&C view
originally presented in
Figure 3.1. This fragment
only shows how four com-
ponents are represented in
UML. Main and Backup are
instances of the same com-
ponent type (Account
Server).

Main: $:|

Account Server

Backup: g ]
Account Server

: Account $:| $:|

Berelass : Administrative

Key: UML

Figure 3.7

A UML representation of

a C&C component type.
The Account Server
component type is a
specialization of the Server
component type from the
client-server style (see
Section 4.3.1).

Key: UML

«Server»
Account Server
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Server [1..5] Server Server
1

-
: Account El
Database

«Repository» {l
Account Database

Key: UML

cally bound to a specific number. Components that dynamically
create and manage a set of ports should retain a multiplicity
descriptor on instance descriptions.

UML provides a lollipop/socket notation for showing pro-
vided and/or required interfaces attached to ports. Each port
can have an arbitrary number of provided and required inter-
faces. Figure 3.9 shows the same components in Figure 3.8, but
now each port of the Account Database type includes one pro-
vided interface (the lollipop), which can be further elaborated
in UML by supplying additional information, such as methods
or attributes. The instance of Account Database on the right has
exactly two Server ports, and the interfaces are omitted.

The lollipop/socket notation of UML can be confusing if
not used carefully. If the style of connector interaction is some
form of call-return, then the lollipop and socket correspond to
calls that are provided and required, respectively. In a client-
server connector, a single port might provide and require
something at the same time, in which case you would adorn the
same port with both a lollipop and a socket. But in other cases,
where “provides” and “requires” are the wrong intuition, the
notation should be avoided. In a pipe-and-filter system, for
example, what does a filter interface “provide” and what does
it “require?” In that case, just document the port by itself.

Even where appropriate, you normally omit lollipops and
sockets from a C&C view (which shows instances) and use them
only on the component type definitions. Often, full interface

Admin Admin

Figure 3.8

A UML representation of
the ports on a C&C compo-
nent type (left) and a com-
ponent instance (right). The
Account Database com-
ponent type has two types
of ports, Server and Admin
(denoted by the boxes on
the component’s border).
The Server port is defined
with a multiplicity, meaning
that multiple instances of
the port are permitted on
any corresponding compo-
nent instance.

Server Server

Server[1..5] ﬁ_)‘

L

: Account $:| Admin
Database

«Repository»
Account Database

Key: UML

Admin

Figure 3.9

Each port on the Account
Database type now
includes one supplied inter-
face (the lollipop), which
can be further elaborated in
UML by supplying addi-
tional information, such as
methods or attributes. The
instance of Account
Database on the right has
exactly two Server ports,
and the interfaces are
omitted.
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The primary presenta-
tion is the (typically)
graphical portion of an
architecture view, as
described in Chapter 10.

details will be provided with a component type definition, and
only ports will be shown in a C&C primary presentation. This
reduces visual clutter without losing the instances’ precise
interface definitions.

Connectors in UML

While C&C connectors are as semantically rich as C&C compo-
nents, the same is not true of UML connectors. UML connectors
cannot have substructure, attributes, or behavioral descrip-
tions. This makes choosing how to represent C&C connectors
more difficult, as UML connectors are not always rich enough.

You should represent a “simple” C&C connector using a
UML connector—a straight line. Many commonly used C&C
connectors have well-known, application-independent seman-
tics and implementations, such as function calls or data-read
operations. If the only information you need to supply is the
type of the connector, then a UML connector is adequate. Call-
return connectors can be represented by a UML assembly con-
nector, which links a component’s required interface (socket)
to the other component’s provided interface (lollipop). You
can use a stereotype to denote the type of connector. If all con-
nectors in a primary presentation are of the same type, you can
note this once in a comment rather than explicitly on each
connector, to reduce visual clutter. Attachment is shown by
connecting the endpoints of the connector to the ports of
components. Figure 3.10 illustrates some of these points.

Connector roles cannot be explicitly represented with a
UML connector because the UML connector element does
not allow the inclusion of interfaces (unlike the UML port,
which does allow interfaces). The best approximation is to
label the connector ends and use these labels to identify role
descriptions that must be documented elsewhere.

If you also need to supply simple descriptive information,
such as attribute-value pairs, attach it to a UML connector by
using tagged values or a comment.

Figure 3.10

A UML representation of a
“simple” C&C connector
between two components.
The type of the connector is
noted by a stereotype
(<<DB Access>> in this
case).

Server Server

- Account E‘ Admin DB accessor

Database

Key: UML

:Administrative
«DB Access»
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You should represent a “rich” C&C connector using a UML
component, or by annotating a straight-line UML connector
with a tag or other auxiliary documentation that explains the
meaning of the complex connector.

Figure 3.11 shows an example of representing a C&C con-
nector using a UML component. In this approach, roles are
represented using UML ports. Attachment relations are repre-
sented by attaching the UML ports of the components and the
connector using a UML connector. Although it’s not ideal to
use the same graphical convention as for a C&C component, it
is sometimes necessary in UML.

Sometimes it is better to use a straight line (possibly stereo-
typed) with a tag that explains the complex connector. For
example, suppose you have ten clients, each of which is talking
over the same nontrivial asynchronous protocol to some
server. Introducing ten extra components would make for a lot
of clutter, when a stereotyped straight-line connector would be
at least as clear.

A C&C Primary Presentation in UML

The C&C primary presentation found in Figure 3.11 is an
example of a combined view that combines the client-server,
publish-subscribe, and shared-data styles presented in Chapter 4.
Figures 3.12 and 3.13 show how to represent the same informa-
tion using UML.

Figure 3.12 defines the component-and-connector subtypes
that are view specific. Each type uses a UML stereotype to iden-
tify the corresponding component or connector type defined
in one of the three cited style guides. Multiplicities are attached

%

See “Perspectives: Are
Complex Connectors
Necessary?” on page
135, in this chapter.

g ]

: Publish-Subscribe

cN: Client Teller

c1: Client Teller cX: Client Teller

Figure 3.11

A UML representation of
a “rich” C&C connector
used to connect three
components. The Publish-
Subscribe connector is
represented using a UML
component. Its roles are
represented using UML
ports. Attachments
between C&C ports and
roles is represented using
UML connectors between
the respective UML ports.
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Figure 3.12

A UML representation of
component-and-connector
types for Figure 3.11. Each
type uses a stereotype to
link the view-specific
subtypes to the types
defined in the style guides.

«Publish-Subscribe» $:| «Request/RepIy» El
Publish-Subscribe Failover Request/Reply

m '
Pub [*] I I Sub [*] Server [2/&
Client [* [y/

«Client» «Server» E‘
Client Teller Account Server

1

g

Server [1..5]i

= DB
«Repository» Admin
Account Database :

«Database $:|
Application»
Administrative

to some of the ports to note where multiple connections are
permitted and to set bounds on the number of connections.
This information should be in the view’s element catalog.

Figure 3.13 shows the view’s primary presentation, as repre-
sented using UML. Like the Publish-Subscribe connector, the
Failover Request/Reply connector is represented using a UML
component; this allows the details of the failover semantics to
be formally documented, and it simplifies the representation
of an n-ary connector.

In addition to the advice presented on representing basic C&C
concepts in UML, we had to decide how to represent the implied
variability from Figure 3.11. That figure gives the intuition of a
variable number of Client Teller components, any of which may
be connected to one or both of the Account Server components at
some point in time.

Using a semiformal notation like UML forces us to be more
precise about the meaning that was largely implied in the
informal version. Representing a variable number of compo-
nents is not easy using a UML instance diagram. We opted for
a naming convention of using Client Teller components c1, cX,
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Figure 3.13

A UML representation of
the primary presentation
found in Figure 3.11

: Publish-Subscribe

cX: ClientTeller

c1: ClientTeller

1 1
Server Server
Client Client Client
J J J
: Failover $:| : Failover $:| : Failover $:|

Request/Reply Request/Reply Request/Reply

Client | Client

Client

Backup: $:|
Account Server

Account Server

1 1
DB DB
«DB Access» «DB Access»
Server Server
L] L]
: Account {' Admin $:|

[ 1:Administrative
Database «DB Access»

and cN to fill in for an arbitrary number of clients (1..N). The
meaning of this convention would have to be documented in
the view, as it is not a standard UML convention.

UML contains many of the right modeling elements to doc-
ument C&C components in an intuitive way, but it suffers from
visual blandness. Where an informal C&C notation could use
different shapes for different component types to highlight
important distinctions, all UML component types are graphi-
cally depicted using the same rectangular box. UML permits such
visual customization in theory, but tool support is lacking. Similarly,
different types of connectors cannot be quickly distinguished
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by, for example, noting different line conventions; instead, the
reader must distinguish between textual descriptions on lines or
in boxes, which also tends to introduce visual clutter.

UML for C&C

e Use UML components and ports to model C&C com-
ponents and ports.

¢ Always show a component’s ports explicitly, even
though UML doesn’t require it.

e Use a <<stereotype>> to indicate the type of a com-
ponent or connector instance in a view, if that type
was defined in a style guide. If the type is specific to a
view, its name appears after the colon in the instance
name.

¢ Represent a simple C&C connector with a straight-line
UML connector or (if it’s a call-return connector) with
a UML assembly connector (a lollipop/socket pair).

¢ Represent a more complex C&C connector as a UML
component, possibly with substructure, or with a
straight-line UML connector annotated by a tag that
explains the meaning of the connector.

e Use the lollipop/socket connector in UML only for call-
return connectors. Avoid it otherwise.

e Don’t attach connectors directly to a component;
attach connectors to a specific port of a component.

Data Flow and Control Flow Models

Two representations that have long been used to docu-
ment software systems—for so long, in fact, that we
might consider them archaic today—are data flow and
control flow models. These models show how data and
control flow through a system during execution. Remem-
ber data flow diagrams from Structured Analysis?
They’re an example, and probably the best known exam-
ple, of a notation for a data flow model. Going back still
farther in time, flow charts are a notation for control flow
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models. Once ubiquitous forms of software documenta-
tion, both have receded in usage, but they can still be
found in pockets of practice. Many software engineers
trained in, for example, data flow diagrams see similar-
looking C&C views of architecture and ask “What'’s the
difference?”

Plenty. First, if the nodes in the diagrams are not archi-
tecture elements—pieces of programs, for example—
then the diagrams are simply not architectural. But what
if the elements shown are architectural elements? Then
they can be said to be architecture diagrams, but they
are still not full-fledged architecture views. A C&C view
would show ports, feature-rich connectors with specified
connector protocols, behavioral and interface documen-
tation, mechanisms for variability, and design rationale.

Both data flow models and control flow models can be
seen as derivatives of a corresponding C&C view. You
can derive a data flow model from a C&C view by exam-
ining the connector protocols to determine in which
direction data can flow between components, then
replacing the C&C connectors that carry data with simple
one- or two-headed arrows indicating flow of data and
eliminating C&C connectors that don’t carry data. You can
take a similar approach to deriving a control flow model.

But why would you? First of all, replacing connectors
with arrows isn’t as easy as it sounds; see “Perspectives:
Quivering at Arrows” in Section P.5 for a discussion of the
difficulties associated with even a simple connector. Now
imagine replacing a complex connector with an arrow
when that connector involves exception handling, time-
outs, callbacks, or multistage negotiated protocols.

Second, for all but the simplest architectures, it’s hard to
imagine you’d want an architecture document to contain
the derived models but not their full-fledged C&C view
counterparts. Granted, a data flow model or a control
model highlights only certain aspects of a view in order
to simplify discussion or to focus on specific properties,
but those properties can be highlighted in the full view.
And keeping them separate means having more documen-
tation to maintain, because it’s unlikely that a tool will
keep the view and the derived model consistent with each
other; you’ll have to do that manually when either changes.

Third, for most analysis that you’d want to perform using
a data flow or control flow model, you’re going to need

P —

The flow chart is a most
thoroughly oversold
piece of program docu-
mentation. . . . The
detailed blow-by-blow
flow chart . . .isan
obsolete nuisance suit-
able only for initiating
beginners into algorith-
mic thinking.

—Fred Brooks, The
Mythical Man-Month
(1995)

%

See “Perspectives:
Quivering at Arrows” on
page 41, in the prologue.
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the information in the full C&C view that those models
throw away. For example, control flow diagrams are use-
ful for tracking down bugs in a federation of components.
But so are the protocol specifications that dictate how
those components interact.

Data flow and control flow models are only architectural
if their nodes are architecture elements. But even if they
are, they are at best only shadows of full-fledged archi-
tecture views. Think carefully before you invest in creat-
ing and maintaining them.

—D.G. and PC.

3.5 Relation to Other Kinds of Views

Component-and-connector views differ from module views in
fundamental ways. In particular, the elements of a C&C view
represent instances of runtime entities, whereas the elements
of amodule view represent implementation entities. For exam-
ple, consider a system that has 10 identical clients connected
to a single server. That’s 11 components and 10 connectors—
but exactly 2 modules (assuming the simplest mapping between
views).

An important consideration is how to relate the C&C and
module views of a system. Often, the relationship between a
system’s C&C views and its module views may be complex.

¢ The same code module might be executed by many of the
elements of a C&C view.

¢ A single component of a C&C view might execute code
defined by many modules.

¢ A C&C component might have many points of interaction
with its environment, each defined by the same module
interface.

¢ Since not every module is necessarily shown in every mod-
ule view, a component in a C&C view may not map to any
module in a particular module view at all.

Figure 3.14 shows both a module view and a C&C view of the
same system:

¢ The module view represents a typical implementation that
one might find using the C programming language. In this
view, the relation between modules is uses, as described in
Chapter 2. The module main starts things off, using the facil-
ities of four modules—To-upper, To-Tower, Sp1it, and Merge—
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that do the bulk of the work. The main module determines
how inputs from one are fed to others, using a configura-
tion module, Config. To-upper, To-Tower, Split, and Merge use
a standard I/O library (stdio) to carry out the communica-
tion. Note that from a code perspective, those worker mod-
ules do not directly use the services of one another, but
rather do so via the I/0O library.

The C&C view shows the same system described in the pipe-
andfilter style. Each of the components is a filter that trans-
forms character streams. Pathways of communication between
the components are explicit, indicating that during run-
time, the pipe connectors will mediate communication of
data streams among those components.

The mapping between these two views is illustrated in Table 3.2.

It shows which modules contribute to the implementation of
which C&C elements. As you can see, there is an m-to-n rela-
tionship for many of the elements of each view.

Table 3.2 Mapping between module and C&C views for the
example in Figure 3.14

C&C View

Module View

System as a whole
Split

To-lower

To-upper

Merge

Each pipe

main

split, config, stdio
to_lower, config, stdio
to_upper, config, stdio
merge, config, stdio
stdio

Figure 3.14
Component-and-
connector and module
views of a simple system
that accepts a stream of
characters as input and
produces a new stream of
characters identical to the
original but with uppercase
and lowercase characters
alternating

The pipe-and-filter style
is described in Section
4.2.1.

&

The correspondence
between the elements
in a system’s module
views and the elements
in its C&C views should
be documented as part
of the documentation
that applies to more
than one view. This
mapping between
views is described in
Section 10.2.
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%

Deployment views are
discussed in Section 5.2.

In many situations, however, module and C&C views have a

more straightforward relationship. Indeed, systems that have
natural correspondences between these two kinds of views are
often much easier to understand, maintain, and extend. Here
are two examples:

Each component has a type that can be associated with an
implementation module, such as a class. In this case the
name of the component type will typically be taken to be the
same as the corresponding module, making it trivial to
relate the two views.

Each module has a single runtime component associated
with it, and the connectors are restricted to calls procedure
connectors. This would be the case for an object-oriented
implementation in which each class has a single instance.

In addition to relations between C&C views and module

views, there is often a close correspondence between C&C
views and deployment views. Because C&C views represent
runtime elements, it is useful to relate these elements to the
physical platforms and communication channels on which
they execute using an allocation view.

3.6 Summary Checklist

Component-and-connector views describe structures con-
sisting of elements that have runtime presence, such as pro-
cesses, objects, clients, servers, and data stores. Additionally,
C&C views include as elements the pathways of interaction,
such as communication links and protocols, information
flows, and access to shared storage.

Component-and-connector views show instances, not types.
Style-specific types are defined in a style guide; application-
specific types are described in the view documentation.

Components have interfaces, which are called ports.
Connectors have interfaces, which are called roles.

Connectors need not be binary: they may have more than
two roles.

If a component’s primary purpose is to mediate interaction
between a set of components, consider representing it as a
connector instead.

Connectors can, and often do, represent complex forms of
interaction. What seems to be a semantically simple proce-
dure call can be complex when carried out in a distributed
setting, involving runtime protocols for time-outs, error
handling, and locating the service provider.
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¢ Be clear about which style you are using, by referring to an
appropriate style guide.

¢ Where helpful, define component-and-connector types spe-
cific to the view as specializations of the types defined in the
corresponding C&C style. These can help indicate semantic
relations between similar components, and to establish cor-
respondence between the module types that implement
their functionality.

¢ Always show a component’s ports explicitly. Always attach a
connector to a port of a component, not directly to a
component.

e If it is not clear that it is valid to attach a given port with a
given role, provide a justification in the rationale section for
the view or mark the attachment to be revisited later.

® Make clear which ports are used to connect the system to its
external environment.

¢ Data flow and control flow models are best thought of as
projections of C&C views, but they are not views. When cre-
ating such models, be explicit about the semantic criteria
used to determine where the arrows go. Data flow and con-
trol flow arrows are at best approximations to the connectors,
which define more completely the components’ interactions.

¢ It is often important to understand the mapping between
components in a C&C view and their respective implemen-
tation units in module views. In general, this mapping is
many-to-many.

* You can document a C&C style using a spectrum of formal-
ity, from informal box-and-line depictions to fully formal,
analyzable descriptions. UML is an example of a semiformal
notation for representing C&C styles.

3.7 Discussion Questions

1. Itis said that a C&C view illustrates a system in execution.
Does this mean that it shows a snapshot of an execution, a
trace of an execution, the union of all possible traces, some
combination, or something else?

2. As we have mentioned, component is an overloaded term.
Discuss the relationship between a component in a C&C
view and (a) a UML component and (b) a component in
the sense of the component-based software engineering
community.

3. A communication framework, such as enterprise service
bus (ESB), CORBA, or COM, can be viewed as a connector

151
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Figure 3.15

An overview architecture
diagram. Where is it
misleading? What
questions does the
diagram fail to answer?

Presentation Layer
User
Product Catalog
—> User Session » Shopping Cart
\ / \ ‘
Logger < Pr(?crgsesring > Inventory

among components or as a component with its own sub-
structure. Which is appropriate, and why?

4. Figure 3.15 shows an overview architecture diagram for an
electronic commerce store. Assume that you are new on
the job, without knowledge of the symbology the organiza-
tion uses, or perhaps you wrote this some time ago but now
have to go back and review the system. Critique the dia-
gram. List places where you think it is misleading, and list
the questions that need to be asked—and that the diagram
fails to answer—before you can understand its meaning.

5. After you have critiqued Figure 3.15 and have enumerated
the information you believe is missing, augment the dia-
gram to make it tell a coherent story. Did you decide that
the diagram is describing code-based entities, runtime enti-
ties, or both? Did you decide that the boxes called layers
are, in fact, layers, or something else? What did you decide
the arrows mean?

3.8 For Further Reading

We are awash in stories of architects who thought they could
plug two components together with a connector, only to find
out that the component didn’t implement the right protocol,
or was otherwise badly matched with the expectations of that
connector. This is why we prescribe writing a justification
where the matchup is less than obvious. For a thoughtful treat-



3.8 For Further Reading

ment of element mismatch, see the paper by Garlan, Allen,
and Ockerbloom (1995).

It is tempting to treat architecture simply as an assembly of
components, but there are great conceptual advantages to be
gained from elevating connectors to the status of first-class
architecture. Mary Shaw (1996b) makes an eloquent argument
for doing so. Shaw and Garlan (1996) treat software architec-
ture in terms of components and connectors and address con-
cerns such as constructing systems as assemblies of components.
Allen and Garlan (1997) lay out the semantic foundations for
connectors as first-class entities.

Component-and-connector views can provide a basis for for-
mal analysis of qualities such as performance, reliability, secu-
rity, and privacy. Garlan and Schmerl (2006) provide a broad
introduction to such analyses.

A swarm of architecture description languages were created
in the 1990s. Medvidovic and Taylor (1997) give a tour of them
and compare members of that generation. Today only a small
number deserve mention. Acme is of that earlier generation
(see www.cs.cmu.edu/~acme [Acme 2009]). The Architecture
Analysis and Design Language (AADL) is a direct descendant
of one from that generation. Appendix C gives an architecture-
oriented overview of AADL, and the Web site at aadl.info offers
full coverage. Yahoo! Pipes can be considered an ADL, albeit a
very style-specific one; see pipes.yahoo.com/pipes (Yahoo!
2010) and the Yahoo! Pipes example in Chapter 4.
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A Tour of Some
Component-and-
Connector Styles

4.1 An Introduction to C&C Styles

A component-and-connector (C&C) style introduces a specific
set of component-and-connector types and specifies rules
about how elements of those types can be combined. Addition-
ally, given that C&C views capture runtime aspects of a system,
a C&C style is typically also associated with a computational
model that prescribes how data and control flow through sys-
tems designed in that style.

The choice of a C&C style (or styles) will usually depend on
the nature of the runtime structures in the system. For exam-
ple, if the system will need to access a set of legacy databases,
the style will likely be based on a shared-data style. Alterna-
tively, if a system is intended to perform data stream transfor-
mation, a data flow style will likely be chosen.

The choice of style will also depend on the intended use of
the documentation. For example, if high performance is a crit-
ical property, the style will likely be chosen to enable analysis of
performance, so that trade-offs affecting that system quality
can be assessed.

Many C&C styles exist. To make sense of the space of these
styles, we begin by describing some broad categories of com-
monly used C&C styles, and then we consider in more detail
one or more example styles in each category.

The space of C&C styles is quite large. For example, C&C
styles can differ dramatically in terms of the types of the con-
nectors that they support. Styles based on asynchronous event
broadcast (such as publish-subscribe) are quite different from
those based on synchronous service invocation. Similarly, styles
may differ in terms of the types of components that they permit or
require. For instance, some styles require a database component

In Section 4.9 we pro-
vide references for
reading about dozens of
C&C styles.
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Section 6.1.4 discusses
how styles can be pro-
gressively specialized
from generic styles to
domain-specific styles
and product line.

Section 4.6.1 describes
communicating pro-
cesses, which is a way
to add concurrency to a
C&C style. Section 4.6.2
describes the notion of
tiers, which are com-
mon in some C&C
architectures.

to be present. Other styles may require a registry component
to enable components to find others at runtime. Styles may dif-
fer in terms of topological restrictions, such as whether the
components are assigned to tiers. They may also differ in terms
of their level of domain specificity. For example, a style to sup-
port automotive control systems will likely involve connectors
that represent specific protocols for real-time coordination.
Similarly, there exist dozens of client-server styles that differ in
subtle (or not-so-subtle) ways, depending on the nature of the
application domain they are addressing. For example, some
client-server styles allow late binding of requests for services,
where the recipient of a request is determined dynamically;
others insist on a static configuration determined when a sys-
tem is built or deployed.

One way to impose some conceptual order on the space of
C&C styles is to consider several broad categories of styles, dif-
ferentiated primarily by their underlying computational
model. In this chapter we consider examples in four such
categories.

¢ Callreturn styles. Styles in which components interact through
synchronous invocation of capabilities provided by other
components.

® Data flow styles. Styles in which computation is driven by the
flow of data through the system.

* Event-based styles. Styles in which components interact through
asynchronous events or messages.

® Repository styles. Styles in which components interact through
large collections of persistent, shared data.

Additionally we consider several crosscutting style issues,
such as the imposition of a tiered topology, and augmentations
that allow one to reason about concurrency.

Figure 4.1 provides a birds-eye view of part of the terrain.
This figure can be interpreted as a kind of C&C style specializa-
tion hierarchy. At the top is the most general and uncon-
strained form of C&C view: namely, one that uses generic
components and connectors, with no particular constraints on
topology, behavior, and element properties. Below this are the
general categories of C&C styles distinguished largely by their
underlying computational model. Below these are specializa-
tions of these general styles. Note that a specific style may spe-
cialize more than one general category, as is the case of the
service-oriented architecture (SOA) style.

Naturally this is only a partial representation of the space of
C&C styles: there are other general categories, and there are
many styles that are specializations of these categories. Addi-
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A partial representation of the space of C&C styles

tionally, in most real systems several styles may be used
together, often from across categories. For example, enterprise
IT applications are frequently a combination of client-server
and shared-data styles.

4.2 Data Flow Styles

Data flow styles embody a computational model in which com-
ponents act as data transformers and connectors transmit data
from the outputs of one component to the inputs of another.
Each component type in a data flow style has some number of
input ports and output ports. Its job is to consume data on its
input ports and write transformed data to its output ports.

A variety of data flow styles appear in practice. In the early
days of computing, one common data flow style was “batch
sequential,” a style in which each component transforms all of
its data before the next component can consume its outputs.
Later a form of data flow style was invented in which compo-
nents run concurrently and data is incrementally processed:
the pipe-and-filter style. Today data flow styles are common in
domains where stream processing occurs, and where the over-
all computation can be broken down into a set of transforma-
tional steps.

%

See Section 6.6 for a
discussion of docu-
menting a view that
combines more than
one style.
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4.2.1 Pipe-and-Filter Style
Overview

The pattern of interaction in the pipe-and-filter style is charac-
terized by successive transformations of streams of data. Data
arrives at a filter’s input ports, is transformed, and then is
passed via its output ports through a pipe to the next filter. A
single filter can consume from, or produce data to, multiple
ports. Modern examples of such systems are signal-processing
systems, systems built using UNIX pipes, the request-process-
ing architecture of the Apache Web server, the map-reduce
paradigm for search engines, Yahoo! Pipes for processing RSS
feeds, and many scientific computation systems that have to
process and analyze large streams of experimental data.

Elements, Relations, and Properties

The basic form of pipe-and-filter style, summarized in Table 4.1,
provides a single type of component—the filter—and a single

Table 4.1 Summary of the pipe-and-filter style

Elements

Relations

Computational Model

Constraints

What It’s For

e Filter, which is a component that transforms data read on its input
ports to data written on its output ports. Filters typically execute
concurrently and incrementally. Properties may specify processing
rates, input/output data formats, and the transformation executed
by the filter.

* Pipe, which is a connector that conveys data from a filter's output
ports to another filter’s input ports. A pipe has a single data-in and
a single data-out role, preserves the sequence of data items, and
does not alter the data passing through. Properties may specify
buffer size, protocol of interaction, and data format that passes
through a pipe.

The attachment relation associates filter output ports with data-in

roles of a pipe, and filter input ports with data-out roles of pipes.

Data is transformed from a system’s external inputs to its external
outputs through a series of transformations performed by its filters.
¢ Pipes connect filter output ports to filter input ports.

e Connected filters must agree on the type of data being passed
along the connecting pipe.

e Specializations of the style may restrict the association of compo-
nents to an acyclic graph or a linear sequence—sometimes called
a pipeline.

e Other specializations may prescribe that components have certain
named ports, such as the stdin, stdout, and stderr ports of UNIX
filters.

¢ Improving reuse due to the independence of filters

¢ Improving throughput with parallelization of data processing

e Simplifying reasoning about overall behavior
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type of connector—the pipe. A filter transforms data that it
receives through one or more pipes and transmits the result
through one or more pipes. Filters typically execute concur-
rently and incrementally. A pipe is a connector that conveys
streams of data from the output port of one filter to the input
port of another filter. Pipes act as unidirectional conduits, pro-
viding an order-preserving, buffered communication channel
to transmit data generated by filters. In the pure pipe-and-filter
style, filters interact only through pipes.

Because pipes buffer data during communication, filters can
act asynchronously and concurrently. Moreover, a filter need
not know the identity of its upstream or downstream filters. For
this reason, pipe-and-filter systems have the nice formal prop-
erty that the overall computation can be treated as the func-
tional composition of the computations of the filters, allowing
the architect to reason about the end-to-end behavior as a sim-
ple composition of the behaviors of the parts.

Typical properties to document for pipes include

¢ Pipe capacity (that is, buffer size)
¢ How end-of-data is signaled

reading from a pipe that is empty
Properties of filters can include

e Whether or not each filter is a separate process
e The data stream transformation each performs

e What form of blocking occurs when writing to a pipe whose buffer is full or
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What the Pipe-and-Filter Style Is For

Systems conforming to a pipe-and-filter style are typically used
in data transformation systems, where the overall processing
can be broken down into a set of independent steps, each
responsible for an incremental transformation of its input
data. The independence of the processing done by each step
supports reuse, parallelization, and simplified reasoning about
overall behavior.

Often such systems constitute the front end of signal-pro-
cessing applications. These systems typically receive sensor
data ata set of initial filters; each of these filters compresses the
data and performs initial filtering. “Downstream” filters reduce
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Data flow models are
discussed in “Perspec-
tives: Data Flow and
Control Flow Models,”
on page 146, in
Chapter 3.

the data further and do synthesis across data derived from dif-
ferent sensors. The final filter typically passes its data to an
application, for example, providing input to modeling or visu-
alization tools.

Analyses associated with pipe-and-filter systems include
deriving the aggregate transformation provided by a graph of
filters and reasoning about system performance: input/output
stream latency, pipe buffer requirements, and throughput.

Relation to Other Styles and Models

A pipe-and-filter view of a system is not the same as a data flow
model. In the pipe-and-filter style, lines between components
represent connectors, which have a specific computational
meaning: They transmit streams of data from one filter to
another. In data flow models, the lines represent relations,
indicating the communication of data between components.
Flows in a data flow model have little computational meaning:
They simply indicate that data flows from one element to the
next. This flow might be realized by a connector, such as a pro-
cedure call, the routing of an event between a publisher and a
subscriber, or data transmitted via a pipe. The reason that
these views might be confused is that the data flow model of a
pipe-and-filter style looks almost identical to the original pipe-
and-filter view.

Data flow styles are often combined with other styles by using
them to characterize a particular subsystem. A good example
of this is the filter processing chains of the Apache Web server.

Example of the Pipe-and-Filter Style: Yahoo! Pipes

“Rewire the Web” is the motto of Yahoo! Pipes, a composition
tool that lets Web users combine simple functions quickly and
easily into pipe-and-filter applications that aggregate and
manipulate content from around the Web.

The basis of Yahoo! Pipes is the many RSS feeds available
from sites on the Internet. These data streams form the input
to the applications that users build, applications that combine
and manipulate the data in the streams to form useful results.
Many of the building blocks to perform general-purpose filter-
ing and manipulation of the data streams are made available in
the composition environment itself, rather like library functions.

For example, you can take an RSS stream from a financial
news site and filter it so that only news items related to stocks
that you own are shown. Or you can take an RSS stream from
asports site and filter it so that you see news about your favorite
teams or athletes.
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Yahoo! Pipes uses terminology not quite the same as that in
this book. It calls a complete application a pipe; the building
blocks are called modules. A filter is a special kind of module
that removes values from a stream based on given comparison
criteria.

Figure 4.2 shows an application that finds an apartment for
rent that is near a given type of business, such as a movie the-
ater. This is based on one of the teaching examples on the
Yahoo! Pipes Web site.

4.3 Call-Return Styles

Call-return styles embody a computational model in which
components provide a set of services that may be invoked by
other components.! A component invoking a service pauses
(or is blocked) until that service has completed. Hence, call-
return is the architectural analog of a procedure call in pro-
gramming languages. The connectors are responsible for con-
veying the service request from the requester to the provider
and for returning any results.

1. The term service here designates a generic operation or function that can be
invoked via a call-return connector; it does not refer to services as in service-
oriented architecture.

Figure 4.2

A Yahoo! Pipes application
for finding apartments for
rent near a given location
(shown using the notation
of the Yahoo! Pipes editor).
The pipe-and-filter flow
runs from top to bottom
through the seven “mod-
ules” down the left-hand
side (each representing
what our pipe-and-filter
style calls a filter); this is
indicated by the thick solid
lines (the pipes) connecting
the output port of one to the
input port of the next. The
other “modules” supply
inputs to the mainline com-
ponents; this is indicated
by the thinner, hollow lines.
The Fetch Feed compo-
nent uses the RSS output
from an apartment-finder
search; it is fed the search
site URL and the search
parameters by the helper
modules to its right. The
Location Extractor and
the Filter component
extract high-quality (well-
formed) addresses from the
apartment-finder search.
That stream feeds Yahoo!
Local, which finds busi-
nesses of a given type (sup-
plied by its helper module)
near a given location. (The
For Each component
applies the function shown
in its interior to every itemin
the input stream.) The sec-
ond Filter removes list-
ings that aren’t a minimum
distance from our search
term. The Sort component
orders the stream in
ascending order of dis-
tance for viewing via the
Pipe Output component.
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The organization of
components in tiers and
multi-tier architectures
are discussed in Sec-
tion 4.6.2.

Wikipedia provides a
nice description of the
REST architecture style,
at en.wikipedia.org/
wiki/REST (Wikipedia
2010b).

A protocol of interac-
tions can be described
using notations such as
sequence diagrams and
state diagrams, which
are covered in Chapter 8.

Call-return styles differ among each other in a variety of
ways. Some variants differ in terms of the behavior of their con-
nectors. For example, connectors in some call-return styles
may support error handling (such as when the service provider
is not available). Other differences relate to constraints on
topology. Some call-return architectures are organized in tiers.
Others partition the set of components into disjoint sets of
components that can make requests and those that can service
them.

Examples of call-return styles include client-server, peer-to-
peer, and representational state transfer (REST) styles.

4.3.1
Overview

Client-Server Style

As with all call-return styles, client-server style components
interact by requesting services of other components. Request-
ers are termed clients, and service providers are termed serv-
ers, which provide a set of services through one or more of
their ports. Some components may act as both clients and servers.
There may be one central server or multiple distributed ones.

Typical examples of systems in the client-server style include
the following:

¢ Information systems running on local networks, where the
clients are GUI applications (such as Visual Basic) and the
server is a database management system (such as Oracle)

* Web-based applications where the clients run on Web brows-
ers and the servers are components running on a Web
server (such as Tomcat)

Elements, Relations, and Properties

In the client-server style, summarized in Table 4.2, component
types are clients and servers. The principal connector type for
the client-server style is the request/reply connector used for
invoking services. When more than one service can be requested
on the same connector, a protocol specification is often used
to document ordering relations among the invocable services
over that connector. Servers have ports that describe the ser-
vices they provide. Clients have ports that describe the services
they require. Servers may in turn act as clients by requesting
services from other servers. A component that has both service-
request and service-reply ports can function as both a client
and a server simultaneously.

The computational flow of pure client-server systems is asym-
metric: clients initiate interactions by invoking services of servers.
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Table 4.2 Summary of the client-server style

Elements

Relations

Computational Model

Constraints

What It’s For

¢ Client, which is a component that invokes services of a server
component.

e Server, which is a component that provides services to client com-
ponents. Properties will vary according to concerns of the architect
but typically include information about the nature of the server ports
(such as how many clients can connect) and performance charac-
teristics (such as maximum rates of service invocation).

e Request/reply connector, which is used by a client to invoke ser-
vices on a server. Request/reply connectors have two roles: a
request role and a reply role. Connector properties may include
whether the calls are local or remote, and whether data is
encrypted.

The attachment relation associates client service-request ports with
the request role of the connector and server service-reply ports with
the reply role of the connector.

Clients initiate interactions, invoking services as needed from servers
and waiting for the results of those requests.
¢ Clients are connected to servers through request/reply connectors.
e Server components can be clients to other servers.
e Specializations may impose restrictions:
— Numbers of attachments to a given port
— Allowed relations among servers
e Components may be arranged in tiers.
. Promoting modifiability and reuse by factoring out common
services

¢ Improving scalability and availability in case server replication is in
place

¢ Analyzing dependability, security, and throughput

Thus, the client must know the identity of a service to invoke
it, and clients initiate all interaction. In contrast, servers do not
know the identity of clients in advance of a service request and
must respond to the initiated client requests.

Service invocation is synchronous: the requester of a service
waits, or is blocked, until a requested service completes its
actions, possibly providing a return result. Variants of the cli-
entserver style may introduce other connector types. For
example, in some client-server styles, servers are permitted to
initiate certain actions on their clients. This might be done by
allowing a client to register notification procedures, or call-
backs, that the server calls at specific times. In other systems
service calls over a request/reply connector are bracketed by a
“session” that delineates the start and end of a set of client-
server interactions.
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Useful properties to document about components include whether new clients
and servers can be introduced dynamically, as well as any limitations on the
number of clients that can interact with a given server. Connector properties
deal with the request/reply protocol: How are errors handled? How are client-
server interactions set up and taken down? Are there sessions? How are servers
located? What kinds of middleware, if any, are relied upon?

Client-server system analyses include the following:
Dependability. For example, to understand whether a system can recover
from a service failure

Security. For example, to determine whether information provided by servers
is limited to clients with the appropriate privileges

Performance. For example, to determine whether a system’s servers can
keep up with the volume and rates of anticipated service requests

Chapter 4: A Tour of Some Component-and-Connector Styles

What the Client-Server Style Is For

The client-server style presents a system view that separates cli-
ent applications from the services they use. This style supports
system understanding and reuse by factoring out common ser-
vices. Because servers can be accessed by any number of cli-
ents, it is relatively easy to add new clients to a system. Similarly,
servers may be replicated to support scalability or availability.

Relation to Other Styles

Like many C&C styles, the client-server style decouples produc-
ers of services and data from consumers of those services and
data. Other styles, such as peer-to-peer, involve a round-trip
form of communication. However, these styles do not have the
asymmetric relationship between clients and servers found in
the client-server style.

Clients and servers are often grouped and deployed on dif-
ferent machines in a distributed environment to form a multi-
tier hierarchy.

Examples of the Client-Server Style

The World Wide Web may be the best known example of a sys-
tem that is, at its heart, a client-server system. It is a hypertext-
based system that allows clients (Web browsers) to access infor-
mation from servers distributed across the Internet. Clients
access the information, written in Hypertext Markup Language
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(HTML), provided by a Web server using Hypertext Transfer
Protocol (HTTP). HTTP is a form of request/reply invocation.
HTTP is a stateless protocol; the connection between the client
and the server is terminated after each response from the server.

For another example, Figure 4.3 uses informal notation to
describe the clientserver view of an ATM banking system
developed in the early 1990s. At that time, client-server archi-
tectures were the modern alternative to mainframe-based sys-
tems. (J2EE and .NET application servers didn’t exist and
multi-tier was not yet described as a style.)

In this architecture, there are three types of components:

¢ The FIX server daemons are processes running in the back-
ground on the fault-tolerant UNIX (FI'X) server. Each dae-
mon creates one or more socket ports using predefined
TCP ports, through which calls from client components
arrive.

e ATM OS/2 client processes are concurrent processes that
run on the ATMs, which were powered with the IBM OS/2
operating system. Although it can’t be inferred from the dia-
gram, each ATM runs one instance of the ATM main pro-
cess and one instance of the Reconfigure and update process.

Figure 4.3

Client-server architecture
of an ATM banking system.
The ATM main process
sends requests to Bank
transaction authorizer
corresponding to user
operations (such as
deposit, withdrawal). It also
sends messages to ATM
monitoring server
informing the overall status
of the ATM (devices, sen-
sors, and supplies). The
Reconfigure and update

ATM
reconfiguration
server

Bank
transaction
authorizer

ATM
monitoring
server

server server

- i process component
ATM main RISEOL TG WS Monltprlng sends requests to ATM
process and update station reconfiguration server
process program to find out if a reconfigura-
I tion command was issued
L for that particular ATM.
Reconfiguration of an ATM
(for example, enabling or
Key B Ml TCP socket connector with disabling a menu option)
Client Server client and server ports and data updates are
issued by bank personnel
FTX server ATM 0S/2 Windows using the Moni toring
daemon client process application station program.
Monitoring station

program also sends peri-
odic requests to ATM
monitoring server to
retrieve the status of the
range of ATMs monitored
by that station.
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The peer-to-peer archi-
tecture style has
inspired new models for
industrial production,
community knowledge,
political movement,
property ownership,
and an economic alter-
native to capitalism.
See en.wikipedia.org/
wiki/Peer-to-peer_
(meme).

¢ The Windows application component was also a client com-
ponent. It was a Windows 3.x GUI program developed using
the Borland OWL API. Each instance was used by an opera-
tor to monitor a group of ATMs from his or her workstation.

When this system was developed, the TCP socket connector
was very often used for communication in client-server and dis-
tributed applications. Today HTTP is far more common. In the
protocol used in this TCP socket connector, the client opens a
connection to a server identified by an IP address and port
number. The client then sends a nonblocking request, after
which it may display in the UI a “Please wait...” message to the
user. Then the client calls an operation to receive the response
from the server. For both client and server, sending and receiv-
ing messages are separate steps. Therefore, the connector
implementation has to handle the correlation of request and
response messages, as well as time-outs and communication
€errors.

4.3.2 Peer-to-Peer Style
Overview

In the peer-to-peer style, components directly interact as peers
by exchanging services. Peer-to-peer communication is a kind
of request/reply interaction without the asymmetry found in
the clientserver style. That is, any component can, in princi-
ple, interact with any other component by requesting its ser-
vices. Each peer component provides and consumes similar
services, and sometimes all peers are instances of the same
component type. Connectors in peer-to-peer systems may
involve complex bidirectional protocols of interaction, reflect-
ing the two-way communication that may exist between two or
more peer-to-peer components.

Examples of peer-to-peer systems include file-sharing net-
works, such as BitTorrent and eDonkey; instant messaging and
VoIP applications, such as Skype; and desktop grid computing
systems.

Elements, Relations, and Properties

Table 4.3 summarizes the peer-to-peer style. The component
types in this style are peers, which are typically independent
programs running on network nodes. The principal connector
type is the call-return connector. Unlike in the clientserver
style, the interaction may be initiated by either party: each peer
component acts as both client and server. Peers have interfaces
that describe the services they request from other peers and
the services they provide. The computational flow of peer-to-



4.3 Call-Return Styles 1 167

Table 4.3 Summary of the peer-to-peer style

Elements ® Peer component

e Call-return connector, which is used to connect to the peer network,
search for other peers, and invoke services from other peers

Relations The attachment relation associates peers with call-return connectors.

Computational Model = Computation is achieved by cooperating peers that request services
of one another.

Properties Same as other C&C views, with an emphasis on protocols of interac-
tion and performance-oriented properties. Attachments may change
at runtime.

Constraints * Restrictions may be placed on the number of allowable attachments

to any given port, or role.

e Special peer components can provide routing, indexing, and peer
search capability.

¢ Specializations may impose visibility restrictions on which compo-
nents can know about other components.

What It’s For ¢ Providing enhanced availability
¢ Providing enhanced scalability

¢ Enabling highly distributed systems, such as file sharing, instant
messaging, and desktop grid computing

peer systems is symmetric: Peers first connect to the peer-to-
peer network and then initiate actions to achieve their compu-
tation by cooperating with their peers by requesting services
from one another.

Often a peer’s search for another peer is propagated from
one peer to its connected peers for a limited number of hops.
A peer-to-peer architecture may have special peer nodes (called
ultrapeers, ultranodes, or supernodes) that have indexing or
routing capability and allow a regular peer’s search to reach a
larger number of peers.

Constraints on the use of the peer-to-peer style might limit
the number of peers that can be connected to a given peer or
impose a restriction about which peers know about which
other peers.

What the Peer-to-Peer Style Is For

Peers interact directly among themselves and can play the role
of both service caller and service provider, assuming whatever
role is needed for the task at hand. This partitioning provides
flexibility for deploying the system across a highly distributed
platform. Peers can be added and removed from the peer-to-
peer network with no significant impact, resulting in great scal-
ability for the whole system.
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In late 2007, [Gnutella]
was the most popular
file sharing network on
the Internet with an esti-
mated market share of
more than 40%.
—Wikipedia
(en.wikipedia.org/
wiki/Gnutella)

Typically multiple peers have overlapping capabilities, such
as providing access to the same data. Thus, a peer acting as cli-
ent can collaborate with multiple peers acting as servers to
complete a certain task. If one of these multiple peers becomes
unavailable, the others can still provide the services to com-
plete the task. The result is improved overall availability. The
load on any given peer component acting as a server is
reduced, and the responsibilities that might have required
more server capacity and infrastructure to support it are dis-
tributed. This can decrease the need for other communication
for updating data and for central server storage, but at the
expense of storing the data locally.

Peer-to-peer computing is often used in distributed comput-
ing applications, such as file sharing, instant messaging, and
desktop grid computing. Using a suitable deployment, the
application can make efficient use of CPU and disk resources
by distributing computationally intensive work across a net-
work of computers and by taking advantage of the local
resources available to the clients. The results can be shared
directly among participating peers.

Relation to Other Styles

The absence of hierarchy means that peer-to-peer systems have
a more general topology than client-server systems.

Examples of the Peer-to-Peer Style

Gnutella is a peer-to-peer network that supports bidirectional
file transfers. The topology of the system changes at runtime as
peer components connect and disconnect to the network. A
peer component is a running copy of a Gnutella client pro-
gram connected to the Internet. Upon startup, this program
establishes a connection with a few other peers. The Web
addresses of these peers are kept in a local cache.

The Gnutella protocol supports request/reply messages for
peers to connect to other peers and search for files. Peers are
identified by their IP address, and the Gnutella protocol messages
are carried over dedicated UDP and TCP ports. To perform a
search, a Gnutella peer requests information from all of its con-
nected peers, which respond with any information of interest.
The connected peers also pass the request to their peers suc-
cessively, up to a predefined number of “hops.” All the peers
that have positive results for the search request reply directly to
the requester, whose IP address and port number go along
with the request. The requester then establishes a connection
directly with the peers that have the desired file and initiates
the data transfer using HTTP (outside the Gnutella network).
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Later versions of Gnutella differentiate between leaf peers
and ultrapeers. An ultrapeer runs on a computer with a fast
Internet connection. A leaf peer is usually connected to a small
number (say, three) of ultrapeers, and an ultrapeer is con-
nected to a large number of other ultrapeers and leaf peers.
The ultrapeers are responsible for routing search requests and
responses for all leaf peers connected to them. ‘ }
Figure 4.4 shows part of a peer-to-peer view of a Gnutellanet- . mentation of
work using an informal C&C notation. For brevity, only two leaf  behavior is discussed in
peers and four ultrapeers are identified. Each of the identified ~ Chapter 8.
leaf peers uploads and downloads files directly from other peers.

4.3.3 Service-Oriented Architecture Style
Overview

Service-oriented architectures consist of a collection of distrib-
uted components that provide and/or consume services. In
SOA, service provider components and service consumer com-
ponents can use different implementation languages and plat-
forms. Services are largely standalone: service providers and
service consumers are usually deployed independently, and
often belong to different systems or even different organizations.

Elements, Relations, and Properties

Table 4.4 summarizes the SOA style. The basic component
types in this style are service providers and service consumers,

Figure 4.4

A C&C diagram of a
Gnutella network, using
informal notation
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i
Including an ESB in your
architecture of a service-
oriented systemimproves
interoperability, secu-
rity, and modifiability.
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[
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There are many possibil-
ities for communication
between componentsin
an SOA architecture,
such as SOAP, REST,
JMS, MSMQ, and
SMTP. Try to indicate in
your C&C diagram what
protocol or technology
is used for each compo-
nent interaction by
using labels or different
arrow types.
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which in practice can take different forms, from JavaScript run-
ning on a Web browser to CICS transactions running on a
mainframe.

In addition to the service provider and consumer compo-

nents that you develop, your SOA application may use special-
ized components that act as intermediaries and provide
infrastructure services:

Service invocation can be mediated by an enterprise service bus
(ESB). An ESB routes messages between service consumers
and service providers. In addition, an ESB can convert mes-
sages from one protocol or technology to another, perform
various data transformations (for example, format, content,
splitting, merging), perform security checks, and manage
transactions. When an ESB is in place, the architecture fol-
lows a hub-and-spoke design, and interoperability, security,
and modifiability are improved. When an ESB is not in
place, service providers and consumers communicate to
each other in a direct point-to-point fashion.

To improve the transparency of location of service provid-
ers, a service registry can be used in SOA architectures. The
registry is a component that allows services to be registered
and then queried at runtime. It increases modifiability by
making the location of the service provider transparent to
consumers and permitting multiple live versions of the same
service.

An orchestration server (or orchestration engine) is a special
component that executes scripts upon the occurrence of a
specific event (for example, a purchase order request arrived).
It orchestrates the interaction among various service con-
sumers and providers in an SOA system. Applications with
well-defined business workflows that involve interactions
with distributed components or systems gain in modifiabil-
ity, interoperability, and reliability by using an orchestration
server. Many orchestration servers support the Business Pro-
cess Execution Language (BPEL) standard.

The basic types of connectors used in SOA are these:

Call-return connectors. Two of the most common such connec-
tors are SOAP and REST:

— SOAP is the standard protocol for communication in
Web services technology. Service consumers and provid-
ers interact by exchanging request/reply XML messages,
typically on top of HTTP.

— With the REST connector, a service consumer sends syn-
chronous HTTP requests. These requests rely on the four
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basic HTTP commands (post, get, put, and delete) to tell
the service provider to create, retrieve, update, or delete
aresource (a piece of data). Resources have a well-defined
representation in XML, JSON, or a similar language/

notation.

* Asynchronous messaging. Components exchange asynchro-
nous messages, usually through a messaging system such as
IBM WebSphere MQ), Microsoft MSMQ), or Apache ActiveM Q.
The messaging connector can be point-to-point or publish-
subscribe. Messaging communication typically offers great
reliability and scalability.

Components have interfaces that describe the services they
request from other components and the services they provide.
Components initiate actions to achieve their computation by
cooperating with their peers by requesting services from one

another.

In practice, SOA environments may involve a mix of the
three connectors listed above, along with legacy protocols and
other communication alternatives (such as SMTP).

Table 4.4 Summary of the service-oriented architecture style

Elements

Relations

e Service providers, which provide one or more services through pub-
lished interfaces. Properties will vary with the implementation tech-
nology (such as EJB or ASP.NET) but may include performance,
authorization constraints, availability, and cost. In some cases these
properties are specified in a service-level agreement (SLA).

e Service consumers, which invoke services directly or through an
intermediary.

e ESB, which is an intermediary element that can route and transform
messages between service providers and consumers.

* Registry of services, which may be used by providers to register
their services and by consumers to query and discover services at
runtime.

e Orchestration server, which coordinates the interactions between
service consumers and providers based on scripts that define busi-
ness workflows.

e SOAP connector, which uses the SOAP protocol for synchronous
communication between Web services, typically over HTTP. Ports of
components that use SOAP are often described in WSDL.

e REST connector, which relies on the basic request/reply operations
of the HTTP protocol.

e Messaging connector, which uses a messaging system to offer
point-to-point or publish-subscribe asynchronous message
exchanges.

Attachment of the different kinds of ports available to the respective
connectors
continues
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Table 4.4 Summary of the service-oriented architecture style (continued)

Computational Model

Constraints

What It’s For

Computation is achieved by a set of cooperating components that
provide and/or consume services over a network. The computation is
often described as a kind of workflow model.

e Service consumers are connected to service providers, but interme-
diary components (such as ESB, registry, or BPEL server) may be used.
ESBs lead to a hub-and-spoke topology.

e Service providers may also be service consumers.

Specific SOA patterns impose additional constraints.

¢ Allowing interoperability of distributed components running on dif-
ferent platforms or across the Internet

¢ Integrating legacy systems
Allowing dynamic reconfiguration

What Service-Oriented Architectures Are Good For

The main benefit and the major driver of SOA is interoperabil-
ity. Because service providers and service consumers may run
on different platforms, service-oriented architectures often
integrate different systems and legacy systems. Service-oriented
architecture also offers the necessary elements to interact with
external services available over the Internet. Special SOA com-
ponents such as the registry or the ESB also allow dynamic
reconfiguration, which is useful when there’s a need to replace
or add versions of components with no system interruption.

Example of a Service-Oriented Architecture

Figure 4.5 was taken from the example software architecture
document accompanying this book online, at wiki.sei.cmu.edu/
sad. It shows the SOA view of the Adventure Builder system
(Adventure Builder 2010). This system interacts via SOAP Web
services with several other external service providers. Note that
the external providers can be mainframe systems, Java systems,
or .NET systems—the nature of these external components is
transparent because the SOAP connector provides the neces-
sary interoperability.

4.4 Event-Based Styles

Event-based styles allow components to communicate through
asynchronous messages. Such systems are often organized as a
loosely coupled federation of components that trigger behav-
ior in other components through events.

A variety of event styles exist. In some event styles, connec-
tors are point-to-point, conveying messages in a way similar to
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call-return, but allowing more concurrency, because the event
sender need not block while the event is processed by the
receiver. In other event styles, connectors are multi-party,
allowing an event to be sent to multiple components. Such sys-
tems are often called publish-subscribe systems, where the
event announcer is viewed as publishing the event that is sub-
scribed to by its receivers.

Figure 4.5

Diagram of the SOA view
for the Adventure Builder
system. The OPC (Order
Processing Center)
component coordinates the
interaction with internal and
external service consumers
and providers
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4.4.1 Publish-Subscribe Style
Overview

In the publish-subscribe style, summarized in Table 4.5, com-
ponents interact via announced events. Components may sub-
scribe to a set of events. It is the job of the publish-subscribe
runtime infrastructure to make sure that each published event
is delivered to all subscribers of that event. Thus the main form
of connector in this style is a kind of event bus. Components
place events on the bus by announcing them; the connector
then delivers those events to the components that have regis-
tered an interest in those events.

The computational model for the publish-subscribe style is
best thought of as a system of independent processes or
objects, which react to events generated by their environment,
and which in turn cause reactions in other components as a
side effect of their event announcements.

Examples of systems that employ the publish-subscribe style
are the following:

¢ Graphical user interfaces, where a user’s low-level input
actions are treated as events that are routed to appropriate
input handlers

¢ Applications based on the model-view-controller (MVC)
pattern, where view components are notified when the state
of a model object changes

¢ Extensible programming environments, in which tools are
coordinated through events

* Mailing lists, where a set of subscribers can register interest
in specific topics

¢ Social networks, where “friends” are notified when changes
occur to a person’s Web site

Table 4.5 Summary of the publish-subscribe style

Elements

Relations

Computational Model

¢ Any C&C component with at least one publish or subscribe port.
Properties vary, but they should include which events are
announced and/or subscribed to, and the conditions under which
an announcer is blocked.

® Publish-subscribe connector, which will have announce and listen
roles for components that wish to publish and/or subscribe to events.

Attachment relation associates components with the publish-
subscribe connector by prescribing which components announce
events and which components have registered to receive events.

Components subscribe to events. When an event is announced by a
component, the connector dispatches the event to all subscribers.
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Table 4.5 Summary of the publish-subscribe style (continued)

Constraints

What It’s For

All components are connected to an event distributor that may be
viewed as either a bus—that is, a connector—or a component. Publish
ports are attached to announce roles, and subscribe ports are attached
to listen roles. Constraints may restrict which components can listen to
which events, whether a component can listen to its own events, and
how many publish-subscribe connectors can exist within a system.

A component may be both a publisher and a subscriber, by having

ports of both types.

e Sending events to unknown recipients, isolating event producers
from event consumers

¢ Providing core functionality for GUI frameworks, mailing lists, bulle-

tin boards, and social networks

Elements, Relations, and Properties

The publish-subscribe style can take several forms. In one com-
mon form, called implicit invocation, the components have pro-
cedural interfaces, and a component registers for an event by
associating one of its procedures with each subscribed type of
event. When an event is announced, the associated procedures
of the subscribed components are invoked in an order usually
determined by the runtime infrastructure. Graphical user-
interface frameworks, such as Visual Basic, are often driven by
implicit invocation: User code fragments are associated with
predefined events, such as mouse clicks.

In another publish-subscribe form, events are simply routed
to the appropriate components. It is the component’s job to
figure out how to handle the event. Such systems put more of
a burden on individual components to manage event streams,
but also permit a more heterogeneous mix of components
than implicit invocation systems do.

In some publish-subscribe systems, an event announcer may
block until an event has been fully processed by the system. For
example, some user-interface frameworks require that all views
be updated when the data they depict has been changed. This
is accomplished by forcing the component that announces a
“changed-data” event to block until all subscribing views have
been notified.

Useful properties to document for components include these:

¢ Which events a component announces or subscribes to
e Conditions under which an announcer is blocked
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Connector properties often describe the semantics of the event dispatch
mechanism:
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Whether components can change their subscriptions dynamically

Whether new event types can be created dynamically, or the event vocabu-
lary is fixed at build or deployment time

Whether one can add new publishers to the system dynamically

Can a subscriber queue up new events when it’s busy handling an event?
Is the connector synchronous or asynchronous?

Do events have priorities?

Is temporal or causal ordering enforced?

Is event delivery reliable?

What are the semantics of each event?

Does the connector support other distributed component management, such
as starting and stopping publish-subscribe components at the same time?

What the Publish-Subscribe Style Is For

The publish-subscribe style is used to send events and messages
to an unknown set of recipients. Because the set of event recip-
ients is unknown to the event producer, the correctness of the
producer cannot depend on those recipients. Thus new recip-
ients can be added without modification to the producers.

Publish-subscribe styles are often used to decouple user
interfaces from applications. They may also be used to inte-
grate tools in a software development environment: tools inter-
act by announcing events that trigger invocation of other tools.
Other applications include systems such as bulletin boards,
social networks, and message lists, where some dynamically
changing set of users are notified when the content that they
care about is modified.

Relation to Other Styles

The publish-subscribe style is similar to a blackboard reposi-
tory style, because in both styles components are automatically
triggered by changes to some component. However, in a black-
board system, the database is the only component that gener-
ates such events; in a publish-subscribe system, any component
may generate events.

Implicit invocation is often combined with call-return in sys-
tems in which components may interact either synchronously
by service invocation or asynchronously by announcing events.



4.4 Event-Based Styles 1 177

For example, many service-oriented architectures and distrib-
uted object systems (such as CORBA and Java EE) support both
synchronous and asynchronous communication. In other
object-based systems, synchronous procedure calls are used to
achieve asynchronous interaction using the MVC pattern or
the observer pattern.

Example of the Publish-Subscribe Style

Figure 4.6 is a publish-subscribe view of the SEI ArchE tool.
There are three different publish-subscribe interactions in this
architecture:

1. Eclipse UI event manager acts as an event bus for user-inter-
face events (such as button clicks). Subscription informa-
tion—that is, what UI events are relevant to the system and
what components handle them—is defined at load time
when the event manager reads the SEI.ArchE.UI plug-in
config XML file. From then on a Ul event generated by the
user working on a view or editor is dispatched via implicit
invocation to the action handler objects that subscribe to
that event.

2. The data manipulated in ArchE is stored using a rule
engine called Jess. Data elements are called facts. When a
user action creates, updates, or deletes a fact, that action
generates respectively an assert, modify, or retract fact

Sections2.3.6and 6.6.4
have more information
about the ArchE tool.

r— Register
action
handlers SEl.ArchE.UI
< — — — — — plug-in config
25
. ews
] et VY gactS S new or
2 @9 (or 4= Fact 11| setfield() .
= o0 data in 23
g — memory ” \5 %
= 35
-3
g \8 3
®
@ \
3 \
2 —~—
E handle |
Ul event action || Jess |
handler CRUD assert/modify/ |
fact data retract fact |
Key
Action )
|:| han‘dler Ul screen Java ____> Register to 4 Event send/
object object object listen for event receive

Event manager

| | External CI XML file (part of Eclipse Java method
— — program platform) call

Figure 4.6

Diagram for a publish-
subscribe view of the SEI
ArchE tool
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The observer design
pattern is described in
the book by Gamma et
al. (1995).

event that is sent to Jess. When Jess processes that event,
changes to many other facts may be triggered. Jess also acts
as an event bus that announces changes to facts. In the
ArchE architecture, there is one component that sub-
scribes to all data changes: ArchE core Tistener.

3. ArchE keeps in memory copies of the fact data elements
persisted in the rule engine. These copies are observable
Java objects. User-interface screens (that is, views) that dis-
play those elements are observers of the fact data objects.
When facts in memory are created or updated, the views
are notified.

4.5 Repository Styles

Repository views contain one or more components, called
repositories, which typically retain large collections of persis-
tent data. Other components read and write data to the repos-
itories. In many cases access to a repository is mediated by
software called a database management system (DBMS) that
provides a call-return interface for data retrieval and manipu-
lation. MySQL is an example of a DBMS. Typically a DBMS also
provides numerous data management services, such as support
for atomic transactions, security, concurrency control, and
data integrity. In C&C architectures where a DBMS is used, a
repository component often represents the combination of
the DBMS program and the data repository.

Repository systems where the data accessors are responsible
for initiating the interaction with the repository are said to fol-
low the shared-data style. In other repository systems, the
repository may take responsibility for notifying other compo-
nents when data has changed in certain prescribed ways. These
systems follow the blackboard style. Many database manage-
ment systems support a triggering mechanism activated when
data is added, removed, or changed. You can employ this fea-
ture to create an application following the blackboard style.
But if your application uses the DBMS for retrieving and
changing data in the repository but doesn’t employ triggers,
you’re following the pure shared-data style.

4.5.1 Shared-Data Style
Overview

In the shared-data style, the pattern of interaction is domi-
nated by the exchange of persistent data. The data has multi-
ple accessors and at least one shared-data store for retaining
persistent data.
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Database management systems and knowledge-based sys-
tems are examples of this style.

Elements, Relations, and Properties

The shared-data style, summarized in Table 4.6, is organized
around one or more shared-data stores, which store data that
other components may read and write. Component types
include shared-data stores and data accessors. The connector type
is data reading and writing. The general computational model
associated with shared-data systems is that data accessors per-
form operations that require data from the data store and write
results to one or more data stores. That data can be viewed and
acted on by other data accessors. In a pure shared-data system,
data accessors interact only through one or more shared-data
stores. However, in practice shared-data systems also allow
direct interactions between data accessors. The data-store com-
ponents of a shared-data system provide shared access to data,
support data persistence, manage concurrent access to data
through transaction management, provide fault tolerance,
support access control, and handle the distribution and cach-
ing of data values.

Specializations of the shared-data style differ with respect to
the nature of stored data: existing approaches include rela-
tional, object structures, layered, and hierarchical structures.

Table 4.6 Summary of the shared-data style
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Elements e Repository component. Properties include types of data stored,
data performance-oriented properties, data distribution, number of

accessors permitted.
e Data accessor component.

Relations

Computational Model

Constraints
What It’s For

e Data reading and writing connector. An important property is
whether the connector is transactional or not.

Attachment relation determines which data accessors are connected
to which data repositories.

Communication between data accessors is mediated by a shared-
data store. Control may be initiated by the data accessors or the data
store. Data is made persistent by the data store.

Data accessors interact with the data store(s).

¢ Allowing multiple components to access persistent data

¢ Providing enhanced modifiability by decoupling data producers
from data consumers
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What the Shared-Data Style Is For

The shared-data style is useful whenever various data items
have multiple accessors and persistence. Use of this style
decouples the producer of the data from the consumers of the
data; hence this style supports modifiability, as the producers

do not have direct knowledge of the consumers.

Useful properties to document about data stores include the following:

Restrictions on the number of simultaneous connections to the data store.
Whether or not new accessors can be added at runtime.
Access-control enforcement policies.

Whether concurrent access to the same data element is permitted, and if so,
what kinds of synchronization mechanisms are used.

Administrative concerns, such as whether one modifies the types of data
stored, and if so, who has access, when those changes can be performed,
and via what interface.

Replication of data in a distributed setting.
Age of data.

If the repository system supports both query-based and triggered modes of
interaction, it is important to clearly document what form of interaction is
intended, for example, by using different connector types.

Analyses associated with this style usually center on qualities
such as performance, security, privacy, availability, scalability,
and compatibility with, for example, existing repositories and
their data. In particular, when a system has more than one data
store, a key architecture concern is the mapping of data and
computation to the data. Use of multiple stores may occur
because the data is naturally, or historically, partitioned into
separable stores. In other cases data may be replicated over sev-
eral stores to improve performance and/or availability through
redundancy. Such choices can strongly affect the qualities noted
above.

Relation to Other Styles

This style has aspects in common with the client-server style,
especially the multi-tiered client-server. In information man-
agement applications that use this style, the repository is often
arelational database, providing relational queries and updates
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using clientserver interactions. The clients of the relational
database (that is, the accessors) connect to the DBMS using a
network port and protocol specified by the DBMS. A bridge
module or DBMS driver, built into the client components, pro-
vides database operations.

The shared-data style is closely related to the data model
style. While a shared-data view of the system depicts the data
repositories and their accessors, the data model shows how
data is structured inside the repositories, in terms of data enti-
ties and their relations.

Akin to other C&C styles, the shared-data style is also related
to the deployment style. Very often systems that have a shared
repository are distributed applications where one or more ded-
icated server machines host the repositories. A deployment
view of the system shows the allocation of the repositories and
other components to the hardware nodes.

Example of the Shared-Data Style

Figure 4.7 shows the diagram of a shared-data view of a corpo-
rate access-management system. There are three types of acces-
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The data model style is
described in Section 2.6.
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The shared-data diagram of
an enterprise access-man-
agement system. The cen-
tralized security realm is a
repository for user
accounts, passwords,
groups of users, roles, per-
missions, and related infor-
mation. User IDs and
passwords are synchro-
nized with external reposi-
tories shown on the top left.
The accounts of the enter-
prise employees are cre-
ated/deactivated and
permissions are granted/
revoked based on status
changes in HR database.
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A communicating-pro-
cesses style is any
C&C style whose com-
ponents can execute as
independent processes.

sor components: Windows applications, Web applications, and
“headless” programs (that is, programs or scripts that run in
the background and don’t provide any user interface).

4.6 Crosscutting Issues for C&C Styles

There are a number of concerns that relate to many C&C styles
in a similar way. It is helpful to treat these as crosscutting issues,
since the requirements for documenting them are similar for
all styles. One such issue is concurrency: indicating which com-
ponents in the system execute as concurrent threads or pro-
cesses. Another crosscutting issue is the use of tiers: aggregating
components into hierarchical groupings and restricting com-
munication paths between components in noncontiguous
groups. Another issue is dynamic reconfiguration: indicating
which components may be created or destroyed at runtime.

In these and other cases, the crosscutting issues can be doc-
umented by augmenting the element types of a style with addi-
tional semantic detail to clarify how instances of those types
address the crosscutting issues. By adding this additional
detail, we effectively create a specialized variant of the original
style, because the augmentation will typically introduce new
constraints on the components and connectors, their proper-
ties, and system topologies.

4.6.1 Communicating Processes

Communicating processes are common in most large systems
and necessary in all distributed systems. A communicating-pro-
cesses variant of any C&C style can be obtained by stipulating
that each component can execute as an independent process.
For instance, clients and servers in a client-server style are usu-
ally independent processes. Similarly, a communicating-processes
variant of the pipe-and-filter system would require that each fil-
ter run as a separate process. The connectors of a communicating-
processes style need not change, although their implementa-
tion will need to support interprocess communication.

A common variant on this scheme (for components with
substructure) is to require that top-level components run as
separate processes but allow their internal components to run
in their parent’s process. Another variant is to use threads,
instead of processes, as the concurrency unit. Still other vari-
ants mix threads and processes.
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For communicating-processes styles, there are additional
things that often must be documented, including the following:

® Mechanisms for starting, stopping, and synchronizing a set
of processes or threads

¢ Preemptability of concurrent units, indicating whether the
execution of a concurrent unit may be preempted by
another concurrent unit

¢ Priority of the processes, which influences scheduling
¢ Timing parameters, such as period and deadline

¢ Additional components, such as watchdog timers and
schedulers, for monitoring and controlling concurrency

e Use of shared resources, lock mechanism, and deadlock
prevention or detection techniques

Communicating processes are used to understand (1) which
portions of the system could operate in parallel, (2) the bun-
dling of components into processes, and (3) the threads of
control within the system. Therefore this style variant can be
used for analyzing performance and reliability, and for influ-
encing how to deploy the software onto separate processors.
Behavioral notations such as activity diagrams and sequence
diagrams are particularly useful to understand interactions
among elements running concurrently.

4.6.2 Tiers

The execution structures of many systems are organized as a
set of logical groupings of components. Each grouping is
termed a tier. The grouping of components into tiers may be
based on a variety of criteria, such as the type of component,
sharing the same execution environment, or having the same
runtime purpose.

The use of tiers may be applied to any C&C style, although
in practice it is most often used in the context of client-server
styles. Tiers induce topological constraints that restrict which
components may communicate with other components. Spe-
cifically, connectors may exist only between components in the
same tier or residing in adjacent tiers. The multi-tier style
found in many Java EE and Microsoft .NET applications is an
example of organization in tiers derived from the client-server
style.

Additionally, tiers may constrain the kinds of communication
that can take place across adjacent tiers. For example, some
tiered styles require call-return communication in one direc-
tion but event-based notification in the other.

The deployment style is
described in Section 5.2.

Chapter 8 covers docu-
mentation of behavior.

e A

A tier is a mechanism
for system partitioning.
Usually applied to cli-
ent-server-based sys-
tems, where the various
parts (tiers) of the sys-
tem (user interface,
database, business
application logic, and
so forth) execute on dif-
ferent platforms.
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You can depict tiers
graphically by overlay-
ing tier boundaries on
top of an existing C&C
diagram. Alternatively,
or in addition, you can
document tiers by asso-
ciating a property with
each component to
indicate the tier to which
it belongs.



184 1 Chapter 4: A Tour of Some Component-and-Connector Styles

7

i
Don’t confuse tiers with
layers! Layering is a
module style, while tiers
apply to C&C styles. In
other words, a layer is a
grouping of implemen-
tation units while a tier is
a grouping of runtime
elements.

Tiers are not components; they are logical groupings of
components.

Example of a Multi-tiered System

Figure 4.8 uses informal notation to describe the multi-tier
architecture of the Consumer Website Java EE application.
This application is part of the Adventure Builder system
(Adventure Builder 2010). Many component-and-connector
types are specific to the supporting platform, which is Java EE
in this case.

4.6.3 Dynamic Creation and Destruction

Many C&C styles allow components and connectors to be cre-
ated or destroyed as the system is running. For example, new
server instances might be created as the number of client
requests increases in a clientserver system. In a peer-to-peer
system, new components may dynamically join the system by
connecting to a peer in the peer-to-peer network. Because any
style can in principle support the dynamic creation and
destruction of elements, this is another crosscutting issue.
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Diagram of the multi-tier view describing the Consumer Website Java EE application, which is part of the Adventure

Builder system
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To document the dynamic aspects of an architecture, you

should add several pieces of information, including the following:

What types of components or connectors within a style may
be created or destroyed.

The mechanisms that are used to create, manage, or destroy
elements. For example, component “factories” are a com-
mon mechanism for creating new components at runtime.

How many instances of a given component may exist at the
same time. For example, some Web applications use a pool
of instances of Web server components, and the number of
instances in a pool is parameterized by a minimum and a
maximum value.

What is the life cycle for different component types. Under
what conditions new instances are created, activated, deacti-
vated, and removed. For example, some styles require that
all or part of a system be brought to a stable, “quiescent”
state before new components can be added.

4.7 Summary Checklist

Component-and-connector styles specialize C&C views by
introducing a specific set of component-and-connector
types and by specifying rules about how elements of those
types can be combined. A C&C style is typically associated
with a computational model that prescribes how execution,
data, and control flow through systems in this style.

Component-and-connector styles can be grouped into a
number of general categories on the basis of their underly-
ing computational model. Each of these categories contains
avariety of specific C&C styles, a number of which were illus-
trated in this chapter.

In a pipe-and-filter system, filters process the data input seri-
ally and send the output to the next filter through a pipe.

In clientserver systems, client components make synchro-
nous requests to services from server components.

In peer-to-peer solutions, many instances of the same com-
ponent cooperate to achieve the desired goal by exchang-
ing synchronous request/reply messages.

Service-oriented architecture involves distributed compo-
nents that act as service providers and,/or service consumers
and are highly interoperable. Intermediaries such as ESB,
service registry, and BPEL server may be used.

Section 6.4.3 discusses
documentation of
dynamic systems.
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In publish-subscribe systems, publishers send events to a
pub-sub connector that dispatches the event to all subscrib-
ers that have registered to receive that event.

The shared-data style shows how a shared data repository is
accessed for reading and/or writing by independent com-
ponents called accessors.

Many C&C views involve communicating components that
run as concurrent processes or threads. In these cases, it’s
important to document how these processes or threads are
scheduled or preempted, and how access to shared resources
is synchronized.

Component-and-connector architectures can be structured
in tiers, which are logical groupings of components. The
multi-tier style found in Java EE and Microsoft .NET appli-
cations is a specialization of the client-server style

4.8 Discussion Questions

1.

Peer-to-peer, clientserver, and other call-and-return styles
all involve interactions between producers and consumers
of data or services. If an architect is not careful when using
one of these styles, he or she will produce a C&C view that
simply shows a request flowing in one direction and a
response flowing in the other. What means are at the archi-
tect’s disposal to distinguish among these styles?

Some forms of publish-subscribe involve runtime registra-
tion; others allow only pre-runtime registration. How
would you represent each of these cases?

A user invokes a Web browser to download a file. Before
doing so, the browser retrieves a plug-in to handle that type
of file. How would you model this scenario in a C&C view?

If you wanted to show a C&C view that emphasizes the sys-
tem’s security aspects, what kinds of properties might you
associate with the components? With the connectors?

Suppose that the middle tier of a three-tier system is a data
repository. Is this system a shared-data system, a three-tier
system, a clientserver system, all of them, or none? Justify
your answer.

To help you see why layers and tiers are different, sketch a
layered view for a system you’re familiar with, and then
sketch a multi-tier client-server view for the same system.
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4.9 For Further Reading

There is not widespread agreement about what to call C&C
styles or how to group them. While this might seem like an
issue of importance only to the catalog purveyors, it has docu-
mentation ramifications as well. For instance, suppose you
choose a peer-to-peer style for your system. In theory, that
should free you of some documentation obligations, because
you should be able to appeal to a style catalog for details. How-
ever, it is difficult to find an authoritative source for the style
definition; different authors describe the same style with
slightly different component-and-connector types and proper-
ties. But many good style catalogs are available. The reader
interested in finding out more about a particular style can look
at the book by Shaw and Garlan (1996) and any of the five vol-
umes of the Pattern-Oriented Software Architecture books (Busch-
mann et al. 1996; Schmidt et al. 2000; Kircher and Jain 2004;
and Buschmann, Henney, and Schmidt 2007a and 2007b).
Wikipedia is also a good source of information about styles.

The SEI report titled Evaluating a Service-Oriented Architecture
(Bianco, Kotermanski, and Merson 2007) describes many dif-
ferent component and connector types available in SOA, and
it discusses how the different design alternatives affect the
quality attribute properties of the solution. A comprehensive
description of various event-based styles is found in the Enter-
prise Integration Patterns book (Hohpe and Wolft 2003). An
excellent description of blackboards and their history in sys-
tem design can be found in the article by Nii (1986). One of
the first systems to employ the blackboard style was a speech-
understanding system called Hearsay II. A more modern varia-
tion is provided by “tuple spaces,” as exemplified by the Linda
programming language (Gelernter 1985) and JavaSpaces tech-
nology (Freeman, Hupfer, and Arnold 1999). High Level
Architecture (HLA) uses a publish-subscribe mechanism as an
integration framework for distributed simulations (IEEE
1516.1 2000).

To learn more about Yahoo! Pipes, visit pipes.yahoo.com/

pipes.
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Allocation Views and a Tour
of Some Allocation Styles

In this chapter, after a brief overview of allocation views, we
look at these aspects of allocation views and styles:

¢ Deployment style
¢ Install style
¢ Work assignment style

¢ Other allocation styles

5.1 Overview

Software elements in a software architecture interact with non-
software elements in the environment in which the software is
developed, deployed, and executed. Computing and communi-
cation hardware, file management systems, and development
teams all interact with the software architecture. Because of this,
the “set of structures needed to reason about the system” (from
our definition of software architecture given in the prologue)
includes structures that show the relations between software and
nonsoftware elements. It is through the mapping between the
software architecture and the hardware that the performance of
the system can be analyzed; it is through the mapping between
the software architecture and a file structure that the manage-
ment of the system in production can be done; and it is through
the mapping between the software architecture and the team
structure that project management activities can proceed.

These structures have a first-class place in the Views and
Beyond approach, and this chapter focuses on the views and
styles that represent them. Allocation views present a mapping
between software elements (from either a module view or a
component-and-connector [C&C] view) and nonsoftware ele-
ments in the software’s environment.

You can think of an allo-
cation view as the result
of combining a software
architecture view with a
view from a different
kind of architecture —for
example, a hardware
architecture or an orga-
nizational architecture.
Section 6.6 describes
techniques for combin-
ing otherwise-separate
views, and why you
might want to do so.
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These are not the only
allocation styles; many
others are possible and
useful. Examples can
be found in Section 5.5
and “Perspectives:
Coordination Views,”
on page 209, in this
chapter.

We begin by considering the most general form of the map-
ping between the software architecture and its environment.
We then identify three common allocation styles, as shown in
Figure 5.1.

¢ The deployment style describes the mapping between the
software’s components and connectors and the hardware of
the computing platform on which the software executes.

¢ The install style describes the mapping between the soft-
ware’s components and structures in the file system of the
production environment.

¢ The work assignment style describes the mapping between
the software’s modules and the people, teams, or organiza-
tional work units tasked with the development of those
modules.

Table 5.1 summarizes the characteristics of the allocation
styles. The elements of allocation styles are software elements
plus environmental elements. Examples of environmental ele-
ments are a processor, a disk farm, a file or folder, or a group
of developers. The software elements come from a module or
C&C style.

Figure 5.1

Three allocation styles are
deployment (mapping soft-
ware architecture to the
hardware of the computing
platform), install (mapping it
to a file system in the pro-
duction environment), and
work assignment (mapping
it to the teams in the devel-
opment organization).

“ Computing
‘ Platform Production
Environment

Deployment

Style
@ Install

Work

g‘f;f"mem Software Elements
from Module or
C&C Views

Development
Organization
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Table 5.1 Summary of the characteristics of the allocation styles

Overview Allocation styles describe the mapping between the software architecture and
its environment.

Elements Software element and environmental element. A software element has prop-
erties that are required of the environment. An environmental element has
properties that are provided to the software.

Relations Allocated-to. A software element is mapped (allocated to) an environmental
element. Properties are dependent on the particular style.

Constraints Varies by style

The relation in an allocation style is the allocated-to relation.
We usually talk about allocation styles in terms of a mapping
from software elements to environmental elements, although
the reverse mapping would also serve the same purposes. A sin-
gle software element can be allocated to multiple environmen-
tal elements, and multiple software elements can be allocated
to a single environmental element. If these allocations change
over time, during either development or execution of the sys-
tem, then the architecture is said to be dynamic with respect to
that allocation.

Software elements and environmental elements have prop-
erties in allocation styles. The specific properties you should
include in an allocation view will, as always, depend on the pur-
pose of that view. The usual goal of an allocation view is to com-
pare the properties required by the software element with the
properties provided by the environmental elements to deter-
mine whether the allocation will be successful or not. For
example, to ensure a component’s required response time, it
has to execute on (be allocated to) a processor that provides suf-
ficiently fast execution times, where “sufficiently fast” might be
defined in terms of a requirement that an IEEE 754 single-pre-
cision floating-point multiply must execute in 50 microsec-
onds. Or a computing platform might not allow a task to use
more than 10 kilobytes of virtual memory. In this case, an exe-
cution model of the software element in question can be used
to determine the required virtual memory usage.

The specific uses and notations for allocation styles are style
specific and are covered in their respective sections.

5.2 Deployment Style
5.2.1 Overview

In the deployment style, software elements native to a C&C
style are allocated to the hardware of the computing platform
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Although the deployment
style in its general form
imposes no topological-
form restrictions, spe-
cializations (substyles)
of the deployment style
might. See Section 5.5
for examples.

on which the software executes. A valid allocation ensures that
the requirements expressed by the software elements are satis-
fied by the characteristics of the hardware element(s).

5.2.2 Elements, Relations, and Properties

Table 5.2 summarizes the characteristics of the deployment
style. Environmental elements in a deployment style are enti-
ties that correspond to physical units that store, transmit, or
compute data. Physical units include processing nodes (CPUs),
communication channels, memory stores, and data stores.

The software elements in this style are typically elements that
would be documented in a C&C view. When represented in a
deployment view, the software elements are assumed to run on
a computer. Therefore, software elements in this style corre-
spond to runtime entities of the computing platform (such as
processes, threads, ports, or shared memory).

The typical relation depicted in a deployment view is a spe-
cial allocated-to form that shows on which physical units the soft-
ware elements reside at a given moment in time. The relation
can be dynamic; that is, the allocation can change as the system

Table 5.2 Summary of the deployment style

Overview The deployment style describes the mapping of
components and connectors in the software archi-
tecture to the hardware of the computing platform.

Elements e Software element: elements from a C&C view.
Useful properties to document include the signifi-
cant features required from hardware, such as pro-
cessing, memory, capacity requirements, and fault
tolerance.

e Environmental elements: hardware of the comput-
ing platform—processor, memory, disk, network
(such as router, bandwidth, firewall, bridge), and so
on. Useful properties of an environmental element
are the significant hardware aspects that influence
the allocation decision.

Relations ¢ Allocated-to. Physical units on which the software
elements reside during execution. Properties
include whether the allocation can change at
execution time or not.

e Migrates-to, copy-migrates-to, and/or execution-
migrates-to if the allocation is dynamic. Properties
include the trigger that causes the migration.

Constraints The allocation topology is unrestricted. However, the
required properties of the software must be satisfied
by the provided properties of the hardware.
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executes. In this case, additional relations, such as the follow-
ing, may be shown:

® Migrates-to. A relation from a software element on one pro-
cessor to the same software element on a different proces-
sor, this relation indicates that a software element can move
from processor to processor but does not simultaneously
exist on both processors.

* Copy-migrates-to. This relation is similar to the migrates-to rela-
tion, except that the software element sends a copy of itself
to the new processor while retaining a copy on the original
processing element.

* Execution-migrales-to. Similar to the previous two, this rela-
tion indicates that execution moves from processor to pro-
cessor but that the code residency does not change. A copy
of a process exists on more than one processor, but only one
is active at any particular time. The execution of the process
“migrates” when the active process is changed.

It is also possible for the allocation to change over time as a
result of manual reconfiguration brought about by exercising
a variation point built in to the architecture.

The important properties of the elements are the significant
hardware features that affect the allocation of the software to
the physical units. How a physical unit satisfies a software ele-
ment requirement is determined by the properties of both. For
example, if a software element requires a minimum storage
capacity, any environmental element that has at least that capac-
ity is a candidate for a valid allocation.

Moreover, the types of analyses to be performed via a deploy-
ment view also determine the particular properties the ele-
ments must possess. For example, if a memory capacity analysis
is needed, the necessary properties of the software elements
must describe memory consumption aspects, and the relevant
environmental element properties must depict memory capac-
ities of the various hardware entities.

Below are some environmental element properties relevant
to physical units:

® CPU properties. The properties relevant to the various pro-
cessing elements (such as processor clock speed, number of
processors, memory capacity, bus speed, cache size, and
instruction execution speed).

® Memory properties. The properties relevant to the memory
stores (such as memory size and speed characteristics).
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Section 6.4.3 describes
how to document dyna-
mism and dynamic
architectures.

%

Documenting variation
points is discussed in
Section 6.4.
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® Disk or other storage unit capacity. The storage capacity and
access speed of disk units: individual disk drives, disk farms,
and redundant arrays of independent disks (RAIDs).

® Bandwidth. The data transfer capacity of communication
channels.

e [Fault tolerance. Multiple hardware units may perform the
same function, and these units may have a failover control
mechanism.

Properties that are relevant to software elements include the
following:

® Resource consumption. For example, a computation takes 32,123
instructions always, or at most, or on average, or under nom-
inal (error-free) conditions, and so on.

®  Resource requirements and constraints that must be satisfied. For
example, a software element must execute in no more than
0.1 second.

® Safety critical. For example, this would be true if a software
element must always be running.

The following property is relevant to the allocation:

* Migration trigger. If the allocation can change as the system
executes, this property specifies what must occur for a migra-
tion of a software element from one processing element to
another.

5.2.3 What the Deployment Style Is For

A deployment view is useful for analyzing performance, avail-
ability, reliability, and security. Testers use this view to under-
stand runtime dependencies, and integrators use it to plan
integration and integration testing. A deployment view may
also be used to support cost estimation when evaluating pur-
chasing options for hardware.

Performance is tuned by changing the allocation of software
to hardware. Optimal or improved allocation decisions could
be those that eliminate bottlenecks on processors or that dis-
tribute work more evenly (for example, processor utilization is
roughly even across the system). Often performance improve-
ment is achieved by collocating deployment units that require
frequent and/or high-bandwidth communications with one
another. The volume and frequency of communication among
deployable units on different processing elements, which takes
place along the communication channels between those ele-
ments, is the focus for much of the performance engineering
of a system. The architect can employ additional hardware or
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replace hardware elements with more powerful versions when
requirements cannot be met no matter how the allocation is
optimized.

Availability and reliability are directly affected by the sys-
tem’s behavior in the face of faulty or failed processing ele-
ments or communication channels. If a processor or a channel
can fail without warning, copies of software components can
be placed on separate processors. If a warning will precede a
failure, then components can be migrated at runtime when a
failure is imminent. If every processing element has enough
memory to host a copy of every deployable unit, runtime
migration need not occur. When a failure occurs, a different
copy of the no-longer-available deployable unit becomes active,
but no migration of code occurs.

Security and attack resistance are influenced by the configu-
ration of the hardware and the allocation of software to it.
Limit the services available on each host to limit exposure.
Firewalls and router and bridge protections can be employed
to limit access to sensitive areas. Physical security measures can
be used to limit exposure of a processor to physical attack.

Modern software architectures seek to make deployment
decisions transparent, and thus changeable. For example, a
goal is to carry out interprocess communication in exactly the
same fashion whether the processes reside on the same or on
different processors. If the deployment changes, the code
need not. Thus, although a deployment view is invaluable in
helping to analyze and achieve quality attributes, be careful
not to let the software implementers assume too much about
the deployment.

An incorrect use of a deployment view is to treat it as the entire software archi-
tecture of a system. A single view in this style, in isolation, is not a complete
description of a software architecture. Although this observation is true of every
style, allocation styles seem especially susceptible. When asked to show their
software architecture, architects sometimes present an impressive diagram that
shows a network of computers with all their properties and protocols used and
the software components running on those computers. Although these dia-
grams fill an important role by helping to organize the work and to understand
the software, they do not fully represent the software architecture.

Don’t try to force a relationship between modules and hardware units. For
instance, it is usually a design error to force each layer of a layered system onto
its own processor. (Remember that layers are not tiers.)
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5.2.4 Notation for the Deployment Style
Informal Notations

Informal graphical notations contain boxes, circles, lines, arrows,
and so on to represent the software and environmental elements.
In many cases, stylized symbols or icons are used to represent the
environmental elements. The symbols are frequently pictures of
the hardware devices in question. Additionally, shading, color,
border types, and fill patterns are often used to indicate the type
of element. Software elements can be listed inside or next to the
hardware to which they’re allocated to show the allocated-to rela-
tion. If the deployment structure is simple, a table that lists the
software units and the hardware element on which each executes
may be adequate. Figure 5.2 shows an example of a deployment
view primary presentation using an informal notation.

Comp
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Figure 5.2

Example of a deployment view in an informal notation. This example comes from the U.S. Army Training Information
Architecture-Migrated (ATIA-M) System and uses distinctive symbols for different types of hardware. The connecting
lines are physical communication channels that allow the components to communicate with one another. The allocation
of components is shown by overlaying their names on the symbol. The allocation of connectors is done by writing their
names adjacent to the channels to denote the communication protocol. ATIA is a Java Platform, Enterprise Edition (Java
EE) application comprising hundreds of components (mostly serviets and Enterprise JavaBeans [EJBs]). The ATIA
architecture has a client-server multi-tier view with a Web GUI tier, a Web service tier, and an EJB tier. All components
inside those tiers are deployed to WebLogic, as indicated by the annotation. NIPRNET is an Internet-like network owned

by the Department of Defense.
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Formal Notations

The Architecture Analysis and Design Language (AADL) and
SysML are examples of architecture description languages that
provide formal notations for describing deployment views.
AADL provides a vocabulary for representing the hardware
and binding software to hardware elements such as processors,
memory, and connections. The language supports analysis of
performance, reliability, safety-critical, and security require-
ments. In SysML, graphical representation is supported using
a modified version of UML block diagrams. In addition, it pro-
vides a tabular form for representing deployment and other
forms of allocation.

UML

In UML, a deployment diagram is a graph of nodes connected
by communication associations. Nodes correspond to processing
elements, usually having a memory and a processing capability.
Nodes may contain component instances, indicating that the
component resides on the node. Components can be connected
to each other by dependency arrows. In a UML deployment
diagram, components may contain objects, meaning that the
objects are part of those components. Migration of components
from node to node (or objects from component to component)
is shown by the <<becomes>> dependency stereotype. A node
is shown using a symbol that looks like a three-dimensional
box, with an optional name inside. Nodes are connected by
associations that stand for communication paths. The precise
nature of the communication path can be indicated by a ste-
reotype on the association (for example, <<10-T Ethernet>>,
<<RS$-232>>). Properties are represented as attribute name-
value pairs (for example, processorSpeed = 300 mHz, memory =
128 MB). A deployment specification specifies the parameters
guiding deployment of a component, such as the mode of con-
currency (for example, thread, process, none).

Figure 5.3 shows an example of UML notation for a deploy-
ment view.

5.2.5 Relation to Other Styles

The deployment style is related to the C&C styles that provide
the software elements that are allocated to the hardware of the
computing platform. Itis also closely related to the install style,
which shows the contents of the files deployed to hardware
nodes.
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SysML and AADL are
described in Appendi-
ces B and C, respectively.
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Figure 5.3

A deployment view in UML,
showing the hardware
platform supporting a
Java EE system. The
<<deploy>> dependency
shows which artifacts are
deployed to which nodes.
<<execution environment>>
is a node that offers an
environment to run specific
types of components. To
know what components are
deployed to a specific
node, you need to look at
the install view to see what
components go inside each
artifact.
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5.3 Install Style
5.3.1

The install style allocates components of a C&C style to a file
management system in the production environment. Once a
software system is implemented, the resulting files have to be
packaged to be installed on the target production platform
(such as a desktop computer or a server machine running an
application server). These files include libraries, executable
files, data files, log files, configuration and version control files,
license files, help files, deployment descriptors, scripts, and
static content (for example, HTML files and images). For a
large software system, the number of files installed in the pro-
duction environment can reach the thousands. These files
need to be organized so as to retain control over and maintain
the integrity of the system build and package process, as well as
to help deployers and operators locate and manipulate the
files when necessary. Configuration management techniques,
build tools, and installation tools usually help to get this job
done. But an architecture description shows how the installed
system is organized as a structure of files and folders, and
describing how software elements map to that structure is
important to assist developers, deployers, and operators.

The install style helps describe what specific files should be
used and how they should be configured and packaged to pro-
duce different versions of the system. Maintaining multiple
versions simultaneously is a common practice for many sys-
tems. Different versions of the same system may

Overview



¢ Support internationalization

¢ Offer different pricing (for example, a free version and a
commercial version)

e Accommodate customizations for different clients

¢ Support clients in a distributed system that still send old-ver-
sion message requests

Once the implementation is in place, configuration man-
agement tools and build scripts help to automate the process
of selecting, configuring, and packaging the right configura-
tion items for different versions. But the architecture describ-
ing this, possibly quite intricate, structure of files and folders
should be initially captured in an install view.

5.3.2 Elements, Relations, and Properties

Table 5.3 summarizes the principal characteristics of the install

style. Environmental elements in an install view are configura-

tion items: files and folders in a file system, which are orga-

nized in a tree structure. The software elements are C&C

components, such as processes, threads, servlets, or data stores.
Two relations in the install style are

® Allocated-to. A relation between components and configura-
tion items. This relation connects a component with the file
or folder that stores that component in the file system.

* Containment. A folder in the file system contains other fold-
ers and/or files. Likewise, a file (such as a zip file) may con-
tain other files and folders. Also, a given file or folder may
be contained in multiple files or folders—for example, for
multiple installed versions.

Table 5.3 Summary of the install style
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Managing multiple ver-
sions involves not only
the artifacts packaged
for deployment but also
implementation arti-
facts (such as source
files). The implementa-
tion view, introduced in
Section 5.5, describes
the structure of files and
folders in the develop-
ment environment. The
implementation and
install views together
describe the structures
containing all software
artifacts that are version
controlled.

Overview

The install style describes the mapping of components in the software archi-
tecture to a file system in the production environment.

Elements e Software element: a C&C component. Required properties of a software
element, if any, usually include requirements on the production environ-
ments, such as a requirement to support Java or a database, or specific

permissions on the file system.

e Environmental element: a configuration item, such as a file or a folder. Pro-
vided properties of an environmental element include indications of the
characteristics provided by the production environments.

Relations

e Allocated-to. A component is allocated to a configuration item.

e Containment. One configuration item is contained in another.

Constraints
relation.

Files and folders are organized in a tree structure, following an is-contained-in
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Section 6.4 explains
what variation points
are and how to docu-
ment them.

Duke’s Bank is an exam-
ple application used in
Sun’s online Java tuto-
rial. See java.sun.com/
j2ee/tutorial/1_3-fcs/
doc/Ebank.html.

As with the deployment style, the important properties of
the software and environmental elements of the install style are
those that affect the allocation of the software to configuration
items. For example, how a configuration management system
deals with histories and branches is a configuration item prop-
erty; a specific version of the Java runtime environment to use
might be a required property of a software component. An
install view might be designed to make extensive use of varia-
tion points, because installation requirements will likely be dif-
ferent on different platforms.

5.3.3 What the Install Style Is For

Understanding the organization of the files and folders of the
installed software can help developers, deployers, and opera-
tors carry out the following tasks:

¢ Create build-and-deploy procedures

¢ Navigate through a large number of files and folders that
constitute the installed system, to locate specific files that
require attention (such as a log file or configuration file)

¢ Select and configure files to package a specific version of a
software product line

¢ Update and configure files of multiple installed versions of
the same system

¢ Identify the purpose or contents of a missing or damaged
file, which is causing a problem in production

¢ Design and implement an “automatic updates” feature

The required properties of the software elements in the
install style can also be used to support the analysis of purchas-
ing options for production environments.

5.3.4 Notations for the Install Style

Any notation for an install view must show components, the
files and folders, and the mapping between them. The tree
structure organization of the files and folders should also be
shown. UML provides a number of built-in facilities to aid in
showing an install view, including the <<artifact>> stereotype
to denote a file (configuration item) and the <<manifest>>
artifact to indicate containment.

Figure 5.4 shows an install view diagram from the Duke’s
Bank application using an informal notation, and Figure 5.5
shows the same diagram rendered in UML.
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DukesBankApp.ear

account-ejb.jar
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EJB
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Figure 5.4

An install view in an informal notation, from the Duke’s Bank Java EE application. Java applications are usually deployed

in Java archive (JAR) files. Like a zip file, a JAR file may contain other files. Enterprise JavaBean JAR files contain EJB

classes and other files that the EJBs may need. Web archive (WAR) files contain Web components (servlets and Java-

Server Pages [JSPs]); very often, they also contain HTML, JPEG, and other files used in Web pages for “static content.”

Enterprise archive (EAR) files are a packaging of zero or more JAR and zero or more WAR files. All server-side compo-

nents are inside DukesBankApp.ear, which is deployed to the application server. The diagram also shows that the client-
side BankAdmin Java application is deployed in app-client.jar, which is deployed to the admin user’s machine.

Notation: «artifact» D «manifest»
UML DukesBankApp.ear
T - \‘. \\\\“~~
«manifest» «manifest» «manifest»
«artifact» D «artifact» D «artifact» D
account-ejb.jar customer-ejb.jar tx-ejb.jar
./I \\\ ’I, \\\ \\ h SN
«manifest» «manifest» «man’ifest» «manifest» «manifest» «manifest»
/ \ AN \ .
|/ N v N N A\
«sessionbean» Gitvb «sessionbean» sessionbean entitvbean
i « » « »
Account AccountEJB Customer tomete | | TxControllerEJB TXEJB
ControllerEJB ControllerEJB | | CustomerEJB
i
1
V
«artifact» D Shorthand f «artifacts D
orthand for :
ont web-client.war
app-client.jar all JSP files
N 7 ~ T N
/ \ N\ «manifesty -~ e ! N
/ \ \ ! _-~" «manifest» | «manifest»
f f - . . i N
«ma:—ufest» «manl\fest» =" «manifest» S «manifest» .
/ \ - // 1 \\
v N & Y v A\
g] artifacts [ g] «artifact» [ «artifactr [
«J2EEapp.client» AdminMessages «servlet» «JSP» *.tld, *.gif, WebMessages «artifact»
BankAdmin .properties Dispatcher *.jsp *.html .properties struts.jar
Figure 5.5

The install view of Figure 5.4 rendered in UML. The <<artifact>> stereotype denotes a file of any kind. The <<manifest>>
stereotype indicates that a given component, class, or other artifact is inside a given artifact.
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5.3.5 Relation to Other Styles

The install style is most strongly related to the C&C styles that
describe the software elements for the allocation. The deploy-
ment style is also closely related because it shows the hardware
elements where the files in an install view are deployed to.

5.4 Work Assignment Style

5.4.1 Overview

The work assignment style allocates modules of a module style
to the groups and individuals who are responsible for the real-
ization of a system. This style defines the responsibility for
implementing and integrating the modules to the appropriate
development teams. The style is typically used to link activities
to resources to ensure that the modules are each assigned to
an individual or team. The architecture in combination with
process determines the actual allocations.

A common managerial tool is the work breakdown structure
(WBS). This tool defines a project and groups the project’s dis-
crete work elements in a way that helps organize and define
the total work scope of the project. Software WBSs have always
been based on some decomposition of the system being built
into parts: the modules of a module style.

Because work assignments represent a mapping of the soft-
ware architecture onto groups of humans, it is an important
allocation style. Teams—and hence work assignments—are
not simply associated with writing code that will run in the final
system. There are many more tasks that humans must perform:
configuration management, testing, evaluation of potential
commercial off-the-shelf products, ongoing product sustain-
ment, and so on.

Even if a module is purchased in its entirety as a commercial
product without the need for any implementation work, some-
one still has to be responsible for procuring it, testing it, and
understanding how it works, and someone has to “speak” for it
during integration and system testing. The team responsible
for that has a place in a work assignment view, just as do teams
responsible for implementing “homegrown” modules.

Moreover, software written to support the building of the
system—tools, environments, test harnesses, and so on—and
the responsible team have a first-class place in a work assign-
ment view.

5.4.2 Elements, Relations, and Properties

The elements of this style are software modules and the groups
of people in the development organization.
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Table 5.4 Summary of the work assignment style

Overview The work assignment style describes the mapping of the software architecture
to the teams in the development organization.

Elements e Software element: a module. Properties include the required skill set and
available capacity (effort, time) needed.

* Environmental element: an organizational unit, such as a person, a team, a
department, a subcontractor, and so on. Properties include the provided
skill set and the capacity in terms of labor and calendar time available.

Relations Allocated-to. A software element is allocated to an organizational unit.

Constraints In general, the allocation is unrestricted; in practice, it is usually restricted so
that one module is allocated to one organizational unit.

In this style, the allocated-to relation maps from software ele-
ments to organizational units.

A well-formed work assignment relation has the property of
completeness—all work is accounted for—and no overlap—no
work is assigned to two places. Properties of the software ele-
ments may include a description of the required skill set,
whereas properties of the people elements may include pro-
vided skill sets.

Table 5.4 summarizes the characteristics of the work assign-
ment style.

5.4.3 What a Work Assignment Style Is For

The work assignment style shows the major units of software
that must be present to form a working system and who will
produce them, as well as the tools and environments in which
the software is developed (and their assignments to environmen-
tal elements). The work assignment style helps with planning
and managing team resource allocations, assigning responsi-
bilities for builds, and explaining the structure of a project—to
a new hire, for example. The work assignment style can give
each team its charter.

This style is the basis for work breakdown structures and for
budget and schedule estimates.

5.4.4 Notations for the Work Assignment Style

No special notations exist for showing work assignment views.
Among informal notations, a table showing software elements
and responsible teams is often sufficient.

Tabular notes are a very simple and clear form of description
for work assignment views. The architect doesn’t need to
choose the team but rather provide information to manage-
ment. Later, the actual team assignments can be added.
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ECS Element (Module)
Segment Subsystem Organizational Unit
Science Data Client Science team
Processing
Segment Interoperability Prime contractor team 1
(SDPS)

Ingest Prime contractor team 2

Data Management Data team

Data Processing Data team

Data Server Data team

Planning Orbital vehicle team
Flight Planning and Scheduling Orbital vehicle team
Operations
Segment Data Management Database team
(FOS)

User Interface User interface team

Figure 5.6

Work assignment view using a tabular notation. The left two columns echo the system’s module decomposition

structure.

%

The decomposition
style is discussed in
Section 2.1.

%

Combining views is dis-
cussed in Section 6.6.

Figure 5.6 shows the primary presentation for a work assign-
ment view of a NASA system called ECS. In the decomposition
view for ECS, the highest level modules are called segments;
those are decomposed into units called subsystems.

5.4.5 Relation to Other Styles

The work assignment style is strongly related to the decompo-
sition style, because that is the most common basis for its allo-
cation mapping. A work assignment view may extend the
module decomposition by adding modules that correspond to
development tools, test tools, configuration management sys-
tems, and so forth, whose procurement and day-to-day opera-
tion must also be allocated to an individual or a team.

A work assignment view is often combined with other views.
For example, team work assignments could be the modules in
a decomposition view, the layers in a layered view, the software
associated with tiers in an #»-tier architecture, or the software asso-
ciated with tasks or processes in a multi-process system. You
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could augment those views by annotating the various software
elements with the name of the team assigned to each. Or you
could document the assignments as an additional property of
the software elements.

The creation of a work assignment view—whether main-
tained separately or combined with another—enables the
architect and the project manager to give careful thought to
the best way to divide the work into manageable chunks. This
approach also helps keep explicit the need to assign responsi-
bility for all software, such as the development environment
that will not be part of the deployed system. A danger of com-
bining work assignments with other views is that the work
assignments associated with tool building may be lost; in many
situations, the ancillary software tools are not part of the actual
system and do not appear in any of other views.

Why Is a Work Assignment View Architectural?

A work assignment view maps software elements (modules) to environment ele-
ments (units in a development or acquisition organization). It shows who is
responsible for developing each piece of the system. Some people, when con-
fronted with our prescription to consider designing and documenting a work
assignment view as part of the architecture, balk. “Wait,” they say. “It is not part
of the architect’s responsibilities to assign work to people. That’s what project
management is for.” It’s a fair question.

About four years ago, | was part of a large U.S. government defense project that
was just getting off the ground. It was a system of large interacting systems,
each complex and, in several cases, unprecedented. The government decided
that it needed to choose a major contractor to develop a key part of this project,
and to oversee the development and integration of the rest of it. After that, it
needed to award participating contracts to many other companies to build the
other pieces of the system.

This project was predicted to comprise several tens of millions of lines of code,
with a price tag in the billions of dollars. Contracts, especially sizable ones, take
a long time to go through the competitive procurement process. There are mas-
sive “requests for proposals” publicly circulated, which precipitate massive bid
proposals in response, which in turn trigger massive source selection pro-
cesses. Even if there are no protests filed by any of the losing bidders, which
can send the process back to the beginning, it takes months or years to award
a contract and begin work. Government acquisition keeps legions of lawyers on
both sides gainfully employed.

Knowing all of this, the government agency procuring the system had a tangible
incentive to get the contract process under way as soon as possible. The clock
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was ticking; this system was going to replace several others whose withdrawal
from service had already been planned. Contracting for this project occupied
everyone’s attention for well over a year.

Eventually the prime contractor and the major subcontractors were in place,
and a huge sigh of relief was palpable throughout parts of Washington. “Now,”
said the project manager, “let’s find an architect to design the system.”

Do you see the flaw here? The first day on the job, the architect was confronted
with a de facto decomposition, based on contracting concerns. It is fair to say
that this was not the decomposition the architect would have wanted, and if he
had been able to say so earlier, the contracts awarded might well have been dif-
ferent. The architect was concerned with exploiting the inherent commonality
and managing the variation across the several versions of the system he knew
were going to be deployed. He was also concerned with injecting some com-
monality across the subsystems; in particular, he knew they all needed a com-
mon look and feel. He might have created an architecture element to provide
that. But with nothing in any of the contracts to cover this, he was reduced to
writing it into the architecture “guidelines,” which were not always followed with
hoped-for rigor. We know that the module decomposition structure of a soft-
ware system is primarily where its modifiability is created. It is doubtful that the
government contracting experts either possessed the domain expertise or con-
ducted a domain analysis to see what likely changes were in store and design
the decomposition accordingly.

This example and others make me believe that a work assignment view is an
important architectural contribution. And yet the skeptics have a point. Aren’t
we asking architects to make project management decisions? In this example,
project managers were making de facto architectural decisions, and the result,
predictably, was a poor architecture. The solution seems obvious: architects
and project managers should work together on this and other issues. In partic-
ular, the architect can inform management about the decomposition and the
skill set needed to ensure the successful development of each piece. Having the
architect involved in the beginning ensures that the module decomposition
drives the work assignments and not the other way around. Having a place for
a work assignment view all ready and waiting in the architecture document can
help the architect engage his or her project manager in a conversation about fill-
ing itin.

—P.C.

5.5 Other Allocation Styles

So far in this chapter you’ve seen that hardware, file manage-
ment systems, and team structure all interact with the software
architecture. We’ve shown a style that captures each of these
allocations from software to external-to-software structures.
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There are many other useful mappings of this variety. Here are
a few for you to consider:

o Implementation style. The implementation style describes how
the development environment is organized in a tree struc-
ture of files and folders and how modules from a module
view map to that structure. When you apply the implemen-
tation style to a system, the resulting implementation view
shows how files and folders should be arranged to host the
implementation units: classes, programs, scripts, test cases,
make files, documentation files, and any other artifacts cre-
ated when the system is developed. The implementation
view helps developers to navigate and locate development arti-
facts, and to place new artifacts in the proper place. The
implementation view also helps in the implementation of
version control and configuration management policies.
The implementation style is similar to the install style, but
instead of showing files and folders in the production envi-
ronment, it shows the organization of files and folders in the
development environment. A screenshot of your develop-
ment environment tool (which manages the implementa-
tion environment) often makes a very useful and sufficient
diagram for your implementation view.

® Data stores style. The data stores style describes the mapping
between the software’s data entities and the hardware of the
data servers on which the software resides. When you apply
the data stores style to a system, the resulting data stores
view shows how the tables containing data described in the
data model style are distributed over servers. It might show
to which servers stored procedures have been allocated. It
might show geographic distribution of the database or data-
base replication. It might also show the machines that host
data warehouses and the data stores that feed them. These
and other similar relations are important for addressing
concerns about data availability, resilience of data to physi-
cal attack or cyberattack, as well as how data accesses affect
overall system performance. The data stores style is similar
to a deployment style, except that (instead of C&C compo-
nents) it shows data entities allocated to hardware.

Other allocation styles are possible. You could define a
requirements-allocation style that maps between system
requirements and the software elements of the architecture
that satisfy them; that’s one way to document a mapping
between requirements and design. And for projects spread
across many teams and sites, a coordination view can be an
important tool to bring the architecture and the development
organization into alignment.

(2
L7
@’
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If your development
organization will create
multiple software sys-
tems and wants all of
them to follow the same
structure for the files
and folders in the devel-
opment environment,
you should document
an implementation view
that serves as a refer-
ence for all these soft-
ware projects.

Section 2.6 discusses
the data model style.

Section 10.3 discusses
ways to capture map-
pings from require-
ments to software.

See “Perspectives:

Coordination Views” on
page 209, in this chapter.
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A style is a specializa-
tion of another style if it
is consistent with that
style—that is, doesn’t
violate it—and adds
more constraints to its
element types, relation
types, and/or topologi-
cal restrictions.

See the MSDN Web site,
msdn.microsoft.com/
en-us/library/
ms978694.aspx.

See the IBM Redbooks
Web site, www.redbooks
.ibbm.com/abstracts/
$9246446.html.

There are also useful specializations of the styles discussed in

this chapter. For example:

o Specializing the deployment style. The deployment style as pre-

sented comes with no inherent topological restrictions, but
you might find certain patterns of deployment to be partic-
ularly useful. Microsoft publishes a “Tiered Distribution”
pattern, which prescribes a particular allocation of compo-
nents in a multi-tier architecture to the hardware they will
run on. This pattern specializes the generic deployment
style. If you adopt and document this pattern for your sys-
tem, the result will be a Tiered Distribution view. Similarly,
IBM’s WebSphere handbooks describe a number of what
they call “topologies” along with the quality attribute crite-
ria for choosing among them. There are 11 topologies (spe-
cialized deployment views) described for WebSphere
version 6, including the “single machine topology (stand-
alone server),” “reverse proxy topology,” “vertical scaling
topology,” “horizontal scaling topology,” and “horizontal
scaling with IP sprayer topology.”

9«

Specializing the work assignment style. You can also document
often-used team structure patterns as specializations of the
work assignment style. In Urdangarin et al. 2008, the
authors describe a number of team-organization approaches
for globally distributed Agile projects. Each constitutes a
specialized work assignment style:

— Platform style. In a software product line development,
one site is tasked with developing reusable core assets of
the product line, and other sites develop applications
that use the core assets.

— Competence-center style. Work is allocated to sites depend-
ing on the technical or domain expertise located at a site.
For example, user-interface design is done at a site where
usability engineering experts are located.

— Open-source style. Many independent contributors develop
the software product in accordance with a technical inte-
gration strategy. Centralized control is minimal, except
when an independent contributor integrates his code
into the product line.

They also identify two other organizational allocation
schemes that technically do not qualify as specializations of
the work assignment style, because they allocate something
other than modules to organizational units:

— Process-steps style. Work is allocated across the sites in accor-
dance with the phases of the software development process;
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for example, design may be done at one site, develop-
ment at another site, and testing at yet another site.

— Release-based style. The first product release is developed at
one site, the second at another site, and so on. Often the
releases will be overlapped to meet time-to-market goals;
for example, one site is testing the next release, another
site is developing a later release, and yet another site is
defining or designing an even later release.

Coordination Views

With Jim Herbsleb

A coordination view can be an important tool to bring the
architecture and the development organization into
alignment, particularly for projects spread across many
teams and sites.

The motivation for a coordination view stems from the
limitations of communication as a coordination mecha-
nism. Conway (1968) observed decades ago: “Any orga-
nization that designs a system will inevitably produce a
design whose structure is a copy of the organization’s
communication structure.” Small teams can coordinate
their work rather simply through frequent communica-
tion. But since the number of potential communication
paths increases as the square of the number of team
members, this strategy does not scale. The usual solu-
tion is to divide a system into parts that have limited,
well-specified interactions, so that developers working
on one part do not need to coordinate their work with
developers working on other parts. In the software
domain, Parnas (1972) observed long ago that in thinking
about criteria for partitioning code into modules, they
should be thought of not as subprograms but as “work
items” that can be assigned to teams.

Modularization is an essential strategy for allowing
development projects to coordinate their work, but it is
generally not sufficient. Modules are not completely
independent—after all, they form a single system and
must therefore interact in some way —and for this reason,
the need for teams to coordinate is rarely eliminated
completely. In some cases, only minimal coordination will
be required, but in other cases, intensive coordination is

209
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Dependency structure
matrices are discussed
in Section 1.4.3.

necessary. The full picture is more complicated, as coor-
dination can happen through shared representations, by
prearranged plans and interfaces, and even by a shared
work history that enables teams to predict the actions of
other teams.

Just as the need to coordinate development work can
vary dramatically across modules, the capacity to coor-
dinate can vary dramatically across teams in a project.
The key to successful project coordination is to ensure
that the coordination required among teams never
exceeds the capacity of those teams to coordinate (Cat-
aldo et al. 2006). A coordination view is a tool that can be
used to help ensure this condition is not violated.

The key to a coordination view is representing complexity
and uncertainty in the relations between modules. Com-
plexity implies that a module and its interfaces are likely
to be difficult to understand and to use correctly. Uncer-
tainty means that potentially complicated communica-
tion and negotiation between teams and with architects
must occur as interfaces are worked out or the allocation
of functionality to modules is determined. Representing
complexity and uncertainty separately is important, since
the means for addressing them are generally quite differ-
ent. Complexity is generally addressed by detailed doc-
umentation, a tactic that is much less useful for handling
uncertainty. Frequent Agile-style communication is often
an effective way to address uncertainty, but it is easily
overwhelmed and ineffective at high levels of complexity.
It is important for a useful coordination view to represent
both.

One straightforward form a coordination view can take is
derived from matrices that represent the relations among
modules and the coordination capacities of the project
teams. Module relations are represented by two square
matrices (like dependency structure matrices), of dimen-
sion in the number of modules, with each entry taken
from the domain <0, 1, 2, 3>, representing an uncertainty
(UM) or complexity (CM) relation between two modules.
Zero values indicate modules are not related in any sub-
stantial way, while 1, 2, and 3 represent, respectively,
low, moderate, and high levels of complexity or uncer-
tainty in the interaction of the modules. Values can be
assigned in a variety of ways, for example by an expert
such as the lead architect.
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These matrices can be used in conjunction with square
matrices representing the relevant coordination capacity
of pairs of development teams. The communication
capacity matrix (CCM) represents the ease and facility
with which two teams can be expected to communicate.
This expectation depends on such factors as facility in a
common language, cultural similarity, degree of overlap
in work hours, use of similar communication technolo-
gies, and past experience successfully communicating
with each other or similar teams. The documentation
capacity matrix (DCM) represents the ease and facility
with which two teams can be expected to create relevant
documentation and achieve a common understanding of
it. This expectation depends on such factors as experi-
ence with relevant notations (for example, are both
teams experienced in UML if that is the chosen format),
history of creating and maintaining detailed and accurate
documentation of APIs, and the demonstrated willing-
ness to publish and read documentation. For both matri-
ces, the values can again be taken from the domain
<0, 1, 2, 3>, representing approximate levels of commu-
nication or documentation capacity of pairs of teams.

We now have four square matrices: two of dimension
number of modules (UM, CM), and two of dimension
number of teams (CCM, DCM). In order to compare
coordination needs with coordination capacities, it is
necessary to express both as relations among teams.
Some additional computation with UM and CM will
achieve this. All that is required is to use an allocation
view in the form of a binary matrix AM of teams by mod-
ules, where an entry of 1 indicates that a team is respon-
sible for a given module. The following multiplication
represents the degree to which each pair of teams can
expect to be required to coordinate uncertainties (where
AM' is the transpose of AM).

AM x UM x AM™ = CR,

The product CRyj is a square matrix of dimension in the
number of teams, where entries give an indication of the
extent to which each pair of teams is working on mod-
ules that interact with uncertain interfaces and/or uncer-
tain allocation of functionality. This indication is very
approximate, but a comparison of values in CRy and
CCM should give useful indication where much commu-
nication is going to be required (relatively large entries in
CRy) and little communication capacity exists (relatively
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Work assignment views
are discussed in Sec-
tion 5.4.

small entries in comparable cells of CCM). Such mis-
matches should trigger discussions about how communi-
cation can be supported or how work can be reassigned
in order to sidestep communication problems. An analo-
gous computation substituting CM for AM and DCM for
CCM will provide a comparison of the need of teams to
coordinate through documentation and their capacity to
do so.

Let’s illustrate with a small example. Let AM, a matrix of
dimension teams by modules, represent assignment of
code modules to teams for development. This is simply
a work assignment view. UM is an uncertainty matrix,
representing the lead architect’s judgment about the rel-
ative degree of uncertainty, for each pair of modules, of
the interface and the allocation of functionality between
the modules. CRy represents the extent to which each
pair of teams can expect to be required to coordinate
uncertainties.

AM UM AM" CR,
0[1[1]0[1 -T0[3]0]0 001 “T4]7
0/0[0[10] | % |[Oo[-[01[1] | % |[0o[1]| = |[4-]2
1[1]1]0]0 3]0[-11]3 1]0]1 712]-
ol1[1]-]2 0[1]0
0/1/3]2]- 1]0[0

CRy can now be compared with communication capac-
ities of the teams, CCM, or used to plan how the work is
assigned. It is a good bet, for example, because of the
work they are performing, teams 1 and 3 will require a
very robust communication capacity, if not collocation.
This because of the considerable uncertainty between
modules 1 and 3 as well as 3 and 5. Teams 2 and 3 will
have relatively little need to work out uncertainties,
meaning they can probably be located anywhere and will
need no special communication technologies. Teams 1
and 2 will have a moderate need to communicate, sug-
gesting they should work in time zones that allow over-
lapping work hours and have adequate teleconferencing
and perhaps instant-messaging technologies. Their coor-
dination success should be carefully monitored to ensure
they don’t get out of sync.

Additional experience with coordination views will even-
tually tell us when this simple construction is sufficient,
and when more nuanced schemes, perhaps attuned to
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architecture styles or other key attributes, will add value.
We may also need more systematic ways of assigning
values to both need and capacity. Such issues are the
subject of ongoing research (Urdangarin et al. 2008;
Avritzer, Cai, and Paulish 2008).

5.6 Summary Checklist

¢ Allocation styles map software elements to elements in the

environment of the software.

¢ A deployment view describes the mapping of runtime soft-
ware elements to the hardware of the computing platform

on which the software executes.

¢ An install view describes the tree structure of files and fold-
ers in the production environment and how the software

components are mapped to that structure.

¢ A work assignment view describes the mapping of modules
onto the people, groups, or teams tasked with the develop-

ment of those modules.

5.7 Discussion Questions

1. Consider a network diagram created by the network admin-
istrator in the IT department of your organization. How
does that diagram compare with a deployment view? What

is missing?

2. Suppose that you needed to map the modules under test to
the test harness that generates inputs, exercises the mod-
ules, and records the outputs. Sketch an allocation style

that addresses this concern.

3. In one project, short identifiers were assigned to every
module. A module’s full name consisted of its identifier,
prefixed by its parent’s identifier, separated by a period (.).
The project’s file structure was defined by a short memo-
randum stating the path name of a root directory and fur-
ther stating that each module would be stored in the
directory obtained by changing each period in the mod-
ule’s full name to a slash (/). Did this memorandum con-
stitute an implementation view for this system? Why or why
not? What are the advantages and disadvantages of this

scheme?

4. Suppose that your system can be deployed on a wide variety
of computing platforms and configurations. How would

you represent that?

213
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5. Besides the ones in this chapter, identify as many other
structures in the environment of a software system as you
can. Pick a few and answer the following: What software ele-
ments would map to it? Create an example primary presen-
tation for a corresponding view. Discuss to whom such a
view would be useful and what concerns it would address.

6. Many deployment tools and integrated development envi-
ronments provide views of the development and produc-
tion environments that allow you to easily understand and
navigate the tree structure of files and folders. Do you think
these tools can fill the need for creating install views or
implementation views in the architecture documentation?
Why so, or why not?

5.8 For Further Reading

Both the install style and the implementation style are aligned
with the broad topic of software configuration management
(SCM). An in-depth treatment of SCM is far beyond the scope
of this book, but you can begin investigating the topic by looking
at the documentation of SCM and version-control tools, such
as Subversion, CVS, Perforce, ClearCase, and Visual SourceSafe.
The Siemens Four View model defines a code architecture
view that explains how the software implementing the system
is organized into source, intermediate, and deployment com-
ponents and related decisions regarding build and installation
procedures and configuration management (Hofmeister, Nord,
and Soni 2000).

In the 1960s Conway (1968) formulated a law that the archi-
tectural structure mirrors the organizational structure. He
based his law on ease of communication within as opposed to
across groups. This law is an organizational articulation of cou-
pling and coherence. Architecture-based management of soft-
ware projects is also discussed in the book by Paulish (2002).
He has observed that accurate time and budget estimates
depend on basing them on the software architecture. This is
the place where a work assignment view comes into play; Paul-
ish’s observation has a strong intuitive base, as the time and
budget estimates depend on the work breakdown structure,
which in turn depends on the software architecture. More
recently, Avritzer and others have observed many different
organizational approaches to assign work in globally distrib-
uted teams (for example, product structure, process steps,
release-based, computing platform structure, competence cen-
ter, and open source) (Avritzer, Cai, and Paulish 2008).
Avritzer explicitly discussed assigning work in globally distrib-
uted teams.



Beyond Structure:
Completing the
Documentation

Part I presented a substantial repertoire of useful architecture
styles. An architect can choose from among these styles, pick
styles in other style catalogs, or design a new style. Once a style
is chosen, the view based on it needs to be designed and docu-
mented. The chapters in Part I presented ways to document
the elements and relations that populate a view.

But documenting a view involves more than just writing
down (or more often, drawing) the elements and their rela-
tions. Elements have interfaces, and those need to be docu-
mented so that teams developing other elements can interact
with them correctly. Elements have behavior, and confedera-
tions of elements have collective behavior, which needs to be
documented so that implementers know what the elements
they’re coding should do, and so that analysts can tell if the
architecture is satisfying the system’s behavioral requirements.
Architects need a way to explain their design—what drove
them to make the design decisions they did. Documenting
rationale is a critical but often underpracticed part of an archi-
tect’s duties.

These and other kinds of information are important parts of
the architecture document. Part II deals with those.

¢ Chapter 6 explores documentation techniques such as
refinement and chunking of information, context dia-
grams, creating and documenting combined views, docu-
menting variability and dynamism, and documenting the
rationale behind architectural decisions.

e Chapter 7 tells how to document the interfaces of architec-
ture elements. It provides ways to document the existence of
interfaces, the syntax (or signature) of an interface, and the
semantics of an interface.

Great things are not
done by impulse, but by
a series of small things
brought together.

—Vincent van Gogh
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216 Part IIl: Beyond Structure: Completing the Documentation

¢ Chapter 8 explores another essential technique for archi-
tects: documenting the behavior of an element or an ensem-
ble of elements. Documenting behavior is an essential
counterpoint to documenting static structure. This chapter
covers the techniques and notations available for expressing
the behavior of elements, groups of elements, and the sys-
tem as a whole.



Beyond the Basics

This chapter contains guidelines for dealing with several
aspects of documentation that either span views or are not spe-
cific to any particular category of views:

6.1

6.2

6.3

6.4

6.5

Refinement. Refinement is a way to reveal more information
over time as it becomes available. Refinement reflects how
architectures develop over time, and it lets architects present
information in more or less detail to serve various audi-
ences. This section discusses two kinds: decomposition
refinement and implementation refinement.

Descriptive completeness. Does your architecture document
tell the truth, the whole truth, and nothing but the truth?
There may be good reasons why it doesn’t.

Documenting context diagrams. A context diagram establishes
the boundaries for the information contained in a view. A
context diagram for the entire system defines what is and
is not in the system, thus setting limits on the architect’s
tasks. This section discusses how to document context dia-
grams, and how to tailor context diagrams for each view.

Documenting variation points. Some architectures provide
built-in variation points to facilitate building a family of
similar but architecturally distinct systems. Other architec-
tures are dynamic, in that the systems they describe change
their basic structure while they are running.

Documenting architectural decisions. Why we made architec-
tural decisions the way we did is just as important as the
results of those decisions. This section discusses how to
record the rationale behind your design.
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o B

Refinement is the pro-
cess of gradually dis-
closing information
across a series of
descriptions.

]

Decomposition refine-
ment is a refinement in
which a single element
is elaborated to reveal
its internal structure.
Each member of that
internal structure may
be recursively refined.

6.6 Combining views. Prescribing a given set of rigidly parti-
tioned views is naive; there are times and good reasons for
combining two or more views into a single combined view.

6.1 Refinement

Architects need a way to carry out their designs and present
information in a view in manageable chunks. Refinement
allows the architect to present information in separate, digest-
ible pieces. A refinement elaborates on (adds information to)
an existing representation. Refinement allows the architect to
capture and present information with more or less detail. Less
detail is useful in early stages of design, and excellent for intro-
ductions, overviews, and early conceptualizing.

There are two important kinds of refinement: decomposi-
tion refinement and implementation refinement.

6.1.1

A decomposition refinement elaborates a single element to
reveal its internal structure and then recursively refines each
member of that internal structure. The text-based analogy of
this is the outline, whereby major sections (denoted by roman
numerals) are decomposed into subsections (denoted by capi-
tal letters), which are decomposed into sub-subsections
(denoted by Arabic numerals), and so forth.

Using decomposition refinements in a view carries an obli-
gation to maintain consistency with respect to the relation(s)
native to that view. For example, suppose that the relation
shown in Figure 6.1(a) is send-data-to. Because element B is
shown as both receiving and sending data, the refinement of B
in Figure 6.1(b) must show where data can enter and leave B:
in this case, via B1.

Decomposition Refinement

Figure 6.1

(@) A hypothetical system
consisting of three
elements: A, B, and C.
Arrows signify data flow.

(b) Element B is refined to
show that it consists of
elements B1, B2, B3, and
B4. Because B has two
inputs and one output, B’s
decomposition refinement
must satisfy that obligation.
Children B1 and B3 receive
the inputs; B3 produces the
output.

i

(a) (b)
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