
ptg20131482

ptg20131482

Service-Oriented Architecture

ptg20131482

This page intentionally left blank

ptg20131482

Service-Oriented Architecture
Analysis and Design for Services and Microservices

Thomas Erl
With contributions by Paulo Merson and Roger Stoffers

BOSTON • COLUMBUS • INDIANAPOLIS • NEW YORK • SAN FRANCISCO

AMSTERDAM • CAPE TOWN • DUBAI • LONDON • MADRID • MILAN • MUNICH

PARIS • MONTREAL • TORONTO • DELHI • MEXICO CITY • SAO PAULO

SIDNEY • HONG KONG • SEOUL • SINGAPORE • TAIPEI • TOKYO

ptg20131482

Publisher
Mark Taub

Editor-in-Chief
Greg Wiegand

Senior Acquisitions Editor
Trina MacDonald

Managing Editor
Sandra Schroeder

Senior Project Editors
Lori Lyons
Betsy Gratner

Copyeditors
Paula Lowell
Language Logistics
Infi net Creative Group
Maria Lee
Teejay Keepence

Indexer
Cheryl Lenser

Proofreaders
Williams Woods Publishing
Abigail Gavin
Melissa Mok
Kam Chiu Mok
Shivapriya Nagaraj
Catherine Shaffer
Pamela Janice Yau
Maria Lee

Editorial Assistant
Olivia Basegio

Cover Design
Thomas Erl

Photos
Thomas Erl

Cover Compositor
Chuti Prasertsith

Compositor
Bumpy Design

Graphics
Jasper Paladino
Zuzana Cappova
Infi nite Creative Group
Spencer Fruhling
Tami Young
Demian Richardson
Kan Kwai Lui
Briana Lee

Educational Content
Development
Arcitura Education Inc.

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of
this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom
cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Control Number: 2016952031

Copyright © 2017 Arcitura Education Inc.

All rights reserved. Printed in the United States of America. This
publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For informa-
tion regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Depart-
ment, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-385858-7
ISBN-10: 0-13-385858-8

First printing: December 2016

http://www.pearsoned.com/permissions/

ptg20131482

To Markus, who recently joined our team

with a keen sense of curiosity and a relentless desire

to analyze and redesign even the most micro of things.

—Thomas Erl

ptg20131482

This page intentionally left blank

ptg20131482

Contents at a Glance
CHAPTER 1: Introduction .1

CHAPTER 2: Case Study Backgrounds .13

PART I: FUNDAMENTALS
CHAPTER 3: Understanding Service-Orientation. .19

CHAPTER 4: Understanding SOA. .59

CHAPTER 5: Understanding Layers with Services and Microservices 111

PART II: SERVICE-ORIENTED ANALYSIS AND DESIGN
CHAPTER 6: Analysis and Modeling with Web Services and Microservices139

CHAPTER 7: Analysis and Modeling with REST Services and Microservices159

CHAPTER 8: Service API and Contract Design with Web Services191

CHAPTER 9: Service API and Contract Design with REST Services
and Microservices .219

CHAPTER 10: Service API and Contract Versioning with Web Services and
REST Services . 263

PART III: APPENDICES
APPENDIX A: Service-Orientation Principles Reference . 289

APPENDIX B: REST Constraints Reference . 305

APPENDIX C: SOA Design Patterns Reference .317

APPENDIX D: The Annotated SOA Manifesto. 367

About the Author . 383

Index . 384

ptg20131482

This page intentionally left blank

ptg20131482

Contents

Acknowledgments . xix

Reader Services .xx

CHAPTER 1: Introduction .1

1.1 How Patterns Are Used in this Book 3

1.2 Series Books That Cover Topics from the First Edition 4

1.3 How this Book Is Organized . 6
Part I: Fundamentals .6

Chapter 3, Understanding Service-Orientation. 6
Chapter 4, Understanding SOA . 6
Chapter 5, Understanding Layers with Services and Microservices . . . 6

Part II: Service-Oriented Analysis and Design.7
Chapter 6, Analysis and Modeling with Web Services and
Microservices . 7
Chapter 7, Analysis and Modeling with REST Services and
Microservices . 7
Chapter 8, Service API and Contract Design with Web Services. 7
Chapter 9, Service API and Contract Design with REST Services
and Microservices. 7
Chapter 10, Service API and Contract Versioning with Web Services
and REST Services . 7

Part III: Appendices .7
Appendix A, Service-Orientation Principles Reference 7
Appendix B, REST Constraints Reference . 7
Appendix C, SOA Design Patterns Reference . 8
Appendix D, The Annotated SOA Manifesto. 8

1.4 Page References and Capitalization for Principles,
Constraints, and Patterns. 8

ptg20131482

x Contents

Additional Information . 9
Symbol Legend .9
Updates, Errata, and Resources (www.servicetechbooks.com) . . .9
Service-Orientation (www.serviceorientation.com) 10
What Is REST? (www.whatisrest.com) .10
Referenced Specifications (www.servicetechspecs.com).10
SOASchool.com® SOA Certified Professional (SOACP)10
CloudSchool.com™ Cloud Certified Professional (CCP)10
BigDataScienceSchool.com™ Big Data Science Certified
Professional (BDSCP) .11
Notification Service .11

CHAPTER 2: Case Study Backgrounds 13

2.1 How Case Studies Are Used . 14

2.2 Case Study Background #1: Transit Line Systems, Inc. . . . 14

2.3 Case Study Background #2: Midwest University
Association . 15

PART I: FUNDAMENTALS

CHAPTER 3: Understanding Service-Orientation 19

3.1 Introduction to Service-Orientation 20
Services in Business Automation .21
Services Are Collections of Capabilities 22
Service-Orientation as a Design Paradigm 24
Service-Orientation Design Principles . 26

3.2 Problems Solved by Service-Orientation 29
Silo-based Application Architecture. 29
It Can Be Highly Wasteful. .31
It’s Not as Efficient as It Appears .32
It Bloats an Enterprise .32
It Can Result in Complex Infrastructures and Convoluted
Enterprise Architectures . 33
Integration Becomes a Constant Challenge 34
The Need for Service-Orientation . 34

http://www.servicetechbooks.com
http://www.serviceorientation.com
http://www.whatisrest.com
http://www.servicetechspecs.com

ptg20131482

Contents xi

Increased Amounts of Reusable Solution Logic 35
Reduced Amounts of Application-Specific Logic 36
Reduced Volume of Logic Overall . 36
Inherent Interoperability .37

3.3 Effects of Service-Orientation on the Enterprise38
Service-Orientation and the Concept of “Application”. 38
Service-Orientation and the Concept of “Integration” 40
The Service Composition .42

3.4 Goals and Benefits of Service-Oriented Computing 43
Increased Intrinsic Interoperability . 44
Increased Federation . 46
Increased Vendor Diversification Options 47
Increased Business and Technology Domain Alignment 48
Increased ROI . 48
Increased Organizational Agility . 50
Reduced IT Burden .52

3.5 Four Pillars of Service-Orientation.54
Teamwork . 54
Education . 55
Discipline . 55
Balanced Scope. 55

CHAPTER 4: Understanding SOA .59

Introduction to SOA .60

4.1 The Four Characteristics of SOA . 61
Business-Driven .61
Vendor-Neutral . 63
Enterprise-Centric . 66
Composition-Centric . 68
Design Priorities . 69

4.2 The Four Common Types of SOA . 70
Service Architecture .71
Service Composition Architecture . 77
Service Inventory Architecture . 83
Service-Oriented Enterprise Architecture 85

ptg20131482

xii Contents

4.3 The End Result of Service-Orientation and SOA.86

4.4 SOA Project and Lifecycle Stages 91
Methodology and Project Delivery Strategies 91
SOA Project Stages . 94
SOA Adoption Planning . 95
Service Inventory Analysis . 96
Service-Oriented Analysis (Service Modeling) 97

Step 1: Define Business Automation Requirements 99
Step 2: Identify Existing Automation Systems. 99
Step 3: Model Candidate Services . 100

Service-Oriented Design (Service Contract)101
Service Logic Design .103
Service Development .103
Service Testing. .103
Service Deployment and Maintenance .105
Service Usage and Monitoring. .105
Service Discovery .106
Service Versioning and Retirement .106
Project Stages and Organizational Roles 107

CHAPTER 5: Understanding Layers with Services
and Microservices . 111

5.1 Introduction to Service Layers . 113
Service Models and Service Layers. .113
Service and Service Capability Candidates.115

5.2 Breaking Down the Business Problem 115
Functional Decomposition .115
Service Encapsulation .116
Agnostic Context . 117
Agnostic Capability .119
Utility Abstraction .120
Entity Abstraction .121
Non-Agnostic Context .122
Micro Task Abstraction and Microservices 123
Process Abstraction and Task Services.123

ptg20131482

Contents xiii

5.3 Building Up the Service-Oriented Solution 124
Service-Orientation and Service Composition.124
Capability Composition and Capability Recomposition 127

Capability Composition . 129
Capability Composition and Microservices . 130
Capability Recomposition . 132

Logic Centralization and Service Normalization134

PART II: SERVICE-ORIENTED ANALYSIS AND DESIGN

CHAPTER 6: Analysis and Modeling with Web Services
and Microservices . 139

6.1 Web Service Modeling Process . 140
Case Study Example .141
Step 1: Decompose the Business Process
(into Granular Actions) .142
Case Study Example .142
Step 2: Filter Out Unsuitable Actions .144
Case Study Example .145
Step 3: Define Entity Service Candidates146
Case Study Example .146
Step 4: Identify Process-Specific Logic.149
Case Study Example .149
Step 5: Apply Service-Orientation .150
Step 6: Identify Service Composition Candidates151
Case Study Example .151
Step 7: Analyze Processing Requirements 152
Case Study Example .152
Step 8: Define Utility Service Candidates 153
Case Study Example .154
Step 9: Define Microservice Candidates154
Case Study Example .155
Step 10: Apply Service-Orientation .155
Step 11: Revise Service Composition Candidates.156
Case Study Example .156
Step 12: Revise Capability Candidate Grouping 157

ptg20131482

xiv Contents

CHAPTER 7: Analysis and Modeling with REST Services
and Microservices . 159

7.1 REST Service Modeling Process . 160
Case Study Example .162
Step 1: Decompose Business Process (into Granular Actions) . .164
Case Study Example .164
Step 2: Filter Out Unsuitable Actions .165
Case Study Example .165
Step 3: Define Entity Service Candidates 166
Case Study Example .167
Step 4: Identify Process-Specific Logic.169
Case Study Example .169
Step 5: Identify Resources .170
Case Study Example .171
Step 6: Associate Service Capabilities with Resources
and Methods .172
Case Study Example .173
Step 7: Apply Service-Orientation . 174
Case Study Example . 174
Step 8: Identify Service Composition Candidates175
Case Study Example .175
Step 9: Analyze Processing Requirements 176
Case Study Example .177
Step 10: Define Utility Service Candidates (and Associate
Resources and Methods). .178
Case Study Example .179
Step 11: Define Microservice Candidates (and Associate
Resources and Methods). .180
Case Study Example .181
Step 12: Apply Service-Orientation .181
Step 13: Revise Candidate Service Compositions.181
Case Study Example .182
Step 14: Revise Resource Definitions and Capability
Candidate Grouping. .182

ptg20131482

Contents xv

7.2 Additional Considerations . 183
Uniform Contract Modeling and REST Service Inventory
Modeling .183
REST Constraints and Uniform Contract Modeling186
REST Service Capability Granularity .188
Resources vs. Entities .189

CHAPTER 8: Service API and Contract Design with
Web Services . 191

8.1 Service Model Design Considerations 193
Entity Service Design .193
Utility Service Design .194
Microservice Design .196
Task Service Design .196
Case Study Example .198

8.2 Web Service Design Guidelines .208
Apply Naming Standards. 208
Apply a Suitable Level of Contract API Granularity 210
Case Study Example .212
Design Web Service Operations to Be Inherently Extensible . . .212
Case Study Example .213
Consider Using Modular WSDL Documents 214
Case Study Example .214
Use Namespaces Carefully .215
Case Study Example .215
Use the SOAP Document and Literal Attribute Values.216
Case Study Example .217

CHAPTER 9: Service API and Contract Design with
REST Services and Microservices. 219

9.1 Service Model Design Considerations 221
Entity Service Design .221
Utility Service Design . 222
Microservice Design . 223
Task Service Design. 225
Case Study Example . 226

ptg20131482

xvi Contents

9.2 REST Service Design Guidelines 231
Uniform Contract Design Considerations.231
Designing and Standardizing Methods .231
Designing and Standardizing HTTP Headers 233
Designing and Standardizing HTTP Response Codes 235
Customizing Response Codes. .240
Designing Media Types .242
Designing Schemas for Media Types .244
Complex Method Design .246
Stateless Complex Methods. .249

Fetch Method . 249
Store Method. 250
Delta Method. 252
Async Method . 254

Stateful Complex Methods . 256
Trans Method . 256
PubSub Method . 257

Case Study Example . 259

CHAPTER 10: Service API and Contract Versioning
with Web Services and REST Services263

10.1 Versioning Basics .265
Versioning Web Services . 265
Versioning REST Services . 266
Fine and Coarse-Grained Constraints . 266

10.2 Versioning and Compatibility. 267
Backwards Compatibility . 267

Backwards Compatibility in Web Services . 267
Backwards Compatibility in REST Services . 268

Forwards Compatibility. .271
Compatible Changes .273
Incompatible Changes .275

10.3 REST Service Compatibility Considerations 276

10.4 Version Identifiers . 279

ptg20131482

Contents xvii

10.5 Versioning Strategies. 282
The Strict Strategy (New Change, New Contract) 282

Pros and Cons. 283

The Flexible Strategy (Backwards Compatibility). 283
Pros and Cons. 284

The Loose Strategy (Backwards and Forwards Compatibility) . 284
Pros and Cons. 284

Strategy Summary . 285

10.6 REST Service Versioning Considerations 286

PART III: APPENDICES

APPENDIX A: Service-Orientation Principles Reference . .289

APPENDIX B: REST Constraints Reference305

APPENDIX C: SOA Design Patterns Reference 317

What’s a Design Pattern?. 318

What’s a Design Pattern Language? .320

Pattern Profiles . 321

APPENDIX D: The Annotated SOA Manifesto.367

The SOA Manifesto .368

The SOA Manifesto Explored. .369
Preamble .370
Priorities .371
Guiding Principles .375

About the Author .383

Index .384

ptg20131482

This page intentionally left blank

ptg20131482

This Second Edition is comprised of content from a variety of sources, including new
content that refl ects industry developments and revised content from other series titles.
Thank you to all who helped shape what this book is comprised of, and special thanks
to the following individuals who contributed new insights and new design patterns:

In alphabetical order:

• Paulo Merson

• Roger Stoffers

Acknowledgments

ptg20131482

Reader Services

Register your copy of Service-Oriented Architecture: Analysis and Design for Services and
Microservices at informit.com for convenient access to downloads, updates, and correc-
tions as they become available. To start the registration process, go to informit.com/
register and log in or create an account.* Enter the product ISBN, 9780133858587, and
click Submit. Once the process is complete, you will fi nd any available bonus content
under “Registered Products.”

*Be sure to check the box that you would like to hear from us in order to receive exclusive
discounts on future editions of this product.

ptg20131482

Chapter 1

Introduction

1.1 How Patterns Are Used in This Book

1.2 Series Books That Cover Topics from the First Edition

1.3 How This Book Is Organized

1.4 Page References and Capitalization for Principles, Constraints,
and Patterns

ptg20131482

When I fi rst authored Service-Oriented Architecture: Concepts, Technology, and Design
 back in 2004, I did so primarily out of a motivation to help organize what at the

time was a fragmented whirlwind of misperceptions, ambiguities, and bits of actual
valid knowledge about what SOA was and was expected to become. The goal was to
establish essential coverage of its architectural model and its underlying design par-
adigm, along with documentation of the methodology and technology required to
achieve it.

I am still humbled by the success this book has had for more than a dozen years. When I
was asked to put together a second edition, it seemed like a naturally sound idea. How-
ever, when I got down to working on this project it became clear that the scope of this
new edition would have to be signifi cantly different from the original title.

Since Service-Oriented Architecture: Concepts, Technology, and Design was published, I
have authored or co-authored 11 additional books as part of the Prentice Hall Service
Technology Series from Thomas Erl , eight of which were dedicated to SOA. Each of these
eight subsequently released titles expanded upon topics fi rst covered in Service-Oriented
Architecture: Concepts, Technology, and Design.

This made me think carefully about what should and should not be part of this second
edition. Revisiting topics pertaining to technology did not make sense because they had
been covered exhaustively in several other titles. However, some of the subsequently
released books provide coverage of architecture, design, and methodology that is more
current and comprehensive than what was originally documented in the fi rst edition of
Service-Oriented Architecture: Concepts, Technology, and Design. Repurposing and compil-
ing this content as part of this second edition so that the original scope and purpose of
the book could be preserved did make sense, while benefi ting from the decade or so of
research and authoring that occurred since the publication of the fi rst edition.

This compiled content primarily comprises the three chapters in Part I of this book
together with new content pertaining to the formal introduction of microservices to
SOA. The chapters in Part II focus solely on service-oriented analysis and design with
some updates and new content pertaining to REST services and microservices.

ptg20131482

1.1 How Patterns Are Used in this Book 3

Specifi cally, content from the following additional books has been repurposed, revised,
and/or incorporated into this second edition:

• SOA Principles of Service Design

• SOA Design Patterns

• SOA with REST: Principles, Patterns & Constraints for Building Enterprise Solutions
with REST

• Next Generation SOA: A Concise Introduction to Service Technology &
Service-Orientation

• SOA Governance: Governing Shared Services On-Premise & in the Cloud

Select content has been updated, and some of it has been further augmented to incorpo-
rate the microservice model and micro task service layer.

I hope you fi nd value in what’s been put together. It’s genuinely the best possible
second edition of the original title that could be assembled. The fact that this second
edition looks so much different from the fi rst is a tribute to the tremendous progress
that has been made in the evolution and maturation of modern-day, service-oriented
 architecture.

1.1 How Patterns Are Used in this Book

When the fi rst edition of Service-Oriented Architecture: Concepts, Technology, and Design
was authored, we had not yet embarked on the creation of what was to become the SOA
design patterns catalog. Since the initial version of the patterns catalog was published in
2008 at www.soapatterns.org , it has steadily grown and accompanying, complementary
pattern catalogs have emerged for cloud computing (www.cloudpatterns.org) and Big
Data (www.bigdatapatterns.org).

Patterns have also become an important part of the language used to author books in
this series. Most books published since the release of the SOA patterns catalog contain
references to relevant patterns, and some even introduce new ones.

Because this is the second edition of a book that originally did not contain patterns, it
was written without any requirement to know or understand patterns. Instead, wher-
ever appropriate, SOA Patterns sections have been inserted. These sections highlight
patterns relevant to preceding content. Appendix C contains summarized profi les of

http://www.soapatterns.org
http://www.cloudpatterns.org
http://www.bigdatapatterns.org

ptg20131482

4 Chapter 1: Introduction

all referenced patterns. Inline page references are used to link pattern references with
profi les, as explained in the upcoming Page References and Capitalization for Principles,
Constraints, and Patterns section.

So, even though patterns do not need to be understood or studied to complete this book,
it is highly recommended that you take the time to do so anyway. If you are brand new
to the world of design patterns, be sure to read the introductory section at the begin-
ning of Appendix C or the more comprehensive tutorial in Chapter 5 of the SOA Design
Patterns book.

1.2 Series Books That Cover Topics from the First Edition

As mentioned earlier, a number of topics from the fi rst edition of this book were sub-
sequently covered more comprehensively in subsequent titles released as part of the
Prentice Hall Service Technology Series from Thomas Erl .

For those of you familiar with the fi rst edition, let’s revisit the original chapters so that
we can identify those that remained part of this second edition and then map the others
to series titles that elaborated on their respective topic areas.

• Chapter 2, Case Studies – This chapter in the second edition contains abbreviated
case study backgrounds from the fi rst edition of Service-Oriented Architecture:
Concepts, Technology & Design and SOA with REST: Principles, Patterns & Constraints
for Building Enterprise Solutions with REST.

• Chapter 3, Introducing SOA – The topics in this chapter have been signifi cantly
updated with content from Chapter 3 of SOA Principles of Service Design and
 Chapter 4 of SOA Design Patterns.

• Chapter 4, The Evolution of SOA – Chapter 4 of SOA Principles of Service Design cov-
ers historical origins of service-orientation and Chapters 3 and 4 of SOA Design
Patterns contrasts SOA to other architectural models.

• Chapter 5, Web Services and Primitive SOA, Chapter 6, Web Services and Contemporary
SOA Part I, and Chapter 7, Web Services and Contemporary SOA Part II – Web service
technologies and markup languages are covered in detail in Web Service Contract
Design and Versioning for SOA.

• Chapter 8, Principles of Service-Orientation – SOA Principles of Service Design is
dedicated to documenting the eight service-orientation principles. Chapter 3 in

ptg20131482

1.2 Series Books That Cover Topics from the First Edition 5

this second edition provides more detailed coverage of service-orientation with
sections that originated in SOA Principles of Service Design.

• Chapter 9, Service Layers – Chapters 6 and 7 of SOA Design Patterns provide a series
of design patterns that formally document established service layers. Service lay-
ers are covered in Chapter 5 of this second edition and the new micro task service
layer is introduced.

• Chapter 10, SOA Delivery Strategies – Chapter 5 of SOA Governance: Governing Shared
Services On-Premise & in the Cloud covers project stages and Chapter 6 addresses
methodology. The end of Chapter 4 in this second edition summarizes project
stages and related organizational roles.

• Chapter 11, Service-Oriented Analysis Part I and Chapter 12, Service-Oriented Analy-
sis Part II – Topics from these chapters are revisited in Chapters 6 and 7 of this
second edition, and are further supplemented with updated analysis content from
SOA with REST: Principles, Patterns & Constraints for Building Enterprise Solutions
with REST.

• Chapter 13, Service-Oriented Design Part I and Chapter 14, Service-Oriented Design
Part II – The markup languages from this chapter are covered in more detail in the
Web Service Contract Design and Versioning for SOA book.

• Chapter 15, Service-Oriented Design (Part III, Service Design) – Topics from this chap-
ter are revisited in Chapters 8 and 9 of this second edition and are further supple-
mented with updated design content from SOA with REST: Principles, Patterns &
Constraints for Building Enterprise Solutions with REST.

• Chapter 16, Service-Oriented Design (Part IV, Business Process Design) – Coverage
of orchestration-related technologies is provided in various sections in SOA with
.NET: Realizing Service-Orientation with the Microsoft Platform and SOA with Java:
Realizing Service-Orientation with Java Technologies.

• Chapter 17, Fundamental WS-* Extensions – Several of the standards from this chap-
ter are covered in more detail in Web Service Contract Design and Versioning for SOA.

• Chapter 18, SOA Platforms – The documentation of SOA support in .NET and Java
platforms is provided comprehensively in the corresponding SOA with .NET:
Realizing Service-Orientation with the Microsoft Platform and SOA with Java: Realizing
Service-Orientation with Java Technologies titles.

ptg20131482

6 Chapter 1: Introduction

For more information about any of the aforementioned books from the Prentice Hall
Service Technology Series from Thomas Erl , visit www.servicetechbooks.com .

1.3 How this Book Is Organized

This book begins with Chapters 1 and 2, which supply introductory content and case
study background information, respectively. Provided here is a brief overview of sub-
sequent chapters.

Part I: Fundamentals

Chapter 3: Understanding Service-Orientation

This chapter provides detailed coverage of the service-orientation design paradigm,
including its underlying design philosophy and design principles, as well as a compari-
son to traditional silo-based design approaches. The chapter concludes with coverage
of typical critical success factors for adopting service-orientation within organizations.

Chapter 4: Understanding SOA

This chapter delves into the distinct characteristics and types of service-oriented archi-
tecture and further explores the links between the application of the service-orientation
design paradigm and technology architecture. The chapter concludes with brief cover-
age of common SOA project lifecycle stages and organizational roles, with an emphasis
on the service inventory analysis, service-oriented analysis, and service-oriented design
phases.

Chapter 5: Understanding Layers with Services and Microservices

This chapter provides an updated version of the standard service models and corre-
sponding service layers. It incorporates this new content into a new service defi nition
process with the addition of the microservice model and micro task service layer. The
relevance of service deployment bundles and containerization are also briefl y men-
tioned in relation to microservice implementation requirements.

http://www.servicetechbooks.com

ptg20131482

1.3 How this Book Is Organized 7

Part II: Service-Oriented Analysis and Design

Chapter 6: Analysis and Modeling with Web Services and Microservices

Updated, step-by-step coverage of the service-oriented analysis process for Web ser-
vices, along with case study examples. Microservice identifi cation as part of a Web
services analysis is covered, but microservice modeling is deferred to Chapter 7.

Chapter 7: Analysis and Modeling with REST Services and Microservices

The service-oriented analysis process for REST-based services is revised with the incor-
poration of microservices. This chapter is also supplemented with updated case study
examples.

Chapter 8: Service API and Contract Design with Web Services

Guidelines and service contract design considerations for Web services, along with an
extended case study example.

Chapter 9: Service API and Contract Design with REST Services and Microservices

Service model-specifi c REST contract design considerations are revised to include
microservices. Design guidelines are provided, along with a section dedicated to com-
plex method design. Revised case study examples are also provided.

Chapter 10: Service API and Contract Versioning with Web Services and REST Services

This chapter contains a series of fundamental versioning techniques and considerations
for Web service and REST service contracts and APIs.

Part III: Appendices

Appendix A: Service-Orientation Principles Reference

This appendix provides the profi le tables (originally from SOA Principles of Service
Design) for the service-orientation design principles referenced in this book.

Appendix B: REST Constraints Reference

This appendix provides the profi le tables for the REST design constraints referenced in
this book (originally from SOA with REST: Principles, Patterns & Constraints for Building
Enterprise Solutions with REST).

ptg20131482

8 Chapter 1: Introduction

Appendix C: SOA Design Patterns Reference

This appendix provides the profi le tables for the SOA design patterns referenced in this
book (originally from SOA Design Patterns and www.soapatterns.org).

Appendix D: The Annotated SOA Manifesto

This appendix contains the complete annotated version of the SOA Manifesto (origi-
nally from Next Generation SOA: A Concise Introduction to Service Technology & Service-
Orientation and www.soa-manifesto.com).

1.4 Page References and Capitalization for Principles, Constraints,
and Patterns

Each design constraint, principle, and pattern discussed in this book has a correspond-
ing profi le. A profi le is a concise defi nition that summarizes key design aspects and
considerations. A primary and ongoing topic area of this book is the exploration of how
constraints, principles, and patterns relate to and affect each other. You are therefore
encouraged to repeatedly refer to the profi les whenever encountering a constraint, prin-
ciple, or pattern in a context that is unclear to you.

To facilitate the quick reference of profi les, a special convention is used. Each principle,
pattern, and constraint name is always capitalized and followed by a page number that
points to the corresponding profi le page. This convention was established by the design
patterns community and is further being extended to design principles and design con-
straints in this book.

All page references point to profi le tables located in the appendices. The profi le tables
for constraints are provided in Appendix B, and those for principles and patterns are
located in Appendices A and C, respectively.

To maintain an immediately recognizable distinction between constraints, principles,
and patterns throughout this book, each uses a different delimiter for page numbers.
The page number for each constraint is displayed in curly braces, for each principle it is
placed in rounded parentheses, and for patterns, square brackets are used, as follows:

• Principle Name (page number)

• Constraint Name {page number}

• Pattern Name [page number]

http://www.soapatterns.org
http://www.soa-manifesto.com

ptg20131482

Additional Information 9

For example, the following statement fi rst references a service-orientation design prin-
ciple, then an SOA design pattern, and fi nally a REST constraint:

“…the Service Loose Coupling (293) principle is supported via the application of the Decoupled
Contract [337] pattern and the Stateless {308} constraint ...”

In this statement, each reference is explicitly qualifi ed as a principle, pattern, or con-
straint. Most of the references in this book (especially in later chapters) omit this quali-
fi er to allow for more concise content.

For example, the preceding statement will more commonly be worded as follows:

“…Service Loose Coupling (293) is supported via the application of Decoupled Contract [337]
and Stateless {308}…”

This wording convention also has origins within the design patterns community. As
previously stated, if you run into a reference without an explicit qualifi er, use the page
number delimiter (parentheses, square brackets, or curly braces) to identify its type
(principle, pattern, or constraint).

Additional Information

The following sections provide supplementary information and resources for the Pren-
tice Hall Service Technology Series from Thomas Erl.

Symbol Legend

This book contains a series of diagrams that are referred to as fi gures. The primary sym-
bols used throughout all fi gures are described in a symbol legend you can download
from www.arcitura.com/notation .

Updates, Errata, and Resources (www.servicetechbooks.com)

You can fi nd information about other series titles and various supporting resources at
www.servicetechbooks.com . You are encouraged to visit this site regularly to check for
content changes and corrections.

http://www.arcitura.com/notation
http://www.servicetechbooks.com
http://www.servicetechbooks.com

ptg20131482

10 Chapter 1: Introduction

Service-Orientation (www.serviceorientation.com)

This site provides papers, book excerpts, and various content dedicated to describing
and defi ning the service-orientation paradigm, associated principles, and the service-
oriented technology architectural model.

What Is REST? (www.whatisrest.com)

This website contains excerpts from this book and related content to provide a concise
overview of REST architecture and constraints.

Referenced Specifications (www.servicetechspecs.com)

The chapters throughout this book reference various industry specifi cations and
standards. The www.servicetechspecs.com website provides a central portal to the
original specifi cation documents created and maintained by the primary standards
organizations.

SOASchool.com® SOA Certified Professional (SOACP)

The SOA Certifi ed Professional curriculum from Arcitura Education is dedicated to
specialized areas of service-oriented architecture and service-orientation, including
analysis, architecture, governance, security, .NET development, Java development, and
quality assurance.

For more information, visit www.soaschool.com .

CloudSchool.com™ Cloud Certified Professional (CCP)

The Cloud Certifi ed Professional curriculum from Arcitura Education is dedicated to
specialized areas of cloud computing, including technology, architecture, governance,
security, and storage.

For more information, visit www.cloudschool.com .

http://www.serviceorientation.com
http://www.whatisrest.com
http://www.servicetechspecs.com
http://www.servicetechspecs.com
http://www.soaschool.com
http://www.cloudschool.com

ptg20131482

Additional Information 11

BigDataScienceSchool.com™ Big Data Science Certified Professional (BDSCP)

The Big Data Science Certifi ed Professional curriculum from Arcitura Education is
dedicated to specialized areas of Big Data analysis and technology, including analytics,
engineering, architecture, and governance.

For more information, visit www.bigdatascienceschool.com .

Notification Service

If you would like to be automatically notifi ed of new book releases in this series, new
supplementary content for this title, or key changes to the previously listed websites,
use the notifi cation form at www.servicetechbooks.com .

http://www.bigdatascienceschool.com
http://www.servicetechbooks.com

ptg20131482

This page intentionally left blank

ptg20131482

Chapter 2

Case Study Backgrounds

2.1 How Case Studies Are Used

2.2 Case Study Background #1: Transit Line Systems, Inc.

2.3 Case Study Background #2: Midwest University Association

ptg20131482

2.1 How Case Studies Are Used

Case study examples are an effective means of exploring abstract topics within real-
world scenarios. The information provided in this brief chapter establishes the basis for
two separate storylines that relate to Case Study Example sections in Chapters 6 to 9. To
help you more easily identify these sections, a light gray background is used.

Background information is provided for two different organizations. The fi rst is Transit
Line Systems, Inc. (TLS), a private sector corporation. The other is Midwest University
Association (MUA), a public sector academic institution.

2.2 Case Study Background #1: Transit Line Systems, Inc.

Transit Line Systems, Inc. (TLS) is a prominent corporation in the private transit sector.
It employs more than 1,800 people and has offi ces in four cities. Although its primary
line of business is providing private transit, it has a number of secondary business areas
that include a maintenance and repair branch that outsources TLS service technicians
to public transit sectors, and a tourism branch that partners with airlines and hotels. Of
the 200 IT professionals who support TLS’s automation solutions, approximately 50%
are contractors who are hired on a per-project basis.

TLS is a corporation that has undergone a great deal of change over the past decade. The
identity and structure of the company has been altered numerous times, mostly because
of corporate acquisitions and the subsequent integration processes. Its IT department
has had to deal with a volatile business model and regular additions to its supported
set of technologies and automation solutions. TLS’s technical environment therefore is
riddled with custom-developed applications and third-party products that were never
intended to work together.

The cost of business automation has skyrocketed, as the effort required to integrate
these many systems has become increasingly complex and onerous. Not only has the
maintenance of automation solutions become unreasonably expensive, but their com-
plexity and lack of fl exibility have signifi cantly slowed down the IT department’s ability
to respond to business change.

ptg20131482

2.3 Case Study Background #2: Midwest University Association 15

Tired of having to continually invest in a non-functional technical environment, IT
directors decide to adopt SOA as the standard architecture to be used for new applica-
tions. Web services are chosen as the primary technology-set to federate existing legacy
systems. The driving motivation behind this decision is a desperate need to introduce
enterprise-wide standardization and increase organizational agility.

2.3 Case Study Background #2: Midwest University Association

Midwest University Association (MUA) is one of the oldest educational institutions
west of the Mississippi in the continental U.S. It’s rated among the top 10 leading uni-
versities in the engineering and research fi elds, and has six remote locations along with
its main campus that employ more than 6,000 faculty and staff.

Each program within the university has an independent IT staff and budget to support
systems management. The remote campuses also have their own IT departments. Col-
laboration with external educational institutions is governed by an independent, central
enterprise architecture group.

There are various automated solutions for common processes, such as student enroll-
ment, course cataloging, accounting, fi nancials, as well as grading and reporting. The
primary system for record keeping is an IBM mainframe that is reconciled every night
with a batch feed from the individual remote locations. The different schools them-
selves employ a variety of technologies and platforms.

After a careful assessment of the existing infrastructure, it is decided to re-engineer
several IT systems to a service-oriented architecture that will preserve legacy assets,
simplify integration between various internal and external systems, and improve chan-
nel experience for both the students and staff. The enterprise architecture group at
MUA has proposed a phased adoption of SOA via the use of REST services that can be
leveraged across schools and from remote locations.

ptg20131482

This page intentionally left blank

ptg20131482

Fundamentals

Part I

Chapter 3: Understanding Service-Orientation

Chapter 4: Understanding SOA

Chapter 5: Understanding Layers with Services
and Microservices

ptg20131482

This page intentionally left blank

ptg20131482

Chapter 3

Understanding Service-Orientation

3.1 Introduction to Service-Orientation

3.2 Problems Solved by Service-Orientation

3.3 Effects of Service-Orientation on the Enterprise

3.4 Goals and Benefi ts of Service-Oriented Computing

3.5 Four Pillars of Service-Orientation

ptg20131482

This chapter is dedicated to describing the service-orientation design paradigm, its
principles, and how it compares to other design approaches.

3.1 Introduction to Service-Orientation

In the everyday world around us services are and have been commonplace for as long
as civilized history has existed. Any person carrying out a distinct task in support of
others is providing a service. Any group of individuals collectively performing a task
in support of a larger task is also demonstrating the delivery of a service (Figure 3.1).

“I take calls
and arrange
deliveries”

“I make
deliveries”

“I take care
of the

accounting”

driver bookkeeperdispatcherFigure 3.1
Three individuals, each capable of
 providing a distinct service.

Similarly, an organization that carries out tasks associated with its purpose or busi-
ness is also providing a service. As long as the task or function being provided is well
defi ned and can be relatively isolated from other associated tasks, it can be distinctly
classifi ed as a service (Figure 3.2).

Certain baseline requirements exist to enable a group of individual service providers to
collaborate in order to collectively provide a larger service. Figure 3.2, for example, dis-
plays a group of employees who each provide a service for ABC Delivery. Even though
each individual contributes a distinct service, for the company to function effectively,
its staff also needs to have fundamental, common characteristics, such as availability,
reliability, and the ability to communicate using the same language. With all of these
things in place, these individuals can be composed into a productive working team.
Establishing these types of baseline requirements within and across business automa-
tion solutions is a key goal of service-orientation.

ptg20131482

3.1 Introduction to Service-Orientation 21

dispatcher

driver

bookkeeper

ABC
Delivery

Figure 3.2
A company that employs these
three people can compose their
capabilities to carry out its
business.

Services in Business Automation

From a general perspective, a service is a software program that
makes its functionality available via a published API that is part of a
service contract . Figure 3.3 shows the symbol used to depict a service
(without providing any detail regarding its service contract).

Different implementation technologies can be used to program and
build services. The two common implementation mediums covered
in this book are SOAP-based Web services (or just Web services) and
RESTful services (or just REST services). Figure 3.4 shows the stan-
dard symbols used to represent service contracts in this book.

NOTE

A Web service contract is generally comprised of a WSDL definition and one or more XML
Schema definitions. Services implemented as REST services are accessed via a uniform
contract, such as the one provided by HTTP and Web media types. Chapters 8 and 9 pro-
vide examples of Web service and REST service contracts.

A service contract can be further comprised of human-readable documents, such as a
Service Level Agreement (SLA) that describes additional quality-of-service guarantees,
behaviors, and limitations. Several SLA-related requirements can also be expressed in
machine-readable formats.

Figure 3.3
The symbol used to
represent an abstract
 service.

ptg20131482

22 Chapter 3: Understanding Service-Orientation

InvoiceInvoice

Figure 3.4
The chorded circle symbol used to display an Invoice service contract (left), and
a variation of this symbol used specifically for REST service contracts (right).

Services Are Collections of Capabilities

When discussing services, it is important to remember that a single service can offer an
API that provides a collection of capabilities. They are grouped together because they
relate to a functional context established by the service. The functional context of the
service illustrated in Figure 3.5, for example, is that of “shipment.” This particular ser-
vice provides a set of capabilities associated with the processing of shipments.

“I can:
- drive
- fill out a waybill
- collect payment
etc.”

Shipment

Get

Add

Report

etc.

Figure 3.5
Much like a human, an automated
service can provide multiple
capabilities.

ptg20131482

3.1 Introduction to Service-Orientation 23

A service is therefore essentially a container of related capabilities. It is comprised
of a body of logic designed to carry out these capabilities and a service contract that
expresses which of its capabilities are made available for public invocation. When we
make reference to service capabilities in this book, we are specifi cally focused on those
that are defi ned as part of the service contract API.

A service consumer is the runtime role assumed by a software program when it accesses
and invokes a service—or, more specifi cally, when it sends a message to a service capa-
bility expressed in the service contract. Upon receiving the request, the service begins
executing logic encompassed by the invoked capability and it may or may not return a
corresponding response message to the service consumer. A service consumer can be
any software program capable of invoking a service via its API. A service itself may act
as the consumer of another service.

AGNOSTIC VS. NON-AGNOSTIC LOGIC

The term “agnostic” originated from Greek and means “without knowledge.”
Therefore, logic that is suffi ciently generic so that it is not specifi c to (has no knowl-
edge of) a particular parent task is classifi ed as agnostic logic. Because knowledge
that is specifi c to a single-purpose task is intentionally omitted, agnostic logic is
considered multipurpose. Conversely, logic that is specifi c to (contains knowledge
of) a single-purpose task is labeled as non-agnostic logic.

Another way of conceptualizing agnostic and non-agnostic logic is to focus on the
extent to which the logic can be repurposed. Due to the multipurpose nature of
agnostic logic, it is expected to become reusable across different contexts so that
the logic, as a single software program (or service), can be used to help automate
multiple business processes. Non-agnostic logic is not subject to these types of
expectations. It is deliberately designed as a single-purpose software program (or
service) and therefore has different characteristics and requirements. Non-agnos-
tic logic can still be reusable, but only within the scope of its parent business pro-
cess, which preserves its context as being specifi c to a greater, single-purpose task.

ptg20131482

24 Chapter 3: Understanding Service-Orientation

Service-Orientation as a Design Paradigm

A design paradigm is an approach to designing solution logic. When building distrib-
uted solution logic, design approaches revolve around a software engineering theory
known as the “separation of concerns.” In a nutshell, this theory states that a larger
problem is more effectively solved when decomposed into a set of smaller problems or
concerns. This gives us the option of partitioning solution logic into capabilities, each
designed to solve an individual concern. Related capabilities can be grouped into units
of solution logic.

Different design paradigms exist for distributed solution logic. What distinguishes
service-orientation is the manner in which it carries out the separation of concerns and
how it shapes the individual units of solution logic with specifi c characteristics and in
support of a specifi c target state.

Fundamentally, service-orientation shapes suitable units of solution logic as enter-
prise resources that can be designed to solve immediate concerns while still remaining
agnostic to the greater problem. This provides the constant opportunity to reutilize the
capabilities within those units to solve other problems as well.

Applying service-orientation to a meaningful extent results in solution logic that can
be safely classifi ed as “service-oriented” and units that qualify as “services.” (Chapter 5
explores in detail how the separation of concerns is carried out with service-orientation.)

Services, as part of service-oriented solutions, exist as physically independent software
programs with distinct design characteristics. Each service is assigned its own distinct
functional context and is comprised of a set of capabilities related to this context. A ser-
vice composition is a coordinated aggregate of services. As explained later in the Effects
of Service-Orientation on the Enterprise section, a composition of services (Figure 3.6) is
comparable to a traditional application in that its functional scope is usually associated
with the automation of a parent business process.

Figure 3.6
This symbol, comprised of three connected spheres,
represents a service composition. Other, more detailed
representations are based on the use of chorded circle
symbols that illustrate which service capabilities are
actually being composed.

ptg20131482

3.1 Introduction to Service-Orientation 25

A service inventory is an independently standardized and governed collection of com-
plementary services within a boundary that represents an enterprise or a meaningful
segment of an enterprise. Figure 3.7 establishes the symbol used to represent a service
inventory in this book.

Figure 3.7
The service inventory symbol is comprised
of spheres within a container.

An IT enterprise can contain or may even be comprised of a single service inventory.
Alternatively, an enterprise environment can contain multiple service inventories.
When an organization has multiple service inventories, this term is further qualifi ed as
domain service inventory .

The application of service-orientation throughout a service inventory is of paramount
importance to establish a high degree of native interservice interoperability. This sup-
ports the repeated creation of effective service compositions (Figure 3.8).

service

service inventory

service composition

Figure 3.8
Services (top) are delivered into a service
inventory (right) from which service
compositions (bottom) are drawn .

ptg20131482

26 Chapter 3: Understanding Service-Orientation

Here’s a brief recap of the elements of service-orientation that have been covered so far:

• Service-oriented solution logic is implemented as services and service compositions
designed in accordance with service-orientation.

• A service composition is comprised of services that have been assembled to provide
the functionality required to automate a specifi c business task or process.

• Because service-orientation shapes many services as enterprise resources, one service
may be invoked by multiple consumer programs, each of which can involve that
same service in a different service composition.

• A collection of standardized services can form the basis of a service inventory that
can be independently governed within its own physical deployment environment.

• Multiple business processes can be automated by the creation of service composi-
tions that draw from a pool of existing agnostic services that reside within a service
inventory.

As explored in Chapter 4, service-oriented architecture is a form of technology archi-
tecture optimized in support of services, service compositions, and service inventories.

Service-Orientation Design Principles

The preceding sections have described the service-orientation paradigm at a very high
level. But how exactly is this paradigm applied? It is primarily applied at the service
level (Figure 3.9) via the application of the following eight design principles:

• Standardized Service Contract (291) – Services within the same service inventory are
in compliance with the same contract design standards.

Services express their purpose and capabilities via a service contract. This is
perhaps the most fundamental principle in that it essentially dictates the need for
service-oriented solution logic to be partitioned and distributed in a standardized
manner. It also places a great deal of emphasis on the design of service contracts
to ensure that the manner in which services express functionality and defi ne data
types is kept in relative alignment.

• Service Loose Coupling (293) – Service contracts impose low consumer coupling
requirements and are themselves decoupled from their surrounding environment.

Coupling refers to a measure of dependency between two things. This prin-
ciple establishes a specifi c type of relationship within and outside of service

ptg20131482

3.1 Introduction to Service-Orientation 27

boundaries, with a constant emphasis on reducing (“loosening”) dependencies
between a service contract, its implementation, and service consumers. Service
Loose Coupling (293) promotes the independent design and evolution of service
logic while still guaranteeing baseline interoperability.

• Service A bstraction (294) – Service contracts only contain essential information and
information about services is limited to what is published in service contracts.

Abstraction ties into many aspects of service-orientation. On a fundamental level,
this principle emphasizes the need to hide as much of the underlying details of
a service as possible. Doing so directly enables the previously described loosely
coupled relationship. Service Abstraction (294) also plays a signifi cant role in the
positioning and design of service compositions.

• Service Reusability (295) – Services contain and express agnostic logic and can be
positioned as reusable enterprise resources.

Whenever we build a service, we look for ways to make its underlying capabilities
useful for more than just one purpose. Reuse is greatly emphasized with service-
orientation—so much so, that it becomes a core part of the design process and it
also forms the basis for key service models (as explained in Chapter 5).

• Service Autonomy (297) – Services exercise a high level of control over their underlying
runtime execution environment.

For services to carry out their capabilities consistently and reliably, their under-
lying solution logic needs to have a signifi cant degree of control over its envi-
ronment and resources. Service Autonomy (297) supports the extent to which
other design principles can be effectively realized in real-world production
environments.

• Service Statelessness (298) – Services minimize resource consumption by deferring the
management of state information when necessary.

The management of excessive state information can compromise the availability of
a service as well as the predictability of its behavior. Services are therefore ideally
designed to remain stateful only when required. Like Service Autonomy (297),
this is another principle that focuses less on the contract and more on the design
of the underlying logic.

ptg20131482

28 Chapter 3: Understanding Service-Orientation

• Service Discoverability (300) – Services are supplemented with communicative meta-
data by which they can be effectively discovered and interpreted.

For services to be positioned as IT assets with repeatable ROI, they need to be
 easily identifi ed and understood when opportunities for reuse present themselves.
The service design therefore needs to take the “communications quality” of ser-
vice contracts and capabilities into account, regardless of whether a discovery
mechanism such as a service registry is an immediate part of the environment.

implement a
standardized contract

minimize dependencies

minimize the availability
of meta information

implement generic and
reusable logic and contract

implement independent
functional boundary and

runtime environment

implement adaptive and
state management-free logic

implement communicative
 meta information

maximize composability

Standardized
Service Contract

Service
Reusability

Service
Autonomy

Service
Statelessness

Service
Discoverability

Service
Loose Coupling

Service
Abstraction

Service
Composability

service

Figure 3.9
How service-orientation design principles collectively shape service design.

ptg20131482

3.2 Problems Solved by Service-Orientation 29

• Service Composability (302) – Services are effective composition participants, regard-
less of the size and complexity of the composition.

As the sophistication of service-oriented solutions grows, so does the complex-
ity of underlying service composition confi gurations. The ability to effectively
compose services is a critical requirement for achieving some of the fundamen-
tal goals of service-oriented computing. Complex service compositions place
demands on service design. Services are expected to be capable of participating
as effective composition members, regardless of whether they need to be immedi-
ately enlisted in a composition.

SOA PATTERNS

Service-orientation principles are closely related to SOA patterns. Note how each
pattern profi le table in Appendix C contains a fi eld dedicated to showing related
design principles.

3.2 Problems Solved by Service-Orientation

To best appreciate why service-orientation emerged and how it is intended to improve
the design of automation systems, we need to compare before and after perspectives. By
studying some of the common issues that have historically plagued IT we can begin to
understand the solutions proposed by this design paradigm.

Silo-based Application Architecture

In the world of business, delivering solutions capable of automating the execution of
business tasks makes a great deal of sense. Over the course of IT’s history, the majority
of such solutions have been created with a common approach of identifying the busi-
ness tasks to be automated, defi ning their business requirements, and then building the
c orresponding solution logic (Figure 3.10).

This has been an accepted and proven approach to achieving tangible business benefi ts
through the use of technology and has been successful at providing a relatively predict-
able return on investment (Figure 3.11).

ptg20131482

30 Chapter 3: Understanding Service-Orientation

Validate Timesheet Business Process
Step 1 ...
Step 2 ...
Step 3 ...
...

business requirements
for automating the
Validate Timesheet
business process

the Validate Timesheet
application delivered to

automate the
business process

Figure 3.10
A ratio of one application for each new set of automation requirements has been common.

Development cost = x

Yearly operational cost = y

Estimated yearly savings
due to increased productivity = (x/2) - y

Validate Timesheet
Application

Figure 3.11
A sample formula for calculating ROI is based on a predetermined
investment with a predictable return.

The ability to gain any further value from these applications is usually inhibited because
their capabilities are tied to specifi c business requirements and processes (some of
which will even have a limited lifespan). When new requirements and processes come
our way we are forced to either make signifi cant changes to what we already have or
build a new application altogether.

ptg20131482

3.2 Problems Solved by Service-Orientation 31

In the latter case, although repeatedly building “disposable applications” is not the per-
fect approach, it has proven itself as a legitimate means of automating business. Let’s
explore some of the lessons learned by fi rst focusing on the positive.

• Solutions can be built effi ciently because they only need to be concerned with the
fulfi llment of a narrow set of requirements associated with a limited set of busi-
ness processes.

• The business analysis effort involved with defi ning the process to be automated is
straightforward. Analysts are focused only on one process at a time and therefore
only concern themselves with the business entities and domains associated with
that one process.

• Solution designs are tactically focused. Although complex and sophisticated
automation solutions are sometimes required, the sole purpose of each is to auto-
mate just one or a specifi c set of business processes. This predefi ned functional
scope simplifi es the overall solution design as well as the underlying application
architecture.

• The project delivery lifecycle for each solution is streamlined and relatively pre-
dictable. Although IT projects are notorious for being complex endeavors, riddled
with unforeseen challenges, when the delivery scope is well-defi ned (and doesn’t
change), the process and execution of the delivery phases have a good chance of
being carried out as expected.

• Building new systems from the ground up allows organizations to take advantage
of the latest technology advancements. The IT marketplace progresses every year
to the extent that we fully expect technology we use to build solution logic today
to be different and better tomorrow. As a result, organizations that repeatedly
build disposable applications can leverage the latest technology innovations with
each new project.

These and other common characteristics of traditional solution delivery provide a good
indication as to why this approach has been so popular. Despite its acceptance, though,
it has become evident that there is still much room for improvement.

It Can Be Highly Wasteful

The creation of new solution logic in a given enterprise commonly results in a signifi -
cant amount of redundant functionality (Figure 3.12). The effort and expense required
to construct this logic is therefore also redundant.

ptg20131482

32 Chapter 3: Understanding Service-Orientation

It’s Not as Efficient as It Appears

Because of the tactical focus on delivering solutions for specifi c process requirements,
the scope of development projects is highly targeted. Therefore, there is the constant
perception that business requirements will be fulfi lled at the earliest possible time.
However, by continually building and rebuilding logic that already exists elsewhere,
the process is not as effi cient as it could be if the creation of redundant logic could be
avoided (Figure 3.13).

Application A Application B

Application EApplication D Application F

Application C

17 % 18 %

18 %

22 %

16 %
29 %

Figure 3.12
Different applications developed
independently can result in significant
amounts of redundant functionality.
The applications displayed were
delivered with various levels of
solution logic that, in some form,
already existed.

Application A

Amount of redundant logic required = 17%

Cost = x

Cost of non-redundant application logic = 83% of x

Figure 3.13
Application A was delivered for a
specific set of business requirements.
Because a subset of these business
requirements had already been
fulfilled elsewhere, Application A’s
delivery scope is larger than it has
to be.

It Bloats an Enterprise

Each new or extended application adds to the bulk of an IT environment’s system
inventory (Figure 3.14). The ever-expanding hosting, maintenance, and administration
demands can infl ate an IT department in budget, resources, and size to the extent that
IT becomes a signifi cant drain on the overall organization.

ptg20131482

3.2 Problems Solved by Service-Orientation 33

It Can Result in Complex Infrastructures and Convoluted Enterprise
Architectures

Having to host numerous applications built from different generations of technologies
and perhaps even different technology platforms often requires that each will impose
unique architectural requirements. The disparity across these “siloed” applications can
lead to a counter-federated environment (Figure 3.15), making it challenging to plan
the evolution of an enterprise and scale its infrastructure in response to that evolution.

20% excess
solution

logic

Enterprise AFigure 3.14
This simple diagram portrays an
enterprise environment containing
applications with redundant functionality.
The net effect is a larger enterprise .

Figure 3.15
Different application environments within the same enterprise can introduce incompatible
runtime platforms as indicated by the shaded zones .

ptg20131482

34 Chapter 3: Understanding Service-Orientation

Integration Becomes a Constant Challenge

Applications built only with the automation of specifi c business processes in mind are
generally not designed to accommodate other interoperability requirements. Making
these types of applications share data at some later point results in a jungle of convo-
luted integration architectures held together mostly through point-to-point patchwork
(Figure 3.16) or requiring the introduction of large middleware layers.

Figure 3.16
A vendor-diverse enterprise can introduce a variety of integration challenges, as expressed
by the little lightning bolts that highlight points of concern when trying to bridge proprietary
environments .

The Need for Service-Orientation

After repeated generations of traditional distributed solutions, the severity of the pre-
viously described problems has been amplifi ed. This is why service-orientation was
conceived. It very much represents an evolutionary state in the history of IT in that it
combines successful design elements of past approaches with new design elements that
leverage conceptual and technology innovation.

The consistent application of the eight design principles we listed earlier results in the
widespread proliferation of the corresponding design characteristics:

• increased consistency in how functionality and data is represented

• reduced dependencies between units of solution logic

ptg20131482

3.2 Problems Solved by Service-Orientation 35

• reduced awareness of underlying solution logic design and implementation details

• increased opportunities to use a piece of solution logic for multiple purposes

• increased opportunities to combine units of solution logic into different
confi gurations

• increased behavioral predictability

• increased availability and scalability

• increased awareness of available solution logic

When these characteristics exist as real parts of implemented services they establish a
common synergy. As a result, the complexion of an enterprise changes as the following
distinct qualities are consistently promoted.

Increased Amounts of Reusable Solution Logic

Within a service-oriented solution, units of logic (services) encapsulate functionality
not specifi c to any one application or business process (Figure 3.17). These services are
therefore classifi ed as reusable (and agnostic) IT assets.

business process agnostic services

Business
Process

A

Business
Process

C

Business
Process

D

Business
Process

F

Business
Process

E

Business
Process

B

Figure 3.17
Business processes are automated by a series of business process–specific services
(top layer) that share a pool of business process–agnostic services (bottom layer). These
layers correspond to service models described in Chapter 5.

ptg20131482

36 Chapter 3: Understanding Service-Orientation

Reduced Amounts of Application-Specific Logic

Increasing the amount of solution logic not specifi c to any one application or business
process decreases the amount of required application-specifi c (or “non-agnostic”) logic
(Figure 3.18). This blurs the lines between standalone application environments by
reducing the overall quantity of standalone applications. (See the Service-Orientation
and the Concept of “Application” section later in this chapter.)

Application A

Service Composition A

Business
Process

A

Business process-specific logic = 100%

Number of services required to automate Business Process A = 3

Number of business-process-specific services = 1

Business process-specific logic = 40%

Figure 3.18
Business Process A can be automated by either Application A or Service Composition A. The delivery of
Application A can result in a body of solution logic that is all specific to and tailored for the business process.
Service Composition A would be designed to automate the process with a combination of reusable services and
40% of additional logic specific to the business process .

Reduced Volume of Logic Overall

The overall quantity of solution logic is reduced because the same solution logic is
shared and reused to automate multiple business processes, as shown in Figure 3.19.

ptg20131482

3.2 Problems Solved by Service-Orientation 37

quantity of overall
automation logic = x

enterprise with an inventory of standalone applications

quantity of overall
automation logic = 85% of x

enterprise with a mixed inventory of standalone
applications and services

quantity of overall
automation logic = 65% of x

enterprise with an inventory of services

Figure 3.19
The quantity of solution logic shrinks as an enterprise transitions toward a standardized
service inventory comprised of “normalized” services. (Service normalization is
explained further at the end of Chapter 5.)

Inherent Interoperability

Common design characteristics consistently implemented result in solution logic that
is naturally aligned. When this carries over to the standardization of service contracts
and their underlying data models, a base level of automatic interoperability is achieved
across services, as illustrated in Figure 3.20. (See the Service-Orientation and the Concept
of “Integration” section later in this chapter.)

NOTE

See Chapter 4 in SOA Principles of Service Design for coverage of common challenges
introduced by service-orientation.

ptg20131482

38 Chapter 3: Understanding Service-Orientation

3.3 Effects of Service-Orientation on the Enterprise

There are good reasons to have high expectations from the service-orientation para-
digm. But, at the same time, there is much to learn and understand before it can be suc-
cessfully applied. The following sections explore some of the more common examples.

Service-Orientation and the Concept of “Application”

Having just stated that reuse is not an absolute requirement, it is important to acknowl-
edge the fact that service-orientation does place an unprecedented emphasis on reuse.
By establishing a service inventory with a high percentage of reusable and agnostic ser-
vices, we are now positioning those services as the primary (or only) means by which
the solution logic they represent can and should be accessed.

As a result, we make a very deliberate move away from the silos in which applications
previously existed. Because we want to share reusable logic whenever possible, we auto-
mate existing, new, and augmented business processes through service composition.
This results in a shift where more and more business requirements are fulfi lled not by
building or extending applications, but by simply composing existing services into new
composition confi gurations.

service
inventory

service
composition

Figure 3.20
Services from different parts of a service inventory can be combined into new compositions. If
these services are designed to be intrinsically interoperable, the effort to assemble them into new
composition configurations is significantly reduced.

ptg20131482

3.3 Effects of Service-Orientation on the Enterprise 39

When compositions become more common, the traditional concept of an application or
a system or a solution actually begins to fade, along with the silos that contain them.
Applications no longer consist of self-contained bodies of programming logic respon-
sible for automating a specifi c set of tasks (Figure 3.21). What was an application is now
just another composition of services, some of which likely participate in other composi-
tions (Figure 3.22).

a standalone
application

automates a
business process

Business Process AApplication A

Figure 3.21
The traditional application, delivered to automate specific business process logic.

a service
composition
comprised of
services from
the service
inventory

automates a
business process

Business Process A

Service
Composition A

service
inventory

Figure 3.22
The service composition, intended to fulfill the role of the traditional application by leveraging agnostic and non-
agnostic services from a service inventory. This essentially establishes a “composite application.”

ptg20131482

40 Chapter 3: Understanding Service-Orientation

The application therefore loses its individuality. One could argue that a service-oriented
application actually does not exist because it is, in fact, just one of many service compo-
sitions. However, upon closer refl ection, we can see that some of our services (based on
the service models established in Chapter 5) are actually not business process agnostic.
One service, for example, intentionally represents logic that is dedicated to the automa-
tion of just one business task, and therefore not necessarily reusable.

So, single-purpose services can still be associated with the notion of an application.
However, within service-oriented computing, the meaning of this term can change to
refl ect the fact that a potentially large portion of the application logic is no longer exclu-
sive to the application.

Service-Orientation and the Concept of “Integration”

When we revisit the idea of a service inventory consisting of services that have, as per
our service-orientation principles, been shaped into standardized and (for the most
part) reusable units of solution logic, we can see that this will challenge the traditional
perception of “integration.”

In the past, integrating something implied connecting two or more applications or pro-
grams that may or may not have been compatible (Figure 3.23). Perhaps they were based
on different technology platforms or maybe they were never designed to connect with
anything outside of their own internal boundary. The increasing need to hook up dis-
parate pieces of software to establish a reliable level of data exchange is what turned
integration into an important, high profi le part of the IT industry.

Services designed to be “intrinsically interoperable” are built with the full awareness
that they will need to interact with a potentially large range of service consumers, most
of which will be unknown at the time of their initial delivery. If a signifi cant part of our
enterprise solution logic is represented by an inventory of intrinsically interoperable
services, it empowers us with the freedom to mix and match these services into infi nite
composition confi gurations to fulfi ll whatever automation requirements come our way.

ptg20131482

3.3 Effects of Service-Orientation on the Enterprise 41

two applications
integrated specifically

to automate a new
business process

Application A Application B

Business Process G

Figure 3.23
The traditional integration architecture, comprised of two or more applications
connected in different ways to fulfill a new set of automation requirements (as
dictated by the new Business Process G).

As a result, the concept of integration begins to fade. Exchanging data between dif-
ferent units of solution logic becomes a natural and secondary design characteristic
(Figure 3.24). Again, though, this is something that can only transpire when a sub-
stantial percentage of an organization’s solution logic is represented by a quality ser-
vice inventory. While working toward achieving this environment, there will likely be
many requirements for traditional integration between existing legacy systems but also
between legacy systems and these services.

ptg20131482

42 Chapter 3: Understanding Service-Orientation

The Service Composition

Applications , integrated applications, solutions, systems—all of these terms and what
they have traditionally represented can be directly associated with the service composi-
tion (Figure 3.25). As SOA transition initiatives continue to progress within an enter-
prise, it can be helpful to make a clear distinction between a traditional application
(one which may reside alongside an SOA implementation or which may be actually
encapsulated by a service) and the service compositions that eventually become more
commonplace.

a new service composition
is created by adding a new service

and reusing services from the service
inventory to automate a new

business process

Business Process G

Service
Composition G

service
inventory

Figure 3.24
A new combination of services is composed together to fulfill the role of traditional
integrated applications .

ptg20131482

3.4 Goals and Benefi ts of Service-Oriented Computing 43

solution

application

system

integrated
applications/solutions/systems

service
composition

Figure 3.25
A service-oriented solution,
application, or system is the
equivalent of a service composition.

3.4 Goals and Benefits of Service-Oriented Computing

A set of strategic goals and benefi ts (Figure 3.26) collectively represents the target state
we look to achieve when we consistently apply service-orientation to the design of soft-
ware programs. It is highly benefi cial to understand the signifi cance of these goals and
benefi ts because they provide us with constant, overarching context and justifi cation
for maintaining our commitment to carrying out service-orientation over the long term.

The upcoming sections describe each of these strategic goals and benefi ts.

strategic goals

strategic benefits

Increased
Organizational

Agility

Increased
Organizational

Agility

Reduced
IT Burden

Increased
ROI

Increased
Business and
Technology
Alignment

Increased
Vendor

Diversity
Options

Increased
Intrinsic

Interoperability

Increased
Federation

Figure 3.26
The seven identified goals
are interrelated and can be
further categorized into two
groups: strategic goals and
resulting benefits. Increased
organization agility, increased
ROI, and reduced IT burden
are concrete benefits resulting
from the attainment of the
 remaining four goals.

ptg20131482

44 Chapter 3: Understanding Service-Orientation

Increased Intrinsic Interoperability

Interoperability refers to the sharing of data. The more interoperable software programs
are, the easier it is for them to exchange information. Software programs that are not
interoperable need to be integrated. Therefore, integration can be seen as a process that
enables interoperability. A goal of service-orientation is to establish native interoper-
ability within services to reduce the need for integration (Figure 3.27). As previously
explained in the Effects of Service-Orientation on the Enterprise section, integration as a
concept begins to fade within service-oriented environments.

Project Team A

Project Team B

Project Team C

Invoice Timesheet

Invoice

Timesheet

Figure 3.27
Services are designed to be intrinsically interoperable regardless of when and for which purpose
they are delivered. In this example, the intrinsic interoperability of the Invoice and Timesheet
services delivered by Project Teams A and B allow them to be combined into a new service
composition by Project Team C.

Interoperability is specifi cally fostered through the consistent application of design
principles and design standards. This establishes an environment wherein services
produced by different projects at different times can be repeatedly assembled together
into a variety of composition confi gurations to help automate a range of business tasks.

ptg20131482

3.4 Goals and Benefi ts of Service-Oriented Computing 45

Intrinsic interoperability represents a fundamental goal of service-orientation that
establishes a foundation for the realization of other strategic goals and benefi ts. Contract
standardization, scalability, behavioral predictability, and reliability are just some of the
design characteristics required to facilitate interoperability, all of which are addressed
by the service-orientation principles documented in this book.

Each of the eight service-orientation principles supports or contributes to interoperabil-
ity in some manner. The following are just a few examples:

• Standardized Service Contract (291) – Service contracts are standardized to guaran-
tee a baseline measure of interoperability associated with the harmonization of
data models.

• Service Loose Coupling (293) – Reducing the degree of service coupling fosters
interoperability by making individual services less dependent on others and
therefore more open for invocation by different service consumers.

• Service A bstraction (294) – Abstracting details about the service limits all interop-
eration to the service contract, increasing the long-term consistency of interoper-
ability by allowing underlying service logic to evolve more independently.

• Service Reusability (295) – Designing services for reuse implies a high-level of
required interoperability between the service and numerous potential service
consumers.

• Service Autonomy (297) – By raising a service’s individual autonomy its behavior
becomes more consistently predictable, increasing its reuse potential and thereby
its attainable level of interoperability.

• Service Statelessness (298) – Through an emphasis on stateless design, the avail-
ability and scalability of services increase, allowing them to interoperate more
frequently and reliably.

• Service Discoverability (300) – Being discoverable simply allows services to be more
easily located by those who want to potentially interoperate with them.

• Service Composability (302) – Finally, for services to be effectively composable they
must be interoperable. The success of fulfi lling composability requirements is
often tied directly to the extent to which services are standardized and cross-
service data exchange is optimized.

A fundamental goal of applying service-orientation is for interoperability to become a
natural by-product, ideally to the extent that a level of intrinsic interoperability is estab-
lished as a common and expected service design characteristic.

ptg20131482

46 Chapter 3: Understanding Service-Orientation

Increased Federation

A federated IT environment is one where resources and applications are united while
maintaining their individual autonomy and self-governance. Service-orientation aims
to increase a federated perspective of an enterprise to whatever extent it is applied. It
accomplishes this through the widespread deployment of standardized and compos-
able services, each of which encapsulates a segment of the enterprise and expresses it in
a consistent manner.

In support of increasing federation, standardization becomes part of the extra up-front
attention each service receives at design time. Ultimately this leads to an environment
where enterprise-wide solution logic becomes naturally harmonized, regardless of the
nature of its underlying implementation (Figure 3.28).

Invoice

Timesheet

Validate
Timesheet

Figure 3.28
Three service contracts establishing
a federated set of endpoints, each
of which encapsulates a different
implementation.

ptg20131482

3.4 Goals and Benefi ts of Service-Oriented Computing 47

Increased Vendor Diversification Options

Vendor diversifi cation refers to the ability an organization has to pick and choose “best-
of-breed” vendor products and technology innovations and use them together within
one enterprise. Having a vendor-diverse environment is not necessarily benefi cial for
an organization; however, having the option to diversify when required is benefi cial.
To have and retain this option requires that its technology architecture not be tied or
locked into any one specifi c vendor platform.

This represents an important state for an enterprise in that it provides the constant free-
dom for an organization to change, extend, and even replace solution implementations
and technology resources without disrupting the overall, federated service architec-
ture. This measure of governance autonomy is attractive because it prolongs the life-
span and increases the fi nancial return of automation solutions.

By designing a service-oriented solution in alignment with but neutral to major ven-
dor SOA platforms and by positioning service contracts as standardized endpoints
throughout a federated enterprise, proprietary service implementation details can be
abstracted to establish a consistent interservice communications framework. This pro-
vides organizations with constant options by allowing them to diversify their enter-
prise as needed (Figure 3.29).

DB2

JavaValidate
Timesheet

.NET

SQL
Server

Timesheet

Java

10g

Invoice

Figure 3.29
A service composition consisting of three services,
each of which encapsulates a different vendor
automation environment. If service-orientation
is adequately applied to the services, underlying
disparity will not inhibit their ability to be combined
into effective compositions.

ptg20131482

48 Chapter 3: Understanding Service-Orientation

Vendor diversifi cation is further supported by taking advantage of the standards-based,
vendor-neutral Web services framework. Because they impose no proprietary commu-
nication requirements, services further decrease dependency on vendor platforms. As
with any other implementation medium, though, services need to be shaped and stan-
dardized through service-orientation to become a federated part of a greater service
inventory.

Increased Business and Technology Domain Alignment

The extent to which IT business requirements are fulfi lled is often associated with
the accuracy with which business logic is expressed and automated by solution logic.
Although initial application implementations have traditionally been designed to meet
initial requirements, there has historically been a challenge in keeping applications in
alignment with business needs as the nature and direction of the business changes.

Service-orientation promotes abstraction on many levels. One of the most effective
means by which functional abstraction is applied is the establishment of service lay-
ers that accurately encapsulate and represent business models. By doing so, common,
pre-existing representations of business logic (business entities, business processes) can
exist in implemented form as physical services.

This is accomplished by incorporating a structured analysis and modeling process that
requires the hands-on involvement of business subject matter experts in the actual defi -
nition of the services (as explained in the Service-Oriented Analysis (Service Modeling)
section in Chapter 4). The resulting service designs are capable of aligning automation
technology with business intelligence on an unprecedented level (Figure 3.30).

Furthermore, the fact that services are designed to be intrinsically interoperable directly
facilitates business change. As business processes are augmented in response to vari-
ous factors (business climates, new policies, new priorities, etc.) services can be recon-
fi gured into new compositions that refl ect the changed business logic. This allows a
service-oriented technology architecture to evolve in tandem with the business itself.

Increased ROI

Measuring the return on investment (ROI) of automated solutions is a critical factor
in determining just how cost effective a given application or system actually is. The
greater the return, the more an organization benefi ts from the solution. However, the
lower the return, the more the cost of automated solutions eats away at an organiza-
tion’s budgets and profi ts.

ptg20131482

3.4 Goals and Benefi ts of Service-Oriented Computing 49

Because the nature of required application logic has increased in complexity and due
to ever-growing, non-federated integration architectures that are diffi cult to maintain
and evolve, the average IT department represents a signifi cant amount of an organiza-
tion’s operational budget. For many organizations, the fi nancial overhead required by
IT is a primary concern because it often continues to rise without demonstrating any
corresponding increase in business value.

Service-orientation advocates the creation of agnostic solution logic—logic that is
agnostic to any one purpose and therefore useful for multiple purposes. This multipur-
pose or reusable logic fully leverages the intrinsically interoperable nature of services.
Agnostic services have increased reuse potential that can be realized by allowing them
to be repeatedly assembled into different compositions. Any one agnostic service can
therefore fi nd itself being repurposed numerous times to automate different business
processes as part of different service-oriented solutions.

With this benefi t in mind, additional up-front expense and effort is invested into every
piece of solution logic to position it as an IT asset for the purpose of repeatable, long-
term fi nancial returns. As shown in Figure 3.31, the emphasis on increasing ROI typi-
cally goes beyond the returns traditionally sought as part of past reuse initiatives. This
has much to do with the fact that service-orientation aims to establish reuse as a com-
mon, secondary characteristic within most services.

Invoice

Business Process
Definition

Business Entity
Model

Invoice

Timesheet

Run Billing
Report

Figure 3.30
Services with business-centric functional
contexts are carefully modeled to express
and encapsulate corresponding business
models and logic.

ptg20131482

50 Chapter 3: Understanding Service-Orientation

y x 2 y x 5 y x 9

ROI

x + 30%

delivery cost

service-oriented
unit of solution

logic

1st
year

2nd
year

3rd
year

x

delivery cost

traditional
unit of solution

logic

y y x 2 y x 3

ROI

1st
year

2nd
year

3rd
year

Figure 3.31
An example of the types of formulas being used to calculate ROI for SOA projects. More is invested in
the initial delivery with the goal of benefiting from increased subsequent reuse.

It is important to acknowledge that this goal is not simply tied to the benefi ts tradition-
ally associated with software reuse. Proven commercial product design techniques are
incorporated and blended with existing enterprise application delivery approaches to
form the basis of a distinct set of service-oriented analysis and design processes (as
covered in the chapters in Part II, Service-Oriented Analysis and Design).

Increased Organizational Agility

Agility, on an organizational level, refers to effi ciency with which an organization can
respond to change. Increasing organizational agility is very attractive to corporations,
especially those in the private sector. Being able to more quickly adapt to industry
changes and outmaneuver competitors has tremendous strategic signifi cance.

An IT department can sometimes be perceived as a bottleneck, hampering desired
responsiveness by requiring too much time or resources to fulfi ll new or changing
business requirements. This is one of the reasons agile development methods have
gained popularity, as they provide a means of addressing immediate, tactical concerns
more rapidly.

ptg20131482

3.4 Goals and Benefi ts of Service-Oriented Computing 51

Service-orientation is very much geared toward establishing widespread organizational
agility. When service-orientation is applied throughout an enterprise, it results in the
creation of services that are highly standardized and reusable and therefore agnostic to
parent business processes and specifi c application environments.

As a service inventory is comprised of more and more agnostic services, an increas-
ing percentage of its overall solution logic belongs to no one application environment.
Instead, because these services have been positioned as reusable IT assets, they can
be repeatedly composed into different confi gurations. As a result, the time and effort
required to automate new or changed business processes is correspondingly reduced
because development projects can now be completed with signifi cantly less custom
development effort (Figure 3.32).

The net result of this fundamental shift in project delivery is heightened responsiveness
and reduced time to market potential, all of which translates into increased organiza-
tional agility.

service
inventory

Cost = x/2.5
Effort = y/3
Time = z/3

Build 35% new logic
Reuse 65% existing logic Timesheet

Validation
Solution

Cost = x
Effort = y
Time = z

Build 100% of required logic

time to market

Timesheet
Validation
Solution

Timesheet
Validation
Solution

Figure 3.32
The delivery timeline is projected based on the percentage of “net new” solution logic that needs to be
built. Though in this example only 35% of new logic is required, the timeline is reduced by around 50%
because significant effort is still required to incorporate existing, reusable services from the inventory.

ptg20131482

52 Chapter 3: Understanding Service-Orientation

NOTE

Organizational agility represents a target state that organizations work toward as they
deliver services and populate service inventories. The organization benefits from increased
responsiveness after a significant amount of services is in place. The processes required to
model and design those services require more upfront cost and effort than building the cor-
responding quantity of solution logic using traditional project delivery approaches.

It is therefore important to acknowledge that service-orientation has a strategic focus
that intends to establish a highly agile enterprise. This is different from agile development
approaches that have more of a tactical focus.

Reduced IT Burden

Consistently applying service-orientation results in an IT enterprise with reduced waste
and redundancy, reduced size and operational cost (Figure 3.33), and reduced overhead
associated with its governance and evolution. Such an enterprise can benefi t an organi-
zation through dramatic increases in effi ciency and cost-effectiveness.

the same
enterprise

with an
inventory

of services

enterprise
with an

inventory of
integrated

applications

Figure 3.33
If you were to take a typical automated
enterprise and redevelop it entirely
with custom, normalized services, its
overall size would shrink considerably,
 resulting in a reduced operational
scope.

In essence, the attainment of the previously described goals can create a leaner, more
agile IT department, one that is less of a burden on the organization and more of an
enabling contributor to its strategic goals.

In summary, the consistent application of service-orientation design principles to indi-
vidual services that eventually comprise a greater service inventory is the core require-
ment to achieving the goals and benefi ts of service-oriented computing (Figure 3.34).

ptg20131482

3.4 Goals and Benefi ts of Service-Oriented Computing 53

Standardized
Service Contract

Service
Abstraction

Service
Reusability

Service
Composability

Service
Loose Coupling

Service
Discoverability

Service
Autonomy

Service
Statelessness

Increased
Organizational

Agility

Increased
Organizational

Agility

Reduced
IT Burden

Increased
ROI

Increased
Business and
Technology
Alignment

Increased
Vendor

Diversity
Options

Increased
Intrinsic

Interoperability

Increased
Federation

Figure 3.34
The repeated application of service-orientation principles to services that are delivered as part of a collection leads to
a target state based on the manifestation of the strategic goals associated with service-oriented computing.

ptg20131482

54 Chapter 3: Understanding Service-Orientation

3.5 Four Pillars of Service-Orientation

As previously explained, service-orientation provides us with a well-defi ned method
for shaping software programs into units of service-oriented logic that we can legiti-
mately refer to as services. Each such service that we deliver takes us a step closer to
achieving the desired target state represented by the aforementioned strategic goals
and benefi ts.

Proven practices, patterns, principles, and technologies exist in support of service-
orientation. However, because of the distinctly strategic nature of the target state that
service-orientation aims to establish, there is a set of fundamental critical success fac-
tors that act as common prerequisites for its successful adoption. These critical success
factors are referred to as pillars because they collectively establish a sound and healthy
foundation upon which to build, deploy, and govern services.

The four pillars of service-orientation are

• Teamwork – Cross-project teams and cooperation are required.

• Education – Team members must communicate and cooperate based on common
knowledge and understanding.

• Discipline – Team members must apply their common knowledge consistently.

• Balanced Scope – The extent to which the required levels of Teamwork, Education,
and Discipline need to be realized is represented by a meaningful yet manageable
scope.

The existence of these four pillars is considered essential to any SOA initiative. The
absence of any one of these pillars to a signifi cant extent introduces a major risk factor. If
such an absence is identifi ed in the early planning stages, it can warrant not proceeding
with the project until it has been addressed—or the project’s scope has been reduced.

Teamwork

Whereas traditional silo-based applications require cooperation among
members of individual project teams, the delivery of services and ser-
vice-oriented solutions requires cooperation across multiple project
teams. The scope of the required teamwork is noticeably larger and can
introduce new dynamics, new project roles, and the need to forge and
maintain new relationships among individuals and departments. Those on the overall
SOA team need to trust and rely on each other; otherwise the team will fail.

Teamwork

ptg20131482

3.5 Four Pillars of Service-Orientation 55

Education

A key factor to realizing the reliability and trust required by SOA team
members is to ensure that they use a common communications frame-
work based on common vocabulary, defi nitions, concepts, methods,
and a common understanding of the target state the team is collectively
working to attain. To achieve this common understanding requires
common education, not just in general topics pertaining to service-orientation, SOA,
and service technologies, but also in specifi c principles, patterns, and practices, as well
as established standards, policies, and methodology specifi c to the organization.

Combining the pillars of teamwork and education establishes a foundation of knowl-
edge and an understanding of how to use that knowledge among members of the SOA
team. The resulting clarity eliminates many of the common risks that have traditionally
plagued SOA projects.

Discipline

A critical success factor for any SOA initiative is consistency in how
knowledge and practices among a cooperative team are used and
applied. To be successful as a whole, team members must therefore be
disciplined in how they apply their knowledge and in how they carry
out their respective roles. Required measures of discipline are com-
monly expressed in methodology, modeling, and design standards, as well as gover-
nance precepts. Even with the best intentions, an educated and cooperative team will
fail without discipline.

Balanced Scope

So far we’ve established that we need:

• cooperative teams that have…

• a common understanding and education pertaining to industry and enterprise-
specifi c knowledge areas and that…

• we need to consistently cooperate as a team, apply our understanding, and follow
a common methodology and standards in a disciplined manner.

Education

Discipline

ptg20131482

56 Chapter 3: Understanding Service-Orientation

In some IT enterprises, especially those with a long history of building silo-based appli-
cations, achieving these qualities can be challenging. Cultural, political, and various
other forms of organizational issues can arise to make it diffi cult to attain the necessary
organizational changes required by these three pillars. How then can they be realisti-
cally achieved? It all comes down to defi ning a balanced scope of adoption.

The scope of adoption needs to be meaningfully cross-silo, while also realisti-
cally manageable. This requires the defi nition of a balanced scope of adoption of
service-orientation.

NOTE

The concept of a balanced scope corresponds directly to the following guideline in the
SOA Manifesto:

“The scope of SOA adoption can vary. Keep efforts manageable and within meaningful
boundaries.”

See Appendix D for the complete SOA Manifesto and the Annotated SOA Manifesto.

Once a balanced scope of adoption has been defi ned, this scope determines the extent
to which the other three pillars need to be established. Conversely, the extent to which
you can realize the other three pillars will infl uence how you determine the scope
(Figure 3.35).

Common factors involved in determining a balanced scope include:

• Cultural obstacles

• Authority structures

• Geography

• Business domain alignment

• Available stakeholder support and funding

• Available IT resources

ptg20131482

3.5 Four Pillars of Service-Orientation 57

Discipline

Teamwork

Education

Balanced Scope

Figure 3.35
The Balanced Scope pillar
encompasses and sets the scope
at which the other three pillars are
applied for a given adoption effort.

A single organization can choose one or more balanced adoption scopes (Figure 3.36).
Having multiple scopes results in a domain-based approach to adoption. Each domain
establishes a boundary for an inventory of services. Among domains, adoption of
 service-orientation and the delivery of services can occur independently. This does not
result in application silos; it establishes meaningful service domains (also known as
“continents of services”) within the IT enterprise.

SOA PATTERNS

The domain service inventory originated with the Domain Inventory [338]
pattern, which is an alternative to the Enterprise Inventory [340] pattern.

ptg20131482

58 Chapter 3: Understanding Service-Orientation

Figure 3.36
Multiple balanced scopes can exist within the same IT enterprise. Each represents a separate domain service
inventory that is independently standardized, owned, and governed.

Teamwork

Balanced Scope

IT enterprise

Education Discipline

Teamwork

Balanced Scope

Education Discipline

Teamwork

Balanced Scope

Education Discipline

ptg20131482

Chapter 4

Understanding SOA

Introduction to SOA

4.1 The Four Characteristics of SOA

4.2 The Four Common Types of SOA

4.3 The End Result of Service-Orientation and SOA

4.4 SOA Project and Lifecycle Stages

ptg20131482

The focus of this chapter is to establish the link between service-orientation and
technology architecture, establish distinct SOA characteristics and types, and raise

key project delivery considerations.

NOTE

Several of the upcoming sections make reference to clouds and cloud computing in
general. If you are new to cloud computing, you can find introductory content at www.
whatiscloud.com and cloud computing patterns at www.cloudpatterns.org . More compre-
hensive coverage is provided in the Cloud Computing: Concepts, Technology & Architecture
and Cloud Computing Design Patterns titles that are part of the Prentice Hall Service Tech-
nology Series from Thomas Erl.

Introduction to SOA

Let’s briefl y recap some of the topics covered in Chapter 3 to clearly establish how they
relate to each other and how they specifi cally lead to a defi nition of SOA:

• There is a set of strategic goals associated with service-oriented computing.

• These goals represent a specifi c target state.

• Service-orientation is the paradigm that provides a proven method for achieving
this target state.

• When we apply service-orientation to the design of software, we build units of
logic called “services.”

• Service-oriented solutions are comprised of one or more services.

We have established that a solution is considered service-oriented after service-
orientation has been applied to a meaningful extent. A mere understanding of the
design paradigm, however, is insuffi cient. To apply service-orientation consistently and
successfully requires a technology architecture customized to accommodate its design
preferences, initially when services are fi rst delivered and especially when collections
of services are accumulated and assembled into complex compositions.

http://www.cloudpatterns.org
http://www.whatiscloud.com
http://www.whatiscloud.com

ptg20131482

4.1 The Four Characteristics of SOA 61

In other words:

• To build successful service-oriented solutions, we need a distributed technology
architecture with specifi c characteristics.

• These characteristics distinguish the technology architecture as being service-
oriented. This is SOA.

Service-orientation is fundamentally about attaining the specifi c target state we estab-
lished toward the end of Chapter 3. It asks that we take extra design considerations into
account with everything we build so that all the moving parts of a given service- oriented
solution support the realization of this state and foster its growth and evolution. These
design considerations carry over into the supporting technology architecture, which
must have a distinct set of characteristics that enable the target state and inherently
accommodate ongoing change within that target environment.

4.1 The Four Characteristics of SOA

Service-oriented technology architecture must have certain properties that fulfi ll the
fundamental requirements for an automation solution comprised of services to which
service-orientation design principles have been applied. These four characteristics fur-
ther help distinguish SOA from other architectural models.

NOTE

As we explore each of these characteristics individually, keep in mind that in real-world
implementations the extent to which these characteristics can be attained will likely vary.

Business-Driven

Technology architectures are commonly designed in support of solutions delivered to
fulfi ll tactical (short-term) business requirements. Because the over-arching, strategic
(long-term) business goals of the organization aren’t taken into consideration when
the architecture is defi ned, this approach can result in a technical environment that,
over time, becomes out of alignment with the organization’s business direction and
requirements.

ptg20131482

62 Chapter 4: Understanding SOA

This gradual separation of business and technology results in a technology architecture
with diminishing potential to fulfi ll business requirements and one that is increasingly
diffi cult to adapt to changing business needs (Figure 4.1).

Business
Architecture A

Technology
Architecture A

Business
Architecture A

Technology
Architecture A

Business
Architecture A

Technology
Architecture A

Business
Architecture A

Technology
Architecture B

ye
ar

 1
ye

ar
 2

ye
ar

 3
ye

ar
 4

Figure 4.1
A technology architecture (A) is often delivered in alignment with the current state of a business but can be incapable of
changing in alignment with how the business evolves. As business and technology architectures become increasingly
out of sync, business requirement fulfillment decreases, often to the point that a whole new technology architecture (B)
is needed, which effectively resets this cycle.

When a technology architecture is business-driven, the overarching business vision,
goals, and requirements are positioned as the basis for and the primary infl uence of
the architectural model. This maximizes the potential alignment of technology and
business and allows for a technology architecture that can evolve in tandem with the
organization as a whole (Figure 4.2). The result is a continual increase in the value and
lifespan of the architecture.

ptg20131482

4.1 The Four Characteristics of SOA 63

Vendor-Neutral

Designing a service-oriented technology architecture around one particular vendor
platform can lead to an implementation that inadvertently inherits proprietary charac-
teristics. This can end up inhibiting the future evolution of an inventory architecture in
response to technology innovations that become available from other vendors.

An inhibitive technology architecture is unable to evolve and expand in response to
changing automation requirements, which can result in the architecture having a lim-
ited lifespan after which it needs to be replaced to remain effective (Figure 4.3).

It is in the best interest of an organization to base the design of a service-oriented archi-
tecture on a model that is in alignment with the primary SOA vendor platforms, yet
neutral to all of them. A vendor-neutral architectural model can be derived from a
vendor-neutral design paradigm used to build the solution logic the architecture will

Business
Architecture A

Technology
Architecture A

Business
Architecture A

Technology
Architecture A

ye
ar

 1
ye

ar
 2

ye
ar

 3
ye

ar
 4

Business
Architecture A

Technology
Architecture A

Business
Architecture A

Technology
Architecture A

Figure 4.2
By defining a strategic, business-centric scope to the technology architecture, it can be kept in constant sync
with how the business evolves over time.

ptg20131482

64 Chapter 4: Understanding SOA

ye
ar

s
1-

3
ye

ar
 4

Vendor A
Architecture

Vendor E
Architecture

Vendor D
Architecture

Vendor B
Architecture

Vendor C
Architecture

Technology
Architecture

A Vendor A
Architecture

Vendor E
Architecture

Vendor D
Architecture

Vendor C
Architecture

architecture design architecture implementation

Vendor B
Architecture

Technology
Architecture

A

Vendor A
Architecture

Vendor E
Architecture

Vendor D
Architecture

Vendor B
Architecture

Vendor C
Architecture

Technology
Architecture

B

Vendor A
Architecture

Vendor E
Architecture

Vendor C
Architecture

architecture design architecture implementation

Vendor B
Architecture

Vendor D
Architecture

Technology
Architecture

B

Figure 4.3
Vendor-centric technology architectures are often bound to corresponding vendor platform roadmaps. This can
reduce opportunities to leverage technology innovations provided by other vendor platforms and can result in
the need to eventually replace the architecture entirely with a new vendor implementation (which starts the cycle
over again).

ptg20131482

4.1 The Four Characteristics of SOA 65

be responsible for supporting (Figure 4.4). The service-orientation paradigm provides
such an approach, in that it is derived from and applicable to real-world technology
platforms while remaining neutral to them.

ye
ar

s
1-

3
ye

ar
 4

Vendor A
Architecture

Vendor E
Architecture

Vendor D
Architecture

Vendor B
Architecture

Vendor C
Architecture

Vendor A
Architecture

Vendor E
Architecture

Vendor D
Architecture

Vendor C
Architecture

architecture design architecture implementation

Vendor B
Architecture

Technology
Architecture

A

Vendor A
Architecture

Vendor E
Architecture

Vendor D
Architecture

Vendor B
Architecture

Vendor C
Architecture

Vendor A
Architecture

Vendor E
Architecture

Vendor C
Architecture

architecture design architecture implementation

Vendor B
Architecture

Vendor D
Architecture

Technology
Architecture

A

Technology
Architecture

A

Technology
Architecture

A

VVendoenndordordo DDD

Vendodorr BBB
Arcchithitecectcttuureure

Figure 4.4
If the architectural model is designed to be and remain neutral to vendor platforms, it maintains the freedom to
diversify its implementation by leveraging multiple vendor technology innovations. This increases the longevity of the
architecture as it is allowed to augment and evolve in response to changing requirements.

ptg20131482

66 Chapter 4: Understanding SOA

NOTE

Just because an architecture is classified as vendor-neutral doesn’t mean it is also aligned
with current vendor technology. Some models produced by independent efforts are out of
synch with the manner in which mainstream SOA technology exists today and is expected
to evolve in the future and can therefore be just as inhibitive as vendor-specific models.

Enterprise-Centric

The fact that service-oriented solutions are based on a distributed architecture doesn’t
mean that there still isn’t the constant danger of creating new silos within an enterprise
when building poorly designed services, as illustrated in Figure 4.5.

Enterprise A

Business Process A Business Process B Business Process C

Figure 4.5
Single-purpose services delivered to automate specific business processes can end up establishing
silos within the enterprise.

When you apply service-orientation, services are positioned as enterprise resources,
which implies that service logic is designed with the following primary characteristics:

• The logic is available beyond a specifi c implementation boundary.

• The logic is designed according to established design principles and enterprise
standards.

ptg20131482

4.1 The Four Characteristics of SOA 67

Essentially, the body of logic is classifi ed as a resource of the enterprise. This does not
necessarily make it an enterprise-wide resource or one that must be used throughout an
entire technical environment. An enterprise resource is simply logic positioned as an IT
asset; an extension of the enterprise that does not belong solely to any one application
or solution.

SOA PATTERNS

As established in the Service Encapsulation [359] pattern, an enterprise resource
essentially embodies the fundamental characteristics of service logic.

To leverage services as enterprise resources, the underlying technology architecture
must establish a model that is natively based on the assumption that software programs
delivered as services will be shared by other parts of the enterprise or will be part
of larger solutions that include shared services. This baseline requirement places an
emphasis on standardizing parts of the architecture so that service reuse and interoper-
ability can be continually fostered (Figure 4.6).

Service Inventory A

Business Process A Business Process B Business Process C

Enterprise A

Figure 4.6
When services are positioned as enterprise resources, they no longer create or reside in silos. Instead
they are made available to a broader scope of utilization by being part of a service inventory.

ptg20131482

68 Chapter 4: Understanding SOA

Composition-Centric

More so than in previous distributed computing paradigms, service-orientation places
an emphasis on designing software programs as not just reusable resources, but as fl ex-
ible resources that can be plugged into different aggregate structures for a variety of
service-oriented solutions.

To accomplish this, services must be composable. As advocated by the Service Compos-
ability (302) principle, this means that services must be capable of being pulled into a
variety of composition designs, regardless of whether or not they are initially required
to participate in a composition when they are fi rst delivered (Figure 4.7).

Business Process A Business Process B Business Process C

Service Inventory A

Figure 4.7
Services within the same service inventory are composed into different configurations.
The highlighted service is reused by multiple compositions to automate different business
processes.

ptg20131482

4.1 The Four Characteristics of SOA 69

To support native composability, the underlying technology architecture must be pre-
pared to enable a range of simple and complex composition designs. Architectural
extensions (and related infrastructure extensions) pertaining to scalability, reliability,
and runtime data exchange processing and integrity are essential to support this key
characteristic.

Design Priorities

A valuable perspective of how service-orientation relates to SOA and of how the for-
malization of this relationship results in a set of design priorities was provided by the
publication of the “SOA Manifesto.” Have a look at the following excerpt:

Service orientation is a paradigm that frames what you do. Service-oriented
architecture (SOA) is a type of architecture that results from applying service
orientation.

We have been applying service orientation to help organizations consistently
deliver sustainable business value, with increased agility and cost effectiveness,
in line with changing business needs.

Through our work we have come to prioritize:

Business value over technical strategy

Strategic goals over project-specifi c benefi ts

Intrinsic interoperability over custom integration

Shared services over specifi c-purpose implementations

Flexibility over optimization

Evolutionary refi nement over pursuit of initial perfection

That is, while we value the items on the right, we value the items on the left more.

It is evident how these design priorities are directly supported by the service- orientation
design paradigm and the service-oriented architectural model. This is further explored
in the “Annotated SOA Manifesto” that was published at www.soa-manifesto.com and
is also provided in Appendix D of this book.

http://www.soa-manifesto.com

ptg20131482

70 Chapter 4: Understanding SOA

4.2 The Four Common Types of SOA

As we’ve already established, every software program ends up being comprised of
and residing in some form of architectural combination of resources, technologies, and
platforms (infrastructure-related or otherwise). If we take the time to customize these
architectural elements, we can establish a refi ned and standardized environment for
the implementation of (also customized) software programs.

The intentional design of technology architecture is very important to service-oriented
computing. It is essential to establishing an environment within which services can
be repeatedly recomposed to maximize business requirements fulfi llment. The strate-
gic benefi t to customizing the scope, context, and boundary of an architecture can be
signifi cant.

To better understand the basic mechanics of SOA, we now need to study the com-
mon types of technology architectures that exist within a typical service-oriented
environment:

• Service Architecture – The architecture of a single service.

• Service Composition Architecture – The architecture of a set of services assembled
into a service composition.

• Service Inventory Architecture – The architecture that supports a collection of related
services that are independently standardized and governed.

• Service-Oriented Enterprise Architecture – The architecture of the enterprise itself, to
whatever extent it is service-oriented.

SOA PATTERNS

Architecture types are closely related to SOA patterns. Note how each pat-
tern profi le table in Appendix C contains a fi eld dedicated to showing related
architectures.

The service-oriented enterprise architecture represents a parent architecture that
encompasses all others. The environment and conventions established by this parent
platform are carried over into the service inventory architecture implementations that
may reside within a single enterprise environment. These inventories further intro-
duce new and more specifi c architectural elements (such as runtime platforms and

ptg20131482

4.2 The Four Common Types of SOA 71

middleware) that then form the foundation of service and composition architectures
implemented within an inventory’s boundary.

As a result, a natural form of architectural inheritance is formed whereby more granu-
lar architecture implementations inherit elements from less granular ones (Figure 4.8).
This relationship between architecture types is good to keep in mind as it can identify
potential (positive and negative) dependencies that may exist.

The following section explores the architecture types individually and concludes by
highlighting links between these characteristics and common SOA design priorities.

Service Architecture

A technology architecture limited to the physical design of a software program designed
as a service is referred to as the service architecture. This form of technology architecture
is comparable in scope to a component architecture, except that it will typically rely on a
greater amount of infrastructure extensions to support its need for increased reliability,
performance, scalability, behavioral predictability, and especially its need for increased
autonomy. The scope of a service architecture will also tend to be larger because a ser-
vice can, among other things, encompass multiple components (Figure 4.9).

Whereas it was not always that common to document a separate architecture for a com-
ponent in traditional distributed applications, the importance of producing services
that need to exist as independent and highly self-suffi cient and self-contained software
programs requires that each be individually designed.

Service-Oriented
Enterprise

Service
Inventory

Service
Composition

Service

Figure 4.8
The layered SOA model
establishes the four common
SOA types: service architecture,
service composition architecture,
service inventory architecture,
and service-oriented enterprise
architecture.

ptg20131482

72 Chapter 4: Understanding SOA

core
service
logic

Accounts.wsdl

Config.xml

Client.xsd Invoice.xsdAccounts.xsd

message
processing

logic

state
repository

Identity Store

one-way replication

legacy APIs

shared databases

A
ccounts S

ervice

Figure 4.9
An example of a high-level service architecture view for the Accounts service, depicting the parts of the surrounding
infrastructure utilized to fulfill the functional requirements of all capabilities. Additional views can be created to show
only those architectural elements related to the processing of specific capabilities. Further detail, such as data flow and
security requirements, would normally also be included.

ptg20131482

4.2 The Four Common Types of SOA 73

Service architecture specifi cations are typically owned by service custodians and, in
support of the Service Abstraction (294) design principle , their contents are often pro-
tected and hidden from other project team members (Figure 4.10).

The application of design standards and other service-orientation design principles fur-
ther affects the depth and detail to which a service’s technology architecture may need
to be defi ned (Figure 4.11). For example, implementation considerations raised by the
Service Autonomy (297) and Service Statelessness (298) principles can require a service
architecture to extend deeply into its surrounding infrastructure by defi ning exactly

Accounts Service

service
custodian SLA

service registry
profile record

Accounts.wsdl

Accounts.xsd

Client.xsd

Invoice.xsd

m
es

sa
ge

pr
oc

es
si

ng
lo

gi
ccore

service
logic

Accounts Service

m
es

sa
geg

pr
oc

es
si

ngigg

lo
gi

c
l

icore
service
logic

service
consumer
designers

Figure 4.10
The custodian of the Accounts service intentionally limits access to architecture documentation. As a result,
service consumer designers are only privy to published service contract documents.

ptg20131482

74 Chapter 4: Understanding SOA

what physical environment it is deployed within, what resources it needs to access,
what other parts of the enterprise may be accessing those same resources, and what
extensions from the infrastructure it can use to defer or store data it is responsible for
processing.

endpoint
design

standards

application
design

standards

data
design

standards

core
service
logic

Standardized
Service Contract

Service
Loose Coupling

Service
Reusability

Service
Autonomy

Service
Statelessness

Service
Discoverability

communication

technology

technology,
modeling

replicated
data

message
processing

logic

Accounts Service

Figure 4.11
Custom design standards and service-orientation design principles are applied to establish a specific
set of design characteristics within the Accounts service architecture.

A central part of a service architecture is typically its API. Following standard service-
oriented design processes, the service contract is generally the fi rst part of a service to
be physically delivered. The capabilities expressed by the contract further dictate the
scope and nature of its underlying logic and the processing requirements that will need
to be supported by its implementation (Figure 4.12).

ptg20131482

4.2 The Four Common Types of SOA 75

Accounts

Add

Remove

C
lient.xsd

<operation>
 ...
 ...
</operation>

<operation>
 ...
 ...
</operation>

<complexType>
 ...
 ...
</complexType>

<complexType>
 ...
 ...
</complexType>

A

D

D

B

B

C

A
ccounts.w

sdl
A

ccounts.xsd

<complexType>
 ...
 ...
</complexType>

Invoice.xsd

Figure 4.12
The service contract is a fundamental part of the Accounts service architecture. Its definition gives the service a
public identity and helps express its functional scope. Specifically, the WSDL document (A) expresses operations
that correspond to segments of functionality (B) within the underlying Accounts service logic. The logic, in
turn, accesses other resources in the enterprise to carry out those functions (C). To accomplish this, the WSDL
document provides data exchange definitions via input and output message types established in separate XML
schema documents (D).

ptg20131482

76 Chapter 4: Understanding SOA

This is why some consideration is given to implementation during the service modeling
phase. The details documented during this analysis stage are carried forth into design,
and much of this information can make its way into the offi cial architecture defi nition.

NOTE

Many organizations use standard service profile documents to collect and maintain informa-
tion about a service throughout its lifespan. Chapter 15 of SOA: Principles of Service Design
explains the service profile document and provides a sample temp late.

Another infrastructure-related aspect of service design that may be part of a service
architecture is any dependencies the service may have on service agents—event-driven
intermediary programs capable of transparently intercepting and processing messages
sent to or from a service.

SOA PATTERNS

Service agents can be custom-developed or may be provided by the underlying
runtime environment, as per the Service Agent [357] pattern.

Within a service architecture the specifi c agent programs may be identifi ed along with
runtime information as to how message contents are processed or even altered by agent
involvement. Service agents may themselves also have architecture specifi cations that
can be referenced by the service architecture (Figure 4.13).

A key aspect of any service architecture is the fact that the functionality offered by a
service resides within one or more individual capabilities. This often requires the archi-
tecture defi nition itself to be taken to the capability level.

Each service capability encapsulates its own piece of logic. Some of this logic may be
custom-developed for the service, whereas other capabilities may need to access one or
more legacy resources. Therefore, individual capabilities end up with their own, indi-
vidual designs that may need to be so detailed that they are documented as separate
“capability architectures.” However, all relate back to the parent service architecture.

ptg20131482

4.2 The Four Common Types of SOA 77

Service Composition Architecture

The fundamental purpose of delivering a series of independent services is so they can
be combined into service compositions, fully functional solutions capable of automating
larger, more complex business tasks (Figure 4.14).

Each service composition has a corresponding service composition architecture. In much
the same way an application architecture for a distributed system includes the indi-
vidual architecture defi nitions of its components, this form of architecture encompasses
the service architectures of all participating services (Figure 4.15).

header processing

encryption

authentication

decryption

validation

conversion

retrieval of
supplemental data

A
cc

ou
nt

s
S

er
vi

ce

Figure 4.13
A variety of service agents are part of the Accounts service architecture. Some
perform general processing of all data whereas others are specific to input or output
data flow.

ptg20131482

78 Chapter 4: Understanding SOA

Client

Get

Invoice

Get

Accounts

Add

1

2

4

3

Figure 4.14
The Accounts service composition from a modeling perspective. The numbered arrows indicate
the sequence of data flow and service interaction required for the Add capability to compose
capabilities within the Client and Invoice services.

NOTE

Standard composition terminology defines two basic roles that services can assume
within a composition. The service responsible for composing others takes on the role
of composition controller, whereas composed services are referred to as composition
members.

A composition architecture (especially one that composes service capabilities that
encapsulate disparate legacy systems) may be compared to a traditional integration
architecture. This comparison is usually only valid in scope, as the design consider-
ations emphasized by service-orientation ensure that the design of a service composi-
tion is much different than that of integrated applications.

ptg20131482

4.2 The Four Common Types of SOA 79

Accounts
.wsdl

Config.xml

Accounts
.xsd

Client
.wsdl Invoice

.wsdl

Invoice
.xsd

Client
.xsd

message
processing

logic

message
processing

logic

message
processing

logic

A
ccounts S

ervice

C
lient S

ervice

Invoice S
ervice

Figure 4.15
The same Accounts service composition from Figure 4.14 viewed from a physical
architecture perspective illustrating how each composition member’s underlying
resources provide the functionality required to automate the process logic represented
by the Accounts service’s Add capability.

ptg20131482

80 Chapter 4: Understanding SOA

For example, one difference in how composition architectures are documented is in
the extent of detail they include about agnostic services involved in the composition.
Because these types of service architecture specifi cations are often guarded—as per the
requirements raised by the Service Abstraction (294) principle—a composition archi-
tecture may only be able to make reference to the technical interface documents and
service-level agreement (SLA)-related information published as part of the service’s
public contract (Figure 4.16).

core
service
logicm

es
sa

ge
pr

oc
es

si
ng

lo
gi

c

Accounts Service

Invoice Service

Client Service

Accounts
.wsdl

Accounts
.xsd

Client
.wsdl

Client
.xsd

Invoice
.wsdl

SSeeeerrvvviiccee

eerrvvvviiccceee

eeeennnntt
ssssdddd

IInnnnvvvvoooiccceec
..wwwwwsssddld

Invoice
.xsd

Common
.xsd

Figure 4.16
The physical service architecture view from Figure 4.15 is not available to the designer of the Accounts service.
Instead, only the information published in the contracts for the Invoice and Client services can be accessed.

ptg20131482

4.2 The Four Common Types of SOA 81

Invoice

Get History

Client

Get History

Accounts

Get History

Commissions

Get History

AP

Get Totals

Annual Reports

Revenue

1
2

5
10

4
3

6 8

97

Figure 4.17
The Accounts service finds itself nested within the larger Annual Reports composition that composes the
Accounts Get History capability which, in turn, composes capabilities within the Client and Invoice services.

Another rather unique aspect of service composition architecture is that a composition
may fi nd itself a nested part of a larger parent composition, and therefore one composi-
tion architecture may encompass or referenc e another (Figure 4.17).

ptg20131482

82 Chapter 4: Understanding SOA

Service composition architectures are much more than just an accumulation of individ-
ual service architectures (or contracts). A newly created composition is usually accom-
panied by a non-agnostic task service that is positioned as the composition controller.
The details of this service are less private, and its design is an integral part of the archi-
tecture because it provides the composition logic to invoke and interact with all identi-
fi ed composition members.

Furthermore, the business process the service is required to automate may involve
the need for composition logic capable of dealing with multiple runtime scenarios
(exception-related or otherwise), each of which may result in a different composition
confi guration. These scenarios and their related service activities and message paths
are a common part of composition designs. They need to be understood and mapped
out in advance so that the composition logic is fully prepared to deal with the range of
runtime situations it may need to face (Figure 4.18).

Notifications

Report Exception

AP

Get Totals

Commissions

Get History

Annual Reports

Revenue

1

2

53

Figure 4.18
A given business process may need to be automated by a range of service compositions in order to
accommodate different runtime scenarios. In this case, alternative composition logic within the Annual
Report’s Revenue capability kicks in to deal with an exception condition. As a result, the Notifications
service is invoked prior to the Accounts service even being included in the composition.

ptg20131482

4.2 The Four Common Types of SOA 83

Finally, the composition will rely on the activity management abilities of the under-
lying runtime environment responsible for hosting the composition members. Security,
transaction management, reliable messaging, and other infrastructure extensions, such
as support for sophisticated message routing, may all fi nd their way into a composition
architecture specifi cation.

SOA PATTERNS

Even though compositions are comprised of services, it is actually the service
capabilities that are individually invoked and that execute a specifi c subset of
service functionality to carry out the composition logic. This is why design pat-
terns, such as Capability Composition [328] and Capability Recomposition [329]
make specifi c reference to the composed capability (as opposed to the composed
service).

Service Inventory Architecture

Services delivered independently or as part of compositions by different IT projects
risk establishing redundancy and non-standardized functional expression and data
representation. This can lead to a non-federated enterprise in which clusters of services
mimic an environment comprised of traditional siloed applications.

The result is that though often classifi ed as a service-oriented architecture, many of the
traditional challenges associated with design disparity, transformation, and integration
continue to emerge and undermine strategic service-oriented computing goals.

As explained in Chapter 3, a service inventory is a collection of independently stan-
dardized and governed services delivered within a pre-defi ned architectural boundary.
This collection represents a meaningful scope that exceeds the processing boundary of
a single business process and ideally spans numerous business processes.

SOA PATTERNS

The scope and boundary of a service inventory architecture can vary, as per the
Enterprise Inventory [340] and Domain Inventory [338] patterns.

ptg20131482

84 Chapter 4: Understanding SOA

Ideally, the service inventory is fi rst conceptually modeled, leading to the creation of a
service inventory blueprint . It is often this blueprint that ends up defi ning the required
scope of the architecture type referred to as a service inventory architecture (Figure 4.19).

service inventoryrvice entinven orryntor

Invoice

Get History

Client

Get History

Accounts

Get History

Commissions

Get History

AP

Get Totals

Annual Reports

Revenue

1

2

5

10

4
3

6 8

97

Figure 4.19
Ultimately, the services within an inventory can be composed and recomposed, as represented by different
composition architectures. To that end, many of the design patterns in this book need to be consistently applied
within the boundary of the service inventory.

ptg20131482

4.2 The Four Common Types of SOA 85

From an architectural perspective, the service inventory can represent a concrete
boundary for a standardized architecture implementation. That means that because the
services within an inventory are standardized, so are the technologies and extensions
provided by the underlying architecture.

As previously mentioned, the scope of a service inventory can be enterprise-wide, or it
can represent a domain within the enterprise. For that reason, this type of architecture
is not called a “domain architecture.” It relates to the scope of the inventory boundary,
which may encompass multiple domains.

SOA PATTERNS

When the term “SOA” or “SOA implementation” is used, it is most commonly
associated with the scope of a service inventory. In fact, with the exception of
some design patterns that address cross-inventory exchanges, most SOA patterns
are expected to be applied within the boundary of an inventory.

It is diffi cult to compare a service inventory architecture with traditional types of archi-
tecture because the concept of an inventory has not been common. The closest candi-
date would be an integration architecture that represents some signifi cant segment of
an enterprise. However, this comparison would be only relevant in scope, as service-
orientation design characteristics and related standardization efforts strive to turn a
service inventory into a homogenous environment where integration, as a separate pro-
cess, is not required to achieve connectivity.

Service-Oriented Enterprise Architecture

This form of technology architecture essentially represents all service, service composi-
tion, and service inventory architectures that reside within a specifi c enterprise.

A service-oriented enterprise architecture is comparable to a traditional enterprise
technical architecture only when most or all of an enterprise’s technical environments
are service-oriented. Otherwise it may simply be a documentation of the parts of the
enterprise that have adopted SOA, in which case it exists as a subset of the parent enter-
prise technology architecture.

ptg20131482

86 Chapter 4: Understanding SOA

In multi-inventory environments or in environments where standardization efforts
were not fully successful, a service-oriented enterprise architecture specifi cation will
further document any transformation points and design disparity that may also exist.

SOA PATTERNS

The Inventory Endpoint [346] pattern can play a key role when designing service
inventory environments with external communication requirements.

Additionally, the service-oriented enterprise architecture can further establish
 enterprise-wide design standards and conventions to which all service, composition,
and inventory architecture implementations need to comply, and which may also need
to be referenced in the corresponding architecture specifi cations.

NOTE

This section is focused on technology architecture. However, it is worth pointing out that a
“complete” service-oriented enterprise architecture would encompass both the technology
and business architecture of an enterprise (much like traditional enterprise architecture).

Furthermore, additional types of service-oriented architecture can exist, especially when
spanning beyond a private enterprise environment. Examples can include interbusiness
service architecture, service-oriented community architecture and various hybrid architec-
tures that encompass IT resources from external cloud computing environments.

4.3 The End Result of Service-Orientation and SOA

Business communities and the IT industry have an endless bi-directional relationship
where each infl uences the other (Figure 4.20). Business demands and trends create auto-
mation requirements that the IT community strives to fulfi ll. New method and technol-
ogy innovations produced by the IT community help inspire organizations to improve
their existing business and even try out new lines of business. (The advent of cloud
computing is a good example of the latter.)

The IT industry has been through the cycle depicted in Figure 4.20 many times. Each
iteration has brought about change and generally an increase in the sophistication and
complexity of technology platforms.

ptg20131482

4.3 The End Result of Service-Orientation and SOA 87

Sometimes a series of iterations through this progress cycle leads to a foundational shift
in the overall approach to automation and computing itself. The emergence of major
platforms and frameworks, such as object-orientation and enterprise application inte-
gration, are examples of this. Signifi cant changes like these represent an accumulation
of technologies and methods and can therefore be considered landmarks in the evolu-
tion of IT itself. Each also results in the formation of distinct technology architecture
requirements.

Service-oriented computing is no exception. The platform it establishes provides the
potential to achieve signifi cant strategic benefi ts that are a refl ection of what business
communities are currently demanding, as represented by the strategic goals and ben-
efi ts previously described in Chapter 3.

It is the target state resulting from the attainment of these strategic goals that an adop-
tion of service-orientation attempts to achieve. In other words, they represent the
desired end result of applying the method of service-orientation.

Business
Community

IT
Community

Automation Systems,
Technology Innovation

Business Requirements, Ideas

Figure 4.20
The endless progress cycle establishes the dynamics between the business and IT communities.

ptg20131482

88 Chapter 4: Understanding SOA

How then does this relate to service-oriented technology architecture? Figure 4.21 hints
at how the pursuit of these specifi c goals results in a series of impacts onto all architec-
ture types brought upon by the application of service-orientation.

Reduced
IT Burden

Increased
Organizational

Agility

Increased
ROI

Increased
Business and
Technology
Alignment

Increased
Intrinsic

Interoperability

Increased
Vendor

Diversity
Options

Increased
Federation

impact of service-orientation

Figure 4.21
The common strategic goals and benefits of service-oriented computing are realized through the
application of service-orientation. This, in turn, impacts the demands and requirements placed upon
the four types of service-oriented technology architectures. (Note that the three goals on the right
represent the ultimate target benefits sought in a typical SOA initiative.)

ptg20131482

4.3 The End Result of Service-Orientation and SOA 89

NOTE

For those of you interested in how each of the strategic goals specifically influences the four
types of service-oriented architecture, Chapter 23 in SOA Design Patterns documents the
individual impacts.

Ultimately, the successful implementation of service-oriented architectures will sup-
port and maintain the benefi ts associated with the strategic goals of service-oriented
computing. As illustrated in Figure 4.22, the progress cycle that continually transpires
between business and IT communities results in constant change. Standardized, opti-
mized, and overall robust service-oriented architectures fully support and even enable
the accommodation of this change as a natural characteristic of a service-oriented
enterprise.

Finally, to best understand how to achieve a technology architecture capable of enabling
the two-way dynamic illustrated in Figure 4.22, we need to reveal how, behind the
scenes, the supporting, formalized bodies of knowledge and intelligence comprise SOA
as a mature fi eld of practice (Figure 4.23).

Business
Community

IT
Community

Change

Change

SOA

Figure 4.22
Service-oriented technology architecture supports the two-way dynamic between business and IT
communities, allowing each to introduce or accommodate change throughout an endless cycle.

ptg20131482

90 Chapter 4: Understanding SOA

SOA

Service-Orientation
Design Principles

SOA
Design

PatternsSupport

Help Realize Help R
ealize

Support Support

Service-
Oriented

Computing
Goals

Business
Community

IT
Community

Change

Change

SOA

Figure 4.23
The strategic goals of
service-oriented computing
represent a target state that
can be achieved through
a method provided by
service-orientation. The
successful application of
service-orientation principles
and supporting SOA design
patterns helps to shape
and define requirements for
different types of service-
oriented architectures,
resulting in an IT automation
model that is designed to
fully support the two-way
cycle of change through
which business and IT
communities continually
transition.

ptg20131482

4.4 SOA Project and Lifecycle Stages 91

4.4 SOA Project and Lifecycle Stages

Understanding how to realize service-oriented architecture also requires an under-
standing of how SOA projects are carried out. For the remainder of this chapter, we
take a step away from technology to briefl y summarize common SOA methodology and
project delivery topics.

NOTE

This section provides a good transition to Chapter 5, which explores service definition as a
foundational part of the service-oriented analysis project stage, and Chapters 6 to 9, which
further delve into the service-oriented analysis stage and then cover considerations pertain-
ing to the service-oriented design project stage.

Methodology and Project Delivery Strategies

Several project delivery approaches can be employed to build services. The bottom-up
strategy, for example, is tactically focused in that it makes the fulfi llment of immediate
business requirements a priority and the prime objective of the project. On the other
side of the spectrum is the top-down strategy, which advocates the completion of an
inventory analysis prior to the actual design, development, and delivery of services.

As shown in Figure 4.24, each approach has its own benefi ts and consequences. Whereas
the bottom-up strategy avoids the extra cost, effort, and time required to deliver services
via a top-down approach, it ends up imposing increased governance burden because
bottom-up delivered services tend to have shorter lifespans and require more frequent
maintenance and refactoring.

The top-down strategy demands more of an initial investment because it introduces an
upfront analysis stage focused on the creation of the service inventory blueprint. A col-
lection of service candidates are individually defi ned as part of this blueprint to ensure
that subsequent service designs will be highly normalized, standardized, and aligned.

NOTE

A top-down strategy needs to be applied to an extent to meaningfully carry out the service-
oriented analysis and service-oriented design stages covered in Chapters 6 to 9. The
scope of this effort is determined by the scope of the planned service inventory, as per the
 Balanced Scope pillar covered in Chapter 3.

ptg20131482

92
C

hapter 4: U
nderstanding S

O
A

ptg20131482

4.4 S
O

A
 P

roject and Lifecycle S
tages

93

Figure 4.24
Generally, the less time and effort spent on the upfront service analysis, the greater the ongoing, post-deployment
governance burden. The approach on the left is comparable with bottom-up service delivery and the approach
on the right is more akin to top-down delivery. SOA methodologies that attempt to combine elements of both
approaches also exist.

ptg20131482

94 Chapter 4: Understanding SOA

SOA Project Stages

Figure 4.25 displays the common and
primary stages related to SOA project
delivery and the overall service delivery
lifecycle. Although the stages are shown
sequentially, how and when each stage is
carried out depends on the methodology
being used. Different methodologies can
be considered, depending on the nature
and scope of the overall SOA project, the
size and extent of standardization of the
service inventory for which services are
being delivered, and the manner in which
tactical (short-term) requirements are
being prioritized in relation to strategic
(long-term) requirements.

Top-down SOA projects tend to empha-
size the need for some meaningful extent
of the strategic target state that the deliv-
ery of each service is intended to sup-
port. In order to realize this, some level of
increased upfront analysis effort is gener-
ally necessary. Therefore, a primary way in
which SOA project delivery methodologies
differ is in how they position and prioritize
analysis-related phases.

SOA
Project
Stages

SOA
Adoption
Planning

Service
Inventory
Analysis

Service-Oriented
Analysis

(Service Modeling)

Service
Logic

Design

Service
Development

Service
Testing

Service
Deployment

and
Maintenance

Service
Usage

and
Monitoring

Service
Discovery

Service
Versioning

and
Retirement

Service-Oriented
Design

(Service Contract)

Service
Lifecycle
Stages

Service
Delivery
Project
Stages

Figure 4.25
Common stages associated with SOA projects. Note the
distinction between SOA project stages, service delivery
project stages, and service lifecycle stages. These terms are
 used in subsequent chapters when referring to the overall
adoption project, the delivery of individual services, and
service-specific lifecycle stages, respectively.

ptg20131482

4.4 SOA Project and Lifecycle Stages 95

There are two primary analysis phases in a typical SOA project: the analysis of indi-
vidual services in relation to business process automation, and the collective analysis of
a service inventory. The service-oriented analysis phase is dedicated to producing con-
ceptual service defi nitions (service candidates) as part of the functional decomposition
of business process logic. The service inventory analysis establishes a cycle whereby the
service-oriented analysis process is carried out iteratively (together with other business
processes) to whatever extent a top-down (strategic) approach is followed.

The upcoming sections briefl y describe these and other stages.

SOA Adoption Planning

During this initial stage is when foundational planning decisions are made. These
decisions will shape the entire project, which is why this is considered a critical stage
that may require separately allocated funding and time to carry out signifi cant studies
required to assess and determine a range of factors, including:

• Scope of planned service inventory and the ultimate target state

• Milestones representing intermediate target states

• Timeline for the completion of milestones and the overall adoption effort

• Available funding and suitable funding model

• Governance system

• Management system

• Methodology

• Risk assessment

Additionally, prerequisite requirements need to be defi ned in order to establish criteria
used to determine the overall viability of the SOA adoption. The basis of these require-
ments typically originates with the four pillars of service-orientation described earlier
in Chapter 3.

ptg20131482

96 Chapter 4: Understanding SOA

Service Inventory Analysis

The scope of a service inventory is expected to be meaningfully “cross-silo,” which
generally implies that it encompasses multiple business processes or operational areas
within an organization.

This service inventory analysis stage is dedicated to conceptually defi ning an inventory
of services. It is comprised of a cycle (Figure 4.26) during which the service-oriented
analysis stage (explained shortly) is carried out once during each iteration. Each com-
pletion of a service-oriented analysis results in the defi nition of new service candidates
or the refi nement of existing ones. The cycle is repeated until all business processes
that fall within the domain of the service inventory are analyzed and decomposed into
individual actions suitable for service encapsulation.

As individual service candidates are identifi ed, they are assigned appropriate func-
tional contexts in relation to each other. This ensures that services (within the service
inventory boundary) are normalized so that they don’t functionally overlap. As a result,
service reuse is maximized and the separation of concerns is cleanly carried out. A pri-
mary deliverable produced during this stage is the service inventory blueprint.

The scope of the initiative and the size of the target service inventory tend to deter-
mine the amount of upfront effort required to create a complete service inventory blue-
print. More upfront analysis results in a better defi ned conceptual blueprint, which is
intended to lead to the creation of a better quality inventory of services. Less upfront
analysis leads to partial or less well-defi ned service inventory blueprints.

Perform
Service-Oriented

Analysis

Define
Enterprise
Business
Models

Define
Technology
Architecture

Define
Service

Inventory
Blueprint

Figure 4.26
The service inventory analysis cycle.
The highlighted step refers to the service
inventory blueprint that represents the
primary deliverable of this stage.

ptg20131482

4.4 SOA Project and Lifecycle Stages 97

Here are brief descriptions of the primary analysis cycle steps:

• Defi ne Enterprise Business Models – Business models and specifi cations (such as
business process defi nitions, business entity models, logical data models, etc.)
are identifi ed, defi ned, and, if necessary, brought up-to-date and further refi ned.
These models are used as the primary business analysis input.

• Defi ne Technology Architecture – Based on what we learn of business automation
and service encapsulation requirements, we are able to defi ne preliminary tech-
nology architecture characteristics and constraints. This provides a preview of the
service inventory environment, which can raise practical considerations that may
impact how we defi ne service candidates.

• Defi ne Service Inventory Blueprint – After an initial defi nition that establishes the
scope and structure of the planned service inventory, this blueprint acts as the
master specifi cation wherein modeled service candidates are documented.

• Perform Service-Oriented Analysis – Each iteration of the service inventory lifecycle
executes a service-oriented analysis process.

The service inventory blueprint is incrementally defi ned as a result of repeated itera-
tions of steps that include the service-oriented analysis.

NOTE

The scope of the service inventory analysis stage and the resulting service inventory
blueprint directly relates to the Balanced Scope consideration explained in the The Four
Pillars of Service-Orientation section in Chapter 3, as well as the possible application of the
Domain Inventory [338] pattern.

Service-Oriented Analysis (Service Modeling)

A fundamental characteristic of SOA projects is that they emphasize the need for work-
ing toward a strategic target state that the delivery of each service is intended to support.
To realize this, some level of increased upfront analysis effort is generally necessary.
Therefore, a primary way in which SOA project delivery methodologies differ is in how
they position and prioritize analysis-related phases.

ptg20131482

98 Chapter 4: Understanding SOA

Service-oriented analysis represents one of the early stages in an SOA initiative and
the fi rst phase in the service delivery cycle (Figure 4.27). It is a process that begins with
preparatory information-gathering steps completed in support of a service modeling
subprocess.

Perform
Service-Oriented

Analysis

Define
Enterprise
Business
Models

Define
Technology
Architecture

Define
Service

Inventory
Blueprint

Define
Analysis
Scope

Identify
Automation

Systems

Model
Candidate
Services

Step 3

Step 2

Step 1

Figure 4.27
A generic service-oriented analysis process in which the first two steps collect information in
preparation for a detailed service modeling subprocess represented by the Model Candidate
Services step.

ptg20131482

4.4 SOA Project and Lifecycle Stages 99

The service-oriented analysis process is generally carried out iteratively, once for each
business process. Typically, the delivery of a service inventory determines a scope that
represents a meaningful domain of the enterprise (as per the Balanced Scope pillar
discussed in Chapter 3), or even the enterprise as a whole. All iterations of the service-
oriented analysis then pertain to that scope, with each iteration contributing to the ser-
vice inventory blueprint.

Steps 1 and 2 essentially represent information-gathering tasks that are carried out in
preparation for the modeling process performed in Step 3.

Step 1: Define Business Automation Requirements

Through whatever means business requirements are normally collected, their docu-
mentation is required for this analysis process to begin. Given that the scope of our
analysis centers around the creation of services in support of a service-oriented solu-
tion, only requirements related to the scope of that solution should be considered.

Business requirements should be suffi ciently mature so that a high-level automation
process can be defi ned. This business process documentation will be used as the start-
ing point of a service modeling process.

Step 2: Identify Existing Automation Systems

Existing utility logic that is already, to whatever extent, automating any of the require-
ments identifi ed in Step 1 needs to be identifi ed. Although a service-oriented analysis
will not determine exactly how Web services will encapsulate or replace legacy utility
logic, it does assist us in providing some scope of the systems potentially affected.

The details of how Web services or REST services relate to existing systems are ironed
out in the service-oriented design phase. For now, this information will be used to help
identify utility service candidates during the service modeling process.

Note that this step is tailored toward supporting the modeling efforts of larger-scaled
service-oriented solutions. An understanding of affected legacy environments is still
useful when modeling a smaller amount of services, which does not require substantial
research efforts.

ptg20131482

100 Chapter 4: Understanding SOA

Step 3: Model Candidate Services

A service-oriented analysis introduces the concept of service modeling, a process by
which service operation candidates are identifi ed and then grouped into a logical con-
text. These groups eventually take shape as service candidates that are then further
assembled into a tentative composite model representing the combined logic of the
planned service-oriented application.

NOTE

Chapters 6 and 7 provide service modeling processes for Web services and REST
services, respectively.

A key success factor of the service-oriented analysis process is the hands-on collabora-
tion of both business analysts and technology architects (Figure 4.28). The former group
is especially involved in the defi nition of service candidates within a business-centric
functional context because they understand the business processes used as input for
the analysis and because service-orientation aims to align business and IT more closely.

business
analyst

business
models and
requirements

business analyst hands over
business documentation

to architect

architect interprets business
models and requirements,

and designs business
automation system

business
analyst

business
models and

requirements

business analyst and
architect define conceptual
design together to ensure
accurate representation

of business logic

architect finalizes
physical design

traditional projects

SOA projects

Figure 4.28
A look at how the collaboration between business analysts and technology architects changes with SOA projects. While
the depicted collaborative relationship between business analysts and architects may not be unique to an SOA project,
the nature and scope of the analysis process are.

ptg20131482

4.4 SOA Project and Lifecycle Stages 101

traditional Web service development process

Step 1:

Use an existing
component as
the basis for
the Web service.

Step 2:

Use a development
tool to derive a
service contract that
mirrors the component’s
interface.

Step 3:

The auto-generated
Web service contract
represents the
implemented
Web service.

service-oriented Web service development process

Auto-
Generate

Step 1:

Custom design
the Web service
contract.

Step 2:

Import the Web
service contract into
a development
environment.

Step 3:

Build the underlying
solution logic in
support of the
pre-defined Web
service contract.

Import

Figure 4.29
Unlike the popular process of deriving Web service contracts from existing
components, SOA advocates a specific approach that encourages us to postpone
development until after a custom designed, standardized contract is in place.

Service-Oriented Design (Service Contract)

The service-oriented design phase represents a service delivery lifecycle stage dedi-
cated to producing service contracts in support of the well-established “contract-fi rst”
approach to software development (Figure 4.29).

The typical starting point for the service-oriented design process is a service candi-
date that was produced as a result of completing all required iterations of the service-
oriented analysis process (Figure 4.30). Service-oriented design subjects this service
candidate to additional considerations that shape it into a technical service contract in
alignment with other service contracts being produced for the same service inventory.

As a precursor to the service logic design stage, service-oriented design is comprised of
a process that ushers service architects through a series of considerations to ensure that
the service contract being produced fulfi lls business requirements while representing

ptg20131482

102 Chapter 4: Understanding SOA

Perform
Service-Oriented

Analysis

Define
Enterprise
Business
Models

Define
Technology
Architecture

Define
Service

Inventory
Blueprint

Step 3

Step 2

Step 1

Step 4

Design
Entity Services

Design
Utility Services

Design
Microservices

Task
Services

Perform
Service-Oriented

Design

*

Figure 4.30
Subsequent to the analysis effort, services are
subjected to a service-oriented design process.

a normalized functional context that further adheres to service-orientation principles.
Part of this process further includes the authoring of the SLA, which may especially be
of signifi cance for cloud-based services being offered to a broader consumer base.

ptg20131482

4.4 SOA Project and Lifecycle Stages 103

Service Logic Design

By preceding the design of service logic with the service-oriented design process, the
service contract is established and fi nalized prior to the underlying service architecture
and the logic that will be responsible for carrying out the functionality expressed in
the service contract. This deliberate sequence of project stages is in support of the Stan-
dardized Service Contract (291) principle, which states that service contracts should be
standardized in relation to each other within a given service inventory boundary.

How service logic is designed is dictated by the business automation requirements that
need to be fulfi lled by the service. With service-oriented solutions, a given service may
be able to address business requirements individually or, more commonly, as part of a
service composition.

Service Development

After all design specifi cations have been completed, the actual programming of the ser-
vice can begin. Because the service architecture will already have been well-defi ned as
a result of the previous stages and the involvement of custom design standards, service
developers will generally have clear direction as to how to build the various parts of the
service architecture.

Service Testing

Services need to undergo the same types of testing and quality assurance cycles as
traditional custom-developed applications. However, new requirements introduce the
need for additional testing methods and effort. For example, to support the realization
of the Service Composability (302) principle, newly delivered services need to be tested
individually and as part of service compositions. Agnostic services that provide reus-
able logic especially require rigorous testing to ensure that they are ready for repeated
usage (both concurrently as part of the same service compositions and by different
service compositions).

ptg20131482

104 Chapter 4: Understanding SOA

The following are examples of common Service Testing considerations:

• What types of service consumers could potentially access a service?

• Will the service need to be deployed in a cloud environment?

• What types of exception conditions and security threats could a service be
potentially subjected to?

• Are there any security considerations specifi c to public clouds that need to be
taken into account?

• How well do service contract documents communicate the functional scope and
capabilities of a service?

• Are there SLA guarantees that need to be tested and verifi ed?

• How easily can the service be composed and recomposed?

• Can the service be moved between on-premise and cloud environments?

• How easily can the service be discovered?

• Is compliance with any industry standards or profi les (such as WS-I profi les)
required?

• If cloud deployed, are there proprietary characteristics being imposed by the
cloud provider that are not compatible with on-premise service characteristics?

• How effective are the validation rules within the service contract and within the
service logic?

• Have all possible service activities and service compositions been mapped out?

• For service compositions that span on-premise and cloud environments, is the
performance and behavior consistent and reliable?

Because services are positioned as IT assets with runtime usage requirements compa-
rable to commercial software products, similar quality assurance processes are gener-
ally required.

ptg20131482

4.4 SOA Project and Lifecycle Stages 105

Service Deployment and Maintenance

Service deployment represents the actual implementation of a service into the produc-
tion environment. This stage can involve numerous interdependent parts of the under-
lying service architecture and supporting infrastructure, such as:

• Distributed components

• Service contract documents

• Middleware (such as ESB and orchestration platforms)

• Cloud service implementation considerations

• Cloud-based IT resources encompassed by an on-premise or cloud-based service

• Custom service agents and intermediaries

• System agents and processors

• Cloud-based service agents, such as automated scaling listeners and pay-for-use
monitors

• On-demand and dynamic scaling and billing confi gurations

• Proprietary runtime platform extensions

• Administration and monitoring products

Service maintenance refers to upgrades or changes that need to be made to the deploy-
ment environment, either as part of the initial implementation or subsequently. It does
not pertain to changes that need to be made to the service contract or the service logic,
nor does it relate to any changes that need to be made as part of the environment that
would constitute a new version of the service.

Service Usage and Monitoring

A service that has been deployed and is actively in use as part of one or more service
compositions (or has been made available for usage by service consumers in general) is
considered to be in this stage. The ongoing monitoring of the active service generates
metrics that are necessary to measure service usage for evolutionary maintenance (such
as scalability, reliability, etc.), as well as for business assessment reasons (such as when
calculating cost of ownership and ROI).

ptg20131482

106 Chapter 4: Understanding SOA

Special considerations regarding this stage apply to cloud-based services, such as:

• The cloud service may be hosted by virtualized IT resources that are further
hosted by physical IT resources shared by multiple cloud consumer organizations.

• The cloud service usage may be monitored not only for performance, but also for
billing purposes when its implementation is based on a per-usage fee license.

• The elasticity of the cloud service may be confi gured to allow for limited or
unlimited scalability, thereby increasing the range of behavior (and changing its
usage thresholds) when compared to an on-premise implementation.

This phase is often not documented separately, as it is not directly related to service
delivery or projects responsible for delivering or altering services. It is noted in this
book because while active and in use, a service can be subject to various governance
 considerations.

Service Discovery

To ensure that reusable services are consistently reused, project teams carry out a sepa-
rate and explicitly defi ned service discovery process. The primary goal of this process
is to identify one or more existing agnostic services (such as utility or entity services)
within a given service inventory that can fulfi ll generic requirements for whatever busi-
ness process the project team is tasked with automating.

The primary mechanism involved in performing service discovery is a service regis-
try that contains relevant metadata about available and upcoming services, as well as
pointers to the corresponding service contract documents (which can include SLAs).
The communications quality of the metadata and service contract documents play a
signifi cant role in how successfully this process can be carried out. This is why the
Service Discoverability (300) principle is dedicated solely to ensuring that information
published about services is highly interpretable and discoverable.

Service Versioning and Retirement

After a service has been implemented and used in production environments, the need
may arise to make changes to the existing service logic or to increase the functional
scope of the service. In cases like this, a new version of the service logic and/or the ser-
vice contract will likely need to be introduced. To ensure that the versioning of a service

ptg20131482

4.4 SOA Project and Lifecycle Stages 107

can be carried out with minimal impact and disruption to service consumers that have
already formed dependencies on the service, a formal service versioning process needs
to be in place.

There are different versioning strategies, each of which introduces its own set of rules
and priorities when it comes to managing the backward and forward compatibilities
of services. (Chapter 10 provides fundamental coverage of common service versioning
approaches for Web services and REST services.)

Project Stages and Organizational Roles

Figure 4.31 revisits the SOA project stages and maps them to common organizational
roles. These roles are described in the SOA Governance: Governing Shared Services On-
Premise & in the Cloud text book.

ptg20131482

108
C

hapter 4: U
nderstanding S

O
A

Service
Analyst

Service
Inventory
Analysis

Service-Oriented
Design

(Service Contract)

Service
Development

Service
Logic

Design

Schema
Custodian

SOA
Governance

Specialist

SOA
Adoption
Planning

Service
Developer

Service-Oriented
Analysis

(Service Modeling)

Service
Architect

Enterprise
Architect

Enterprise
Design

Standards
Custodian

SOA
Security

Specialist

ptg20131482

4.4 S
O

A
 P

roject and Lifecycle S
tages

109

Figure 4.31
Shown here are common associations of organizational roles with different SOA project stages.

Service
Testing

Service
Deployment

and
Maintenance

Service
Discovery

Service
Versioning

and
Retirement

Service
Usage

and
Monitoring

Cloud
Resource

Administrator

Service
Administrator

Service
Custodian

SOA
Quality

Assurance
Specialist

Service
Registry

Custodian

Technical
Communications

Specialist

Policy
Custodian

ptg20131482

This page intentionally left blank

ptg20131482

Chapter 5

Understanding Layers with
Services and Microservices
5.1 Introduction to Service Layers

5.2 Breaking Down the Business Problem

5.3 Building Up the Service-Oriented Solution

ptg20131482

This chapter provides a concise overview of what lies at the very core of the
 service-orientation paradigm and the service-oriented architectural model: the

identifi cation and aggregation of agnostic and non-agnostic logic into composable units.
These units represent the foundational moving parts that collectively defi ne and enable
 service-oriented solutions.

The upcoming sections explore this topic area by focusing on a series of primitive pro-
cess steps, as they are applied to the early stages of service modeling and subsequent
service design (Figure 5.1).

Functional
Decomposition

Service
Encapsulation

Agnostic
Capability

Entity
Abstraction

Utility
Abstraction

Non-Agnostic
Context

Agnostic
Context

Micro Task
Abstraction

Process
Abstraction

Figure 5.1
A primitive service modeling process
that results in the definition of candidate
services and capabilities.

ptg20131482

5.1 Introduction to Service Layers 113

5.1 Introduction to Service Layers

The purpose of the service modeling process is essentially to organize a potentially
large amount of units of logic so that they can eventually be reassembled into service-
oriented solutions. Achieving this requires a set of labels that can be used to group
and categorize these units into layers according to the nature of their logic. The follow-
ing terms, all of which are referenced in the upcoming sections, help us accomplish
this goal.

Service Models and Service Layers

A service model is a classifi cation used to indicate that a service belongs to one of several
pre-defi ned types based on the type of logic it contains, the reuse potential of the logic,
and how the service may relate to elements of the actual business logic it will help to
automate.

The following are common service models:

• Task Service – A service with a non-agnostic functional context that generally cor-
responds to single-purpose, parent business process logic. A task service will usu-
ally encapsulate the composition logic required to compose several other services
to complete its task.

• Microservice – A non-agnostic service often with a small functional scope
encompassing logic with specifi c processing and implementation requirements.
Microservice logic is typically not reusable but can have intra-solution reuse
potential. The nature of the logic may vary.

• Entity Service – A reusable service with an agnostic functional context associated
with one or more related business entities (such as invoice, customer, or claim).
For example, a Purchase Order service has a functional context associated with
the processing of purchase order-related data and logic.

• Utility Service – Although a reusable service with an agnostic functional context as
well, this type of service is intentionally not derived from business analysis speci-
fi cations and models. It encapsulates low-level technology-centric functions, such
as notifi cation, logging, and security processing.

ptg20131482

114 Chapter 5: Understanding Layers with Services and Microservices

NOTE

A variation of the task service model called the orchestrated task service performs the same
overall function as a task service, but is typically responsible for encompassing extensive
orchestration logic, which can involve distinct technologies and middleware. Orchestrated
task services are not covered in this book.

Even though a microservice can contain reusable logic, it is considered a non-agnostic
service because any reuse potential its logic may have is typically limited to reuse within
the parent business process logic being automated by an application. For a service to be
 considered agnostic, it must contain logic that is potentially reusable by multiple business
processes.

A given service inventory will usually contain multiple services that are grouped based
on each of these service models. Each of these groupings is referred to as a service layer
(Figure 5.2).

task service
layer

entity service
layer

utility service
layer

microservice
layer

non-agnostic

agnostic

Figure 5.2
The common service layers, each of which is based on a service model .

ptg20131482

5.2 Breaking Down the Business Problem 115

Service and Service Capability Candidates

The upcoming process is focused on modeling service logic prior to the actual build-
ing of the service logic. At this early stage, we are essentially conceptualizing services
and their capabilities, which is why qualifying them with the word “candidate” is
helpful. The terms “service candidate” and “service capability candidate” are used to
distinguish conceptualized service logic from service logic that has already been imple-
mented. This distinction is important, particularly because candidate service logic that
has not yet been conceptualized may be subject to further practical considerations that
may result in additional changes during service design and development.

5.2 Breaking Down the Business Problem

The typical starting point is termed a “business problem,” which can be any busi-
ness task or process for which an automation solution is required. To apply service-
orientation, we fi rst must break down a business process by functionally decomposing
it into a set of granular actions. This enables us to identify potential functional contexts
and boundaries that may become the basis of services and service capabilities. During
this initial decomposition stage, we focus primarily on organizing business process
actions into two primary categories: agnostic and non-agnostic.

Functional Decomposition

The separation of concerns theory is based on an established software engineering prin-
ciple that promotes the decomposition of a larger problem into smaller problems (called
“concerns”) for which corresponding units of solution logic can be built. The rationale
is that a larger problem, such as the execution of a business process, can be more easily
and effectively solved when separated into smaller parts. Each unit of solution logic that
is built exists as a separate body of logic that is responsible for solving one or more of
the identifi ed smaller concerns (Figure 5.3). This design approach forms the basis for
distributed computing.

ptg20131482

116 Chapter 5: Understanding Layers with Services and Microservices

Large Problem A

monolithic solution logic

solves

solve

a collection of related
units of solution logic

a collection of related
smaller problems (concerns)

can be
decomposed

into

can
alternatively

be designed as

with monolithic system
design, a large body of
solution logic is built to
solve a correspondingly

large problem

when applying the separation of concerns the larger problem is decomposed into a set of
concerns and the corresponding solution logic is decomposed into smaller units

Large Problem A

monolithic solution logic

Functional
Decomposition

Functional
Decomposition

Figure 5.3
A larger problem is decomposed into multiple, smaller problems. Later steps focus on the definition of solution logic
units that individually address these smaller problems.

Service Encapsulation

When assessing the individual units of solution logic that are required to solve a larger
problem, we may realize that only a subset of the logic is suitable for encapsulation
within services. During the service encapsulation step, we identify the parts of the logic
required that are suitable for encapsulation by services (Figure 5.4).

ptg20131482

5.2 Breaking Down the Business Problem 117

Agnostic Context

After the initial decomposition of solution logic, we will typically end up with a series
of solution logic units that correspond to specifi c concerns. Although some of this logic
may be capable of solving other concerns, grouping single-purpose and multipurpose
logic together prevents us from being able to realize any potential reuse. By identifying
the parts of this logic that are not specifi c to known concerns, we are able to separate
and reorganize the appropriate logic into a set of agnostic contexts (Figure 5.5).

decomposed problems
(concerns) that

collectively represent
Large Problem A

solution logic units
some of which
are identified

for service
encapsulation

Service
Encapsulation

Service
Encapsulation

Figure 5.4
Some of the decomposed solution logic is identified as being not suitable for service encapsulation.
The highlighted blocks represent logic that is deemed suitable for encapsulation by services.

ptg20131482

118 Chapter 5: Understanding Layers with Services and Microservices

Figure 5.5
Decomposed units of solution logic will naturally be designed to solve concerns specific to a single, larger
problem. Solution Logic Units 1, 3, and 6 represent logic that contains multipurpose functionality trapped
within a single-purpose (single concern) context. This step results in a subset of the solution logic being
further decomposed and distributed into services with specific agnostic contexts.

ptg20131482

5.2 Breaking Down the Business Problem 119

Agnostic Capability

Within each agnostic service context, the logic is further organized into a set of agnostic
service capabilities. It is, in fact, the service capabilities that address individual con-
cerns. Because they are agnostic, the capabilities are multipurpose and can be reused to
solve multiple concerns (Figure 5.6).

Context A

Context A

solves a common concern

solves a common concern

solves a common concern

different large
problems

Agnostic
Capability

Capability A

Capability B

Capability C

Agnostic
Capability

Figure 5.6
A set of agnostic service capabilities is defined, each capable of solving a common concern.

ptg20131482

120 Chapter 5: Understanding Layers with Services and Microservices

Utility Abstraction

The next step is to separate common, cross-cutting functionality that is neither specifi c
to a business process nor a business entity. This establishes a specialized agnostic func-
tional context limited to logic that corresponds to the utility service model. Repeating
this step within a service inventory can result in the creation of multiple utility service
candidates and, consequently, a logical utility service layer (Figure 5.7).

Utility
Abstraction

service inventory

utility service
layer

Agnostic
Context

Capability A

Capability B

Capability C

Agnostic
Utility Context

Capability A

Capability B

Capability C

Figure 5.7
Utility-centric agnostic service logic is organized into a utility service layer.

ptg20131482

5.2 Breaking Down the Business Problem 121

Entity Abstraction

Every organization has business entities that represent key artifacts relevant to how
operational activities are carried out. This step is focused on shaping the functional
context of a service so that it is limited to logic that pertains to one or more related busi-
ness entities. As with utility abstraction, repeating this step tends to establish its own
logical service layer (Figure 5.8).

Entity
Abstraction

service inventory

entity service
layer

Agnostic
Context

Capability A

Capability B

Capability C

Agnostic
Entity Context

Capability A

Capability B

Capability C

Figure 5.8
Entity-centric agnostic service logic is organized into an entity service layer.

ptg20131482

122 Chapter 5: Understanding Layers with Services and Microservices

Non-Agnostic Context

The fundamental service identifi cation and defi nition effort detailed so far has focused
on the separation of multipurpose, or agnostic, service logic. What remains after the
multipurpose logic has been separated is logic that is specifi c to the business process.
Because this logic is considered single-purpose in nature, it is classifi ed as non-agnostic
(Figure 5.9).

Context E

non-encapsulated
solution logic

non-agnostic logic
deemed suitable for

service encapsulation

agnostic service logic
organized into multiple

agnostic service contexts

non-agnostic logic
encapsulated by
a non-agnostic
service context

Context A

Context C Context D

Context B

Non-Agnostic
Context

Non-Agnostic
Context

Figure 5.9
By revisiting the
decomposition
process, the remaining
service logic can now
be categorized as
non-agnostic.

ptg20131482

5.2 Breaking Down the Business Problem 123

Micro Task Abstraction and Microservices

When reviewing available non-agnostic logic, it can become evident that subsets of this
logic (or “micro tasks”) may have specifi c performance or reliability requirements. This
type of processing logic can be abstracted into a separate service layer that can benefi t
from the distinct implementation characteristics of microservices (Figure 5.10).

Micro Task
Abstraction

service inventory

microservice
layer

Non-Agnostic
Micro Task Context

Capability A

Context E

Figure 5.10
Select non-agnostic logic is separated into microservice candidates.

Process Abstraction and Task Services

Abstracting the remaining business process-specifi c logic into its own service layer will
typically result in the creation of a task service, the scope of which is generally lim-
ited to the parent business process (Figure 5.11). The types of logic that are generally
encapsulated by a task service are decision logic, composition logic, and other forms of
logic that are unique to the business process they are responsible for automating. This
responsibility generally puts the task service in control of the execution of an entire
service composition, a role known as the composition controller.

ptg20131482

124 Chapter 5: Understanding Layers with Services and Microservices

Non-Agnostic
Task Context

Capability A

Business
Process A

task service
layer

entity service
layer

utility service
layer

microservice
layer

Process
Abstraction

Figure 5.11
The task service represents a part of a parent service layer and is responsible for encapsulating the remaining
logic specific to the parent business process.

5.3 Building Up the Service-Oriented Solution

One of the fundamental characteristics that distinguishes service-oriented technol-
ogy architecture from other forms of distributed architecture is composition-centricity ,
meaning there is a baseline requirement to inherently support both the composition
and recomposition of the moving parts comprising a given solution.

In this section, we cover several key aspects of composition in relation to service-
orientation, before continuing with the process steps in order to reassemble the logic
that has been decomposed in the preceding steps.

Service-Orientation and Service Composition

A baseline requirement for achieving the strategic goals of service-oriented computing
is that those services classifi ed as agnostic be inherently composable. As a means of
realizing these goals, the service-orientation design paradigm is naturally focused on
enabling fl exible composition.

This dynamic is illustrated in Figure 5.12, where we can see how the collective applica-
tion of service-orientation principles shapes software programs into services that are
essentially “composition-ready,” meaning they are interoperable, compatible, and com-
posable with other services belonging to the same service inventory.

ptg20131482

5.3 Building Up the Service-Oriented Solution 125

Standardized
Service Contract

Service
Abstraction

Service
Reusability

Service
Composability

Service
Loose Coupling

Service
Discoverability

Service
Autonomy

A

Service
Statelessness

Composition Y

service
recomposition

service
composition

Composition X

A

A

A

Figure 5.12
Service A (middle) is a software program shaped into a unit of service-oriented logic by the application
of service-orientation design principles. Service A is delivered within a service inventory that contains a
collection of services to which service-orientation principles were also applied. The result is that Service A
can participate initially in Composition X and, more importantly, can later be pulled into Composition Y and
additional service compositions as required.

ptg20131482

126 Chapter 5: Understanding Layers with Services and Microservices

Business
Process B

task service
layer

entity service
layer

utility service
layer

microservice
layer

Figure 5.13
The same entity and utility service layers from before, now available for
composition by a different set of non-agnostic service candidates in
support of the automation of a new business process.

Figure 5.12 does not only illustrate the aggregation that services can participate in. All
distributed systems are comprised of aggregated software programs. What is funda-
mentally distinct about how service-orientation positions agnostic services is that they
are repeatedly composable, allowing for subsequent recomposition.

This is what lies at the core of realizing organizational agility as a primary goal of
adopting service-oriented computing. Ensuring that a set of services (within the scope
determined by the service inventory) is naturally interoperable and designed for partic-
ipation in complex service compositions enables us to fulfi ll new business requirements
and automate new business processes (Figure 5.13), by augmenting existing service com-
positions or creating new service compositions with reduced effort and expense. This
target state is what leads to the Reduced IT Burden goal of service-oriented computing.

ptg20131482

5.3 Building Up the Service-Oriented Solution 127

Among the eight service-orientation design principles, one is specifi cally relevant to
service composition design. The Service Composability principle is solely dedicated to
shaping a service into an effective composition participant. All other principles support
Service Composability in achieving this objective (Figure 5.14). In fact, as a regulatory
principle, Service Composability is applied primarily by ensuring that the design goals
of the other seven principles are realized to a suffi cient degree.

Standardized
Service Contract

Service
Composability

Service
Discoverability

Service
Statelessness

Service
Autonomy

Service
Reusability

Service
Abstraction

Service
Loose Coupling

supports

supportssupports

supports

supports

supports

supports

Figure 5.14
A common objective of all service-orientation design principles is the shaping of services in support of increased
 composability potential.

Capability Composition and Capability Recomposition

Up until now in the process steps, logic has only been separated into individual func-
tional contexts and capabilities. This provides us with a pool of well-defi ned building
blocks from which we can assemble automation solutions. The steps that follow are
focused on carrying out this building process via the composition and recomposition of
service capability candidates (Figure 5.15).

ptg20131482

128
C

hapter 5
: U

nderstanding Layers w
ith S

ervices and M
icroservices

Capability
Composition

Capability
Recomposition

decomposition composition

Functional
Decomposition

Service
Encapsulation

Agnostic
Capability

Entity
Abstraction

Utility
Abstraction

Non-Agnostic
Context

Agnostic
Context

Micro Task
Abstraction

Process
Abstraction

Figure 5.15
Subsequent to the decomposition of a business problem into units of service logic, we focus on
how these units can be assembled into service-oriented solutions.

ptg20131482

5.3 Building Up the Service-Oriented Solution 129

Capability Composition

Candidate service capabilities are sequenced together in order to assemble the decom-
posed service logic into a specifi c service composition that is capable of solving a specifi c
larger problem (Figure 5.16). Much of the logic that determines which service capabili-
ties to invoke and in which order they are to be composed will usually reside within
the task service.

Beyond forming the basis for the basic aggregation of service functionality, this step
reinforces functional service boundaries by requiring a service that needs access to
logic outside of its context to access this logic via the composition of another service.
This requirement avoids redundancy of logic across services.

Service C

Capability A

Capability B

Service B

Capability A

Capability B

Service A

Capability A

Capability B

Service X

Capability A

1 2

3
6

4
5

Figure 5.16
Although generally referred
to as a service composition,
services that compose
each other actually do so
via their individual service
capabilities.

ptg20131482

130 Chapter 5: Understanding Layers with Services and Microservices

Capability Composition and Microservices

The type of logic placed in microservices will generally have specifi c performance
and/or reliability requirements. The microservice model can therefore introduce the
need for a distinct implementation environment optimized to support special process-
ing demands. Microservice implementations are often highly autonomous in order to
minimize dependencies on resources outside of their functional boundaries that could
compromise fulfi lling their processing requirements.

As a result, when a microservice needs to access other resources, those resources
can either be replicated or redundantly implemented so that they remain part of the
microservice’s local processing scope. Therefore, when it is decided that a microservice
needs to compose another service, the composed service may be redundantly imple-
mented and deployed together with the microservice.

Let’s imagine that Service B in Figure 5.16 is a microservice and Service C is a utility
service being composed by the microservice. The logical view provided by Figure 5.16
would stay the same. However, the physical view of this composition architecture could
vary, depending on what technologies are utilized as part of the microservice imple-
mentation environment. For example, Figure 5.17 shows how both the microservice and
utility service could be rolled out in the same deployment bundle and placed onto a
dedicated virtual server. Figure 5.18 takes this a step further by physically grouping
the services together with system fi les and libraries within a container. In either archi-
tecture, that same utility service may be in use in various other capacities, within this
and other solutions, but it is specifi cally redundantly deployed in support of the one
microservice.

Note that Figures 5.17 and 5.18 depict architectures that are commonly associated with
microservice implementations. Deployment bundles and containerization technology
can also be used for services based on other service models or for entire solutions that
are not service-oriented. Due to the typical requirement of a microservice to support
specialized processing or deployment requirements, there is usually a greater need for
dedicated underlying hosting environments and resources.

ptg20131482

5.3 Building Up the Service-Oriented Solution 131

entity
service

micro
service

utility
service

task
service

Figure 5.17
The microservice and a redundant
implementation of the utility service
it is composing are grouped in
the same deployment bundle and
located on a dedicated virtual server.
This increases the autonomy of the
microservice, which it may need
to fulfill its specialized processing
requirements.

entity
service

micro
service

utility
service

container

system components
and libraries

task
service

Figure 5.18
The microservice and the redundant
implementation of the utility service
are positioned within a container that
also includes system components and
libraries. This is an example of how
containerization technology can be
used to further increase the autonomy
and mobility of services. The extent to
which autonomy is increased depends
on the extent to which redundant
implementations of external resources
the service may need to call are
included in the container.

ptg20131482

132 Chapter 5: Understanding Layers with Services and Microservices

Numerous variations of these architectures can exist. For example:

• Services packaged in the same deployment bundle may be able to communicate
in-process or out-of-process.

• The microservice in the preceding scenarios may compose the utility service to
access an underlying resource or it may disregard the Service Loose Coupling
principle and access the underlying resource directly.

• Multiple deployment bundles can be located on the same virtual server, as long as
respective autonomy requirements can be fulfi lled.

• In Figure 5.18, the container is located on a physical server, but it can also be
located on a virtual server.

• A container can host multiple deployment bundles, which may be desirable if
communication between services and resources in the respective bundles is
required.

Although microservice architecture and related technologies are not covered in this
book, summary profi les of the Microservice Deployment [349] and Containerization
[333] patterns are provided in Appendix C and are recommended reading. These and
other related patterns can also be accessed in the Service Implementation Patterns cat-
egory at www.soapatterrns.org.

Capability Recomposition

As previously mentioned, the recomposition of services is a fundamental and distinc-
tive goal of service-oriented computing. This step specifi cally addresses the recurring
involvement of a service via the repeated composition of a service capability. The rela-
tionship diagram shown in Figure 5.19 highlights how the preceding steps that have
been described all essentially lead to opportunities for service capability recomposition.

http://www.soapatterrns.org

ptg20131482

5.3 Building Up the Service-Oriented Solution 133

Functional
Decomposition

Service
Encapsulation

Agnostic
Context

Capability
Composition

Non-Agnostic
Context

Capability
Recomposition

Agnostic
Capability

establish
distributed logic for

subsequent

groups reusable
logic to maximize
opportunities for

defines the fundamental
characteristics that

establish the
potential for

positions
effective composition
controller services

responsible for

establishes functional
points of contact
in preparation for

Figure 5.19
The repeated composability of services is core to service-orientation.

SOA PATTERNS

The steps explored in this chapter correspond to SOA patterns of the same names:

Functional Decomposition [344]

Service Encapsulation [359]

Agnostic Context [323]

Agnostic Capability [322]

Utility Abstraction [364]

Entity Abstraction [341]

Non-Agnostic Context [351]

ptg20131482

134 Chapter 5: Understanding Layers with Services and Microservices

Logic Centralization and Service Normalization

As more services are added to a service inventory, careful attention needs to be given to
the respective service boundaries. This introduces the concept of service normalization.
Service boundaries are defi ned on a functional basis and new logic introduced into a
service inventory is fi rst analyzed for its coherency in relation to the functional bound-
aries of existing services in order to avoid functional overlap. Functional overlap results
in redundant logic, which can lead to increased maintenance overhead on an ongo-
ing basis and when business requirements change. It can further lead to governance
and confi guration management issues, especially in cases where the redundant logic is
owned by different groups within an organization.

The less functional overlap that is allowed in a service inventory, the less redundant
logic exists, and the more normalized the service inventory becomes. Logic centraliza-
tion is a technique that supports service normalization by centralizing logic in the form
of single, normalized services (Figure 5.20).

Micro Task Abstraction [350]

Process A bstraction [353]

Capability Composition [328]

Capability Recomposition [329]

Combining these patterns into sequences can form the basis of primitive model-
ing processes.

Figure 5.20
A service inventory comprised of
services with published physical
contracts. Each service has a distinct
functional boundary, complementary to
others and, ideally, without overlap.

ptg20131482

5.3 Building Up the Service-Oriented Solution 135

SOA PATTERNS

Service normalization and logic centralization are represented by the Service
Normalization [361] and Logic Centralization [348] patterns, respectively.

When applying Service Normalization [361] in support of Web services, the ser-
vices are collectively modeled before their individual physical contracts (WSDL
and XML Schema defi nitions) are created. This provides the opportunity for each
Web service boundary to be planned out to ensure that it does not overlap with
other services.

Because, within REST service implementations, the service contract is not
“ packaged” with the service architecture and logic, it is relatively easy for others
in an IT department to add new REST services to a service inventory, particu-
larly in the absence of a contract-fi rst design approach. This tends to result in
service capabilities with resource identifi ers that perform functions redundant
with those provided by existing REST services. Similarly, a new REST service
may inadvertently add an entity service capability that belongs to the functional
context of an existing REST entity service. This issue can also be addressed by
applying Service Normalization [361]. Normalizing a REST-centric service inven-
tory requires upfront analysis, established governance practices, and a “whole-
of-inventory” perspective to be applied. Normalization makes it easier for service
consumers to fi nd and correctly use the functionality they need in a consistent,
logically partitioned space of REST service capabilities grouped into distinct
functional contexts.

ptg20131482

This page intentionally left blank

ptg20131482

Service-Oriented Analysis
and Design

Part II

Chapter 6: Analysis and Modeling with Web Services
and Microservices

Chapter 7: Analysis and Modeling with REST Services
and Microservices

Chapter 8: Service API and Contract Design with Web Services

Chapter 9: Service API and Contract Design with
REST Services and Microservices

Chapter 10: Service API and Contract Versioning with
Web Services and REST Services

ptg20131482

This page intentionally left blank

ptg20131482

Chapter 6

Analysis and Modeling with
Web Services and Microservices
6.1 Web Service Modeling Process

ptg20131482

This chapter provides a detailed step-by-step process for modeling Web service
candidates.

6.1 Web Service Modeling Process

A service modeling process can essentially be viewed as an exercise in organizing the
information we gathered in Steps 1 and 2 of the parent service-oriented analysis pro-
cess that was described in Chapter 4. Figure 6.1 provides a generic service modeling
process suitable for Web services that can be further customized. This chapter follows
this generic service modeling process by describing each step and further providing
case study examples.

Define
Business

Requirements

Step 1

Step 2

Identify
Automation

Systems

Decompose
Business
Process

Filter Out
Unsuitable

Actions

Model
Candidate
Services

Step 3

Define
Entity Service
Candidates

Step 4

Identify
Process-Specific

Logic

Step 5

Step 6

Apply
Service-

Orientation

Identity Service
Composition
Candidates

Step 7

Step 8

Define
Utility Service
Candidates

Step 9

Step 10

Define
Microservice
Candidates

Apply
Service-

Orientation

Step 11

Revise Service
Composition
Candidates

Step 12

Revise Capability
Candidate
Grouping

Analyze
Processing

Requirements

Figure 6.1
A sample service modeling process for Web services .

ptg20131482

6.1 Web Service Modeling Process 141

CASE STUDY EXAMPLE

TLS outsources a number of its employees on a contract basis to perform various
types of specialized maintenance jobs. When these employees fi ll out their weekly
timesheets, they are required to identify what portions of their time are spent at
customer sites. Currently, the amount of time for which a customer is billed is deter-
mined by an A/R clerk who manually enters hours from an appointment schedule
that is published prior to the submission of timesheets.

Discrepancies arise when employee timesheet entries do not match the hours billed
on customer invoices. To address this problem and streamline the overall process,
TLS decides to integrate its third-party time tracking system with its large, distrib-
uted accounting solution.

The resulting Timesheet Submission busi-
ness process is shown in Figure 6.2. Essen-
tially, every timesheet that TLS receives from
outsourced employees needs to undergo a
series of verifi cation steps. If the timesheet is
verifi ed successfully, the process ends and the
timesheet is accepted. Any timesheet that fails
verifi cation is submitted to a separate rejection
step prior to the process ending.

Start

Stop

Receive
PO

Validate
PO

Transform
PO

Send
Notification

PO
valid?

Import
PO

Send PO
to Queue

no

yes

Figure 6.2
The TLS Timesheet Submission business process.

ptg20131482

142 Chapter 6: Analysis and Modeling with Web Services and Microservices

Step 1: Decompose the Business Process (into Granular Actions)

We begin by taking the documented business process and breaking it down into a series
of granular process steps. The business process workfl ow logic needs to be decomposed
into its most granular representation of processing steps, which may differ from the
level of granularity at which the process steps were originally documented.

CASE STUDY EXAMPLE

Here is a breakdown of the current business process steps:

1. Receive Timesheet

2. Verify Timesheet

3. If Timesheet is Verifi ed, Accept Timesheet Submission and End Process

4. Reject Timesheet Submission

Although it only consists of four steps at this point, there is more to this business
process. The details are revealed as the TLS team decomposes the process logic. They
begin with the Receive Timesheet step, which is split into two smaller steps:

 1a. Receive Physical Timesheet Document

 1b. Initiate Timesheet Submission

The Verify Timesheet step is actually a subprocess in its own right and can therefore
be broken down into the following more granular steps:

 2a. Compare Hours Recorded on Timesheet to Hours Billed to Clients

 2b. Confi rm That Authorization Was Given for Any Recorded Overtime Hours

 2c. Confi rm That Hours Recorded for Any Particular Project Do Not Exceed a
Pre-Defi ned Limit for That Project

 2d. Confi rm That Total Hours Recorded for One Week Do Not Exceed a
Pre-Defi ned Maximum for That Worker

Upon subsequent analysis, TLS further discovers that the Reject Timesheet Submission
process step can be decomposed into the following granular steps:

 4a. Update the Worker’s Profi le Record to Keep Track of Rejected Timesheets

 4b. Issue a Timesheet Rejection Notifi cation Message to the Worker

 4c. Issue a Notifi cation to the Worker’s Manager

ptg20131482

6.1 Web Service Modeling Process 143

Having drilled down the original process
steps, TLS now has a larger amount of process
steps. It organizes these steps into an expanded
business process workfl ow (Figure 6.3):

• Receive Timesheet

• Compare Hours Recorded on Timesheet
to Hours Billed to Clients

If Hours Do Not Match, Reject Timesheet
Submission

• Confi rm That Authorization Was Given
for Any Recorded Overtime Hours

• If Authorization Confi rmation Fails,
Reject Timesheet Submission

• Confi rm That Hours Recorded for Any
Particular Project Do Not Exceed a
Pre-Defi ned Limit for That Project

• Confi rm That Total Hours Recorded for
One Week Do Not Exceed a
Pre-Defi ned Maximum for That Worker

• If Hours Recorded Confi rmation Fails,
Reject Timesheet Submission

• Reject Timesheet Submission

• Generate a Message Explaining the
Reasons for the Rejection

• Issue a Timesheet Rejection Notifi cation
Message to the Worker

Start

Stop

Receive
Timesheet

Compare
to Billed Hours

Send Message
to Manager

Send Message
to Worker

Confirm
Authorization

Confirm
Hours Limit

yes

hours
match?

no

yes

no

yes

no

Update Worker
Profile

Figure 6.3
The revised TLS Timesheet Submission business process.

ptg20131482

144 Chapter 6: Analysis and Modeling with Web Services and Microservices

• Issue a Notifi cation to the Worker’s Manager

• If Timesheet Is Verifi ed, Accept Timesheet Submission and End Process

Finally, TLS further simplifi es the business process logic into the following set of
granular actions:

• Receive Timesheet

• Initiate Timesheet Submission

• Get Recorded Hours for Customer and Date Range

• Get Billed Hours for Customer and Date Range

• Compare Recorded Hours with Billed Hours

• If Hours Do Not Match, Reject Timesheet Submission

• Get Overtime Hours for Date Range

• Get Authorization

• Confi rm Authorization

• If Authorization Confi rmation Fails, Reject Timesheet Submission

• Get Weekly Hours Limit

• Compare Weekly Hours Limit with Recorded Hours

• If Hours Recorded Confi rmation Fails, Reject Timesheet Submission

• Update Employee History

• Send Message to Employee

• Send Message to Manager

• If Timesheet Is Verifi ed, Accept Timesheet Submission and End Process

Step 2: Filter Out Unsuitable Actions

Some steps within a business process can be easily identifi ed as not belonging to the
potential logic that should be encapsulated by a service candidate. These can include
manual process steps that cannot or should not be automated and process steps

ptg20131482

6.1 Web Service Modeling Process 145

performed by existing legacy logic for which service candidate encapsulation is not an
option. By fi ltering out these parts, we are left with the processing steps most relevant
to our service modeling process.

CASE STUDY EXAMPLE

After reviewing each of the business process steps, those that either cannot or do
not belong in a service-oriented solution are removed. The following list revisits the
decomposed actions. The fi rst action is crossed out because it is performed manually
by an accounting clerk.

• Receive Timesheet

• Initiate Timesheet Submission

• Get Recorded Hours for Customer and Date Range

• Get Billed Hours for Customer and Date Range

• Compare Recorded Hours with Billed Hours

• If Hours Do Not Match, Reject Timesheet Submission

• Get Overtime Hours for Date Range

• Get Authorization

• Confi rm Authorization

• If Authorization Confi rmation Fails, Reject Timesheet Submission

• Get Weekly Hours Limit

• Compare Weekly Hours Limit with Recorded Hours

• If Hours Recorded Confi rmation Fails, Reject Timesheet Submission

• Update Employee History

• Send Message to Employee

• Send Message to Manager

• If Timesheet Is Verifi ed, Accept Timesheet Submission and End Process

Each of the remaining actions is considered a service capability candidate.

ptg20131482

146 Chapter 6: Analysis and Modeling with Web Services and Microservices

Step 3: Define Entity Service Candidates

Review the processing steps that remain and determine one or more logical contexts
with which these steps can be grouped. Each context represents a service candidate.
The contexts you end up with will depend on the types of business services you have
chosen to build. For example, task services will require a context specifi c to the process,
whereas entity services will introduce the need to group processing steps according to
their relation to previously defi ned entities. An SOA can also consist of a combination
of these business service types.

It is important that you do not concern yourself with how many steps belong to each
group. The primary purpose of this exercise is to establish the required set of contexts.

Equipping entity service candidates with additional capability candidates that facili-
tate future reuse is also encouraged. Therefore, the scope of this step can be expanded
to include an analysis of additional service capability candidates not required by the
current business process, but added to round out entity services with a complete set of
reusable operations.

CASE STUDY EXAMPLE

TLS business analysts support the service modeling effort by producing an entity
model relevant to the Timesheet Submission business process logic (Figure 6.4).

Invoice

Customer
Hours Billed
Billing Period

1

1

1*

*

*

Timesheet

Employee
Date
Recorded Hours
Overtime Hours
Authorization ID
Customer

E-mail Address
Weekly Hours Limit

Employee

Employee History

Employee
Comment

Figure 6.4
A TLS entity model displaying business
entities pertinent to the Timesheet
Submission business process.

ptg20131482

6.1 Web Service Modeling Process 147

The TLS team studies this model, along with the list of granular service capability
candidates identifi ed during the previous analysis step. They subsequently identify
the service capability candidates considered agnostic. All those classifi ed as non-
agnostic are bolded, as follows:

• Initiate Timesheet Submission

• Get Recorded Hours for Customer and Date Range

• Get Billed Hours for Customer and Date Range

• Compare Recorded Hours with Billed Hours

• If Hours Do Not Match, Reject Timesheet Submission

• Get Overtime Hours for Date Range

• Get Authorization

• Confi rm Authorization

• If Authorization Confi rmation Fails, Reject Timesheet Submission

• Get Weekly Hours Limit

• Compare Weekly Hours Limit with Recorded Hours

• If Hours Recorded Confi rmation Fails, Reject Timesheet Submission

• Update Employee History

• Send Message to Employee

• Send Message to Manager

• If Timesheet Is Verifi ed, Accept Timesheet Submission and End Process

First, the Timesheet entity is reviewed. It is decided that this entity warrants a cor-
responding entity service candidate simply called “Timesheet.” Upon analysis of its
attributes, TLS further determines that the following service capability candidates
should be grouped with the entity service candidate:

• Get Recorded Hours for Customer and Date Range

• Get Overtime Hours for Date Range

• Get Authorization

ptg20131482

148 Chapter 6: Analysis and Modeling with Web Services and Microservices

However, upon subsequent analysis, it is determined
that the fi rst two capability candidates could be made
more reusable by removing the requirement that a date
range be the only query criteria. Although this particu-
lar business process will always provide a date range,
business analysts point out that other processes will
want to request recorded or overtime hours based on
other parameters. The result is a revised set of capability
candidates, as shown in Figure 6.5.

Analysts then take a look at the Invoice entity. They
again agree that this entity deserves representation as
a standalone entity service candidate. They name this
service “Invoice” and assign it the following capability
candidate:

• Get Billed Hours for Customer and Date Range

When the service-orientation principle of Service Reus-
ability is again considered, the analysts decide to expand
the scope of this service candidate by altering the func-
tion of the chosen capability candidate and then by
adding a new one, as shown in Figure 6.6. Now service
consumers can retrieve invoice-related customer infor-
mation and billed hours information separately.

The Employee and Employee History entities are
reviewed next. Because they are closely related to each
other, it is decided that they can be jointly represented by
a single entity service candidate called “Employee.” Two
service capability candidates are assigned, resulting in
the service candidate defi nition displayed in Figure 6.7.

The TLS team considers also adding a Send Notifi -
cation service capability candidate to the Employee
service candidate, but then determines that this func-
tionality is best separated into a utility service candidate.

Timesheet

Get Recorded
Hours for Customer

Get Overtime Hours

Get Authorization

Figure 6.5
The Timesheet service candidate.

Invoice

Get Customers

Get Billed Hours

Figure 6.6
The Invoice service candidate.

Employee

Get Weekly Hours
Limit

Update Employee
History

Figure 6.7
The Employee service candidate.

ptg20131482

6.1 Web Service Modeling Process 149

As a result, the remaining two actions are put aside for now until utility services are
defi ned, later in this process:

• Send Message to Employee

• Send Message to Manager

Step 4: Identify Process-Specific Logic

Any parts of the business process logic remaining after we complete Step 3 will need
to be classifi ed as non-agnostic or specifi c to the business process. Common types of
actions that fall into this category include business rules, conditional logic, exception
logic, and the sequence logic used to execute the individual business process actions.

Note that not all non-agnostic actions necessarily become service capability candidates.
Many process-specifi c actions represent decision logic and other forms of processing
that are executed within the service logic.

NOTE

There may be sufficient information about the identified non-agnostic logic to determine
whether any part of this logic may be suitable for encapsulation by one or more microser-
vices. In this case, microservice candidates can be defined as part of this step together with
task service candidates. However, it is recommended that you wait until Step 9 to formally
define the necessary microservice(s) for this solution because upcoming service modeling
steps can identify additional non-agnostic logic and can further assist with the definition of
solution implementation and processing requirements.

CASE STUDY EXAMPLE

The following actions are considered non-agnostic because they are specifi c to the
Timesheet Submission business process:

• Initiate Timesheet Submission

• Compare Recorded Hours with Billed Hours

• If Hours Do Not Match, Reject Timesheet Submission

ptg20131482

150 Chapter 6: Analysis and Modeling with Web Services and Microservices

• Confi rm Authorization

• If Authorization Confi rmation Fails, Reject
Timesheet Submission

• Compare Weekly Hours Limit with Recorded
Hours

• If Hours Recorded Confi rmation Fails, Reject
Timesheet Submission

• If Timesheet Is Verifi ed, Accept Timesheet
Submission and End Process

The Initiate Timesheet Submission action forms the
basis of a service capability candidate, as explained in
the upcoming Timesheet Submission task service can-
didate description. The remaining actions are bolded to
indicate that they represent logic that is carried out within the Timesheet Submission
task service, upon execution of the Initiate Timesheet Submission action, which is
renamed to the Start service capability candidate (Figure 6.8).

Timesheet
Submission

Start

Figure 6.8
The Timesheet Submission
service candidate with a single
service capability that launches
the automation of the Timesheet
Submission business process.

Step 5: Apply Service-Orientation

This step gives us a chance to make adjustments and apply key service-orientation prin-
ciples. Depending on the insight we may have as to the specifi c nature of logic that will
be required within a given service candidate, we may have an opportunity to further
augment the scope and structure of service candidates. Principles such as Service Loose
Coupling (293), Service Abstraction (294), and Service Autonomy (297) may provide
suitable considerations at this stage.

NOTE

The application of the Service Autonomy (297) principle in particular may raise consid-
erations that could introduce the need for some of the identified logic to be encapsulated
within microservices. In this case, microservice candidates can be defined as part of this
step and will be subject to further review during Step 9, when microservices are formally
defined.

ptg20131482

6.1 Web Service Modeling Process 151

Step 6: Identify Service Composition Candidates

Identify a set of the most common scenarios that can take place within the boundaries
of the business process. For each scenario, follow the required processing steps as they
exist now.

This exercise accomplishes the following:

• Provides insight as to how appropriate the grouping of your process steps is

• Demonstrates the potential relationship between task and entity service layers

• Identifi es potential service compositions

• Highlights any missing workfl ow logic or processing steps

Ensure that, as part of your chosen scenarios, you include failure conditions that involve
exception handling logic. Note also that any service layers you establish at this point are
still preliminary and still subject to revisions during the design process.

CASE STUDY EXAMPLE

Figure 6.9 displays a preliminary service composition candidate comprised of task
and entity service candidates. This composition model is the result of various compo-
sition scenarios mapped out by the TLS team to explore different success and failure
conditions when carrying out the automation of the Timesheet Submission process.

As a result of mapping different service activities within the boundaries of this ser-
vice composition candidate, TLS feels confi dent that no further non-agnostic process
logic is missing from what it has identifi ed so far.

Timesheet
Submission

Employee Timesheet Invoice

Figure 6.9
A look at the service composition
candidate hierarchy that is formed as
various service interaction scenarios
are explored during this stage.

ptg20131482

152 Chapter 6: Analysis and Modeling with Web Services and Microservices

Step 7: Analyze Processing Requirements

By the end of Step 6, you will have created a business-centric view of your services layer.
This view could very well include both utility and business service candidates, but the
focus so far has been on representing business process logic.

This and the upcoming steps ask us to identify and dissect the underlying process-
ing and implementation requirements of service candidates. We do this to abstract any
further technology-centric service logic that may warrant the introduction of microser-
vices or that may add to the utility service layer. To accomplish this, each processing
step identifi ed so far is required to undergo a mini-analysis.

Specifi cally, what we need to determine is:

• What underlying processing logic needs to be executed to process the action
described by a given service capability candidate.

• Whether the required processing logic already exists or whether it needs to be
newly developed.

• What resources external to the service boundary the processing logic may need
to access—for example, shared databases, repositories, directories, legacy
systems, etc.

• Whether any of the identifi ed processing logic has specialized or critical perfor-
mance and/or reliability requirements.

• Whether the identifi ed processing logic has any specialized or critical implemen-
tation and/or environmental requirements.

Note that any information gathered during Step 2 of the parent service-oriented analy-
sis process covered in Chapter 4 will be referenced at this point.

CASE STUDY EXAMPLE

Upon assessing the processing requirements for the identifi ed service candidates
and the overall business process logic, the TLS team can confi rm that the Send Mes-
sage to Employee and Send Message to Manager actions will need to be encapsulated
as part of a utility service layer. Based on the information available about the known
processing requirements and the eventual service implementation environment,
they cannot identify any further utility-centric logic.

ptg20131482

6.1 Web Service Modeling Process 153

During the review of the non-agnostic process logic that is currently within the scope
of the Timesheet Submission task service, architects realize that a discrepancy exists
in processing requirements. In particular, the Confi rm Authorization action encom-
passes logic that is required to access a proprietary clearance repository. This inter-
action has signifi cantly greater SLA requirements than the rest of the non-agnostic
process logic in relation to performance and failover.

Keeping this logic grouped with the other logic that is part of the Timesheet Submis-
sion task service could risk this logic not executing as per its required metrics. There-
fore, it is suggested that it be separated into one or more microservice candidates that
would eventually benefi t from the type of highly autonomous implementation that
could guarantee the required performance and failover demands.

Step 8: Define Utility Service Candidates

In this step we break down each unit of agnostic processing logic into a series of granu-
lar actions. We need to be explicit about the labeling of these actions so that they refer-
ence the function they are performing. Ideally, we would not reference the business
process step for which a given function is being identifi ed.

Group these processing steps according to a pre-defi ned context. With utility service
candidates, the primary context is a logical relationship between capability candidates.
This relationship can be based on any number of factors, including:

• Association with a specifi c legacy system

• Association with one or more solution components

• Logical grouping according to type of function

Various other issues are factored in after service candidates are subjected to the service-
oriented design process. For now, this grouping establishes a preliminary utility service
layer.

ptg20131482

154 Chapter 6: Analysis and Modeling with Web Services and Microservices

CASE STUDY EXAMPLE

Subsequent to assessing processing requirements for
logic that may qualify for the utility service model, the
TLS team revisits the Send Message to Employee and
Send Message to Manager actions and groups them into
a new reusable utility service, simply called Notifi cation.

To make the service candidate more reusable, the two
capability candidates are consolidated into one as shown
in Figure 6.10.

Figure 6.10
The Notification service candidate.

Notification

Send Message

NOTE

Modeling utility service candidates is notoriously more difficult than entity service can-
didates. Unlike entity services where we base functional contexts and boundaries upon
already-documented enterprise business models and specifications (such as taxonomies,
ontologies, entity relationships, and so on), there are usually no such models for application
logic. Therefore, it is common for the functional scope and context of utility service candi-
dates to be continually revised during iterations of the service inventory analysis cycle.

Step 9: Define Microservice Candidates

We now turn our attention to the previously identifi ed non-agnostic processing logic to
determine whether any unit of this logic may qualify for encapsulation by a separate
microservice. As discussed in Chapter 4, the microservice model can introduce a highly
independent and autonomous service implementation architecture that can be suitable
for units of logic with particular processing demands.

Typical considerations can include:

• Increased autonomy requirements

• Specifi c runtime performance requirements

ptg20131482

6.1 Web Service Modeling Process 155

• Specifi c runtime reliability or failover requirements

• Specifi c service versioning and deployment requirements

It is important to note that, due to their specialized implementation needs, the use of
SOAP-based Web services may not be suitable for microservices, even when they are
identifi ed as part of a Web services-centric service modeling process. SOA architects are
given the option to build microservices using alternative implementation technologies,
which may introduce disparate or proprietary communication protocols.

SOA PATTERNS

The Dual Protocols [339] pattern provides a standardized manner of support-
ing primary and secondary communication protocols with the same service
inventory.

CASE STUDY EXAMPLE

The Confi rm Authorization action that is part of the
Timesheet Submission task service candidate logic is
separated to form the basis of the Confi rm Authorization
microservice candidate (Figure 6.11), a REST service that
executes this logic via a Confi rm capability candidate.

For more information on service modeling steps distinct
to REST services, see Chapter 7.

Figure 6.11
The Confirm Authorization service
candidate.

Cofirm
Autorization

Confirm

Step 10: Apply Service-Orientation

This step is a repeat of Step 7, provided here specifi cally for any new utility service can-
didates that may have emerged from the completion of Steps 8 and 9.

ptg20131482

156 Chapter 6: Analysis and Modeling with Web Services and Microservices

Step 11: Revise Service Composition Candidates

Revisit the original scenarios you identifi ed in Step 6 and run through them again, this
time incorporating the new utility service and capability candidates as well. This will
result in the mapping of elaborate activities that bring expanded service compositions
to life. Be sure to keep track of how business service candidates map to underlying util-
ity service candidates during this exercise.

CASE STUDY EXAMPLE

With the introduction of the Notifi cation utility service and the Verify Timesheet
microservice, the complexion of the Timesheet Submission composition hierarchy
changes noticeably, as illustrated in Figure 6.12.

Employee Timesheet Invoice

Confirm
Authorization

task
service
layer

entity
service
layer

micro
service
layer

Notification
utility

service
layer

Timesheet
Submission
Timesheet
Submission

Employee Timesheet Invoice

Confirm
Authorization

Notification

Figure 6.12
The revised service composition candidate incorporating the new utility service and microservice.

ptg20131482

6.1 Web Service Modeling Process 157

Step 12: Revise Capability Candidate Grouping

Performing the mapping of the activity scenarios from Step 11 will usually result in
changes to the grouping and defi nition of service capability candidates. It may also
highlight any omissions in any further required processing steps, resulting in the addi-
tion of new service capability candidates and possibly even new service candidates.

NOTE

This process description assumes that this is the first iteration through the service modeling
process. During subsequent iterations, additional steps need to be incorporated to check for
the existence of relevant service candidates and service capability candidates.

ptg20131482

This page intentionally left blank

ptg20131482

Chapter 7

Analysis and Modeling with REST
Services and Microservices
7.1 REST Service Modeling Process

7.2 Additional Considerations

ptg20131482

This chapter provides a detailed step-by-step process for modeling REST service
candidates.

7.1 REST Service Modeling Process

The incorporation of resources and uniform contract features adds new dimensions to
service modeling. When we are aware that a given service candidate is being modeled
specifi cally for a REST implementation, we can take these considerations into account
by extending the service modeling process to include steps to better shape the service
candidate as a basis for a REST service contract.

The REST service modeling process shown in Figure 7.1 provides a generic set of steps
and considerations tailored for modeling REST services. This chapter describes each
process step and is further supplemented with case study examples.

ptg20131482

7.1 REST Service Modeling Process 161

Define
Analysis
Scope

Step 1

Step 2

Identify
Automation

Systems

Decompose
Business
Process

Filter Out
Unsuitable

Actions

Model
Candidate
Services

Step 3

Define
Entity Service
Candidates

Step 6

Step 7

Associate Service
Capabilities with
Resources and

Methods

Apply
Service-

Orientation

Apply
Service-

Orientation

Step 8

Identify Service
Composition
Candidates

Step 11

Step 12

Define
Microservice
Candidates

Step 13

Revise Service
Composition
Candidates

Step 4

Identify
Process-Specific

Logic

Step 9

Analyze
Processing

Requirements

Step 14

Revise
Resource
Definitions

Step 5

Identify
Resources

Step 10

Define
Utility Service
Candidates

Step 15

Revise Resource
Definitions and

Capability Candidate
Grouping

Figure 7.1
A sample service modeling process for REST services .

ptg20131482

162 Chapter 7: Analysis and Modeling with REST Services and Microservices

CASE STUDY EXAMPLE

MUA architects are dedicated to adopting SOA and applying service-orientation as
part of a key strategy to consolidate systems and data. They decide to focus on entity
services that track the information assets of the various campuses. This initial set
of services is to be deployed on the main campus fi rst, so that IT staff can monitor
maintenance requirements. Individual campuses are then to build solutions based
on the same centralized service inventory. Solutions that introduce new task services
will be allocated to virtual machines in the main campus to allow them to be moved
to independent hardware and onto dedicated server farms, if the need arises in the
future.

Existing MUA charter agreements with partner schools explicitly refer to the need to
acknowledge individual academic achievements. This makes the correct conferral of
awards important to the reputation of MUA and its elite students.

MUA assembles a service modeling team comprised of SOA architects, SOA analysts,
and business analysts. The team begins with a REST service modeling process for the
Student Achievement Award Conferral business process. As detailed in Figure 7.2,
this business process logic represents the procedures followed for the assessment,
conference, and rejection of individual achievement award applications submitted
by students. An application that is approved results in the conferral of the achieve-
ment award and a notifi cation of the conferral to the student. An application that is
rejected results in a notifi cation of the rejection to the student.

ptg20131482

7.1 REST Service Modeling Process 163

Student Submits
Application for Award

is event
valid?

Update Awards
History

Update Student
Transcript

does transcript
qualify based

on award rules?

Start

Stop

no

yes

yes

no

Send Acceptance
Notice

Confer Award

Send Rejection
Notice

Verify
Rejection

Verify
Acceptance

Figure 7.2
The Student Award Conferral business process .

ptg20131482

164 Chapter 7: Analysis and Modeling with REST Services and Microservices

Step 1: Decompose Business Process (into Granular Actions)

Let’s take the documented business process and break it down into a series of granu-
lar process steps. This requires further analysis of the process logic, during which we
attempt to decompose the business process into a set of individual granular actions.

CASE STUDY EXAMPLE

The original Student Award Conferral business process is broken down into the fol-
lowing granular actions:

• Initiate Conferral Application

• Get Event Details

• Verify Event Details

• If Event is Invalid or Ineligible for Award, End Process

• Get Award Details

• Get Student Transcript

• Verify Student Transcript Qualifi es for Award Based on Award Conferral Rules

• If Student Transcript Does Not Qualify, Initiate Rejection

• Manually Verify Rejection

• Send Rejection Notice

• Manually Verify Acceptance

• Send Acceptance Notice

• Confer Award

• Record Award Conferral in Student Transcript

• Record Award Conferral in Awards Database

• Print Hard Copy of Award Conferral Record

• File Hard Copy of Award Conferral Record

ptg20131482

7.1 REST Service Modeling Process 165

Step 2: Filter Out Unsuitable Actions

Not all business process logic is suitable for automation and/or encapsulation by a ser-
vice. This step requires us to single out any of the granular actions identifi ed in Step 1
that do not appear to be suitable for subsequent REST service modeling steps. Examples
include manual process steps that need to be performed by humans and business auto-
mation logic being carried out by legacy systems that cannot be wrapped by a service.

CASE STUDY EXAMPLE

After assessing each of the decomposed actions, a subset is identifi ed as being
unsuitable for automation or unsuitable for service encapsulation, as indicated by
the crossed-out items.

• Initiate Conferral Application

• Get Event Details

• Verify Event Details

• If Event is Invalid or Ineligible for Award, End Process

• Get Award Details

• Get Student Transcript

• Verify Student Transcript Qualifi es for Award Based on Award Conferral Rules

• If Student Transcript Does Not Qualify, Initiate Rejection

• Manually Verify Rejection

• Send Rejection Notice

• Manually Verify Acceptance

• Send Acceptance Notice

• Confer Award

• Record Award Conferral in Student Transcript

• Record Award Conferral in Awards Database

• Print Hard Copy of Award Conferral Record

• File Hard Copy of Award Conferral Record

ptg20131482

166 Chapter 7: Analysis and Modeling with REST Services and Microservices

Step 3: Define Entity Service Candidates

By fi ltering out unsuitable actions during Step 2, we are left with only those actions
relevant to our REST service modeling effort.

A primary objective of service-orientation is to carry out a separation of concerns
whereby agnostic logic is cleanly partitioned from non-agnostic logic. By reviewing the
actions that have been identifi ed so far, we can begin to further separate those that have
an evident level of reuse potential. This essentially provides us with a preliminary set
of agnostic service capability candidates.

We then determine how these service capability candidates should be grouped to form
the basis of functional service boundaries.

Common factors we can take into account include:

• Which service capability candidates defi ned so far are closely related to each other?

• Are identifi ed service capability candidates business-centric or utility-centric?

• What types of functional service contexts are suitable, given the overarching busi-
ness context of the service inventory?

The fi rst consideration on the list requires us to group capability candidates based on
common functional contexts. The second item pertains to the organization of service
candidates within logical service layers based on service models. Due to the business-
centric level of documentation that typically goes into the authoring of business process
models and specifi cations and associated workfl ows, the emphasis during this step will
naturally be more on the defi nition of entity service candidates. The upcoming Defi ne
Utility Service Candidates step is dedicated to developing the utility service layer.

The third item on the preceding list of factors relates to how we may choose to establish
functional service boundaries not only in relation to the current business process we
are decomposing, but also in relation to the overall nature of the service inventory. This
broader consideration helps us determine whether there are generic functional contexts
we can defi ne that will be useful for the automation of multiple business processes.

SOA PATTERNS

Both the previously referenced Logic Centralization [348] and Service Normal-
ization [361] patterns play a key role during this step to ensure we keep agnostic
service candidates aligned to each other, without allowing functional overlap.

ptg20131482

7.1 REST Service Modeling Process 167

CASE STUDY EXAMPLE

By analyzing the remaining actions from Step 2, the MUA service modeling team
identifi es and categorizes those actions considered agnostic. Those that are classifi ed
as non-agnostic are in bold:

• Initiate Conferral Application

• Get Event Details

• Verify Event Details

• If Event is Invalid or Ineligible for Award, Cancel Process

• Get Award Details

• Get Student Transcript

• Verify Student Transcript Qualifi es for Award Based on Award Conferral
Rules

• If Student Transcript Does Not Qualify, Initiate Rejection

• Send Rejection Notice

• Send Acceptance Notice

• Record Award Conferral in Student Transcript

• Record Award Conferral in Awards Database

• Print Hard Copy of Award Conferral Record

Agnostic actions are classifi ed as preliminary service
capability candidates and are grouped accordingly into
service candidates, as follows.

Event Service Candidate

The original Get Event Details action is positioned as
a Get Details service capability candidate as part of an
entity service candidate named Event (Figure 7.3).

Note that it was determined that the Verify Event Details
action was not agnostic because it carried out logic spe-
cifi c to the Student Award Conferral process.

Event

Get Details

Figure 7.3
The Event service candidate with
one service capability candidate.

ptg20131482

168 Chapter 7: Analysis and Modeling with REST Services and Microservices

Award Service Candidate

As a central part of this business process, the Award
business entity becomes the basis of an Award entity
service candidate (Figure 7.4).

The Get Award Details action establishes a Get Details
service capability candidate. The Record Award Confer-
ral in Awards Database action is split into two service
capability candidates:

• Confer

• Update History

The Confer capability is required to offi cially issue an
award for an event, which requires updates in the inter-
nal MUA Awards database, as well as an update to an external National Academic
Recognition System shared by schools throughout the U.S.

Furthermore, based on the award conferral policies, this service capability is required
to issue a conferral notifi cation and forward the award conferral record information
to be printed in hard copy format. This relates to the following three actions:

• Send Rejection Notice

• Send Acceptance Notice

• Print Hard Copy of Award Conferral Record

The MUA team considers including this logic within the Award entity service, but
then decides that the Confer service capability will instead invoke corresponding
utility services to perform these functions automatically, upon each conferral.

The Update History capability will issue a further update of student and event
details within a separate part of the internal Awards database. It is deemed necessary
to keep the capabilities separate because the Update History capability can be used
independently and for different purposes than the Confer capability.

Award

Get Details

Confer

Update History

Figure 7.4
The Award service candidate with
three service capability candidates,
including two that are based on the
same action.

ptg20131482

7.1 REST Service Modeling Process 169

Student Service Candidate

The need for a Student entity service within a school is
self-evident. This service will eventually provide a wide
range of student-related functions. In support of the
 Student Award Conferral business process specifi cally,
the Get Student Transcript and Record Award Conferral
in Student Transcript actions are positioned as individ-
ual service capability candidates named Get Transcript
and Update Transcript (Figure 7.5).

As previously mentioned, the following three remain-
ing actions are put aside for when utility services are
modeled, later in this process:

• Send Rejection Notice

• Send Acceptance Notice

• Print Hard Copy of Award Conferral Record

Student

Get Transcript

Update Transcript

Figure 7.5
The Student service candidate with
two service capability candidates.

Step 4: Identify Process-Specific Logic

Process-specifi c logic is separated into its own logical service layer. For a given busi-
ness process, this type of logic is commonly grouped into a task service or a service
consumer acting as the composition controller.

CASE STUDY EXAMPLE

The following actions are considered non-agnostic because they are specifi c to the
Student Award Conferral business process:

• Initiate Conferral Application

• Verify Event Details

• If Event is Invalid or Ineligible for Award, End Process

• Verify Student Transcript Qualifi es for Award Based on Award Conferral
Rules

• If Student Transcript Does Not Qualify, Initiate Rejection

ptg20131482

170 Chapter 7: Analysis and Modeling with REST Services and Microservices

The fi rst action on this list forms the basis of a service
capability candidate, as explained shortly in the Confer
Student Award task service candidate description. The
remaining actions in bold do not correspond to service
capability candidates. Instead, they are identifi ed as
logic that occurs internally within the Confer Student
Award task service.

Confer Student Award Service Candidate

The Initiate Conferral Application action is translated
into a simple Start service capability candidate as part
of a Confer Student Award task service candidate
(Figure 7.6). It is expected that the Start capability will
be invoked by a separate software program, which
would be acting as a composition initiator.

Confer
Student Award

Start

Figure 7.6
The Confer Student Award task
service candidate with a single
service capability that launches the
automation of the Student Award
Conferral business process.

Step 5: Identify Resources

By examining the functional contexts associated with individual actions, we can begin
to make a list of how these contexts relate to or form the basis of resources. It can be help-
ful to further qualify identifi ed resources as agnostic (multipurpose) or non- agnostic
(single-purpose), depending on how specifi c we determine their usage and existence
are to the parent business process.

Step 3 explained how labeling a service candidate or a service capability candidate as
“agnostic” has signifi cant implications as to how we approach the modeling of that
service. This is not the case with resources. From a modeling perspective, agnostic
resources can be incorporated into agnostic service and capability candidates without
limitation. The benefi t to identifying agnostic resources is to earmark them as parts
of the enterprise that are likely to be shared and reused more frequently than non-
agnostic resources. This can help us prepare necessary infrastructure or perhaps even
limit their access in how we model (and subsequently design) the service capabilities
that encompass them.

Note that resources identifi ed at this stage can be expressed using the forward slash
as a delimiter. This is not intended to result in URL-compliant statements; rather, it is

ptg20131482

7.1 REST Service Modeling Process 171

a means by which to recognize the parts of service capability candidates that pertain
to resources. Similarly, modeled resources are intentionally represented in a simplifi ed
form. Later, in the service-oriented design stage, the syntactically correct resource iden-
tifi er statements are used to represent resources, including any necessary partitioning
into multi-part URL statements (as per resource identifi er syntax standards being used).

CASE STUDY EXAMPLE

Subsequent to a review of the processing requirements of the service capability can-
didates defi ned so far, the following potential resources are identifi ed:

• /Process/

• /Application/

• /Event/

• /Award/

• /Student Transcript/

• /Notice Sender/

• /Printer/

Before proceeding, the MUA service modeling team decides to further qualify the
/Process/ and /Application/ resource candidates to better associate them with the
nature of the overarching business processing logic, as follows:

• /Student Award Conferral Process/

• /Conferral Application/

These qualifi ers help distinguish similar resources that may exist as other forms of
applications or rules.

Because the service modeling process has, so far, already produced a set of entity
services, each of which represents a business entity, it is further decided to establish
some preliminary mapping between identifi ed resources and entities, as shown in
Table 7.1.

ptg20131482

172 Chapter 7: Analysis and Modeling with REST Services and Microservices

Entity Resource

Event /Event/

Award /Award/

Student /Student Transcript/

Table 7.1
Mapping business entities to resources.

The bolded resources in the preceding list are put aside for when utility services will
be modeled, later in this process. Additional resources are not mapped because they
do not currently relate to known business entities. They may end up being mapped
during future iterations of the service modeling process.

Step 6: Associate Service Capabilities with Resources and Methods

We now associate the service capability candidates defi ned in Steps 3 and 4 with the
resources defi ned in Step 5, as well as with available uniform contract methods that
may have been established. If we discover that a given service capability candidate
requires a method that does not yet exist in the uniform contract defi nition, the method
can be proposed as input for the next iteration of the Model Uniform Contract task that
is part of the service inventory analysis cycle.

We continue to use the same service candidate and service capability candidate nota-
tion, but we append service capability candidates with their associated method plus
resource combinations. This allows for a descriptive and fl exible expression of a pre-
liminary service contract that can be further changed and refi ned during subsequent
iterations of the service-oriented analysis process.

NOTE

At this stage it is common to associate actions with regular HTTP methods, as defined via
uniform contract modeling efforts. Complex methods can be comprised of pre-defined sets
and/or sequences of regular method invocations. If complex methods are defined at the
service modeling stage, then they can also be associated as appropriate.

ptg20131482

7.1 REST Service Modeling Process 173

CASE STUDY EXAMPLE

The MUA service modeling team continues to expand
upon their original service candidate defi nitions by
adding the appropriate uniform contract methods and
resources, as follows.

Confer Student Award Service Candidate (Task)

The business document required as the primary input
to kick off the Student Award Conferral business pro-
cess is the application submitted by the student. It was
initially assumed that an /Application/ resource would
be required to represent this document. However, upon
further analysis, it turns out that all the Start service
capability candidate needs is a POST method to forward
the application document to a resource named after the
business process itself (Figure 7.7).

Event Service Candidate (Entity)

The sole Get Details service capability candidate is
appended with the GET method and the /Event/
resource (Figure 7.8).

Award Service Candidate (Entity)

The Get Details service capability is correspondingly
associated with a GET method plus /Award/ resource
combination. The Confer and Update History service
capability candidates each require input data that will
update resource data, and therefore are expanded with
a preliminary POST method and the /Awards/ resource
(Figure 7.9). This method may later be refi ned during the
service-oriented design phase.

Confer
Student Award

Start
(POST +
/Student Award
Conferral Process/)

Figure 7.7
The Confer Student Award service
candidate with method and resource
association.

Event

Get Details
(GET + /Event/)

Figure 7.8
The Event service candidate with
method and resource association.

Award

Get Details
(GET + /Award/)

Confer
(POST + /Award/)

Update History
(POST + /Award/)

Figure 7.9
The Award service candidate with
method and resource associations.

ptg20131482

174 Chapter 7: Analysis and Modeling with REST Services and Microservices

Student Service Candidate (Entity)

The Get Transcript service capability candidate is associ-
ated with the GET method and the /Student Transcript/
resource. The Update Transcript is appended with the
POST method together again with the /Student Tran-
script/ resource (Figure 7.10).

Student

Get Transcript
(GET + /Student
Transcript/)

Update Transcript
(POST + /Student
Transcript/)

Figure 7.10
The Student service candidate with
method and resource associations .

Step 7: Apply Service-Orientation

The business process documentation we used as input for the service modeling process
may provide us with a level of knowledge as to the underlying processing required by
each of the identifi ed REST service capability candidates. Based on this knowledge, we
may be able to further shape the defi nition and scope of service capabilities, as well as
their parent service candidates, by taking a relevant subset of the service-orientation
principles into consideration.

CASE STUDY EXAMPLE

When applying this step, the MUA service modeling team is faced with various prac-
tical concerns, based on what participating SOA architects can provide in terms of
knowledge of the implementation environment that the services will be deployed in.

For example, they identify that a given set of resources is related to data provided by
a large legacy system. This impacts functional service boundaries by the extent to
which the Service Autonomy (297) principle can be applied.

ptg20131482

7.1 REST Service Modeling Process 175

Step 8: Identify Service Composition Candidates

Here we document the most common service capability interactions that can take place
during the execution of the business process logic. Different interactions are mapped
out based on the success and failure scenarios that can occur during the possible action
sequences within the business process workfl ow.

Mapping these interaction scenarios to the required service capability candidates
enables us to model candidate service compositions. It is through this type of view that
we can get a preview of the size and complexity of potential service compositions that
result from how we defi ned the scope and granularity of agnostic and non-agnostic
service candidates (and capability candidates) so far. For example, if we determine that
the service composition will need to involve too many service capability invocations, we
still have an opportunity to revisit our service candidates.

It is also at this stage that we begin to take a closer look at data exchange requirements
(because for services to compose each other, they must exchange data). This may pro-
vide us with enough information to begin identifying required media types based on
what has already been defi ned for the uniform contract. Alternatively, we may deter-
mine the need for new media types that have not yet been modeled. In the latter case,
we may be gathering information that will act as input for the Model Uniform Contract
task that is part of the service inventory analysis cycle (as explained later in the Uniform
Contract Modeling and REST Service Inventory Modeling section).

NOTE

The depth of service compositions can particularly impact method definition. It is important
to pose questions about the possible failure scenarios that can occur during service compo-
sition execution.

CASE STUDY EXAMPLE

The MUA service modeling team explores a set of service composition scenarios that
correspond to success and failure conditions that may arise when the Student Award
Conferral process is executed.

ptg20131482

176 Chapter 7: Analysis and Modeling with REST Services and Microservices

Figure 7.11 illustrates the composition hierarchy of service candidates that is rela-
tively consistent across these scenarios. In each case, the Confer Student Award task
service invokes the Event, Award, and Student entity services. The Award entity ser-
vice further composes the Notifi cation utility service to issue acceptance or rejection
notifi cations and, if the award is conferred, the Document utility service to print the
award record.

Confer
Student
Award

Event Award Student

task
service
layer

entity
service
layer

Confer
Student
Award

Event Award Student

Figure 7.11
A look at the service composition candidate hierarchy that is formed as various service interaction
scenarios are explored during this stage.

NOTE

This next series of steps is optional and more suited for complex business processes and
larger service inventory architectures. It requires that we more closely study the underlying
processing requirements of all service capability candidates in order to abstract further util-
ity service candidates.

Step 9: Analyze Processing Requirements

As mentioned in the description for Step 3, the emphasis so far in this service modeling
process will likely have been on business-centric processing logic. This is to be expected
when working with business process defi nitions that are primarily based on a business
view of automation. However, it is prudent to look under the hood of the business logic
defi ned so far in order to identify the need for any further application logic.

ptg20131482

7.1 REST Service Modeling Process 177

To accomplish this, we need to consider the following:

• Which of the resources identifi ed so far can be considered utility-centric?

• Can actions performed on business-centric resources be considered utility-centric
(such as reporting actions)?

• What underlying application logic needs to be executed in order to process the
actions and/or resources encompassed by a service capability candidate?

• Does any required application logic already exist?

• Does any required application logic span application boundaries? (In other words,
is more than one system required to complete the action?)

Note that information gathered during the Identify Automation Systems step of the
parent service-oriented analysis process will be referenced at this point.

CASE STUDY EXAMPLE

The MUA team carefully studies the processing requirements of the logic that will
need to be encapsulated by the service candidates defi ned so far. They confi rm that,
beyond the already-identifi ed Send Rejection Notice, Send Acceptance Notice, and
Print Hard Copy of Award Conferral Record actions, there appear to be no further
utility-centric functions required. This then sets the stage for the upcoming Defi ne
Utility Services (and Associate Resources and Methods) step during which these
actions, together with the previously identifi ed utility-centric resources, will act as
the primary input for utility service candidate defi nition.

However, while no new utility-centric processing requirements were identifi ed, a
concern was raised specifi cally regarding the non-agnostic Verify Student Transcript
Qualifi es for Award Based on Award Conferral Rules action that is currently encap-
sulated as part of the Confer Student Award task service. Architects discover that to
complete this action, an external Rules utility service will need to be composed and
invoked to complete the verifi cation. Infrastructure statistics show that this existing
Rules service is widely used and frequently reaches its usage thresholds, resulting
in response delays and, during peak usage periods, occasional response rejections.

This raises concerns by business analysts who point out that there are policy-driven
requirements that need to be fulfi lled by carrying out an immediate verifi cation of

ptg20131482

178 Chapter 7: Analysis and Modeling with REST Services and Microservices

student transcripts. Further, and more importantly, after a verifi cation has occurred,
it is legally binding and cannot be reversed.

As a result, the MUA team classifi es the Verify Student Transcript Qualifi es for
Award Based on Award Conferral Rules action as having critical and specialized
processing requirements that cannot be met if it were to remain as part of the task
service implementation. They therefore determine that this logic needs to be moved
to a dedicated microservice.

Step 10: Define Utility Service Candidates (and Associate Resources
and Methods)

In this step we group utility-centric processing steps according to pre-defi ned con-
texts. With utility service candidates, the primary context is a logical relationship
between capability candidates. This relationship can be based on any number of fac-
tors, including:

• Association with a specifi c legacy system

• Association with one or more solution components

• Logical grouping according to type of function

Various other issues are considered after service candidates are subjected to the ser-
vice-oriented design process. For now, this grouping establishes a preliminary utility
service layer in which utility service candidate capabilities are further associated with
resources and methods. A primary input will be any utility-centric resources previ-
ously defi ned in Step 5.

NOTE

Modeling utility service candidates is notoriously more difficult than entity service can-
didates. Unlike entity services where we base functional contexts and boundaries upon
already-documented enterprise business models and specifications (such as taxonomies,
ontologies, entity relationships, etc.), there are usually no such models for application logic.
Therefore, it is common for the functional scope and context of utility service candidates to
be continually revised during iterations of the service inventory analysis cycle.

ptg20131482

7.1 REST Service Modeling Process 179

CASE STUDY EXAMPLE

The MUA team proceeds by digging up notes from prior process steps regarding
utility-centric actions that have been documented so far. Combined with the research
they collected from the Analyze Processing Requirements step, they proceed to
defi ne the following two utility services.

Notifi cation Service Candidate

The Send Rejection Notice and Send Acceptance Notice
actions are combined into one generic Send service capa-
bility candidate as part of a utility service called Noti-
fi cation (Figure 7.12). The Send capability will accept a
range of input values, enabling it to issue approval and
rejection notifi cations, among others.

Document Service Candidate

The MUA service modeling team originally created a
Document Printing utility service, but then realized
its functional scope was too limiting. Instead, it broad-
ened its scope to encompass generic document process-
ing functions. For the time being, this service candidate
will only include a Print service capability candidate to
accommodate the Print Hard Copy of Award Conferral
Record action (Figure 7.13). In the future, this utility ser-
vice will include other service capabilities that perform
generic document processing tasks, such as faxing, rout-
ing, and parsing.

Next, the /Notice Sender/ and /Printer/ resources iden-
tifi ed earlier in Step 5 are revisited so that they, together
with the appropriate methods, can be allocated to the
newly defi ned utility service candidate capabilities.

Notification

Send

Figure 7.12
The Notification service candidate,
with a sole service capability
candidate that processes two of
the actions identified for the parent
business process.

Document

Print

Figure 7.13
The Document service candidate
with a generic Print service
 capability candidate.

ptg20131482

180 Chapter 7: Analysis and Modeling with REST Services and Microservices

Notifi cation Service Candidate

The Send service capability candidate is expanded with
the POST method and the /Notice Sender/ resource
(Figure 7.14).

Document Service Candidate

The highly generic Print service capability candidate
is expanded with a POST method and the /Printer/
resource (Figure 7.15). Any document sent to the Print
capability will be posted to the /Printer/ resource and
then printed.

Notification

Send
(POST +
/Notice Sender/)

Figure 7.14
The Notification service candidate
with method and resource association.

Document

Print
(POST + /Printer/)

Figure 7.15
The Document service candidate with
method and resource association.

Step 11: Define Microservice Candidates (and Associate Resources
and Methods)

We now turn our attention to the previously identifi ed non-agnostic processing logic to
determine whether any unit of this logic may qualify for encapsulation by a separate
microservice. As discussed in Chapter 5, the microservice model can introduce a highly
independent and autonomous service implementation architecture that can be suitable
for units of logic with particular processing demands.

ptg20131482

7.1 REST Service Modeling Process 181

Typical considerations can include:

• Increased autonomy requirements

• Specifi c runtime performance requirements

• Specifi c runtime reliability or failover requirements

• Specifi c service versioning and deployment requirements

CASE STUDY EXAMPLE

In support of isolating the processing for the Verify Stu-
dent Transcript Qualifi es for Award Based on Award
Conferral Rules action, the MUA team establishes a
microservice candidate called Verify Application, with
a single Verify service capability candidate (Figure 7.16).

Verify Application Service

It is presumed that the eventual implementation envi-
ronment for this service will be highly autonomous and
may include a redundant implementation of the Rules
service to guarantee the previously identifi ed reliability
requirements.

Verify
Application

Verify
(POST +
/Application/)

Figure 7.16
The Verify Application service
candidate with method and resource
 association.

Step 12: Apply Service-Orientation

This step is a repeat of Step 7 provided here specifi cally for any new utility service can-
didates that may have emerged from the completion of Steps 9 and 10.

Step 13: Revise Candidate Service Compositions

Now we revisit the original service composition candidate scenarios we identifi ed in
Step 8 to incorporate new or revised utility service candidates. The result is typically an
expansion of the service composition scope where more utility service capabilities fi nd
themselves participating in the business process automation.

ptg20131482

182 Chapter 7: Analysis and Modeling with REST Services and Microservices

CASE STUDY EXAMPLE

The Confer Student Award service composition expands with the introduction of the
Notifi cation and Document utility services and the Verify Application microservice
(Figure 7.17).

Event Award Student

Verify
Application

task
service
layer

entity
service
layer

micro
service
layer

Document
utility

service
layer

Notification

Confer
Student
Award

Confer
Student
Award

Award StudentEvent

Verify
Application

DocumentNotification

Figure 7.17
The revised service composition candidate incorporating new utility services and a microservice.

Step 14: Revise Resource Definitions and Capability Candidate Grouping

Both business-centric and utility-centric resources can be accessed or processed by util-
ity services and microservices. Therefore, any new processing logic identifi ed in the
preceding steps can result in opportunities to further add to and/or revise the set of
resources modeled so far.

ptg20131482

7.2 Additional Considerations 183

Furthermore, with the introduction of new utility services and/or microservices, we
need to check the grouping of all modeled service capability candidates because:

• Utility service capability candidates defi ned in Steps 9 and 10 may remove some
of the required actions that comprised entity service capability candidates defi ned
earlier, in Step 3.

• The introduction of new utility service candidates may affect (or assimilate) the
functional scopes of already-defi ned utility service candidates.

• The modeling of larger and potentially more complex service composition candi-
dates in Step 13 may lead to the need to reduce or increase the granularity of some
service capability candidates.

NOTE

As a result, subsequent execution of several of the modeling steps will require an extra
discovery task during which we determine what relevant service candidates, resources, and
uniform contract properties exist, prior to defining or proposing new ones.

7.2 Additional Considerations

Uniform Contract Modeling and REST Service Inventory Modeling

A service inventory is a collection of services that are independently owned, governed,
and standardized. When we apply the Uniform Contract {311} constraint during an SOA
project, we typically do so for a specifi c service inventory. This is because a uniform
contract will end up standardizing a number of aspects pertaining to service capability
representation, data representation, message exchange, and message processing. The
defi nition of a uniform contract is ideally performed prior to individual REST service
contract design, because each REST service contract will be required to form dependen-
cies on and operate within the scope of the features offered by its associated uniform
contract.

Organizations that aim to build a single inventory of REST services will typically rely
on a single over-arching uniform contract to establish baseline communication stan-
dards. Those that proceed with a domain-based service inventory approach instead
will most likely need to defi ne a separate uniform contract for each domain service

ptg20131482

184 Chapter 7: Analysis and Modeling with REST Services and Microservices

inventory. Because domain service inventories tend to vary in terms of standardization
and governance, separate uniform contracts can be created to accommodate these indi-
vidual requirements. This is why uniform contract modeling can be part of the service
inventory analysis project stage.

The purpose of the service inventory analysis stage is to enable a project team to fi rst
defi ne the scope of a service inventory via the authoring of a service inventory blue-
print. This specifi cation is populated by the repeated execution of the service inventory
analysis cycle. Once all iterations (or as many as are allowed) are completed, we have
a set of service candidates that have been (hopefully) well-defi ned, both individually
and in relation to each other. The subsequent step is to proceed with the design of the
respective service contracts.

When we know in advance that we will be delivering these services using REST, it
is benefi cial to incorporate the modeling of the inventory’s uniform contract into the
modeling of the service inventory itself. This is because as we perform each service-
oriented analysis process and model and refi ne each service candidate and service
capability candidate, we gather more and more intelligence about the business automa-
tion requirements that are distinct to that service inventory. Some of this information
will be relevant to how we defi ne the methods and media types of the uniform contract.

Examples of useful areas of intelligence include:

• Understanding the types of information and documents that will need to be
exchanged and processed can help defi ne necessary media types.

• Understanding the service models (entity, utility, task, etc.) in use by service
 candidates can help determine which available methods should be supported.

• Understanding policies and rules that are required to regulate certain types of
interaction can help determine when certain methods should not be used, or help
defi ne special features that may be required by some methods.

• Understanding how service capability candidates may need to be composed can
help determine suitable methods.

• Understanding certain quality-of-service requirements (especially in relation to
reliability, security, transactions, etc.) can help determine the need to support
special features of methods, and may further help identify the need to issue a set
of pre-defi ned messages that can be standardized as complex methods.

ptg20131482

7.2 Additional Considerations 185

A practical means of incorporating the task of uniform contract modeling as part of
the service inventory analysis is to group it with the Defi ne Technology Architecture
step (Figure 7.18). During this step general service inventory architecture characteristics
and requirements are identifi ed from the same types of intelligence we collect for the
defi nition of uniform contract features. In this context, the uniform contract is essen-
tially being defi ned as an extension to the standardized technology architecture for the
service inventory.

Perform
Service-Oriented

Analysis

Define
Enterprise
Business
Models

Define
Technology
Architecture

Define
Service

Inventory
Blueprint

Model
Uniform
Contract

Figure 7.18
In the service inventory analysis cycle, uniform contract modeling can be included as an iterative task .

If combining the Model Uniform Contract task with the Defi ne Technology Architec-
ture step turns out to be an unsuitable grouping, then the Model Uniform Contract task
can be positioned as its own step within the cycle.

When we begin working on the uniform contract defi nition, one of the key decisions
will be to determine the sources to be used to populate its methods and media types. As
a general starting point, we can look to the HTTP specifi cation for an initial set of meth-
ods and the IANA Media Type Registry for the initial media types. Further media types
and possibly further methods may come from a variety of internal and external sources.

ptg20131482

186 Chapter 7: Analysis and Modeling with REST Services and Microservices

NOTE

It is also worth noting that methods and media types can be standardized independently of
a service inventory. For example, HTTP methods are defined by the IETF. A service inven-
tory that uses these methods will include a reference to the IETF specification as part of the
service inventory uniform contract definition. Media types may be specified on an ongoing
basis by external bodies, such as the W3C, the IETF, industry bodies across various supply
chains, or even within an IT enterprise.

Note that the asterisk symbol can be used in the top-right corner to indicate that a REST
service candidate is being modeled during this step that either:

• Incorporates methods and/or media types already modeled for the uniform
 contract, or

• Introduces the need to add or augment methods and/or media types for the
 uniform contract

This type of two-way relationship between the Perform Service-Oriented Analysis
step (which encompasses the REST service modeling process) and the Model Uniform
 Contract task is a natural dynamic of the service inventory analysis cycle.

NOTE

It is usually during the Model Uniform Contract task that a uniform contract profile is first
populated with preliminary characteristics and properties. This profile document is then
further refined as the uniform contract and is physically designed and maintained over time.

REST Constraints and Uniform Contract Modeling

Although REST constraints are primarily applied during the physical design of service
architectures, taking them into consideration as the uniform contract takes shape dur-
ing the service-oriented analysis stage can be helpful. For example:

• Stateless {308} – From the data exchange requirements we are able to model
between service candidates, can we determine whether services will be able to
remain stateless between requests?

• Cache {310} – Are we able to identify any request messages with responses that can
be cached and returned for subsequent requests instead of needing to be pro-
cessed redundantly?

ptg20131482

7.2 Additional Considerations 187

• Uniform Contract {311} – Can all methods and media types we are associating with
the uniform contract during this stage be genuinely reused by service candidates?

• Layered System {313} – Do we know enough about the underlying technology
architecture to determine whether services and their consumers can tell the dif-
ference between communicating directly or communicating via intermediary
middleware?

The extent to which concrete aspects of REST constraint application can be factored into
how we model the uniform contract will depend directly on:

• The extent to which the service inventory technology architecture is defi ned
 during iterations of the service inventory analysis cycle, and

• The extent to which we learn about a given business process’s underlying automa-
tion requirements during Step 2 of the service-oriented analysis process

Much of this will be dependent on the amount of information we have and are able to
gather about the underlying infrastructure and overall ecosystem in which the inven-
tory of services will reside. For example, if we know in advance that we are deliver-
ing a set of services within an environment riddled with existing legacy systems and
middleware, we will be able to gain access to many information sources that will help
determine boundaries, limitations, and options when it comes to service and uniform
contract defi nition. On the other hand, if we are planning to build a brand-new envi-
ronment for our service inventory, there will usually be many more options for creating
and tuning the technology architecture in support of how the services (and the uniform
contract) can best fulfi ll business automation requirements.

SOA PATTERNS

When determining the scope of a service inventory and whether multiple service
inventories are allowed within an enterprise environment, the decision usually
comes down to whether the Enterprise Inventory [340] or the Domain Inventory
 [338] pattern is applied.

ptg20131482

188 Chapter 7: Analysis and Modeling with REST Services and Microservices

REST Service Capability Granularity

When actions are defi ned at this stage, they are considered fi ne-grained in that each
action is clearly distinguished with a specifi c purpose. However, within the scope of
that purpose they can often still be somewhat vague and can easily encompass a range
of possible variations.

Defi ning conceptual service candidates using this level of action granularity is common
with mainstream service modeling approaches. It has proven suffi cient for SOAP-based
Web services because service capabilities that need to support variations of function-
ality can still be effectively mapped to WSDL-based operations capable of handling a
range of input and output parameters.

With REST service contracts, service capabilities are required to incorporate methods
(and media types) defi ned by an overarching uniform contract. As already discussed
in the preceding section, the uniform contract for a given service inventory can be mod-
eled alongside and in collaboration with the modeling of service candidates, as long as
we know in advance that REST will act as the primary service implementation medium.

Whereas a WSDL-based service contract can incorporate custom parameter lists and
other service-specifi c features, REST puts an upper bound on the granularity of mes-
sage exchanges at the level of the most complex or most general purpose method and
media type. This may, in some cases, lead to the need to defi ne fi ner-grained service
capabilities.

Figure 7.19 highlights the difference between a service candidate modeled in an
 implementation-neutral manner versus one modeled specifi cally for the REST service
implementation medium.

Invoice

GET /invoice/
{invoice-id}

POST /invoice

PUT /invoice/
{invoice-id}/state

PUT /invoice/
{invoice-id}/customer

Invoice

Get Invoice

Add Invoice

Update Invoice

Figure 7.19
A REST service candidate can be modeled
specifically to incorporate uniform contract
characteristics. The Update Invoice service
capability candidate is split into two
variations of the PUT /invoice/ service
capability: one that updates the invoice state
value, and another that updates the invoice
customer value.

ptg20131482

7.2 Additional Considerations 189

Resources vs. Entities

Part of the REST service modeling process explores the identifi cation of resource can-
didates. It is through the defi nition of these resource candidates that we begin to intro-
duce a Web-centric view of a service inventory. Resources represent the “things” that
need to be accessed and processed by service consumers.

What we are also interested in establishing during the service-oriented analysis stage
is the encapsulation of entity logic. As with resources, entities also often represent
“things” that need to be accessed and processed by service consumers.

What then is the difference between a resource and an entity? To understand REST
service modeling, we need to clearly understand this distinction:

• Entities are business-centric and are derived from enterprise business models,
such as entity relationship diagrams, logical data models, and ontologies.

• Resources can be business-centric or non-business-centric. A resource is any given
“thing” associated with the business automation logic enabled by the service
inventory.

• Entities are commonly limited to business artifacts and documents, such as
invoices, claims, customers, etc.

• Some entities are more coarse-grained than others. Some entities can encapsulate
others. For example, an invoice entity may encapsulate an invoice detail entity.

• Resources can also vary in granularity, but are often fi ne-grained. It is less com-
mon to have formally defi ned coarse-grained resources that encapsulate fi ne-
grained resources.

• All entities can relate to or be based on resources. Not all resources can be associ-
ated with entities because some resources are non-business-centric.

The extent to which we need to formalize the mapping between business-centric
resources and entities is up to us. The REST service modeling process provides steps
that encourage us to defi ne and standardize resources as part of the service inventory
blueprint so that we gain a better understanding of how and where resources need to
be consumed.

From a pure modeling perspective we are further encouraged to relate business-cen-
tric resources to business entities so that we maintain a constant alignment with how
business-centric artifacts and documents exist within our business. This perspective is
especially valuable as the business and its automation requirements continue to evolve
over time.

ptg20131482

This page intentionally left blank

ptg20131482

Chapter 8

Service API and Contract Design
with Web Services
8.1 Service Model Design Considerations

8.2 Web Service Design Guidelines

ptg20131482

NOTE

Parts of this chapter refer to the WSDL, SOAP, and XML Schema markup
languages and provide code examples. To learn about these and other
Web services markup languages, see the Web Service Contract Design
and Versioning for SOA series book.

After conceptual service candidates have been modeled and suffi ciently refi ned, we
reach the service-oriented design stage where we can begin designing physical

service contracts based on the results of the preceding service-oriented analysis process.

When building SOAP-based Web services , this stage requires us to apply several con-
tract-related service-orientation principles that help shape the design of the API as part
of each service contract in a consistent and standardized manner prior to the design of
the corresponding service logic.

Specifi cally, the following benefi ts can be attained via a contract-fi rst approach with
Web services:

• Web service contracts can be designed to accurately represent the context and
function of their corresponding service candidates.

• Conventions can be applied to Web service operation names to produce standard-
ized endpoint defi nitions.

• The granularity of operations can be modeled in abstract to provide consistent and
predictable API designs that also establish a message size and volume ratio suit-
able for the target communications infrastructure.

• Service consumers are required to conform to the expression of the service con-
tract, not vice versa.

• The design of business-centric Web service contracts can be assisted by business
analysts who may be able to help establish an accurate expression of business
 logic.

ptg20131482

8.1 Service Model Design Considerations 193

We generally begin a Web service contract design with a formal defi nition of the mes-
sages the service is required to process. To accomplish this we need to formalize the
message structures that are defi ned within the WSDL types area. SOAP messages carry
payload data within the Body section of the SOAP envelope and this data needs to be
organized and typed. For this we normally rely on XML schemas.

Note that during the service-oriented analysis process it may have been determined that
one or more service candidates are more suitable for implementation via REST instead
of the SOAP-based Web services technology set. This may be the case if microservices
were identifi ed, or other services that have processing requirements better fulfi lled via
REST. For those service candidates, the service-oriented design guidelines covered in
Chapter 9 are applied.

SOA PATTERNS

Service-oriented architectures can allow services within a single service inven-
tory to be implemented via different communication protocols, as per the Dual
Protocols [339] pattern. Additionally, as per the Concurrent Contracts [332] pat-
tern, a single body of service logic can expose two alternative service contracts
that allow it to be invoked via two different communication protocols. In support
of this functionality, the Service Façade [360] pattern is often also applied together
with Decoupled Contract [337].

8.1 Service Model Design Considerations

The choice of service model for a given service can affect our approach to Web service
contract design. The following sections briefl y raise some key considerations for each
service model.

Entity Service Design

Entity services represent the one service layer that is the least infl uenced by others. Its
purpose is to accurately represent corresponding data entities defi ned within an orga-
nization’s business models. These services are business process–agnostic, built for reuse
by any services within the same service inventory that may need to access or manage
information associated with a particular entity. Because they exist rather independently

ptg20131482

194 Chapter 8: Service API and Contract Design with Web Services

in relation to other service layers, it is benefi cial to design entity services prior to others.
This establishes an abstract service layer around which process and underlying applica-
tion logic can be positioned.

The Service Reusability (295) and Service Autonomy (297) principles are somewhat
naturally part of the entity design model in that the operations exposed by entity ser-
vices are intended to be inherently generic and reusable (and
because the use of the import statement is encouraged to
reuse schemas and create modular WSDL defi nitions).

Discoverability is also an important part of both the design
of entity services and their post-deployment utilization, as
we need to ensure that a service design does not implement
logic already existing. A discovery mechanism would make
this determination easier. One measure we can take to make
a service more discoverable to others is to supplement it with
metadata details using the documentation element.

Figure 8.1 shows a sample entity Web service contract.

SOA PATTERNS

Due to the fact that entity services naturally process key business documents, the
use of standardized XML schemas becomes a paramount design concern. This
greatly emphasizes the need to enforce the application of the Canonical Schema
 [326] and Schema Centralization [356] patterns to all entity services within a ser-
vice inventory.

Utility Service Design

Utility services are responsible for carrying out a variety of low-level processing func-
tions. The SOAP-based Web services implementation option is suitable for utility ser-
vices that need to expose a rich, well-defi ned API.

Unlike services in entity layers, the design of utility services does not require business
analysis expertise. Utility Web services are generally an abstraction of portions of an
organization’s legacy environment, best defi ned by those who understand these envi-
ronments the most.

Purchase Order

SubmitOrder

CheckOrderStatus

ChangeOrder

CancelOrder

Figure 8.1
A sample entity service with
four operations dedicated
to functions pertaining to
purchase order processing.

ptg20131482

8.1 Service Model Design Considerations 195

Because of the real-world and technology-specifi c considerations that need to be taken
into account, utility services can be the hardest type of service to design. In addition, the
context established by these services can be constantly challenged whenever technol-
ogy is upgraded or replaced and related application logic built or altered.

The type of processing logic that resides in utility services can be similar to the type of
logic placed in microservices. Both of these services commonly perform utility-centric
processing. However, because utility services are agnostic, the
Service Reusability (295) principle is a constant infl uence in
how the service capabilities are designed, requiring the API to
be as generic and fl exible as possible. This consideration fur-
ther carries over to determining the appropriate granularity of
a given operation.

Furthermore, it is important to ensure that any newly defi ned
agnostic utility functionality does not, in some way, shape,
or form, already exist. It is therefore necessary to review
the existing service inventory for services that may already
resemble what is planned for a new utility service. Addition-
ally, because these services provide such generic functional-
ity, it is worth, at this stage, investigating whether the features
you require can be purchased or leased from third-party ven-
dors, as long as required quality of service levels can be met.

Figure 8.2 displays a simple utility Web service contract.

SOA PATTERNS

Utility services are more likely to warrant support for alternative communication
protocols, which makes the application of the Dual Protocols [339], Concurrent
Contracts [332], and Service Façade [360] patterns more likely than with entity
services. Another pattern commonly applied during the utility service contract
design stage is Legacy Wrapper [347] for utility services dedicated to encapsulat-
ing legacy APIs.

In IT enterprises that have applied Domain Inventory [338], there is also the appli-
cation of the Cross-Domain Utility Layer [336] pattern that can be considered, in
order to leverage reuse opportunities.

Transform

ForAccounting
Import

ForAccounting
Export

Figure 8.2
A sample utility service with a
functional context dedicated to
data transformation. The initial
two operations are labeled
specifically in relation to
accounting data transformation
to allow future transformation-
style operations that may not
be related to accounting data to
be added.

ptg20131482

196 Chapter 8: Service API and Contract Design with Web Services

Microservice Design

Although building a microservice as a SOAP-based Web service is possible, it is not
a common approach. The processing overhead associated with SOAP messaging and
the multilayered technology stack of Web service and WS-* environments can impose
latency and other performance-related challenges that oppose the typical high-
performance design goals of microservices.

This book therefore primarily covers the service contract design of REST-based
microservices, as explained further in Chapter 9. If you are considering building
microservices using Web service technologies, many of the guidelines raised in Chap-
ter 9 will still apply.

SOA PATTERNS

Visit the Microservice Design section in Chapter 9 for a list of patterns that may be
applicable to microservice contracts and implementations.

Task Service Design

Task services typically contain embedded workfl ow logic used to coordinate an under-
lying service composition. Therefore, the process for designing task services usually
requires less effort than for any of the preceding service models, simply because they
often only require an operation used as a trigger for initiating the workfl ow logic.

Additional operations can be added to support asynchronous interactions. For example,
tasks that involve human interaction or batch processing will retain the state of the
ongoing business process between requests and can allow access to this state by expos-
ing service operations for this purpose.

Different modeling approaches can be used to accomplish this step, such as the use
of sequence diagrams (Figures 8.3 and 8.4). The purpose of this exercise is to docu-
ment each possible execution path, including all exception conditions. The resulting
diagrams also will be useful input for subsequent test cases.

ptg20131482

8.1 Service Model Design Considerations 197

Legacy
Accounting

system

Legacy
System
service

Polling
Notification

service

Issue
Invoice

Start RailCo Invoice
Submission Process

Transform
Invoice

Transform
Succeeded

Check TLS
Metadata

Metadata
Check Successful

Start TLS Invoice
Processing Process

Invoice
Processing

service

Metadata
Checking
service

TLS
B2B

solution
Transform

service

Figure 8.3
A successful completion of sample workflow logic carried out by a task service.

Legacy
Accounting

system

Legacy
System
service

Policy
Notification

service

Issue
Invoice

Start RailCo Invoice
Submission Process

Transform
Invoice

Transform
Failed

Invoice
Processing

service
Transform

service

Metadata
Checking
service

TLS
B2B

solution

Figure 8.4
A failure condition caused by an error during the processing of sample workflow logic by a task service. In this case, one of its
composed services returns an error that terminates the execution of the business process.

ptg20131482

198 Chapter 8: Service API and Contract Design with Web Services

The workfl ow logic that task services can contain will fre-
quently impose processing dependencies in service com-
positions. This can lead to the need for state management.
However, the use of document-style SOAP messages may
allow the task service to delegate the persistence of some or all
of this state information to the message itself.

A task service with a single operation is shown in Figure 8.5.

Invoice
Processing

Submit

Figure 8.5
A sample task service that kicks
off invoice processing workflow
logic via a single Submit
operation that receives an
invoice document as input.

SOA PATTERNS

The workfl ow logic encapsulated by orchestrated task services may require the
need to incorporate atomic transactions or orchestration and compensation type
functionality, which corresponds to the use of the Atomic Service Transaction
 [324] and Compensating Service Transaction [330] patterns, respectively.

Several patterns exist to enable state management and support the application
of the Service Statelessness (298) principle, including State Repository [363] and
Partial State Deferral [352]. Furthermore, the State Messaging [362] pattern for-
malizes the aforementioned deferral of state information to the messaging layer,
as enabled by SOAP messages.

CASE STUDY EXAMPLE

The service modeling exercise performed by TLS produced a number of Web service
candidates in support of its new Timesheet Submission solution. The contract design
of the Employee service is explored in this case study example. Figure 8.6 shows the
original service candidate modeled in Chapter 6.

ptg20131482

8.1 Service Model Design Considerations 199

The Employee service was modeled in support of carry-
ing out two specifi c functions:

• Executing a query against the employee record
to retrieve the maximum number of hours the
employee is authorized to work within a week.

• Post updates to the employee’s history (required
only when a timesheet is rejected).

TLS invested in creating a standardized XML Schema
data representation architecture (for its accounting envi-
ronment only) some time ago. As a result, a collection
of entity XML schemas representing accounting-related
information sets already exists.

At fi rst, this appears to make this step rather simple. However, upon closer study, it
is discovered that the existing XML schema is very large and complex. After some
discussion, TLS architects decide that they will not use the existing schema with this
service at this point. Instead, they opt to derive a lightweight (but still fully compli-
ant) version of the schema to accommodate the simple processing requirements of
the Employee service.

They begin by identifying the kinds of data that will need to be exchanged to fulfi ll
the processing requirements of the Get Weekly Hours Limit capability candidate.
They end up defi ning two complex types:

• One containing the search criteria required for the request message received by
the Employee service

• One containing the query results returned by the service

The types are deliberately named so that they are associated with the respective mes-
sages. These two types then constitute the new Employee.xsd schema fi le, as shown
in Example 8.1.

<xml:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace=
 "http://www.example.org/tls/employee/schema/accounting/">
 <xml:element name="EmployeeHoursRequestType">
 <xml:complexType>

<xml:sequence>

Employee

Get Weekly Hours
Limit

Update Employee
History

Figure 8.6
The Employee service candidate.

ptg20131482

200 Chapter 8: Service API and Contract Design with Web Services

<xml:element name="ID" type="xml:integer"/>
</xml:sequence>

 </xml:complexType>
 </xml:element>
 <xml:element name="EmployeeHoursResponseType">
 <xml:complexType>

<xml:sequence>
<xml:element name="ID" type="xml:integer"/>
<xml:element name="WeeklyHoursLimit"

type="xml:short"/>
</xml:sequence>

 </xml:complexType>
 </xml:element>
</xml:schema>

Example 8.1
The Employee schema providing complexType constructs used to establish the data representation anticipated for the
Get Weekly Hours Limit capability candidate .

However, just as the architects attempt to derive the types required for the Update
Employee History capability candidate, another problem presents itself. They dis-
cover that the schema from which they derived the Employee.xsd fi le does not rep-
resent the EmployeeHistory entity, which this service candidate also encapsulates.

Another visit to the accounting schema archive reveals that employee history infor-
mation is not governed by the accounting solution. It is, instead, part of the HR envi-
ronment, for which no schemas have been created.

Not wanting to impose on the already-standardized design of the Employee schema,
it is decided that a second schema defi nition be created, named EmployeeHistory.xsd
(Example 8.2 and Figure 8.7).

<xml:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace=

"http://www.example.org/tls/employee/schema/hr/">
 <xml:element name="EmployeeUpdateHistoryRequestType">
 <xml:complexType>

<xml:sequence>
<xml:element name="ID" type="xml:integer"/>
<xml:element name="Comment" type="xml:string"/>

</xml:sequence>
 </xml:complexType>
 </xml:element>

ptg20131482

8.1 Service Model Design Considerations 201

 <xml:element name="EmployeeUpdateHistoryResponseType">
 <xml:complexType>

<xml:sequence>
<xml:element name="ResponseCode"

type="xml:byte"/>
</xml:sequence>

 </xml:complexType>
 </xml:element>
</xml:schema>

Example 8.2
The EmployeeHistory schema, with a different targetNamespace to identify its distinct origin.

accounting
system

HR system

Employee
schema

Employee
History
schema

Employee
WSDL

Figure 8.7
Two schemas originating from two different data sources.

To promote reusability and to allow for each schema fi le to be maintained sepa-
rately from the WSDL defi nition, the XML Schema import statement is used to
pull the contents of both schemas into the Employee service WSDL types construct
(Example 8.3).

<types>
 <xml:schema targetNamespace=
 "http://www.example.org/tls/employee/schema/">
 <xml:import namespace=

"http://www.example.org/tls/employee/schema/accounting/"
schemaLocation="Employee.xsd"/>

ptg20131482

202 Chapter 8: Service API and Contract Design with Web Services

 <xml:import namespace=
"http://www.example.org/tls/employee/schema/hr/"
schemaLocation="EmployeeHistory.xsd"/>

 </xml:schema>
</types>

Example 8.3
The WSDL types construct being populated by imported schemas.

Next, TLS architects follow these steps to defi ne an initial service contract:

1. They confi rm that each capability candidate is suitably generic and reusable by
ensuring that the granularity of the logic encapsulated is appropriate. They then
study the data structures defi ned earlier and establish a set of operation names.

2. They create the portType (or interface) area
within the WSDL document and populate it with
operation constructs that correspond to capability
candidates.

3. They formalize the list of input and output values
required to accommodate the processing of each
operation’s logic. This is accomplished by defi n-
ing the appropriate message constructs that refer-
ence the XML Schema types within the child part
elements.

The TLS architects decide on operation names GetEmployeeWeeklyHoursLimit and
 UpdateEmployeeHistory (Figure 8.8).

They subsequently proceed to defi ne the remaining parts of the abstract defi nition,
namely the message and portType constructs, as shown in Example 8.4.

<message name="getEmployeeWeeklyHoursRequestMessage">
 <part name="RequestParameter"
 element="act:EmployeeHoursRequestType"/>
</message>
<message name="getEmployeeWeeklyHoursResponseMessage">
 <part name="ResponseParameter"
 element="act:EmployeeHoursResponseType"/>
</message>

Employee

GetEmployee
WeeklyHoursLimit

UpdateEmployee
History

Figure 8.8
The Employee service operations .

ptg20131482

8.1 Service Model Design Considerations 203

<message name="updateEmployeeHistoryRequestMessage">
 <part name="RequestParameter"
 element="hr:EmployeeUpdateHistoryRequestType"/>
</message>
<message name="updateEmployeeHistoryResponseMessage">
 <part name="ResponseParameter"
 element="hr:EmployeeUpdateHistoryResponseType"/>
</message>
<portType name="EmployeeInterface">
 <operation name="GetEmployeeWeeklyHoursLimit">
 <input message=

"tns:getEmployeeWeeklyHoursRequestMessage"/>
 <output message=

"tns:getEmployeeWeeklyHoursResponseMessage"/>
 </operation>
 <operation name="UpdateEmployeeHistory">
 <input message=

"tns:updateEmployeeHistoryRequestMessage"/>
 <output message=

"tns:updateEmployeeHistoryResponseMessage"/>
 </operation>
</portType>

Example 8.4
The message and portType parts of the Employee service definition that implement the abstract definition details of
the two service operations.

NOTE

TLS has standardized on the WSDL 1.1 specification because it is conforming to the
requirements dictated by version 1.1 of the WS-I Basic Profile and because none of its
application platforms support a newer WSDL version. WSDL 1.1 uses the portType
element instead of the interface element, which is provided by WSDL 2.0.

Upon a review of the initial abstract service interface, it is determined that a minor
revision can be incorporated to better support fundamental service-orientation. Spe-
cifi cally, meta-information is added to the WSDL defi nition to better describe the
purpose and function of each of the two operations and their associated messages
(Example 8.5).

ptg20131482

204 Chapter 8: Service API and Contract Design with Web Services

<portType name="EmployeeInterface">
 <documentation>
 GetEmployeeWeeklyHoursLimit uses the Employee
 ID value to retrieve the WeeklyHoursLimit value.
 UpdateEmployeeHistory uses the Employee ID value
 to update the Comment value of the EmployeeHistory.
 </documentation>
 <operation name="GetEmployeeWeeklyHoursLimit">
 <input message=

"tns:getEmployeeWeeklyHoursRequestMessage"/>
 <output message=

"tns:getEmployeeWeeklyHoursResponseMessage"/>
 </operation>
 <operation name="UpdateEmployeeHistory">
 <input message=

"tns:updateEmployeeHistoryRequestMessage"/>
 <output message=

"tns:updateEmployeeHistoryResponseMessage"/>
 </operation>
</portType>

Example 8.5
The service contract, supplemented with additional metadata documentation.

The architect in charge of the Employee service design
decides to make adjustments to the abstract service
interface to apply current design standards. Specifi cally,
naming conventions are incorporated to standardize
operation names, as shown in Figure 8.9 and Example 8.6.

Employee

GetWeeklyHours
Limit

UpdateHistory

Figure 8.9
The revised Employee service
operation names.

ptg20131482

8.1 Service Model Design Considerations 205

<operation name="GetWeeklyHoursLimit">
 <input message="tns:getWeeklyHoursRequestMessage"/>
 <output message="tns:getWeeklyHoursResponseMessage"/>
</operation>
<operation name="UpdateHistory">
 <input message="tns:updateHistoryRequestMessage"/>
 <output message="tns:updateHistoryResponseMessage"/>
</operation>

Example 8.6
The two operation constructs with new, standardized names.

Let’s take another look at the two operations that have been designed into the
Employee service:

• GetWeeklyHoursLimit

• UpdateHistory

The fi rst requires access to the employee profi le. At TLS, employee information is
stored in two locations:

• Payroll data is kept within the accounting system repository, along with addi-
tional employee contact information.

• Employee profi le information, including employee history details, is stored in
the HR repository.

When an XML Schema data representation architecture was fi rst implemented at
TLS, entity XML schemas were used to bridge some of the existing disparity that
existed among the many TLS data sources. Being aware of this, the architect inves-
tigates the origins of the Employee.xsd schema used as part of the Employee.wsdl
defi nition to determine the processing requirements for the GetWeeklyHoursLimit
operation.

It is discovered that although the schema accurately expresses a logical data entity,
it represents a document structure derived from two different physical repositories.
Subsequent analysis reveals that the weekly hours limit value is stored in the account-
ing database. The processing requirement for the GetWeeklyHoursLimit operation is
then written up as follows:

ptg20131482

206 Chapter 8: Service API and Contract Design with Web Services

Utility service-level function capable of issuing the following query against the accounting
database: Return Employee’s Weekly Hour Limit Using the Employee ID as the Only Search
Criteria

Next, the details behind the UpdateHistory operation are studied. This time it’s a bit
easier, as the EmployeeHistory.xsd schema is associated with a single data source—
the HR employee profi le repository. Looking back at the original analysis documenta-
tion, the architect identifi es the one piece of information that this particular solution
will need to update within this repository. Therefore, the processing requirement
defi nition goes beyond the immediate requirements of the solution, as follows:

Utility service-level function capable of issuing an update to the “comment” column of the
employee history table in the HR employee profi le database, using the employee ID value as
the sole criteria.

At fi rst glance, it looks like the Timesheet Submission solution may require new util-
ity services to facilitate Employee service processing requirements, as illustrated in
the expanded composition shown in Figure 8.10. These newly identifi ed requirements
will need to be subjected to the service modeling process described in Chapter 6.

Employee Timesheet Invoice

Confirm
Authorization

Notification??

Timesheet
Submission

Figure 8.10
The revised composition hierarchy identifying new potential utility services.

ptg20131482

8.1 Service Model Design Considerations 207

It is eventually revealed that only one new utility service is required to accommodate
the Employee service—a Human Resources wrapper service that also can facilitate
the Timesheet service. Example 8.7 contains the fi nal version of the Employee service
defi nition, incorporating the changes to element names and the previous revisions.

<definitions name="Employee"
 targetNamespace="http://www.example.org/tls/employee/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:act=
 "http://www.example.org/tls/employee/schema/accounting/"
 xmlns:hr="http://www.example.org/tls/employee/schema/hr/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.example.org/tls/employee/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types>
 <xml:schema targetNamespace=

"http://www.example.org/tls/employee/schema/">
<xml:import namespace=

"http://www.example.org/tls/employee/schema/
accounting/"

schemaLocation="Employee.xsd"/>
<xml:import namespace=

"http://www.example.org/tls/employee/schema/hr/"
schemaLocation="EmployeeHistory.xsd"/>

 </xml:schema>
 </types>
 <message name="getWeeklyHoursRequestMessage">
 <part name="RequestParameter"

element="act:EmployeeHoursRequestType"/>
 </message>
 <message name="getWeeklyHoursResponseMessage">
 <part name="ResponseParameter"

element="act:EmployeeHoursResponseType"/>
 </message>
 <message name="updateHistoryRequestMessage">
 <part name="RequestParameter"

element="hr:EmployeeUpdateHistoryRequestType"/>
 </message>
 <message name="updateHistoryResponseMessage">
 <part name="ResponseParameter"

element="hr:EmployeeUpdateHistoryResponseType"/>
 </message>
 <portType name="EmployeeInterface">
 <documentation>

ptg20131482

208 Chapter 8: Service API and Contract Design with Web Services

GetWeeklyHoursLimit uses the Employee ID value
to retrieve the WeeklyHoursLimit value.
UpdateHistory uses the Employee ID value to
update the Comment value of the EmployeeHistory.

 </documentation>
 <operation name="GetWeeklyHoursLimit">

<input message=
"tns:getWeeklyHoursRequestMessage"/>

<output message=
"tns:getWeeklyHoursResponseMessage"/>

 </operation>
 <operation name="UpdateHistory">

<input message=
"tns:updateHistoryRequestMessage"/>

<output message=
"tns:updateHistoryResponseMessage"/>

 </operation>
 </portType>
 ...
</definitions>

Example 8.7
The final abstract service definition for the Employee service contract. The next step for this service will be to proceed
with its concrete service definition and its service logic.

8.2 Web Service Design Guidelines

Provided in this section is a set of common guidelines for the design of Web service
contracts. Several of these guidelines can become the basis of formal custom design
standards.

Apply Naming Standards

Labeling Web services is the equivalent to labeling IT infrastructure. It is therefore
essential that service APIs be as consistently self-descriptive as possible.

Naming standards therefore need to be defi ned and applied to:

• Service endpoint names

• Service operation names

• Message values

ptg20131482

8.2 Web Service Design Guidelines 209

Here are some suggestions:

• Service candidates with high reuse potential should always be stripped of
any naming characteristics that hint at the business processes for which
they were originally built. For example, instead of naming an operation
 GetTimesheetSubmissionID, it can be simply reduced to GetTimesheetID or
even just GetID.

• Entity services need to remain representative of the entity models from which
their corresponding service candidates were derived. Therefore, the naming
conventions used must refl ect those established in the organization’s original
entity models. Typically, this type of service uses the noun-only naming structure.
Examples of suitable entity service names are Invoice, Customer, and Employee.

• Service operations for entity services should be verb-based and should not repeat
the entity name. For example, an entity service called Invoice should not have an
operation named AddInvoice.

• Utility services need to be named according to the processing context under
which their operations are grouped. Both the verb+noun or noun only conven-
tions can be used. Simplifi ed examples of suitable utility service names are
 CustomerDataAccess, SalesReporting, and GetStatistics.

• Utility service operations need to clearly communicate the nature of their indi-
vidual functionality. Examples of suitable utility service operation names are
 GetReport, ConvertCurrency, and VerifyData.

• While microservices are not always subjected to the same design standards as
agnostic services, it is still recommended that the conventions for service and
operation names be applied consistently to whatever extent possible.

Whatever naming standards are chosen, the key is that they must be consistently
applied throughout all services within a given service inventory.

SOA PATTERNS

The Canonical Expression [325] pattern formalizes the use of naming conventions
for standardization purposes.

ptg20131482

210 Chapter 8: Service API and Contract Design with Web Services

Apply a Suitable Level of Contract API Granularity

When designing services, there are different granularity levels that need to be taken
into consideration, as follows:

• Service Granularity – This represents the functional scope of a service. For example,
fi ne-grained service granularity indicates that there is a small quantity of logic
associated with the service’s overall functional context.

• Capability Granularity – The functional scope of individual service capabilities is
represented by this granularity level. For example, a GetDetail capability will tend
to have a fi ner measure of granularity than a GetDocument capability.

• Constraint Granularity – The level of validation logic detail is measured by constraint
granularity. For example, the coarser the constraint granularity, the less constraints
(or smaller the amount of data validation logic) a given capability will have.

• Data Granularity – This granularity level represents the quantity of data processed.
For example, a fi ne level of data granularity is equivalent to a small amount of data.

Because the level of service granularity determines the functional scope of a service, it is
usually determined during the analysis and modeling stages that precede service con-
tract design. Once a service’s functional scope has been established, the other granular-
ity types come into play and affect both the modeling and physical design of the service
contract (Figure 8.11).

Invoice

Get

GetHeader

the quantity of logic
encapsulated by a service
capability determines the

level of capability granularity

the quantity of data exchanged
by a capability determines
the level of data granularity

the quantity
of logic associated

with the service
context determines

the level of
service granularity

Get

GetHeader

the quantity and detail of validation
logic associated with a capability or a type

determines the level of constraint granularity

Figure 8.11
The four granularity levels that represent various characteristics of a service and its contract.
Note that these granularity types are, for the most part, independent of each other.

ptg20131482

8.2 Web Service Design Guidelines 211

Granularity is generally measured in terms of fi ne and coarse levels. It is worth acknowl-
edging that the use of the terms fi ne-grained and coarse-grained is highly subjective. What
may be fi ne-grained in one case may not be in another. The point is to understand how
these terms can be applied when comparing parts of a service or when comparing ser-
vices with each other.

NOTE

The term “constraint granularity” is not associated with the term constraint as it pertains to
REST.

Although the granularity at which services can be designed can vary, there is a ten-
dency to create APIs for Web services that are coarse-grained in order to get the most
out of each message exchange. Performance, of course, is critical to the success and ulti-
mate evolution of service-oriented solutions. However, other considerations also need
to be taken into account.

The coarser the granularity of a service contract, the less reuse it may be able to offer. If
multiple functions are bundled into a single operation, it may be undesirable for con-
sumers who only require the use of one of those functions. Additionally, some coarse-
grained APIs may actually impose redundant processing or data exchange by forcing
consumers to submit data not relevant to a particular activity.

Service contract granularity is a key strategic decision point that deserves a good deal
of attention during the service-oriented design phase. Here are some guidelines for
tackling this issue:

• Fully understand the performance limitations of the target deployment environ-
ment and explore alternative supporting technologies, if required.

• Explore the possibility of providing alternate (coarse and less coarse-grained)
WSDL defi nitions for the same Web services. Or explore the option of supplying
redundant coarse and less coarse-grained operations in the same WSDL defi ni-
tion. These approaches de-normalize service contracts but can address perfor-
mance issues and accommodate a range of consumers.

• Assign coarse-grained APIs to services designated as solution endpoints and
allow fi ner-grained APIs for services confi ned to pre-defi ned boundaries. This, of
course, runs somewhat contrary to service-orientation principles and SOA char-
acteristics that promote reuse and interoperability in services. Interoperability

ptg20131482

212 Chapter 8: Service API and Contract Design with Web Services

is promoted in coarse-grained services, and reusability is more fostered in fi ner-
grained services.

• Consider the use of secondary service contracts that support alternative, more
effi cient communication protocols. Although it adds to its governance burden, it is
possible to support a second communications medium within a service inventory.
For example, it may be warranted to provide support for REST services alongside
SOAP-based Web services.

Regardless of your approach, ensure that it is consistent and predictable so that an SOA
can meet performance demands while remaining standardized.

CASE STUDY EXAMPLE

TLS chose an approach to contract API granularity where services positioned for
use by consumers outside of TLS would provide consistently coarse-grained APIs.
Operations on these services would accept all the data required to process a particu-
lar activity. Further round-trips between external consumer and the service would
only be required if absolutely necessary or if internal policies demanded it. Services
used within TLS could provide less coarse-grained operations to facilitate reuse and
a broader range of potential (internal) consumers, as long as the processing overhead
imposed by less coarse-grained operations was acceptable.

SOA PATTERNS

Providing alternative contracts for the same service is addressed in the Concur-
rent Contracts [332] pattern. Adding redundant operations within the same Web
service contract is formalized via the Contract Denormalization [335] pattern.
Support for two communication protocols within the same service inventory is
described in the Dual Protocols [339] pattern.

Design Web Service Operations to Be Inherently Extensible

Regardless of how well services are designed when fi rst deployed, they can never be
fully prepared for what the future holds. Some types of business process changes result
in the need for the scope of entities to be broadened. As a result, corresponding business

ptg20131482

8.2 Web Service Design Guidelines 213

services may need to be extended. While the application of Service Reusability (295)
and Service Composability (302) are thought through when partitioning logic as part
of the service modeling process, extensibility is more of a physical design quality that
needs to be considered during design.

Depending on the nature of the change, extensibility can sometimes be achieved with-
out breaking the existing service contract. It is important to design Web service opera-
tions and messages to be as activity-agnostic as possible. This supports the processing
of future non-specifi c values and functions that are still related to the operation’s or
message’s overall purpose. Furthermore, it is a good habit to respond to new processing
requirements by fi rst investigating the possibility of composing other available services
(including services that can be purchased or leased). This may succeed in fulfi lling
requirements without having to touch the service contract.

Note that extensions to an existing service contract will commonly impact its corre-
sponding XML schema. These extensions can be facilitated by supplying new schemas
specifi cally for the extension. Before going down this road, though, ensure that estab-
lished version control standards are fi rmly in place.

CASE STUDY EXAMPLE

Due to the size of TLS’s organization, it is not uncommon for employees to be real-
located or to seek vertical or lateral position changes. The latter scenario is made fur-
ther common by the “promote from within” motto encouraged by many divisional
directors.

When an employee changes position or rank, the employee is expected to update
his/her own profi le using a form on the local intranet. Because this step is voluntary,
it is often never performed. This, predictably, results in an increasingly out-of-date
set of profi les. To counter this trend, the TLS Timesheet Submission process is altered
to include an Employee Profi le Verifi cation step. When implemented, it will verify
profi le information prior to accepting a timesheet . Timesheets submitted by employ-
ees with invalid profi les will simply be rejected.

To implement this new requirement, the Timesheet service contract is not altered.
Instead, the underlying service logic is extended to invoke a separate utility service
that performs the profi le verifi cation.

ptg20131482

214 Chapter 8: Service API and Contract Design with Web Services

SOA PATTERNS

An example of a pattern that can be applied to support future extensibility is
Validation Abstraction [365], which decreases constraint granularity in order to
support potential changes to validation logic.

Consider Using Modular WSDL Documents

WSDL service descriptions can be assembled dynamically at runtime through the use
of import statements that link to separate fi les that contain parts of the service defi ni-
tion. This allows you to defi ne modules for types, operations, and bindings that can be
shared across WSDL documents.

It also allows you to leverage any existing XML Schema modules you may already
have designed. You can separate schemas into granular modules that represent indi-
vidual complex types. This establishes a centralized repository of schemas that can be
assembled into customized master schema defi nitions. By enabling you to import XML
Schema modules into the types construct of a WSDL defi nition, you now can have your
WSDL documents use those same schema modules.

CASE STUDY EXAMPLE

TLS considers importing the bindings construct so that it can be reused and perhaps
even dynamically determined. However, it is later decided to leave the bindings
construct as part of the WSDL document. Example 8.8 shows how the import state-
ment is used to carry out this test.

<import namespace="http://.../common/wsdl/"
 location="http://.../common/wsdl/bindings.wsdl"/>

Example 8.8
An import element used to pull in the bindings construct residing in a separate file.

http://.../common/wsdl/"
http://.../common/wsdl/bindings.wsdl"/

ptg20131482

8.2 Web Service Design Guidelines 215

Use Namespaces Carefully

A WSDL defi nition consists of a collection of elements with different origins. Therefore,
each defi nition often will involve a number of different namespaces. Following is a list
of common namespaces used to represent specifi cation-based elements:

http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema/
http://schemas.xmlsoap.org/wsdl/http/
http://schemas.xmlsoap.org/wsdl/mime/
http://schemas.xmlsoap.org/soap/envelope/

When assembling a WSDL from modules, additional namespaces come into play, espe-
cially when importing XML Schema defi nitions. Further, when defi ning your own ele-
ments, you can establish more namespaces to represent application-specifi c parts of the
WSDL documents. It is not uncommon for larger WSDL documents to contain up to ten
different namespaces and the qualifi ers to go along with them. Therefore, it is highly
recommended that you organize the use of namespaces carefully within and across
WSDL documents.

It is a common convention to require the use of the targetNamespace attribute to assign
a namespace to the WSDL as a whole. If the XML schema is embedded within the WSDL
defi nition, then it can also be assigned a targetNamespace value (which can be the
same value used by the WSDL targetNamespace).

CASE STUDY EXAMPLE

Some of the common namespaces identifi ed earlier are not required by the TLS
Employee service and therefore are omitted from the list of definitions attributes.
As shown in Example 8.9, the targetNamespace is added, along with two namespaces
associated with the two imported schemas.

<definitions name="Employee"
targetNamespace="http://www.xmltc.com/tls/employee/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:act=

 "http://www.xmltc.com/tls/employee/schema/accounting/"
xmlns:hr="http://www.xmltc.com/tls/employee/schema/hr/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

http://schemas.xmlsoap.org/wsdl/http://schemas.xmlsoap.org/wsdl/soap/http://www.w3.org/2001/XMLSchema/http://schemas.xmlsoap.org/wsdl/http/http://schemas.xmlsoap.org/wsdl/mime/http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/wsdl/http://schemas.xmlsoap.org/wsdl/soap/http://www.w3.org/2001/XMLSchema/http://schemas.xmlsoap.org/wsdl/http/http://schemas.xmlsoap.org/wsdl/mime/http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/wsdl/http://schemas.xmlsoap.org/wsdl/soap/http://www.w3.org/2001/XMLSchema/http://schemas.xmlsoap.org/wsdl/http/http://schemas.xmlsoap.org/wsdl/mime/http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/wsdl/http://schemas.xmlsoap.org/wsdl/soap/http://www.w3.org/2001/XMLSchema/http://schemas.xmlsoap.org/wsdl/http/http://schemas.xmlsoap.org/wsdl/mime/http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/wsdl/http://schemas.xmlsoap.org/wsdl/soap/http://www.w3.org/2001/XMLSchema/http://schemas.xmlsoap.org/wsdl/http/http://schemas.xmlsoap.org/wsdl/mime/http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/wsdl/http://schemas.xmlsoap.org/wsdl/soap/http://www.w3.org/2001/XMLSchema/http://schemas.xmlsoap.org/wsdl/http/http://schemas.xmlsoap.org/wsdl/mime/http://schemas.xmlsoap.org/soap/envelope/

ptg20131482

216 Chapter 8: Service API and Contract Design with Web Services

xmlns:tns="http://www.xmltc.com/tls/employee/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 ...
</definitions>

Example 8.9
The namespace declarations within the definitions element of the TLS Employee.wsdl file.

Use the SOAP Document and Literal Attribute Values

Two specifi c attributes establish the SOAP message payload format and the data type
system used to represent payload data. These are the style attribute used by the
soap:binding element and the use attribute assigned to the soap:body element. Both
of these elements reside within the WSDL binding construct.

How these attributes are set is signifi cant as it relates to the manner in which SOAP
message content is structured and represented.

The style attribute can be assigned a value of “document” or “rpc.” The former sup-
ports the embedding of entire XML documents within the SOAP body, whereas the lat-
ter is designed more to mirror traditional RPC communication and therefore supports
parameter type data.

The use attribute can be set to a value of “literal” or “encoded.” SOAP originally pro-
vided its own type system used to represent body content. Later, support for XML
Schema data types was incorporated. This attribute value indicates which type system
you want your message to use. The “literal” setting states that XML Schema data types
will be applied.

When considering these two attributes, the four following combinations are possible
and supported by SOAP:

• style:RPC + use:encoded

• style:RPC + use:literal

• style:document + use:encoded

• style:document + use:literal

The style:document + use:literal combination is preferred by SOA because it sup-
ports the notion of the document-style messaging model that is key to realizing the
features of many WS-* specifi cations.

ptg20131482

8.2 Web Service Design Guidelines 217

CASE STUDY EXAMPLE

In building the concrete part of the Employee service interface defi nition, TLS archi-
tects decide to use the style:document + use:literal combination, as shown in
Example 8.10.

<binding name="EmployeeBinding"
 type="tns:EmployeeInterface">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetWeeklyHoursLimit">
 <soap:operation

soapAction="http://www.xmltc.com/soapaction"/>
 <input>

<soap:body use="literal"/>
 </input>
 <output>

<soap:body use="literal"/>
 </output>
 </operation>
 <operation name="UpdateHistory">
 <soap:operation

soapAction="http://www.xmltc.com/soapaction"/>
 <input>

<soap:body use="literal"/>
 </input>
 <output>

<soap:body use="literal"/>
 </output>
 </operation>
</binding>

Example 8.10
The binding construct of the TLS Employee.wsdl document .

ptg20131482

This page intentionally left blank

ptg20131482

Chapter 9

Service API and Contract Design with
REST Services and Microservices
9.1 Service Model Design Considerations

9.2 REST Service Design Guidelines

ptg20131482

NOTE

Parts of this chapter refer to HTTP syntax and REST-related technologies that are covered
in the SOA with REST: Principles, Patterns & Constraints series textbook.

REST service contracts are typically designed around the primary functions of
HTTP methods, which make the documentation and expression of REST service

contracts distinctly different from operation-based Web service contracts. Regardless of
the differences in notation, the same overarching contract-fi rst approach to designing
REST service contracts is paramount when building services for a standardized service
inventory.

With REST services in particular, the following benefi ts can be achieved:

• REST service contracts can be designed to logically group capabilities related to
the functional contexts established during the service-oriented analysis process.

• Conventions can be applied to formally standardize resource names and input
data representation.

• Complex methods can be defi ned and standardized to encapsulate a set of
pre-defi ned interactions between a service and a service consumer.

• Service consumers are required to conform to the expression of the service
contract, not vice versa.

• The design of business-centric resources and complex methods can be assisted by
business analysts who may be able to help establish an accurate expression and
behavior of business logic.

This chapter provides service contract design guidance for service candidates modeled
as a result of the service-oriented analysis stage covered in Chapter 7.

Note that the physical design of REST service contract APIs may reveal functional
requirements that are more suitable for alternative implementation mediums. The need
to design a richer API or transactional functionality, for example, can warrant consider-
ation of the use of SOAP-based Web services, as explained in Chapter 8.

ptg20131482

9.1 Service Model Design Considerations 221

SOA PATTERNS

As per the Dual Protocols [339] pattern, services within the same service inven-
tory may be based on different implementation mediums and communication
protocols. For example, REST services may reside alongside SOAP-based Web
services.

The Concurrent Contracts [332] and Service Façade [360] patterns can be further
applied to enable the same body of service logic to expose alternative service con-
tracts in support of two standard communication protocols.

9.1 Service Model Design Considerations

REST service contracts are based on the functional contexts established during the
 service-oriented analysis process. Depending on the nature of the functionality within
a given context, each service will have already been categorized within a service model.
Following are a set of service contract design considerations specifi c to each service
model.

Entity Service Design

Each entity service establishes a functional boundary associated with one or more
related business entities (such as invoice, claim, customer, and so on). The types of ser-
vice capabilities exposed by a typical entity service are focused on functions that pro-
cess the underlying data associated with the entity (or entities).

REST entity service contracts are typically dominated by service capabilities that
include inherently idempotent and reliable GET, PUT, or DELETE methods. Entity ser-
vices may need to support updating their state consistently with changes to other entity
services. Entity services will also often include query capabilities for fi nding entities or
parts of entities that match certain criteria, and therefore return hyperlinks to related
and relevant entities.

If complex methods are permitted as part of a service inventory’s design standards,
then entity services may benefi t from supplementing the standard HTTP method-based
capabilities with the pre-defi ned interactions represented by complex methods.

ptg20131482

222 Chapter 9: Service API and Contract Design with REST Services and Microservices

Figure 9.1 provides an example of an entity service with two standard HTTP methods
and two complex methods.

Complex methods are covered toward the end of this chapter in the Complex Method
Design section.

Invoice

GET /invoice/
{invoice-id}

PUT /invoice/
{invoice-id}/customer

Fetch /invoice/
{invoice-id}

Store /invoice/
{invoice-id}/customer

Figure 9.1
An entity service based on the Invoice business
entity that defines a functional scope that limits
the service capabilities to performing invoice-
related processing. This agnostic Invoice service
will be reused and composed by other services
within the same service inventory in support of
different automated business processes that need
to process invoice-related data. This particular
invoice service contract displays two service
capabilities based on primitive methods and two
service capabilities based on complex methods.

SOA PATTERNS

The Entity Linking [342] pattern is commonly applied to REST-based entity
services. As explained later in this chapter, REST services can process data rep-
resented by schemas, such as those provided by JSON and XML Schema specifi -
cations. With entity services in particular, this can place a great deal of emphasis
on consistently applying the Canonical Schema [326] and Schema Centralization
[356] patterns.

Utility Service Design

Like entity services, utility services are expected to be agnostic and reusable. How-
ever, unlike entity services, they do not usually have pre-defi ned functional scopes.
Therefore, we need to confi rm, before fi nalizing the service contract, that the method
and resource combinations we’ve chosen during the service-oriented analysis phase are
what we want to commit to for a given utility service design.

Whereas individual utility services group related service capabilities, the services’
functional boundaries can vary dramatically. The example illustrated in Figure 9.2 is a
utility service acting as a wrapper for a legacy system.

ptg20131482

9.1 Service Model Design Considerations 223

SOA PATTERNS

Utility services are more likely to warrant support for alternative communication
protocols, which makes the application of the Dual Protocols [339], Concurrent
Contracts [332], and Service Façade [360] patterns more likely than with entity
services. Another pattern commonly applied during the utility service contract
design stage is Legacy Wrapper [347].

Microservice Design

The predominant design consideration that applies to microservice contracts is the fl ex-
ibility we have in how we can approach contract design. Due to the fact that microser-
vices are typically based on an intentionally non-agnostic functional context, they will
usually have limited service consumers. Sometimes a microservice may only have a
single service consumer. Because we assume that the microservice will never need to
facilitate any other service consumers in the future (because it is not considered reus-
able outside of a business process), the application of a number of service-orientation
principles becomes optional.

Most notably, this includes the Standardized Service Contract (291) principle. Micro-
service APIs can be, to a certain extent, non-standard so that their individual capabilities
can be optimized in support of their runtime performance and reliability requirements.
This fl exibility further carries over to the application of the Service Abstraction (294)
and Service Loose Coupling (293) principles.

HR
System

GET /timesheet/
{timesheet-id}

GET /employee/
{employee-id}/

GET
/employeehistory/
{date}/

GET /payroll/
{scale-id}

Figure 9.2
This utility service contract encapsulates a legacy
HR system (and is accordingly named). The service
capabilities it exposes provide generic, read-only
data access functions against the data stored in
the underlying legacy repository. For example, the
Employee entity service (composed by the Verify
Timesheet task service) may invoke an employee
data-related service capability to retrieve data.
This type of utility service may provide access to
one of several available sources of employee and
HR-related data.

ptg20131482

224 Chapter 9: Service API and Contract Design with REST Services and Microservices

Exceptions to this design freedom pertain primarily to how the microservice interacts
as part of the greater service composition. The cost of achieving the individual perfor-
mance requirements of a microservice needs to be weighed against the requirements of
the overall service-oriented solution it is a part of.

For example, the Standardized Service Contract (291) principle may need to be applied
to an extent to ensure that a microservice contract is designed to support a standard
schema that represents a common business document. Allowing the microservice to
introduce a non-standard schema may benefi t the processing effi ciency of the microser-
vice, but the resulting data transformation requirements for that data to be transformed
into the standard schema used by the remaining service composition members may be
unreasonable.

Figure 9.3 shows the service contract for the microservice that was modeled in Chapter 6.

Confirm
Authorization

Confirm

Figure 9.3
A microservice contract with a single-
purpose, non-agnostic functional scope.
The service provides three capabilities
specific to and in support of its parent
business process.

SOA PATTERNS

In addition to the Dual Protocols [339], Concurrent Contracts [332], Service Façade
[360], and Legacy Wrapper [347] patterns, REST-based microservices will com-
monly require the application of the Microservice Deployment [349] pattern and
possibly the application of the Containerization [333] pattern.

It may be further required that artifacts to which a microservice may require
access be replicated or redundantly deployed within the microservice implemen-
tation environment. These types of requirements can be addressed by implemen-
tation patterns such as Service Data Replication [358], Redundant Implementation
 [354], and even Composition Autonomy [331], if necessary.

ptg20131482

9.1 Service Model Design Considerations 225

Task Service Design

Task services will typically have few service capabilities, sometimes limited to only a
single one. This is due to the fact that a task service contract’s primary use is for the
execution of automated business process (or task) logic. The service capability can be
based on a simple verb, such as Start or Process. That verb, together with the name of the
task service (that will indicate the nature of the task) is often all that is required for syn-
chronous tasks. Additional service capabilities can be added to support asynchronous
communication, such as accessing state information or canceling an active workfl ow
instance, as shown in Figure 9.4.

REST-based task services will often have service capabilities triggered by a POST
request. However, this method is not inherently reliable. A number of techniques exist
to achieve a reliable POST, including the inclusion of additional headers and handling
of response messages, or the inclusion of a unique consumer-generated request identi-
fi er in the resource identifi er.

To provide input to a parameterized task service it will make sense for the task service
contract to include various identifi ers into the capability’s resource identifi er template
(that might have been parameters in a SOAP message). This frees up the service to
expose additional resources rather than defi ning a custom media type as input to its
processing.

If the task service automates a long-running business process it will return an interim
response to its consumer while further processing steps may still need to take place. If
the task service includes additional capabilities to check on or interact with the state of
the business process (or composition instance), it will typically include a hyperlink to
one or more resources related to this state in the initial response message.

Validate
Timesheet

POST /start/
{timesheet,
request-id}

GET /task/{id}

DELETE /task/{id}

Figure 9.4
A sample task service, recognizable by the verb
in its name. The contract only provides a service
capability used by the composition initiator to trigger
the execution of the Validate Timesheet business
process that the task service logic encapsulates. In
this case, the service capability receives a timesheet
resource identifier that will be used as the basis of the
validation logic, plus a unique consumer-generated
request identifier that supports reliable triggering of
the process. Two additional service capabilities allow
consumers to asynchronously check on the progress
 of the timesheet validation task, and to cancel the task
while it is in progress.

ptg20131482

226 Chapter 9: Service API and Contract Design with REST Services and Microservices

CASE STUDY EXAMPLE

MUA follows proven REST service contract design techniques together with cus-
tom design standards established specifi cally for the MUA enterprise. Architects use
select service candidates modeled in Chapter 7 as the basis for their service contract
designs.

Confer Student Award Service Contract (Task)

A student who submits an award conferral application will do so through a Web
browser. A separate user interface is therefore designed to allow users to enter the
application details. It is the submission of this browser-based form that initiates the
task service.

Upon receiving the submission, a server-side script organizes the form data into an
XML document based on the following media type:

application/vnd.edu.mua.student-award-conferral-application+xhtml+xml

Example 9.1 provides a submitted application form completed with sample data col-
lected from the human user. This represents the data set that kickstarts and drives
the execution of an entire instance of the Confer Student Award business process.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >
 <head>
 <title>Student Award Conferral Application</title>
 </head>
 <body>

<p>Student:
<a rel="student"

href="http://student.mua.edu/student/555333">
John Smith (Student Number 555333)

 </p>

<p>Award:
<a rel="award"

href="http://award.mua.edu/award/BS/CompSci">
Bachelor of Science with Computer Science Major

 </p>

ptg20131482

9.1 Service Model Design Considerations 227

<p>Event:
<a rel="event"

href="http://event.mua.edu/achievement">
Outstanding Achievement

 </p>
 </body>
</html>

Example 9.1
Sample application data, as submitted to the Web server. This document structure contains both human-readable and
machine-processable information.

Figure 9.5 displays the Confer Student Award service
contract. The preceding media type is deliberately
designed to include human-readable and machine-
readable data in a form suitable for long-term archival.
The document is submitted to a service capability cor-
responding directly to the Start capability defi ned in the
Confer Student Award service candidate.

As also shown in Figure 9.5, during the design process
for this service contract it was decided to add new ser-
vice capabilities to provide the following functions:

• DELETE /task/{id} – This capability was added to
allow an executing instance of the Confer Student
Award business process to be terminated.

• GET /task/{id} – This capability allows the state of an executing instance of the
Confer Student Award business process to be queried.

Note that the sensitive nature of this kind of application means that the GET /task/
{id} capability can be accessed only by authorized staff and by the student. The
DELETE /task/{id} capability is only accessible by the student to cancel the applica-
tion process.

Confer
Student Award

POST /task/

DELETE /task/{id}

GET /task/{id}

Figure 9.5
The Confer Student Award service
contract.

http://event.mua.edu/achievement"

ptg20131482

228 Chapter 9: Service API and Contract Design with REST Services and Microservices

Event Service Contract (Entity)

The Event entity service is equipped with a GET /event/{id} service capability, which
is used to query event information and corresponds to the Get Details capability
candidate from the Event service candidate (Figure 9.6).

During the service-oriented design process, architects
decided to add further GET /event/{id}/calendar and
GET /event/{id}/description capabilities that allow for the
retrieval of more specifi c event information. These capa-
bilities were not added specifi cally in support of the Confer
Student Award business process, but more so to provide a
broader range of anticipated reusable functionality.

Award Service Contract (Entity)

In addition to implementing the three service capabilities
from the original Award service candidate (Figure 9.6),
some of MUA’s SOA architects decide to make some fur-
ther changes.

Back in Chapter 7, MUA analysts determined that the following action was to be
encompassed by the Confer Student Award task service logic:

• Verify Student Transcript Qualifi es for Award Based on Award Conferral Rules

However, with the rules being specifi c to each award type they determine that it
should be the Award entity service that applies the bulk of these rules. Nevertheless,
some generic checks do need to be applied so the logic is divided between the Confer
Student Award task service and the Award entity service.

To avoid requiring the task service to pass full transcript details into the Award
entity service for verifi cation, it is decided to use a code-on-demand approach. The
Award entity service provides the logic, but the logic is executed by the task ser-
vice. The decision to defi ne the logic centrally within the Award entity service is
justifi ed based on the need to produce human-readable output (for students), along-
side machine-readable output (for the Confer Student Award service). As a result,
the Entity service provides a new GET /award/conferral-rules service capability
(Figure 9.7) that supports the output of two formats for the rules logic: the fi rst in

Event

GET /event/{id}

GET /event/{id}/
calendar

GET /event/{id}/
description

Figure 9.6
The Event service contract.

ptg20131482

9.1 Service Model Design Considerations 229

human-readable form and the second in a form that can
be readily embedded into the task service’s logic.

MUA architects choose JavaScript for this purpose
because they fi nd that JavaScript runtimes are read-
ily available for many of the technology platforms that
have been used to develop services within the inven-
tory. Choosing JavaScript over other technologies also
accounts for its being the language of choice for the user
interface tier of the service inventory.

The same service capability is able to return the confer-
ral rules in JavaScript or as human-readable HTML. The
decision as to which transformation to carry out depends
on which Accept header was provided by the service
consumer. For example, the Confer Student Award task
service requests the application/ javascript media type, while service consumers
requiring human- readable output will request the text/html media type.

Student Transcript Service Contract (Entity)

The Student service was originally intended as a cen-
tralized entity service that would encompass all stu-
dent-related functionality and data access. However,
iterations of the REST service modeling process that
occurred subsequent to the examples covered in Chapter
7 resulted in a service inventory blueprint that revealed
the Student service candidate as being far more coarsely
grained than any other. This was primarily due to the
complexity of the Student entity and its relationships to
other related entities.

Upon review of the Student service candidate, it was
determined to create a set of student-related entity ser-
vices. One of these more specialized variations became
the Student Transcript service candidate (Figure 9.8).

Award

GET /award/{id}

GET /award/{id}/
conferral-rules

POST
/award-conferral/

PUT
/award-conferral/{id}

Figure 9.7
The Award service contract.

Student
Transcript

GET /award/{id}

PUT /award/{id}

Figure 9.8
The Student Transcript service
candidate that was defined
subsequent to the Student service
candidate. This service effectively
replaces the Student service in
the Confer Student Award service
 composition.

ptg20131482

230 Chapter 9: Service API and Contract Design with REST Services and Microservices

Because the Confer Student Award business process only
requires access to student transcript information, it only
needs to compose the Student Transcript service, not the
actual Student service. As shown in Figure 9.9, the Stu-
dent Transcript service contains service capabilities that
correspond to the service capability candidates provided
by the Student Transcript service candidate.

Notifi cation and Document Service Contracts (Utility)

The Notifi cation service and Document service process
similar human-readable data. Notifi cations sent via
email or hard copy can both be encoded as a human-
readable document format, such as HTML or PDF.

The Notifi cation service is retained for email notifi cations while the Document
service has been evolved into a printer-centric and postal delivery–centric utility ser-
vice. The Confer Student Award task service can send a document to the student in
the preferred format by looking up the preferred delivery method in the original
application form.

As shown in Figure 9.10, the Notifi cation and Document services can each be invoked
with the POST method.

Student
Transcript

Get (GET +
/Student
Transcript/)

Update (POST +
/Student
Transcript/)

Figure 9.9
The Student Transcript service
contract .

Figure 9.10
The Notification and Document
service contracts .

The sample student (John Smith) from the application form used as input for the
Confer Student Award task service has nominated his contact preference with a
hyperlink to mailto:s555333@student.mua.edu. The service inventory standard
for handling such an address is to transform the URL into http://notification.
mua.edu/sender?to=s555333@student.mua.edu and use a POST method for its
delivery. John Smith’s notifi cation will be delivered via email to this address.

http://notification.mua.edu/sender?to=s555333@student.mua.edu
http://notification.mua.edu/sender?to=s555333@student.mua.edu

ptg20131482

9.2 REST Service Design Guidelines 231

9.2 REST Service Design Guidelines

The following is a series of common guidelines and considerations for designing REST
service contracts.

Uniform Contract Design Considerations

When creating a uniform contract for a service inventory, we have a responsibility to
equip and limit its features so that it is streamlined to effectively accommodate require-
ments and restrictions unique to the service inventory. The default characteristics of
Web-centric technology architecture can provide an effective basis for a service inven-
tory’s uniform contract, although additional forms of standardization and customiza-
tion are likely required for non-trivial service inventory architectures.

The following sections explore how common elements of a uniform contract (methods,
media types, and exceptions in particular) can be customized to meet the needs of indi-
vidual service inventories.

Designing and Standardizing Methods

When we discuss methods in relation to the uniform contract, it is considered shorthand
for a request-response communications mechanism that also includes methods, headers,
response codes, and exceptions. Methods are centralized as part of the uniform contract
to ensure that there are always a small number of ways of moving information around
within a particular service inventory, and that existing service consumers will work
correctly with new or modifi ed services as they are added to the inventory. Although it
is important to minimize the number of methods in the uniform contract, methods can
and should be added when service inventory interaction requirements demand it. This
is a natural part of evolving a service inventory in response to business change.

NOTE

Less well-known HTTP methods have come and gone in the past. For example, at vari-
ous times the HTTP specification has included a PATCH method consistent with a partial
update or partial store communications mechanism. PATCH is currently specified sepa-
rately from HTTP methods in the IETF’s RFC 5789 document. Other IETF specifications,
such as WebDAV’s RFC 4918 and the Session Initiation Protocol’s RFC 3261, introduced
new methods as well as new headers and response codes (or special interpretations
thereof).

ptg20131482

232 Chapter 9: Service API and Contract Design with REST Services and Microservices

HTTP provides a solid foundation by supplying the basic set of methods (such as GET,
PUT, DELETE, POST) proven by use on the Web and widely supported by off-the-shelf
software components and hardware devices. But the need to express other types of
interactions for a service inventory may arise. For example, you may decide to add a
special method that can be used to reliably trigger a resource to execute a task at most
once, rather than using the less reliable HTTP POST method.

HTTP is designed to be extended in these ways. The HTTP specifi cation explicitly sup-
ports the notion of extension methods, customized headers, and extensibility in other
areas. Leveraging this feature of HTTP can be effective, as long as new extensions are
added carefully and at a rate appropriate for the number of services that implement
HTTP within an inventory. This way, the total number of options for moving data
around (that services and consumers are required to understand) remains manageable.

NOTE

At the end of this chapter we explore a set of sample extended methods (referred to as
complex methods). Each utilizes multiple basic HTTP methods or a single basic HTTP
method multiple times to perform pre-defined, standardized message interactions.

Common circumstances that can warrant the creation of new methods include:

• Hyperlinks may be used to facilitate a sequence of request-response pairs. When
they start to read like verbs instead of nouns and tend to suggest that only a single
method will be valid on the target of a hyperlink, we can consider introducing
a new method instead. For example, the “customer” hyperlink for an invoice
resource suggests that GET and PUT requests might be equally valid for the
customer resource. But a “begin transaction” hyperlink or a “subscribe” hyperlink
suggests only POST is valid and may indicate the need for a new method instead.

• Data with must-understand semantics may be needed within message headers. In
this case, a service that ignores this metadata can cause incorrect runtime behav-
ior. HTTP does not include a facility for identifying individual headers or informa-
tion within headers as “must-understand.” A new method can be used to enforce
this requirement because the custom method will be automatically rejected by
a service that doesn’t understand the request (whereas falling back on a default
HTTP method will allow the service to ignore the new header information).

ptg20131482

9.2 REST Service Design Guidelines 233

It is important to acknowledge that introducing custom methods can have negative
impacts when exploring vendor diversity within an implementation environment. It
may prevent off-the-shelf components (such as caches, load balancers, fi rewalls, and
various HTTP-based software frameworks) from being fully functional within the
service inventory. Stepping away from HTTP and its default methods should only be
attempted in mature service inventories when the effects on the underlying technology
architecture and infrastructure are fully understood.

Some alternatives to creating new methods can also be explored. For example, service
interactions that require a number of steps can use hyperlinks to guide consumers
through the requests they need to make. The HTTP Link header (RFC 5988) can be con-
sidered to keep these hyperlinks separate from the actual document content.

SOA PATTERNS

Working with and customizing the uniform interface pertains to the natural
application of the Reusable Contract [355] pattern.

Designing and Standardizing HTTP Headers

Exchanging messages with metadata is common in service-oriented solution design.
Because of the emphasis on composing a set of services together to collectively auto-
mate a given task at runtime, there is often a need for a message to provide a range of
header information that pertains to how the message should be processed by interme-
diary service agents and services along its message path.

Built-in HTTP headers can be used in a number of ways:

• To add parameters related to a request method as an alternative to using query
strings to represent the parameters within the URL. For example, the Accept
header can supplement the GET method by providing content negotiation data.

• To add parameters related to a response code. For example, the Location header
can be used with the 201 Created response code to indicate the identifi er of a
newly created resource.

• To communicate general information about the service or consumer. For example,
the Upgrade header can indicate that a service consumer supports and prefers a
different protocol, while the Referrer header can indicate which resource the
consumer came from while following a series of hyperlinks.

ptg20131482

234 Chapter 9: Service API and Contract Design with REST Services and Microservices

This type of general metadata may be used in conjunction with any HTTP method.

HTTP headers can also be utilized to add rich metadata. For this purpose custom head-
ers are generally required, which reintroduces the need to determine whether or not
the message content must be understood by recipients or whether it can optionally be
ignored. This association of must-understand semantics with new methods and must-
ignore semantics with new message headers is not an inherent feature of REST, but it is
a feature of HTTP.

When introducing custom HTTP headers that can be ignored by services, regular HTTP
methods can safely be used. This also makes the use of custom headers backwards-
compatible when creating new versions of existing message types.

As previously stated in the Designing and Standardizing Methods section, new HTTP
methods can be introduced to enforce must-understand content by requiring services
to either be designed to support the custom method or to reject the method invocation
attempt altogether. In support of this behavior, a new Must-Understand header can be
created in the same format as the existing Connection header, which would list all the
headers that need to be understood by message recipients.

If this type of modifi cation is made to HTTP, it would be the responsibility of the SOA
Governance Program Offi ce responsible for the service inventory to ensure that these
semantics are implemented consistently as part of inventory-wide design standards. If
custom, must-understand HTTP headers are successfully established within a service
inventory, we can explore a range of applications of messaging metadata. For example,
we can determine whether it is possible or feasible to emulate messaging metadata such
as what is commonly used in SOAP messaging frameworks based on WS-* standards.

While custom headers that enforce reliability or routing content (as per the
WS-ReliableMessaging and WS-Addressing standards) can be added to recreate
acknowledgement and intelligent load balancing interactions, other forms of WS-*
functions are subject to built-in limitations of the HTTP protocol. The most prominent
example is the use of WS-Security to enable message-level security features, such as
encryption and digital signatures. Message-level security protects messages by actu-
ally transforming the content so that intermediaries along a message path are unable to
read or alter message content. Only those message recipients with prior authorization
are able to access the content.

This type of message transformation is not supported in HTTP/1.1. HTTP does have
some basic features for transforming the body of the message alone through its

ptg20131482

9.2 REST Service Design Guidelines 235

Content-Encoding header, but this is generally limited to compression of the message
body and does not include the transformation of headers. If this feature was used for
encryption purposes the meaning of the message could still be modifi ed or inspected
in transit, even though the body part of the message could be protected. Message sig-
natures are also not possible in HTTP/1.1 as there is no canonical form for an HTTP
message to sign, and no industry standard that determines what modifi cations interme-
diaries would be allowed to make to such a message.

Designing and Standardizing HTTP Response Codes

HTTP was originally designed as a synchronous, client-server protocol for the exchange
of HTML pages over the World Wide Web. These characteristics are compatible with
REST constraints and make it also suitable as a protocol used to invoke REST service
capabilities.

Developing a service using HTTP is very similar to publishing dynamic content on a
Web server. Each HTTP request invokes a REST service capability and that invocation
concludes with the sending of a response message back to the service consumer.

A given response message can contain any one of a wide variety of HTTP codes, each
of which has a designated number. Certain ranges of code numbers are associated with
particular types of conditions, as follows:

• 100-199 are informational codes used as low-level signaling mechanisms, such as
a confi rmation of a request to change protocols.

• 200-299 are general success codes used to describe various kinds of success
conditions.

• 300-399 are redirection codes used to request that the consumer retry a request to
a different resource identifi er, or via a different intermediary.

• 400-499 represent consumer-side error codes that indicate that the consumer has
produced a request that is invalid for some reason.

• 500-599 represent service-side error codes that indicate that the consumer’s
request may have been valid but that the service has been unable to process it for
internal reasons.

The consumer-side and service-side exception categories are helpful for “assigning
blame” but do little to actually enable service consumers to recover from failure. This is
because, while the codes and reasons provided by HTTP are standardized, how service

ptg20131482

236 Chapter 9: Service API and Contract Design with REST Services and Microservices

consumers are required to behave upon receiving response codes is not. When stan-
dardizing service design for a service inventory, it is necessary to establish a set of con-
ventions that assign response codes concrete meaning and treatment.

Table 9.1 provides common descriptions of how service consumers can be designed to
respond to common response codes.

Response
Code

Reason Phrase Treatment

100 Continue Indeterminate

101 Switching Protocols Indeterminate

1xx Any other 1xx code Failure

200 OK Success

201 Created Success

202 Accepted Success

203 Non-Authoritative Information Success

204 No Content Success

205 Reset Content Success

206 Partial Content Success

2xx Any other 2xx code Success

300 Multiple Choices Failure

301 Moved Permanently Indeterminate

(Common Behavior: Modify resource
 identifi er and retry.)

ptg20131482

9.2 REST Service Design Guidelines 237

Response
Code

Reason Phrase Treatment

302 Found Indeterminate

(Common Behavior: Change request to a
GET and retry using nominated resource
identifi er.)

303 See Other

304 Not Modifi ed Success

(Common Behavior: Return cached
response to consumer.)

305 Use Proxy Indeterminate

(Common Behavior: Connect to identi-
fi ed proxy and resend original message.)

307 Temporary Redirect Indeterminate

(Common Behavior: Retry once to
 nominated resource identifi er.)

3xx Any other 3xx code Failure

400 Bad Request Failure

401 Unauthorized Indeterminate

(Common Behavior: Retry with correct
credentials.)

402 Payment Required Failure

403 Forbidden Failure

404 Not Found Success if request was DELETE, else
Failure

405 Method Not Allowed Failure

406 Not Acceptable Failure

ptg20131482

238 Chapter 9: Service API and Contract Design with REST Services and Microservices

Response
Code

Reason Phrase Treatment

407 Proxy Authentication
Required

Indeterminate

(Common Behavior: Retry with correct
credentials.)

408 Request Timeout Failure

409 Confl ict Failure

410 Gone Success if request was DELETE,
else Failure

411 Length Required Failure

412 Precondition Failed Failure

413 Request Entity Too Large Failure

414 Request-URI Too Long Failure

415 Unsupported Media Type Failure

416 Requested Range Not
Satisfi able

Failure

417 Expectation Failed Failure

4xx Any other 4xx code Failure

500 Internal Server Error Failure

501 Not Implemented Failure

502 Bad Gateway Failure

503 Service Unavailable Repeat if Retry-After header is specifi ed.
Otherwise, Failure.

504 Gateway Timeout Repeat if request is idempotent.
 Otherwise, Failure.

ptg20131482

9.2 REST Service Design Guidelines 239

Response
Code

Reason Phrase Treatment

505 HTTP Version Not Supported Failure

5xx Any other 5xx code Failure

Table 9.1
HTTP response codes and typical corresponding consumer behavior.

As is evident when reviewing Table 9.1, HTTP response codes go well beyond the simple
distinction between success and failure. They provide an indication of how consumers
can respond to and recover from exceptions.

Let’s take a closer look at some of the values from the Treatment column in Table 9.1:

• Repeat means that the consumer is encouraged to repeat the request, taking into
account any delay specifi ed in responses such as 503 Service Unavailable. This
may mean sleeping before trying again. If the consumer chooses not to repeat the
request, it must treat the method as failed.

• Success means the consumer should treat the message transmission as a success-
ful action and must therefore not repeat it. (Note that specifi c success codes may
require more subtle interpretation.)

• Failed means that the consumer must not repeat the request unchanged, although
it may issue a new request that takes the response into account. The consumer
should treat this as a failed method if a new request cannot be generated. (Note
that specifi c failure codes may require more subtle interpretation.)

• Indeterminate means that the consumer needs to modify its request in the manner
indicated. The request must not be repeated unchanged and a new request that
takes the response into account should be generated. The fi nal outcome of the
interaction will depend on the new request. If the consumer is unable to generate
a new request then this code must be treated as failed.

Because HTTP is a protocol and not a set of message processing logic, it is up to the
service to decide what status code (success, failure, or otherwise) to return. As previ-
ously mentioned, because consumer behavior is not always suffi ciently standardized by
REST for machine-to-machine interactions, it needs to be explicitly and meaningfully
standardized as part of an SOA project.

ptg20131482

240 Chapter 9: Service API and Contract Design with REST Services and Microservices

For example, indeterminate codes tend to indicate that service consumers must handle
a situation using their own custom logic. We can standardize these types of codes in
two ways:

• Design standards can determine which indeterminate codes can and cannot be
issued by service logic.

• Design standards can determine how service consumer logic must interpret those
indeterminate codes that are allowed.

Customizing Response Codes

The HTTP specifi cation allows for extensions to response codes. This extension feature
is primarily there to allow future versions of HTTP to introduce new codes. It is also
used by some other specifi cations (such as WebDAV) to defi ne custom codes. This is
typically done with numbers that are not likely to collide with new HTTP codes, which
can be achieved by putting them near the end of the particular range (for example, 299
is unlikely to ever be used by the main HTTP standard).

Specifi c service inventories can follow this approach by introducing custom response
codes as part of the service inventory design standards. In support of the Uniform Con-
tract {311} constraint, custom response codes should only be defi ned at the uniform
contract level, not at the REST service contract level.

When creating custom response codes, it is important that they be numbered based on
the range they fall in. For example, 2xx codes should be communicating success, while
4xx codes should only represent failure conditions.

Additionally, it is good practice to standardize the insertion of human-readable content
into the HTTP response message via the Reason Phrase. For example, the code 400 has a
default reason phrase of “Bad Request.” This is enough for a service consumer to handle
the response as a general failure, but it doesn’t tell a human anything useful about the
actual problem. Setting the reason phrase to “The service consumer request is missing
the Customer address fi eld” or perhaps even “Request body failed validation against
schema http://example.com/customer” is more helpful, especially when reviewing
logs of exception conditions that may not have the full document attached.

Consumers can associate generic logic to handle response codes in each of these ranges,
but may also need to associate specifi c logic to specifi c codes. Some codes can be limited

http://example.com/customer

ptg20131482

9.2 REST Service Design Guidelines 241

so that they are only generated if the consumer requests a special feature of HTTP,
which means that some codes can be left unimplemented by consumers that do not
request these features.

Uniform contract exceptions are generally standardized within the context of a particu-
lar new type of interaction that is required between services and consumers. They will
typically be introduced along with one or more new methods and/or headers. This con-
text will guide the kind of exceptions that are created. For example, it may be necessary
to introduce a new response code to indicate that a request cannot be fulfi lled due to a
lock on a resource. (WebDAV provides the 423 Locked code for this purpose.)

When introducing and standardizing custom response codes for a service inventory
uniform contract, we need to ensure that:

• Each custom code is appropriate and absolutely necessary

• The custom code is generic and highly reusable by services

• The extent to which service consumer behavior is regulated and is not too restric-
tive so that the code can apply to a large range of potential situations

• Code values are set to avoid potential collision with response codes from relevant
external protocol specifi cations

• Code values are set to avoid collision with custom codes from other service inven-
tories (in support of potential cross-service inventory message exchanges that may
be required)

Response code numeric ranges can be considered a form of exception inheritance. Any
code within a particular range is expected to be handled by a default set of logic, just as
if the range were the parent type for each exception within that range.

In this section we have briefl y explored response codes within the context of HTTP.
However, it is worth noting that REST can be applied with other protocols (and other
response codes). It is ultimately the base protocol of a service inventory architecture
that will determine how normal and exceptional conditions are reported.

For example, you could consider having a REST-based service inventory standardized
on the use of SOAP messages that result in SOAP-based exceptions instead of HTTP
exception codes. This allows the response code ranges to be substituted for inheritance
of exceptions.

ptg20131482

242 Chapter 9: Service API and Contract Design with REST Services and Microservices

Designing Media Types

During the lifetime of a service inventory architecture we can expect more changes
will be required to the set of a uniform contract’s media types than to its methods. For
example, a new media type will be required whenever a service or consumer needs to
communicate machine-readable information that does not match the format or schema
requirements of any existing media type.

Some common media types from the Web to consider for service inventories and ser-
vice contracts include:

• text/plain; charset=utf-8 for simple representations, such as integer and
string data. Primitive data can be encoded as strings, as per built-in XML Schema
data types

• application/xhtml+xml for more complex lists, tables, human-readable text,
hypermedia links with explicit relationship types, and additional data based on
microformats.org and other specifi cations

• application/json for a lightweight alternative to XML that has broad support by
programming languages

• text/uri-list for plain lists of URIs

• application/atom+xml for feeds of human-readable event information or other
data collections that are time-related (or time ordered)

Before inventing new media types for use within a service inventory, it is advisable to
fi rst carry out a search of established industry media types that may be suitable.

Whether choosing existing media types or creating custom ones, it is helpful to con-
sider the following best practices:

• Each specifi c media type should ideally be specifi c to a schema. For exam-
ple, application/xml or application/json are not schema-specifi c, while
 application/atom+xml used as a syndication format is specifi c enough to be
useful for content negotiation and to identify how to process documents.

• Media types should be abstract in that they specify only as much information as
their recipients need to extract via their schemas. Keeping media types abstract
allows them to be reused within more service contracts.

ptg20131482

9.2 REST Service Design Guidelines 243

• New media types should reuse mature vocabularies and concepts from industry
specifi cations whenever appropriate. This reduces the risk that key concepts have
been missed or poorly constructed, and further improves compatibility with other
applications of the same vocabularies.

• A media type should include a hyperlink whenever it needs to refer to a related
resource whose representation is located outside the immediate document. Link
relation types may be defi ned by the media type’s schema or, in some cases, sepa-
rately, as part of a link relation profi le.

• Custom media types should be defi ned with must-ignore semantics or other
extension points that allow new data to be added to future versions of the media
type without old services and consumers rejecting the new version.

• Media types should be defi ned with standard processing instructions that
describe how a new processor should handle old documents that may be miss-
ing some information. Usually these processing instructions ensure that earlier
versions of a document have compatible semantics. This way, new services and
consumers do not have to reject the old versions.

All media types that are either invented for a particular service inventory or reused
from another source should be documented in the uniform contract profi le, alongside
the defi nition of uniform methods.

HTTP uses Internet media type identifi ers that conform to a specifi c syntax. Custom
media types are usually identifi ed with the notation:

application/vnd.organization.type+supertype

where application is a common prefi x that indicates that the type is used for machine
consumption and standards. The organization fi eld identifi es the vendor namespace,
which can optionally be registered with IANA.

The type part is a unique name for the media type within the organization, while the
supertype indicates that this type is a refi nement of another media type. For example,
application/vnd.com.examplebooks.purchase-order+xml may indicate that:

• The type is meant for machine consumption.

• The type is vendor-specifi c, and the organization that has defi ned the type is
“examplebooks.com.”

ptg20131482

244 Chapter 9: Service API and Contract Design with REST Services and Microservices

• The type is for purchase orders (and may be associated with a canonical Purchase
Order XML schema).

• The type is derived from XML, meaning that recipients can unambiguously
handle the content with XML parsers.

Types meant for more general interorganizational use can be defi ned with the media
type namespace of the organization ultimately responsible for defi ning the type.
Alternatively, they can be defi ned without the vendor identifi cation information in
place by registering each type directly, following the process defi ned in the RFC 4288
specifi cation.

SOA PATTERNS

The Content Negotiation [334] pattern formalizes the native ability of REST ser-
vices to process media type information at runtime.

Designing Schemas for Media Types

Within a service inventory, most custom media types created to represent business
data and documents will be defi ned using XML Schema or JSON Schema. This can
essentially establish a set of standardized data models that are reused by REST services
within the inventory to whatever extent feasible.

For this to be successful, especially with larger collections of services, schemas need
to be designed to be fl exible. This means that it is generally preferable for schemas to
enforce a coarse level of validation constraint granularity that allows each schema to be
applicable for use with a broader range of data interaction requirements.

REST requires that media types and their schemas be defi ned only at the uniform
contract level. If a service capability requires a unique data structure for a response
message, it must still use one of the canonical media types provided by the uniform
contract. Designing schemas to be fl exible and weakly typed can accommodate a vari-
ety of service-specifi c message exchange requirements, but perhaps not for all cases.

Example 9.2 provides an example of a fl exible schema design.

ptg20131482

9.2 REST Service Design Guidelines 245

Media type = application/vnd.com.actioncon.po+xml
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://example.org/schema/po"
 xmlns="http://example.org/schema/po">
 <xsd:element name="LineItemList" type="LineItemListType"/>
 <xsd:complexType name="LineItemListType">
 <xsd:element name="LineItem" type="LineItemType"

minOccurs="0"/>
 </xsd:complexType>
 <xsd:complexType name="LineItemType">
 <xsd:sequence>

<xsd:element name="productID" type="xsd:anyURI"/>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="available" type="xsd:boolean"

minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example 9.2
One of the most straightforward ways of making a media type more reusable is to design the schema to support a list of zero
or more items. This enables the media type to permit one instance of the underlying type, but also allows queries that return
zero or more instances. Making individual elements within the document optional can also increase reuse potential.

SOA PATTERNS

The Validation Abstraction [365] pattern provides a technique for intentionally
weakly typing XML Schema defi nitions (which is also explored in Chapters 6, 12,
and 13 in the book titled Web Service Contract Design and Versioning for SOA). The
Content Negotiation [334] pattern can be applied to address the option of having
a single REST service support two alternative schemas.

It is technically possible for individual REST service contracts to introduce con-
tract-specifi c XML schemas, but in doing so we need to accept that the Uniform
Contract {311} constraint will be violated.

This may be warranted when a service capability needs to generate a response
message containing unique data (or a unique combination of data) for which:

• No suitable canonical schemas exist

• No new canonical schema should be created due to the fact that it would not
be reusable by other services

ptg20131482

246 Chapter 9: Service API and Contract Design with REST Services and Microservices

Complex Method Design

The uniform contract establishes a set of base methods used to perform basic data com-
munication functions. As we’ve explained, this high-level of functional abstraction is
what makes the uniform contract reusable to the extent that we can position it as the
sole, overarching data exchange mechanism for an entire inventory of services. Besides
its inherent simplicity, this part of a service inventory architecture automatically results
in the baseline standardization of service contract elements and message exchange.

The standardization of HTTP on the World Wide Web results in a protocol specifi cation
that describes the things that services and consumers “may,” “should,” or “must” do
to be compliant with the protocol. The resulting level of standardization is intention-
ally only as high as it needs to be to ensure the basic functioning of the Web. It leaves a
number of decisions as to how to respond to different conditions up to the logic within
individual services and consumers. This “primitive” level of standardization is impor-
tant to the Web, where we can have numerous foreign service consumers interacting
with third-party services at any given time.

A service inventory, however, often represents an environment that is private and
controlled within an IT enterprise. This gives us the opportunity to customize this
standardization beyond the use of common and primitive methods. This form of cus-
tomization can be justifi ed when we have requirements for increasing the levels of pre-
dictability and quality-of-service beyond what the World Wide Web can provide.

For example, let’s say that we would like to introduce a design standard whereby all
accounting-related documents (invoices, purchase orders, credit notes, etc.) must be
retrieved with logic that, upon encountering a retrieval failure, automatically retries the
retrieval a number of times. The logic would further require that subsequent retrieval
attempts do not alter the state of the resource representing the business documents
(regardless of whether a given attempt is successful).

A consequence of non-compliance to Uniform Contract {311} is potentially
increased levels of negative coupling between service consumers and the ser-
vice offering service capabilities based on service-specifi c media types. Service-
specifi c media types should be clearly identifi ed and effort should be made to
minimize the quantity of logic that is directly exposed to and made dependent
upon these types.

ptg20131482

9.2 REST Service Design Guidelines 247

With this type of design standard, we are essentially introducing a set of rules and
requirements as to how the retrieval of a specifi c type of document needs to be carried
out. These are rules and requirements that cannot be expressed or enforced via the
base, primitive methods provided by HTTP. Instead, we can apply them in addition to
the level of standardization enforced by HTTP by assembling them (together with other
possible types of runtime functions) into aggregate interactions. This is the basis of the
complex method.

A complex method encapsulates a pre-defi ned set of interactions between a service and
a service consumer. These interactions can include the invocation of standard HTTP
methods. To better distinguish these base methods from the complex methods that
encapsulate them, we’ll refer to base HTTP methods as primitive methods (a term only
used when discussing complex method design).

Complex methods are qualifi ed as “complex” because they:

• Can involve the composition of multiple primitive methods

• Can involve the composition of a primitive method multiple times

• Can introduce additional functionality beyond method invocation

• Can require optional headers or properties to be supported by or included in
messages

As previously stated, complex methods are generally customized for and standardized
within a given service inventory. For a complex method to be standardized, it needs to
be documented as part of the service inventory architecture specifi cation. We can defi ne
a number of common complex methods as part of a uniform contract that then become
available for implementation by all services within the service inventory.

Complex methods have distinct names. The complex method examples that we’re cov-
ering are called:

• Fetch – A series of GET requests that can recover from various exceptions

• Store – A series of PUT or DELETE requests that can recover from various
exceptions

• Delta – A series of GET requests that keep a consumer in sync with changing
resource state

• Async – An initial modifi ed request and subsequent interactions that support
asynchronous request message processing

ptg20131482

248 Chapter 9: Service API and Contract Design with REST Services and Microservices

Services that support a complex method communicate this by showing the method
name as part of a separate service capability (Figure 9.11), alongside the primitive meth-
ods that the complex method is built upon. When project teams create consumer pro-
grams for certain services, they can determine the required consumer-side logic for a
complex method by identifying what complex methods the service supports, as indi-
cated by its published service contract.

Invoice

GET /invoice/
{invoice-id}

PUT /invoice/
{invoice-id}/customer

Fetch /invoice/
{invoice-id}

Store /invoice/
{invoice-id}/customer

Figure 9.11
An Invoice service contract displaying two
service capabilities based on primitive methods
and two service capabilities based on complex
methods. We can initially assume that the two
complex methods incorporate the use of the
two primitive methods, and proceed to confirm
this by studying the design specification that
documents the complex methods.

NOTE

When applying the Service Abstraction (294) principle to REST service composition design,
we may exclude entirely describing some of the primitive methods from the service contract.
This can be the result of design standards that only allow the use of a complex method in
certain situations. Going back to the previous example about the use of a complex method
for retrieving accounting-related documents, we may have a design standard that prohib-
its these documents from being retrieved via the regular GET method (because the GET
method does not enforce the additional reliability requirements).

It is important to note that the use of complex methods is by no means required. Out-
side of controlled environments in which complex methods can be safely defi ned, stan-
dardized, and applied in support of the Increased Intrinsic Interoperability goal, their
use is uncommon and generally not recommended. When building a service inventory
architecture, we can opt to standardize on certain interactions through the use of com-
plex methods or we can choose to limit REST service interaction to the use of primitive
methods only. This decision will be based heavily on the distinct nature of the business
requirements addressed and automated by the services in the service inventory.

Despite their name, complex methods are intended to add simplicity to service inven-
tory architecture. For example, let’s imagine we decide not to use pre-defi ned complex

ptg20131482

9.2 REST Service Design Guidelines 249

methods and then realize that there are common rules or policies that we applied to
numerous services and their consumers. In this case, we will have built the common
interaction logic redundantly across each individual consumer-service pair. Because
the logic was not standardized, its redundant implementations will likely exist differ-
ently. When we need to change the common rules or policies, we will need to revisit
each redundant implementation accordingly. This maintenance burden and the fact
that the implementations will continue to remain out of sync make this a convoluted
architecture that is unnecessarily complex. This is exactly the problem that the use of
complex methods is intended to avoid.

The upcoming sections introduce a set of sample complex methods organized into two
sections:

• Stateless Complex Methods

• Stateful Complex Methods

Note that these methods are by no means industry standard. Their names and the type
of message interactions and primitive method invocations they encompass have been
customized to address common types of functionality.

NOTE

The Case Study Example at the end of this chapter further explores this subject matter. In
this example, in response to specific business requirements, two new complex methods
(one stateless, the other stateful) are defined.

Stateless Complex Methods

This fi rst collection of complex methods encapsulates message interactions that are
compliant with the Stateless {308} constraint.

Fetch Method

Instead of relying only on a single invocation of the HTTP GET method (and its associ-
ated headers and behavior) to retrieve content, we can build a more sophisticated data
retrieval method with features such as

• Automatic retry on timeout or connection failure

• Required support for runtime content negotiation to ensure the service consumer
receives data in a form it understands

ptg20131482

250 Chapter 9: Service API and Contract Design with REST Services and Microservices

• Required redirection support to ensure that changes to the service contract can be
gracefully accommodated by service consumers

• Required cache control directive support by services to ensure minimum latency,
minimum bandwidth usage, and minimum processing for redundant requests

We’ll refer to this type of enhanced read-only complex method as a Fetch. Figure 9.12
shows an example of a pre-defi ned message interaction of a Fetch method designed to
perform content negotiation and automatic retries.

: Consumer : Service

2: GET(resource, content negotiation metadata)

3: Redirection(resource)

1: Start Request()

4: GET(resource, content negotiation metadata)

5: Service Unavailable or Gateway Timeout

7: GET(resource content negotiation metadata)

8: OK(cache metadata, representation)

6: Sleep()

Figure 9.12
An example of a Fetch complex method comprised of consecutive GET method calls.

Store Method

When using the standard PUT or DELETE methods to add new resources, set the state
of existing resources, or remove old resources, service consumers can suffer request
timeouts or exception responses. Although the HTTP specifi cation explains what each
exception means, it does not impose restrictions as to how they should be handled. For
this purpose, we can create a custom Store method to standardize necessary behavior.

The Store method can have a number of the same features as a Fetch, such as requiring
automatic retry of requests, content negotiation support, and support for redirection

ptg20131482

9.2 REST Service Design Guidelines 251

exceptions. Using PUT and DELETE, it can also defeat low bandwidth connections by
always sending the most recent state requested by the consumer, rather than needing to
complete earlier requests fi rst.

The same way that individual primitive HTTP methods can be idempotent, the Store
method can be designed to behave idempotently. By building upon primitive idem-
potent methods, any repeated, successful request messages will have no further effect
after the fi rst request message is successfully executed.

For example, when setting an invoice state from “Unpaid” to “Paid”:

• A “toggle” request would not be idempotent because repeating the request toggles
the state back to “Unpaid.”

• The “PUT” request is idempotent when setting the invoice to “Paid” because it has
the same effect, no matter how many times the request is repeated.

It is important to understand that the Store and its underlying PUT and DELETE
requests are requests to service logic, not an action carried out on the service’s under-
lying database. As shown in Figure 9.13, these types of requests are stated in an idem-
potent manner in order to effi ciently allow for the retrying of requests without the need
for sequence numbers to add reliable messaging support.

: Consumer : Service

2: PUT(resource, representation)

4: PUT(resource, representation)

7: PUT(resource, representation)

3: Redirection(resource)

1: Start Request()

5: Service Unavailable or Gateway Timeout

8: OK(cache metadata, representation)

6: Sleep()

Figure 9.13
An example of the interaction carried out by a Store complex method.

ptg20131482

252 Chapter 9: Service API and Contract Design with REST Services and Microservices

NOTE

Service capabilities that incorporate this type of method are an example of the application
of the Idempotent Capability [345] pattern.

Delta Method

It is often necessary for a service consumer to remain synchronized with the state of a
changing resource. The Delta method is a synchronization mechanism that facilitates
stateless synchronization of the state of a changing resource between the service that
owns this state and consumers that need to stay in alignment with the state.

The Delta method follows processing logic based on the following three basic functions:

1. The service keeps a history of changes to a resource.

2. The consumer gets a URL referring to the location in the history that represents
the last time the consumer queried the state of the resource.

3. The next time the consumer queries the resource state, the service (using the URL
provided by the consumer) returns a list of changes that have occurred since the
last time the consumer queried the resource state.

Figure 9.14 illustrates this using a series of GET invocations.

The service provides a “main” resource that responds to GET requests by returning the
current state of the resource. Next to the main resource it provides a collection of “delta”
resources that each return the list of changes from a nominated point in the history
buffer.

The consumer of the Delta method activates periodically or when requested by the core
consumer logic. If it has a delta resource identifi er it sends its request to that location.
If it does not have a delta resource identifi er, it retrieves the main resource to become
synchronized. In the corresponding response the consumer receives a link to the delta
for the current point in the history buffer. This link will be found in the Link header
(RFC 5988) with relation type Delta.

ptg20131482

9.2 REST Service Design Guidelines 253

: Consumer : Service

2: GET(resource, content negotiation metadata)

3: OK(cache metadata, representation, “delta” link)

4: Fetch Delta()

1: Start Request()

6: No Content

7: Resource has not changed()

5: GET(”delta” resource, content negotiation metadata)

10: OK(cache metadata, representation, “next” link)

9: GET(”delta” resource, content negotiation metadata)

8: Fetch Delta()

11: Process Delta()

14: Gone

13: GET(next ”delta” resource, content negotiation metadata)

12: Fetch Delta()

15: Delta resource is too old, retry main resource()

Figure 9.14
An example of the message interaction encompassed by the Delta complex method.

ptg20131482

254 Chapter 9: Service API and Contract Design with REST Services and Microservices

The requested delta resource can be in any one of the following states:

1. It can represent a set of one or more changes that have occurred to the main
resource since the point in history that the delta resource identifi er refers to. In
this case, all changes in the history from the nominated point are returned along
with a link to the new delta for the current point in the history buffer. This link
will be found in the Link header with relation type Next.

2. It may not have a set of changes because no changes have occurred since its nomi-
nated point in the history buffer, in which case it can return the 204 No Content
response code to indicate that the service consumer is already up-to-date and can
continue using the delta resource for its next retrieval.

3. Changes may have occurred, but the delta has already expired because the nomi-
nated point in history is now so old that the service has elected not to preserve the
changes. In this situation, the resource can return a 410 Gone code to indicate that
the consumer has lost synchronization and should re-retrieve the main resource.

Delta resources use the same caching strategy as the main resource.

The service controls how many historical deltas it is prepared to accumulate, based on
how much time it expects consumers will take (on average) to get up-to-date. In certain
cases where a full audit trail is maintained for other purposes, the number of deltas can
be indefi nite. The amount of space required to keep this record is constant and predict-
able regardless of the number of consumers, leaving each individual service consumer
to keep track of where it is in the history buffer.

Async Method

This complex method provides pre-defi ned interactions for the successful and canceled
exchange of asynchronous messages. It is useful for when a given request requires more
time to execute than what the standard HTTP request timeouts allow.

Normally if a request takes too long, the consumer message processing logic will time
out or an intermediary will return a 504 Gateway Timeout response code to the service
consumer. The Async method provides a fallback mechanism for handling requests
and returning responses that does not require the service consumer to maintain its
HTTP connection open for the total duration of the request interaction.

As shown in Figure 9.15, the service consumer issues a request, but does so specifying
a call-back resource identifi er. If the service chooses to use this identifi er, it responds

ptg20131482

9.2 REST Service Design Guidelines 255

with the 202 Accepted response code, and may optionally return a resource identifi er
in the Location header to help it track the place of the asynchronous request in its
processing queue.

When the request has been fully processed, its result is delivered by the service, which
then issues a request to the callback address of the service consumer. If the service
consumer issues a DELETE request (as shown in Figure 9.16) while the Async request is
still in the processing queue (and before a response is returned), a separate pre-defi ned
interaction is carried out to cancel the asynchronous request. In this case, no response
is returned and the service cancels the processing of the request.

: Consumer : Service

2: PUT(resource, representation, callback resource)

5: Callback(resource, request resource, status code, representation)

3: Accepted(request resource)

1: Start Request()

6: OK

4: Begin Processing()

Figure 9.15
An asynchronous request interaction encompassed by the Async complex method .

Figure 9.16
An asynchronous cancel interaction encompassed by the Async complex method .

ptg20131482

256 Chapter 9: Service API and Contract Design with REST Services and Microservices

If the consumer cannot listen for callback requests, it can use the asynchronous request
identifi er to periodically poll the service. After the request has been successfully han-
dled, it is possible to retrieve its result using the previously described Fetch method
before deleting the asynchronous request state. Services that execute either interaction
encompassed by this method must have a means of purging old asynchronous requests
if service consumers are unavailable to pick up responses or otherwise “forget” to delete
request resources.

Stateful Complex Methods

The following two complex methods use REST as the basis of service design but incor-
porate interactions that intentionally breach the Stateless {308} constraint. Although the
scenarios represented by these methods are relatively common in traditional enterprise
application designs, this kind of communication is not considered native to the World
Wide Web. The use of stateful complex methods can be warranted when we accept the
reduction in scalability that comes with this design decision.

Trans Method

The Trans method essentially provides the interactions necessary to carry out a two-
phase commit between one service consumer and one or more services. Changes made
within the transaction are guaranteed to either successfully propagate across all partici-
pating services, or all services are rolled back to their original states.

This type of complex method requires a “prepare” function for each participant before
a fi nal commit or rollback is carried out. Functionality of this sort is not natively sup-
ported by HTTP. Therefore, we need to introduce a custom PREP-PUT method (a vari-
ant of the PUT method), as shown in Figure 9.17.

In this example the PREP-PUT method is the equivalent of PUT, but it does not commit
the PUT action. A different method name is used to ensure that if the service does not
understand how to participate in the Trans complex method, it then rejects the PREP-
PUT method and allows the consumer to abort the transaction.

Carrying out the logic behind a typical Trans complex method will usually require the
involvement of a transaction controller to ensure that the commit and rollback func-
tions are truly and reliably carried out with atomicity.

ptg20131482

9.2 REST Service Design Guidelines 257

PubSub Method

A variety of publish-subscribe options are available after it is decided to intentionally
breach the Stateless {308} constraint. These types of mechanisms are designed to sup-
port real-time interactions in which a service consumer must act immediately when
some pre-determined event at a given resource occurs.

There are various ways that this complex method can be designed. Figure 9.18 illus-
trates an approach that treats publish-subscribe messaging as a “cache-invalidation”
mechanism.

This form of publish-subscribe interaction is considered “lightweight” because it does
not require services to send out the actual changes to the subscribers. Instead, it informs
them that a resource has changed by pushing out the resource identifi er, and then reuses
an existing, cacheable Fetch method as the service consumers pull the new representa-
tions of the changed resource.

The amount of state required to manage these subscriptions is bound to one fi xed-sized
record for each service consumer. If multiple invalidations queue up for a particular
subscribed event, they can be folded together into a single notifi cation. Regardless of
whether the consumer receives one or multiple invalidation messages, it will still only
need to invoke one Fetch method to bring itself up-to-date with the state of its resources
each time it sees one or more new invalidation messages.

: Consumer : Service

2: PREP-PUT(resource, xact-id, representation)

4: OK

1: Start Request()

5: PUT(resource, xact-id, representation)

7: OK

6: Commit Transaction()

3: Prepare Transaction()

Figure 9.17
An example of a Trans complex method, using a custom primitive method called PREP-PUT.

ptg20131482

258 Chapter 9: Service API and Contract Design with REST Services and Microservices

The PubSub method can be further adjusted to distribute subscription load and session
state storage to different places around the network. This technique can be particularly
effective within cloud-based environments that naturally provide multiple, distributed
storage resources.

SOA PATTERNS

The Event-Driven Messaging [343] pattern can be applied in support of this com-
plex method. It provides an alternative to the repeated polling of the resource,
which can negatively impact performance if the polling frequency is increased to
detect changes with minimal delay.

4: Resource changed()

: Consumer : Service

2: SUBSCRIBE(resource, callback resource)

3: Created(subscription resource)

1: Start Request()

6: OK

7: Begin fetch()

5: EXPIRE(callback resource)

9: OK(cache metadata, representation)

8: GET(resource, content negotiation metadata)

10: Unsubscribe()

12: OK

11: DELETE(subscription resource)

Figure 9.18
An example of a PubSub complex method based on cache invalidation. When the service determines that
something has changed on one or more resources, it issues cache expiry notifications to its subscribers. Each
subscriber can then use a Fetch complex method (or something equivalent) to bring the subscriber up-to-date
with respect to the changes.

ptg20131482

9.2 REST Service Design Guidelines 259

CASE STUDY EXAMPLE

The MUA team responsible for service design encounters a number of requirements
for accessing and updating resource state. For example:

• One service consumer needs to atomically read the state of the resource,
 perform processing, and store the updated state back to the resource.

• Another service consumer needs to support concurrent user actions that mod-
ify the same resource. These actions update certain resource properties while
others need to remain the same.

Allowing individual services consumers to contain different custom logic that per-
forms these types of functions will inadvertently lead to problems and runtime
exceptions when any two service consumers attempt updates to the same resource
at the same time.

MUA architects conclude that the simplest way to avoid this is to introduce a new
complex method that ensures that a resource is locked while being updated by a
given consumer. Using the rules of optimistic locking, an approach commonly used
with database updates, they are able to create a complex method that is stateless and
takes advantage of existing standard features of the HTTP protocol. They name the
method “OptLock” and write up an offi cial description that is made part of the uni-
form contract profi le.

OptLock Complex Method

If two separate service consumers attempt to update the state of a resource at the same
time, their actions will clearly confl ict with each other as the outcome depends on the
order in which their requests reach the service. The OptLock method (Figure 9.19)
addresses this problem by providing a means by which a service consumer can
determine whether the state of a resource has changed since it was last read by the
consumer before attempting an update.

Specifi cally, a consumer will fi rst retrieve the current state associated with a resource
identifi er using the Fetch method. Along with the data, the consumer also receives an
“ETag.” ETag is a concept from HTTP that uniquely identifi es the version of a resource
in an opaque fashion. Whenever the resource changes state, its ETag is guaranteed to
be different. When the service consumer initiates a Store, it does so conditionally by
requesting the service to only honor the Store interaction if the resource’s ETag still

ptg20131482

260 Chapter 9: Service API and Contract Design with REST Services and Microservices

matches the one that it had when fetched. This is done with the If-Match header.
The service can use the ETag value in the condition to detect whether the resource
state has been changed in the meantime.

: Consumer : Service

sd loop until PUT successful

2: GET(resource, content negotiation metadata)

5: PUT(condition, resource, representation)

1: Start Request()

3: OK(cache metadata, representation)

6: OK or Precondition Failed

4: Process representation()

Figure 9.19
An example of an OptLock complex method.

The OptLock complex method does not introduce any new features to HTTP, but
instead introduces new requirements for the handling of GET and PUT requests.
Specifi cally, the GET request must return an ETag value and the PUT request must
process the If-Match header. Additionally, if the resource has changed, the service
must further guarantee not to carry out the PUT request.

There are several techniques for computing ETags. Some compute a hash value
out of the state information associated with the resource, some simply keep a “last
 modifi ed” timestamp for each resource, and others track the version of the resource
state explicitly.

The OptLock method may not scale effectively for high concurrent access to a partic-
ular resource. If consumer update requests are denied with an HTTP 409 Conflict
response code, the OptLock method prescribes how the consumer can recover by

ptg20131482

9.2 REST Service Design Guidelines 261

fetching a newer version of the resource over which they have to recompute the
change and retry the Store method. However, this may fail again due to a confl icting
update request. Service consumers that interact with a resource in this way rely on
that particular resource having relatively low rates of write access.

The OptLock complex method becomes available as part of the uniform contract and
is implemented by several services. However, scenarios emerge where multiple con-
sumers attempt to modify the resource at the same time, causing regular exceptions
and failed updates. These situations occur during peak usage times, and because
concurrent usage volume is expected to increase further, it is determined that a more
effi cient means of serializing updates to the resource needs to be established.

It is proposed that the OptLock complex method be changed to perform pessimistic
locking instead, as per the following PesLock complex method description.

PesLock Complex Method

Pessimistic locking provides greater fl exibility and certainty than optimistic locking.
From a REST perspective, this comes at the cost of introducing stateful interactions
and limiting concurrent access while the pessimistic lock is held.

As shown in Figure 9.20, the WebDAV extensions to HTTP provide locking primi-
tives that can be used within a composition architecture that intentionally breaches
the Stateless {308} constraint. One consumer may lock out others from accessing a
resource, so care must be taken that appropriate access control policies are in place.
Consumers can also fail while the lock is held, which means that locks must be able
to time out independently of the consumers that register them.

This way, the service consumer would be able to lock the resource for as long as it
takes to read the state, modify it, and write it back again. Although other service
consumers would still encounter exceptions while attempting to update the resource
at the same time as the consumer that has locked it, it is deemed preferable to the
unpredictability of managing the resource as part of an optimistic locking model.

This solution is not embraced by all of the MUA architects because retaining the lock
on the resource requires that the Stateless {308} constraint be breached. It could fur-
ther lead to the danger of stale locks starting, impacting performance and scalabil-
ity. In particular, unless proper measures are taken to ensure that only authorized

ptg20131482

262 Chapter 9: Service API and Contract Design with REST Services and Microservices

consumers may lock a resource, this exposes the resources to denial of service attacks
by malicious consumers that could lock out all other consumers.

After further discussion, a compromise is reached. The OptLock method will be
attempted fi rst. As a fallback, if the consumer tries three times and fails, it will
attempt the stateful PesLock method to ensure it is able to complete the action.

: Consumer : Service

2: LOCK(resource)

3: OK(lock resource)

1: Start Request()

4: PUT(resource, representation)

5: OK

6: DELETE(lock resource)

7: OK

Figure 9.20
An example of a PesLock complex method.

ptg20131482

Chapter 10

Service API and Contract Versioning
with Web Services and REST Services
10.1 Versioning Basics

10.2 Versioning and Compatibility

10.3 REST Service Compatibility Considerations

10.4 Version Identifi ers

10.5 Versioning Strategies

10.6 REST Service Versioning Considerations

ptg20131482

NOTE

This chapter provides a number of code examples that help demonstrate various version-
ing scenarios and approaches. Note that these code examples are not related to any code
examples provided in Case Study Examples from preceding chapters.

After a service contract is deployed, consumer programs will naturally begin form-
ing dependencies on it. When we are subsequently forced to make changes to the

contract, we need to fi gure out:

• Whether the changes will negatively impact existing (and potentially future)
 service c onsumers

• How changes that will and will not impact consumers should be implemented
and communicated

These issues result in the need for versioning. Anytime you introduce the concept of
versioning into an SOA project, a number of questions will likely be raised, for example:

• What exactly constitutes a new version of a service contract? What’s the difference
between a major and minor version?

• What do the parts of a version number indicate?

• Will the new version of the contract still work with existing consumers that were
designed for the old contract version?

• Will the current version of the contract work with new consumers that may have
different data exchange requirements?

• What is the best way to add changes to existing contracts while minimizing the
impact on consumers?

• Will we need to host old and new contracts at the same time? If yes, for how long?

We will address these questions and provide a set of options for solving common ver-
sioning problems. The upcoming sections begin by covering some basic concepts, ter-
minology, and strategies specifi c to service contract versioning.

ptg20131482

10.1 Versioning Basics 265

10.1 Versioning Basics

So when we say that we’re creating a new version of a service contract, what exactly are
we referring to? The following sections explain some fundamental terms and concepts
and further distinguish between Web service contracts and REST service contracts.

Versioning Web Services

As we’ve established many times in this book, a Web service contract can be comprised
of several individual documents and defi nitions that are linked and assembled together
to form a complete technical interface.

For example, a given Web service contract can consist of:

• One (sometimes more) WSDL defi nitions

• One (usually more) XML Schema defi nitions

• Some (sometimes no) WS-Policy defi nitions

Furthermore, each of these defi nition documents can be shared by other Web service
contracts. For example,

• A centralized XML Schema defi nition will commonly be used by multiple WSDL
defi nitions.

• A centralized WS-Policy defi nition will commonly be applied to multiple WSDL
defi nitions.

• An abstract WSDL description can be imported by multiple concrete WSDL
descriptions or vice versa.

Of all the different parts of a Web service contract, the part that establishes the fun-
damental technical interface is the abstract description of the WSDL defi nition. This
represents the core of a Web service contract and is then further extended and detailed
through schema defi nitions, policy defi nitions, and one or more concrete WSDL
descriptions.

When we need to create a new version of a Web service contract, we can therefore
assume that there has been a change in the abstract WSDL description or one of the con-
tract documents that relates to the abstract WSDL description. The Web service contract
content commonly subject to change is the XML schema content that provides the types
for the abstract description’s message defi nitions. Finally, the one other contract-related

ptg20131482

266 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

technology that can still impose versioning requirements but is less likely to do so sim-
ply because it is a less common part of Web service contracts is WS-Policy.

Versioning REST Services

If we follow the REST model of using a uniform contract to express service capabili-
ties, the sharing of defi nition documents between service contracts is even clearer. For
example,

• All HTTP methods used in contracts are standard across the architecture.

• XML Schema defi nitions are standard, as they are wrapped up in general media
types.

• The identifi er syntax for lightweight service endpoints (known as resources) are
standard across the architecture.

Changes to the uniform contract facets that underlie each service contract can impact
any REST service in the service inventory.

Fine and Coarse-Grained Constraints

Regardless of whether XML schemas are used with Web services or REST services,
versioning changes are often tied to the increase or reduction of the quantity or granu-
larity of constraints expressed in the schema defi nition. Therefore, let’s briefl y recap the
meaning of the term constraint granularity in relation to a type defi nition.

Note the bolded and italicized parts in Example 10.1:

<xsd:element name="LineItem" type="LineItemType"/>
<xsd:complexType name="LineItemType">
 <xsd:sequence>

<xsd:element name="productID" type="xsd:string"/>
<xsd:element name="productName" type="xsd:string"/>
<xsd:any minOccurs="0" maxOccurs="unbounded"

namespace="##any" processContents="lax"/>
 </xsd:sequence>

<xsd:anyAttribute namespace="##any"/>
</ xsd:complexType>

Example 10.1
A complexType construct containing fine and coarse-grained constraints.

ptg20131482

10.2 Versioning and Compatibility 267

As indicated by the bolded text, there are elements with specifi c names and data types
that represent parts of the message defi nition with a fi ne level of constraint granularity.
All the message instances (the actual XML documents that will be created based on this
structure) must conform to these constraints to be considered valid (which is why these
are considered the absolute “minimum” constraints).

The italicized text shows the element and attribute wildcards also contained by this
complex type. These represent parts of the message defi nition with an extremely coarse
level of constraint granularity in that messages do not need to comply to these parts of
the message defi nition at all.

The use of the terms “fi ne-grained” and “coarse-grained” is highly subjective. What
may be a fi ne-grained constraint in one contract may not be in another. The point is to
understand how these terms can be applied when comparing parts of a message defi ni-
tion or when comparing different message defi nitions with each other.

10.2 Versioning and Compatibility

The number one concern when developing and deploying a new version of a service
contract is the impact it will have on other parts of the enterprise that have formed or
will form dependencies on it. This measure of impact is directly related to how compat-
ible the new contract version is with the old version and its surroundings in general.

This section establishes the fundamental types of compatibility that relate to the content
and design of new contract versions and also tie into the goals and limitations of differ-
ent versioning strategies introduced at the end of this chapter.

Backwards Compatibility

A new version of a service contract that continues to support consumer programs
designed to work with the old version is considered backwards compatible. From a design
perspective, this means that the new contract has not changed in such a way that it can
impact existing consumer programs that are already using the contract.

Backwards Compatibility in Web Services

Example 10.2 provides a simple instance of a backwards-compatible change based on
the addition of a new operation to an existing WSDL defi nition:

ptg20131482

268 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

<definitions name="Purchase Order" targetNamespace=
 "http://actioncon.com/contract/po"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://actioncon.com/contract/po"
 xmlns:po="http://actioncon.com/schema/po">
 ...
 <portType name="ptPurchaseOrder">
 <operation name="opSubmitOrder">

<input message="tns:msgSubmitOrderRequest"/>
<output message="tns:msgSubmitOrderResponse"/>

 </operation>
 <operation name="opCheckOrderStatus">

<input message="tns:msgCheckOrderRequest"/>
<output message="tns:msgCheckOrderResponse"/>

 </operation>
 <operation name="opChangeOrder">

<input message="tns:msgChangeOrderRequest"/>
<output message="tns:msgChangeOrderResponse"/>

 </operation>
 <operation name="opCancelOrder">

<input message="tns:msgCancelOrderRequest"/>
<output message="tns:msgCancelOrderResponse"/>

 </operation>
<operation name="opGetOrder">

<input message="tns:msgGetOrderRequest"/>
<output message="tns:msgGetOrderResponse"/>

</operation>
 </portType>
</definitions>

Example 10.2
The addition of a new operation represents a common backwards-compatible change.

By adding a brand-new operation, we are creating a new version of the contract, but
this change is backwards-compatible and will not impact any existing consumers. The
new service implementation will continue to work with old service consumers because
all the operations that an existing service consumer might invoke are still present and
continue to meet the requirements of the previous service contract version.

Backwards Compatibility in REST Services

A backwards-compatible change to a REST-compliant service contract might involve
adding some new resources or adding new capabilities to existing resources. In each of
these cases the existing service consumers will only invoke the old methods on the old
resources, which continue to work as they previously did.

ptg20131482

10.2 Versioning and Compatibility 269

As demonstrated in Example 10.3, supporting a new method that existing service con-
sumers don’t use results in a backwards-compatible change. However, in a service
inventory with multiple REST services, we can take steps to ensure that new service
consumers will continue to work with old versions of services.

Service: po.actioncon.com
Capabilities:
POST /orders

In = application/vnd.com.actioncon.po+xml
GET /orders/{order-id}/status

Out = text/plain
PUT /orders/{order-id}

In = application/vnd.com/actioncon.po+xml
DELETE /orders/{order-id}
GET /orders/{order-id}

Out = application/vnd.com.actioncon.po+xml

Example 10.3
The addition of a new resource or new supported method on a resource is a backwards-compatible change for a REST
service.

As shown in Example 10.4, it may be important for service consumers to have a reason-
able way of proceeding with their interaction if the service reports that the new method
is not implemented.

Legal methods for actioncon.com service inventory:
* GET
* PUT
* DELETE
* POST
* SUBSCRIBE (consumers must fall back to periodic GET if service
reports "not implemented")

Example 10.4
New methods added to a service inventory’s uniform contract need to provide a way for service consumers to “fall back” on a
previously used method if they are to truly be backwards-compatible.

Changes to schemas and media types approach backwards compatibility in a different
manner, in that they describe how information can be encoded for transport, and will
often be used in both request and response messages. The focus for backwards compat-
ibility is on whether a new message recipient can make sense of information sent by a
legacy source. In other words, the new processor must continue to understand informa-
tion produced by a legacy message generator.

ptg20131482

270 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

An example of a change made to a schema for a message defi nition that is backwards-
compatible is the addition of an optional element (as shown in bolded markup code in
Example 10.5).

Media type = application/vnd.com.actioncon.po+xml
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://actioncon.com/schema/po"
 xmlns="http://actioncon.com/schema/po">
 <xsd:element name="LineItem" type="LineItemType"/>
 <xsd:complexType name="LineItemType">
 <xsd:sequence>

<xsd:element name="productID" type="xsd:string"/>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="available" type="xsd:boolean"

minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example 10.5
In an XML Schema definition, the addition of an optional element is also considered backwards-compatible.

Here we are using a simplifi ed version of the XML Schema defi nition for the Purchase
Order service. The optional available element is added to the LineItemType complex
type. This has no impact on existing generators because they are not required to pro-
vide this element in their messages. New processors must be designed to cope without
the new information if they are to remain backwards-compatible.

Changing any of the existing elements in the previous example from required to
optional (by adding the minOccurs="0" setting) would also be considered a back-
wards-compatible change. When we have control over how we choose to design the
next version of a Web service contract, backwards compatibility is generally attainable.
However, mandatory changes (such as those imposed by laws or regulations) can often
force us to break backwards compatibility.

NOTE

Both the Flexible and Loose versioning strategies explained at the end of this chapter
support backwards compatibility.

ptg20131482

10.2 Versioning and Compatibility 271

Forwards Compatibility

When a service contract is designed in such a manner so that it can support a range of
future consumer programs, it is considered to have an extent of forwards compatibility.
This means that the contract can essentially accommodate how consumer programs
will evolve over time.

Supporting forwards compatibility for Web service operations or uniform contract
methods requires exception types to be present in the contract to allow service consum-
ers to recover if they attempt to invoke a new and unsupported operation or method.
For example, a “method not implemented” response enables the service consumer to
detect that it is dealing with an incompatible service, thereby allowing it to handle this
exception gracefully.

Redirection exception codes help REST services that implement a uniform contract
change the resource identifi ers in the contract when required. This is another way in
which service contracts can allow legacy service consumers to continue using the ser-
vice after contract changes have taken place (Example 10.6).

: New Consumer : Legacy Service

2: unsupportedMethod

1: SUBSCRIBE http://po.action.com/orders/ORD123()

3: GET http://po.action.com/orders/ORD123()

loop Fall back to polling GET

4: 200 OK

Example 10.6
A REST service ensures forwards compatibility by raising an exception whenever it does not understand a reusable contract
or uniform contract method.

Forwards compatibility of schemas in REST services requires extension points to be
present where new information can be added so that it will be safely ignored by legacy
processors.

http://po.action.com/orders/ORD123()
http://po.action.com/orders/ORD123()

ptg20131482

272 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

For example:

• Any validation that the processor does must not reject a document formatted
according to the new schema.

• All existing information that the processor might need must remain present in
future versions of the schema.

• Any new information added to the schema must be safe for legacy processors to
ignore (if processors must understand the new information, then the change can-
not be forwards compatible).

• The processor must ignore any information that it does not understand.

A common way to ensure validation does not reject future versions of the schema is to
use wildcards in the earlier version. These provide extension points where new infor-
mation can be added in future schema versions, as shown in Example 10.7.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://actioncon.com/schema/po"
 xmlns="http://actioncon.com/schema/po">
 <xsd:element name="LineItem" type="LineItemType"/>
 <xsd:complexType name="LineItemType">
 <xsd:sequence>

<xsd:element name="productID" type="xsd:string"/>
<xsd:element name="productName" type="xsd:string"/>
<xsd:any namespace="##any" processContents="lax"

minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>

<xsd:anyAttribute namespace="##any"/>
 </xsd:complexType>
</xsd:schema>

Example 10.7
To support forwards compatibility within a message definition generally requires the use of XML Schema wildcards.

In this example, the xsd:any and xsd:anyAttribute elements are added to allow for
a range of unknown elements and data to be accepted by the service contract. In other
words, the schema is being designed in advance to accommodate unforeseen changes
in the future.

It is important to understand that building extension points into service contracts for
forwards compatibility by no means eliminates the need to consider compatibility
issues when making contract changes. New information can only be added to schemas

ptg20131482

10.2 Versioning and Compatibility 273

in a forwards-compatible manner if it is genuinely safe for processors to ignore. New
operations are only able to be made forwards-compatible if a service consumer has an
existing operation to fall back on when it fi nds the one it initially attempted to invoke
is unsupported.

A service with a forwards-compatible contract will often not be able to process all mes-
sage content. Its contract is simply designed to accept a broader range of data unknown
at the time of its design.

NOTE

Forwards compatibility forms the basis of the Loose versioning strategy that is explained
shortly.

Compatible Changes

When we make a change to a service contract that does not negatively affect existing
consumers, then the change itself is considered a compatible change.

NOTE

In this book, the term “compatible change” refers to backwards compatibility by default.
When used in reference to forwards compatibility, it is further qualified as a forwards-
compatible change.

A simple example of a compatible change is when we set the minOccurs attribute of an
element from “1” to “0,” effectively turning a required element into an optional one, as
shown in Example 10.8.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://actioncon.com/schema/po"
 xmlns="http://actioncon.com/schema/po">
 <xsd:element name="LineItem" type="LineItemType"/>
 <xsd:complexType name="LineItemType">
 <xsd:sequence>

<xsd:element name="productID" type="xsd:string"/>
<xsd:element name="productName" type="xsd:string"

minOccurs="0"/>
<xsd:element name="available" type="xsd:boolean"

minOccurs="0"/>

ptg20131482

274 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example 10.8
The default value of the minOccurs attribute is “1”. Therefore because this attribute was previously absent from the
productName element declaration, it was considered a required element. Adding the minOccurs="0" setting turns
it into an optional element, resulting in a compatible change. (Note that making this change to a message output from the
service would be an incompatible change.)

This type of change will not impact existing consumer programs that are used to send-
ing the element value to the Web service, nor will it affect future consumer programs
that can be designed to optionally send that element.

Another example of a compatible change was provided earlier in Example 10.3, when
we fi rst added the optional available element declaration. Even though we extended
the type with a whole new element, because it is optional it is considered a compatible
change.

Here is a list of common compatible changes:

• Adding a new WSDL operation defi nition and associated message defi nitions

• Adding a new standard method to an existing REST resource

• Adding a set of new REST resources

• Changing the identifi ers for a set of REST resources (including splitting and merg-
ing of services) using redirection response codes to facilitate migration of REST
service consumers to the new identifi ers

• Adding a new WSDL port type defi nition and associated operation defi nitions

• Adding new WSDL binding and service defi nitions

• Extending an existing uniform contract method in a way that can be safely
ignored by REST services that can fall back on old service logic (for example, add-
ing “If-None-Match” as a feature of the HTTP GET operation so that if the service
ignores it, the consumer will still get the current and correct representation for the
resource)

• Adding a new uniform contract method when an exception response exists for
services that do not understand the method to use (and consumers can recover
from this exception)

ptg20131482

10.2 Versioning and Compatibility 275

• Adding a new optional XML Schema element or attribute declaration to a message
defi nition

• Reducing the constraint granularity of an XML Schema element or attribute of a
message defi nition type used for input messages

• Adding a new XML Schema wildcard to a message defi nition type

• Adding a new optional WS-Policy assertion

• Adding a new WS-Policy alternative

Incompatible Changes

If after a change a contract is no longer compatible with consumers, then it is considered
to have received an incompatible change. These are the types of changes that can break an
existing contract and therefore impose the most challenges when it comes to versioning.

NOTE

The term “incompatible change” also indicates backwards compatibility by default. Incom-
patible changes that affect forwards compatibility will be qualified as “forwards-incompatible
changes.”

Going back to our example, if we set an element’s minOccurs attribute from “0” to any
number above zero, then we are introducing an incompatible change for input mes-
sages, as shown in Example 10.9:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://actioncon.com/schema/po"
 xmlns="http://actioncon.com/schema/po">
 <xsd:element name="LineItem" type="LineItemType"/>
 <xsd:complexType name="LineItemType">
 <xsd:sequence>

<xsd:element name="productID" type="xsd:string"/>
<xsd:element name="productName" type="xsd:string"

minOccurs="3"/>
<xsd:element name="available" type="xsd:boolean"

minOccurs="3"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example 10.9
Incrementing the minOccurs attribute value of any established element declaration is automatically an incompatible
change.

ptg20131482

276 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

What was formerly an optional element is now required. This will certainly affect exist-
ing consumers that are not designed to comply with this new constraint, because add-
ing a new required element introduces a mandatory constraint upon the contract.

Common incompatible changes include:

• Renaming an existing WSDL operation defi nition

• Removing an existing WSDL operation defi nition

• Changing the MEP of an existing WSDL operation defi nition

• Adding a fault message to an existing WSDL operation defi nition

• Adding a new required XML Schema element or attribute declaration to a
 message defi nition

• Increasing the constraint granularity of an XML Schema element or attribute
 declaration of a message defi nition

• Renaming an optional or required XML Schema element or attribute in a message
defi nition

• Removing an optional or required XML Schema element or attribute or wildcard
from a message defi nition

• Adding a new required WS-Policy assertion or expression

• Adding a new ignorable WS-Policy expression (most of the time)

Incompatible changes tend to cause most of the challenges with service contract
versioning.

10.3 REST Service Compatibility Considerations

REST services within a given service inventory typically share a uniform contract for
every resource, including uniform methods and media types. The same media types
are used in both requests and responses, and new uniform contract facets are reused
much more often than they are added to. This emphasis on service contract reuse within
REST-compliant service inventories results in the need to highlight some special consid-
erations, because changes to the uniform contract will automatically impact a range of
service consumers because:

• The uniform contract methods are shared by all services.

• The uniform contract media types are shared by both services and service
consumers.

ptg20131482

10.3 REST Service Compatibility Considerations 277

As a result, both backwards compatibility and forwards compatibility considerations
are almost equally important.

SOA PATTERNS

Service contracts that make use of the Schema Centralization [356] pattern with-
out necessarily being REST-compliant will often need to impose a similarly rigid
view of forwards compatibility and backwards compatibility.

Uniform contract methods codify the kinds of interactions that can occur between ser-
vices and their consumers. For example, GET codifi es “fetch some data,” while PUT
codifi es “store some data.”

Because the kinds of interactions that occur between REST services within the same
service inventory tend to be relatively limited and stable, methods will usually change
at a low rate compared to media types or resources. Compatibility issues usually per-
tain to a set of allowable methods that are only changed after careful case-by-case
consideration.

An example of a compatible change to HTTP is the addition of If-None-Match headers
to GET requests. If a service consumer knows the last version (or etag) of the resource
that it fetched, it can make its GET request conditional. The If-None-Match header
allows the consumer to state that the GET request should not be executed if the version
of the resource is still the same as it was for the consumer’s last fetch. Instead, it will
return the normal GET response, although it will do so in a non-optimal mode.

An example of an incompatible change to HTTP is the addition of a Host header used
to support multihoming of Web servers. HTTP/1.0 did not require the name of the ser-
vice to be included in request messages, but HTTP/1.1 does require this. If the spe-
cial Host header is missing, HTTP/1.1 services must reject the request as being badly
formed. However, HTTP/1.1 services are also required to be backwards-compatible, so
if an HTTP/1.0 request comes into the REST service it will still be handled according to
HTTP/1.0 rules.

Uniform contract media types further codify the kinds of information that can be
exchanged between REST services and consumers. As previously stated, media types
tend to change at a faster rate than HTTP methods in the uniform contract; however,
media types still change more slowly than resources. Compatible change is more of a

ptg20131482

278 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

live concern for the media types, and we can draw some more general rules about how
to deal with them.

For example, if the generator of a message indicates to a processor of the message that
it conforms to a particular media type, the processor generally does not need to know
which version of the schema was used, nor does the processor need to have been built
against the same version of the schema. The processor expects that all versions of the
schema for a particular media type will be both forwards compatible and backwards-
compatible with the type it was developed to support. Likewise, the generator expects
that when it produces a message conformant with a particular schema version, that all
processors of the message will understand it.

When incompatible changes are made to a schema, a new media type identifi er is gener-
ally required to ensure that:

• The processor can decide how to parse a document based on the media type
identifi er

• Services and consumers are able to negotiate for a specifi c media type that will be
understood by the processor when the message has been produced

Content negotiation is the ultimate fallback to ensure compatibility in REST-compliant
service inventories. For a fetch interaction this often involves the consumer indicating
to the service what media types it is able to support, and the service returning the most
appropriate type that it supports. This mechanism allows for incompatible changes to
be made to media types, as required.

NOTE

One way to better understand versioning issues that pertain to media types is to look at how
they are used in HTML. An example of a compatible change to HTML that did not result in
the need for a new media type was the addition of the abbr element to version 4.0 of the
HTML language. This element allows new processors of HTML documents to support a
mouse-over to expand abbreviations on a web page and to better support accessibility of
the page. Legacy processors safely ignore the expansion, but will continue correctly show-
ing the abbreviation itself.

An example of an incompatible change to HTML that did require a new media type was
the conversion of HTML 4.0 to XML (resulting in version 1.0 of XHTML). The media type
for the traditional SGML version remained text/html, while the XML version became
application/xhtml+xml. This allowed content negotiation to occur between the two

ptg20131482

10.4 Version Identifi ers 279

10.4 Version Identifiers

One of the most fundamental design patterns related to Web service contract design is
the Version Identifi cation pattern. It essentially advocates that version numbers should
be clearly expressed, not just at the contract level, but right down to the versions of the
schemas that underlie the message defi nitions.

The fi rst step to establishing an effective versioning strategy is to decide on a common
means by which versions themselves are identifi ed and represented within Web service
contracts.

Versions are almost always communicated with version numbers. The most common
format is a decimal, followed by a period and then another decimal, as shown here:

version="2.0"

Sometimes, you will see additional period plus decimal pairs that lead to more detailed
version numbers like this:

version="2.0.1.1"

The typical meaning associated with these numbers is the measure or signifi cance of
the change. Incrementing the fi rst decimal generally indicates a major version change
(or upgrade) in the software, whereas decimals after the fi rst period usually represent
various levels of minor version changes.

types, and for processors to choose the correct parser and validation strategy based on
which type was specified by the service.

Some incompatible changes have also been made to HTML without changing the media
type. HTML 4.0 deprecated APPLET, BASEFONT, CENTER, DIR, FONT, ISINDEX, MENU,
S, STRIKE, and U elements in favor of newer elements. These elements must continue
to be understood but their use in HTML documents is being phased out. HTML 4.0 made
LISTING, PLAINTEXT, and XMP obsolete. These elements should not be used in HTML 4.0
documents and no longer need to be understood.

Deprecating elements over a long period of time and eventually identifying them as obso-
lete once they are no longer used by existing services or consumers is a technique that can
be used for REST media types to incrementally update a schema without having to chan ge
the media type.

ptg20131482

280 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

From a compatibility perspective, we can associate additional meaning to these num-
bers. Specifi cally, the following convention has emerged in the industry:

• A minor version is expected to be backwards-compatible with other minor ver-
sions associated with a major version. For example, version 5.2 of a program
should be fully backwards-compatible with versions 5.0 and 5.1.

• A major version is generally expected to break backwards compatibility with pro-
grams that belong to other major versions. This means that program version 5.0 is
not expected to be backwards-compatible with version 4.0.

NOTE

A third “patch” version number is also sometimes used to express changes that are both
forwards-compatible and backwards-compatible. Typically these versions are intended to
clarify the schema only, or to fix problems with the schema that were discovered after it was
deployed. For example, version 5.2.1 is expected to be fully compatible with version 5.2.0,
but may be added for clarification purposes.

This convention of indicating compatibility through major and minor version numbers
is referred to as the compatibility guarantee . Another approach, known as “amount of
work,” uses version numbers to communicate the effort that has gone into the change. A
minor version increase indicates a modest effort, and a major version increase predict-
ably represents a lot of work.

These two conventions can be combined and often are. The result is often that version
numbers continue to communicate compatibility as explained earlier, but they some-
times increment by several digits, depending on the amount of effort that went into
each version.

There are various syntax op tions available to express version numbers. For example,
you may have noticed that the declaration statement that begins an XML document can
contain a number that expresses the version of the XML specifi cation being used:

<?xml version="1.0"?>

That same version attribute can be used with the root xsd:schema element, as follows:

<xsd:schema version="2.0" ...>

ptg20131482

10.4 Version Identifi ers 281

You can further create a custom variation of this attribute by assigning it to any element
you defi ne (in which case you are not required to name the attribute “version”).

<LineItem version="2.0">

An alternative custom approach is to embed the major version number into a namespace
or media type identifi er, as shown here:

<LineItem xmlns="http://actioncon.com/schema/po/v2">

or

application/vnd.com.actioncon.po.v2+xml

Note that it has become a common convention to use date values in namespaces when
versioning XML schemas, as follows:

<LineItem xmlns="http://actioncon.com/schema/po/2010/09">

In this case, it is the date of the change that acts as the major version identifi er. To keep
the expression of XML Schema defi nition versions in alignment with WSDL defi nition
versions, we use version numbers instead of date values in upcoming examples. How-
ever, when working in an environment where XML Schema defi nitions are separately
owned as part of an independent data architecture, it is not uncommon for schema ver-
sioning identifi ers to be different from those used by WSDL defi nitions.

Regardless of which option you choose, it is important to consider the Canonical Ver-
sioning pattern that dictates that the expression of version information must be stan-
dardized across all service contracts within the boundary of a service inventory. In
larger environments, this will often require a central authority that can guarantee the
linearity, consistency, and description quality of version information. These types of
conventions carry over into how service termination information is expressed, as fur-
ther explored in Chapter 23 in Web Service Contract Design and Versioning for SOA.

SOA PATTERNS

Of course you may also be required to work with third-party schemas and WSDL
defi nitions that may already have implemented their own versioning conven-
tions. In this case, the extent to which the Canonical Versioning [327] pattern can
be applied will be limited.

http://actioncon.com/schema/po/v2"
http://actioncon.com/schema/po/2010/09"

ptg20131482

282 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

10.5 Versioning Strategies

There is no one versioning approach that is right for everyone. Because versioning rep-
resents a governance-related phase in the overall lifecycle of a service, it is a practice
that is subject to the conventions, preferences, and requirements that are distinct to any
enterprise.

Even though there is no de facto versioning technique for the WSDL, XML Schema,
and WS-Policy content that comprises Web service contracts, a number of common
and advocated versioning approaches have emerged, each with its own benefi ts and
tradeoffs.

In this section, we single out the following three common strategies:

• Strict – Any compatible or incompatible changes result in a new version of
the service contract. This approach does not support backwards or forwards
compatibility.

• Flexible – Any incompatible change results in a new version of the service contract
and the contract is designed to support backwards compatibility but not forwards
compatibility.

• Loose – Any incompatible change results in a new version of the service contract
and the contract is designed to support backwards compatibility and forwards
compatibility.

These strategies are explained individually in the upcoming sections.

The Strict Strategy (New Change, New Contract)

The simplest approach to Web service contract versioning is to require that a new ver-
sion of a contract be issued whenever any kind of change is made to any part of the
contract.

This is commonly implemented by changing the target namespace value of a WSDL
defi nition (and possibly the XML Schema defi nition) every time a compatible or incom-
patible change is made to the WSDL, XML Schema, or WS-Policy content related to
the contract. Namespaces are used for version identifi cation instead of a version attri-
bute because changing the namespace value automatically forces a change in all con-
sumer programs that need to access the new version of the schema that defi nes the
message types.

ptg20131482

10.5 Versioning Strategies 283

This “super-strict” approach is not really that practical, but it is the safest and sometimes
warranted when there are legal implications to Web service contract modifi cations, such
as when contracts are published for certain interorganization data exchanges. Because
both compatible and incompatible changes will result in a new contract version, this
approach supports neither backwards nor forwards compatibility.

Pros and Cons

The benefi t of this strategy is that you have full control over the evolution of the service
contract, and because backwards and forwards compatibility are intentionally disre-
garded, you do not need to concern yourself with the impact of any change in particular
(because all changes effectively break the contract).

On the downside, by forcing a new namespace upon the contract with each change, you
are guaranteeing that all existing service consumers will no longer be compatible with
any new version of the contract. Consumers will only be able to continue communicat-
ing with the Web service while the old contract remains available alongside the new
version or until the consumers themselves are updated to conform to the new contract.

Therefore, this approach will increase the governance burden of individual services
and will require careful transitioning strategies. Having two or more versions of the
same service co-exist at the same time can become a common requirement for which the
supporting service inventory infrastructure needs to be prepared.

The Flexible Strategy (Backwards Compatibility)

A common approach used to balance practical considerations with an attempt at mini-
mizing the impact of changes to Web service contracts is to allow compatible changes to
occur without forcing a new contract version, while not attempting to support forwards
compatibility at all.

This means that any backwards-compatible change is considered safe in that it ends up
extending or augmenting an established contract without affecting any of the service’s
existing consumers. A common example of this is adding a new operation to a WSDL
defi nition or adding an optional element declaration to a message’s schema defi nition.

As with the Strict strategy, any change that breaks the existing contract does result in a
new contract version, usually implemented by changing the target namespace value of
the WSDL defi nition and potentially also the XML Schema defi nition.

ptg20131482

284 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

Pros and Cons

The primary advantage to this approach is that it can be used to accommodate a variety
of changes while consistently retaining the contract’s backwards compatibility. How-
ever, when compatible changes are made, these changes become permanent and cannot
be reversed without introducing an incompatible change. Therefore, a governance pro-
cess is required during which each proposed change is evaluated so that contracts do
not become overly bloated or convoluted. This is an especially important consideration
for agnostic services that are heavily reused.

The Loose Strategy (Backwards and Forwards Compatibility)

As with the previous two approaches, this strategy requires that incompatible changes
result in a new service contract version. The difference here is in how service contracts
are initially designed.

Instead of accommodating known data exchange requirements, special features from
the WSDL, XML Schema, and WS-Policy languages are used to make parts of the con-
tract intrinsically extensible so that they remain able to support a broad range of future,
unknown data exchange requirements. For example:

• The anyType attribute value provided by the WSDL 2.0 language allows a message
to consist of any valid XML document.

• XML Schema wildcards can be used to allow a range of unknown data to be
passed in message defi nitions.

• Ignorable policy assertions can be defi ned to communicate service characteristics
that can optionally be acknowledged by future consumers.

These and other features related to forwards compatibility are discussed in Web Service
Contract Design and Versioning for SOA.

Pros and Cons

The fact that wildcards allow undefi ned content to be passed through Web service con-
tracts provides a constant opportunity to further expand the range of acceptable mes-
sage element and data content. On the other hand, the use of wildcards will naturally
result in vague and overly coarse service contracts that place the burden of validation
on the underlying service logic.

ptg20131482

10.5 Versioning Strategies 285

Strategy Summary

Provided in Table 10.1 is a broad summary of how the three strategies compare based
on three fundamental characteristics.

Strategy

Strict Flexible Loose

Strictness High Medium Low

Governance Impact High Medium High

Complexity Low Medium High

Table 10.1
A general comparison of the three versioning strategies.

The three characteristics used in this table to form the basis of this comparison are as
follows:

• Strictness – The rigidity of the contract versioning options. The Strict approach
clearly is the most rigid in its versioning rules, while the Loose strategy provides
the broadest range of versioning options due to its reliance on wildcards.

• Governance Impact – The amount of governance burden imposed by a strategy.
Both Strict and Loose approaches increase governance impact but for different
reasons. The Strict strategy requires the issuance of more new contract versions,
which impacts surrounding consumers and infrastructure, while the Loose
approach introduces the concept of unknown message sets that need to be sepa-
rately accommodated through custom programming.

• Complexity – The overall complexity of the versioning process. Due to the use of
wildcards and unknown message data, the Loose strategy has the highest com-
plexity potential, while the straightforward rules that form the basis of the Strict
approach make it the simplest option.

Throughout this comparison, the Flexible strategy provides an approach that represents
a consistently average level of strictness, governance effort, and overall complexity.

ptg20131482

286 Chapter 10: Service API and Contract Versioning with Web Services and REST Services

10.6 REST Service Versioning Considerations

REST services that share the same uniform contract maintain separate versioned speci-
fi cations for the following:

• The version number or specifi cation of the resource identifi er syntax (as per the
“Request for Comments 6986 - Uniform Resource Identifi er (URI): Generic Syntax”
specifi cation)

• The specifi cation of the collection of legal methods, status codes, and other interac-
tion protocol details (as per the “Request for Comments 2616 - Hypertext Transfer
Protocol - HTTP/1.1” specifi cation)

• Individual specifi cations for legal media types (for example. HTML 4.01 and the
“Request for Comments 4287 - The Atom Syndication Format” specifi cation)

• Individual specifi cations for service contracts that use the legal resource identifi er
syntax, methods, and media types

Each part of the uniform contract is specifi ed and versioned independently of the
 others. Changing any one specifi cation does not generally require another specifi ca-
tion to be updated or versioned. Likewise, changing any of the uniform contract facet
specifi cations does not require changes to individual service contracts, or changes to
their version numbers.

This last point is in contradiction to some conventional versioning strategies. One might
expect that if a schema used in a service contract changed, then the service contract
would need to be modifi ed. However, with REST services there is a tendency to main-
tain both forwards compatibility and backwards compatibility. If a REST service con-
sumer sends a message that conforms to a newer schema, the service can process it as
if it conformed to the older schema. If compatibility between these schemas has been
maintained, then the service will function correctly. Likewise, if the service returns a
message to the consumer that conforms to an old schema, the newer service consumer
can still process the message correctly.

REST service contracts only need to directly consider the versioning of the uniform
contract when media types used become deprecated, or when the schema advances so
far that elements and attributes the service depends on are on their way to becoming
obsolete. When this occurs, the service contract needs to be updated, and with it, the
underlying service logic that processes the media types.

ptg20131482

Appendices

Part III

Appendix A: Service-Orientation Principles Reference

Appendix B: REST Constraints Reference

Appendix C: SOA Design Patterns Reference

Appendix D: The Annotated SOA Manifesto

ptg20131482

This page intentionally left blank

ptg20131482

Appendix A

Service-Orientation Principles
Reference

ptg20131482

This appendix provides profi le tables for the service-orientation principles refer-
enced throughout this book. As explained in Chapter 1, each principle reference is

suffi xed with the page number of its corresponding profi le table in this appendix.

Every profi le table contains the following sections:

• Short Defi nition – A concise, single-statement defi nition that establishes the funda-
mental purpose of the principle.

• Long Defi nition – A longer description of the principle that provides more detail as
to what it is intended to accomplish.

• Goals – A list of specifi c design goals that are expected from the application of
the principle. Essentially, this list provides the ultimate results of the principle’s
realization.

• Design Characteristics – A list of specifi c design characteristics that can be realized
via the application of the principle. This provides some insight as to how the prin-
ciple ends up shaping the service.

• Implementation Requirements – A list of common prerequisites for effectively apply-
ing the design principle. These can range from technology to organizational
requirements.

Note that these profi le tables provide only summarized versions of the principles. Com-
plete coverage of the eight service-orientation design principles, including case studies,
is provided in the SOA Principles of Service Design book.

For more information about this and other titles in the Prentice Hall Service Technology
Series from Thomas Erl , visit www.servicetechbooks.com . Summarized content of topics
related to service-orientation can also be found online at www.serviceorientation.com .

http://www.servicetechbooks.com
http://www.serviceorientation.com

ptg20131482

Standardized Service Contract 291

Standardized Service Contract

Short Defi nition “Services share standardized contracts.”

Long Defi nition “Services within the same service inventory are in compliance with the
same contract design standards.”

Goals • To enable services with a meaningful level of natural interop-
erability within the boundary of a service inventory. This
reduces the need for data transformation because consistent
data models are used for information exchange.

• To allow the purpose and capabilities of services to be more
easily and intuitively understood. The consistency with which
service functionality is expressed through service contracts
increases interpretability and the overall predictability of ser-
vice endpoints throughout a service inventory.

Note that these goals are further supported by other service-
orientation principles as well.

Design
Characteristics

• A service contract (comprised of a technical interface or one
or more service description documents) is provided with the
service.

• The service contract is standardized through the application of
design standards.

Implementation
Requirements

The fact that contracts need to be standardized can introduce
signifi cant implementation requirements to organizations that do
not have a history of using standards.

For example:

• Design standards and conventions need to ideally be in
place prior to the delivery of any service in order to ensure
adequately scoped standardization. (For those organizations
that have already produced ad-hoc Web services, retro-fi tting
strategies may need to be employed.)

• Formal processes need to be introduced to ensure that services
are modeled and designed consistently, incorporating accepted
design principles, conventions, and standards.

ptg20131482

292 Appendix A: Service-Orientation Principles Reference

• Because achieving standardized service contracts generally
requires a “contract-fi rst” approach to service-oriented design,
the full application of this principle will often demand the
use of development tools capable of importing a customized
service contract without imposing changes.

• Appropriate skill sets are required to carry out the modeling
and design processes with the chosen tools. When working
with Web services, the need for a high level of profi ciency with
XML schema and WSDL languages is practically unavoidable.
WS-Policy expertise may also be required.

These and other requirements can add up to a noticeable transi-
tion effort that goes well beyond technology adoption.

Table A.1
A profile for the Standardized Service Contract principle

ptg20131482

Service Loose Coupling 293

Service Loose Coupling

Short Defi nition “Services are loosely coupled.”

Long Defi nition “Service contracts impose low consumer coupling requirements and are
themselves decoupled from their surrounding environment.”

Goals By consistently fostering reduced coupling within and between
services, we are working toward a state where service contracts
increase independence from their implementations and services
are increasingly independent from each other. This promotes an
environment in which services and their consumers can be adap-
tively evolved over time with minimal impact on each other.

Design
Characteristics

• The existence of a service contract that is ideally decoupled
from technology and implementation details.

• A functional service context that is not dependent on outside
logic.

• Minimal consumer coupling requirements.

Implementation
Requirements

• Loosely coupled services are typically required to perform
more runtime processing than if they were more tightly
coupled. As a result, data exchange in general can consume
more runtime resources, especially during concurrent access
and high usage scenarios.

• Achieving the right balance of coupling, while also support-
ing the other service-orientation principles that affect contract
design, requires increased service contract design profi ciency.

Table A.2
A profile for the Service Loose Coupling principle

ptg20131482

294 Appendix A: Service-Orientation Principles Reference

Service Abstraction

Short Defi nition “Non-essential service information is abstracted.”

Long Defi nition “Service contracts only contain essential information and information
about services is limited to what is published in service contracts.”

Goals Many of the other principles emphasize the need to publish more
information in the service contract. The primary role of this prin-
ciple is to keep the quantity and detail of contract content concise
and balanced and prevent unnecessary access to additional
service details.

Design
Characteristics

• Services consistently abstract specifi c information about tech-
nology, logic, and function away from the outside world (the
world outside of the service boundary).

• Services have contracts that concisely defi ne interaction
requirements and constraints and other required service meta
details.

• Outside of what is documented in the service contract, infor-
mation about a service is controlled or altogether hidden
within a particular environment.

Implementation
Requirements

The primary prerequisite to achieving the appropriate level of
abstraction for each service is the level of service contract design
skill applied.

Table A.3
A profile for the Service Abstraction principle

ptg20131482

Service Reusability 295

Service Reusability

Short Defi nition “Services are reusable.”

Long Defi nition “Services contain and express agnostic logic and can be positioned
as reusable enterprise resources.”

Goals The goals behind Service Reusability are tied directly to some
of the most strategic objectives of service-oriented computing:

• To allow for service logic to be repeatedly leveraged over
time so as to achieve an increasingly high return on the
initial investment of delivering the service.

• To increase business agility on an organizational level by
enabling the rapid fulfi llment of future business automa-
tion requirements through wide-scale service composition.

• To enable the realization of agnostic service models.

• To enable the creation of service inventories with a high
percentage of agnostic services.

Design Characteristics • The logic encapsulated by the service is associated with a
context that is suffi ciently agnostic to any one usage sce-
nario so as to be considered reusable.

• The logic encapsulated by the service is suffi ciently generic,
allowing it to facilitate numerous usage scenarios by differ-
ent types of service consumers.

• The service contract is fl exible enough to process a range of
input and output messages.

• Services are designed to facilitate simultaneous access by
multiple consumer programs.

ptg20131482

296 Appendix A: Service-Orientation Principles Reference

Implementation
Requirements

From an implementation perspective, Service Reusability can
be the most demanding of the principles we’ve covered so
far. Below are common requirements for creating reusable
services and supporting their long-term existence:

• A scalable runtime hosting environment capable of high-to-
extreme concurrent service usage. Once a service inventory
is relatively mature, reusable services will fi nd themselves
in an increasingly large number of compositions.

• A solid version control system to properly evolve contracts
representing reusable services.

• Service analysts and designers with a high degree of
subject matter expertise who can ensure that the service
boundary and contract accurately represent the service’s
reusable functional context.

• A high level of service development and commercial
software development expertise so as to structure the
underlying logic into generic and potentially decomposable
components and routines.

These and other requirements place an emphasis on the
appropriate staffi ng of the service delivery team, as well as
the importance of a powerful and scalable hosting environ-
ment and supporting infrastructure.

Table A.4
A profile for the Service Reusability principle

ptg20131482

Service Autonomy 297

Service Autonomy

Short Defi nition “Services are autonomous.”

Long Defi nition “Services exercise a high level of control over their underlying runtime
execution environment.”

Goals • To increase a service’s runtime reliability, performance, and
predictability, especially when being reused and composed.

• To increase the amount of control a service has over its runtime
environment.

By pursuing autonomous design and runtime environments, we
are essentially aiming to increase post-implementation control
over the service and the service’s control over its own execution
environment.

Design
Characteristics

• Services have a contract that expresses a well-defi ned func-
tional boundary that should not overlap with other services.

• Services are deployed in an environment over which they exer-
cise a great deal (and preferably an exclusive level) of control.

• Service instances are hosted by an environment that accommo-
dates high concurrency for scalability purposes.

Implementation
Requirements

• A high level of control over how service logic is designed and
developed. Depending on the level of autonomy being sought,
this may also involve control over the supporting data models.

• A distributable deployment environment, so as to allow the
service to be moved, isolated, or composed as required.

• An infrastructure capable of supporting desired
autonomy levels.

Table A.5
A profile for the Service Autonomy principle

ptg20131482

298 Appendix A: Service-Orientation Principles Reference

Service Statelessness

Short Defi nition “Services minimize statefulness.”

Long Defi nition “Services minimize resource consumption by deferring the management
of state information when necessary.”

Goals • To increase service scalability.

• To support the design of agnostic service logic and improve the
potential for service reuse.

Design
Characteristics

What makes this somewhat of a unique principle is the fact
that it is promoting a condition of the service that is temporary
in nature. Depending on the service model and state deferral
approach used, different types of design characteristics can be
implemented. Some examples include:

• Highly business process-agnostic logic so that the service is
not designed to retain state information for any specifi c parent
business process.

• Less constrained service contracts so as to allow for the receipt
and transmission of a wider range of state data at runtime.

• Increased amounts of interpretive programming routines
capable of parsing a range of state information delivered by
messages and responding to a range of corresponding action
requests.

Implementation
Requirements

Although state deferral can reduce the overall consumption of
memory and system resources, services designed with state-
lessness considerations can also introduce some performance
demands associated with the runtime retrieval and interpretation
of deferred state data.

Here is a short checklist of common requirements that can be
used to assess the support of stateless service designs by vendor
technologies and target deployment locations:

• The runtime environment should allow for a service to transi-
tion from an idle state to an active processing state in a highly
effi cient manner.

ptg20131482

Service Statelessness 299

• Enterprise-level or high-performance XML parsers and hard-
ware accelerators (and SOAP processors) should be provided to
allow services implemented as Web services to more effi -
ciently parse larger message payloads with less performance
constraints.

• The use of attachments may need to be supported by Web
services to allow messages to include bodies of payload data
that do not undergo interface-level validation or translation to
local formats.

The nature of the implementation support required by the aver-
age stateless service in an environment will depend on the state
deferral approach used within the service-oriented architecture.

Table A.6
A profile for the Service Statelessness principle

ptg20131482

300 Appendix A: Service-Orientation Principles Reference

Service Discoverability

Short Defi nition “Services are discoverable.”

Long Defi nition “Services are supplemented with communicative metadata by which
they can be effectively discovered and interpreted.”

Goals • Services are positioned as highly discoverable resources within
the enterprise.

• The purpose and capabilities of each service are clearly
expressed so that they can be interpreted by humans and soft-
ware programs.

Achieving these goals requires foresight and a solid understand-
ing of the nature of the service itself. Depending on the type
of service model being designed, realizing this principle may
require both business and technical expertise.

Design
Characteristics

• Service contracts are equipped with appropriate metadata that
will be correctly referenced when discovery queries are issued.

• Service contracts are further outfi tted with additional meta
information that clearly communicates their purpose and
capabilities to humans.

• If a service registry exists, registry records are populated with
the same attention to meta information as just described.

• If a service registry does not exist, service profi le documents
are authored to supplement the service contract and to form
the basis for future registry records.

ptg20131482

Service Discoverability 301

Implementation
Requirements

• The existence of design standards that govern the meta
information used to make service contracts discoverable and
interpretable, as well as guidelines for how and when service
contracts should be further supplemented with annotations.

• The existence of design standards that establish a consistent
means of recording service meta information outside of the
contract. This information is either collected in a supplemental
document in preparation for a service registry, or is placed in
the registry itself.

You may have noticed the absence of a service registry on the
list of implementation requirements. As previously established,
the goal of this principle is to implement design characteristics
within the service, not within the architecture.

Table A.7
A profile for the Service Discoverability principle

ptg20131482

302 Appendix A: Service-Orientation Principles Reference

Service Composability

Short Defi nition “Services are composable.”

Long Defi nition “Services are effective composition participants, regardless of the size
and complexity of the composition.”

Goals When discussing the goals of Service Composability, most of
the goals of Service Reusability apply. This is because service
composition often turns out to be a form of service reuse. In
fact, you may recall that one of the objectives we listed for the
Service Reusability principle was to enable wide-scale service
composition.

However, above and beyond simply attaining reuse, service
composition provides the medium through which we can achieve
what is often classifi ed as the ultimate goal of service-oriented
computing. By establishing an enterprise comprised of solution
logic represented by an inventory of highly reusable services, we
provide the means for a large extent of future business automa-
tion requirements to be fulfi lled through service composition.

Design
Characteristics
For Composition
Member Capabilities

Ideally, every service capability (especially those providing reus-
able logic) is considered a potential composition member. This
essentially means that the design characteristics already estab-
lished by the Service Reusability principle are equally relevant to
building effective composition members.

Additionally, there are two further characteristics emphasized by
this principle:

• The service needs to possess a highly effi cient execution
environment. More so than being able to manage concurrency,
the effi ciency with which composition members perform their
individual processing should be highly tuned.

• The service contract needs to be fl exible so that it can facili-
tate different types of data exchange requirements for similar
functions. This typically relates to the ability of the con-
tract to exchange the same type of data at different levels of
granularity.

The manner in which these qualities go beyond mere reuse has
to do primarily with the service being capable of optimizing its
runtime processing responsibilities in support of multiple, simul-
taneous compositions.

ptg20131482

Service Composability 303

Design
Characteristics for
Composition
Controller
Capabilities

Composition members will often also need to act as controllers
or sub-controllers within different composition confi gurations.
However, services designed as designated controllers are gener-
ally alleviated from many of the high-performance demands
placed on composition members.

These types of services therefore have their own set of design
characteristics:

• The logic encapsulated by a designated controller will almost
always be limited to a single business task. Typically, the task
service model is used, resulting in the common characteristics
of that model being applied to this type of service.

• While designated controllers may be reusable, service reuse
is not usually a primary design consideration. Therefore, the
design characteristics fostered by Service Reusability are
considered and applied where appropriate, but with less of the
usual rigor applied to agnostic services.

• Statelessness is not always as strictly emphasized on desig-
nated controllers as with composition members. Depending
on the state deferral options available by the surrounding
architecture, designated controllers may sometimes need to be
designed to remain fully stateful while the underlying compo-
sition members carry out their respective parts of the
overall task.

Of course, any capability acting as a controller can become a
member of a larger composition, which brings the previously
listed composition member design characteristics into account
as well.

Table A.8
A profile for the Service Composability principle

ptg20131482

This page intentionally left blank

ptg20131482

Appendix B

REST Constraints Reference

ptg20131482

This appendix provides profi le tables for the REST constraints referenced through-
out this book. As explained in Chapter 1, each constraint reference is suffi xed with

the page number of its corresponding profi le table in this appendix.

Every profi le table contains the following sections:

• Short Defi nition – A concise, single-statement defi nition that establishes the funda-
mental purpose of the constraint.

• Long Defi nition – A longer description of the constraint that provides more detail
as to what it is intended to accomplish.

• Application – A list of common steps and requirements for applying the constraint.

• Impacts – A list of positive and negative impacts that can result from the applica-
tion of the constraint.

• Relationship to REST – A brief explanation of how the constraint can relate to other
constraints and overall REST architecture.

• Related REST Goals – A list of REST design goals that are related to and relevant to
the application of this constraint.

• Related Service-Orientation Principles – A list of service-orientation principles
related to the constraint.

• Related SOA Patterns – A list of SOA design patterns related to the constraint.

Note that these profi le tables provide only summarized versions of the constraints.
Complete coverage of the REST constraints, including case studies, is provided in the
SOA with REST: Principles, Patterns & Constraints for Building Enterprise Solutions with
REST book.

For more information about this and other titles in the Prentice Hall Service Technology
Series from Thomas Erl , visit www.servicetechbooks.com . Summarized content of REST-
related topics can also be found online at www.whatisrest.com .

http://www.servicetechbooks.com
http://www.whatisrest.com

ptg20131482

Client-Server 307

Client-Server

Short Defi nition “Solution logic is separated into consumer and service logic that share a
technical contract.”

Long Defi nition “Business automation logic is organized into a solution comprised of
units of consumer and service logic. Service consumers actively invoke
service capabilities by sending messages that comply with a published
technical service contract. Services passively wait to process request
messages and respond to their receipt in compliance with the technical
contract.”

Application • Solution logic must undergo a process whereby it is subjected
to the separation of concerns. This partitions the logic into
units that address defi ned concerns. These units of logic are
composed to form the solution at runtime.

• The c onsumer’s required knowledge about a service and the
service’s required knowledge of its consumers are limited to
the contents of the shared technical contract.

Impacts • Service logic can become more scalable and reusable because it
is freed from having to implement consumer-specifi c logic.

• Service and consumer logic are simplifi ed due to respective
information hiding.

• Service and consumer implementations can be evolved
independently in ways that do not require alterations to the
shared contract.

• Interactions between services and consumers that circumvent
the shared technical contract are prohibited, potentially
resulting in lost opportunities to optimize the solution
architecture.

Relationship to
REST

This is a foundational constraint that defi nes the separation
between service, consumer, and the technical contract they share.
All of the other constraints reference these artifacts and so build
upon this constraint.

Related REST Goals Modifi ability, Scalability

Related
Service-Orientation
Principles

Service Loose Coupling (293), Service Abstraction (294)

Related SOA
Patterns

Capability Composition [328], Contract Denormalization [335],
Decoupled Contract [337], Functional Decomposition [344]

ptg20131482

308 Appendix B: REST Constraints Reference

Stateless

Short Defi nition “Services remain stateless between request/response message exchanges
with service consumers.”

Long Defi nition “The communication between a service and a consumer is regulated
so that the consumer provides all data necessary for the service to
understand each consumer request. Between requests, the service is
not permitted to retain any state data specifi c to its interaction with the
consumer instance, allowing it to exist in a stateless condition. Instead,
session state is deferred to the consumer at the end of each request.”

Application • Consumer logic must be designed to preserve state data
between requests and to issue request messages containing
state data.

• The request message must contain all of the state data neces-
sary for the service to process the request, and the service must
be able to “forget” the state data upon issuing the response
without compromising the overall interaction.

• Because the service is only involved in the automation of a
solution when a consumer is actively making a request to it, in-
between requests the service is “at rest,” and therefore using no
CPU, memory, or network resources on behalf of the consumer.

• The service cannot be required to store data specifi c to a run-
time instance of a service consumer. However, the service is
still allowed to store data that is related to its own functional
context.

ptg20131482

Stateless 309

Impacts • Making consumers responsible for preserving state data allevi-
ates the service from having to store and replicate potentially
volatile data that is only relevant to the individual consumer
program.

• Deferring session state to consumers between requests frees up
service memory resources, allowing the service to scale with
the number of concurrent requests, rather than with the total
number of concurrent consumers.

• Messages can be understood by the service without the need
to have inspected earlier messages. This can simplify service
logic design and further reduce the complexity of debugging.

• The requirement to repeatedly transmit potentially redun-
dant state data can increase network traffi c and processing
overhead.

• Reliability of state data can be both positively and negatively
impacted: Service instance failures can be dealt with grace-
fully because the service does not retain state, but failure of the
service consumer can result in a loss of state data.

Relationship to
REST

While this constraint builds upon Client-Server {307}, it helps
enable Cache {310} and Layered System {313}.

Related REST Goals Modifi ability, Scalability, Performance (negative), Visibility,
Reliability

Related Service-
Orientation
Principles

Service Statelessness (298)

Related SOA
Patterns

State Messaging [362]

ptg20131482

310 Appendix B: REST Constraints Reference

Cache

Short Defi nition “Service consumers can cache and reuse response message data.”

Long Defi nition “The data provided by a prior response message can be temporarily
stored and reused by the service consumer for later request messages.”

Application • Services must be designed to produce accurate cache control
metadata and return it in response messages. Response mes-
sages are marked as cacheable or non-cacheable, either with
explicit message metadata or as part of the contract defi nition.

• An optional consumer-side or intermediary cache repository
enables the consumer to reuse cacheable response data for later
request messages.

• Request messages must be comparable to determine whether
or not they are equivalent.

• Contracts must either include explicit statements about the
cacheability of responses, or must allow for cache control meta-
data to be included in responses.

Impacts • Runtime e ffi ciency is improved by eliminating the need for
duplicate response messages to be transmitted and processed.

• The cache provides a robust and simple mechanism to perform
“lazy replication” of service state data to its consumers.

• Some forms of cached data can become stale and outdated if
not regularly checked and updated.

Relationship to
REST

A number of established techniques for pushing data out to con-
sumers are disallowed by the application of Client-Server {307}
and Stateless {308}. The Cache constraint provides a mechanism
that is permitted by other constraints and one that results in a
simple and robust architecture for reusing and optimizing the
distribution of data.

Related REST Goals Performance, Scalability, Reliability (negative)

Related
Service-Orientation
Principles

n/a

Related SOA
Patterns

State Messaging [362]

ptg20131482

Uniform Contract 311

Uniform Contract

Short Defi nition “Service consumers and services share a common, overarching, generic
technical contract.”

Long Defi nition “Consumers access service capabilities via methods, media types, and
a common resource identifi er syntax that are standardized across many
consumers and services. Service capabilities provide access to resources
that can further provide links to other resources.”

Application • A uniform contract with generic and reusable methods, media
types, and resource identifi er syntax is established for a collec-
tion of consumers and services.

• Consumer message processing logic is designed to be tightly
coupled to the uniform contract.

• Consumer message processing logic is designed to be decou-
pled or loosely coupled to service-specifi c capabilities and
resources.

• Resources can further provide links to other resources that
the service consumer can “discover” and optionally access,
dynamically at runtime.

Impacts • The application of this constraint results in baseline standard-
ization of technical interface characteristics across all services
within the scope of application. This level of standardization
can foster interoperability across all affected services.

• Standardization resulting from Uniform Contract can include
canonical schemas associated with media types. The common
use of such schemas can further improve the extent of intrinsic
interoperability.

• By limiting coupling to the uniform contract and leveraging
dynamic binding, consumers and services can achieve reduced
levels of overall coupling requirements.

• It can be diffi cult to identify and entirely rely on built-in
uniform contract semantics for machine-to-machine interac-
tions that need to be reusable by multiple services and their
consumers.

• Request and response messages based on uniform methods
and media types may contain more information than is strictly
required for a particular interaction. The transfer of redundant
data can increase performance overhead.

ptg20131482

312 Appendix B: REST Constraints Reference

Relationship to
REST

The Uniform Contract constraint builds upon Client-Server {307}
to support reuse and composition of consumers and services.

Related REST Goals Simplicity, Modifi ability, Performance (negative), Visibility

Related
Service-Orientation
Principles

Standardized Service Contract (291), Service Loose Coupling
(293), Service Abstraction (294)

Related SOA
Patterns

Decoupled Contract [337]

ptg20131482

Layered System 313

Layered System

Short Defi nition “A solution can be comprised of multiple architectural layers.”

Long Defi nition “A solution is defi ned in terms of architectural layers, where no one
layer can see past the next. Layers can be comprised of consumers and
services with published contracts or event-driven middleware compo-
nents (intermediaries) that establish processing layers between con-
sumers and services. In either case, logic within a given solution layer
cannot have knowledge beyond the immediate layers above or below it
(within the solution hierarchy).”

Application • Consumers are designed to invoke services without knowledge
of what other services those services may also invoke.

• Intermediaries are added to perform runtime message process-
ing without knowledge of how those messages may be further
processed beyond the next layer of processing.

• The solution architecture is designed to allow new middleware
layers to be added or old middleware layers to be removed
without changing the technical contract between services and
consumers.

• Request and response messages must not reveal which layer
the message comes from to their recipients.

Impacts • At the consumer/service level, this constraint ensures
an extent of information hiding, which naturally reduces
 consumer-to-service coupling.

• At the middleware component level, this constraint advocates
the use of cross-cutting agents capable of performing generic,
utility-centric functions on messages exchanged by consumers
and services.

• These types of architectural layers can provide a fl exible means
of evolving a solution architecture and/or its underlying infra-
structure while minimizing the impact on the solution logic
itself.

• The increased separation and distribution of moving parts
performing solution logic processing can negatively impact the
overall performance overhead (especially when middleware
components are being reused by multiple solutions).

• By limiting knowledge of the entire solution architecture to
consumer designers, opportunities for optimizing the runtime
performance of a solution can be lost.

ptg20131482

314 Appendix B: REST Constraints Reference

Relationship to
REST

The middleware components commonly introduced by the appli-
cation of this constraint can directly support or enable Uniform
Contract {311}, Cache {310}, and Stateless {308}.

Related REST Goals Modifi ability, Scalability, Performance (negative), Simplicity,
Visibility

Related
Service-Orientation
Principles

Service Loose Coupling (293), Service Abstraction (294)

Related SOA
Patterns

Capability Composition [328], Service Agent [357]

ptg20131482

Code-on-Demand 315

Code-on-Demand

Short Defi nition “Service consumers support the execution of deferred service logic.”

Long Defi nition “Service consumer architectures include an execution environment for
logic provided by a service. This deferred logic can be used to extend
the functionality of the consumer, or to temporarily specialize it for a
particular purpose.”

Application • Service consumers are designed to process logic offl oaded to
them by services at runtime.

• Services make explicit decisions as to whether they will
execute logic themselves or defer the execution of that logic to
their consumers.

Impacts • Features can be dynamically added to consumers without the
need for them to be formally upgraded.

• Services are able to avoid becoming execution bottlenecks by
deferring logic to consumers rather than executing the logic
themselves.

• The required execution environments for consumers to process
service logic can introduce security vulnerabilities.

Relationship to
REST

n/a

Related REST Goals Modifi ability, Scalability, Performance, Visibility (negative),
 Simplicity (negative)

Related
Service-Orientation
Principles

n/a

Related SOA
Patterns

n/a

ptg20131482

This page intentionally left blank

ptg20131482

Appendix C

SOA Design Patterns Reference

ptg20131482

This appendix provides profi le tables for the patterns referenced throughout this
book. As explained in Chapter 1, each pattern reference is suffi xed with the page

number of its corresponding profi le table in this appendix.

What’s a Design Pattern?

The simplest way to describe a pattern is that it provides a proven solution to a common
problem individually documented in a consistent format and usually as part of a larger
collection.

The notion of a pattern is already a fundamental part of everyday life. Without acknowl-
edging it each time, we naturally use proven solutions to solve common problems each
day. Patterns in the IT world that revolve around the design of automated systems are
referred to as design patterns.

Design patterns are helpful because they:

• Represent fi eld-tested solutions to common design problems

• Organize design intelligence into a standardized and easily “referenceable” format

• Are generally repeatable by most IT professionals involved with design

• Can be used to ensure consistency in how systems are designed and built

• Can become the basis for design standards

• Are usually fl exible and optional (and openly document the impacts of their appli-
cation and even suggest alternative approaches)

• Can be used as educational aids by documenting specifi c aspects of system design
(regardless of whether they are applied)

• Can sometimes be applied prior and subsequent to the implementation of a system

• Can be supported via the application of other design patterns that are part of the
same collection

• Enrich the vocabulary of a given IT fi eld because each pattern is given a
 meaningful name

ptg20131482

What’s a Design Pattern? 319

Furthermore, because the solutions provided by design patterns are proven, their con-
sistent application tends to naturally improve the quality of system designs.

Let’s provide a simple (non-SOA-related) example of a design pattern that addresses a
user interface design problem:

Problem: How can users be limited to entering the value of a form fi eld to a set of predefi ned
values?

Solution: Use a drop-down list populated with the predefi ned values as the input fi eld.

What this example also highlights is the fact that the solution provided by a given pat-
tern may not necessarily represent the only suitable solution for that problem. In fact,
there can be multiple patterns that provide alternative solutions for the same problem.
Each solution will have its own requirements and consequences, and it is up to the prac-
titioner to determine which pattern is most appropriate.

In the previous example, a different solution to the stated problem would be to use a
list box instead of a drop-down list. This alternative would form the basis of a sepa-
rate design pattern description. The user-interface designer can study and compare
both patterns to learn about the benefi ts and trade-offs of each. A drop-down list, for
instance, takes up less space than a list box but requires that a user always perform a
separate action to access the list. Because a list box can display more fi eld lines at the
same time, the user may have an easier time locating the desired value.

NOTE

Even though design patterns provide proven design solutions, their mere use cannot
guarantee that design problems are always solved as required. Many factors weigh in to the
ultimate success of using a design pattern, including constraints imposed by the imple-
mentation environment, competency of the practitioners, diverging business requirements,
and so on. All of these represent aspects that affect the extent to which a pattern can be
successfully applied.

ptg20131482

320 Appendix C: SOA Design Patterns Reference

What’s a Design Pattern Language?

A pattern language is a set of related patterns that act as building blocks, in that they can
be carried out in one or more predefi ned or suggested pattern sequences where each
subsequent pattern builds upon the former. The notion of a pattern language originated
in building architecture as did the term pattern sequence used in association with the
order in which patterns can be carried out.

Some pattern languages are open-ended, allowing patterns to be combined into a vari-
ety of pattern sequences, while others are more structured whereby groups of patterns
are presented in a suggested application order. This order is generally based on the
granularity of the patterns, in that coarser-grained patterns are applied prior to fi ner-
grained patterns that then build upon or extend the foundation established by the
coarse-grained patterns. In these types of pattern languages, the manner in which pat-
terns can be organized into pattern sequences is limited to how they are applied within
the groups.

Structured pattern languages are helpful because they:

• Can organize groups of fi eld-tested design patterns into proposed, fi eld-tested
application sequences

• Ensure consistency in how particular design goals are achieved (because by carry-
ing out sets of interdependent patterns in a proven order, the quality of the results
can be more easily guaranteed)

• Are effective learning tools that can provide insight into how and why a particular
method or technique should be applied as well as the effects of its application

• Provide an extra level of depth in relation to pattern application (because they
document the individual patterns plus the cumulative effects of their application)

• Are fl exible in that the ultimate pattern application sequence is up to the practitio-
ner (and also because the application of any pattern within the overall language
can be optional)

The SOA Design Patterns book provides an open-ended, master pattern language for
SOA. The extent to which different patterns are related can vary, but overall they share
a common objective, and endless pattern sequences can be explored.

ptg20131482

Pattern Profi les 321

Pattern Profiles

Every profi le table contains the following parts:

• Requirement – A requirement is a concise, single-sentence statement that presents
the fundamental requirement addressed by the pattern in the form of a question.
Every pattern description begins with this statement.

• Icon – Each pattern description is accompanied by an icon image that acts as a
visual identifi er. The icons are displayed together with the requirement statements
in each pattern profi le.

• Problem – The issue causing a problem and the effects of the problem. It is this
problem for which the pattern is expected to provide a solution.

• Solution – This represents the design solution proposed by the pattern to solve the
problem and fulfi ll the requirement.

• Application – This part is dedicated to describing how the pattern can be applied. It
can include guidelines, implementation details, and sometimes even a suggested
process.

• Impacts – This part highlights common consequences, costs, and requirements
associated with the application of a pattern and may also provide alternatives that
can be considered.

• Principles – References to related service-orientation principles.

• Architecture – References to related SOA architecture types.

Note that these profi le tables provide only summarized versions of the patterns.
 Complete coverage of SOA design patterns, including case studies, is provided in the
SOA Design Patterns book.

For more information about this and other titles in the Prentice Hall Service Technology
Series from Thomas Erl , visit www.servicetechbooks.com . Summarized versions of all
SOA pattern profi les can be found online at www.soapatterns.org .

http://www.servicetechbooks.com
http://www.soapatterns.org

ptg20131482

322 Appendix C: SOA Design Patterns Reference

Agnostic Capability
By Thomas Erl

How can multi-purpose service logic be made effectively consumable
and composable?

Problem Service capabilities derived from specifi c concerns may not
be useful to multiple service consumers, thereby reducing the
reusability potential of the agnostic service.

Solution Agnostic service logic is partitioned into a set of well-defi ned
capabilities that address common concerns not specifi c to any one
problem. Through subsequent analysis, the agnostic context of
capabilities is further refi ned.

Application Service capabilities are defi ned and iteratively refi ned through
proven analysis and modeling processes.

Impacts The defi nition of each service capability requires extra up-front
analysis and design effort.

Principles Standardized Service Contract (291), Service Reusability (295),
 Service Composability (302)

Architecture Service

ptg20131482

Agnostic Context 323

Agnostic Context
By Thomas Erl

How can multi-purpose service logic be positioned as an effective
enterprise resource?

Problem Multi-purpose logic grouped together with single purpose logic
results in programs with little or no reuse potential that introduce
waste and redundancy into an enterprise.

Solution Isolate logic that is not specifi c to one purpose into separate services
with distinct agnostic contexts.

Application Agnostic service contexts are defi ned by carrying out service-
oriented analysis and service modeling processes.

Impacts This pattern positions reusable solution logic at an enterprise
level, potentially bringing with it increased design complexity and
enterprise governance issues.

Principles Service Reusability (295)

Architecture Service

ptg20131482

324 Appendix C: SOA Design Patterns Reference

Atomic Service Transaction
By Thomas Erl

How can a transaction with rollback capability be propagated
across messaging-based services?

Problem When runtime activities that span multiple services fail, the
parent business task is incomplete and actions performed and
changes made up to that point may compromise the integrity of the
underlying solution and architecture.

Solution Runtime service activities can be wrapped in a transaction with
rollback feature that resets all actions and changes if the parent
business task cannot be successfully completed.

Application A transaction management system is made part of the inventory
architecture and then used by those service compositions that
require rollback features.

Impacts Transacted service activities can consume more memory because of
the requirement for each service to preserve its original state until it
is notifi ed to rollback or commit its changes.

Principles Service Statelessness (298)

Architecture Inventory, Composition

ptg20131482

Canonical Expression 325

Canonical Expression
By Thomas Erl

How can service contracts be consistently understood
and interpreted?

Problem Service contracts may express similar capabilities in different ways,
leading to inconsistency and risking misinterpretation.

Solution Service contracts are standardized using naming conventions.

Application Naming conventions are applied to service contracts as part of
formal analysis and design processes.

Impacts The use of global naming conventions introduces enterprise-wide
standards that need to be consistently used and enforced.

Principles Standardized Service Contract (291), Service Discoverability (300)

Architecture Enterprise, Inventory, Service

ptg20131482

326 Appendix C: SOA Design Patterns Reference

Canonical Schema
By Thomas Erl

How can services be designed to avoid data model
transformation?

Problem Services with disparate models for similar data impose
transformation requirements that increase development effort,
design complexity, and runtime performance overhead.

Solution Data models for common information sets are standardized across
service contracts within an inventory boundary.

Application Design standards are applied to schemas used by service contracts
as part of a formal design process.

Impacts Maintaining the standardization of contract schemas can introduce
signifi cant governance effort and cultural challenges.

Principles Standardized Service Contract (291)

Architecture Inventory, Service

ptg20131482

Canonical Versioning 327

Canonical Versioning
By Thomas Erl

How can service contracts within the same service inventory
be versioned with minimal impact?

Problem Service contracts within the same service inventory that are
versioned differently will cause numerous interoperability and
governance problems.

Solution Service contract versioning rules and the expression of version
information are standardized within a service inventory boundary.

Application Governance and design standards are required to ensure consistent
versioning of service contracts within the inventory boundary.

Impacts The creation and enforcement of the required versioning standards
introduce new governance demands.

Principles Standardized Service Contract (291)

Architecture Service, Inventory

ptg20131482

328 Appendix C: SOA Design Patterns Reference

Capability Composition
By Thomas Erl

How can a service capability solve a problem that requires logic
outside of the service boundary?

Problem A capability may not be able to fulfi ll its processing requirements
without adding logic that resides outside of its service’s functional
context, thereby compromising the integrity of the service context
and risking service denormalization.

Solution When requiring access to logic that falls outside of a service’s
boundary, capability logic within the service is designed to
compose one or more capabilities in other services.

Application The functionality encapsulated by a capability includes logic that
can invoke other capabilities from other services.

Impacts Carrying out composition logic requires external invocation, which
adds performance overhead and decreases service autonomy.

Principles All

Architecture Inventory, Composition, Service

ptg20131482

Capability Recomposition 329

Capability Recomposition
By Thomas Erl

How can the same capability be used to help solve multiple problems?

Problem Using agnostic service logic to only solve a single problem is
wasteful and does not leverage the logic’s reuse potential.

Solution Agnostic service capabilities can be designed to be repeatedly
invoked in support of multiple compositions that solve multiple
problems.

Application Effective recomposition requires the coordinated, successful, and
repeated application of several additional patterns.

Impacts Repeated service composition demands existing and persistent
standardization and governance.

Principles All

Architecture Inventory, Composition, Service

ptg20131482

330 Appendix C: SOA Design Patterns Reference

Compensating Service Transaction
By Clemens Utschig-Utschig, Berthold Maier, Bernd Trops, Hajo Normann,
Torsten Winterberg, Brian Loesgen, Mark Little

How can composition runtime exceptions be consistently
accommodated without requiring services to lock resources?

Problem Whereas uncontrolled runtime exceptions can jeopardize a service
composition, wrapping the composition in an atomic transaction
can tie up too many resources, thereby negatively affecting
performance and scalability.

Solution Compensating routines are introduced, allowing runtime
exceptions to be resolved with the opportunity for reduced resource
locking and memory consumption.

Application Compensation logic is pre-defi ned and implemented as part of the
parent composition controller logic or via individual “undo” service
capabilities.

Impacts Unlike atomic transactions that are governed by specifi c rules, the
use of compensation logic is open-ended and can vary in its actual
effectiveness.

Principles Service Loose Coupling (293)

Architecture Inventory, Composition

ptg20131482

Composition Autonomy 331

Composition Autonomy
By Thomas Erl

How can compositions be implemented to minimize loss of
autonomy?

Problem Composition controller services naturally lose autonomy when
delegating processing tasks to composed services, some of which
may be shared across multiple compositions.

Solution All composition participants can be isolated to maximize the
autonomy of the composition as a whole.

Application The agnostic member services of a composition are redundantly
implemented in an isolated environment together with the task
service.

Impacts Increasing autonomy on a composition level results in increased
infrastructure costs and government responsibilities.

Principles Service Autonomy (297), Service Reusability (295), Service
Composability (302)

Architecture Composition

ptg20131482

332 Appendix C: SOA Design Patterns Reference

Concurrent Contracts
By Thomas Erl

How can a service facilitate multi-consumer coupling requirements
and abstraction concerns at the same time?

Problem A service’s contract may not be suitable for or applicable to all
potential service consumers.

Solution Multiple contracts can be created for a single service, each targeted
at a specifi c type of consumer.

Application This pattern is ideally applied together with Service Façade [360] to
support new contracts as required.

Impacts Each new contract can effectively add a new service endpoint to an
inventory, thereby increasing corresponding governance effort.

Principles Standardized Service Contract (291), Service Loose Coupling (293),
Service Reusability (295)

Architecture Service

ptg20131482

Containerization 333

Containerization
By Roger Stoffers

 How can an environment be provided with maximum support for
services with high-performance recovery and scalability requirements?

Problem Services deployed on bare metal or virtual servers can impose
a signifi cant footprint. Virtualization improves portability but
introduces a layer of intermediate processing that can further
increase the footprint. Monolithic solution deployments can lead
to widespread reduced performance and availability when any
one service or solution component suffers an outage or a runtime
exception.

Solution Services are deployed independently, or together with composed
services, as autonomous units that are packaged into independently
manageable and autonomous container images, each of which
includes the services’ underlying system dependencies. Tooling is
provided to manage the building, deploying and operating of the
containers.

Application A container management system or container engine is used for the
deployment and operation of containers.

Impacts The utilization of containerization technology can impose
additional infrastructure requirements, as well as associated
increases in the administration overhead of the service architecture.

Principles Service Autonomy (297), Service Loose Coupling (293)

Architecture Composition, Service

ptg20131482

334 Appendix C: SOA Design Patterns Reference

Content Negotiation
By Raj Balasubramanian, David Booth, Thomas Erl

How can a service capability accommodate service consumers with
different data format or representation requirements?

Problem Different service consumers may have differing requirements
for how data provided by a given service capability needs to be
formatted or represented.

Solution Allow the service capability to support alternative formats and
representations by providing a means by which consumer and
service can “negotiate” data characteristics at runtime.

Application The pattern is most commonly applied via HTTP media types that
can defi ne the format and/or representation of message data. The
media type of the data is decoupled from the data itself, allowing
the service to support a range of media types.

The consumer provides metadata in each request message to
identify preferred and supported media types. The service attempts
to accommodate preferences, but can also return the data in other
supported media types when issuing the response message.

Impacts Fewer service capabilities are needed to accommodate variation in
service consumer requirements. Services are able to support old
and new service consumer versions concurrently using the same
service capabilities.

The complexity of cache implementations is increased, and requires
that caching metadata indicate what metadata input to each request
may affect which representation will be returned.

Requesting metadata that is not abstract enough can introduce
consumer to service implementation coupling.

Principles Standardized Service Contract, (291) Service Loose Coupling (293)

Architecture Composition, Service

ptg20131482

Contract Denormalization 335

Contract Denormalization
By Thomas Erl

How can a service contract facilitate consumer programs with
differing data exchange requirements?

Problem Services with strictly normalized contracts can impose unnecessary
functional and performance demands on some consumer programs.

Solution Service contracts can include a measured extent of denormalization,
allowing multiple capabilities to redundantly express core functions
in different ways for different types of consumer programs.

Application The service contract is carefully extended with additional
capabilities that provide functional variations of a primary
capability.

Impacts Overuse of this pattern on the same contract can dramatically
increase its size, making it diffi cult to interpret and unwieldy to
govern.

Principles Standardized Service Contract (291), Service Loose Coupling (293)

Architecture Service

ptg20131482

336 Appendix C: SOA Design Patterns Reference

Cross-Domain Utility Layer
By Thomas Erl

How can redundant utility logic be avoided across domain
service inventories?

Problem While domain service inventories may be required for independent
business governance, they can impose unnecessary redundancy
within utility service layers.

Solution A common utility service layer can be established, spanning two or
more domain service inventories.

Application A common set of utility services needs to be defi ned and
standardized in coordination with service inventory owners.

Impacts Increased effort is required to coordinate and govern a cross-
inventory utility service layer.

Principles Service Reusability (295), Service Composability (302)

Architecture Enterprise, Inventory

ptg20131482

Decoupled Contract 337

Decoupled Contract
By Thomas Erl

How can a service express its capabilities independently of its
implementation?

Problem For a service to be positioned as an effective enterprise resource,
it must be equipped with a technical contract that exists
independently from its implementation yet still in alignment with
other services.

Solution The service contract is physically decoupled from its
implementation.

Application A service’s technical interface is physically separated and subject to
relevant service-orientation design principles.

Impacts Service functionality is limited to the feature-set of the decoupled
contract medium.

Principles Standardized Service Contract (291), Service Loose Coupling (293)

Architecture Service

ptg20131482

338 Appendix C: SOA Design Patterns Reference

Domain Inventory
By Thomas Erl

How can services be delivered to maximize recomposition when
enterprise-wide standardization is not possible?

Problem Establishing a single enterprise service inventory may be
unmanageable for some enterprises, and attempts to do so may
jeopardize the success of an SOA adoption as a whole.

Solution Services can be grouped into manageable, domain-specifi c service
inventories, each of which can be independently standardized,
governed, and owned.

Application Inventory domain boundaries need to be carefully established.

Impacts Standardization disparity between domain service inventories
imposes transformation requirements and reduces the overall
benefi t potential of the SOA adoption.

Principles Standardized Service Contract (291), Service Abstraction (294),
Service Composability (302)

Architecture Enterprise, Inventory

ptg20131482

Dual Protocols 339

Dual Protocols
By Thomas Erl

How can a service inventory overcome the limitations of its
canonical protocol while still remaining standardized?

Problem Canonical Protocol requires that all services conform to the use of
the same communications technology; however, a single protocol
may not be able to accommodate all service requirements, thereby
introducing limitations.

Solution The service inventory architecture is designed to support services
based on primary and secondary protocols.

Application Primary and secondary service levels are created and collectively
represent the service endpoint layer. All services are subject to
standard service-orientation design considerations and specifi c
guidelines are followed to minimize the impact of not following
Canonical Protocol.

Impacts This pattern can lead to a convoluted inventory architecture,
increased governance effort and expense, and (when poorly
applied) an unhealthy dependence on Protocol Bridging. Because
the endpoint layer is semi-federated, the quantity of potential
consumers and reuse opportunities is decreased.

Principles Standardized Service Contract (291), Service Loose Coupling
(293), Service Abstraction (294), Service Autonomy (297), Service
Composability (302)

Architecture Inventory, Service

ptg20131482

340 Appendix C: SOA Design Patterns Reference

Enterprise Inventory
By Thomas Erl

How can services be delivered to maximize recomposition?

Problem Delivering services independently via different project teams across
an enterprise establishes a constant risk of producing inconsistent
service and architecture implementations, compromising
recomposition opportunities.

Solution Services for multiple solutions can be designed for delivery within a
standardized, enterprise-wide inventory architecture wherein they
can be freely and repeatedly recomposed.

Application The enterprise service inventory is ideally modeled in advance,
and enterprise-wide standards are applied to services delivered by
different project teams.

Impacts Signifi cant upfront analysis is required to defi ne an enterprise
inventory blueprint and numerous organizational impacts result
from the subsequent governance requirements.

Principles Standardized Service Contract (291), Service Abstraction (294),
Service Composability (302)

Architecture Enterprise, Inventory

ptg20131482

Entity Abstraction 341

Entity Abstraction
By Thomas Erl

How can agnostic business logic be separated, reused, and governed
independently?

Problem Bundling both process-agnostic and process-specifi c business logic
into the same service eventually results in the creation of redundant
agnostic business logic across multiple services.

Solution An agnostic business service layer can be established, dedicated
to services that base their functional context on existing business
entities.

Application Entity service contexts are derived from business entity models and
then establish a logical layer that is modeled during the analysis
phase.

Impacts The core, business-centric nature of the services introduced by
this pattern require extra modeling and design attention and their
governance requirements can impose dramatic organizational
changes.

Principles Service Loose Coupling (293), Service Abstraction (294), Service
Reusability (295), Service Composability (302)

Architecture Inventory, Composition, Service

ptg20131482

342 Appendix C: SOA Design Patterns Reference

Entity Linking
By Raj Balasubramanian, David Booth, Thomas Erl

How can services expose the inherent relationships between
business entities in order to support loosely-coupled composition?

Problem Business entities have natural relationships, yet entity services are
commonly designed autonomously with no indication of these
relationships. Service consumers acting as composition controllers
are commonly required to have entity linking logic hard-coded in
order to work with entity relationships. This limits the composition
controller to any additional links that may become relevant and
further adds a governance burden to ensure that hard-coded entity
linking logic is kept in synch with the business.

Solution Services inform their consumers about the existence of related
entities as part of the consumer’s interactions with the services.

Application Links are included in relevant response messages from the service.
Service consumers are able to navigate from entity to entity by
following these links, and accumulate further business knowledge
along the way. This allows service consumers with little up-front
entity linking logic to correctly compose entity services based on
their relationships.

Impacts Resource identifi ers representing business entities need to remain
relatively stable over the lifespan of the business entities they
identify. Once an identifi er is known it can be referred to in the
future again by the same service consumers.

Links can be diffi cult to defi ne if identifi ers for business entities
are specifi c to the services that own them. The application of
Lightweight Endpoint can help achieve a uniform syntax for linked
identifi ers.

Links are not valuable if the service consumer is unable to
access information about the linked entity. Therefore, the further
application of Reusable Contract [355] can ensure that service
consumers are able to interact with linked entities.

Principles Service Reusability (295), Service Abstraction (294),
Service Composability (302)

Architecture Inventory, Service

ptg20131482

Event-Driven Messaging 343

Event-Driven Messaging
By Mark Little, Thomas Rischbeck, Arnaud Simon

How can service consumers be automatically notifi ed of
runtime service events?

Problem Events that occur within the functional boundary encapsulated by
a service may be of relevance to service consumers, but without
resorting to ineffi cient polling-based interaction, the consumer has
no way of learning about these events.

Solution The consumer establishes itself as a subscriber of the service. The
service, in turn, automatically issues notifi cations of relevant events
to this and any of its subscribers.

Application A messaging framework is implemented capable of supporting
the publish-and-subscribe MEP and associated complex event
processing and tracking.

Impacts Event-driven message exchanges cannot easily be incorporated as
part of Atomic Service Transaction [324], and publisher/subscriber
availability issues can arise.

Principles Standardized Service Contract (291), Service Loose Coupling (293),
Service Autonomy (297)

Architecture Inventory, Composition

ptg20131482

344 Appendix C: SOA Design Patterns Reference

Functional Decomposition
By Thomas Erl

How can a large business problem be solved without having
to build a standalone body of solution logic?

Problem To solve a large, complex business problem a corresponding amount
of solution logic needs to be created, resulting in a self-contained
application with traditional governance and reusability constraints.

Solution The large business problem can be broken down into a set of
smaller, related problems, allowing the required solution logic to
also be decomposed into a corresponding set of smaller, related
solution logic units.

Application Depending on the nature of the large problem, a service-oriented
analysis process can be created to cleanly deconstruct it into smaller
problems.

Impacts The ownership of multiple smaller programs can result in increased
design complexity and governance challenges.

Principles n/a

Architecture Service

ptg20131482

Idempotent Capability 345

Idempotent Capability
By Cesare Pautasso, Herbjörn Wilhelmsen

How can a service capability safely accept multiple copies of the
same message to handle communication failure?

Problem Network and server hardware failure can lead to lost messages,
resulting in cases where a service consumer receives no response
to its request. Attempts to reissue the request message can lead to
unpredictable or undesirable behavior when the service capability
inadvertently receives multiple copies of the same request message.

Solution Design service capabilities with idempotent logic that enables them
to safely accept repeated message exchanges.

Application Idempotency guarantees that repeated invocations of a service
capability are safe and will have no negative effect.

Idempotent capabilities are generally limited to read-only data
retrieval and queries. For capabilities that do request changes to
service state, their logic is generally based on “set,” “put” or “delete”
actions that have a post-condition that does not depend on the
original state of the service.

The design of an idempotent capability can include the use of a
unique identifi er with each request so that repeated requests (with
the same identifi er value) that have already been processed will be
discarded or ignored by the service capability, rather than being
processed again.

Impacts The use of a unique identifi er to defi ne an idempotent capability
requires session state to be reliably recorded by the service and
preserved across server hardware failures. This can harm the
scalability of the service, and may be further complicated if
redundant service implementations are operating at different sites
that experience network failures.

Not all service capabilities can be idempotent. Potentially unsafe
capabilities include those that need to perform “increment,”
“reverse” or “escalate” transition functions, where the post-
execution condition is dependent upon the original state of the
service.

Principles Standardized Service Contract (291), Service Statelessness (298),
Service Composability (302)

Architecture Inventory, Composition, Service

ptg20131482

346 Appendix C: SOA Design Patterns Reference

Inventory Endpoint
By Thomas Erl

How can a service inventory be shielded from external access while
still offering service capabilities to external consumers?

Problem A group of services delivered for a specifi c inventory may provide
capabilities that are useful to services outside of that inventory.
However, for security and governance reasons, it may not be
desirable to expose all services or all service capabilities to external
consumers.

Solution Abstract the relevant capabilities into an endpoint service that acts
as a the offi cial inventory entry point dedicated to a specifi c set of
external consumers.

Application The endpoint service can expose a contract with the same
capabilities as its underlying services, but augmented with policies
or other characteristics to accommodate external consumer
interaction requirements.

Impacts Endpoint services can increase the governance freedom of
underlying services but can also increase governance effort by
introducing redundant service logic and contracts into an inventory.

Principles Standardized Service Contract (291), Service Loose Coupling (293),
Service Abstraction (294)

Architecture Inventory

ptg20131482

Legacy Wrapper 347

Legacy Wrapper
By Thomas Erl, Satadru Roy

How can wrapper services with non-standard contracts be prevented
from spreading indirect consumer-to-implementation coupling?

Problem Wrapper services required to encapsulate legacy logic are often
forced to introduce a non-standard service contract with high
technology coupling requirements, resulting in a proliferation
of implementation coupling throughout all service consumer
programs.

Solution The non-standard wrapper service can be replaced by or further
wrapped with a standardized service contract that extracts,
encapsulates, and possibly eliminates legacy technical details from
the contract.

Application A custom service contract and required service logic need to be
developed to represent the proprietary legacy interface.

Impacts The introduction of an additional service adds a layer of processing
and associated performance overhead.

Principles Standardized Service Contract (291), Service Loose Coupling (293),
Service Abstraction (294)

Architecture Service

ptg20131482

348 Appendix C: SOA Design Patterns Reference

Logic Centralization
By Thomas Erl

How can the misuse of redundant service logic be avoided?

Problem If agnostic services are not consistently reused, redundant
functionality can be delivered in other services, resulting in
problems associated with inventory denormalization and service
ownership and governance.

Solution Access to reusable functionality is limited to offi cial agnostic
services.

Application Agnostic services need to be properly designed and governed, and
their use must be enforced via enterprise standards.

Impacts Organizational issues reminiscent of past reuse projects can raise
obstacles to applying this pattern.

Principles Service Reusability (295), Service Composability (302)

Architecture Inventory, Composition, Service

ptg20131482

Microservice Deployment 349

Microservice Deployment
By Paulo Merson

 How can a service be deployed independently to avoid the limitations
imposed by a monolithic deployment?

Problem Services and other components of a software solution are
packaged together in a monolithic deployment bundle. Deploying
a new version of a service that is part of the solution can require
redeploying the entire solution. Also, there is less fl exibility to
confi gure service-specifi c scalability, availability, persistence,
monitoring, and security logic.

Solution Each service is treated as an independent product and is deployed
is an isolated package that contributes to service autonomy.

Application Services are packaged and deployed in a highly autonomous
environment that may utilize containerization technology.
Packaging and deployment of services are typically highly
automated. Services are commonly designed for use with HTTP/
REST and to support asynchronous inter-service communication.

Impacts Services can be developed and evolved more independently. Service
deployments can be tailored and new versions can be released
with minimal downtime. An increased memory footprint may be
required and performance overhead can be imposed due to the
increased need for network-based communication.

Principles Service Autonomy (297), Service Loose Coupling (293)

Architecture Composition, Service

NOTE

“Microservice” is an industry term that can be used for services that comply to the micro-
service model and to which service-orientation has been applied (and are therefore part of
an SOA environment), as well as for services that are not part of an SOA environment. As
part of the SOA patterns catalog, the Microservice Deployment pattern is authored solely for
services that are part of an SOA environment and, most commonly, to which the Micro Task
Abstraction [350] pattern has been applied.

ptg20131482

350 Appendix C: SOA Design Patterns Reference

Micro Task Abstraction
By Thomas Erl

How can non-agnostic logic with specialized processing requirements
be separated and governed independently?

Problem Grouping non-agnostic logic with specialized processing and
deployment requirements together with non-agnostic logic that
does not have such requirements can compromise the former’s
ability to consistently fulfi ll its requirements.

Solution Individual units of non-agnostic logic with specialized processing
and deployment requirements are separated using the microservice
model and abstracted into a microservice layer in which there is
the architectural freedom to tailor environments in support of
specialized service processing and deployment requirements.

Application Once non-agnostic business process logic has been separated
from agnostic logic, it is reviewed to identify units of logic with
specialized processing and deployment requirements suitable for
the microservice layer.

Impacts The abstraction of micro task logic into a separate service
layer can introduce analysis, design and governance overhead.
The Microservice Deployment [349] pattern is commonly
applied to micro task logic in order to realize the necessary
service deployment environment. This can introduce disparate
communication protocols and further demand specialized
implementation technology that may impose new infrastructure,
administration and governance requirements.

Principles Service Abstraction (294), Service Autonomy (297), Service
Composability (302), Service Loose Coupling (293)

Architecture Composition, Inventory, Service

ptg20131482

Non-Agnostic Context 351

Non-Agnostic Context
By Thomas Erl

How can single-purpose service logic be positioned as an effective
enterprise resource?

Problem Non-agnostic logic that is not service-oriented can inhibit the
effectiveness of service compositions that utilize agnostic services.

Solution Non-agnostic solution logic suitable for service encapsulation can be
located within services that reside as offi cial members of a service
inventory.

Application A single-purpose functional service context is defi ned.

Impacts Although they are not expected to provide reuse potential, non-
agnostic services are still subject to the rigor of service-orientation.

Principles Standardized Service Contract (291), Service Composability (302)

Architecture Service

ptg20131482

352 Appendix C: SOA Design Patterns Reference

Partial State Deferral
By Thomas Erl

How can services be designed to optimize resource
consumption while still remaining stateful?

Problem Service capabilities may be required to store and manage large
amounts of state data, resulting in increased memory consumption
and reduced scalability.

Solution Even when services are required to remain stateful, a subset of their
state data can be temporarily deferred.

Application Various state management deferral options exist, depending on the
surrounding architecture.

Impacts Partial state management deferral can add to design complexity and
bind a service to the architecture.

Principles Service Statelessness (298)

Architecture Inventory, Service

ptg20131482

Process Abstraction 353

Process Abstraction
By Thomas Erl

How can non-agnostic process logic be separated and governed
independently?

Problem Grouping task-centric logic together with task-agnostic logic
hinders the governance of the task-specifi c logic and the reuse of
the agnostic logic.

Solution A dedicated parent business process service layer is established
to support governance independence and the positioning of task
services as potential enterprise resources.

Application Business process logic is typically fi ltered out after utility and
entity services have been defi ned, allowing for the defi nition of task
services that comprise this layer.

Impacts In addition to the modeling and design considerations associated
with creating task services, abstracting parent business process
logic establishes an inherent dependency on carrying out that logic
via the composition of other services.

Principles Service Loose Coupling (293), Service Abstraction (294), Service
Composability (302)

Architecture Inventory, Composition, Service

ptg20131482

354 Appendix C: SOA Design Patterns Reference

Redundant Implementation
By Thomas Erl

How can the reliability and availability of a service be increased?

Problem A service that is being actively reused introduces a potential
single point of failure that may jeopardize the reliability of all
compositions in which it participates if an unexpected error
condition occurs.

Solution Reusable services can be deployed via redundant implementations
or with failover support.

Application The same service implementation is redundantly deployed or
supported by infrastructure with redundancy features.

Impacts Extra governance effort is required to keep all redundant
implementations in synch.

Principles Service Autonomy (297)

Architecture Service

ptg20131482

Reusable Contract 355

Reusable Contract
By Raj Balasubramanian, Benjamin Carlyle, Thomas Erl, Cesare Pautasso

How can service consumers compose services without having
to couple themselves to service-specifi c contracts?

Problem To access a service capability of a service with a service-specifi c contract, the
service consumer must be designed to couple itself to the service contract.
When the service contract changes, the service consumer may no longer be
functional. To access a new version of the service contract, or to access other
service contracts in order to compose other services, the service consumer
must be subjected to additional development cycles, thereby incurring time,
effort, and expense.

Solution Limit tight coupling to a common, reusable technical contract that is shared
by multiple services. The technical contract provides only generic, high-level
functions that are less likely to be impacted when service logic changes.

Application A reusable service contract can provide abstract and agnostic data exchange
methods, none of which are related to a specifi c business function. Methods
within a reusable contract are typically focused on types of data rather than
on the business context of the data.

The set of methods of the reusable contract is complemented by service-
specifi c resource identifi ers and media types to apply the context established
by reusable methods to individual service capabilities.

HTTP provides a reusable contract via generic methods, such as GET, PUT,
and DELETE, that allow consumer programs to access Web-based resources
by further providing resource identifi ers. The combination of the resource
identifi er and the HTTP method and media type can comprise a service-
specifi c capability.

A reusable contract can also be created using a centralized WSDL defi nition,
as long as the operations defi ned are suffi ciently generic.

Impacts Sharing the same contract across services increases the importance of getting
the contract right, both initially, and over the contract’s lifetime.

The reusable contract may still need to change if new services with new high-
level functional requirements are introduced into the service inventory.

The reusable contract can lack suffi cient metadata to effectively enable a
service to be discovered. Service-specifi c metadata may need to be maintained
separately from the reusable contract defi nition to ensure that service
consumers are able to select the correct service capability with which to
interact.

Principles Standardized Service Contract (291), Service Loose Coupling (293), Service
Abstraction (294), Service Discoverability (300), Service Composability (302)

Architecture Inventory, Composition, Service

ptg20131482

356 Appendix C: SOA Design Patterns Reference

Schema Centralization
By Thomas Erl

How can service contracts be designed to avoid redundant data
representation?

Problem Different service contracts often need to express capabilities that
process similar business documents or data sets, resulting in
redundant schema content that is diffi cult to govern.

Solution Select schemas that exist as physically separate parts of the service
contract are shared across multiple contracts.

Application Up-front analysis effort is required to establish a schema layer
independent of and in support of the service layer.

Impacts Governance of shared schemas becomes increasingly important
as multiple services can form dependencies on the same schema
defi nitions.

Principles Standardized Service Contract (291), Service Loose Coupling (293)

Architecture Inventory, Service

ptg20131482

Service Agent 357

Service Agent
By Thomas Erl

How can event-driven logic be separated and governed
independently?

Problem Service compositions can become large and ineffi cient, especially
when required to invoke granular capabilities across multiple
services.

Solution Event-driven logic can be deferred to event-driven programs that
don’t require explicit invocation, thereby reducing the size and
performance strain of service compositions.

Application Service agents can be designed to automatically respond to
predefi ned conditions without invocation via a published contract.

Impacts The complexity of composition logic increases when it is distributed
across services, and event-driven agents and reliance on service
agents can further tie an inventory architecture to proprietary
vendor technology.

Principles Service Loose Coupling (293), Service Reusability (295)

Architecture Inventory, Composition

ptg20131482

358 Appendix C: SOA Design Patterns Reference

Service Data Replication
By Thomas Erl

How can service autonomy be preserved when services require access
to shared data sources?

Problem Service logic can be deployed in isolation to increase service
autonomy, but services continue to lose autonomy when requiring
access to shared data sources.

Solution Services can have their own dedicated databases with replication to
shared data sources.

Application An additional database needs to be provided for the service and one
or more replication channels need to be enabled between it and the
shared data sources.

Impacts This pattern results in additional infrastructure cost and demands,
and an excess of replication channels can be diffi cult to manage.

Principles Service Autonomy (297)

Architecture Inventory, Service

ptg20131482

Service Encapsulation 359

Service Encapsulation
By Thomas Erl

How can solution logic be made available as a resource of the
enterprise?

Problem Solution logic designed for a single application environment is
typically limited in its potential to interoperate with or be leveraged
by other parts of an enterprise.

Solution Solution logic can be encapsulated by a service so that it is
positioned as an enterprise resource capable of functioning beyond
the boundary for which it is initially delivered.

Application Solution logic suitable for service encapsulation needs to be
identifi ed.

Impacts Service-encapsulated solution logic is subject to additional design
and governance considerations.

Principles n/a

Architecture Service

ptg20131482

360 Appendix C: SOA Design Patterns Reference

Service Façade
By Thomas Erl

How can a service accommodate changes to its contract or
implementation while allowing the core service logic to evolve
independently?

Problem The coupling of the core service logic to contracts and
implementation resources can inhibit its evolution and negatively
impact service consumers.

Solution A service façade component is used to abstract a part of the service
architecture with negative coupling potential.

Application A separate façade component is incorporated into the service
design.

Impacts The addition of the façade component introduces design effort and
performance overhead.

Principles Standardized Service Contract (291), Service Loose Coupling (293)

Architecture Service

ptg20131482

Service Normalization 361

Service Normalization
By Thomas Erl

How can a service inventory avoid redundant service logic?

Problem When delivering services as part of a service inventory, there
is a constant risk that services will be created with overlapping
functional boundaries, making it diffi cult to enable wide-spread
reuse.

Solution The service inventory needs to be designed with an emphasis on
service boundary alignment.

Application Functional service boundaries are modeled as part of a formal
analysis process and persist throughout inventory design and
governance.

Impacts Ensuring that service boundaries are and remain well-aligned
introduces extra up-front analysis and on-going governance effort.

Principles Service Autonomy (297)

Architecture Inventory, Service

ptg20131482

362 Appendix C: SOA Design Patterns Reference

State Messaging
By Anish Karmarkar

How can a service remain stateless while participating in stateful
interactions?

Problem When services are required to maintain state information in
memory between message exchanges with consumers, their
scalability can be comprised, and they can become a performance
burden on the surrounding infrastructure.

Solution Instead of retaining the state data in memory, its storage is
temporarily delegated to messages.

Application Depending on how this pattern is applied, both services and
consumers may need to be designed to process message-based
state data.

Impacts This pattern may not be suitable for all forms of state data, and
should messages be lost, any state information they carried may be
lost as well.

Principles Standardized Service Contract (201), Service Statelessness (298),
Service Composability (302)

Architecture Composition, Service

ptg20131482

State Repository 363

State Repository
By Thomas Erl

How can service state data be persisted for extended periods
without consuming service runtime resources?

Problem Large amounts of state data cached to support the activity within
a running service composition can consume too much memory,
especially for long-running activities, thereby decreasing scalability.

Solution State data can be temporarily written to and then later retrieved
from a dedicated state repository.

Application A shared or dedicated repository is made available as part of the
inventory or service architecture.

Impacts The addition of required write and read functionality increases the
service design complexity and can negatively affect performance.

Principles Service Statelessness (298)

Architecture Inventory, Service

ptg20131482

364 Appendix C: SOA Design Patterns Reference

Utility Abstraction
By Thomas Erl

How can common non-business centric logic be separated, reused,
and independently governed?

Problem When non-business centric processing logic is packaged
together with business-specifi c logic, it results in the redundant
implementation of common utility functions across different
services.

Solution A service layer dedicated to utility processing is established,
providing reusable utility services for use by other services in the
inventory.

Application The utility service model is incorporated into analysis and design
processes in support of utility logic abstraction, and further steps
are taken to defi ne balanced service contexts.

Impacts When utility logic is distributed across multiple services it can
increase the size, complexity, and performance demands of
compositions.

Principles Service Loose Coupling (293), Service Abstraction (294), Service
Reusability (295), Service Composability (302)

Architecture Inventory, Composition, Service

ptg20131482

Validation Abstraction 365

Validation Abstraction
By Thomas Erl

How can service contracts be designed to more easily adapt to
validation logic changes?

Problem Service contracts that contain detailed validation constraints
become more easily invalidated when the rules behind those
constraints change.

Solution Granular validation logic and rules can be abstracted away from
the service contract, thereby decreasing constraint granularity and
increasing the contract’s potential longevity.

Application Abstracted validation logic and rules need to be moved to the
underlying service logic, a different service, a service agent, or
elsewhere.

Impacts This pattern can somewhat decentralize validation logic and can
also complicate schema standardization.

Principles Standardized Service Contract (291), Service Loose Coupling (293),
Service Abstraction (294)

Architecture Service

ptg20131482

366 Appendix C: SOA Design Patterns Reference

Version Identification
By David Orchard, Chris Riley

How can consumers be made aware of service contract version
information?

Problem When an already-published service contract is changed, unaware
consumers will miss the opportunity to leverage the change or may
be negatively impacted by the change.

Solution Versioning information pertaining to compatible and incompatible
changes can be expressed as part of the service contract, both for
communication and enforcement purposes.

Application With Web service contracts, version numbers can be incorporated
into namespace values and as annotations.

Impacts This pattern may require that version information be expressed
with a proprietary vocabulary that needs to be understood by
consumer designers in advance.

Principles Standardized Service Contract (291)

Architecture Service

ptg20131482

Appendix D

The Annotated SOA Manifesto

The SOA Manifesto

The SOA Manifesto Explored

ptg20131482

The SOA Manifesto is a formal declaration that explains the underlying design phi-
losophy of SOA and service-orientation. Authored by a working group comprised

of industry thought leaders, the SOA Manifesto addresses the core values and priorities
of service-orientation. By studying the SOA Manifesto we can gain valuable perspec-
tives and insights into the service-orientation design paradigm.

This appendix fi rst presents the SOA Manifesto and then breaks it down to elaborate
on the meanings and implications of its individual statements. In addition to fostering
a deeper understanding of service-orientation, this exploration of values and priorities
can help determine their compatibility with an organization’s own values, priorities,
and goals.

The SOA Manifesto

The following is the verbatim SOA Manifesto, as originally published at
www.soa-manifesto.org.

Service orientation is a paradigm that frames what you do. Service-oriented architecture (SOA)
is a type of architecture that results from applying service orientation.

We have been applying service orientation to help organizations consistently deliver sustain-
able business value, with increased agility and cost effectiveness, in line with changing business
needs.

Through our work we have come to prioritize:

• Business value over technical strategy

• Strategic goals over project-specifi c benefi ts

• Intrinsic interoperability over custom integration

• Shared services over specifi c-purpose implementations

• Flexibility over optimization

• Evolutionary refi nement over pursuit of initial perfection

That is, while we value the items on the right, we value the items on the left more.

http://www.soa-manifesto.org

ptg20131482

The SOA Manifesto Explored 369

Guiding Principles

We follow these principles:

• Respect the social and power structure of the organization.

• Recognize that SOA ultimately demands change on many levels.

• The scope of SOA adoption can vary. Keep efforts manageable and within meaningful
boundaries.

• Products and standards alone will neither give you SOA nor apply the service orientation
paradigm for you.

• SOA can be realized through a variety of technologies and standards.

• Establish a uniform set of enterprise standards and policies based on industry, de facto,
and community standards.

• Pursue uniformity on the outside while allowing diversity on the inside.

• Identify services through collaboration with business and technology stakeholders.

• Maximize service usage by considering the current and future scope of utilization.

• Verify that services satisfy business requirements and goals.

• Evolve services and their organization in response to real use.

• Separate the different aspects of a system that change at different rates.

• Reduce implicit dependencies and publish all external dependencies to increase robustness
and reduce the impact of change.

• At every level of abstraction, organize each service around a cohesive and manageable unit
of functionality.

The SOA Manifesto Explored

Subsequent to the announcement of the SOA Manifesto, an annotated version was
authored specifi cally for the Next Generation SOA: A Concise Introduction to Service Technol-
ogy & Service-Orientation book. It was published in advance at www.soa-manifesto.com
to facilitate discussion of the manifesto’s statements within the industry. Provided in
this section is the original Annotated SOA Manifesto content with some minor revisions.

http://www.soa-manifesto.com

ptg20131482

370 Appendix D: The Annotated SOA Manifesto

Preamble

Service orientation is a paradigm that frames what you do. Service-oriented architecture (SOA)
is a type of architecture that results from applying service orientation.

From the beginning it was understood that this was to be a manifesto about two dis-
tinct yet closely related topics: the service-oriented architectural model and service ori-
entation, the paradigm through which the architecture is defi ned. The format of this
manifesto was modeled after the Agile Manifesto, which limits content to concise state-
ments that express ambitions, values, and guiding principles for realizing those ambi-
tions and values. Such a manifesto is not a specifi cation, a reference model, or even a
white paper, and without an option to provide actual defi nitions, we decided to add this
preamble in order to clarify how and why these terms are referenced in other parts of
the manifesto document.

We have been applying service orientation…

The service orientation paradigm is best viewed as a method or an approach for real-
izing a specifi c target state that is further defi ned by a set of strategic goals and ben-
efi ts. When we apply service orientation, we shape software programs and technology
architecture in support of realizing this target state. This is what qualifi es technology
architecture as being service-oriented.

…to help organizations consistently deliver sustainable business value, with increased agility
and cost effectiveness…

This continuation of the preamble highlights some of the most prominent and com-
monly expected strategic benefi ts of service-oriented computing. Understanding these
benefi ts helps shed some light on the aforementioned target state we intend to realize as
a result of applying service-orientation.

Agility at a business level is comparable to an organization’s responsiveness. The more
easily and effectively an organization can respond to business change, the more effi -
cient and successful it will be at adapting to the impacts of the change (and further
leveraging whatever benefi ts the change may bring about).

Service-orientation positions services as IT assets that are expected to provide repeated
value over time that far exceeds the initial investment required for their delivery. Cost-
effectiveness relates primarily to this expected return on investment. In many ways,

ptg20131482

The SOA Manifesto Explored 371

an increase in cost-effectiveness goes hand-in-hand with an increase in agility; if there
is more opportunity to reuse existing services, then there is generally less expense
required to build new solutions.

“Sustainable” business value refers to the long-term goals of service-orientation to
establish software programs as services that possess the inherent fl exibility to be con-
tinually composed into new solution confi gurations and evolved to accommodate ever-
changing business requirements.

…in line with changing business needs.

These last six words of the preamble are key to understanding the underlying phi-
losophy of service-oriented computing. The need to accommodate business change on
an ongoing basis is foundational to service-orientation and considered a fundamental
overarching strategic goal.

Priorities

Through our work we have come to prioritize:

The upcoming statements establish a core set of values, each of which is expressed as a
prioritization over something that is also considered of value. The intent of this value
system is to address the hard choices that need to be made on a regular basis in order
for the strategic goals and benefi ts of service-oriented computing to be consistently
realized.

Business value over technical strategy

As stated previously, the need to accommodate business change is an overarching
strategic goal. Therefore, the foundational quality of service-oriented architecture and
of any software programs, solutions, and ecosystems that result from the adoption of
 service-orientation is that they are business-driven. It is not about technology determin-
ing the direction of the business; it is about the business vision dictating the utilization
of technology.

This priority can have a profound ripple effect within the regions of an IT enterprise. It
introduces changes to just about all parts of IT delivery lifecycles, from how we plan for
and fund automation solutions to how we build and govern them. All other values and
principles in the manifesto, in one way or another, support the realization of this value.

ptg20131482

372 Appendix D: The Annotated SOA Manifesto

Strategic goals over project-specifi c benefi ts

Historically, many IT projects focused solely on building applications designed specifi -
cally to automate business process requirements that were current at that time. This ful-
fi lled immediate (tactical) needs, but as more of these single-purpose applications were
delivered, it resulted in an IT enterprise fi lled with islands of logic and data referred
to as application “silos.” As new business requirements would emerge, either new silos
were created or integration channels between silos were established. As yet more busi-
ness change arose, integration channels had to be augmented, even more silos had to
be created, and soon the IT enterprise landscape became convoluted and increasingly
burdensome, expensive, and slow to evolve.

In many ways, service-orientation emerged in response to these problems. It is a para-
digm that provides an alternative to project-specifi c, silo-based, and integrated appli-
cation development by adamantly prioritizing the attainment of long-term, strategic
business goals. The target state advocated by service-orientation does not have tradi-
tional application silos. And even when legacy resources and application silos exist in
environments where service-orientation is adopted, the target state is one where they
are harmonized to whatever extent feasible.

Intrinsic interoperability over custom integration

For software programs to share data they need to be interoperable. If software pro-
grams are not designed to be compatible, they will likely not be interoperable. To enable
interoperability between incompatible software programs requires that they be inte-
grated. Integration is therefore the effort required to achieve interoperability between
disparate software programs.

Although often necessary, customized integration can be expensive and time- consuming
and can lead to fragile architectures that are burdensome to evolve. One of the goals
of service-orientation is to minimize the need for customized integration by shaping
software programs (within a given domain) so that they are natively compatible. This
is a quality referred to as intrinsic interoperability. The design principles encompassed
by the service-orientation paradigm are geared toward establishing intrinsic interoper-
ability on several levels.

Intrinsic interoperability, as a characteristic of software programs that reside within a
given domain, is key to realizing strategic benefi ts, such as increased cost-effectiveness
and agility.

ptg20131482

The SOA Manifesto Explored 373

Shared services over specifi c-purpose implementations

When applied to a meaningful extent, service-orientation principles shape a software
program into a unit of service-oriented logic that can be legitimately referred to as
a service.

Services are equipped with concrete characteristics (such as those that enable intrinsic
interoperability) that directly support the previously described target state. One of these
characteristics, fostered specifi cally by the application of the Service Reusability (295)
principle, is the encapsulation of multi-purpose logic that can be shared and reused in
support of the automation of different business processes.

A shared service establishes itself as an IT asset that can provide repeated business
value while decreasing the expense and effort to deliver new automation solutions.
While there is value in traditional, single-purpose applications that solve tactical busi-
ness requirements, the use of shared services provides greater value in realizing the
strategic goals of service-oriented computing (which again includes an increase in cost-
effectiveness and agility).

Flexibility over optimization

This is perhaps the broadest of the value prioritization statements and is best viewed as
a guiding philosophy for how to better prioritize various considerations when deliver-
ing and evolving individual services and inventories of services.

Optimization primarily refers to the fulfi llment of tactical gains by tuning a given
application design or expediting its delivery to meet immediate needs. There is nothing
undesirable about this, except that it can lead to the aforementioned silo-based environ-
ments when not properly prioritized in relation to fostering fl exibility.

For example, the characteristic of fl exibility goes beyond the ability for services to effec-
tively (and intrinsically) share data. To be truly responsive to ever-changing business
requirements, services must also be fl exible in how they can be combined and aggre-
gated into composite solutions. Unlike traditional distributed applications that often
were relatively static despite the fact that they were componentized, service compo-
sitions need be designed with a level of inherent fl exibility that allows for constant
augmentation. This means that when an existing business process changes or when
a new business process is introduced, we need to be able to add, remove, and extend
services within the composition architecture with minimal (integration) effort. This is
why Service Composability (302) is one of the key service-orientation design principles.

ptg20131482

374 Appendix D: The Annotated SOA Manifesto

Evolutionary refi nement over pursuit of initial perfection

There is a common point of confusion when it comes to the term “agility” in relation
to service-orientation. Some design approaches advocate the rapid delivery of software
programs for immediate gains. This can be considered “tactical agility,” as the focus is
on tactical, short-term benefi t. Service-orientation advocates the attainment of agility on
an organizational or business level with the intention of empowering the organization,
as a whole, to be responsive to change. This form of organizational agility can also be
referred to as “strategic agility” because the emphasis is on longevity in that, with every
software program we deliver, we want to work toward a target state that fosters agility
with long-term strategic value.

For an IT enterprise to enable organizational agility, it must evolve in tandem with the
business. We generally cannot predict how a business will need to evolve over time and
therefore we cannot initially build the perfect services. At the same time, there is usually
a wealth of knowledge already present within an organization’s existing business intel-
ligence that can be harvested during the analysis and modeling stages of SOA projects.

This information, together with service-orientation principles and proven methodolo-
gies, can help us identify and defi ne a set of services that capture how the business
exists and operates today while being suffi ciently fl exible to adapt to how the business
changes over time.

That is, while we value the items on the right, we value the items on the left more.

By studying how these values are prioritized, we gain insight into what distinguishes
service-orientation from other design approaches and paradigms. In addition to estab-
lishing fundamental criteria that we can use to determine how compatible service-
orientation is for a given organization, it can further help determine the extent to which
service-orientation can or should be adopted.

An appreciation of the core values can also help us understand how challenging it may
be to successfully carry out SOA projects within certain environments. For example,
several of these prioritizations may clash head-on with established beliefs and prefer-
ences. In such a case, the benefi ts of service-orientation need to be weighed against
the effort and impact their adoption may have (not just on technology, but also on the
organization and IT culture).

The upcoming guiding principles were provided to help address many of these types
of challenges.

ptg20131482

The SOA Manifesto Explored 375

Guiding Principles

We follow these principles:

So far, the manifesto has established an overall vision as well as a set of core values asso-
ciated with the vision. The remainder of the declaration is comprised of a set of prin-
ciples that are provided as guidance for adhering to the values and realizing the vision.

It’s important to keep in mind that these are guiding principles that were authored spe-
cifi cally in support of this manifesto. They are not to be confused with the design prin-
ciples that comprise service-orientation.

Respect the social and power structure of the organization.

One of the most common SOA pitfalls is approaching adoption as a technology-centric
initiative. Doing so almost always leads to failure because we are simply not prepared
for the inevitable organizational impacts.

The adoption of service-orientation is about transforming the way we automate busi-
ness. However, regardless of what plans we may have for making this transformation
effort happen, we must always begin with an understanding and an appreciation of the
organization, its structure, its goals, and its culture.

The adoption of service-orientation is very much a human experience. It requires sup-
port from those in authority and asks that the IT culture adopt a strategic, community-
centric mindset. We must fully acknowledge and plan for this level of organizational
change in order to receive the necessary long-term commitments required to achieve
the target state of service-orientation.

These types of considerations not only help us determine how to best proceed with
an SOA initiative, they further assist us in defi ning the most appropriate scope and
approach for adoption.

Recognize that SOA ultimately demands change on many levels.

There’s a saying that goes: “Success is being prepared for opportunity.” Perhaps the
number one lesson learned from SOA projects that have been carried out in the past is
that we must fully comprehend and then plan and prepare for the volume and range
of change that is brought about as a result of adopting service-orientation. Here are
some examples.

ptg20131482

376 Appendix D: The Annotated SOA Manifesto

Service-orientation changes how we build automation solutions by positioning soft-
ware programs as IT assets with long-term, repeatable business value. Depending on
the extent to which cloud-based infrastructure may be leveraged, a signifi cant up-front
investment may be required to create an environment comprised of such assets. Fur-
thermore, an ongoing commitment is required to maintain and leverage their value.
So, right out of the gate, changes are required to how we fund, measure, and maintain
systems within the IT enterprise.

Additionally, because service-orientation introduces services that are positioned as
resources of the enterprise, there will be changes in how we own different parts of sys-
tems and regulate their design and usage, not to mention changes to the infrastructure
required to guarantee continuous scalability and reliability. Mature SOA governance
systems and the service technologies can address these concerns.

The scope of SOA adoption can vary. Keep efforts manageable and within meaningful boundaries.

A common myth has been that in order to realize the strategic goals of service- oriented
computing, service-orientation must be adopted on an enterprise-wide basis. This
means establishing and enforcing design and industry standards across the IT enter-
prise so as to create an enterprise-wide inventory of intrinsically interoperable services.
While there is nothing wrong with this ideal, it is not a realistic goal for many organiza-
tions, especially those with larger IT enterprises.

The most appropriate scope for any given SOA adoption effort needs to be determined
as a result of planning and analysis in conjunction with pragmatic considerations, such
as the aforementioned impacts on organizational structures, areas of authority, and cul-
tural changes that are brought about. Taking the Balanced Scope pillar into account
during the planning stages assists in determining a suitable, initial adoption scope
based on an organization’s maturity and readiness.

These factors further help determine a scope of adoption that is deemed manageable.
But for any adoption effort to result in an environment that progresses the IT enterprise
toward the desired strategic target state, the scope must also be meaningful. In other
words, it must be meaningfully cross-silo so that collections of services can be delivered
in relation to each other within a pre-defi ned boundary. In other words, we want to
 create “continents of services,” not the dreaded “islands of services.”

This concept of building independently owned and governed service inventories
within domains of the same IT enterprise is based on the Domain Inventory [338]

ptg20131482

The SOA Manifesto Explored 377

design pattern that was originally published as part of the SOA design patterns catalog
at www.soapatterns. org. This approach reduces many of the risks that are commonly
attributed to “big-bang” SOA projects and furthermore mitigates the impact of both
organizational and technological changes (because the impact is limited to a segmented
and managed scope). It is also an approach that allows for phased adoption where one
domain service inventory can be established at a time.

Products and standards alone will neither give you SOA nor apply the service-orientation
 paradigm for you.

This guiding principle addresses two separate but very much related myths. The fi rst is
that you can buy your way into SOA with modern technology products, and the second
is the assumption that the adoption of industry standards (such as XML, WSDL, SCA,
etc.) will naturally result in service-oriented technology architecture.

The vendor and industry standards communities have been credited with building mod-
ern service technology innovation upon non-proprietary frameworks and platforms.
Everything from service virtualization to cloud computing and grid computing has
helped advance the potential for building sophisticated and complex service- oriented
solutions. However, none of these technologies are exclusive to SOA. You can just as
 easily build silo-based systems in the cloud as you can on your own private servers.

There is no such thing as “SOA in a box” because in order to achieve service-oriented
technology architecture, service-orientation needs to be successfully applied; this, in
turn, requires everything that we design and build to be driven by the unique direction,
vision, and requirements of the business.

SOA can be realized through a variety of technologies and standards.

Service-orientation is a technology-neutral and vendor-neutral paradigm. Service-
oriented architecture is a technology-neutral and vendor-neutral architectural model.
Service-oriented computing can be viewed as a specialized form of distributed comput-
ing. Service-oriented solutions can therefore be built using just about any technologies
and industry standards suitable for distributed computing.

While some technologies (especially those based on industry standards) can increase
the potential of applying some service-orientation design principles, it is really the
potential to fulfi ll business requirements that ultimately determines the most suit-
able choice of technologies and industry standards. SOA design patterns, such as Dual

http://www.soapatterns.org

ptg20131482

378 Appendix D: The Annotated SOA Manifesto

Protocols [339] and Concurrent Contracts [332], support the use and standardization of
alternative service technologies within the same service inventory.

Establish a uniform set of enterprise standards and policies based on industry, de facto, and
 community s tandards.

Industry standards represent non-proprietary technology specifi cations that help estab-
lish, among other things, consistent baseline characteristics (such as transport, inter-
face, message format, etc.) of technology architecture. However, the use of industry
standards alone does not guarantee that services will be intrinsically interoperable.

For two software programs to be fully compatible, additional conventions (such as data
models and policies) need to be adhered to. This is why IT enterprises must establish
and enforce design standards. Failure to properly standardize and regulate the stan-
dardization of services within a given domain will begin to tear at the fabric of interop-
erability upon which the realization of many strategic benefi ts relies.

This guiding principle advocates the use of enterprise design standards and design
principles, such as Standardized Service Contract (291) and Service Loose Coupling
(293). It also reminds us that, whenever possible and feasible, custom design standards
should be based upon and incorporate standards and service-orientation design prin-
ciples already in use by the industry and the community in general.

Pursue uniformity on the outside while allowing diversity on the inside.

Federation can be defi ned as the unifi cation of a set of disparate entities. While allowing
each entity to be independently governed on the inside, all agree to adhere to a com-
mon, unifi ed front.

A fundamental part of service-oriented architecture is the introduction of a federated
endpoint layer that abstracts service implementation details while publishing a set of
endpoints that represent individual services within a given domain in a unifi ed man-
ner. Accomplishing this generally involves achieving unity based on a combination of
industry and design standards. The consistency of this unity across services is key to
realizing intrinsic interoperability, as it represents the primary purpose and responsi-
bility of the Standardized Service Contract (291) design principle.

A federated endpoint layer further helps increase opportunities to explore vendor-
diversity options. For example, one service may need to be built upon a completely

ptg20131482

The SOA Manifesto Explored 379

different platform than another. As long as these services maintain compatible end-
points, the governance of their respective implementations can remain independent.
This not only highlights that services can be built using different implementation medi-
ums (such as EJB, .NET, SOAP, REST, etc.), it also emphasizes that different intermedi-
ary platforms and technologies can be utilized together, as required.

Note that this type of diversity comes with a price. This principle does not advocate
diversifi cation itself—it simply recommends that we allow diversifi cation when justi-
fi ed, so that “best-of-breed” technologies and platforms can be leveraged to maximize
business requirements fulfi llment.

Identify services through collaboration with business and technology stakeholders.

In order for technology solutions to be business-driven, the technology must be in sync
with the business. Therefore, another goal of service-oriented computing is to align
technology and business via the application of service-orientation. The stage at which
this alignment is initially accomplished is during the analysis and modeling processes
that usually precede actual service development and delivery.

The critical ingredient to carrying out service-oriented analysis is to have both busi-
ness and technology experts working hand-in-hand to identify and defi ne candidate
services. For example, business experts can help accurately defi ne functional contexts
pertaining to business-centric services, while technology experts can provide prag-
matic input to ensure that the granularity and defi nition of conceptual services remains
realistic in relation to their eventual implementation environments.

Maximize service usage by considering the current and future scope of utilization.

The extent of a given SOA project may be enterprise-wide or may be limited to a domain
of the enterprise. Whatever the scope, a pre-defi ned boundary is established to encom-
pass an inventory of services that need to be conceptually modeled before they can
be developed. By modeling multiple services in relation to each other, we essentially
establish a blueprint of the services we will eventually be building. This exercise is
critical when attempting to identify and defi ne services that can be shared by different
solutions.

There are various methodologies and approaches that can be used to carry out ser-
vice-oriented analysis stages. However, a common thread among all of them is that
the functional boundaries of services be normalized to avoid redundancy. Even then,

ptg20131482

380 Appendix D: The Annotated SOA Manifesto

normalized services do not necessarily make for highly reusable services. Other factors
come into play, such as service granularity, autonomy, state management, scalability,
composability, and the extent to which service logic is suffi ciently generic so that it can
be effectively reused.

These types of considerations as guided by business and technology expertise provide
the opportunity to defi ne services that capture current utilization requirements while
possessing the fl exibility to adapt to future change.

Verify that services satisfy business requirements and goals.

As with anything, services can be misused. When growing and managing a portfolio
of services, their usage and effectiveness at fulfi lling business requirements need to
be verifi ed and measured. Modern tools provide various means of monitoring service
usage, but there are intangibles that also need to be taken into consideration to ensure
that services are not just used because they are available, but to verify that they are truly
fulfi lling business needs and meeting expectations.

This is especially true with shared services that shoulder multiple dependencies. Not
only do shared services require adequate infrastructure to guarantee scalability and
reliability for all of the solutions that reuse them, they also need to be designed and
extended with great care to ensure their functional contexts are never skewed.

Evolve services and their organization in response to real use.

This guiding principle ties directly back to the “Evolutionary refi nement over pursuit of
initial perfection” value statement, as well as the overall goal of maintaining an align-
ment of business and technology.

We can never expect to rely on guesswork when it comes to determining service granu-
larity, the range of functions that services need to perform, or how services will need
to be organized into compositions. Based on whatever extent of analysis we are able to
initially perform, a given service will be assigned a defi ned functional context and will
contain one or more functional capabilities that likely involve it in one or more service
compositions.

As real-world business requirements and circumstances change, the service may need
to be augmented, extended, refactored, or perhaps even replaced. Service-orientation
design principles build native fl exibility into service architectures so that, as software

ptg20131482

The SOA Manifesto Explored 381

programs, services are resilient and adaptive to change and to being changed in
response to real-world usage.

Separate the different aspects of a system that change at different rates.

What makes monolithic and silo-based systems infl exible is that change can have a
signifi cant impact on their existing usage. This is why it is often easier to create new
silo-based applications rather than augment or extend existing ones.

The rationale behind the separation of concerns theory is that a larger problem can be
more effectively solved when decomposed into a set of smaller problems or concerns.
When applying service-orientation to the separation of concerns, we build correspond-
ing units of solution logic that solve individual concerns, thereby allowing us to aggre-
gate the units to solve the larger problem in addition to giving us the opportunity to
aggregate them into different confi gurations in order to solve other problems.

Besides fostering service reusability, this approach introduces numerous layers of
abstraction that help shield service-comprised systems from the impacts of change. This
form of abstraction can exist at different levels. For example, if legacy resources encap-
sulated by one service need to be replaced, the impact of that change can be mitigated as
long as the service is able to retain its original endpoint and functional behavior.

Another example is the separation of agnostic from non-agnostic logic. The former type
of logic has high reuse potential if it is multi-purpose and less likely to change. Non-
agnostic logic, on the other hand, typically represents the single-purpose parts of par-
ent business process logic, which are often more volatile. Separating these respective
logic types into different service layers further introduces abstraction that enables ser-
vice reusability while shielding services, and any solutions that utilize them, from the
impacts of change.

Reduce implicit dependencies and publish all external dependencies to increase robustness and
reduce the impact of change.

This guiding principle embodies the purpose of the Service Loose Coupling (293)
design principle. How a service architecture is internally structured and how services
relate to programs that consume them (which can include other services) all comes
down to dependencies that are formed on individually moving parts that are part of
the service architecture.

ptg20131482

382 Appendix D: The Annotated SOA Manifesto

Layers of abstraction help ease evolutionary change by localizing the impacts of the
change to controlled regions. For example, within service architectures, service façades
can be used to abstract parts of the implementation in order to minimize the reach of
implementation dependencies.

On the other hand, published technical service contracts need to disclose the depen-
dencies that service consumers must form in order to interact with services. As per
the Service Abstraction (294) principle, the reduction of internal dependencies that can
affect these technical contracts when change does occur minimizes the proliferation of
the impact of those changes upon dependent service consumers.

At every level of abstraction, organize each service around a cohesive and manageable unit of
functionality.

Each service requires a well-defi ned functional context that determines what logic
does and does not belong within the service’s functional boundary. Determining the
scope and granularity of these functional service boundaries is one of the most critical
responsibilities during the service delivery lifecycle.

Services with coarse functional granularity may be too infl exible to be effective, espe-
cially if they are expected to be reusable. On the other hand, overly fi ne-grained ser-
vices may tax an infrastructure in that service compositions will need to consist of
increased quantities of composition members.

Determining the right balance of functional scope and granularity requires a combina-
tion of business and technology expertise, and further requires an understanding of
how services within a given boundary relate to each other.

Many of the guiding principles described in this manifesto help to make this determina-
tion in support of positioning each service as an IT asset that is capable of furthering an
IT enterprise toward that target state whereby the strategic benefi ts of service- oriented
computing are realized.

Ultimately, though, it is the attainment of real-world business value that dictates, from
conception to delivery to repeated usage, the evolutionary path of any unit of service-
oriented functionality.

ptg20131482

About the Author

Thomas Erl

Thomas Erl is a top-selling IT author, founder of Arcitura Education, and series editor of
the Prentice Hall Service Technology Series from Thomas Erl. With more than 300,000 cop-
ies in print worldwide, his books have become international bestsellers and have been
formally endorsed by senior members of major IT organizations, such as IBM, Micro-
soft, Oracle, Intel, Accenture, IEEE, HL7, MITRE, SAP, CISCO, HP, and many others.
As CEO of Arcitura Education Inc., Thomas has led the development of curricula for
the internationally recognized Big Data Science Certifi ed Professional (BDSCP), Cloud
 Certifi ed Professional (CCP), and SOA Certifi ed Professional (SOACP) accreditation
pro grams, which have established a series of formal, vendor-neutral industry certifi ca-
tions obtained by thousands of IT professionals around the world. Thomas has toured
more than 20 countries as a speaker and instructor. More than 100 articles and inter-
views by Thomas have been published in numerous publications, including The Wall
Street Journal and CIO Magazine.

ptg20131482

Index

A
agents. See service agents
agility (organizational), 50-52
agnostic

business process category, 115
defi ned, 114

Agnostic Capability design patt ern, 133, 322
agnostic capability stage (service layers), 119
Agnostic Context design patt ern, 133, 323
agnostic context stage (service layers), 117-118
agnostic logic, 23
Annotated SOA Manifesto, 367-382
application services. See utility services
applications, as service compositions, 38-43
architecture

design patt erns and, 70
service architecture, 70-76
service composition architecture, 70, 77-83
service inventory architecture, 70, 83-85
service-oriented enterprise architecture, 70, 85-86

Async complex method, 247, 254-256
Atomic Service Transaction design patt ern,

198, 324
att ribute values for SOAP messages, 216
automation systems, identifying, 99

B
backwards compatibility, 267-270

fl exible versioning strategy, 283-284
loose versioning strategy, 284

balanced scope (service-orientation pillar),
55-58, 97

BDSCP (Big Data Science Certifi ed
Professional), 11

benefi ts of service-orientation, 43
Increased Business and Technology Domain

Alignment, 48-49
Increased Federation, 46
Increased Intrinsic Interoperability, 44-45
Increased Organizational Agility, 50-52
Increased ROI, 48-50
Increased Vendor Diversifi cation Options, 47-48
Reduced IT Burden, 52-53

Big Data Science Certifi ed Professional
(BDSCP), 11

blueprints. See service inventory blueprints
books

mapped to topics from fi rst edition, 4-6
organization of, 6-8

bott om-up project delivery strategy, 91-92
business community, relationship with IT

community, 86-90
business-driven (SOA characteristic), 61-63
business models, technology alignment with,

48-49
business processes

decomposition, 115-124, 142, 164
fi ltering actions, 144, 165
identifying non-agnostic logic, 149, 169
identifying resources, 170-171

business requirements in service-oriented
analysis, 99

C
Cache constraint, 186

profi le, 310
Canonical Expression design patt ern, 209, 325
Canonical Schema design patt ern, 194, 222, 326
Canonical Versioning design patt ern, 281, 327
Capability Composition design patt ern, 83,

134, 328
capability granularity, 210
Capability Recomposition design patt ern, 83,

134, 329
case studies

Midwest University Association (MUA)
analyzing processing requirements, 177-178
applying service-orientation, 174
associating service capability candidates with

resources, 173-174
background, 15
business process decomposition, 164
complex methods, 259-262
defi ning entity service candidates, 167-169
defi ning microservice candidates, 181
defi ning utility service candidates, 179-180

ptg20131482

Index 385

compatible changes, 273-275
Compensating Service Transaction design patt ern,

198, 330
complex methods

case study, 259-262
designing, 246-249
stateful methods, 256-258
stateless methods, 249-256

composition. See service composition
composition architecture. See service composition

architecture
Composition Autonomy design patt ern, 224, 331
composition-centricity, 68-69, 124
composition controllers, 78, 123
composition members, 78
Concurrent Contracts design patt ern, 193, 195,

212, 221, 223, 332
constraint granularity, 210

versioning and, 266-267
constraints (REST). See also design constraints

Cache, 186, 310
Client-Server, 307
Code-on-Demand, 315
Layered System, 187,313-314
profi le table format, 306
Stateless, 186, 249, 256-257, 308-309
Uniform Contract, 183, 187, 311-312
uniform contract modeling and, 186-187

Containerization design patt ern, 333
Content Negotiation design patt ern, 244-245, 334
Contemporary SOA. See SOA
Contract Denormalization design patt ern, 212, 335
contracts. See service contracts
Cross-Domain Utility Layer design patt ern,

195, 336

D
data granularity, 210
decomposition of business processes, 142, 164
decomposition stage (service layers), 115-124
Decoupled Contract design patt ern, 193, 337
delivery strategies for SOA projects, 91-92
Delta complex method, 247, 252-254
dependencies, versioning and, 264
deployment stage (SOA projects), 105

design considerations for REST service contracts,
226-230

fi ltering actions, 165
identifying non-agnostic logic, 169-170
identifying resources, 171-172
identifying service composition candidates,

175-176
REST service modeling, 162-163
revising service composition candidates, 182

Transit Line Systems, Inc. (TLS)
analyzing processing requirements, 152
background, 14-15
business process decomposition, 142-144
defi ning entity service candidates, 146-149
defi ning microservice candidates, 155
defi ning utility service candidates, 154
design considerations for Web services, 198-208
fi ltering actions, 145
identifying non-agnostic logic, 149-150
identifying service composition candidates, 151
modular WSDL documents, 214
namespaces, 215-216
revising service composition candidates, 156
SOAP att ribute values, 217
Web service extensibility, 213
Web service granularity, 212
Web service modeling, 141

CCP (Cloud Certifi ed Professional), 10
Client-Server constraint, profi le, 307
Cloud Certifi ed Professional (CCP), 10
cloud computing, resources for information, 60
Cloud Computing: Concepts, Technology &

Architecture, 60
Cloud Computing Design Patt erns, 60
coarse-grained granularity, 211

versioning and, 266-267
Code-on-Demand constraint, profi le, 315
compatibility. See also versioning

REST services considerations, 276-279
versioning and, 267

backwards compatibility, 267-270
compatible changes, 273-275
forwards compatibility, 271-273
incompatible changes, 275-276

compatibility guarantee, 280

ptg20131482

386 Index

Enterprise Inventory, 57, 83, 187, 340
Entity Abstraction, 133, 341
Entity Linking, 222, 342
Event-Driven Messaging, 258, 343
Functional Decomposition, 133, 344
Idempotent Capability, 252, 345
Inventory Endpoint, 86, 346
Legacy Wrapper, 195, 223, 347
Logic Centralization, 135, 166, 348
Microservice Deployment, 349
Micro Task Abstraction, 134, 350
Non-Agnostic Context, 133, 351
Partial State Deferral, 198, 352
Process Abstraction, 134, 353
profi les, conventions for, 8-9
profi le table format, 321
Redundant Implementation, 224, 354
Reusable Contract, 233, 355
Schema Centralization, 194, 222, 277, 356
Service Agent, 76, 357
Service Data Replication, 224, 358
Service Encapsulation, 67, 133, 359
Service Façade, 193, 195, 221, 223, 360
Service Normalization, 135, 166, 361
State Messaging, 198, 362
State Repository, 198, 363
usage in book, 3-4
Utility Abstraction, 133, 364
Validation Abstraction, 214, 245, 365
Version Identifi cation, 279, 366

design principles, 60-61
list of, 26, 29
profi les, conventions for, 8-9
profi le table format, 290
Service Abstraction, 27, 73, 80, 150, 223, 248

interoperability, 45
profi le, 294

Service Autonomy, 27, 73, 150, 174, 194
interoperability, 45
profi le, 297

Service Composability, 29, 68, 103, 127, 213
interoperability, 45
profi le, 302-303

Service Discoverability, 28, 106
interoperability, 45
profi le, 300-301

design considerations
for REST service contracts

by service model, 221-225
case study, 226-230
guidelines for, 231-258

for uniform contracts, 231
HTT P complex method design, 246-249
HTT P header design, 233-235
HTT P method design, 231-233
HTT P response code customization, 240-241
HTT P response code design, 235-236, 239-240
media types, 242-244
schema design, 244-245
stateful complex methods, 256-258
stateless complex methods, 249-256

for Web service contracts
by service model, 193-198
case study, 198-208
guidelines for, 208-216

design constraints, conventions for profi les, 8-9
design paradigms, 24-25
design patt ern languages. See patt ern languages
design patt erns

advantages of, 318-319
Agnostic Capability, 133, 322
Agnostic Context, 133, 323
architecture and, 70
Atomic Service Transaction, 198, 324
Canonical Expression, 209, 325
Canonical Schema, 194, 222, 326
Canonical Versioning, 281, 327
Capability Composition, 83, 134, 328
Capability Recomposition, 83, 134, 329
Compensating Service Transaction, 198, 330
Composition Autonomy, 224, 331
Concurrent Contracts, 193, 195, 212, 221,

223, 332
Containerization, 333
Content Negotiation, 244, 245, 334
Contract Denormalization, 212, 335
Cross-Domain Utility Layer, 195, 336
Decoupled Contract, 193, 337
defi ned, 318-319
Domain Inventory, 57, 83, 97, 187, 195, 338
Dual Protocols, 155, 193, 195, 212, 221, 223, 339

ptg20131482

Index 387

F
federation, Increased Federation goal/benefi t, 46
Fetch complex method, 247, 249-250
fi gures, symbol legend, 9
fi ne-grained granularity, 211

versioning and, 266-267
fl exible versioning strategy, 283-285
forwards compatibility, 271-273

loose versioning strategy, 284
functional decomposition, 116
Functional Decomposition design patt ern,

133, 344
functional decomposition stage (service

layers), 115

G
goals of service-orientation, 43

Increased Business and Technology Domain
Alignment, 48-49

Increased Federation, 46
Increased Intrinsic Interoperability, 44-45
Increased Organizational Agility, 50-52
Increased ROI, 48-50
Increased Vendor Diversifi cation Options, 47-48
Reduced IT Burden, 52-53

granularity
constraint granularity, versioning and, 266-267
REST service modeling, 188
of Web services, 210-212

H
HTML, compatible changes, 278-279
HTT P headers, design and standardization,

233-235
HTT P media types

designing, 242-244
schema design, 244-245

HTT P methods
complex method design, 246-249
complex methods case study, 259-262
design and standardization, 231-233
stateful complex methods, 256-258
stateless complex methods, 249-256

HTT P response codes
customization, 240-241
design and standardization, 235-236, 239-240

Service Loose Coupling, 26, 150, 223
interoperability, 45
profi le, 293

Service Reusability, 27, 194, 195, 213
interoperability, 45
profi le, 295-296

Service Statelessness, 27, 73, 198
interoperability, 45
profi le, 298-299

Standardized Service Contract, 26, 103, 223-224
interoperability, 45
profi le, 291-292

design priorities, 69
discipline (service-orientation pillar), 55
discovery stage (SOA projects), 106
document att ribute value for SOAP messages, 216
Domain Inventory design patt ern, 57, 83, 97, 187,

195, 338
domain service inventory, 25
Dual Protocols design patt ern, 155, 193, 195, 212,

221, 223, 339

E
education (service-orientation pillar), 55
enterprise-centric (SOA characteristic), 66-67
Enterprise Inventory design patt ern, 57, 83,

187, 340
enterprise resources, 66
entities, resources versus, 189
Entity Abstraction design patt ern, 133, 341
entity abstraction stage (service layers), 121
Entity Linking design patt ern, 222, 342
entity service candidates

associating with resources, 172
defi ning, 146, 166

entity services
defi ned, 113
design considerations

for REST service contracts, 221-222
for Web services, 193-194

errata, 9, 11
Event-Driven Messaging design patt ern, 258, 343
extensibility of Web services, 212-213

ptg20131482

388 Index

Micro Task Abstraction design patt ern, 134, 350
micro task abstraction stage (service layers), 123
Midwest University Association case study.

See case studies, Midwest University
Association (MUA)

modular WSDL documents, 214
monitoring stage (SOA projects), 105-106

N
namespaces for WSDL documents, 215
naming standards for Web services, 208-209
Next Generation SOA: A Concise Introduction to

Service Technology & Service-Orientation, 3
non-agnostic

business process category, 115
defi ned, 114

Non-Agnostic Context design patt ern, 133, 351
non-agnostic context stage (service layers), 122
non-agnostic logic, 23

identifying, 149, 169
notifi cation service website, 11

O
open-ended patt ern languages, 320
orchestrated task services, 114
organizational agility, Increased Organizational

Agility goal/benefi t, 50-52
organizational roles, SOA project stages and,

107-109

P
Partial State Deferral design patt ern, 198, 352
patt ern languages, 320
patt erns. See design patt erns
pillars of service-orientation, 54

balanced scope, 55-58, 97
discipline, 55
education, 55
teamwork, 54

Prentice Hall Service Technology Series from
Th omas Erl, 2, 4, 6, 290, 306, 321

primitive methods, 247
principles. See design principles
Process Abstraction design patt ern, 134, 353
process abstraction stage (service layers), 123-124
profi les, conventions for, 8-9

I
Idempotent Capability design patt ern, 252, 345
incompatible changes, 275-276
Increased Intrinsic Interoperability, 44-45
integration in service-orientation, 40-42
interoperability, 37-38, 44-45
inventory architecture. See service inventory

architecture
Inventory Endpoint design patt ern, 86, 346
IT community, relationship with business

community, 86-90

L
Layered System constraint, 187

profi le, 313-314
Legacy Wrapper design patt ern, 195, 223, 347
literal att ribute value for SOAP messages, 216
logic centralization, 134
Logic Centralization design patt ern, 135, 166, 348
loose versioning strategy, 284-285

M
maintenance stage (SOA projects), 105
media types

designing, 242-244
schema design, 244-245
uniform contract media types, compatibility,

277-279
messages (SOAP), att ribute values, 216
methodology for SOA projects, 91-92
methods (HTT P)

complex method design, 246-249
complex methods case study, 259-262
design and standardization, 231-233
stateful complex methods, 256-258
stateless complex methods, 249-256

microservice candidates, defi ning, 154, 180
microservice candidate stage (service layers), 123
Microservice Deployment design patt ern, 349
microservices

defi ned, 113
design considerations

for REST service contracts, 223-224
for Web services, 196

service capability composition and, 130-131

ptg20131482

Index 389

resources versus entities, 189
revising service capability candidate groupings,

182-183
revising service composition candidates, 181

REST services, 21
backwards compatibility, 268-270
compatibility considerations, 276-279
forwards compatibility, 271-273
service normalization, 135
versioning, 266,286

website for information, 10
REST service contracts

benefi ts of, 220
design considerations

by service model, 221-225
case study, 226-230
guidelines for, 231-236, 239-258

return on investment, Increased ROI goal/benefi t,
48, 50

reusability of solution logic, 35
Reusable Contract design patt ern, 233, 355
ROI (return on investment), 48, 50

S
Schema Centralization design patt ern, 194, 222,

277, 356
schemas, designing for media types, 244-245
separation of concerns, 24-25
Service Abstraction design principle, 27, 73, 80,

150, 223, 248
interoperability, 45
profi le, 294

Service Agent design patt ern, 76, 357
service agents, 76-77
service architecture, 70-76
Service Autonomy design principle, 27, 73, 150,

174, 194
interoperability, 45
profi le, 297

service boundaries, 134
service candidates, 115
service capabilities, 76
service capability candidates

analyzing processing requirements, 152, 176-177
associating with resources, 172
composition and recomposition, 127-133

profi le tables. See design patt erns; design
principles; REST constraints

projects. See SOA projects
PubSub complex method, 257-258

R
recomposition . See service composition
Reduced IT Burden, 52-53
Redundant Implementation design patt ern,

224, 354
resources

associating service capability candidates with, 172
entities versus, 189
identifying, 170-171
for information, 9
revising defi nitions, 182-183

response codes (HTT P)
customization, 240-241
design and standardization, 235-236, 239-240

REST
constraints

Cache, 186, 310
Client-Server, 307
Code-on-Demand, 315
Layered System, 187, 313-314
profi le table format, 306
Stateless, 186, 249, 256-257, 308-309
Uniform Contract, 183, 187, 311-312
uniform contract modeling and, 186-187

service inventory modeling, uniform contract
modeling and, 183-186

service modeling, 160-161
analyzing processing requirements, 176-177
applying service-orientation, 174, 181
associating service capability candidates with

resources, 172
business process decomposition, 164
defi ning entity service candidates, 166
defi ning microservice candidates, 180
defi ning utility service candidates, 178
fi ltering actions, 165
granularity, 188
identifying non-agnostic logic, 169
identifying resources, 170-171
identifying service composition candidates, 175
process for, 165

ptg20131482

390 Index

HTT P method design, 231-233
HTT P response code customization, 240-241
HTT P response code design, 235-236, 239-240
media types, 242-244
schema design, 244-245
stateful complex methods, 256-258
stateless complex methods, 249-256

service inventory analysis, 96-97
service inventory architecture, 70, 83-85
service inventory blueprint, 84, 96-97
service inventory modeling (REST), uniform

contract modeling and, 183-186
service layers

decomposition stage, 115-124
defi ned, 114

service logic design, 103
Service Loose Coupling design principle, 26,

150, 223
interoperability, 45
profi le, 293

service modeling
defi ned, 100
primitive process steps, 112
REST service modeling, 160-161

analyzing processing requirements, 176-177
applying service-orientation, 174, 181
associating service capability candidates with

resources, 172
business process decomposition, 164
defi ning entity service candidates, 166
defi ning microservice candidates, 180
defi ning utility service candidates, 178
fi ltering actions, 165
granularity, 188
identifying non-agnostic logic, 169
identifying resources, 170-171
identifying service composition candidates, 175
process for, 165
resources versus entities, 189
revising service capability candidate groupings,

182-183
revising service composition candidates, 181

Web services, 140
analyzing processing requirements, 152
applying service-orientation, 150, 155

defi ned, 115
revising groupings, 157, 182-183

Service Composability design principle, 29, 68,
103, 127, 213
interoperability, 45
profi le, 302-303

service composition
applications as, 38-43
defi ned, 24, 26, 77
of service capability candidates, 127-133
service-orientation and, 124-127
symbols, 24

service composition architecture, 70, 77-83
service composition candidates

identifying, 151, 175
revising, 156, 181

service consumers, 23
service contracts,21, 74-75

REST
benefi ts of, 220
design considerations, 221-230
design guidelines, 231-236, 239-258

Web services
benefi ts of, 192
design considerations, 193-208
design guidelines, 208-216

Service Data Replication design patt ern, 224, 358
service deployment and maintenance, 105
service development, 103
Service Discoverability design principle, 28, 106

interoperability, 45
profi le, 300-301

service discovery, 106
Service Encapsulation design patt ern, 67, 133, 359
service encapsulation stage (service layers),

116-117
Service Façade design patt ern, 193, 195, 221,

223, 360
service granularity, 210
service inventories

defi ned, 25-26
service boundaries, 134
symbols, 25
uniform contract design considerations, 231

HTT P complex method design, 246-249
HTT P header design, 233-235

ptg20131482

Index 391

problems solved by, 29
architecture complexity, 33
effi ciency, lack of, 32
enterprise bloat, 32-33
integration challenges, 34
silo-based application architecture, 29-31
wastefulness, 31-32

result of, 86-90
service composition and, 124-127

service-orientation design principles. See design
principles

service-oriented analysis, 97-100
service-oriented architecture. See SOA
Service-Oriented Architecture: Concepts,

Technology, and Design, 2-3
service-oriented design, 101-102
service-oriented enterprise architecture, 70, 85-86
service-oriented solution logic, 26
service profi le documents, 76
Service Reusability design principle, 27,

194-195, 213
interoperability, 45
profi le, 295-296

services
as collections of capabilities, 22-23
defi ned, 21, 26
explained, 20-21
REST services, 21
symbols for, 21-22
Web services, 21

services contracts, 21
Service Statelessness design principle, 27, 73, 198

interoperability, 45
profi le, 298-299

service testing, 103-104
service usage and monitoring, 105-106
service versioning, 106-107
silo-based application architecture, 29-31
SOA (service-oriented architecture)

characteristics of, 61-69
business-driven, 61-63
composition-centric, 68-69
enterprise-centric, 66-67
vendor-neutral, 63-65

design priorities, 69

business process decomposition, 142
defi ning entity service candidates, 146
defi ning microservice candidates, 154
defi ning utility service candidates, 153
fi ltering actions, 144
identifying non-agnostic logic, 149
identifying service composition candidates, 151
revising service capability candidate groupings, 157
revising service composition candidates, 156

service models
defi ned, 113
design considerations

for REST service contracts, 221-225
for Web service contracts, 193-198

list of, 113
service normalization, 134
Service Normalization design patt ern, 135,

166, 361
service-orientation

applications in, 38-43
applying in service modeling, 150, 155, 174, 181
defi ned, 26
design characteristics of, 34-35

application-specifi c logic, reducing, 36
interoperability, 37-38
overall solution logic, reducing, 36-37
reusable solution logic, 35

as design paradigm, 24-25
elements of, 26
goals and benefi ts of, 43

Increased Business and Technology Domain
Alignment, 48-49

Increased Federation, 46
Increased Intrinsic Interoperability, 44-45
Increased Organizational Agility, 50-52
Increased ROI, 48-50
Increased Vendor Diversifi cation Options, 47-48
Reduced IT Burden, 52-53

integration and, 40-42
pillars of, 54

balanced scope, 55-58, 97
discipline, 55
education, 55
teamwork, 54

ptg20131482

392 Index

Stateless constraint, 186, 249, 256-257
profi le, 308-309

State Messaging design patt ern, 198, 362
State Repository design patt ern, 198, 363
Store complex method, 247, 250-251
strict versioning strategy, 282-285
structured patt ern languages

advantages of, 320
defi ned, 320

symbols, 21-22
legend, 9
service composition, 24
service inventory, 25

T
task services

defi ned, 113
design considerations

for REST service contracts, 225
for Web services, 196-198

task service stage (service layers), 123-124
teamwork (service-orientation pillar), 54
technology architecture. See architecture
testing stage (SOA projects), 103-104
top-down project delivery strategy, 91-92
Trans complex method, 256
Transit Line Systems, Inc. case study. See case

studies, Transit Line Systems, Inc. (TLS), 14

U
Uniform Contract constraint, 183, 187, 245

profi le, 311-312
uniform contract media types, compatibility,

277-279
uniform contract modeling

REST constraints and, 186-187
REST service inventory modeling and, 183-186

uniform contracts, design considerations, 231
HTT P complex method design, 246-249
HTT P header design, 233-235
HTT P method design, 231-233
HTT P response code customization, 240-241
HTT P response code design, 235-236, 239-240
media types, 242-244
schema design, 244-245
stateful complex methods, 256-258
stateless complex methods, 249-256

types of, 70-71
service architecture, 71-76
service composition architecture, 77-83
service inventory architecture, 83-85
service-oriented enterprise architecture, 85-86

SOA adoption planning, 95
SOACP (SOA Certifi ed Professional), 10
SOA Design Patt erns, 3, 89, 320-321
SOA Governance: Governing Shared Services

On-Premise & in the Cloud, 3, 107
SOA Manifesto

annotated version, 367-382
design priorities, 69

SOA patt erns. See design patt erns
SOAP-based Web services. See Web services
SOAP messages, att ribute values, 216
SOA Principles of Service Design, 3, 290
SOA projects

delivery strategies and methodology, 91-92
stages of, 94-95

organizational roles and, 107-109
service deployment and maintenance, 105
service development, 103
service discovery, 106
service inventory analysis, 96-97
service logic design, 103
service-oriented analysis, 97-100
service-oriented design, 101-102
service testing, 103-104
service usage and monitoring, 105-106
service versioning, 106-107
SOA adoption planning, 95

SOA with REST: Principles, Patt erns &
Constraints for Building Enterprise Solutions
with REST, 3, 220, 306

solution logic
application-specifi c logic, reducing, 36
overall logic, reducing, 36-37
reusability, 35

Standardized Service Contract design principle,
26, 103, 223-224
interoperability, 45
profi le, 291-292

stateful complex methods, 256-258
stateless complex methods, 249-256

ptg20131482

Index 393

Web services
backwards compatibility, 267-268
extensibility, 212-213
forwards compatibility, 271
granularity, 210-212
naming standards, 208-209
service modeling, 140

analyzing processing requirements, 152
applying service-orientation, 150, 155
business process decomposition, 142
defi ning entity service candidates, 146
defi ning microservice candidates, 154
defi ning utility service candidates, 153
fi ltering actions, 144
identifying non-agnostic logic, 149
identifying service composition candidates, 151
revising service capability candidate groupings, 157
revising service composition candidates, 156

service normalization, 135
versioning, 265-266

websites
www.arcitura.com/notation, 9
www.bigdatapatt erns.org, 3
www.bigdatascienceschool.com, 11
www.cloudpatt erns.org, 3, 60
www.cloudschool.com, 10
www.serviceorientation.com, 10, 290
www.servicetechbooks.com, 6, 9, 11, 290, 306, 321
www.servicetechspecs.com, 10
www.soa-manifesto.com, 8
www.soapatt erns.org, 3, 8, 321
www.soaschool.com, 10
www.whatiscloud.com, 60
www.whatisrest.com, 10, 306

WSDL documents
as modules, 214
namespaces, 215

updates, 9
Utility Abstraction design patt ern, 133, 364
utility abstraction stage (service layers), 120
utility service candidates, defi ning, 153, 178
utility services

defi ned, 113
design considerations

for REST service contracts, 222-223
for Web services, 194, 195

V
Validation Abstraction design patt ern, 214,

245, 365
vendor diversifi cation, Increased Vendor

Diversifi cation Options goal/benefi t, 47-48
vendor-neutral (SOA characteristic), 63-65
Version Identifi cation design patt ern, 279, 366
version identifi ers, 279-281
versioning. See also compatibility

compatibility and, 267
backwards compatibility, 267-270
compatible changes, 273-275
forwards compatibility, 271-273
incompatible changes, 275-276

constraint granularity and, 266-267
dependencies and, 264
REST services, 266, 286
strategies, 282

comparison of, 285
fl exible strategy, 283-284
loose strategy, 284
strict strategy, 282-283

version identifi ers, 279-281
Web services, 265-266

versioning stage (SOA projects), 106-107

W
Web Service Contract Design and Versioning

or SOA, 192, 245
Web service contracts

benefi ts of, 192
design considerations

case study, 198-208
guidelines for, 208-216
by service model, 193-198

http://www.arcitura.com/notation
http://www.bigdatapatterns.org
http://www.bigdatascienceschool.com
http://www.cloudpatterns.org
http://www.cloudschool.com
http://www.serviceorientation.com
http://www.servicetechbooks.com
http://www.servicetechspecs.com
http://www.soa-manifesto.com
http://www.soapatterns.org
http://www.soaschool.com
http://www.whatiscloud.com
http://www.whatisrest.com

ptg20131482

Thomas Erl is a best-selling IT author, the series editor of the Prentice Hall
Service Technology Series from Thomas Erl, and the editor of the
Service Technology Magazine. As CEO of Arcitura Education Inc.,
Thomas has led the development of curricula for the internationally
recognized Big Data Science Certified Professional (BDSCP),
Cloud Certified Professional (CCP), and SOA Certified
Professional (SOACP) accreditation programs, which
have established a series of formal, vendor-neutral
industry certifications. Thomas has toured over 20
countries as a speaker and instructor. Over 100
articles and interviews by Thomas have been
published in numerous publications, including
the Wall Street Journal and CIO Magazine.

The Prentice Hall Service Technology Series from Thomas Erl aims to provide the IT industry with a consistent
level of unbiased, practical, and comprehensive guidance and instruction in the areas of IT science and
service technology application and innovation. Each title in this book series is authored in relation to other
titles so as to establish a library of complementary knowledge. Although the series covers a broad spectrum
of service technology-related topics, each title is authored in compliance with common language,
vocabulary, and illustration conventions so as to enable readers to continually explore cross-topic
research and education.

http://www.servicetechbooks.com/community
http://www.informiIT.com
http://www.informit.com/erl

ptg20131482

Cloud Computing:
Concepts, Technology
& Architecture
by T. Erl, Z. Mahmood,
R. Puttini

ISBN: 9780133387520
Hardcover, 528 pages

SOA with Java: Realizing
Service-Orientation with
Java Technologies
by T. Erl, S. Roy, P. Thomas,
A. Tost

ISBN: 9780133859034
Hardcover, 592 pages

Next Generation SOA:
A Concise Introduction
to Service Technology &
Service-Orientation
by T. Erl, C. Gee, J. Kress,
B. Maier, H. Normann, P. Raj,
L. Shuster, B. Trops,
C. Utschig-Utschig, P. Wik,
T. Winterberg

ISBN: 9780133859041
Paperback, 208 pages

Big Data Fundamentals:
Concepts, Drivers
& Techniques
by P. Buhler, T. Erl, W. Khattak

ISBN: 9780134291079
Paperback, 218 pages

Cloud Computing
Design Patterns
by T. Erl, R. Cope,
A. Naserpour

ISBN: 9780133858563
Hardcover, 528 pages

Service-Oriented Architecture:
A Field Guide to Integrating
XML and Web Services
by T. Erl

ISBN: 0131428985
Paperback, 534 pages

Service-Oriented
Architecture: Analysis & Design
for Services and Microservices
(Second Edition)
by T. Erl

ISBN: 0133858588
Paperback, ~ 300 pages

SOA Principles of
Service Design
by T. Erl

ISBN: 0132344823
Hardcover, 573 pages

Web Service Contract
Design & Versioning for SOA
by T. Erl, A. Karmarkar,
P. Walmsley, H. Haas,
U. Yalcinalp, C. Liu,
D. Orchard, A. Tost, J. Pasley

ISBN: 013613517X
Hardcover, 826 pages

SOA Design Patterns
by T. Erl

ISBN: 0136135161
Hardcover, 865 pages

SOA with .NET & Windows
Azure: Realizing Service-
Orientation with the
Microsoft Platform
by D. Chou, J. deVadoss,
T. Erl, N. Gandhi,
H. Kommalapati, B. Loesgen,
C. Schittko, H. Wilhelmsen,
M. Williams

ISBN: 0131582313
Hardcover, 893 pages

SOA with REST: Principles,
Patterns & Constraints for
Building Enterprise Solutions
with REST
by R. Balasubramanian,
B. Carlyle, T. Erl, C. Pautasso

ISBN: 0137012519
Hardcover, 577 pages

SOA Governance:
Governing Shared Services
On-Premise & in the Cloud
by S. Bennett, T. Erl, C. Gee,
R. Laird, A. Manes,
R. Schneider, L. Shuster,
A. Tost, C. Venable

ISBN: 0138156751
Hardcover, 675 pages

SOA with REST: Principleplell

SOA Governance: SOA ith NET & Wi d

SOA D i P tt

W b S i C t t

The text books in this book series are official parts of
Arcitura training and certification programs. All exams
 that correspond to associated courses are available

at Pearson VUE testing centers and via
Pearson VUE Online Proctoring. Visit

www.pearsonvue.com/arcitura.

http://www.pearsonvue.com/arcitura
http://www.servicetechbooks.com

ptg20131482

The Certified Cloud Professional (CCP) program, provided by

CloudSchool.com, establishes a series of vendor-neutral

industry certifications dedicated to areas of specialization in

the field of cloud computing. Also founded by author Thomas

Erl, this program allows IT professionals to learn and become

accredited in common and specialized topic areas within the

field of cloud computing.

The Cloud Certified Professional curriculum is comprised of

21 courses and labs, each of which has a corresponding

exam. Private and public training workshops can be provided

throughout the world by certified Trainers. Self-study kits are

further available for remote, self-paced study in support of

instructor led workshops.

Professional
CLOUD CERTIFIED

CloudSchool.com

Architect
CLOUD CERTIFIED

CloudSchool.com

Security Specialist
CLOUD CERTIFIED

CloudSchool.com

Governance Specialist
CLOUD CERTIFIED

CloudSchool.com

Technology Professional

CLOUD CERTIFIED

CloudSchool.com

Storage Specialist
CLOUD CERTIFIED

CloudSchool.com

Virtualization Specialist
CLOUD CERTIFIED

CloudSchool.com

Capacity Specialist
CLOUD CERTIFIED

CloudSchool.com

All Arcitura exams are available at Pearson VUE testing
centers and via Pearson VUE Online Proctoring

http://www.soaschool.com
http://www.cloudschool.com
http://www.soaworkshops.com
http://www.soaselfstudy.com
http://www.cloudworkshops.com
http://www.cloudselfstudy.com

ptg20131482

http://www.bigdatascienceschool.com

	Cover
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	Reader Services
	CHAPTER 1: Introduction
	1.1 How Patterns Are Used in this Book
	1.2 Series Books That Cover Topics from the First Edition
	1.3 How this Book Is Organized
	Part I: Fundamentals
	Chapter 3, Understanding Service-Orientation
	Chapter 4, Understanding SOA
	Chapter 5, Understanding Layers with Services and Microservices

	Part II: Service-Oriented Analysis and Design
	Chapter 6, Analysis and Modeling with Web Services and Microservices
	Chapter 7, Analysis and Modeling with REST Services and Microservices
	Chapter 8, Service API and Contract Design with Web Services
	Chapter 9, Service API and Contract Design with REST Services and Microservices
	Chapter 10, Service API and Contract Versioning with Web Services and REST Services

	Part III: Appendices
	Appendix A, Service-Orientation Principles Reference
	Appendix B, REST Constraints Reference
	Appendix C, SOA Design Patterns Reference
	Appendix D, The Annotated SOA Manifesto

	1.4 Page References and Capitalization for Principles, Constraints, and Patterns
	Additional Information
	Symbol Legend
	Updates, Errata, and Resources (www.servicetechbooks.com)
	Service-Orientation (www.serviceorientation.com)
	What Is REST? (www.whatisrest.com)
	Referenced Specifications (www.servicetechspecs.com)
	SOASchool.com® SOA Certified Professional (SOACP)
	CloudSchool.com™ Cloud Certified Professional (CCP)
	BigDataScienceSchool.com™ Big Data Science Certified Professional (BDSCP)
	Notification Service

	CHAPTER 2: Case Study Backgrounds
	2.1 How Case Studies Are Used
	2.2 Case Study Background #1: Transit Line Systems, Inc
	2.3 Case Study Background #2: Midwest University Association

	PART I: FUNDAMENTALS
	CHAPTER 3: Understanding Service-Orientation
	3.1 Introduction to Service-Orientation
	Services in Business Automation
	Services Are Collections of Capabilities
	Service-Orientation as a Design Paradigm
	Service-Orientation Design Principles

	3.2 Problems Solved by Service-Orientation
	Silo-based Application Architecture
	It Can Be Highly Wasteful
	It’s Not as Efficient as It Appears
	It Bloats an Enterprise
	It Can Result in Complex Infrastructures and Convoluted Enterprise Architectures
	Integration Becomes a Constant Challenge
	The Need for Service-Orientation
	Increased Amounts of Reusable Solution Logic
	Reduced Amounts of Application-Specific Logic
	Reduced Volume of Logic Overall
	Inherent Interoperability

	3.3 Effects of Service-Orientation on the Enterprise
	Service-Orientation and the Concept of “Application”
	Service-Orientation and the Concept of “Integration”
	The Service Composition

	3.4 Goals and Benefits of Service-Oriented Computing
	Increased Intrinsic Interoperability
	Increased Federation
	Increased Vendor Diversification Options
	Increased Business and Technology Domain Alignment
	Increased ROI
	Increased Organizational Agility
	Reduced IT Burden

	3.5 Four Pillars of Service-Orientation
	Teamwork
	Education
	Discipline
	Balanced Scope

	CHAPTER 4: Understanding SOA
	Introduction to SOA
	4.1 The Four Characteristics of SOA
	Business-Driven
	Vendor-Neutral
	Enterprise-Centric
	Composition-Centric
	Design Priorities

	4.2 The Four Common Types of SOA
	Service Architecture
	Service Composition Architecture
	Service Inventory Architecture
	Service-Oriented Enterprise Architecture

	4.3 The End Result of Service-Orientation and SOA
	4.4 SOA Project and Lifecycle Stages
	Methodology and Project Delivery Strategies
	SOA Project Stages
	SOA Adoption Planning
	Service Inventory Analysis
	Service-Oriented Analysis (Service Modeling)
	Step 1: Define Business Automation Requirements
	Step 2: Identify Existing Automation Systems
	Step 3: Model Candidate Services

	Service-Oriented Design (Service Contract)
	Service Logic Design
	Service Development
	Service Testing
	Service Deployment and Maintenance
	Service Usage and Monitoring
	Service Discovery
	Service Versioning and Retirement
	Project Stages and Organizational Roles

	CHAPTER 5: Understanding Layers with Services and Microservices
	5.1 Introduction to Service Layers
	Service Models and Service Layers
	Service and Service Capability Candidates

	5.2 Breaking Down the Business Problem
	Functional Decomposition
	Service Encapsulation
	Agnostic Context
	Agnostic Capability
	Utility Abstraction
	Entity Abstraction
	Non-Agnostic Context
	Micro Task Abstraction and Microservices
	Process Abstraction and Task Services

	5.3 Building Up the Service-Oriented Solution
	Service-Orientation and Service Composition
	Capability Composition and Capability Recomposition
	Capability Composition
	Capability Composition and Microservices
	Capability Recomposition

	Logic Centralization and Service Normalization

	PART II: SERVICE-ORIENTED ANALYSIS AND DESIGN
	CHAPTER 6: Analysis and Modeling with Web Services and Microservices
	6.1 Web Service Modeling Process
	Case Study Example
	Step 1: Decompose the Business Process (into Granular Actions)
	Case Study Example
	Step 2: Filter Out Unsuitable Actions
	Case Study Example
	Step 3: Define Entity Service Candidates
	Case Study Example
	Step 4: Identify Process-Specific Logic
	Case Study Example
	Step 5: Apply Service-Orientation
	Step 6: Identify Service Composition Candidates
	Case Study Example
	Step 7: Analyze Processing Requirements
	Case Study Example
	Step 8: Define Utility Service Candidates
	Case Study Example
	Step 9: Define Microservice Candidates
	Case Study Example
	Step 10: Apply Service-Orientation
	Step 11: Revise Service Composition Candidates
	Case Study Example
	Step 12: Revise Capability Candidate Grouping

	CHAPTER 7: Analysis and Modeling with REST Services and Microservices
	7.1 REST Service Modeling Process
	Case Study Example
	Step 1: Decompose Business Process (into Granular Actions)
	Case Study Example
	Step 2: Filter Out Unsuitable Actions
	Case Study Example
	Step 3: Define Entity Service Candidates
	Case Study Example
	Step 4: Identify Process-Specific Logic
	Case Study Example
	Step 5: Identify Resources
	Case Study Example
	Step 6: Associate Service Capabilities with Resources and Methods
	Case Study Example
	Step 7: Apply Service-Orientation
	Case Study Example
	Step 8: Identify Service Composition Candidates
	Case Study Example
	Step 9: Analyze Processing Requirements
	Case Study Example
	Step 10: Define Utility Service Candidates (and Associate Resources and Methods)
	Case Study Example
	Step 11: Define Microservice Candidates (and Associate Resources and Methods)
	Case Study Example
	Step 12: Apply Service-Orientation
	Step 13: Revise Candidate Service Compositions
	Case Study Example
	Step 14: Revise Resource Definitions and Capability Candidate Grouping

	7.2 Additional Considerations
	Uniform Contract Modeling and REST Service Inventory Modeling
	REST Constraints and Uniform Contract Modeling
	REST Service Capability Granularity
	Resources vs. Entities

	CHAPTER 8: Service API and Contract Design with Web Services
	8.1 Service Model Design Considerations
	Entity Service Design
	Utility Service Design
	Microservice Design
	Task Service Design
	Case Study Example

	8.2 Web Service Design Guidelines
	Apply Naming Standards
	Apply a Suitable Level of Contract API Granularity
	Case Study Example
	Design Web Service Operations to Be Inherently Extensible
	Case Study Example
	Consider Using Modular WSDL Documents
	Case Study Example
	Use Namespaces Carefully
	Case Study Example
	Use the SOAP Document and Literal Attribute Values
	Case Study Example

	CHAPTER 9: Service API and Contract Design with REST Services and Microservices
	9.1 Service Model Design Considerations
	Entity Service Design
	Utility Service Design
	Microservice Design
	Task Service Design
	Case Study Example

	9.2 REST Service Design Guidelines
	Uniform Contract Design Considerations
	Designing and Standardizing Methods
	Designing and Standardizing HTTP Headers
	Designing and Standardizing HTTP Response Codes
	Customizing Response Codes
	Designing Media Types
	Designing Schemas for Media Types
	Complex Method Design
	Stateless Complex Methods
	Fetch Method
	Store Method
	Delta Method
	Async Method

	Stateful Complex Methods
	Trans Method
	PubSub Method

	Case Study Example

	CHAPTER 10: Service API and Contract Versioning with Web Services and REST Services
	10.1 Versioning Basics
	Versioning Web Services
	Versioning REST Services
	Fine and Coarse-Grained Constraints

	10.2 Versioning and Compatibility
	Backwards Compatibility
	Backwards Compatibility in Web Services
	Backwards Compatibility in REST Services

	Forwards Compatibility
	Compatible Changes
	Incompatible Changes

	10.3 REST Service Compatibility Considerations
	10.4 Version Identifiers
	10.5 Versioning Strategies
	The Strict Strategy (New Change, New Contract)
	Pros and Cons

	The Flexible Strategy (Backwards Compatibility)
	Pros and Cons

	The Loose Strategy (Backwards and Forwards Compatibility)
	Pros and Cons

	Strategy Summary

	10.6 REST Service Versioning Considerations

	PART III: APPENDICES
	APPENDIX A: Service-Orientation Principles Reference
	APPENDIX B: REST Constraints Reference
	APPENDIX C: SOA Design Patterns Reference
	What’s a Design Pattern?
	What’s a Design Pattern Language?
	Pattern Profiles

	APPENDIX D: The Annotated SOA Manifesto
	The SOA Manifesto
	The SOA Manifesto Explored
	Preamble
	Priorities
	Guiding Principles

	About the Author
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

