
www.it-ebooks.info

http://www.it-ebooks.info/

Patterns and Antipatterns Covered Inside

Patterns
Service Host 19

Active Service 24

Transactional Service 29

Workflodize 35

Edge Component 39

Decoupled Invocation 47

Parallel Pipelines 51

Gridable Service 56

Service Instance 61

Virtual Endpoint 64

Service Watchdog 67

Secured Message 75

Secured Infrastructure 80

Service Firewall 86

Identity Provider 91

Service Monitor 98

Request/Reply 108

Request/Reaction 114

Inversion of Communications 120

Saga 129

Reservation 140

Composite Front End (Portal) 148

Client/Server/Service 154

Service Bus 162

Orchestration 170

Aggregated Reporting 177

Antipatterns
Knot 190

Nanoservice 195

Transactional Integration 202

Same Old Way 206

www.it-ebooks.info

http://www.it-ebooks.info/

SOA Patterns
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SOA Patterns

ARNON ROTEM-GAL-OZ

M A N N I N G
SHELTER ISLAND
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964

Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane

20 Baldwin Road Copyeditor: Andy Carroll

PO Box 261 Technical Proofreader: Karsten Strøbæk

Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781933988269
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12
www.it-ebooks.info

www.manning.com
mailto:orders@manning.com
http://www.it-ebooks.info/

 To Aya, Tohar, Neder, and Yarom

 You make my life rock!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

brief contents

PART 1 SOA PATTERNS ...1

1 ■ Solving SOA pains with patterns 3

2 ■ Foundation structural patterns 18

3 ■ Patterns for performance, scalability, and availability 45

4 ■ Security and manageability patterns 73

5 ■ Message exchange patterns 106

6 ■ Service consumer patterns 139

7 ■ Service integration patterns 161

PART 2 SOA IN THE REAL WORLD ..187

8 ■ Service antipatterns 189

9 ■ Putting it all together—a case study 211

10 ■ SOA vs. the world 233

vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents

foreword xiii

about the author xxii

about the cover illustration xxiii

preface xv

acknowledgments xvii

about this book xix

PART 1 SOA PATTERNS..1

1 Solving SOA pains with patterns 3

1.1 Defining software architecture 4

1.2 Service-oriented architecture 5

What SOA is, and is not 6 ■ Service 7 ■ Contract 7

Endpoint 7 ■ Message 8 ■ Policy 8 ■ Service consumer 8

SOA architectural benefits 8 ■ SOA for the enterprise 11

1.3 Solving SOA challenges with patterns 11

Pattern structure 12 ■ Problem 12 ■ Solution 13 ■ Technology

mapping 13 ■ Quality attributes 14 ■ From isolated patterns to a

pattern language 14

1.4 Summary 16

1.5 Further reading 16

Distributed systems 16 ■ Fallacies of distributed computing 17

SOA 17

ix

www.it-ebooks.info

http://www.it-ebooks.info/

x CONTENTS
2 Foundation structural patterns 18

2.1 Service Host pattern 19

2.2 Active Service pattern 24

2.3 Transactional Service pattern 29

2.4 Workflodize pattern 35

2.5 Edge Component pattern 39

2.6 Summary 43

2.7 Further reading 44

Service Host pattern 44 ■ Transactional Service pattern 44

Workflodize pattern 44 ■ Edge Component pattern 44

3 Patterns for performance, scalability, and availability 45

3.1 Decoupled Invocation pattern 47

3.2 Parallel Pipelines pattern 51

3.3 Gridable Service pattern 56

3.4 Service Instance pattern 61

3.5 Virtual Endpoint pattern 64

3.6 Service Watchdog pattern 67

3.7 Summary 71

3.8 Further reading 72

Decoupled Invocation 72 ■ Parallel Pipelines 72

Gridable Service 72

4 Security and manageability patterns 73

4.1 Secured Message pattern 75

4.2
 Secured Infrastructure pattern 80
4.3
 Service Firewall pattern 86
4.4
 Identity Provider pattern 91
4.5
 Service Monitor pattern 98
4.6
 Summary 104
4.7
 Further reading 105

Secured message 105 ■ Secured Infrastructure 105

5 Message exchange patterns 106

5.1 Request/Reply pattern 108

5.2 Request/Reaction pattern 114

www.it-ebooks.info

http://www.it-ebooks.info/

xi CONTENTS
5.3 Inversion of Communications pattern 120

5.4 Saga pattern 129

5.5 Summary 137

5.6 Further reading 137

Inversion of Communications 137 ■ Saga 138

6 Service consumer patterns 139

6.1 Reservation pattern 140

6.2 Composite Front End (Portal) pattern 148

6.3 Client/Server/Service pattern 154

6.4 Summary 160

6.5 Further reading 160

Composite Front End 160 ■ Client/Server/Service 160

7 Service integration patterns 161

7.1 Service Bus pattern 162

7.2 Orchestration pattern 170

7.3 Aggregated Reporting pattern 177

7.4 Summary 185

7.5 Further reading 186

Service Bus 186 ■ Orchestration 186 ■ Aggregated

Reporting 186

PART 2 SOA IN THE REAL WORLD187

8 Service antipatterns 189

8.1 Knot antipattern 190

8.2 Nanoservice antipattern 195

8.3 Transactional Integration antipattern 202

8.4 Same Old Way antipattern 206

8.5 Summary 209

8.6 Further reading 210

Knot 210 ■ Transactional integration 210

9 Putting it all together—a case study 211

9.1 Problem 212

System requirements 212 ■ Quality attributes 213

www.it-ebooks.info

http://www.it-ebooks.info/

xii	 CONTENTS
9.2 Solution 214

Structure (Edge Component, Gridable Service, Parallel Pipelines) 216

Communications (Inversion of Communications, Service Bus, Saga,

Reservation) 223 ■ Availability (Service Instance, Service

Watchdog) 228

9.3 Summary 231

10 SOA vs. the world 233

10.1 REST vs. SOA 234

What is REST anyway? 234 ■ How REST and SOA are

different 235 ■ RESTful SOA 236

10.2 SOA and the cloud 238

The cloud terminology soup 238 ■ The cloud and the fallacies of

distributed computing 239 ■ The cloud and SOA 241

10.3 SOA and big data 242

The big data technology mix 243 ■ How SOA works with big

data 245

10.4 Summary 247

10.5 Further reading 247

REST 247 ■ The cloud 248 ■ Big data 248

appendix	 From quality attributes to patterns 249

index 259

www.it-ebooks.info

http://www.it-ebooks.info/

foreword

Building distributed yet integrated systems remains a difficult problem to solve. First,
it requires a solid understanding of the individual components to be connected. Next,
we have to connect these components in a way that balances loose coupling against
system-wide requirements, such as latency and security. Last but not least, the result
ing system has to be monitored and managed. Over time, a number of approaches
have set out to solve these challenges: distributed components, EAI messaging, and,
more recently, service-oriented architectures (SOA). While these approaches and tools
have been a tremendous help, there is still no easy step-by-step recipe for balancing
potentially opposing requirements into a coherent solution.

 This is why design patterns are such a critical resource for building successful SOA
solutions. Patterns encode knowledge and experience in a way that can be applied in
a variety of contexts and technologies. They are not a one-size-fits-all silver bullet, but
they do present forces and counterforces that steer us toward a reusable, well-
balanced solution. At the same time, they form an important vocabulary that allows us
to communicate our design decisions succinctly and precisely.

 Arnon has harvested design decisions from years of building SOA solutions and has
encoded his knowledge and experience in this book. He presents a conceptual frame
work of an SOA, which serves as the roadmap through various aspects of SOA design.
For each aspect, he shares actionable guidance and examples from real-world project
experience. At the end, he pulls all the pieces together in a real-world case study.

 Rather than compiling a tome of every possible pattern that could be relevant to
an SOA, Arnon selected and documented a core set of patterns and arranged them in
a logical fashion. He discusses the trade-offs and design decisions involved in applying
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

xiv FOREWORD
each pattern in detail, down to actual code examples. Like most tools, SOA patterns
can be used, but also abused or overused. That’s why Arnon takes care to warn us of
the temptation to SOA-ify every architectural nail with our newfound “SOA hammer.”

 When Bobby Woolf and I wrote Enterprise Integration Patterns, Web Services had just
entered the technology arena, and there was little knowledge and experience on how
to turn individual services into a full-fledged service-oriented architecture. So, we
decided to focus on messaging patterns first, with the hope of covering service pat
terns in the future. Alas, we never managed to complete that formidable task, so we
are doubly thankful to Arnon—not only did he document the significant body of
knowledge on SOA, he also filled in an important gap that we had left. Well done.

GREGOR HOHPE

COAUTHOR OF

ENTERPRISE INTEGRATION PATTERNS
www.it-ebooks.info

http://www.it-ebooks.info/

preface

In 1996, I led development in a small startup. I had worked on multiuser systems
before, but this was the first big distributed system I wrote. I found out the hard way
that it isn’t a simple task—a lot can and does go wrong, and simplified assumptions
you make at the onset will come back to haunt you.

I learned my lesson, and I’ve been developing distributed systems ever since. Over
the years, I discovered service-oriented architecture (SOA), and I found that, with its
emphasis on interfaces and flexibility, it’s a really good way to build distributed sys
tems and it brings a lot of benefits. As I spent a few years working on many projects, I
saw that a lot of people misuse SOA, that a lot don’t understand it, and that good
advice is hard to find. I decided to write a book—the year was 2006.

 It is now 2012 and the book is finally finished. Any author will tell you that writing
a book is hard, and it takes more time than initially thought. This is all true, but that’s
not my excuse. I finished the first third of the book reasonably on schedule, but then I
joined another startup, which consumed every shred of free time I had for almost four
years. On the upside, I gained more experience and I went over what I had written
and updated the technology mapping sections, so you’re essentially getting a second
edition now. Also, the startup that prevented me from completing this book stars as
the case study for chapter 9, so it did contribute something to the book as well.

 Why patterns? That has to do with the first startup where I worked. As we worked
on the development of the user interface (UI), I had this innovative idea—we should
separate the UI logic from the UI controls and from the data-access code. This would
give us more flexibility and better testability. It was only later that I learned that my
“innovation” had been developed in the 1970s. It also had a name, and it was also
xv

www.it-ebooks.info

http://www.it-ebooks.info/

xvi PREFACE
more refined and solved the problem better—it was the Model-View-Controller
(MVC) pattern. This discovery of documented architectural solutions and the time
they can save in development sparked my interest in software patterns.

 I really like the fact that patterns present a problem in context and don’t presume
the solution is always correct. I think that’s a great way to present a topic, and it also let
me break the book into independent bits, which makes the book usable as a reference
and not something you need to read cover to cover.

One point about this book that’s relatively unique is that I wrote about architectural
patterns and not design patterns. I think it is beneficial to provide guidance at the
architectural level and to understand the impact it has on the system as a whole, and
not focus solely on the local effect as design patterns do. This is especially important
when we’re talking about SOA, because SOA is about the overall system more than it is
about individual components. Another important benefit of focusing on architecture
is that architecture transcends technology. The technology mapping section for each
pattern shows just some examples of where each pattern can be used; you can apply
the ideas using the technology of your choice.

 This book summarizes my experience writing distributed systems in general, and
SOA systems specifically. I hope you find it useful.
www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments

Writing a book takes a major effort, and even though my name is on the cover, there
are a lot of people without whom this wouldn’t have happened. I’d like to thank David
Stommer—the first person who said he would buy the book, back when I had the
crazy idea to write it. A thank you is also due to Roy Osherove for introducing my SOA
patterns idea to Manning.

A huge thanks goes to the Manning team for keeping the faith and pushing me
forward. Specifically, I’d like to thank Michael Stephens, who not only contacted me
with the offer to start this project but also kept nagging me to finish it. I’d like to
thank Cynthia Kane, my development editor, for her patience and help in making the
narrative more compelling. Also a huge thank you to Andy Carroll, my copyeditor, for
taking my blubber and turning it into succinct English, and to Elizabeth Martin, my
proofreader. Another thank you goes to Olivia Booth for organizing the reviews. And
while he’s not a Manning member, I’d also like to thank Eric Bruno who unfortu
nately couldn’t join me as a coauthor but who did a lot of housekeeping and helped
organize the book.

 More thanks go to the following reviewers for providing feedback and helping make
this book better: Antti Koivisto, Barry Polley, Clarence Scates, Dan Dobrin, Darren
Neimke, Dave Crane, Eddy Vluggen, Eric Bowman, Eric Farr, Glenn Stokol, Gregor
Hohpe, Kunal Mittal, Pat Dennis, Rick Wagner, Robert Trausmuth, Robin Anil, Roy
Prins, Srikanth Vadlamani, Stephen Friend, Tijs Rademakers, and Udi Dahan.

 Special thanks to Gregor Hohpe for contributing the foreword to my book and to
Karsten Strøbæk for reviewing the manuscript and for his technical proofread of the
book just before it went into production.
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

xviii ACKNOWLEDGMENTS
 I’d especially like to thank my wife, Aya, for pushing me to man up and finish the
book, and for spending nights alone while I wrote it.

 Last but not least, I would like to thank all the MEAP readers, who, even though the
book took ages to complete, kept on buying more and more copies and helped moti
vate me to complete it.
www.it-ebooks.info

http://www.it-ebooks.info/

about this book

Service-oriented architecture has been around for years now. The hype surrounding it
in the past has finally waned, and we are now free to do real work and build real sys
tems using it.

 Do not mistake the lack of hype for a lack of relevance. If anything, SOA is more
relevant than ever, as it’s practically the only good way to build cloud-based solutions
(something I’ll discuss in chapter 10). Additionally, the SOA landscape has become
more complicated over the years because SOA is now living side-by-side (or is inte
grated) with other architectures like event-driven architecture, REST, and big data
(discussed in chapters 5 and 10).

SOA-related technologies are more mature now, but technology alone is not
enough without proper architecture. That’s the main point behind this book: solving
the architectural challenges of distributed systems in general and of SOA specifically
by using architectural solutions expressed as patterns and antipatterns.

Roadmap
Part 1 of this book focuses on SOA patterns. It looks at ways to solve SOA challenges by
using contextual solutions:

■	 Chapter 1 introduces SOA, its components, their relations, and the benefits of
SOA. The chapter also introduces the concept of patterns and the pattern struc
ture used in the book.

■	 Chapter 2 introduces some of the fundamental building blocks for building
services.
xix

www.it-ebooks.info

http://www.it-ebooks.info/

xx ABOUT THIS BOOK
■	 Chapter 3 tackles the core challenges of SOA, namely performance, scalability,
and availability. These aspects are hard to get right because SOA adds latency by
its very nature (because there are more components and distribution).

■	 Chapter 4 takes a look at different aspects of security and the management of
services. Security is often a neglected part of any solution, and when we’re talk
ing about SOA, which is composed of many services, this can prove to be a
grave mistake.

■	 Chapter 5 covers the common interaction patterns for services, from the simple
request/reply interaction to more advanced options.

■	 Chapter 6 looks at patterns for integrating services and service consumers, espe
cially UIs that are not services in themselves.

■	 Chapter 7 takes a look at patterns that handle the composition and integration
of services.

Part 2 focuses on different aspects of SOA in the real world:

■	 Chapter 8 introduces SOA antipatterns. These are some of the things that can
go wrong when you implement SOA, and this chapter discusses how to redesign
or refactor the solutions to solve the problems.

■	 Chapter 9 demonstrates, via a case study, how the different patterns can work
together to create a greater whole—a complete system.

■	 Chapter 10 takes a look at additional architectures and technologies and how
they work with SOA. Specifically, the chapter covers the REST architectural style,
cloud computing, and big data.

SOA Patterns can be read cover to cover, but the discussion of each individual pattern
and antipattern pretty much stands on its own and can be read for reference when
you face a specific challenge. To help with that, the book includes an appendix that
maps quality attribute scenarios back to individual patterns and helps identify patterns
that are relevant to problems you face.

Who should read this book?
This is a book about service-oriented architecture, so it will appeal to anyone tasked
with building a system based on these principles. It is also about building distributed
systems in general, and I believe a lot of the patterns will appeal to a wide audience.

 As its main concern is with software architecture, the book is naturally targeted at
software architects. I’d like to think it’s also relevant for a wider audience, including
developers who are tasked with building services and managers who want to under
stand the range of possible solutions.

The technology mapping sections of the book contain code excerpts mainly in C#
and Java, but these are just examples and the designs are applicable in other lan
guages. I’ve applied some of the patterns in projects that used Ruby and Scala and still
found them relevant.
www.it-ebooks.info

http://www.it-ebooks.info/

xxi ABOUT THIS BOOK
Code conventions
All the code in the examples used in this book is presented in a monospaced font like
this. For longer lines of code, a wrapping character may be used to keep the code
technically correct while conforming to the limitations of a printed page.

 Annotations accompany many of the code listings and numbered cueballs are used
if longer explanations are needed. Longer listings of code examples appear under
clear listing headers; shorter listings appear between lines of text.

Author Online
Purchase of SOA Patterns includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub
scribe to it, point your web browser to www.manning.com/SOAPatterns. This page
provides information on how to get on the forum once you’re registered, what kind of
help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try ask the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi
ble from the publisher’s website as long as the book is in print.
www.it-ebooks.info

www.manning.com/SOAPatterns
http://www.it-ebooks.info/

about the author

With more than 20 years of experience in software, Arnon Rotem-Gal-Oz has spent
the last 15 years as an architecture and system designer of large distributed systems,
including business intelligence (BI) and analytics systems, C4ISR systems, and cus
tomer care and billing systems. He has experience with a variety of technologies
(Java, .NET, Scala, Hadoop, NoSQL, CEP, and others) on diverse platforms (Linux,
Windows, Solaris, iOS, AS/400). Arnon currently works as the director of architecture
for Nice Systems developing big data and SOA systems. Prior to that, Arnon worked as
VP R&D in a couple of startups in the cloud and internet industries. Arnon blogs at
http://arnon.me.
xxii

www.it-ebooks.info

http://arnon.me
http://www.it-ebooks.info/

 about the cover illustration

The figure on the cover of SOA Patterns is a “Capidji Bachi,” a personal officer of the
Ottoman sultan, in ceremonial dress. The illustration is taken from a collection of cos
tumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old
Bond Street, London. The title page is missing from the collection and we have been
unable to track it down to date. The book’s table of contents identifies the figures in
both English and French, and each illustration bears the names of two artists who
worked on it, both of whom would no doubt be surprised to find their art gracing the
front cover of a computer programming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap
pened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

xxiv ABOUT THE COVER ILLUSTRATION
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.
www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

SOA patterns

This is a book about service-oriented architecture (SOA) and about solving
the challenges involved in implementing it. We’ll discuss that in two parts.
Part 1, the first seven chapters, discusses SOA and a range of architectural pat
terns, demonstrating them in numerous examples; part 2, chapters 8–10, looks
at how it all works in real life.

 Chapter 1 introduces SOA and its components (services, consumers, mes
sages, endpoints, contracts, and policies) as well as the patterns approach. The
subsequent chapters detail the different patterns.

 Chapter 2 takes a look at foundation patterns—basic patterns that are
needed to get started with implementing services. Chapter 3 covers patterns
related to performance, scalability, and availability. Chapter 4 looks at what’s
needed to secure services and monitor their overall wellness. Chapter 5 details
message exchange patterns, starting with the basic request/reply model and
ending with long-running interactions. Chapter 6 covers patterns related to how
consumers interact with services. Chapter 7 examines service composition pat
terns that show how you can go from a bunch of services to a system.

 The patterns presented in the book are architectural patterns, and the archi
tecture is driven by quality attributes (also known as nonfunctional requirements
or “illities”). The discussion of each pattern also has a quality attributes section
detailing sample scenarios. Appendix A provides a cross reference from quality
attributes to the patterns and can be used to quickly look up relevant patterns.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Solving SOA pains
with patterns
In this chapter
 What is software architecture

 What SOA is and isn't

 Pattern structure

How do you write a book on service-oriented architecture (SOA) patterns? As I pon
dered this question, it led to many others. Should I explain the context for SOA, or
explain the background that’s needed to understand what SOA is? Should I men
tion distributed systems? Should I discuss when an SOA is needed, and when it
isn’t? After much thought, it became apparent to me: a book on SOA patterns
should be a practitioner’s book. If you’re faced with the challenge of designing and
building an SOA-based system, this book is for you.

 You might not even agree with an SOA-based approach, but are forced into using
it based on someone else’s decision. Alternatively, you may think that SOA is the
greatest thing since sliced bread. Either way, the fact that you’re here, reading this,
means you recognize that building an enterprise-class SOA-based system is challeng
ing. There are indeed challenges, and they cut across many areas, such as security,
availability, service composition, reporting, business intelligence, and performance.
3

www.it-ebooks.info

http://www.it-ebooks.info/

4	 CHAPTER 1 Solving SOA pains with patterns
 To be clear, I won’t be lecturing you on the merits of some wondrous solution set
I’ve devised. True to the profession of the architect, my goal is to act as a mentor. I
intend to provide you with patterns that will help you make the right decisions for the
particular challenges and requirements you’ll face in your SOA projects, and enable
you to succeed.

 Before we begin our journey into the world of SOA patterns, there are three things
we need to discuss:

 What is software architecture? The “A” in SOA stands for architecture, so we need
to define this clearly.

 What is a SOA? This is an important question because SOA is an overhyped and
overloaded term. We need to clearly define the term that sets the foundation
for this book.

 How will each pattern be presented in the book? I’ve used a consistent structure to
explain each of the patterns in this book. We’ll take a quick look at this struc
ture so you know what to expect in the discussion of each pattern.

 Let’s get started with the first question—what is software architecture?

1.1 Defining software architecture
There are many opinions as to what software architecture is. One of the more accepted
ones is IEEE’s description of software architecture as the “fundamental concepts or
properties of a system in its environment embodied in its elements, relationships, and
in the principles of its design and evolution” (IEEE 42010). My definition agrees with
this one, but is a bit more descriptive:

DEFINITION Software architecture is the collection of fundamental decisions
about a software product or solution designed to meet the project’s quality
attributes (the architectural requirements). The architecture includes the
main components, their main attributes, and their collaborations (their inter
actions and behavior) to meet the quality attributes. Architecture can, and
usually should, be expressed in several levels of abstraction, where the num
ber of levels depends on the project’s size and complexity.

Looking at this definition, we can draw some conclusions about software architecture:

 Architecture occurs early. It should represent the set of earliest design decisions
that are both hardest to change and most critical to get right.

 Architecture is an attribute of every system. Whether or not its design was inten
tional, every system has an architecture.

 Architecture breaks a system into components and sets boundaries. It doesn’t need to
describe all the components, but the architecture usually deals with the major
components of the solution and their interfaces.

 Architecture is about relationships and component interactions. We’re interested in
the behaviors of the individual components as they can be discerned from
www.it-ebooks.info

http://www.it-ebooks.info/

Service-oriented architecture	 5
other components interacting with them. The architecture doesn’t have to
describe the complete characteristics of the components; it mainly deals with
their interfaces and other interactions.

 Architecture explains the rationale behind the choices. It’s important to understand
the reasoning as well as the implications of the decisions made in the architec
ture because their impact on the project is large. Also, it can be beneficial to
understand what alternatives were weighed and abandoned. This may be
important for future reference, if and when things need to be reconsidered,
and for anyone new to the project who needs to understand the situation.

 There isn’t a single structure that is the architecture. We need to look at the archi
tecture from different directions or viewpoints to fully understand it. One dia
gram, or even a handful, isn’t enough to be considered an architecture.

For a software system’s architecture to be intentional, rather than accidental, it should
be communicated. Architecture is communicated from multiple viewpoints to cater to
the needs of the stakeholders. The Software Engineering Institute (SEI) defines an
architectural style as a description of component types and their topology, together
with a set of constraints on how they can be used.

1.2 Service-oriented architecture
The term SOA was first used in 1996 when Roy Schulte and Yeffim V. Natiz from Gart
ner defined it as “a style of multitier computing that helps organizations share logic
and data among multiple applications and usage modes.”1 Now, SOA is finally at the
forefront of IT architectures and systems. But on the uphill and rocky road to star
dom, SOA has become a loaded term filled with misconceptions and hype. As in the
game of “telephone,” the definition of SOA has morphed as it was passed along in
informal conversations. For the purposes of this book (and my view of SOA), we’ll use
the following definition:

DEFINITION Service-oriented architecture (SOA) is an architectural style for build
ing systems based on interactions of loosely coupled, coarse-grained, and
autonomous components called services. Each service exposes processes and
behavior through contracts, which are composed of messages at discoverable
addresses called endpoints. A service’s behavior is governed by policies that are
external to the service itself. The contracts and messages are used by external
components called service consumers.

Let’s take a look at common misconceptions about SOA and see why they’re not SOA.
Then we’ll come back and expand on this definition, and SOA’s benefits both archi
tecturally and business-wise.

1	 Roy W. Schulte and Yefim V. Natis, SPA-401-068: "'Service Oriented' Architectures, Part 1” (report for Gart
ner, 1996).
www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 Solving SOA pains with patterns
1.2.1 What SOA is, and is not

Many popular terms go through what Martin Fowler calls “semantic diffusion.”2 As a
term becomes more popular, people try to make it stick to whatever they’re doing.
Additionally, the hype, or buzz, that a new term receives generates a lot of discussion
around it. If the people using the term don’t understand it completely, or if they’re
using the term in hopes that its popularity rubs off on their product, the results are
misconceptions and inaccurate descriptions.

 For instance, in the late 1980s, object-oriented programming (OOP) was the hot
new topic. As a result, developers referred to everything in their design, and their
code, as objects simply because they wanted to say they were using object-oriented
design and development techniques. The truth was, because the methodology was so
new and the hype was so great, their descriptions were, in most cases, inaccurate. It
took several years for OOP to take root and for the development world to agree upon
what it truly was.

 One can argue that we’re at the same stage with SOA; it has garnered many miscon
ceptions and incomplete definitions. Table 1.1 outlines the most prevalent misconcep
tions and explains why they are, in fact, misconceptions.

Table 1.1 Common misconceptions about SOA

Misconception Why it’s not SOA

SOA is a way to align IT and the
business team.

That’s not true. Better IT and business alignment is something we
want to achieve using SOA, but it isn’t what SOA is. Nevertheless,
the loosely coupled systems that result from a good SOA solution
enable the agility needed to truly align IT and the business team.

SOA is an application that has a
“web service” interface.

This isn’t necessarily true. To begin with, we can implement SOA with
other technologies. A nice example is the Open Services Gateway ini
tiative (OSGi), which defines a Java-based service platform (see www
.osgi.org). Furthermore, by exposing a method as a web service, we
can create procedural-like RPCs, which is far from the SOA concepts
and direction (see also the Nanoservice antipattern in chapter 8).

SOA is a set of technologies
(SOAP, REST, WS-I, and so on).

This is a general case of the previous misconception. Although some
technologies are identified with SOA, or fit in well with SOA, SOA is an
architectural approach. Remember, SOA is technology-independent.

SOA is a reuse strategy. This is not always true. Reuse certainly sounds like a tempting rea
son to use SOA, but the larger the granularity of a component, the
harder it is to reuse it. Nevertheless, SOA will allow your services to
evolve over time and adapt, so that you don’t need to start from
scratch every time.

SOA is an off-the-shelf solution. SOA isn’t a product you can buy—it’s a way to architect distributed
systems. Perhaps you can resell the resulting service, but that’s only
a convenient artifact of a good design.

 Martin Fowler, “Semantic Diffusion,” http://martinfowler.com/bliki/SemanticDiffusion.html. 2
www.it-ebooks.info

www.osgi.org
www.osgi.org
http://martinfowler.com/bliki/SemanticDiffusion.html
http://www.it-ebooks.info/

7Service-oriented architecture
Now that we’ve looked at some misconceptions, let’s reexamine the SOA definition
provided earlier. SOA is an architectural style. This means that SOA defines compo-
nents, relationships, and constraints about each component’s usage and interactions.
As mentioned in the definition, the SOA style defines the following components: ser-
vice, endpoint, message, contract, policy, and service consumer. SOA also defines cer-
tain interactions that the components can have. Figure 1.1 illustrates SOA’s
components and their relationships:

 Let’s take a deeper look at each of the six components of SOA.

SERVICE

The central pillar of SOA is the service. Merriam-Webster’s dictionary has eleven differ-
ent definitions for the word service; the most appropriate here is “a facility supplying
some public demand.”3

 In my opinion, a service should provide a distinct business function, and it should
be a coarse-grained piece of logic. Additionally, a service should implement all of the
functionality promised by the contracts it exposes. One of the characteristics of ser-
vices is service autonomy, which means the service should be mainly self-sufficient.

CONTRACT

The collection of all the messages supported by the service is known as the service’s
contract. The contract can be unilateral, meaning it provides a closed set of messages
that flow in one direction. Alternatively, a contract might be bilateral, with the service
exchanging messages with a predefined group of components. A service’s contract is
analogous to the interface of an object in object-oriented design.

ENDPOINT

An endpoint is a universal resource identifier (URI), such as an address or a specific
place, where the service can be found. A specific contract can be exposed at a specific
endpoint.

3 Merriam-Webster, “service,” http://www.merriam-webster.com/dictionary/service.

Service

Describes

Endpoint Exposes

Messages Sends/receives

Contracts

Binds to

Service
consumer Implements

Policy Governed by

Sends/receives

Adheres to

Component
Rela�on

Key

Understands

Serves

Figure 1.1 Apart from the obvious component (the service), SOA has several
other components, such as the contract that the service implements, endpoints
where the service can be contacted, messages that are moved back and forth
between the service and its consumers, policies that the service adheres to, and
consumers that interact with the service.
www.it-ebooks.info

http://www.merriam-webster.com/dictionary/service
http://www.it-ebooks.info/

8 CHAPTER 1 Solving SOA pains with patterns
MESSAGE

The unit of communication in SOA is the message. Messages can come in many differ
ent forms, such as these:

 HTTP GET messages (in the representational state transfer (REST) style)
 Simple Object Access Protocol (SOAP) messages
 Java Message Services (JMS) messages
 Simple Mail Transfer Protocol (SMTP) messages

The difference between a message and other forms of communication, such as a
remote procedure call (RPC), is subtle. An RPC often requires the caller to have inti
mate knowledge of the other system’s implementation details. With messaging, this
isn’t the case. Messages have both a header and a body (the payload). The header is
usually generic and can be understood by infrastructure and framework components
without knowing implementation details. This reduces dependencies and coupling.
The existence of the header allows for infrastructure components to route reply mes
sages (for example, the routing of messages in the Saga pattern in chapter 5) or
implement security transparently (see the Service Firewall pattern in chapter 4).

Messages are a very important part of SOA, and they’ve been thoroughly covered
by other books, such as Enterprise Integration Patterns by Gregor Hohpe and Bobby
Woolf (Addison-Wesley Professional, 2004). Nonetheless, this book also explores some
messaging patterns where the SOA perspective enhances the more generic perspective
used in Hohpe and Woolf’s book. As an example, see the Request/Reply pattern in
chapter 5.

POLICY

One important differentiator between SOA and object-oriented design (or even com
ponent-oriented design) is the existence of policies. Just as an interface or contract sep
arates specifications from implementations, policies separate dynamic specifications
from static or semantic specifications.

A policy defines the terms and conditions for making a service available for service
consumers. The unique aspects of policies are that they can be updated at runtime
and they’re externalized from the business logic. A policy specifies dynamic proper
ties, such as security (encryption, authentication, authorization), auditing, service-
level agreements (SLAs), and so on.

SERVICE CONSUMER

A service is only meaningful if another piece of software uses it. Service consumers are
the software components that interact with a service via messaging. Consumers can be
either client applications or other services; the only requirement is that they adhere to
an SOA contract themselves.

1.2.2 SOA architectural benefits

By definition, SOA brings many architectural benefits to a distributed software system.
Many quality attributes are addressed, such as these:
www.it-ebooks.info

http://www.it-ebooks.info/

9 Service-oriented architecture
 Reusability—This isn’t reusability in the sense of “write once integrate any
where,” but rather in the sense that you “don’t throw everything out when you
need different functionality.”

 Adaptability—Isolating the internal structure of a service from the rest of the
world lets you make changes more easily. You only need to adhere to the con
tracts you publish.

 Maintainability—Services can be maintained by dedicated, smaller teams and
can be tested this way as well. Robert L. Glass has said, “software maintenance is
a solution, not a problem”.4 SOA greatly helps make this a reality.

These benefits exist because SOA removes the dependency issues related to point-to
point integration.

 Many enterprises have grown isolated systems to solve particular business needs.
These are sometimes referred to as stovepipe systems. As time passes and business needs
change, there’s often a need to share data between systems. Each time such a need is
identified, a new relationship is formed between these systems. The result, as seen in fig
ure 1.2, is an integration mess that becomes very hard to maintain and evolve over time.

ETL integraton
DB integraton
File-based integraton
Online integraton

Department

Server

DB

Figure 1.2 Typical integration spaghetti in enterprise systems. Each department builds its
own systems, and as people use the systems, they find they need information from other
systems. Point-to-point integration emerges.

Robert L. Glass, Software Conflict 2.0: The Art and Science of Software Engineering (Developer.* Books, 2006),
61–65.

4
www.it-ebooks.info

http://www.it-ebooks.info/

10	 CHAPTER 1 Solving SOA pains with patterns
The diagram shows four types of point-to-point integrations:

 ETL (extract, transform, load)—Database-to-database integration or other ETL-
based integration

 Online integration—Application-to-application integration based on HTTP or
TCP

 File-based integration—Application-to-application integration based on the filesys
tems and the exchange of files (such as comma-delimited files)

 Direct database connection—Application-to-database integration

NOTE The preceding list isn’t exhaustive. There are additional relationships
such as replication, message-based relationships, and others that aren’t
expressed in figure 1.2.

In a well-defined SOA, the interfaces aren’t designed to be point-to-point but are
instead more generalized to serve many anonymous consumers. SOA eliminates this
spaghetti and introduces more disciplined communication. Fewer connectors means
less maintenance and fewer assumptions. Fewer connectors also result in increased
flexibility, as shown in figure 1.3.

 For enterprises that support a heterogeneous environment, with multiple operat
ing systems (OSs) and platforms, SOA provides standards-based contracts that are plat-
form-independent. In fact, SOA enables transparent interoperability among services
and applications across platforms.

 Policy-based communications also greatly enhance the maintainability and adapt
ability of SOA-based solutions because key aspects, like security and monitoring, are
configurable. This moves some of the responsibility from the development team to
the IT staff and makes life easier for both parties.

Figure 1.3 From object soup to well-formed services; one of the ideas behind SOA is to set explicit boundaries
between larger chunks of logic, where each chunk represents a high-cohesion business area. This is an
improvement on the more traditional approach, which more often than not results in an unintelligible object soup.
www.it-ebooks.info

http://www.it-ebooks.info/

Solving SOA challenges with patterns 11
 We can take all of these architectural benefits and translate them to business bene
fits, as discussed in the next section.

1.2.3 SOA for the enterprise

There are a lot of business-oriented aspects of SOA as well. SOA is described as a way to
“increase the alignment of IT and the business.” Essentially, increased alignment
means that IT can adapt more easily to the changing business processes, and thus
increase your business’s agility.

 To avoid overloading the term SOA, I’d like to refer to these aspects of SOA as “SOA
initiatives.” Table 1.2 points out some of these business benefits.

Table 1.2 SOA technical benefits and the business benefits they provide

SOA characteristic Business benefit

Easier maintenance and replace
ment of components

Easier replacement of existing business components
Better adaptability to accommodate changing business processes
Faster time to market for new business functionality

Standards-based service inter
faces (contracts)

Reduced effort to connect new systems
Easier partner integration
Enables automation of business process

Service autonomy Reduced downtime and lower operational costs

Externalized policies Ability to set service-level agreements
Easier integration

In general, it’s best to take an incremental approach to adopting SOA—your business
can’t afford to halt and wait for an SOA initiative to finish. You need to plan for SOA-
like highway intersections; detours need to be created to enable business to continue
while the new system is being developed.

 Many SOA books cover the business aspects of the SOA initiatives, and this book
isn’t one of them. This book’s scope is the software architecture aspects of SOA and
technological implications of these aspects, not business analysis and related methods.
One of the best ways to express these software architecture concerns and provide a
better understanding of the architectural solutions is through the use of patterns
(best practices) and antipatterns (lessons learned and mistakes to avoid).

1.3 Solving SOA challenges with patterns
Given all its benefits, why would anyone choose not to build with SOA? The truth is,
building with SOA isn’t easy. Even though SOA is designed to face the challenges of
distributed systems design, there are still many issues you need to take care of and
solve when you design viable solutions.

One set of problems is the quality attributes not inherently addressed by SOA, like
availability, security, scalability, performance, and so on. Real projects have to deal
www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 Solving SOA pains with patterns
with requirements like five-nines availability (99.999 percent uptime), which is no more
than about five minutes of downtime per year.

 Another set of problems has to do with the challenges of designing and building
SOA. How do you gain a centralized view of business data in an architectural style that
encourages encapsulation and privacy? What does it mean to aggregate services? How
do you tie your services to a UI?

 It would be nice if there were a few best practices already defined that could tell us
how to cope with all of these issues. The truth is that there are no silver bullets in soft
ware design and development. Every system has its own set of prerequisites, hidden
costs, one-off requirements, and special case exceptions. This is exactly why the use of
patterns is so appealing as a medium to convey solutions. Patterns aren’t defined to be
perfect solutions. Instead, they give the context for where the solution works. To
achieve this, patterns describe both the solution and the problem they solve, and any
caveats associated with that solution.

 The following section explains the pattern structure used in this book and demon
strates how to apply the patterns to your own set of design challenges.

1.3.1 Pattern structure

Patterns in this book mostly take after what is called the Alexandrian form, which is
named after the style Christopher Alexander and his coauthors used in their book, A
Pattern Language.5 In this form, pattern descriptions are narrative with a few headings
for readability, and they serve as a vocabulary for both designers and architects.

 To start, each pattern has a descriptive name that’s easy to remember and recall.
The name is followed by a short narrative passage to introduce the problem, which is
the first subsection. The other subsections in the pattern’s description are solution,
technology mapping, and quality attributes.

 Let’s examine the pattern form, and each of the subsections, in more detail now.

PROBLEM

The problem section, as its name implies, details the problem the pattern aims to
solve. It includes a problem statement that summarizes the essence of the problem.
More complex problems have an additional passage, prior to the problem statement,
that details the problem’s context. For instance, some patterns contain an example to
help illustrate the problem.

 Following the problem statement, the section often continues with a discussion of
other related options—often a discussion of alternative solutions and why they fail to
solve this particular problem (though these alternative solutions may still be applica
ble in other circumstances).

Christopher Alexander, Sara Ishikawa, and Murray Silverstein, A Pattern Language: Towns, Buildings, Construc
tion (Oxford University Press, 1977).

5
www.it-ebooks.info

http://www.it-ebooks.info/

13Solving SOA challenges with patterns
SOLUTION

The solution begins with a solution statement that summarizes the essence of the solu-
tion. A diagram that serves as a visual representation of the solution’s components
and their relationships follows the solution statement.

 The same diagram conventions are used for all the patterns, with different visual-
izations for the SOA components (see figure 1.1) and other neutral players. The fig-
ures include component relationships, other pattern components, attributes, and the
functionality of the pattern’s components. Take a look at figure 1.4.

 Without getting into the details of the roles of the different components, in this
diagram you can see that edge and endpoint are neutral components that aren’t part
of the pattern. The dispatcher and service instance components are part of the pat-
tern. Each of the pattern’s parts has one or more roles and attributes. In this case, you
can see that the dispatcher is responsible for the distribution (of messages) and that
the service instance is responsible for (running) the service business logic. The dis-
patcher and service instance are part of the pattern, while the innermost rectangles
designate roles or attributes of the pattern’s components (for instance, the dispatcher
distributes messages). The arrows are used to show interactions and relationships.
Requests and replies are passed back and forth between the dispatcher and service
instance, for example.

 The pattern description then continues with more details regarding the solution,
such as how the solution addresses outside forces, and so on. There may be a discus-
sion of the implications or consequences of applying the pattern as well as the rela-
tionship to other patterns and examples.

TECHNOLOGY MAPPING

The technology mapping section of the pattern description deals with technology
implications. Although a system’s architecture can be technology independent, a set
of technologies must be chosen to build the system. Therefore, as a practicing archi-
tect, you often need to map parts of the architecture to specific technologies.

 For SOA, there are many relevant technologies, such as the WS-* protocol stack,
REST-based web services, dedicated products, EDBs, and many others. The technology

Relation

Key
SOA component Pattern component

Concern/attribute

Edge Service instance

Dispatcher

Distribute

Service business
logic

Reply

Endpoint

Request

Figure 1.4 Sample
pattern diagram: the
Service Instance pattern.
The endpoint and edge are
two neutral components
(not part of the pattern).
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Solving SOA pains with patterns
Community
experience

Stakeholders

Architect

People
Artfact
Produces

Key

Is an input

Architecture

Quality
a ributes

Pa erns and
an pa erns

Principles

Constraints

Technology

Figure 1.5
The architect uses
various inputs to design
the architecture.

mapping section of each pattern talks about the relevant technologies that can be
used to implement the pattern or where the pattern is implemented.

QUALITY ATTRIBUTES

The final section of the pattern description has to do with identifying applicable pat
terns for your solution. If patterns are the solutions, then quality attributes are the
requirements. The quality attributes section of each pattern talks about the architec
tural benefits of the pattern and provides sample scenarios that can be used to identify
the pattern as relevant.

 In figure 1.5, you can see the various inputs the architect can use before a solution
is designed.

 First and foremost, you work with the constraints and requirements gathered from
the stakeholders. These include requirements for performance, security, scalability,
and interoperability. You can augment these inputs by drawing on personal and com
munity experience to add principles, patterns, and antipatterns. There are also the
possibilities and constraints imposed by available technologies. Finally, you must ana
lyze, prioritize, and balance all of these inputs to produce a final architecture to suit
the problem.

 Appendix A includes a cross-reference from quality attributes back to pattern
names (and the chapters they’re discussed in), and it provides some more back
ground on quality attributes and quality attribute scenarios.

1.3.2 From isolated patterns to a pattern language

Each pattern on its own provides useful information and describes a good practice. As
mentioned, patterns have relationships to other patterns—sometimes another pattern
is an alternative, and sometimes patterns can complement one another. There is usu
ally value in documenting these relationships, and this structural organization is
called a “pattern language.”
www.it-ebooks.info

http://www.it-ebooks.info/

15 Solving SOA challenges with patterns
Aggregated
reporting

ServiceBus

Orchesration

Reservation

Composite
Frontend

Client/Server/
Service

Inversion of
Communications

Request/Reply Request/Reaction

Saga

Secured Message

Service Monitor

Identity provider

Service Firewall

Secured
Infrastructure

Decoupled
Invocation

Parallel Pipeline

Gridable Service

Service Instance

Virtual Endpoint

Service Watchdog

Service Host

Active Service

Transactional
Service

Edge Component

exposes

hosts

hosts

can acts as

messages can be handled by

orchestrates

implements
supports

supports

hands off messages to exposes
exposes

subscribes to events via

protected by

part of

authorized using

monitors

monitors

delivered at

exposes

integrate services via

initiates processes uses

uses

uses

exposed at

scales by
scales by

implements

hosts

part of

Workflodize

Figure 1.6 Like any good pattern language, the SOA patterns in this book build upon each other to provide a
big-picture solution.

Evolving patterns into a pattern language that shows the patterns’ relationships helps
enable us to recognize related problems, and allows the architect to navigate the pat
terns in a logical way. In a sense, you can think of a pattern language as a logical and
intuitive “mind map” of the patterns that lets you take different paths through the
design process. As a result, patterns often open your mind to the bigger-picture prob
lems that need to be solved, and provide an overview perspective you may not have
had before (see figure 1.6).

 Table 1.3 shows how the patterns in this book are categorized, and in which chap
ters they are discussed. Note that as you progress from chapter to chapter, you’ll be
moving outward. The first two pattern chapters (chapters 2 and 3) mostly deal with
the internal structure of services. Chapter 4 focuses on the service interface,
chapters 5 and 6 focus on the service consumer and its interaction with the service,
and chapter 7 focuses on SOA as whole.

 When you encounter a problem in your SOA implementation, you can use both
the pattern diagram in figure 1.6 and the pattern categories in table 1.3 as roadmaps
www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 Solving SOA pains with patterns
Table 1.3 Pattern categories and the chapters they’re discussed in

Category Subcategory Description Chapter

Service structure Foundation patterns

Performance, availabil
ity, and scalability

Security and manage
ability

Common service building blocks

Patterns to solve scalability, availability,
and performance challenges

Patterns for securing and managing ser
vices

2

3

4

Integration Message exchange pat
terns

Consumer interaction

Patterns for communication between ser
vices

Interaction patterns for when the consum
ers are user clients or other services

5

6

Service composition Patterns for making services work together
and share information

7

to help you locate patterns that should be useful. The patterns diagram can also help
you find related patterns to create more complete solutions.

1.4 Summary
We’ve now laid the foundation you need to understand the SOA patterns in this book
and their overall context. We began with a definition of SOA and patterns in general,
and we considered how patterns can be used to provide solutions to SOA challenges.
We also looked at the technical and business benefits of SOA. The second part of this
chapter explained what patterns are, the structure of the patterns as they’ll be dis
cussed in this book, and how to locate the patterns discussed in the book.

 This chapter covered a lot of issues very briefly in order to create a common vocab
ulary for our discussion of SOA patterns. If you’re interested in learning more about
the issues discussed in this chapter, look at one or more of the resources listed in the
further reading section.

 Chapter 2 is our first pattern chapter, in which we’ll take a look at some of the
basic patterns used to build services.

1.5 Further reading
DISTRIBUTED SYSTEMS

Chris Britton, IT Architectures and Middleware: Strategies for Building Large, Integrated Systems
(Addison-Wesley Professional, 2004).
Provides a good look at the history of distributed systems and the inherent difficulties that they
inflict. It’s a very thorough book—the only problem is that it ends just before the SOA era.
www.it-ebooks.info

http://www.it-ebooks.info/

17 Further reading
FALLACIES OF DISTRIBUTED COMPUTING

Arnon Rotem-Gal-Oz, “Fallacies of Distributed Computing Explained,” www.rgoarchitects .com/
Files/fallacies.pdf.
SOA is an architectural style for distributed systems. Most other styles don’t have a distrib
uted mindshare and so, unlike SOA, they disagree with the fallacies. This paper, which I
wrote, explains how the fallacies are still relevant today.

SOA

Dirk Krafzig, Karl Banke, and Dirk Slama, Enterprise SOA: Service-Oriented Architecture Best Practices
(Prentice Hall, 2004).
This is one of the best books on SOA, and it provides a very good introduction to the subject.

Eric A. Marks and Michael Bell, Service-Oriented Architecture: A Planning and Implementation Guide
for Business and Technology (Wiley, 2006).
Marks and Bell take a look at the business perspectives of SOA and provide a completely dif
ferent (and complementary) look at SOA, as compared to this book.
www.it-ebooks.info

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.it-ebooks.info/

Foundation
structural patterns
In this chapter
 Patterns dealing with services

 Lightweight containers and DI

 Poison messages

Congratulations, you’re in charge of building your first service—now what? The
first thing to do, before getting into advanced topics such as making your service
secure and scalable, is to take care of the basics. Where will you deploy your ser
vice? How do you ensure your service’s reliability? How do you enable anonymous
access? And so on.

 In chapter 1 we talked about SOA basics: creating autonomous components that
publish and accept messages defined by contracts, delivered at endpoints, and gov
erned by policies to service consumers. In contrast, this chapter deals with some
foundation patterns—those that solve some of the more common issues related to
all services. These are the patterns you’re most likely to use, even if you have modest
requirements for your services. Because they deal with fundamental issues, the pat
terns in this chapter are relevant to implementing the services themselves (see
figure 2.1).
18

www.it-ebooks.info

http://www.it-ebooks.info/

19 Service Host pattern
Service

Describes

Endpoint Exposes

Messages Sends/receives

Contracts

Binds to

Service
consumer Implements

Policy Governed by

Sends/receives

Adheres to

Component
Relaton

Key

Understands

Serves

Figure 2.1 SOA defines six different components. This chapter has patterns

that deal with services, which are the essence of SOA.

In this chapter, we’ll discuss five patterns:

 Service Host—Make your services adaptable to different configurations easily
and save yourself the repetitive and mundane tasks of setting listeners, wiring
components, and so on

 Active Service—Increase service autonomy and handle temporal concerns
 Transactional Service—Handle messages reliably
 Workflodize—Increase the service’s adaptability to changing business processes
 Edge Component—Allow the service’s business aspects, technological concerns,

and other cross-cutting concerns to evolve at their own pace, independently of
one another

Enough introduction already. Let’s look at the first pattern, which describes the plat
form where your services will run.

2.1 Service Host pattern
The first pattern we’ll talk about, Service Host, is one of the most basic patterns, if not
the most basic one. Service Host deals with the environment where service instances
run. Let’s start by looking at why we need this pattern.

PROBLEM

Pick a service, any service (don’t tell me what it is). Wait, I think I see something ... you
have some code that sets up listeners for incoming messages or requests. You also have
code to wire up components, and more code that initializes and activates that service.
You probably also have some code to configure your service. Am I right? Chances are
you have most of these pieces of code somewhere in your service.

 The problem is you can end up with a lot of this code duplicated throughout the
services you’ve built, or will build. When building services, there are quite a few basic
tasks that are repetitive and common.
www.it-ebooks.info

http://www.it-ebooks.info/

20	 CHAPTER 2 Foundation structural patterns
?

�

How can you easily configure services and avoid duplicating mundane tasks, such
as setting listeners and wiring components, for each service?

The first option, and one that’s chosen all too often, is to rewrite the wiring and the
rest of the repetitive code for each and every service. Obviously, this isn’t a good
choice because it wastes time and can be error-prone. The duplicated-effort problem
is even worse when you consider maintaining a lot of similar code. If you make an
enhancement or fix a bug in this configuration code in one service, you’ll need to
copy that fix to each other service that contains similar code. This isn’t an efficient use
of your time, and it requires an inordinate amount of testing to ensure you didn’t miss
anything.

 A more reasonable solution is to create a library of common tasks and have each
service work with a copy of it. A library helps, because the code is only written once,
but you’re still left with coding the wiring that’s needed to utilize all of the library’s
functionality.

 Another option is to use inheritance—create a base class that implements the com
mon functionality, and have each service subclass it. But inheritance can be problem
atic, especially if the service functionality doesn’t fit within a single class. Additionally,
inheritance will prevent you from using techniques like dependency injection to
replace behavior or components. Not to mention that this is the wrong use of inheri
tance; inheritance should indicate an “is a” relationship.

 Nevertheless, inheritance comes close to solving the problem, as you only write the
code once, and customization occurs where the services differ. If you want to get the
same behavior without using inheritance, you can do that by using a framework—a
service host.

SOLUTION

Create a common service host component or framework that acts as a container
for services. This container should be configurable and will perform the wiring and
setup of services.

The Service Host, illustrated in figure 2.2, is a framework or a complete component
that performs some or all of the following functions:
 Lifecycle—Takes care of instantiating services, recycling services on fault, in-

place upgrades, and so on
 Configuration—Reads and applies configuration to hosted services, including

configuration for security, contract policies, and ports
 Wiring—Performs runtime setup of component wiring such as binding a lis

tener on a service’s endpoint
 Administration—Lets an administrator control the lifecycle of a hosted service

and may also include monitoring capabilities (this is an additional layer on top
of lifecycle responsibility)

 Environment—Provides auxiliary services like logging, cache, database libraries
(ODBC/JDBC), scheduler, and so on
www.it-ebooks.info

http://www.it-ebooks.info/

21Service Host pattern
All of these tasks are supporting capabilities that are needed by services. As you saw in
the problem introduction, you’re likely to encounter these functions in more than
one service.

 The Service Host is a framework, which means it contains functionality and data
flow, and it calls back into your code to extend the flow according to your service’s
needs. This callback principle is known as Inversion of Control (IoC), which is in wide
use today in other object-oriented frameworks such as Spring, Hibernate, and Struts.

 The Service Host pattern has several benefits when compared with the other
options mentioned previously. One benefit already mentioned: as a framework, the
Service Host performs the work and only calls your code to fine-tune the behavior
rather than leaving this orchestration to you. Another benefit is that it better
addresses the Open Closed Principle (OCP). OCP states that a class should be open to
extension but closed for modification, which is exactly what a framework gives you.

 A Service Host implementation may host more than one service—the number of
services hosted depends on the scale of a deployed solution. I’ve seen this pattern suc-
cessfully applied where a large solution had to be scaled down to run on a single com-
puter. But more often than not, the Service Host pattern is used to build services that
span more than one computer, appearing as one aggregated service.

 You can roll your own Service Host implementation, but it’s usually provided by
technology vendors. We’ll look into this in more detail next.

TECHNOLOGY MAPPING

The Service Host is a fundamental SOA structural pattern and, as such, it’s supported
by most available technologies.

 The most basic option is to build your own Service Host. This is an option if you
have modest or uncommon requirements. I did this when I needed stateful services
on the .NET platform and couldn’t find something suitable from Microsoft. If you’re
implementing the Service Host pattern yourself, you should take a look at lightweight
containers, such as Spring or PicoContainer, to help you out with wiring and instantia-
tion. In most cases there are plenty of better options from technology vendors.

Wiring

Lifecycle

Configura�on

Administra�on

Endpoint

Environment
Service

Contract

Rela�on

Key

Service Host

SOA component Pa�ern component
Concern/a�ribute

Figure 2.2 Service Host is a
container for a service, and it
performs the wiring and configu-
ration on the service’s behalf.
www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2 Foundation structural patterns
Lightweight containers and Dependency Injection
Spring and a few other frameworks are known as lightweight containers. They allow
you to decrease coupling and increase the testability of your solutions. They perform
this magic through the use of the Dependency Injection pattern, which is a non-SOA
pattern.

Dependency Injection occurs when a class lets a third-party component, which acts
as an assembler, provide the entire implementation for the interfaces it depends
upon. Using Dependency Injection, a class no longer depends on a specific imple
mentation, but rather depends on the interface or abstract class. This helps with test
ability, as you can supply stubs or mocks for the class to simulate its environment.
It also helps with flexibility, as you can easily change the implementation of the
dependencies without affecting your code, as long as they keep their contracts.

Figure 2.3 shows Microsoft’s implementation of the Service Host pattern, called App-
Fabric. You can see that AppFabric (the service host) provides added value on top of
hosting the services. You also get the means to control the lifecycle of the hosted ser
vices, monitor them, and so on.

 AppFabric is a relatively new addition to Microsoft’s server stack. The Java world, on
the other hand, has a relatively long tradition of application servers, most of which, like

Figure 2.3 Microsoft’s AppFabric is an example of an implementation of the Service Host pattern. Here you can
see the AppFabric’s Dashboard, showing that this instance has one service installed, as well as several statistics
related to the service (like the number of calls, count of errors, and so on).
www.it-ebooks.info

http://www.it-ebooks.info/

23 Service Host pattern
Service Host

Figure 2.4 An enterprise service bus (ESB) with Service Host capabilities
(© 2012 FuseSource Corp., modified with permission)

WebSphere and WebLogic, can double as service hosts. Most application servers sup
port both JAX-WS (SOAP-based web services) and JAX-RS (REST-based web services).

In addition to application servers, some Java enterprise service buses (ESBs) pro
vide service host capabilities (see also the discussion of the Service Bus pattern in
chapter 7). Figure 2.4 shows the components of Fuse ESB, an open source ESB based
on Apache ServiceMix. In the circled area you can see the provisioning, deployment,
and admin capabilities (based on Apache Felix—an OSGi implementation).

 As you’ve seen, the Service Host pattern is basic but effective, and it’s in wide use
today. See the further reading section at the end of this chapter for links to resources
that expand on the technologies mentioned in this section.

QUALITY ATTRIBUTES

The main reason to use the Service Host pattern is reusability. A nice side effect of
reusability is the increased reliability you get as a result, because all of your services
leverage a well-tested framework.

 The other quality attribute this pattern provides is portability, which is enhanced
by the separation of concerns effect of the pattern, as demonstrated in the scale-down
example mentioned previously. Another facet of portability is the ability to deploy the
same service code in different environments—a result of configuring the service con
text in markup.

 Table 2.1 summarizes these attributes with two sample scenarios.
www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Foundation structural patterns
Table 2.1 Service Host pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Reusability

Portability

Development time

Installation

During development, you can set up the environ
ment for a new service within minutes.

During installation, switching from one environ
ment to another should take little to no time.

Service Host implementations, as you’ve seen, aren’t unlike web servers in many ways.
Like websites, services are passive by nature; a service will remain idle until a request
arrives, at which time the service performs its work to generate a response.

 That’s not always the best option. Sometimes a service needs to be active rather
than passive. Let’s look at the Active Service pattern to learn why and how.

2.2 Active Service pattern
Recapping what I explained in chapter 1 and earlier in this chapter: It’s important for
services to be autonomous because autonomy decreases coupling between services
and provides greater flexibility for the overall solution. This also means that there are
few dependencies between the services, as they only know each other by contract. It
also means that the teams working on different services can be working indepen
dently. Each team focuses on its own service, and there are no interdependencies with
other service implementations or their development teams.

 The most valuable (as in business value) aspect of service autonomy mentioned so
far is that the services should be as self-sufficient as possible. Let’s look at an example.

PROBLEM

Imagine a journal subscription agency, such as EBSCO or Blackwell, that needs to cre
ate a proposal for a potential customer. From the SOA perspective, you can have a Pro
posals service that will need, among other things, to produce a pro forma invoice,
which is a document that precedes the actual business transaction. In this scenario, to
produce the pro forma invoice, the service must know both the discounts offered to
the customer and the discounts the subscription agency receives from its own vendors
(the journals’ publishers). With this data, the service can calculate whether the pro
posal is profitable. Figure 2.5 shows a simple diagram for such a flow.

 The Proposals service must wait for the services it depends on to respond before it
can send its own response. If either of the services it depends on fails, the Proposals
service will be effectively unavailable. No amount of time, effort, or money spent in
making the Proposals service resilient and fault tolerant will resolve such an outage
because the Proposals service is coupled too tightly to the other services. It might be
acceptable to have this coupling between the Proposals and the Customers services, as
they’re both internal and under your control. But the dependency on the external
vendor’s services is more risky—the internal Proposals service isn’t autonomous.
www.it-ebooks.info

http://www.it-ebooks.info/

25 Active Service pattern
User

User

Journal subscription system Publisher X

Get pro forma

<< service >>
Proposals

<< service >>
Customers

<< service >>
Proposals

Get customer discount

Get discount rate

Figure 2.5 The Proposals service needs to get data from both internal and external services.

How can you increase service autonomy and handle temporal concerns? ?
As the preceding example demonstrates, a passive service that only reacts to requests
is problematic. The service might not be able to fulfill its contract (or its SLA) if other
services don’t behave as intended. Even when the external services are available, a
large load of requests can fail due to network congestion.

 One option is for the service to cache previous results, but this is only a partial solu
tion. It doesn’t take care of data freshness, so data in the cache can become too stale.
Nor does it take care of cache misses, which will require external service calls anyway.
Depending on the variety of requests, the number of calls may not be negligible.

 Even if a cache solved your online requests problem, you still need to be able to
solve other recurring or one-time events that are tied to time (which I’ll refer to as
“temporal events”). Such events would include producing monthly bills, or publishing
stock figures, or generating any other recurring report.

 A solution that can solve all these issues is to make your service do some work on its
own accord. You need an active service.

SOLUTION

Make the service an active service by implementing at least one active class,

� either on the edge, within the service, or both. Let the active class take care of
temporal concerns and autonomy issues.

The Active Service pattern, illustrated in figure 2.6, gets its name from the object-
oriented concept of active classes. Active classes, as defined in the official UML specifi
cation, represent objects that may execute their own behavior without requiring
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Foundation structural patterns
method invocation. The Active Service pattern implements the active class concept at
the service level. As a result, the service creates worker threads to handle cyclic events,
such as monthly billing, report generation, and so on. A service can use this pattern,
become active, and monitor its own health, handling timeouts in addition to handling
requests (the Service Watchdog and Decoupled Invocation patterns in chapter 3 uti-
lize this approach).

 How can the Active Service pattern help you solve the problems discussed earlier?
Sometimes the best defense is no offense—instead of trying to solve the problem, you

Edge Service business logic

Key
SOA component Pa�ern component

Concern/a�ribute

Ac�ve classAc�ve class

Handle
messages

Monitor

Recurring
contract events

Recurring
business events

Timeouts

Figure 2.6 With the Active Service pattern, you add independent behavior to a service in
its own thread of control. This pattern can be used to handle recurring events, such as
timeouts and monitoring.

Caching and the denormalization problem
If you have a database background, you may read the suggestion to actively fetch and
cache data from remote services and identify this as a potential data denormalization
problem. What happens when the external data changes and the services go out of
synch with the rest of the system?

First, like any other cache, the items in the cache should have a time to live or some
other measure to ensure their freshness. Second, you should strive to make the data
in the cache immutable, such as by adding versioning so that snapshots of the data
are correct for the creation time of each version. If you store the current balance of
a bank account in a cache, it can easily go out of sync with the real balance, but if
you store “the 8:00 a.m. balance for May 28, 2012,” that data will remain correct for
that time, regardless of the current balance. Lastly, you should strive to cache data
that changes infrequently, if possible.

In any event, the owner of the data is the other service, and you should keep that in
mind when coding a service that uses cached data.
www.it-ebooks.info

http://www.it-ebooks.info/

27 Active Service pattern
can avoid the situation entirely. Instead of calling out to external services with each
request to the service, you can actively fetch data from other services and refresh the
caches according to an independent schedule. This effectively decouples requests to
the service from the connectivity and health of the external services you depend on.
Similarly, you can proactively publish your own state changes (see the Inversion of
Communication pattern in chapter 5).

 A periodically scheduled thread (one that performs its work according to a timer)
can take care of most of the temporal events mentioned in the discussion of the prob
lem, such as producing regular reports. A thread in the edge component is a good way
to deal with contract-related temporal issues, such as timeout events (section 2.5 dis
cusses the Edge Component pattern). A thread within the service can take care of
purely business-related concerns, such as sending monthly bill notices, or handling an
incoming messages queue (see the Decoupled Invocation pattern in chapter 3).

 Let’s reexamine the situation shown in figure 2.5 and see how you could redesign
it using the Active Service pattern. Figure 2.5 shows a flow for a Proposals service that
gets data from both an internal and an external service to produce a pro forma
invoice. Consider figure 2.7, where the Proposals service actively goes to fetch data on
a regular basis and caches the results. When a request to produce a pro forma invoice
arrives, the Proposals service can immediately calculate the discount and return a
reply. Using the Active Service pattern, the Proposals service is decoupled in time

User

User

2.1

Journal subscription system Publisher X

<< service >>
Proposals

<< service >>
Customers

<< service >>
Proposals

loop Active Class polls external resources

1.0 Get customer discounts

1.1

1.2 Get discounts

1.3

2.0 Produce pro forma

Figure 2.7 The Proposals service actively polls the other services for the information it
needs. The proposal service can then respond to pro-forma requests (2.0 in the diagram)
immediately, and without dependency on any other services’ availability.
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Foundation structural patterns
from the services it depends upon to complete its work. Furthermore, you can see in
the request to get discounts (1.2 in figure 2.7) that the Proposals service gets all the
discounts in bulk, so the contract of the external Proposals service can be simpler and
less specific. This is also good for the publishers, as they can have more generic and
reusable services as well.

NOTE An alternate solution to this problem is to use the Inversion of Com
munications pattern (see chapter 5).

Implementing the Active Service pattern is rather simple, as I’ll explain in the next
section.

TECHNOLOGY MAPPING

The idea behind the Active Service pattern is to have an active thread within the service,
or in the edge component (the Edge Component pattern is discussed in section 2.5)
that will provide some specific functionality. As a result, the Active Service pattern relies
on the threading capabilities of your implementation language or platform.

 It’s important to decide exactly what you want to do with this thread in terms of
external service call frequency and data caching strategy, but these are general pro
gramming considerations and not in the scope of this book.

 Let’s take a look at a few scenarios that use this pattern.

QUALITY ATTRIBUTES

The Active Service pattern helps satisfy several quality attributes, as you’ll see shortly.
But the Active Service pattern is also a prerequisite for many other patterns, such as
Decoupled Invocation and Service Watchdog (both discussed in chapter 3), as men
tioned previously. These patterns further help to handle many quality attributes
including reliability and availability.

 By itself, Active Service helps reduce overall latency because data is always available
for the service to use in its response. As a result, application deadlines are met more
often. Service availability is also increased, as services become more immune to fail
ures of the services they depend upon.

 Table 2.2 lists sample scenarios where the Active Service pattern can help.

Table 2.2 Active Service pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Performance

Performance

Availability

Latency

Deadline

Uptime

Evaluating the profitability of an offer suffers no delay
from external service calls.

Under load and normal conditions, the system can con
tinue to update stock prices from an external service at
regular intervals.

Even disconnected from the WAN, the service can still
produce internal results.
www.it-ebooks.info

http://www.it-ebooks.info/

Transactional Service pattern 29
Moving forward, we need to consider how you can handle messages once you get
them either at the Edge component or within the service. The Transactional Service
pattern solves this problem, and it helps increase reliability.

2.3 Transactional Service pattern
In the previous section’s discussion of the Active Service pattern, you saw that a service
may need to call other services to perform its own responsibilities. Figure 2.8 illus
trates such a scenario in an e-commerce system.

 Here, a frontend component talks to an Ordering service (see the Client/Server/
Service pattern in chapter 6 for more details on this type of configuration). The
Ordering service registers the order request, sends the order to suppliers, and notifies
a Billing service. When the order processing is complete, the service sends a confirma
tion to the e-commerce frontend application (the service consumer in this example).

 This scenario looks simple and clean, but what happens when or if something goes
wrong? Let’s take a look at this case.

Service consumer External systems

<< service >> << system >>
Ordering Supplier

E-commerce frontend

1.0 Pla

1.1

2.5 Confirm or

ce order

 Ack

der

Ordering management system

2.4

2.3 Rescued billing

2.2

2.1 Place order

2.0 Process order

<< service >>
Billing

Figure 2.8 The frontend sends an order to an Ordering service that then orders the part from a
supplier and asks a billing service to bill the customer.
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Foundation structural patterns
?

�

PROBLEM

What might happen if the Ordering service crashed between acknowledging receipt
of the order and processing it (for instance, between steps 1.1 and 2.0 in figure 2.8)?
Or what would happen if the service failed just before requesting the Billing service to
process the order, just before step 2.3?

 In both of these cases, the order would be lost. Even worse, in the second scenario
the system has already placed an order with the suppliers.

The handling of messages in services is filled with situations just like these. Fortu
nately, things work most of the time, but as Murphy has it, your service is bound to fail
eventually. Therefore, we must answer this question:

How can a service handle requests reliably?

One solution to the reliability problem is to push the responsibility to the service con
sumer. Consider the scenario where the service consumer doesn’t get the order con
firmation in step 2.5—the consumer must assume that the order failed. But this
approach isn’t very robust, and it decreases the service’s autonomy, as the service
doesn’t have any control over its consumers; they may or may not handle problems.
Additionally, this approach only solves the problems that the service consumer is
exposed to. What happens if there’s a failure in the internal interactions of the ser
vice? In the ordering scenario in figure 2.8, trouble will arise if the system fails after
step 2.1, where an order is sent to the supplier. Clearly, this solution isn’t thorough.

Another option is to handle messages synchronously. But synchronous operation
can prove to be problematic in terms of performance, especially when the service
needs to interact with external services, systems, or resources. Each step in the process
needs to complete serially before a reply can be sent. More importantly, this solution
doesn’t entirely solve the problem. If the service fails at any point, for instance, you
can’t know what problem actually occurred. The only thing you know for sure is that a
message was lost.

 A better solution is to have the service save its state in some form of persistent stor
age, such as a database. This is a step in the right direction, but you need to ensure
that the persistence mechanism is also robust. You need to know that the storage
device can track and record the process state if a failure occurs.

 To solve this issue, as well as the reliability problem in general, you need to define
a transactional service.

SOLUTION

Apply the Transactional Service pattern to handle the entire message flow, so that
everything from receiving a request message to sending out a response is
contained in a single transaction.

The main component of the Transactional Service pattern (see figure 2.9) is the mes
sage pump, which listens on the endpoint or edge for incoming messages. When a
message arrives, the message pump begins a transaction, reads the message, passes it
to other components to process, sends the appropriate response, and finally commits
www.it-ebooks.info

http://www.it-ebooks.info/

31Transactional Service pattern
the transaction. You’ll also need compensation logic for the case where the transac-
tion aborts due to an error.

 The advantage of using a transactional programming model is that it ensures that
requests are processed completely or not at all. This guarantees that data integrity is
maintained, and that no requests are ever lost. If request processing fails at any step,
all processing up until that point is rolled back and the request is placed back into the
incoming request queue (unless it’s a problematic message that should be handled
separately—see the discussion on poison message). Due to the properties of transac-
tions—atomicity, consistency, isolation, and durability, known as the ACID proper-
ties—you’re guaranteed that all of the messages and related suboperations are
processed to completion.

 In most cases, one tradeoff with the Transactional Service pattern is performance.
Transaction processing can delay request processing due to the additional prepara-
tion, the IO needed for durability, lock management, and additional record keeping
needed in case of a failure. One option when implementing the Transactional Service

Service

Transac�on
root

Interac�on/rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

1. Begin TX

2. Get/read
message

3. Handle
message

Message pump

4. Commit TX

Message handler

Transac�on
support

Contract

Endpoint

Figure 2.9 The Transactional
Service pattern creates a
transaction envelope: it opens
a transaction, reads the
request, handles the message,
sends the response, and
closes the transaction.

ACID transactions
A transaction is a complete unit of work that demonstrates the following ACID prop-
erties or qualities:

 Atomic—Each step in a transaction occurs as one atomic unit. Either all the
actions complete successfully, or none complete.

 Consistent—Each resource is left in a consistent state, whether the transaction
fails or succeeds.

 Isolated—External observers (that don’t participate in the transaction) never see
the interim states. They see only the states before and after the transaction.

 Durable—Changes made in the transaction are saved in persistent storage so
that they’re available after a system restart.
www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Foundation structural patterns
pattern is to use a transactional message transport for all messages that flow between
the services. This makes implementing the pattern much easier, as you leverage the
qualities built into such a message service.

 Another option is to place request messages into a transactional resource, such as
an enterprise queuing system, and then manually commit the transaction after a
response is sent. In this case, the initial message handling isn’t transactional (it occurs
before you place the request into the transactional queue), so you need to be able to
cope with duplicate requests arriving at different times if the acknowledge message
back to the consumer is lost (idempotent messages are discussed in a sidebar in chap
ter 4, section 4.1.2).

 Figure 2.10 shows a redesign of the example in figure 2.8 using the Transactional
Service pattern. To recap, the scenario illustrates an e-commerce frontend that con
nects to an Ordering service. The Ordering service registers the order, sends the
order out to suppliers, and notifies a Billing service. When all those steps are com
plete, it sends a confirmation message to the e-commerce frontend application.

In this redesign using the Transactional Service pattern, the actions taken by the
ordering service itself (steps 2.0 to 2.5 in figure 2.10) occur within the same transac
tion. If any step in this order process fails, any of the other steps already completed
will be rolled back as though they never took place.

NOTE A subtle issue here is what might happen if the Ordering service were to
crash somewhere between steps 1.0 and 1.2.

Using a single transaction will work if the Billing process only produces an invoice. It
won’t work if the Billing service also needs to process a credit card, which requires an
additional confirmation to continue. When a single transaction isn’t enough, the pro
cess needs to be broken into smaller transactions, and the whole process becomes
what’s known as a long-running operation (see the Saga pattern in chapter 5). Addi
tionally, request processing may need to be broken into smaller transactions if the ser
vice itself is distributed across multiple computers, or even geographically.

 When applying the Transactional Service pattern, the transaction you make begins
within the server, when the request is received. That’s a distinct and important differ
ence from the other option of initializing the transactions from within the service con
sumer when the request is made. Although transactions that span services and
consumers can help with reliability and consistency when the service consumer fails,
they also increase coupling in the system. When you extend a transaction beyond a
service boundary and hold internal resources for anything beyond the service trust
boundary, you introduce security and performance risks. We’ll examine this in more
detail in our discussion of the Transactional Integration antipattern in chapter 8.

 Our next step is to look at what’s needed to implement a transactional service.

TECHNOLOGY MAPPING

Implementing the Transactional Service pattern can be easy if the message transport
is transaction-aware. Examples can be found in most ESB software (such as WebSphere
www.it-ebooks.info

http://www.it-ebooks.info/

33 Transactional Service pattern
Ordering management system External systems

<<service>>
Ordering

<<service>>
Billing

<<system>>
Supplier

2.7

2.6

2.5 Commit

2.4 Request billing

2.3 Place order

2.2 Process order

2.1 Receive message

2.0 Begin transaction

1.1 Enqueue request

Service consumer

E-commerce frontend

1.0 Place order

1.2 Ack

2.8 Confirm order

(from E-Commerce Example)

Figure 2.10 The e-commerce flow from figure 2.8 redesigned to use the Transactional Service pattern.

ESB and Apache ServiceMix), messaging-oriented middleware such as Microsoft Mes
sage Queue (built into .NET), any JMS implementation (such as WebSphere MQ or
ActiveMQ), or even SQL Server’s Service Broker. The process is for the service to read
a message from the ESB or messaging middleware, process it, send new messages to
outgoing destination queues, and then commit the transaction to indicate success. If
any of the individual components fails, the entire transaction is rolled back.

 Often you can implement the internal service transaction as a simple transaction,
but you may need to start a distributed transaction if you need to access two or more
internal resources in the same transaction. Suppose you want to perform a database
update and remove a message from a queue, but both actions need to be successful,
or both should fail. A distributed transaction, sometimes referred to as a two-phase
commit (2PC) transaction, coordinates more than one resource. It can coordinate the
queuing system’s transaction engine with the database so that state changes are saved
www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Foundation structural patterns
Poison messages
When you read a message in a transactional manner, you need to be able to identify
and handle poison messages. A poison message is a message that’s faulty in some
way, and that makes the service crash or always abort the transaction when it’s han
dled. Within a transaction the problem is compounded, because with each failure, the
message is requeued. Once the processing service recovers, it reads the request
again, fails, and repeats the cycle.

Most enterprise messaging products automatically detect and discard poison mes
sages (via what is called a dead-message queue) to help you avoid this scenario. You
need to make sure this case is handled for you, or at least be aware of the problem
and deal with it yourself.

after each message is handled. In .NET 2.0 and later, you can open a Transaction-
Scope object (defined in System.Transactions) to transparently move to a distrib
uted transaction if needed. Similarly, Java code can use the transaction engine built
into a Java EE-compliant application server or other transaction service.
A technology specification that may seem related is WS-ReliableMessaging. But despite
its name, the protocol is only concerned with delivering messages safely from point to
point (effectively making it act like TCP for the HTTP protocol). There is no durability
promise or any transactional trait imbued in the protocol.

NOTE Other related protocols are WS-Coordination and its related specifica
tions, WS-AtomicTransaction, and WS-BusinessActivity. We’ll look into WS-
BusinessActivity in more detail when we discuss the Saga pattern in chapter 5.
We’ll avoid WS-AtomicTransaction, which defines a protocol to orchestrate a
distributed transaction between services, because it introduces a lot of cou
pling between services. (You can see the Transactional Integration antipat
tern in chapter 8 for more details.)

As usual, we’ll end by looking at some of the motivations for using the Transactional
Service pattern.

QUALITY ATTRIBUTES

The semantics that the Transactional Service pattern introduces can simplify both
coding and testing. No longer do you need to write explicit error-handling code for
each step of service processing. Most importantly, it greatly enhances the reliability
and robustness of the service. The code becomes simpler, and you can focus on writ
ing business logic, not error-handing code.

 Table 2.3 presents two examples of successfully using the Transactional Service
pattern.

 Another pattern that can reduce the amount of code that needs to be written is the
Workflodize pattern.
www.it-ebooks.info

http://www.it-ebooks.info/

35 Workflodize pattern
2.4

Table 2.3 Transactional Service pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Reliability

Testability

Data loss

Test coverage

A message acknowledged by the system
won’t be lost

For all critical requirements, achieves 100
percent test coverage

?

�

Workflodize pattern
I was once involved in building a sales support system for a mobile operator. It will
probably not come as a surprise when I say that the competition between mobile oper
ators is quite fierce. This operator created new usage plans and bundles several times a
week to meet both internal goals and customers’ requirements. Considerable time
and effort was required to adjust the billing system to the new plans, but marketing
requirements often pushed the development teams into fire-fighting mode to imple
ment the changes in record time.

 Changing business needs is something that’s common to many, if not all, modern
businesses. The degree of intensity may vary from system to system, but we’ve all expe
rienced it at one point or other. We need to find a way to enable our services to effi
ciently cope with these changing processes.

PROBLEM

How can you increase a service’s adaptability to changing business processes?

The most obvious option is to wait for the change requests, then develop the code and
update the services. This approach poses at least two problems. First, you need a full
development cycle to make the change happen. Second, code changes require test
ing, which translates to even longer time to market. In the mobile project mentioned
previously, implementing changes to a plan, or adding a new plan, took three or more
weeks, which was clearly too long for the business people involved.

 Implementing well-built and correct logic is a daunting and error-prone task, but
business requires quick changes. There must be an acceptable solution.

SOLUTION

Introduce a workflow engine within the service to handle the volatile and changing
processes and orchestrate the stable logic.

The Workflodize pattern, as depicted in figure 2.11, is based on adding a workflow
engine to the service to drive business processes. The workflow engine hosts workflow
instances. The nominal case is one workflow per request type. Workflows can also
become quite complex, handling long-running processes with several entry points,
where requests and responses arrive from external services.
www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Foundation structural patterns
The advantage of using workflows is that they give you a tool that makes you think in
terms of building blocks (called activities) and lets you arrange and rearrange these
activities into processes in a very flexible way. You model the process as a flow of activi-
ties that occur as messages arrive. Because each activity can be tested individually,
reusing them requires less testing overall. By rearranging the activities, you can
quickly respond to changing business needs with less risk.

 How does this flexibility impact the service’s contract? Usually a change in internal
implementation shouldn’t ripple out to affect the contract. After all, the whole point
of the contract is to shield server consumers from such changes. If you apply Liskov’s
substitution principle to SOA (as discussed in the sidebar) there’s no need to change
the contract version if the overall behavior remains the same.1

1 Barbara Liskov, “Data Abstraction and Hierarchy,” ACM SIGPLAN Notices, 23, 5 (May 1988).

Request

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Workflow engine

Endpoint

Workflow instance

Invoke ac�ons

Manage
process

Route
requests

Host
workflows

Schedule

Service

Service business
logic

Figure 2.11 The business process is made of the small building blocks that are
relatively easy to rearrange. The workflow drives the business logic.

Liskov’s substitution principle for services
Liskov’s substitution principle, which is also known as design by contract, is an object-
oriented principle that Barbara Liskov originally published as follows: “If for each
object o1 of type S there is an object o2 of type T such that for all programs P defined
in terms of T, the behavior of P is unchanged when o1 is substituted for o2 then S is
a subtype of T.”1

This means that a subclass can be used in place of its parent class without breaking
the behavior of any users of the base class. Applied to SOA, this means that when
changing the internal behavior of a service, you don’t need to create a new version
of the contract. The new version of the service should meet the expectations that con-
sumers of the original service have come to expect.
www.it-ebooks.info

http://www.it-ebooks.info/

37 Workflodize pattern
Let’s take another look at the mobile operator scenario and see how it looks when you
apply the Workflodize pattern. To begin, you can use a workflow to route requests for
new plans that don’t require human intervention. You can, for example, let the cus
tomer service department register the change in the customer relationship manage
ment (CRM) system, then notify technicians to configure the network. Later, when the
backend systems are ready, data can be rerouted through them. The existing, stable
processing components represent reusable activities in the flow that all mobile usage
plans leverage.

 Adding a workflow in this scenario greatly enhances the business’s ability to react
and remain agile. When a competitor launches a new plan, which happens frequently
in the mobile world, this mobile operator can react and launch a competing plan
within a day. This is real and tangible business value.

 The ability to handle long-running processes is another advantage of the Work
flodize service pattern.

 It can also be combined with other patterns. For example, it’s easy to add job
scheduling (which most workflow engines support) to implement the Active Service
pattern.

 A pattern closely related to Workflodize is Orchestration (discussed in chapter 7).
Both patterns use the same underlying technology—a workflow engine—but there are
different architectural considerations that distinguish the two. Workflodize is con
strained within the boundaries of a single service, the Orchestration pattern (dis
cussed in chapter 7) is used to coordinate multiple services.

TECHNOLOGY MAPPING

The natural technology mapping for the Workflodize pattern is the use of a workflow
engine. There are many workflow engines on the market, such as Microsoft’s Windows
Workflow Foundation, which in .NET 4.0 finally reached a usable status. There are sev
eral other companies that provide .NET workflow solutions, such as Skelta and K2. Java
has many workflow engine options, such as those from IBM, JBoss, and Flux. Oracle
offers a workflow package, WF_ENGINE, along with a Java API for its database.

 Many workflow engines have built-in visual designers to help you model the work-
flows more easily. Figure 2.12 shows a model of the Active Service pattern for report
generation built with Flux’s visual designer tool.

 Using a visual designer such as the one in figure 2.12 is usually the preferred
option for modeling flows, but you can also specify workflows by hand in XML. Several
tools, such as the open source jBPM, support both a designer-based and XML-based
configuration for workflows. The following listing is an example of a flow modeled in
jBPM. In it, you can see a decision point where large orders will need further approval
and smaller ones will go through.
www.it-ebooks.info

http://www.it-ebooks.info/

38	 CHAPTER 2 Foundation structural patterns

Figure 2.12 Most workflow engines come with a visual designer tool to help model workflows.

Listing 2.1 Partial XML of a credit approval workflow implemented for jBPM

<start-state name="start">

<transition to="credit approval"></transition>

</start-state>

...

<decision name="is user registered?">

 <handler config-type="bean"

➥	 class="org.springmodules.workflow.jbpm31.JbpmHandlerProxy">
 <targetBean>jbpmEvaluateOrderValue</targetBean>
 <factoryKey>jbpmConfiguration</factoryKey>
 </handler>
 <transition name="large_order" to="Review And Approve"></transition>
 <transition name="normal" to="Process Paypal"></transition>
 </decision>

...

Some workflow engines, such as Microsoft’s BizTalk, or IBM’s WebSphere MQ Work
flow, are better suited to orchestrating interactions between services and not to inter
nal workflows, due to their increased complexity (and cost).
www.it-ebooks.info

http://www.it-ebooks.info/

39 Edge Component pattern
QUALITY ATTRIBUTES

The main benefit of using the Workflodize pattern is added flexibility. Programming a
workflow is a visual process (at least with most workflow implementations) that is rela
tively easy to master. This added flexibility can result in quicker time to market for
change requests, leading to greater business agility.

 Table 2.4 shows two main benefits of using the Workflodize service pattern.

Table 2.4 Workflodize pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Flexibility

Reusability

Add new business
processes

Core modules

Under normal conditions, adding a new prepaid plan to
the system and moving it to production will take less
than two days.

Reuse 90 percent or more of the common sales pro
cess for most new plans.

The Workflodize pattern adds a lot of flexibility to a service, enabling you to dynami
cally change behavior. A different aspect of flexibility can be found in the Edge Com
ponent pattern, which we’ll take a look at now.

2.5 Edge Component pattern
The last of the foundation patterns we’ll examine is the Edge Component pattern.
The Edge Component pattern is classified as foundational because it’s a platform
used to implement other patterns. It adds a level of separation on top of business logic
that enables a great deal of flexibility. Let’s examine some real-world scenarios to illus
trate this.

PROBLEM

Let’s look at three scenarios.
 Scenario 1: You have a common platform for defense solutions. This platform has

base services that are reusable in many solutions. For example, one of the core ser
vices provides a unified view of military targets. The first implementation built on the
platform used a messaging infrastructure based on TIBCO Rendezvous. The second
implementation used a different messaging technology altogether (WSE 3.0). Both
implementations are required to use the same business logic to handle and process
the messages.

 Scenario 2: A mobile operator needs to introduce new usage plans and offerings
on a regular basis. (You’ll recognize this scenario from the discussion of the Workfl
odize pattern.) The service interface remains stable, but the business logic keeps
changing and adapting to the new plans (the opposite of scenario 1).

 Scenario 3: You have a system that contains many services. Each handles a different
business aspect, yet all need to perform common tasks, such as authenticate requests
or log requests in an audit trail.
www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Foundation structural patterns
 Within these three scenarios, you have different concerns, such as business logic,
technology choices, and cross-cutting features. Each of these concerns can change
independently of the others, so you need a way to enable flexibility.

How can you allow the service’s business aspects, technological concerns, and
other cross-cutting concerns to evolve at their own pace, independently of one
another?

The easiest option is to duplicate the service features that need to be reused in each
scenario—an approach also known as “own and clone.” This obviously creates a main-
tainability problem, as you now have multiple copies of the same business logic or
cross-cutting features within several service implementations. Bug fixes and enhance-
ments made to one need to be duplicated across all services, which is a time-consum-
ing and error-prone process. This isn’t much of a solution at all.

SOLUTION

Separation of concerns is a well-known object-oriented concept used in cases like this.
The root principle is known as the Single Responsibility Principle (SRP), which states
that every class should have a single responsibility, and that all its related methods
should be narrowly aligned with that responsibility. Applying this to services, we get
the following solution:

Add an edge component to the service implementation to add flexibility and
separate the business logic from other concerns (such as contacts, protocols,
technology choices, and additional cross-cutting features).

The main idea behind the Edge Component pattern, as demonstrated in figure 2.13,
is separation of concerns. The edge component is where you take care of all the cross-
cutting features, such as auditing, specific endpoint types and contract version media-
tion, that aren’t part the service’s business logic. The business logic is then handled in
a separate component that focuses solely on the business logic and remains free of
other concerns. In a sense, the Edge Component pattern provides a façade, or proxy,
to a service implementation.

?

�

Request

Edge

Validate
security

Transform

Load balance

AuditEndpoint

Etc.

Service
business logic

Reac�on

Contract

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Figure 2.13 Adding an edge component allows the service to focus on the
business logic and not on extraneous features.
www.it-ebooks.info

http://www.it-ebooks.info/

41 Edge Component pattern
Pip

Edge

Validate Transform Route Endpoint V Tr

e

Key
SOA component Pa�ern component

Filter Pi p

Figure 2.14 An Edge Component pattern implementation that processes
incoming messages in three steps—validation, transformation, and routing—
before the messages are sent to the service implementation.

You can apply a Pipes and Filters architectural style and chain several classes or com
ponents together, each dealing with a specific concern. Figure 2.14 shows an example
implementation of the Edge Component pattern that starts by applying a validation
filter to ensure a message is correctly formatted. Then a transformation filter trans
lates an external contract format into an internal one. Finally, a routing filter routes
the message to the correct component within the service. These subcomponents can
be reused from service to service as needed, and they can change and evolve indepen
dently of specific services.

 The Edge Component pattern is very useful, and I’ve introduced it in most of the
SOA projects I’ve designed. Many of the structural patterns mentioned in this book
expand and build on the Edge Component pattern.

 Let’s take a look at the technological aspects of this pattern.

TECHNOLOGY MAPPING

Given the wide range of uses for the Edge Component pattern, there are only a few
restrictions when choosing a technology to implement the pattern, and there are
plenty of examples of where you can use it.

 Both JAX-WS and Windows Communication Foundation (WCF) implement the
Edge Component pattern for you, but they only handle the lower-level concerns
called bindings. These concerns are also mentioned in the various WS-* standards.
With these solutions, you may still need to implement many high-level concerns, like
routing, contract translations, data transformations, and so on, yourself.

 An interesting technology option is a Java-based framework called Restlet. The
Restlet engine, created by Restlet SAS, is a Java library for implementing RESTful ser
vices. It has built-in classes, such as filter and router, that allow you to easily build edge
components. Consider the example in figure 2.15.

 Here, you can see a possible edge component configuration on an Orders service
whose contract has two operations: getLast (which returns the last order), and
getAll (which returns all the orders for a specific customer). Before the call invokes
the business logic, you have to log the request, validate its data and parameters,
www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 Foundation structural patterns
<<Edge>>
ordersEdgeRestlet

log :LogFilter status :statusFilter

<<flow>> <<flow>>

<<flow>>

<<flow>>

<<flow>>

<<flow>>

host :HostRouter user :Router

<<flow>>

<<flow>>
getLastRestlet

getAllOrdersRestlet

OrdersService

getLast

getAll

Server

Figure 2.15 As a request is received, it goes through different steps like logging, validating parameters, and
validating intent and the user before it gets to the business services on the right side of this figure—getting the
last order or all the orders for a specific client.

enforce security constraints, and route the call to the appropriate business compo
nent. Adding an edge component lets you configure and reconfigure this activity with
out affecting the business logic components.

 Another interesting example is the Turmeric SOA framework, which is an open
source framework from eBay (https://www.ebayopensource.org/index.php/Turmeric
/HomePage). Figure 2.16 shows the server-side architecture diagram from the Tur
meric site. You can see the service implementation as a single rectangle at the far right
of the diagram. Most of the diagram explains what is effectively a large edge component
implementation. When a message arrives, it passes through a protocol processor and
then through an incoming pipeline that handles logging, security, and globalization
(G11N in the diagram).

As you’ve seen, the Edge Component pattern is supported by all current technolo
gies and is even implemented internally by some of them. The further reading section
at the end of the chapter contains references to other resources that expand on the
technologies mentioned in this section.

QUALITY ATTRIBUTES

The Edge Component pattern can be associated with two quality attributes: flexibility
and maintainability. When this pattern is implemented, it’s easier to change and
enhance the external properties of a service without affecting the business logic.

 Table 2.5 summarizes the quality attributes for the Edge Component pattern,
which is the last of the foundation structural patterns for SOA.
www.it-ebooks.info

https://www.ebayopensource.org/index.php/Turmeric/HomePage
https://www.ebayopensource.org/index.php/Turmeric/HomePage
http://www.it-ebooks.info/

Summary	 43

SPF

Framework

servlet

OR

New tomcat

connector

Server

Message

Processor

MCtxIncoming

request

Outgoing

response

In Pipeline

Out pipeline

Protocol specific
(e.g. SOAP processors

Resp
disp

Transport

Request
Disp

(de)serialization happens
here if not already done

ServiceImpl

Logging handler

Auth handler

G11N
Reads

Global &

 Service

 Specific

 Config files

Figure 2.16 Server architecture diagram from the Turmeric website. The service
implementation is the rectangle on the right of the diagram. The rest of the diagram
shows some of the concerns the edge component implementation handles, such as
contract endpoint (the framework servlet or tomcat connector in the diagram), logging,
authorization, and globalization (G11N). (© 2011-2012 eBay Inc. All Rights Reserved.
Source: https://www.ebayopensource.org/wiki/display/TURMERICDOC/
Service+Provider+Framework+%28SPF%29+Architecture)

Table 2.5 Component pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Maintainability

Flexibility

Backwards compatibility

Extension points

As contracts evolve, the services should be able to
support consumers using older versions of the
contract.

Within the next year, it is expected making the sys
tem SOX-compliant and adding auditing for all ser
vices will be required.

2.6 Summary
This chapter was the first to present SOA patterns, and it dealt with the foundation
structural patterns used to build services:

 Service Host—A common wrapper that hosts service instances and introduces a
common infrastructure that can be reused across services

 Active Service—Implements at least one independent thread in the service so it
can safely call external services
www.it-ebooks.info

https://www.ebayopensource.org/wiki/display/TURMERICDOC/Service+Provider+Framework+%28SPF%29+Architecture
https://www.ebayopensource.org/wiki/display/TURMERICDOC/Service+Provider+Framework+%28SPF%29+Architecture
http://www.it-ebooks.info/

44	 CHAPTER 2 Foundation structural patterns
 Transactional Service—Handles messages inside a transaction to gracefully
recover from error conditions

 Workflodize—Adds a workflow inside the service for added flexibility
 Edge Component—Separates the interface (contract) from the implementation

to enable flexibility and maintainability

The next two chapters discuss patterns that address additional requirements, includ
ing scalability, performance, availability, security, and management.

2.7 Further reading
SERVICE HOST PATTERN

David Chappel, “Introducing Windows Server AppFabric,” Opinari: David Chappell’s Blog (blog
entry, May 24, 2010), http://davidchappellopinari.blogspot.ca/2010/05/introducing-win
dows-server-appfabric.html.
This article describes Microsoft’s AppFabric, which is Windows Communication Founda
tion’s (WCF) implementation of the Service Host pattern.

Richard S. Hall, Karl Pauls, Stuart McCulloch, and David Savage, OSGi in Action: Creating Modu
lar Applications in Java (Manning, 2011).
OSGi is a framework for composable components that provide management and flexibility
for hosting Java components in general. FuseESB uses an OSGi implementation (Apache
Felix) and provides an implementation of the Service Host pattern.

Mark Seemann, Dependency Injection in .NET (Manning, 2011).
This is a good book explaining Dependency Injection, which is one of the concepts the Ser
vice Host pattern promotes.

TRANSACTIONAL SERVICE PATTERN

Leslie Lamport, Robert Shostak and Marshall Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems 4, no. 3 (July 1982), www.cs.cornell.edu/
courses/cs614/2004sp/papers/lsp82.pdf.
This seminal paper explains the basis of distributed consensus.

WORKFLODIZE PATTERN

Workflow Patterns, www.workflowpatterns.com.
This website explains many of the patterns available for designing workflows.

EDGE COMPONENT PATTERN

Restlet engine, www.restlet.org/
RESTlet is a web API framework for building REST style services. RESTlet is mentioned in this book as
an example of a framework supportive of the Edge Component pattern.

Turmeric framework, https://www.ebayopensource.org/index.php/Turmeric/HomePage.
Turmeric is an open source (Apache 2.0 license) framework for building SOAP and REST
style services. Turmeric is used by eBay for many of its services, and it is mentioned in this
book because it takes the Edge Component approach to handling service requests.
www.it-ebooks.info

http://davidchappellopinari.blogspot.ca/2010/05/introducing-windows-server-appfabric.html
http://davidchappellopinari.blogspot.ca/2010/05/introducing-windows-server-appfabric.html
www.cs.cornell.edu/courses/cs614/2004sp/papers/lsp82.pdf
www.cs.cornell.edu/courses/cs614/2004sp/papers/lsp82.pdf
https://www.ebayopensource.org/index.php/Turmeric/HomePage
http:www.restlet.org
http:www.workflowpatterns.com
http://www.it-ebooks.info/

Patterns for
performance, scalability,

and availability
In this chapter
 The base for performance-related patterns

 Multimodal biometrics

 Scaling inside and outside of the service

When you design a software architecture for a complete system, you need to make
sure it will accommodate additional sets of requirements beyond the basics. You
need to take care of maintainability, security, and reliability. One very important
quality attribute or requirement class is performance. Performance involves several
concerns, such as throughput and latency, which sometimes complement and
sometimes contradict each other.

SOA principles and guidelines don’t always help to solve performance prob
lems. In fact, SOA is almost inherently bad for performance: by making the compo
nents distributed, it tends to increase latency and add layers of indirection. This
chapter will present patterns to help mitigate these performance, scalability, and
45

www.it-ebooks.info

http://www.it-ebooks.info/

46	 CHAPTER 3 Patterns for performance, scalability, and availability
availability challenges. Availability and scalability are bundled with performance
because a solution to one of these problems often helps to resolve the others.

 One strategy to increasing performance is load balancing (see the Service Instance
pattern in section 3.4). If implemented properly, it can also help increase service avail
ability as each load-balanced server provides redundancy for the others.

Many people feel that performance, availability, and scalability are easily improved
with more hardware. Unfortunately, this is often not the case. This is especially true
where new technology or development approaches are involved. Utilizing additional
hardware, implementing load balancing for services, and ensuring adequate applica
tion performance when failures do occur, are very difficult problems to solve. Fortu
nately, when designing SOAs, you don’t need to start from scratch. Instead, you can
build on the experience and solutions already in place in other environments and tech
nologies. The challenge, and the topic of this chapter, is to bring this knowledge into
the world of SOA while remaining true to the SOA architectural principles and benefits.

 If you take another look at the architectural components of SOA presented in chap
ter 1 (as illustrated in figure 3.1) you’ll see that the patterns related to performance,
scalability, and availability mostly have to do with the internal structure of services.
Some of these patterns are also related to more than one component of a service’s inter
face—namely the endpoint and the contract. As mentioned in chapter 1, SOA is mainly
focused on other quality attributes, such as flexibility and interoperability; it doesn’t
offer much guidance for performance, scalability, and availability.

 We’ll discuss the following patterns in this chapter:

 Decoupled Invocation—Handle normal request loads, peak request loads, and
continuous periods of time at high load without failing

 Parallel Pipelines —Build services that maintain state and high throughput
 Gridable Service—Build services to handle computationally intense tasks in a scal

able manner
 Service Instance—Build services that are scalable in a simple and cost-effective way

Service

Describes

Endpoint Exposes

Messages Sends/receives

Contracts

Binds to

Service
consumer Implements

Policy Governed by

Sends/receives

Adheres to

Component
Relaton

Key

Understands

Serves

Figure 3.1 This chapter focuses on performance, availability, and scalability
patterns for the service, the endpoint, and the contract components of SOA.
www.it-ebooks.info

http://www.it-ebooks.info/

47Decoupled Invocation pattern
 Virtual Endpoint—Provide services with location transparency that gracefully
recover from failure without affecting service consumers

 Service Watchdog—Increase availability and identify and resolve problems and
failures that are service-specific

First we’re going to look at the Decoupled Invocation pattern, which serves as a base
on which other performance-related patterns can build.

3.1 Decoupled Invocation pattern
I mentioned in chapter 1 that SOA helps reduce coupling between components (ser-
vices) by putting a lot of emphasis on the interface.

 As you saw in the discussion of the Active Service pattern in chapter 2, SOA’s
reduced coupling doesn’t take care of temporal coupling, though eagerly fetching
and caching data can help to some degree.

 Another aspect of temporal coupling is apparent in the Request/Reply pattern
(discussed in chapter 5), which is what most common communications pattern SOA
implementations use. With Request/Reply, you typically expect the service to return a
result immediately, and this couples the consumer to the service in time, potentially
resulting in a performance bottleneck. The maximum load is the maximum number
of requests the service can handle concurrently.

 As you’ll see in this section, the Decoupled Invocation pattern solves both the tem-
poral coupling and the potential performance problems but adds latency.

 Let’s look at an example.

PROBLEM

Consider an online music store. Let’s say that the backend system has one backend
service that deals with album orders and another that deals with single-track orders—
see figure 3.2. The left side of the diagram illustrates a normal business day for this
store with a mild load on both services; the purchase requests are well-distributed in
time. The right side of the diagram shows what can happen on a day that some crazy
hit is released. The same store suddenly has to handle a much higher number of pur-
chase requests than normal.

 Obviously, the music store needs to be able to handle all incoming requests, even
under high loads, or customers will take their business elsewhere. It’s important that

Kate Bush

Limp Bizkit

U2

Nada Surf

Normal load Peak load

Albums
service

Singles
service Singles

service

Albums
service

Pink Floyd

Garbage

Incubus

Garbage

Coldplay Crazy Hit
Crazy Hit

Crazy Hit
Crazy Hit

Crazy Hit
Crazy Hit

Crazy Hit Crazy Hit
Crazy Hit
Crazy Hit

Figure 3.2 A music store’s
service-request loads under
normal conditions versus
peak loads when a popular
song is released.
www.it-ebooks.info

http://www.it-ebooks.info/

48	 CHAPTER 3 Patterns for performance, scalability, and availability
?

�

the service be built economically to handle normal loads but still be able to handle
peak loads without failing.

How can a service handle normal request loads, peak request loads, and a
continuous period of high load without failing?

One option is to estimate the peak loads and deploy enough server power to ensure
you can handle them. The first problem with this approach wastes money and
resources; servers may remain idle during normal operation and be used only during
rare bursts of activity. The idle computers have purchase, maintenance, and opera
tional costs. A bigger problem is that much of the service’s processing may be out of
your control—external credit card clearing requests, shipping requests, and others
may fail under load, or slow down your internal service response times. Finally, you
may need to prioritize some requests over others. You can set the overall quality of ser
vice (QOS) parameters according to the most demanding request type, but you may
need more resources to be able to handle your steady ongoing load.

 A good solution for this problem is to deploy to a cloud provider like Amazon,
Windows Azure, or VMWare’s Cloud Foundry and elastically grow the number of serv
ers at peak load. One problem with this approach is that you need to make sure your
service is cloud-ready (something you should probably take care of anyway). The
more serious problem is that cloud providers will take care of scaling to peak loads,
but they can’t completely cover the “without failing” requirement.

 What you need is something that will enable you to register requests quickly and
reliably and will free up server resources to handle new requests. The solution should
also let the requestors know that their request is going to be handled. This is what the
Decoupled Invocation pattern is all about.

SOLUTION

When a new request enters the system, instead of immediately invoking the business
logic, you can do the following:

Utilize the Decoupled Invocation pattern and separate replies from requests:
acknowledge receipt at the service edge, put the request on a reliable queue, and
then load-balance and prioritize the handler components that read from the queue.

As illustrated in figure 3.3, the Decoupled Invocation pattern is composed of three
basic components: a handler, a queue, and a dispatcher that mediates between them.
Here’s how the initial request processing works:

 The handler listens for incoming requests from the endpoint.
 When a new request arrives, the handler sends an acknowledgment to the

sender.
 The handler is responsible for the initial treatment, or preprocessing, of incom

ing messages. This may include message transformation or prioritization based
on knowledge it infers from the messages themselves. Overall, this processing
should be kept minimal, as the goal is to quickly queue and acknowledge
incoming requests.

 The message is put onto a queue.
www.it-ebooks.info

http://www.it-ebooks.info/

49Decoupled Invocation pattern
The queue, which is the second component of the Decoupled Invocation pattern,
stores incoming messages and allows the service to consume the messages at its own
steady rate, thus overcoming peak loads.

 You can set up the queue to be persistent so the service won’t lose any requests it
has already acknowledged, even if a catastrophic server failure occurs. If the queue is
transactional, you can also implement the Transactional Service pattern (see
chapter 2) and increase the overall robustness of the service even further.

 The dispatcher is responsible for creating as many reader components as are
needed for the current request load, which is measured by the number of messages
waiting in the queue. The dispatcher can also prioritize incoming tasks based on inter-
nal considerations, such as resource availability. The dispatcher is a good place to
introduce elasticity if the latency of handling the messages is important. (See also the
further reading section for an article on the LMAX architecture, which describes a low-
latency, high-performance queue between senders and receivers.)

 The handler can acknowledge the request as part of the preprocessing, but it’s usu-
ally best to do this inside an edge component (see the Edge Component pattern in
chapter 2). This helps ensure that the service-processing load is kept to a minimum,
allowing the handler to process requests as efficiently as possible.

 Placing requests on the queue is a relatively low-cost operation that can be per-
formed efficiently, making the initial request-handling less susceptible to failure dur-
ing peaks (as compared to other parts of the request-handling that require more time
and resources). The actual handling of the incoming requests can be performed at a
reasonable pace, dictated by service resource availability and overall load. Load bal-
ancing can be achieved by running multiple readers against the queue.

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Edge Service business logic

Queue

In queue

Out queue

Handler

Transform
Load balance

Dispatcher

Transform

Store & forward

Priori�ze
Priori�ze

Store & forward

Read

Read

Send

Send

Dispatcher

Correlate

reply

Endpoint
Reac�on

Request

Ini�al
(ack.)

Figure 3.3 The edge
component contains a
handler that accepts
incoming messages,
acknowledges them, and
queues them. The business
logic then reads the queued
messages at its own pace.
The queue is also used for
the responses.

When to acknowledge requests in the service
Often, request-acknowledgement processing requires some extended business logic.
In this case, you need to consider whether the response is tied to the contract or if
it’s tied to the service’s core business. If it’s related to the core business, you should
acknowledge the request from the service implementation; otherwise acknowledge it
from the edge component.
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 Patterns for performance, scalability, and availability
This works well for peak loads, but if you have continuous high-request loads over an
extended period of time, you may need to alter your approach or the request queue
may overflow. See the Parallel Pipelines and Gridable Service patterns later in this
chapter for strategies that can help with continuous loads.

 Configuring the queue to be priority-based (or configuring several queues accord
ing to priority) allows you to maintain different levels of quality of service (QoS) for
different message types or different contracts.

 The Decoupled Invocation pattern is a good way to implement the Request/Reac
tion pattern discussed in chapter 5. Since the reply is delivered to the consumer as a
new message, it’s recommended that you correlate messages by adding an identifier
that’s returned to the consumer on the acknowledge message as well as the final reac
tion. By using a correlation ID, you can help the service consumer understand that the
reaction is related to a request it sent earlier.

 Let’s take a look at few of the options for implementing the Decoupled Invocation
pattern using currently available technologies.

TECHNOLOGY MAPPING

To implement this service, the underlying messaging technology needs to support
store-and-forward queues, preferably with persistence and transactional support. Most
enterprise messaging middleware packages support this, such as Microsoft Message
Queue; Java Messaging Services (JMS)-compliant queues like WebSphere MQ, Prog
ress SonicMQ, and Apache ActiveMQ; as well as Advanced Message Queuing Protocol
(AMQP)-based queues like RabbitMQ and Apache Qpid. (The advantage of AMQP is
that it’s also a wire standard, which means you can integrate different implementa
tions easily.)

 One point to consider is whether you really need messages to be persistent; if you
don’t, and the service and the edge run in the same process, you can use an in-memory
queue. If they’re in separate processes, most message-oriented middleware supports
express message delivery (without persistence) for faster performance.

 You need to consider transaction support if you require a queue that supports dis
tributed transactions. If so, you might combine the Decoupled Invocation pattern
with the Transactional Service pattern described in chapter 2.

 Another issue to consider is that the reply will be sent asynchronously, and you
need to establish a bidirectional channel in order to do that. Messaging is a good
option, and it’s consistent with our approach so far. But you can also use Ajax technol
ogy, which lets you push content to the client.

 In cases where acknowledgment or reply messages aren’t required, you can define
the contract to support one-way messages. Consider the following simple code
excerpt, using Windows Communication Foundation (WCF):

[ServiceContract]

interface PurchaseSongs

{

 [OperationContract(IsOneWay = true)]

 void SubmitOrder()

}

www.it-ebooks.info

http://www.it-ebooks.info/

51 Parallel Pipelines pattern
The attribute on the SubmitOrder operation tells WCF to send the message without
returning a reply.

 You can use one-way messages if you don’t care too much about the reliability of
the message (for example, if it’s a cyclic message, where if one is lost the next one will
compensate) or if you’re using a reliable transport. As usual, choosing the right tech
nology boils down to which of the quality attributes are most important to you. In this
case, it’s a performance versus reliability trade-off.

QUALITY ATTRIBUTES

The Decoupled Invocation pattern helps solve the potential performance bottleneck
outlined in the problem section. It does this with a queue between the caller and the
message handler components. Placing a message on the queue is an efficient opera
tion, which means the service will be free to accept new requests sooner. If you keep
the handler simple, you can employ the Virtual Endpoint pattern (see section 3.5) to
resolve availability problems when faults occur.

 Because requests are handled asynchronously, the Decoupled Invocation pattern
can help increase service flexibility, as coupling between the service and its consumers
is reduced. Just as importantly, the Decoupled Invocation pattern helps with testability.

 Table 3.1 lists a few quality attributes and scenarios that the Decoupled Invocation
pattern can help with.

 While the Decoupled Invocation pattern enables growth, scalability, and perfor
mance, the Parallel Pipelines pattern builds on it to increase overall service throughput.

Table 3.1 Decoupled Invocation pattern attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Performance

Performance

Testability

Flexibility

Data loss

Latency

Isolation

Reduced assumptions

Under all conditions, no message acknowledged by
the system will be lost.

During peak loads, the system handles incoming
order requests without degrading latency (as com
pared to normal latency).

Before integration tests, a service should be tested in
isolation from the services it interacts with.

Whenever possible, invoke services with one-way mes
sages (fire-and-forget).

3.2 Parallel Pipelines pattern
The Decoupled Invocation pattern helps to handle peak loads by queuing up requests
and deferring processing to off-peak hours. But this solution doesn’t increase overall
service scalability when increased request rates are maintained. Under a continuous
high-request rate, the requests can accumulate in the queue and eventually overflow.
You need another strategy to handle continuous loads.
www.it-ebooks.info

http://www.it-ebooks.info/

52	 CHAPTER 3 Patterns for performance, scalability, and availability
Validate against
blacklist

Fraud
detecton

Authorize
card Se�le Produce

receipt

Figure 3.4 Nominal flow for credit
card processing in a credit card
clearinghouse

PROBLEM

Consider a credit card clearinghouse, sometimes known as transaction processing service.
Figure 3.4 illustrates the basic processing flow that takes place when a credit card pur
chase request arrives.

 As illustrated, the processing for a credit card transaction begins with a check
against known blacklists (bad card numbers, bad source IP addresses, and so on).
Next, the service looks for fraudulent patterns in the transaction. If everything checks
out to this point, it authorizes the card against the card issuer, settles the account
(makes the actual payment), and produces a receipt. Naturally, if one of the checks
fails, the processing enters an exception-processing path (not shown).

 The primary problem is the number of steps in the process. As a secondary prob
lem, some of the steps involve communication with external services. You may have
difficulty getting a service such as this one to scale.

How can you build services that maintain state and high throughput? ?
One solution is to introduce concurrency (multiple threads) and have each request
run in its own thread, or from a thread pool. The problem is that multithreaded pro
gramming is complex, more difficult to debug, and introduces performance and scal
ing issues of its own.

 Here are a couple of possible solutions using other patterns:

 Introduce concurrency and use the Service Instance pattern (discussed in sec
tion 3.4), and deploy to multiple load-balanced servers. Unfortunately, the ser
vice is stateful, so this won’t work unless the state is synchronized and replicated
across all servers.

 Use the Gridable Service pattern (discussed in section 3.3) and introduce a
computational grid. This solution is very complex and doesn’t work well when
external service calls are involved.

Another possibility is to use the Parallel Pipelines pattern.

SOLUTION

To maintain high throughput and be able to work with stateful components, you can
use the following strategy:

Implement the Parallel Pipelines pattern, where you break the process into

� subtasks, add a queue between them, and make each subtask an independent
component.

The Parallel Pipelines pattern, as figure 3.5 illustrates, is an application of the Pipes
and Filters architectural style (see further reading) in the context of SOA. The “pipes”
represent the message transport, and the “filters” are the components that handle the
subtasks.
www.it-ebooks.info

http://www.it-ebooks.info/

53Parallel Pipelines pattern
A pipeline begins with an endpoint where the messages arrive. The incoming mes-
sages are placed in a queue, and the pipeline services the queue as efficiently as possi-
ble. Each component in the pipeline works with the message and sends the results to
the next component via their own outbound queue. Some components can maintain
more than one outbound queue, depending upon the result of message processing.
With this paradigm, you can orchestrate alternative pipeline processing paths based
on request message content and variations in processing along the way.

 The following are advantages of the Parallel Pipelines approach:

 The pipelines pattern is relatively simple to implement.
 Pipelines are easy to test because they operate independently (you can test

them with the same technologies and principles you use to test the services that
include the pipelines).

 Because the overall problem is broken into subtasks, each pipeline component
tends to be simpler.

 To scale the solution, you can distribute the pipeline across as many servers as
needed.

 When you need to scale the solution, the simplest option is to put each pipeline
on its own server.

When deciding how to divide the process into pipelines, you can either make sure
that the pipelines are independent of each other or that you pass the needed context
from one pipeline to the next, so that each document gets more and more context as
it passes through the steps.

 The Parallel Pipelines pattern works well in combination with the other perfor-
mance and scalability patterns we’ll discuss in this chapter. You can use Parallel Pipe-
lines with the Gridable Service pattern (see section 3.3) to solve a performance
problem within one of the subtask components.

 The challenge is to partition the process in a way that’s easy to implement and
deploy and that still fulfills the business goals of the parent service. It’s preferable to
partition according to business boundaries, so that each pipeline is a business service

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Edge Pipeline

Perform
task

Service

Endpoint
Pipeline

Perform
task

Endpoint

Pipeline

Perform
task

Endpoint

Queue

Request 2

Request 1
Endpoint

Request

Reac�on Figure 3.5 With the Parallel
Pipelines pattern, the
processing is broken into
subtasks that are connected
by queues to form a processing
pipeline. Note that different
requests can have different
flows of tasks.
www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 Patterns for performance, scalability, and availability
Merchant

<<flow>> <<flow>>

<<flow>>

<<flow>>

<<flow>>

<<flow>>

<<flow>>

<<flow>>

<<flow>>

Port2 Credit card clearing

Produce
receipt

Fraud
detection

filter
Authorize

Log

Blacklist filter

Settle

<<flow>>

<<flow>>

<<flow>>

<<flow>>

<<flow>>

<<flow>>

Port3

Port 1

<<flow>>

<<flow>>

Merchant account
provider

Figure 3.6 In the credit card clearinghouse service, each task can be modeled as an independent
service. The Parallel Pipelines pattern has improved the overall scalability of the design.

in its own right. It’s also acceptable to partition the pipelines according to a technical
need; just try not to expose this partitioning to external callers. Figure 3.6 shows the
credit card clearinghouse modeled with the Parallel Pipelines pattern.

 As the figure illustrates, each subtask (blacklist filter, fraud detection filter, and so
on) is modeled as an independent component in an overall pipeline. Each is responsi
ble for just one task, which it can perform relatively quickly. Because there are six
pipeline components, you can handle approximately six different messages in differ
ent stages of the pipeline simultaneously without the need to introduce concurrent
programming within each component. Contrast this to a monolithic service, where
each new request needs to wait for the previous request to be processed in its entirety
before beginning on the next.

 If you look at the different pipelines that make up the process in figure 3.6, you can
see that most are self-contained, so they can handle the input without dependencies
on other pipelines or external resources. An exception is the authorize pipeline, which
needs to communicate with an external resource to complete its work. You can see
here another advantage of this pattern: instead of making a lot of small requests to the
external resource (each with the overhead of serialization, network, security, and so
www.it-ebooks.info

http://www.it-ebooks.info/

55 Parallel Pipelines pattern
on), you can make a chunkier call for a batch of requests, which is more efficient, while
other pipelines are still handling additional requests in other parts of the process.

 You can orchestrate the different pipeline components with the Workflodize pat
tern (discussed in chapter 2), and use a workflow engine, such as JBoss jBPM, to drive
the message flow through the pipeline. The easiest way to track and understand the
state within the pipeline is with the Transactional Service pattern (also discussed in
chapter 2). This ensures that each pipeline component performs a discrete unit of
work in isolation.

TECHNOLOGY MAPPING

As mentioned previously, you can partition pipeline components based on technical
considerations in addition to business needs. This sort of partitioning is acceptable as
long as the overall service is exposed via an edge that implements a meaningful con
tract and the subcomponent breakdown isn’t exposed to the caller. Also, be careful
not to partition the service into too many components, or with components that are
too fine-grained, as they may become difficult to manage and may make the latency
unbearable.

 Implementing the Parallel Pipelines pattern isn’t too complicated—the design of
which operations should be grouped in which subcomponents is the complicated
part. You can use Akka actors—a Scala framework also usable from Java that lets you
implement remote message passing between components. Akka components are
called actors, and each actor can be a separate pipeline. Another option is to base a
solution on JavaSpaces technology, which has commercial implementations like
GigaSpaces (usable both from Java and .NET). The nice feature of both the Akka and
JavaSpaces technologies is that, though they’re different, they both allow you to make
components local or remote by configuration and thus partition the logic into pipe
lines according to your needs and performance requirements.

 As usual, we’ll finish our discussion of the pattern by looking at some of the rea
sons you would want to use it.

QUALITY ATTRIBUTES

Remember that performance is a multidimensional trait, and one that’s relative by
nature. Therefore, it’s sometimes hard to define clear acceptance criteria. Also, some
of the subcategories of performance can contradict one another. To decrease the
latency of message processing, you can choose to forgo transactions, but this increases
the chances of data loss.

 With the Parallel Pipelines pattern, there’s a trade-off between throughput and
latency. With every pipeline you add, you increase the parallelism in your application,
and throughput increases as a result. This approach can also increase overall message-
processing latency.

 The benefits of using the Parallel Pipelines pattern typically outweigh the trade
offs. First, this pattern helps to increase service scalability tremendously. Additionally,
pipelines increase testability; because the service’s tasks are independent components,
you can test them independently.
www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 Patterns for performance, scalability, and availability
Table 3.2 Parallel Pipelines pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Performance

Scalability

Testability

Message throughput

Increased loads

Component isolation

Under stress conditions, the system handles more
than 10,000 requests per second.

When the system needs to handle up to five times
the current increased loads, you can solve the prob
lem by adding more servers without any architecture
or software changes.

Before integration tests, you can test each service
thoroughly (coverage of 85 percent or better).

Table 3.2 outlines some of the quality attributes and benefits of the Parallel Pipelines
pattern.

For the subtasks within a pipeline that are computationally intensive, you may
need to apply other strategies to keep the service scalable. One such strategy is the
Gridable Service pattern, which we’ll explore now.

3.3 Gridable Service pattern
One characteristic of SOA is that it’s built for highly distributed systems. Each and
every service is a subsystem in itself that can run on its own machine and be located
anywhere in the world. Often, services need to be distributed to help with computa
tionally intensive tasks.

PROBLEM

I once managed the biometric product line of a defense systems company. One of the
products we developed was a multimodal biometric platform. Such a system is used to
authorize visitors as they enter a secured building or area.

 This is a straightforward scenario, as you’re usually dealing with a finite number of
people, and each person is equipped with an appropriate identification badge. The
system looks up the visitor’s credentials in a database, runs some sort of biometric
algorithm, and verifies the person’s identity.

 The same platform needs to work in other, more complex, scenarios such as a
forensics system where you have a fingerprint collected at a crime scene, and you
don’t necessarily know who the person is ahead of time. The data must be compared
against a much larger database that can contain millions of records. If you have more
than one modality, such as fingerprints and DNA, the problem quickly multiplies. In
the end, you need to aggregate the result sets from all the searches. The processing
throughout the system can become quite intense.

 Other examples of computationally intense tasks are financial calculations and
simulation systems. Whatever the process entails, the same problem statement applies:

How can you build services to handle computationally intense tasks in a scalable ? manner?
www.it-ebooks.info

http://www.it-ebooks.info/

57Gridable Service pattern
One option is to scale up and get a larger, stronger server to solve the problem. This
will work to an extent, but throwing hardware at the problem can also get costly fast. If
you need to build redundant systems for failover and load balancing, the cost multi-
plies—for most organizations this isn’t a feasible option. The more cost effective solu-
tion is to scale out instead.

SOLUTION

Scaling out, when it comes to computationally intensive tasks usually calls for the fol-
lowing solution:

Introduce grid technology to the service, via the Gridable Service pattern, to
handle computationally intense tasks.

Figure 3.7 illustrates the solution. The Gridable Service pattern is based on a computa-
tion grid, and possibly a data grid, as part of the internal structure of a service. When
the service business logic needs to handle a task that’s computationally intense, the
business logic creates a job on the grid root. A job is made of one or more tasks that can
be queued and executed on the grid. The scheduler distributes the tasks to one or
more nodes, depending on the job type, and the grid agent then executes them.

Multimodal biometrics
Biometrics is one solution to identification and security. It combines something you
know (a password), something you possess (an identification badge card), and some-
thing that’s part of you (biometrics), such as a fingerprint, face recognition, or iris
recognition.

Multimodal biometrics involves the combination of two or more biometric modalities.
The added complexity comes from the algorithm required to aggregate the results of
the different biometric engines.

�

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Service Grid node

Send
Grid root node Grid node

Grid node

Execute

Monitor

Monitor and
manage

Load balance

Manage
queue

Schedule

Tasks

Business
logic

Grid root

Grid agent

Logic

Contract

Endpoint

Figure 3.7 When the business logic within the service has to invoke a
computationally intensive task, it creates a job on the grid root. The grid root
manages all the resources within the grid or compute cluster and executes the
task efficiently.
www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 3 Patterns for performance, scalability, and availability
 The grid infrastructure components (the agent, root node, and so on) constantly
monitor resource availability. Adding hardware, configured with the grid compo
nents, enlarges the pool of available resources. The grid takes care to maximize the
usage and does that based on the load of the machines. This “smart” resource alloca
tion helps solve both scalability and load-balancing requirements. Additionally, the
grid implements redundancy and failover and can pass tasks to new nodes when a
node fails. The Gridable Service pattern can be combined with the Workflodize pat
tern (see chapter 2) by making the job’s tasks into workflow instances or by having a
workflow drive the jobs.

 Let’s return to the biometric problem presented earlier. One of the services
defined in this system is a pattern-matching service, which takes a biometric pattern
(sort of a hash for a biometric sample) and searches for matches in the patterns data
base. This is a potentially time-consuming effort, as the database may contain large
numbers of records. Also, you need to use a biometric engine to compare the tem
plates, because some information is more important than others. The distance
between the eyes is more important than a beard for a face-recognition scenario, for
example.

 Figure 3.8 shows how the problem can be solved using the Gridable Service pattern.
The edge component translates the request to an internal representation and invokes
the workflow that deals with matching. Next, the workflow component works with the

Service gateway

Edge

Grid headnode
(parceling,

scheduling etc.)

:Algorithms
server

:Algorithms
server

Grid headnode

Workflow

Biometric engine

:Algorithms server

Grid agent

Figure 3.8 With the Gridable Service pattern applied to one of the services of a biometric platform,
the different biometric engines are deployed on the grid and a workflow drives their invocation.
www.it-ebooks.info

http://www.it-ebooks.info/

59 Gridable Service pattern
grid headnode to partition the matching job and schedule it. The grid infrastructure
takes care of finding free algorithm servers, then invokes the appropriate biometric
matching engines.

 The Gridable Service pattern can help you solve your computationally intense
tasks, but it sounds like a lot of work to implement this pattern. Fortunately, there are
quite a few grid implementations available; all you need to do is integrate them into
your SOA. Let’s look at some of the available technology options.

TECHNOLOGY MAPPING

There are many grid implementations, and all of them can be applied in an SOA con
text to implement the Gridable Service pattern. One standard for grid computing is
the Gridbus project, which defines open source specifications, an architecture, and a
reference grid toolkit implementation for a service-oriented grid.

 In grid scenarios, you create remote threads of execution without needing to know
where the execution will take place. The grid infrastructure optimizes task execution
across connected nodes, based on the available resources across them, and executes
each job on the appropriate machine. Figure 3.9 shows the system console for
Alchemi, which is a Microsoft .NET implementation of the Gridbus standards.

 The grid software manages all member resources and can provide metrics on how
the system is doing overall. The same information is used by the grid internally to dis
tribute jobs efficiently.

 Gridbus is, of course, not the only grid implementation available. Microsoft Win
dows HPC Server 2008 can scale your application logic out to thousands of processing
cores across your existing Windows infrastructure. See www.microsoft.com/hpc/en/
us/default.aspx for more information.

Pure grid computing focuses on computation. Data grid technologies are another
class of grid solutions that are focused on bringing data to computation. Data grid

Figure 3.9 The manage
ment console of Alchemi, a
Microsoft .NET-based open
source project implement
ing Gridbus.
www.it-ebooks.info

www.microsoft.com/hpc/en/us/default.aspx
www.microsoft.com/hpc/en/us/default.aspx
http://www.it-ebooks.info/

60 CHAPTER 3 Patterns for performance, scalability, and availability
Table 3.3 The five protocols included in the WS-Resource Framework specification

Protocol Description

WS-Resource Defines the relationship of a resource on the grid to web services

WS-ResourceProperties Defines a protocol to retrieve and set the list of features or properties of
each resource

WS-ResourceLifetime Defines the semantics to control the lifetime of a resource

WS-ServiceGroup A standard for defining a collection of resources

WS-BaseFaults A standard for handling problems and faults

solutions shard (partition) the data to the grid nodes and support some sort of map/
reduce semantics where computation occurs locally (near the data). Only summaries
are moved around the network, providing efficient computing (by minimizing I/O).
There are several such options in the Java world—products such as GridGain, Hazel-
cast, among others.

The WS-* stack of web service protocols also addresses grid design, and there are a
few protocols bundled under the name WS-Resource Framework (WSRF). Table 3.3
lists the five protocols of which WSRF is composed.

 To wrap up this subject, let’s review the motivations for utilizing this pattern.

QUALITY ATTRIBUTES

The Gridable Service pattern, and the grid technology it’s built upon, can help with
some of the common quality attributes most projects face, such as performance and
availability. All of the quality attributes are met by using mechanisms that allow redis
tribution of computational loads based on the available resources.

 Scalability is addressed by the fact that resources are pooled and constantly moni
tored. The grid is able to reroute work in case of failure and to redistribute the load
when a new node is added.

 Table 3.4 identifies a few sample scenarios and benefits of using the Gridable Ser
vice pattern.

Table 3.4 Gridable Service pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Performance

Availability

Scalability

Budget

Latency

Hardware failure resiliency

Ability to scale out

Hardware costs

Under normal conditions, service requests
should complete in less than a second for 99
percent of the cases and less than two seconds
for 100 percent of the cases.

Upon a server crash, the system will remain
operational.

It is possible to deal with increased service
loads with more hardware.

You can spread the load over less-expensive
hardware.
www.it-ebooks.info

http://www.it-ebooks.info/

Service Instance pattern 61
One important quality attribute that’s missing here is security, because it’s not a core
capability of the grid. But serious grid implementations should address security to
some degree.

 The Gridable Service pattern can help you solve some of the basic needs of distrib
uted systems, such as performance and availability. The grid can also help achieve scal
ability, but grids aren’t the only solution here. Let’s take a look at another pattern that
will also help with scalability.

3.4 Service Instance pattern
So far, we’ve discussed two patterns that can be used to achieve scalability: Gridable
Service and Parallel Pipelines. To see why you’d need another one, let’s examine a
sample scenario.

PROBLEM

You might remember the blacklist service from the credit card clearinghouse example
mentioned in the Parallel Pipelines discussion (see section 3.2). The blacklist service
is responsible for verifying that the various attributes of an incoming request aren’t in
an existing list (a blacklist) of invalid items.

 Let’s look at the verify request operation provided by the blacklist service—see fig
ure 3.10. Under even normal conditions, the service will experience a high number of
incoming requests per second. Each needs to be validated very quickly.

Request handler Card blackList IP blackList

1.0 Request

par

[Check for stolen cards]

[Check for bad IPs]

1.5

1.4

1.3 Verify

1.2 *

1.1 Verify

Clearing orchestrator

Figure 3.10 This diagram outlines the steps involved in verifying credit card purchase requests.
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 Patterns for performance, scalability, and availability
 The blacklist service is straightforward; it communicates with a database and cache
and verifies that the requester isn’t in any known lists.

 One very important challenge for this service is the ability to scale in cases of high
request loads, such as when checking for blacklisted cards during a black Friday sales
craze. Here’s the problem:

How can you build services that are scalable in a simple and cost-effective way?

Two possible solutions are to use the Gridable Service pattern or the Parallel Pipelines
pattern (both discussed earlier in this chapter), possibly even together.

 The Gridable Service pattern, though primarily targeted at computationally
intense tasks, can essentially solve most of the scalability needs. But using grid technol-
ogy can be relatively complicated and expensive. You might want a more lightweight
alternative to scalability.

 The same is true for the Parallel Pipelines pattern. You can isolate each blacklist in
its own pipeline, but this can create additional overhead for a relatively simple opera-
tion. It may even create an unacceptably large amount of latency for each request.

SOLUTION

Let’s look at a simpler solution to this potentially complex problem.

Implement the Service Instance pattern by deploying multiple instances of the
service business logic.

As illustrated in figure 3.11, the Service Instance pattern is built on a simple concept:
you deploy multiple copies of the service. Using a dispatcher on the edge, you distrib-
ute the work to the different instances. Depending on the technology you use, you
might not even have to implement anything in the dispatcher.

 It’s better to maintain a single endpoint and then divide the request load between
the service instances. You can build on the Virtual Endpoint pattern (discussed in sec-
tion 3.5) if you need multiple endpoints. The important point is that consumers of
the service will be unaware of and unaffected by the scaling that occurs inside the ser-
vice (see the sidebar for more information).

?

�

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Edge Service instance

Dispatcher

Distribute Send

Service business
logic

Request

Reac�on

Endpoint

Figure 3.11 In the Service
Instance pattern a dispatcher
(usually deployed on the edge)
routes messages to one of the
instances of the service business.
www.it-ebooks.info

http://www.it-ebooks.info/

63 Service Instance pattern
Scaling inside versus outside of the service
When scaling is implemented outside a service, the service isn’t aware that the scal
ing is taking place. Multiple instances of the service are deployed on the network.
When scaling is implemented inside the service, the components outside of the ser
vice aren’t exposed to how the scaling occurs.

In most cases, it’s best to scale inside the service—it hides the complexity from the
consumers, which makes for easier maintenance and integration. It also lets you
treat the service as an independent system and increases the overall autonomy of
the service. Lastly, scaling outside the service requires that the service business
logic will be stateless, which isn’t always possible.

The Service Instance pattern is best suited for stateless service implementations. If you
have state that needs to be shared between instances, you should probably consider
using the Gridable Service pattern.

 The Decoupled Invocation pattern is related to the Service Instance pattern. To
combine the two, you implement the service instances as multiple readers that process
the same input queue (see section 3.1 for more details).

TECHNOLOGY MAPPING

Implementing the Service Instance pattern doesn’t require a particular technology.
Instead, you implement a dispatcher in the language of your choice, and distribute
requests to the farm of servers running your service. This is especially true if you
implement this pattern on top of the Decoupled Invocation pattern.

An alternative way, and probably a more common way, to implement the Service
Instance pattern is to build on the Virtual Endpoint pattern (described in section 3.5)
and use one of the available load-balancing technologies. You can implement this at
the application level with packages such as Apache JServ, or at the OS level with pack
ages such as Microsoft’s NLB Cluster (see figure 3.12), or one of the Linux options like
HAProxy.

 In figure 3.12, you can see that relying on technology (Windows NLB in this case)
can simplify the scaling of the service. The edge sends the requests to the virtual IP
address, and the NLB cluster takes care of routing it to the appropriate service
instance. The instances themselves aren’t aware that they’re clustered. The obvious
tradeoff here is that the granularity of control is weighted against ease of use, mainte
nance, and development costs.

 The last issue in regard to the Service Instance pattern is shared state. As men
tioned earlier, it’s helpful to store shared state in a shared resource such as a database.
If you still need to maintain state inside each service instance, you need to look at dis
tributed cache solutions, such as NCache from Alachisoft or Azure Caching service on
the .NET platform, or GigaSpaces and VMWare’s vFabric GemFire on the JVM. Addi
tional distributed cache options are dedicated solutions like Memcached and Redis.
www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 Patterns for performance, scalability, and availability
QUALITY ATTRIBUTES

The Service Instance pattern deals with availability. Having multiple instances of the
service business logic means your service is more resilient to hardware failures and
you can be sure the service will stay responsive through planned downtimes (such as
during upgrades). Another advantage of the Service Instance pattern is the inherent
increased scalability—you can handle increased loads by adding hardware.

 Table 3.5 details sample scenarios.

The patterns so far have approached the subject of availability, but let’s take a look at a
pattern that addresses this head-on.

3.5 Virtual Endpoint pattern
At the end of the day, a service is a type of application that’s hosted on a server some-
where. What happens when that server fails?

 For one thing, you need to take care of restarting the failed service and resume
request processing. You can look at the Service Monitor pattern (see chapter 4), Ser-
vice Watchdog pattern (see section 3.6), and the Transactional Service pattern (see
chapter 2) for ways to monitor services and recover from failures.

Table 3.5 Service Instance pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Availability Hardware failure resiliency Under normal conditions, completing service
requests requires less time.

Availability System downtime Upon a server crash, the system will remain
operational.

Scalability Ability to scale out It is possible to deal with increased service loads
with more hardware.

Windows host

i

Cluster host

Windows kernel

NIC

Cluster host

Windows kernel

NIC

Virtual IP : 1.1.1.1

Real IP : 1.1.1.2Real IP : 1.1.1.3

iEdge

Windows kernel

NIC

Real IP : 1.1.1.4

Service
Instance

Service
Instance

WindoWindoWindowswsws kernekernekernelll WindoWindoWindoWindowswsws kkernekernekernellll WindoWindoWindoWindowswsws kkernekernekernellll

TCP/IP TCP/IP
TCP/IP

TCP/IPTCP/IP

NLB driver NLB driver

NIC driver
NIC driver

NIC driver

Figure 3.12 Implementing
the Service Instance pattern
using a Windows NLB cluster.
The edge is deployed outside
the cluster, and each service
instance is deployed on a
machine that is part of the
NLB cluster.
www.it-ebooks.info

http://www.it-ebooks.info/

65Virtual Endpoint pattern
 The remaining issues involve service recovery time and the failure’s impact on
clients.

PROBLEM

First, think about the service-level agreement (SLA) you need to support. In many
cases, especially with mission-critical software, there is an agreement in place to
ensure service availability and to contain outages to within a specified timeframe. You
have two parameters to availability: uptime and recovery.

How can you provide services with location transparency and graceful recovery
from failure without affecting consumers?

If your service is truly stateless, you can scale the service using the Service Instance pat-
tern described earlier. But this may not provide a completely seamless solution to the
service consumer. The fact that there are multiple instances of the service may be
exposed to the client.

 Let’s explore a pattern that helps to resolve this and improves availability.

SOLUTION

The ideal solution is to run redundant instances of the service, but to have it still be
accessible through one address, appearing as a single instance.

Implement the Virtual Endpoint pattern, wrapping multiple instances of the edge
component to create a virtual endpoint that provides location transparency.

The Virtual Endpoint pattern, illustrated in figure 3.13, wraps and hides the actual
edge components’ internal addresses. Requests are routed to one or more of the
internal addresses where the edge and service exist, essentially providing location
transparency for the service.

 There are two variations on this pattern:

 Implement one active and one or more standby services. The standby services
will be activated only in the event of a failure. The virtual endpoint will then
serve as a switch between the two.

 Implement multiple active services. The virtual endpoint will route requests
across all active service instances arbitrarily, or according to a load-balancing
algorithm.

?

�

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Edge

Virtual
endpoint

Loca�on
transparency

Service

Request Request

RequestRequest

Request

RequestEndpoint

Endpoint

Endpoint

Figure 3.13 The virtual
endpoint exists as a known
address, but the requests are
actually handled by edge
components that exist on
other, internal, addresses.
www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 Patterns for performance, scalability, and availability
The first option is often simpler to implement, especially if issues exist surrounding
multiple instances of a service running in parallel. This can include issues with
resource sharing or locking and maintaining request message ordering. These issues
can often be resolved through the use of enterprise software, such as a single shared
database for resource issues and a transactional queue that maintains queued message
processing order.

 It’s usually easier to implement the Virtual Endpoint pattern in the edge, as it’s
more likely to be stateless, allowing the service to maintain state independently. If you
use a service registry, it can help maintain an entry for backup service addresses.

The nice thing about the Virtual Endpoint pattern is that it’s very simple to
implement.

TECHNOLOGY MAPPING

For services that are based on web service standards, such as REST or SOAP, the tech
nology mapping is straightforward. You can deploy an off-the-shelf solution such as
load-balancing technology. With this, you get both availability and some scalability.

 If you use messaging technology rather than web technology for service interac
tion, you can use enterprise service bus (ESB) products like Mule or Fuse ESB (and
others) to expose the virtual endpoint.

 When you need smart routing to actual endpoints, such as when you have different
SLAs for different tenants, you can use solutions like HAProxy (a smart load balancer)
or again ESB products.

ESBs and OS-level solutions can also help introduce virtual endpoints to stateful
services via clustering in active/passive setups or sharded active/active setups.

Beware of the “split brain” problem
When you implement a clustering solution for availability, you need to watch out for
communication problems where different nodes in a pair don’t see each other on the
network. This “split brain” phenomenon occurs when more than one server claims to
be the master. As a result, the servers and their data aren’t synchronized, which can
result in partial or incorrect responses.

Most clustering and high-availability products address this potential problem, but you
still need to be aware of this problem in case your solution doesn’t protect against it.

The provider of the virtual endpoint (ESB, load balancer, or other solution) should
also take care of endpoint failure and should reroute requests to an active endpoint.
The provider can also help with state management by supporting session stickiness so
that requests from the same source will get to the same handler.

QUALITY ATTRIBUTES

In its simplest form, the Virtual Endpoint pattern provides location transparency,
which provides availability and scalability, but it can also help with maintenance and
software upgrades.
www.it-ebooks.info

http://www.it-ebooks.info/

67 Service Watchdog pattern
Table 3.6 Virtual Endpoint pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Availability

Maintenance

Hardware failure resiliency

Upgrades

Upon a server crash, the system will resume
operations in two minutes.

Individual service instances can be upgraded
without disrupting service availability.

Table 3.6 summarizes the quality attributes.
Availability helps maintain the service when something goes wrong, but it’s impor

tant to know when something goes wrong. The Service Monitor pattern (discussed in
chapter 4) helps here, as does the Service Watchdog pattern, which we’ll examine next.

3.6 Service Watchdog pattern
Achieving availability is a multilayered effort. You’ve already seen the benefits of
autonomous services (see the Active Service pattern in chapter 2), and the Service
Watchdog pattern will focus on another aspect of autonomy. This pattern shows how a
service can proactively identify faults and try to heal itself when it finds problems.

PROBLEM

The Service Instance pattern in section 3.4 is one pattern that can cope with failure.
The question is, is that enough? My opinion is that it isn’t, and here’s why:

 Once you deal with failure within the service, the ability to cope with additional
failure is probably diminished. If the live server failed and the service transi
tions to a standby server, there’s no additional standby if this server fails.

 The failure might be too much for the service to be able to overcome by itself. A
poison message might also take the redundant or standby servers down.

To increase the service autonomy and increase overall availability, you need to identify
and repair problems, and then notify the appropriate system operator about the ser
vice’s current status.

How can you increase availability by identifying and resolving problems and ? failures that are service-specific?

One option is to try to infer the state of the service from the way it looks on the out
side. You can periodically call the service (ping it), and if it doesn’t respond within
well-defined parameters (within a certain amount of time, for instance), you know the
service may be down.

 This approach isn’t foolproof, especially if there are redundant or standby servers
involved. In that case, a problem may occur and remain masked because a standby
server is available to answer your pings.

 Alternatively, you can install agents on each of the service’s servers. This will give
you a more fine-grained view of the health of each server. You may also be able to get
www.it-ebooks.info

http://www.it-ebooks.info/

68	 CHAPTER 3 Patterns for performance, scalability, and availability
�

trend information for each server, as well as warning signs about future failure poten
tial, such as disks that are filling to capacity.

 But there are problems with this solution too:

 You need to actively install software on each of the service’s servers, which both
decreases the service autonomy and creates a management hassle.

 You still only get an external view of the service behavior. You wouldn’t be able
to determine whether a service was returning stale data out of a cache because a
network failure is preventing it from getting fresh data from an external source.

 Only the service really knows its wellness. Suppose the SLA of a service
requires that there be at least three instances alive (for a certain load). If you
have five nodes, and one is down, you still have four, so the severity of the fail
ure isn’t high. Another example is a process that’s still up but is taking more
time than usual. The definition of what is “usual” is something that the peo
ple who developed the service would know, and it can be part of the service’s
code or configuration.

 There are situations where not all of the services are under your control, and
you can’t access their hardware.

Yet another option is to actively contact the services and actively poll them for state.
This allows you to build servers that deliberately report on potential problems and
communicate trends that can lead to problems over time. They could, for example,
report on growing log files, falling disk capacities, network outages or external service
call failures, or low-memory situations.

 This solution may not perfect because it’s the observer’s responsibility to request
the information and act on it. If the observer doesn’t sample the service frequently
enough, it could miss vital information. But this approach is on the right path; all you
need to do is add an element of autonomy to it, as I’ll describe in the next section.

SOLUTION

A solution where the service watches over itself is often not good enough, because you
normally require a human operator to be alerted to potential trouble. The solution
we’ll discuss here is a combination of those outlined so far.

Implement the Service Watchdog pattern, where the service actively monitors its
internal state, acts on potential trouble, tries to heal itself, and continuously
publishes its status.

The Service Watchdog pattern (see figure 3.14) revolves around a single idea—you
can increase the service’s responsibility by combining two complementary concepts:
reporting and self-healing.

 The first is the watchdog agent concept, where the service implements the Active
Service pattern (discussed in chapter 2) and contains a component in charge of mon
itoring the service’s state. This component publishes the service’s state periodically,
and also when something meaningful occurs (see the Inversion of Communications
pattern in chapter 5). Note that just because the service actively publishes its state
www.it-ebooks.info

http://www.it-ebooks.info/

69Service Watchdog pattern
doesn’t mean it can’t also respond to inquiries regarding its health (akin to leaving a
comment on a blog and getting a response from the author).

 The second important concept in the Service Watchdog pattern is that of the
watchdog edge. This component listens for information gathered and published by the
watchdog agent component, and acts on that information in a meaningful way to
increase the reliability and availability of the service.

 There are many ways to implement self-healing, and many of them are application-
specific. Here are a few common examples:

 Providing a fail-fast mechanism that will stop a process when the state of the
component isn’t certain

 Restarting failed components (as a reaction to a fail-fast)
 Implementing a circuit breaker mechanism, such as preventing a retry on a

database connection when the database is down
 Clearing junk, like deleting logs, temporary files, and so on

NOTE Watchdog is a term borrowed from the embedded systems world. A
watchdog is a hardware device that counts down to 0, at which point it takes
action, such as resetting the device. To prevent this reset, the application has
to “kick the dog” before the timer runs out. If the application doesn’t reset
the counter, it could mean that the application has stopped responding. A
reset would fix that.

Let’s consider the advantages of the Service Watchdog pattern over the other options
presented earlier. The Service Watchdog pattern combines the benefits of an agent
that actively monitors the service’s health with the internal knowledge of how to main-
tain service continuity. For instance, a service is best equipped to know if its processing
is running slower than usual. If there are many instances of the service, the service
should know how many copies are really needed and how many are just for redun-
dancy. And so on.

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Edge

Watchdog
edge

Report

Service

Request

Monitor

Endpoint

Watchdog
agent

Monitor

Heal

Log

Reports

Monitor

Monitor

Endpoint

Figure 3.14 With the Service Watchdog
pattern, the watchdog edge component
sends health reports and listens for
requests. The watchdog agent component
receives these reports and tries to heal
itself before the problem gets worse.
www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3 Patterns for performance, scalability, and availability
 In one project our team inherited a situation where there were interdependencies
between processes running on different servers as part of a single service. When the
process was down on one server, the process on the second server didn’t function
properly, and vice versa. The end result was something like the situation in
figure 3.15.

 The watchdog agent on each server node monitors the components. The agents
communicate among themselves to examine the dependencies. The watchdog edge
component provides a Web Service Description Language (WSDL)-based endpoint
where other services can query it for the service’s health. It also publishes Simple Net
work Management Protocol (SNMP) traps to an external SNMP monitor (such as HP
OpenView).

The simpler you keep the components, the less risk there is of failure. Let’s take a
more thorough look at the technology mapping options.

Server A Server B

Server C

<<executable>>
Component A <<executable>>

Component B
Monitor Monitor

Monitor Monitor

<<daemon>>
:Watchdog

agent

<<daemon>>
:Watchdog

agent

<<daemon>>
:Watchdog

agent

WSDL WSDL SNMP

Service edge Watchdog edge

Figure 3.15 The daemon processes on the servers monitor the running components on each
server. With the Service Watchdog pattern, the Watchdog edge component exposes the
current state through a web-service interface, and as SNMP traps.
www.it-ebooks.info

http://www.it-ebooks.info/

Summary 71
TECHNOLOGY MAPPING

Implementing the Service Watchdog pattern in an enterprise will usually predeter
mine the protocols you’ll have to use. There are many third-party monitoring pack
ages available, such as Nagios, HP OpenView, IBM Tivoli, and Microsoft Operations
Manager. In these cases, you can use the SDK of the monitoring software, such as the
CA Unicenter Agent SDK. There are even third-party software packages to help you
build agents. OC Systems offers Universal Agent that you can use to write agents for
CA Unicenter. With the emergence of SOA-specific tools, such as those from Amber
Point’s SOA Management System, or WebLayers’ suite of products, you can implement
standard WS-* based monitoring.

 At the service level, you can use standard mechanisms like performance counters
on .NET and JMX MBeans in Java to emit statistics on how well the service is doing. On
one system, I also configured a log listener that transmitted error and fatal log mes
sages to the watchdog to help identify problems.

 Regardless of the specific technology used, the important point is to let an agent
that’s controlled by the service determine when the service is healthy. The results will
be manifested in an external tool, as noted earlier (and as will be discussed in the Ser
vice Monitor pattern in chapter 4).

QUALITY ATTRIBUTES

The Service Watchdog pattern helps improve the overall reliability of the service and
allows it to maintain its autonomy. Monitoring and self-healing services can overcome
minor problems, resulting in better overall availability.

 Table 3.7 outlines some of the quality attributes that this pattern helps you achieve.

Table 3.7 Service Watchdog pattern attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Availability

Reliability

Failure detection

Autonomy

Upon a failure or degraded performance, the system will
alert the administrator (via SMS) within a well-defined
amount of time.

During normal operations, the system will clear all its
temporary resources continuously.

Once you begin to monitor a service and collect data, you’ll begin to find new uses for
that data. You can examine trends in incoming request messages to try to locate
attacks on the service. Monitoring data can be used to analyze the service’s behavior
over time, predict failures, and help increase its maintainability.

3.7 Summary
Performance, scalability, and availability are related attributes of any software system.
Often the best way to solve a performance problem is to scale the solution. Once you
do this, you may find that the same approach can be used to increase the solution’s
www.it-ebooks.info

http://www.it-ebooks.info/

72	 CHAPTER 3 Patterns for performance, scalability, and availability
availability. This is especially true when you combine patterns and multiply their indi
vidual quality attributes.

In this chapter, we examined structural patterns to help increase performance,
scalability, and availability of services in an SOA. We covered the following patterns:

 Decoupled Invocation—Queues requests to deal with peak loads and increase reli
ability

 Parallel Pipelines —Breaks a process into steps to increase throughput
 Gridable Service—Uses grid technology for computation-intensive tasks
 Service Instance—Deploys multiple instances of services to help with scalability
 Virtual Endpoint—Provides location transparency to help with service

availability
 Service Watchdog—Monitors and heals services

The final pattern in this chapter, Service Watchdog, serves as a good introduction to
the next chapter, because it introduces the topics of maintainability and security.

3.8 Further reading
DECOUPLED INVOCATION

Martin Fowler, “The LMAX Architecture,” http://martinfowler.com/articles/lmax.html.
The disruptor pattern discussed in this article creates a low-latency lock-free queue between
writers and readers.

PARALLEL PIPELINES

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal,
Pattern-Oriented Software Architecture: A System of Patterns, vol. 1 (John Wiley & Sons, 1996).
The Parallel Pipelines pattern is an SOA application of the Pipes and Filters pattern
described in Pattern-Oriented Software Architecture.

Ariel Ortiz Ramírez, “Pipes and Filters Architectural Pattern,” http://webcem01.cem.itesm
.mx:8005/apps/s200911/tc3003/notes_pipes_and_filters/.
A short explanation of the Pipes and Filters architectural pattern.

GRIDABLE SERVICE

Robert W. Anderson and Daniel Ciruli, “Scaling SOA with Distributed Computing,” Dr. Dobb’s
Journal (Oct. 5, 2006), http://www.drdobbs.com/web-development/193104809.
This article describes the notion of adding a grid to scale SOA.
www.it-ebooks.info

http://martinfowler.com/articles/lmax.html
http://webcem01.cem.itesm.mx:8005/apps/s200911/tc3003/notes_pipes_and_filters/
http://webcem01.cem.itesm.mx:8005/apps/s200911/tc3003/notes_pipes_and_filters/
http://www.drdobbs.com/web-development/193104809
http://www.it-ebooks.info/

Security and
manageability patterns
In this chapter
 Security threats for software systems

 Idempotent messages

 Maintainable SOA solutions

As I mentioned in chapter 1, SOA promotes loose coupling by emphasizing inter
faces, standards-based contracts, and service autonomy. SOA’s loose coupling of ser
vices makes it (relatively) easy to create systems by composing services together, and
it lets you update services without disrupting other services that interact with the
changed service. SOA is truly an open architecture style. This openness offers a lot
of benefits, like agility and easier integration, but it also opens the door to many
security threats and manageability challenges. In the past, there was always a trade-
off when choosing between openness and security or distribution and manageabil
ity, so you might think it would be difficult to weave security and manageability into
SOA without violating SOA’s principles. As you’ll see in this chapter, a good balance
between these somewhat contradictory quality attributes can be achieved.
73

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4 Security and manageability patterns
 Before we dive into the solutions, let’s look at some of the problems they try to
solve. Software systems, especially distributed and connected systems, have to deal
with many threats. One example is repudiation—someone denying that they sent a
message. Another example is distributed denial of service attacks, which are quite
common these days.

 One of the things you need to do when designing a system is threat modeling. This
is a way to understand the security requirements of the system—each identified and
prioritized threat needs to have some security measures to mitigate it. In Writing Secure
Code, Michael Howard and David LeBlanc describe six threat types—spoofing, tamper
ing, repudiation, information disclosure, denial of service, and elevation of privi
lege—known as STRIDE. Table 4.1 provides a short example of each threat type.

Table 4.1 The STRIDE security threats for software systems

Threat Examples

Spoofing Man in the middle replaying message; impersonating a consumer and
sending a message in its name

Tampering Changing the content of request or a reaction

Repudiation A consumer sending a request, then denying sending it

Information disclosure Exposing internal information in an error message

Denial of service Flooding a service with bogus requests

Elevation of privilege Executing a request that the consumer isn’t authorized to execute

The quality attributes discussion for each pattern in this chapter will cover which of
the STRIDE threats can be mitigated by using that particular security-related pattern.

 One aspect of security is keeping out attackers and preventing malicious attacks.
Another important aspect of security is monitoring for problems and ensuring that
security guidelines are followed. The monitoring facet of security is also a part of
other quality attributes—manageability and governance—which we’ll also touch on in
this chapter. Security, manageability, and governance are too often neglected, even
though organizations pursuing SOA tend to promote governance more than before.
Both security and manageability are important to ensuring that a solution will be
working and running as expected—security makes sure no external and unfriendly
elements interrupt the service, and management ensures that everything is well on
the inside.

 Figure 4.1 shows which of the SOA components mentioned in the SOA definition
in chapter 1 are touched by the patterns in this chapter:

 As illustrated in figure 4.1, the focus of this chapter is on the peripheral compo
nents of the service—the messages, policies, and endpoint—more than the service
itself. It’s better to maintain the service’s focus on the business functionality than to
clutter it with general concerns. Dealing with security and manageability outside of
www.it-ebooks.info

http://www.owasp.org
http://www.owasp.org
http://www.owasp.org
http://www.it-ebooks.info/

75 Secured Message pattern
Service

Describes

Endpoint Exposes

Messages Sends/receives

Contracts

Binds to

Service
consumer Implements

Policy Governed by

Sends/receives

Adheres to

Component
Relaton

Key

Understands

Serves

Figure 4.1 In previous chapters, our focus was mainly on the service itself.

In this chapter, the focus shifts to the interface of the service—the patterns

in this chapter touch the policy, endpoint, and messages components of SOA.

the service allows it to maintain that focus. You’ve also seen this with the introduction
of the edge component (see chapter 2). This doesn’t mean you shouldn’t write secure
code or use logs when you develop the service itself. It just means that aspects such as
authentication and authorization are better handled externally.

 The following patterns are discussed in this chapter:

 Secured Message—Secure specific messages or parts of messages that are
exchanged between two or more services

 Secured Infrastructure—Increase the overall security of message exchange
between services, with minimal impact on the services involved

 Service Firewall—Protect a service against malicious incoming messages and pre
vent information disclosure on outgoing messages

 Identity Provider—Implement an efficient authorization and authentication
scheme in an SOA

 Service Monitor—Identify problems and faults in services and attend to them to
ensure the overall business’s availability

The first pattern we’ll discuss is the Secured Message pattern.

4.1 Secured Message pattern
The first pattern in this chapter has to do with one of the most fundamental compo
nents of SOA—the message. Messages, as explained in chapter 1, are the components
that transport data between services and their consumers.

SOA-based systems are, by definition, open, distributed, and, most importantly,
connected, which means that you have a lot of these messages going back and forth.
You can control what happens to the message inside the service, and you may have
some control over the service consumers, but what about the space between the ser
vices? I remember listening to a presentation by Pat Helland on messages and data in
www.it-ebooks.info

http://www.it-ebooks.info/

76	 CHAPTER 4 Security and manageability patterns
SOA, and he called this space “no man’s land.” In a sense, this space is exactly that,
especially when the messages travel over a public network such as the internet.

Let’s take a look at what this means.

PROBLEM

The fact that messages travel in this no-man’s- Man in the middle

land between services makes them prone to all
sorts of threats. Many of the threats have to do
with a class of attack known as “man in the
middle.” Figure 4.2 shows the basic template

ConsumerService C

for a man-in-the-middle attack. Simply put, it
Figure 4.2 Man-in-the-middle attacks. An means that when a message leaves the service
attacker listens in on messages that travel

or the service consumer, someone lurking on in unprotected spaces and can examine or
the wire can take a look at the message and even change the messages.

tamper with it.
 This man-in-the-middle scenario is the basis for several types of threats, and we

need to find a way to protect against them. We need to find ways to:

 Protect privacy—Sometimes messages contain confidential information, or infor
mation that’s at least private. Maybe you don’t want everybody to know your
company’s account details when you send an order message to a supplier.

 Protect integrity—You don’t want anyone to change the messages you send. You
don’t want that $100 order you’ve requested changed to $10,000,000.

 Protect against impersonation—You don’t want anyone withdrawing money from
your account “on your behalf” by faking the credentials you’ve sent in a message.

But while man-in-the-middle scenarios are important, they aren’t the only threats you
need to handle. You also need to protect against repudiation—you don’t want your
client denying sending that $10,000,000 order the minute the merchandise is
received.

 While these examples are for financial transactions, the same issues are relevant to
other types of messages, such as transferring student grades in a university system, or
sending fingerprints and personal identities in a forensic context, or any other type of
data you want your services to handle.

How can you secure specific messages or message fragments that are exchanged? between two or more services?

The naïve thing to do is ... to do nothing and hope for the best. This may sound like a
stupid approach, but I’ve seen too many systems where this was exactly the “solution”
used. The obvious downsides are that the messages are prone to all the threats men
tioned previously. There may be some edge cases where this sort of security doesn’t
matter, but as a rule, this is not a good approach to take.

 One option is to use a secure channel (see the Secured Infrastructure pattern in
section 4.2). This is a good option in the technical and architectural sense, as it takes
the burden of security off of the service.
www.it-ebooks.info

http://www.it-ebooks.info/

77Secured Message pattern
 The main problem with this approach is that it’s harder, and sometimes impossible,
to make this work in an uncontrolled environment. There are situations where the
infrastructure is limited and can’t provide the solution you need. You may only want to
encrypt part of the data—say the credit card number—but leave the other part open.
Secured Infrastructure is often only suitable for point-to-point scenarios (for example,
using SSL/TLS for internet security), and you may need multimessage and multiparty
interactions. Furthermore, if you temporarily store the messages in a cache or other
less-secure temporary storage, securing just the transport may not be enough.

SOLUTION

If you can’t use the Secured Infrastructure pattern, or if the level of security it can pro-
vide isn’t good enough, you’ll need to take care of securing the messages yourself.

Apply the Secured Message pattern to your messages and add message-level
security.

The Secured Message pattern (illustrated in figure 4.3) is composed of a single com-
ponent that’s responsible for enforcing the security on top of the raw messages. These
are the two common security capabilities for the message:

 Encryption or decryption of messages—Encryption and decryption can help solve
the privacy scenario because someone looking at the message will have a hard
time figuring out what the message is. The strength of the encryption depends
on both the strength of the algorithm used and on how protected the key is.

 Digital signatures—Digital signatures can help solve the integrity problem. When
you digitally sign a message, you can determine whether the message was
altered and doesn’t match the original that was sent. Note that digital signa-
tures tell you that something is wrong, and not what went wrong. Digital signa-
tures can also solve the repudiation problem, because when someone digitally
signs a message, they need to use their private key to sign the message, which
proves that they originated the message.

�

Secured message

Verify
signature

Decrypt

Encrypt Reply

Request

Sign

Edge/service

Relation

Key
SOA component Pattern component

Concern/attribute

Request

Endpoint

Reply

Figure 4.3 The Secured Message
pattern defines a single component
that handles both decryption/
encryption and digital signatures and
their verification.
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4 Security and manageability patterns
Idempotent messages
In addition to encryption and signing, it’s also worthwhile to put time into making
messages idempotent. Idempotence is a mathematical term that basically means that
calling a function multiple times doesn’t change the result f(f(x))=f(x). Idempotence
for messaging means that the messages should be constructed in a way that the pro
cessing service is immune to reprocessing a message. If a service receives the same
message again, it should be able to handle it without changing the state of the sys
tem. In a financial scenario you wouldn’t want that “withdraw $10,000,000” mes
sage to be processed more than once.

A common way to achieve idempotence in messages is to add a version number or
transaction number so that you can identify the message or the origin of the message
when needed. It’s important to note that adding idempotence is a choice you have to
make and implement on your own as part of the service implementation. Any infra
structure-level implementation won’t be meaningful in the business context and will
only handle network-level retries and replays.

Sometimes it’s possible to make the message idempotent regardless of the receiver;
for example, “set discount to $10 for order 123.” Even if you handle this message
several times, the discount would still be $10 (compared with a message that says
“deduct $10 from order 123”). Sometimes you’ll still need to make sure that the ser
vice is an idempotent receiver so that it would register which messages it has already
handled and check against that list before processing incoming messages.

As mentioned previously, the Secured Message pattern isn’t a replacement for the
Secured Infrastructure pattern. It’s best used in scenarios that aren’t handled well by
Secured Infrastructure, like partial encryption of data, temporary storage of data,
multiparty secured sessions, and signing unencrypted data. One reason to consider
partial encryption is the impact of full encryption on latency. It takes much more time
to encrypt and decrypt every message than it does to encrypt several attributes or
fields in a few specific messages.

 Even when you use the Secured Message pattern, it doesn’t mean you develop
everything from scratch—if you’d do that you’re likely to have insecure solutions.
Instead, it’s better to rely on the cryptographic capabilities of the development envi
ronment you use—I’ll expand on that in the technology mapping section.

TECHNOLOGY MAPPING

The basic technology mapping for the Secured Message pattern is to use the cryptog
raphy libraries of your development technology. Both Java and .NET have the notion
of a cryptographic service provider, which lets you abstract away the implementation
of the cryptographic algorithms. In one application I architected, we used this feature
to seamlessly replace a software implementation of an algorithm with one based on a
Hardware Security Module (HSM) to accelerate encryption and decryption speeds.

 When building SOAs, you’re more likely than not using XML for your messages
(although other options like JSON or proprietary formats are also possible). If you are
www.it-ebooks.info

http://www.it-ebooks.info/

79 Secured Message pattern

using XML, two technological standards you should be aware of are XML encryption
and XML signatures—both are W3C standards and both are supported by many devel
opment environments. For instance, Apache Santuario, the Apache XML security proj
ect, has implementations for Java and C++. .NET 4 has a specific namespace that deals
with XML cryptography(System.Security.Cryptography.Xml).

XML encryption allows you to encrypt specific elements within an XML document;
if you have the XML in listing 4.1, you might want to secure the account information,
because it holds both an account ID and credit card data.

Listing 4.1 An unsecured XML message that holds sensitive data

<Order>

 <Account>

<AccountID>1234-6789</AccountID>

<Payment>

 <CardId>9999-5678-9123-4567</CardId>

 <CVV2>123</CVV2>

 <ValidBy>02/05/1999</ValidBy>

 <CardName>visa</CardName>

</Payment>

 </Account>

 <Items>

<Item name="Mashu">

 <ItemId>123-456-789</Id>

 <Quantity>10</Quantity>

</Item>

 </Items>

</Order>

If you use one of the previously mentioned methods and encrypt it to the standard, you
can get something like the XML in this listing (depending on the key and algorithm).

Listing 4.2 The XML from listing 4.1 with the account key encrypted

<?xml version='1.0' ?>

<Order>

 <EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'

➥xmlns='http://www.w3.org/2001/04/xmlenc#'>
<CipherData>
 <CipherValue>FF5BDA12C3EE3A238FCD8721AE9354</CipherValue>
</CipherData>

 </EncryptedData>

 <<Items>

<Item name="Mashu">

 <ItemId>123-456-789</Id>

 <Quantity>10</Quantity>

</Item>

 </Items>

</Order>

www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4 Security and manageability patterns
Note that the XML encryption standard also defines an EncryptedKey tag, similar to
the EncryptedData element in listing 4.2, to also support secure key exchanges.

 Some threats, such as cross-site request forgery (CSRF, also known as XSRF) can be
mitigated by using hashes and not encryption. (It’s much faster to create hashes.) The
Open Web Application Security Project (OWASP) suggests a “synchronizer token pat
tern” where for every session the server generates a unique random hash, which is
hard for attackers to guess. Requests by clients should include the token so that the
server knows that the requests are valid (see the further reading and the bibliography
for more details).

QUALITY ATTRIBUTES

The Secured Message pattern helps deal with a few threats derived from the presence
of a “man in the middle.” Table 4.2 lists the threat categories and the actions that an
implementation of the Secured Message pattern can take to avoid these threats.

Table 4.2 Threat categories that implementations of the Secured Message pattern can mitigate

Threat Actions

Spoofing Verify signature using the sender’s public key to prevent impersonation

Add time stamps, sequence numbers, or expiration times to messages, or imple
ment idempotent messages to cope with replay attacks

Tampering

Repudiation

Encrypt messages so that they can’t be changed without ruining the message

Add a time stamp and require signatures on messages to prevent senders from
claiming they didn’t send a message

Information
Disclosure

Encrypt important information (or the whole message) to prevent someone else
from reading sensitive data

In regard to general quality attributes, you can see that the Secured Message pattern is
a little problematic. One problem is that it requires a lot of work on the service imple
mentation, which means it has an impact on maintainability. Also, because it’s your
responsibility to implement this pattern, you need to be careful and comply with stan
dards; otherwise, it can have a bad effect on interoperability.

 Some aspects of the Secured Message pattern can be simplified by using the
Secured Infrastructure pattern, which we’ll discuss next.

4.2 Secured Infrastructure pattern
The Secured Infrastructure pattern is relatively simple from an architectural perspec
tive, but it has a lot of details and substance in its technology mapping. The principle
behind the Secured Infrastructure pattern, as its name implies, is finding a communi
cation layer that’s secured and using it for the service’s communications. The compli
cation here is deciding on the appropriate technology mapping to fit your needs and
then to utilize that technology properly.
www.it-ebooks.info

http://www.it-ebooks.info/

81 Secured Infrastructure pattern
 The bulk of the discussion for this pattern will be in the technology mapping sec
tion, but first let’s introduce the problem and the solution.

PROBLEM

By introducing the problem, let’s recap the scenarios presented in the Secured Mes
sage pattern. As messages flow in the space between services, which includes routers,
networks, and sometimes even public networks (such as the internet), you need to
find ways to protect the messages against prying eyes and malicious onlookers. Essen
tially, you need to protect privacy, protect the messages’ integrity, and protect against
impersonation:

 Protect privacy—Sometimes messages contain confidential information, or at
least private information. Maybe you don’t want everybody to know your com
pany’s account details when you send an order message to a supplier.

 Protect integrity—You don’t want anyone to change the messages you send. You
don’t want that $100 order you’ve requested changed to $10,000,000.

 Protect against impersonation—You don’t want anyone withdrawing money from
your account “on your behalf” by faking the credentials you’ve sent in a message.

These are basically the same set of problem as for the Secured Message pattern, but
with the added constraint that we want minimal work and impact on the services.
Maybe there’s a way to patch security on the outside without giving a lot of the work to
the service and the developers who program it.

How can you increase the overall security of message exchanges between services ? with minimal impact on the services involved?

One option is to develop the security solution yourself. To minimize the effect on the
services, you can put most of the security-related code in an edge component (see the
Edge Component pattern in chapter 2). But you still have to develop the security solu
tion, and even more importantly, test it. Also, you’d need to make sure you use secu
rity standards to enable interoperability with external parties—don’t forget that
openness is an important trait for an SOA.

 So what’s the other option?

SOLUTION

If developing a solution by yourself isn’t a great option, the other option is to try to
find a solution developed by someone else.

Apply the Secured Infrastructure pattern and use third-party secured solutions as

� the communication infrastructure for the services.

The main idea behind the Secured Infrastructure pattern, illustrated in figure 4.4, is
to find an off-the-shelf solution that will solve as many of the security challenges as
possible by configuration alone. This is a real boon, because you can develop your ser
vices without thinking about security, and then change a few configuration files to
secure the system.
www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 Security and manageability patterns
One caveat is that when you apply the Secured Infrastructure pattern and decide to
turn security “on,” the granularity of the decision is usually limited. You can choose to
set a secure channel, but then all the messages that go through it will be encrypted.
This can have an undesired or unplanned effect on the throughput and latency of
messages. Sometimes that’s a necessity, because everything in every message has to be
secured, but sometimes fine-grained control on security will yield both the needed
level of security and better performance.

 One way around this problem is to add an additional unsecured channel, then
make sure you send the right messages on the right channels and that messages on the
unsecure channel don’t leak information that should be sent on the secure channel.

 To make sure you’ve got the right option for the solution you’re building, it’s rec-
ommended that you integrate security early and conduct performance tests to assess
the impact.

TECHNOLOGY MAPPING

This section usually covers both technologies where the pattern is used and ways to
implement the pattern by yourself. But unless you’re a technology vendor, the most
likely path to take with the Secured Infrastructure pattern is to choose an off-the-shelf
solution. We’ll discuss the most common technological options: SSL/TLS and WS-
Security, and using ESBs.

SSL/TLS

The first, and probably most approachable, option is to use SSL (Secure Socket Layer)
or TLS (Transport Layer Security). These are standard internet protocols—all web
browsers support them and they’re in wide use today. SSL/TLS is the natural selection
for securing RESTful services because REST builds on HTTP as it is.

SSL and TLS are also supported by web services based on WS-* standards, such as
WCF or JAX-WS. Adding SSL support for a web service simply involves marking it in the
WSDL that describes the service’s contract. Suppose you have a definition such as the
one in the next listing, which shows a skeleton definition of a web service exposed as a
servlet endpoint.

Edge/service

Outside
world Edge/service

Audit Authorize

Decrypt /
encrypt Sign / verify

Secured infrastructure

Relation

Key
SOA component Pattern component

Concern/attribute

Figure 4.4 The Secured Infrastructure pattern involves buying (or building) a
common secure communications infrastructure for the services that is external
to the services and handles the messaging traffic for all the services.
www.it-ebooks.info

http://www.it-ebooks.info/

83 Secured Infrastructure pattern
Listing 4.3 JAX-WS definition of a web service exposed as a servlet endpoint

package servletws;

import javax.annotation.Resource;

import javax.jws.WebService;

import javax.xml.ws.WebServiceContext;

@WebService

public class OrderServlet {

 @Resource WebServiceContext wsContext;

 public String PlaceOrder(OrderMessage msg) {

 ...

 }

}

To make this web service use SSL, all you need to do is add a few tags into the WSDL,
such as <transport-guarantee> CONFIDENTIAL </transport-guarantee> and <auth
method> CLIENT-CERT </auth-method>, and you’re all set.

 The next listing shows an except from the WSDL that configures the OrderServlet
in listing 4.3 to use SSL.

Listing 4.4 WSDL excerpt for the service in listing 4.3 that configures it to use SSL

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Secure Area</web-resource-name>

 <url-pattern>/OrderServletService/OrderServlet

 </url-pattern>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 </role-name>EMPLOYEE</role-name>

 </auth-constraint>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

</security-constraint>

<login-config>

 <auth-method>CLIENT-CERT</auth-method>

 <realm-name>certificate</realm-name>

</login-config>

NOTE If you want to understand how SSL and TLS work in detail, you may
want to check out Open SSL. It’s an open source implementation of the two
protocols.

SSL/TLS provide transport-level security and they’re tied to a specific transport
(HTTP), which are downsides. If you’re building web services that have to use multi
ple transports, like Java Message Service (JMS) or Microsoft Message Queuing
(MSMQ) along with HTTP, you can’t do that with SSL/TLS. Another point is that
www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4 Security and manageability patterns
messages won’t be encrypted as they pass all the layers between the transport and the
process on the server, and this might be a security risk in some situations. Lastly, SSL
operates at the transport level, which means it’s an all-or-nothing protocol—all the
messages that flow on the channel will be secured, which might be overkill and create
a performance bottleneck.

NOTE As an alternative, you can use IPSec, which is an even lower-level tech-
nology (compared with SSL/TLS), to implement the Secured Infrastructure
pattern. IPSec sits in the network level (the IP level) and is completely exter-
nal to the services. Essentially, it allows secure communications between two
hardware nodes. It isn’t as versatile as SSL/TLS, but it can be used to secure
the communication of a closed group of services efficiently and with relatively
little hassle (save for configuration and setup). IPSec suffers from the same
limitations as SSL/TLS.

WS-Security

Another technology mapping for the Secured Infrastructure pattern is WS-Security.
WS-Security alleviates some of the problems of SSL/TLS as it’s a message-level protocol
and not a transport-level one. You can choose which messages to secure and which to
leave open, you don’t have to encrypt a message when you just want to sign it. WS-
Security is a WS-* standard that provides the means to encrypt, sign, and authenticate
messages exchanged between services and their consumers.

 As illustrated in figure 4.5, WS-Security adds security tokens and signatures to the
message header.

 The signatures are used to ensure the message hasn’t changed (guaranteeing the
message’s integrity) and to verify the sender. As for security tokens, the OASIS stan-
dard explains that “security tokens assert claims and can be used to assert the binding
between authentication secrets or keys and security identities.” In plain English, a
security token is the credential used for authentication, authorization, or both; a secu-
rity token can be an X.509 certificate or a username that can carry with it a set of state-
ments or claims, as the standard refers to them. Claims can be anything the sender (or

SOAP envelope

SOAP header

SOAP body

Security header

Security token

Signature Figure 4.5 The structure of a SOAP message
using the WS-Security protocol. WS-Security
adds a security header to the message header
where the sender can store its security token
and a digital signature. Additionally, the sender
can decide to encrypt the content of the
message body (the SOAP body).
www.it-ebooks.info

http://www.it-ebooks.info/

85 Secured Infrastructure pattern
someone on his behalf) cares to say about the sender; a claim, for instance, can be the
key that should be used to decrypt the message, the identity of the sender, and so on.

 One advantage of this approach is that if you trust the security token, you can
immediately process the message, whereas for SSL you need to first establish a session
(exchange keys between the parties). WS-Security can use SSL if the limitations previ
ously mentioned aren’t a problem for you, and the example in code listings 4.3 and
4.4 does just that. Regarding trust, one way to gain it can be by having some trusted
authority sign the security token—you can read more about this in the Identity Pro
vider pattern in section 4.4.

 One limitation of WS-Security, as compared to SSL and other options, is that it can
only be used with WS-* web services (SOAP based services). This is a limitation because
although SOAP-based web services are a popular option for implementing SOA, they
aren’t the only option. Also, if you use WS-Security for all the messages, it’s likely to be
slower than SSL because SSL can work at the bit level and be streamed, whereas WS-
Security requires complete messages.

 For REST-based systems, there is a similar approach regarding authorization called
OAuth (current version is OAuth2). Like WS-Security, OAuth uses tokens in the
authorization process. It can be used on top of the SSL/TLS approach mentioned in
the previous section.

ESBs

The third technology option for implementing the Secured Infrastructure pattern is
using an enterprise service bus (ESB). ESBs are a higher-level solution than the previ
ous two technology options discussed here (SSL and WS-Security). In a nutshell, ESBs
are integrated standards-based service communications infrastructures that provide
several features, like messaging, mediation, and management. (See the Service Bus
pattern in chapter 7 for a more thorough discussion.)

 What’s important here is that ESBs offer secured communications and they pro
vide a means to expose services using the previously discussed technologies. You can
also use ESBs to route messages, which makes it easy to introduce additional security
mechanisms, such as implementations of the Service Firewall or Service Monitor pat
terns (both discussed later in this chapter). Essentially if you expose all your services
over an ESB, you can use it as a central point to perform the three As—authentication,
authorization, and auditing.

QUALITY ATTRIBUTES

The Secured Infrastructure pattern helps mitigate threats related to third-party inter
ception or inspection of messages (man-in-the-middle threats). Table 4.3 shows the
threat categories and the preventative actions that the Secured Infrastructure pattern
can take.

 The Secured Infrastructure pattern helps protect the channel against an external
attacker when the two parties involved in the message exchange are valid. It doesn’t
cover malicious consumers that try to attack your service. For that, we can look at
another pattern—the Service Firewall pattern.
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 4 Security and manageability patterns
Table 4.3 Threats categories that implementations of the Secured Infrastructure pattern can mitigate

Threat Actions

Spoofing Verify signature using the sender’s public key to prevent impersonation

Add timestamps to messages or implement idempotent messages to cope with
replay attacks

Tampering Encrypt messages so that they can’t be changed without ruining the message

Repudiation Add timestamps and require signatures on messages to prevent a sender from claim
ing it didn’t send a message

Information dis
closure

Encrypt important information (or the whole message) to prevent anyone from read
ing sensitive data

4.3 Service Firewall pattern
In the previous patterns, I mentioned that messages travel in “no-man’s land.” You can
use the Secured Message or Secured Infrastructure patterns to protect the messages
while they travel through that space, but what can you do if the sender is malicious?
When an attacker sends you a malicious message (perhaps a virus as a SOAP attach
ment), the fact that the message got to you intact and without anyone else seeing it
doesn’t help very much.

PROBLEM

To illustrate the type of attacks a malicious sender can cause, let’s look at one of them
a little closer. Figure 4.6 illustrates an XML denial-of-service (XDoS) attack. In this
type of attack, a malicious sender attaches a lot of digital signatures to a message. Pars
ers that aren’t ready for this type of attack examine each of these signatures, causing
the service to slow down under the load.

Another common attack scenario is XPath injection or even plain old SQL injec
tion, where the parameters passed within a message are malicious and aim to disclose
information or perform harmful operations on data within the service.

 Attacks like these, using incoming messages, are one of the types of threats you
need to handle. A related type of threat or problem has to do with outgoing messages.
Here you need to make sure that private or classified information doesn’t leak outside
of the service. In this scenario, you want to find a way to make sure messages contain
only information permitted to flow out of the service.

Unauthorized
requester

XML

signature
signature

XDoS attack Edge /
service

Figure 4.6 Illustration of an XDoS
attack. A malicious sender prepares an
XML message that looks valid but is
loaded with a lot of digital signatures. An
unsuspecting parser will try to verify
each of these signatures, hogging CPU
cycles, which can result in unavailability
of the service.
www.it-ebooks.info

http://www.it-ebooks.info/

87Service Firewall pattern
How can you protect a service against malicious incoming messages and prevent
information disclosure on outgoing messages?

One option for dealing with malicious senders is to apply the Secured Infrastructure
pattern (discussed in section 4.2) and to require certificates for authorizing clients.
This means that clients who don’t have a certificate won’t be allowed to contact the
system. One problem with this approach is that it’s only good when the service is only
accessible to a limited number of consumers and not to the general public. Another
limitation of the certificate approach is that it doesn’t handle attacks by insiders,
because they’re authorized to access the system.

 Another option is to incorporate the security logic that screens malicious content
as part of the business logic. There are several problems with this approach: One is
that you get code duplication (violation of the Single Responsibility Principle), as
there are many threats that are common to all services. Another problem is that the
business logic gets tainted with security logic, which makes it both harder to write and
harder to maintain.

 The best option is to externalize the security to another component. Let’s look at
this option more closely.

SOLUTION

SOA messages are application-level components, but the notion of messages isn’t new
or unique to SOA. The computer industry already has a lot of experience with mes-
sages on a lower level of the OSI stack—the network level, specifically TCP packets and
UDP datagrams. TCP and UDP have a few similarities with SOA messages, and the inter-
esting ones, for the purposes of this pattern, are the threats they face. Since the
threats are similar, maybe you can use the same solutions that work for TCP and apply
them to your SOA messages.

Implement the Service Firewall pattern, intercept incoming and outgoing
messages, and inspect them in a dedicated software or hardware component.

The Service Firewall pattern is an application of the Edge Component pattern (dis-
cussed in chapter 2). Figure 4.7 illustrates how the service firewall operates.

?

�

Request

Service firewall Edge/service

Firewall
endpoint

OutValidate

Scan

Authorized reply

Filter

Reply

Authorized request

Cleanse

Audit

Firewall
endpoint

Relation

Key
SOA component Pattern component

Concern/attribute

Figure 4.7 The service
firewall sits between the
outside world and the actual
service (or edge). The service
firewall scans, validates, and
audits both incoming and
outgoing messages. Once a
message is identified as
problematic, it can either be
filtered out or cleansed.
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 4 Security and manageability patterns
Authorized
requester

XML
firewall

Unauthorized
requester

Edge / service

Figure 4.8 When a request arrives at a
service firewall (an XML firewall in this
illustration) it’s screened for validity.
The firewall can check that an XML
message matches the predefined XSD.
Authorized requests get through and
unauthorized requests are rejected.

First, the service firewall intercepts each incoming and outgoing message and inspects
it. Once intercepted, the service firewall can scan the message for malicious content
such as viruses, XDoS attacks, and injection attacks as discussed previously.

 Note that the firewall doesn’t perform any magic that lets it deal with these threats.
It’s built to cope with the threats, identify the patterns that mark a message as harm
ful, and screen incoming and outgoing messages. Additionally, the service firewall can
validate messages by making sure they conform to the contract, verifying property
types, sizes, and so on. When a message is identified as problematic, the service fire-
wall can audit and log the message and then decide whether to filter it out or cleanse
the problematic content and let it through.

 The service firewall acts as a first line of defense for the service. As illustrated in fig
ure 4.8, when a request arrives at the firewall, it’s scanned and verified, and requests
that are authorized are then routed to the real service (or another edge component).

 The idea behind a service firewall is simple. The implementation is more compli
cated because there is a lot of functionality that has to be implemented for each of the
roles (scan, validate, filter, and so on). On top of that, you need a way to make sure
the service firewall sees all the messages.

TECHNOLOGY MAPPING

The simplest way to implement the Service Firewall pattern is to create a designated
edge component where you can implement the inspection and validation logic. Once
the firewall logic is done, you can deploy it on the DMZ (the network subnet where
public APIs and webservers are deployed and made accessible to the outside world).
Deploy the real service behind a regular firewall and you’re all set. The edge compo
nent will block unwanted requests that play “nice,” and the regular firewall will block
the other attacks.

 Implementing the Service Firewall pattern without using a regular firewall is a little
more problematic, as an attacker can call the endpoints that are used by the actual
service and bypass the Service Firewall altogether. In these situations, you can rely on
the interception capabilities of the technology you use. Figure 4.9 shows the relevant
extension points offered by Windows Communications Foundation for intercepting
incoming messages.

As illustrated in figure 4.9, there are four relevant extension points (out of the few
dozen supported by WCF) where you use classes to perform the various roles of the
Service Firewall pattern. You can have classes that verify addresses, verify contracts,
inspect messages, and inspect parameters, both for incoming and outgoing messages.
www.it-ebooks.info

http://www.it-ebooks.info/

89Service Firewall pattern
The next listing defines a new WCF web service endpoint in code and sets up a custom
ServiceAuthorizationManager that will be the Service Firewall instance.

var testServer = new Tester();
var service1 = new ServiceHost(testServer,

➥new Uri(string.Format("http://localhost:{0}", TestServerPort)));

var ep = service1.AddServiceEndpoint(typeof(TestingContract), binding,

➥string.Format("http://localhost:{0}/S1", TestServerPort));
ep.Behaviors.Add(new WebHttpBehavior());

// set up an interception point for our Service Firewall
service1.Authorization.ServiceAuthorizationManager = new ServiceFirewall();

var cp = service1.AddServiceEndpoint(typeof(ImContract), binding,

➥string.Format("http://localhost:{0}/Control", TestServerPort));
cp.Behaviors.Add(new WebHttpBehavior());

Once you have an interception point, you can define the class that will do the actual
scanning of incoming messages as shown next.

public class ServiceFirewall :ServiceAuthorizationManager
 {
 public override bool CheckAccess(OperationContext operationContext,

 ➥ref Message message)
 {
 var isAuthorized = base.CheckAccess(operationContext, ref

 ➥message);
 var buffer = message.CreateBufferedCopy(Int32.MaxValue);
 message = buffer.CreateMessage();
 var testMessage = buffer.CreateMessage();

 ... // code to validate messages goes here

 return isAuthorized;
 }

 }

Listing 4.5 Getting incoming messages using WCF extension points

Listing 4.6 .NET skeleton code to perform validation on intercepted messages

Endpoint dispatcher

Dispatch runtime

Contract
filter

Address filter

Dispatch message
inspector

Dispatch operation

Contract
filter

Address filter

Dispatch messageParameter
inspector

Figure 4.9 WCF supports a few dozen extension points to control the way a message
is handled when it enters or leaves the service. You can use four of these extension
points to implement the different roles defined in the Service Firewall pattern.
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 4 Security and manageability patterns
Another implementation option for the Service Firewall pattern is using hardware or
embedded appliances. Companies like Layer 7, IBM (DataPower appliances), Vordel,
and a few others produce XML firewall appliances. The advantage of using XML appli
ances is that you can deploy them along with your other firewalls in the DMZ and have
them serve as the first line of defense. Another advantage is that these platforms are
optimized for XML handling, so the performance impact of the appliances is lower
than a self-coded solution. One disadvantage of using hardware XML firewalls is the
setup costs (tens of thousands per unit); another is the increased maintenance com
plexity of managing an additional hardware type and performing the double manage
ment of your SOA contract (both in the service and in the appliance).

Whether you use a firewall appliance or implement the Service Firewall pattern in
code, it can really boost the security of your services by helping prevent threats like
denial of service attacks or even just saving validation efforts for the service itself.

QUALITY ATTRIBUTES

The Service Firewall pattern is very versatile, and it can be made to handle many types
of threats. Table 4.4 lists the threat categories and the actions that an implementation
of the Service Firewall pattern can take to protect against threats in these categories.

 In addition to the specifics of the threats that the Service Firewall pattern helps
mitigate, you can also look at it from the wider scope of quality attributes. Like most of
the other patterns in this chapter, Service Firewall is a security pattern. It’s interesting
to note that unlike most other security patterns, it’s relatively easy to add it on toward
the end of a project, although this is not a completely free ride. You still have to

Table 4.4 Threat categories that implementations of the Service Firewall pattern can mitigate

Threat Actions

Tampering Verify signatures and make sure no one changed the content of a request
or a reaction

Validate that messages aren’t malformed

Information Disclosure Scan outgoing messages for sensitive content

Restrict reply addresses to closed groups

Inspect incoming messages for XPath and SQL injection attacks

Denial of Service Prevent XDoS attacks by examining XML before validating each signature

Block known attackers

Restrict requestor addresses to a closed group

Scan attachments for viruses

Elevation of Privilege Examine an incoming message for injection attacks

Examine an incoming message for buffer overruns by validating contracts
and sizes of elements
www.it-ebooks.info

http://www.it-ebooks.info/

Identity Provider pattern	 91
measure its impact on system performance—it can add an overhead in regards to con
tract maintenance and the like.

 In this chapter on security and manageability, it’s about time we started talking
about manageability patterns. The next pattern, Identity Provider, helps make this
transition, as it has both security and manageability aspects.

4.4 Identity Provider pattern
When you move an enterprise to SOA, or even if you only build a single system based
on SOA concepts, you’re likely to end up with quite a few services—and quite a few
more service interactions. From the security perspective, you need to make sure each
of these interactions is both authenticated and authorized. This means that each of
your services has to take care of this authentication and authorization.

 Ay, there’s the rub. This proliferation of authentication and authorization raises
several challenges in regard to maintenance, management, performance, and secu
rity. Let’s look at a sample scenario.

PROBLEM

Let’s take another look at the journal sub
scription agency from chapter 2 (in our dis
cussion of the Active Service pattern). One of

the more important services for a journal sub
scription agency is the one that deals with the

customer. Almost any other service in the sys
tem needs information from that service.

 Figure 4.10 shows four simple examples—
the Promotions service needs addresses, the
Proposals service needs discount rates, and

Figure 4.10 Services interact with each the Billing and Orders services both need
other all the time. In this example, the

addresses and discount rates. Customer service gets requests from four
 So what’s the problem with that? As a different services, and it has to authenticate

and authorize them on every call. matter of fact, there are plenty:

 The Customer service needs to authenticate each of the services that connects
to it to ensure that it’s talking to an internal friendly service. But you don’t want
it to know about each of these services. You don’t want to update the Customer
service every time you add a new service. Avoiding this point-to-point integra
tion was part of the reason of going down the SOA path.

 When you have a human in the loop, you need to make sure that person is
authorized to get the customer’s data. When a user works with a UI that works
with the ordering service, the user might be authorized to get a customer’s
email address (to send an order confirmation) but not the customer’s home
phone number.

Billing
(service)

Customers
(service)

Orders
(service)

Proposals
(service)

Promotons
(service)
www.it-ebooks.info

http://www.it-ebooks.info/

92	 CHAPTER 4 Security and manageability patterns
?

 You don’t want each service to “know” all the users as that would cause a main
tenance and management nightmare. Would you revoke the credential on all
the services each time an employee leaves the company?

 If the Customer service has to authorize and authenticate every call, it will
have to spend a lot of time doing so, which adds latency and increases tempo
ral coupling.

 Management of the whole authorizations and authentications across services.
For example, suppose you just added the Proposals service—how can you let
the Customer service and any other service know it’s OK to talk to it? How can
you do that for new users?

 All the preceding problems get even worse when the service is external because
the trust between organizations is naturally lower than the trust between inter
nal components. For instance, you may have a third party that handles the pro
motions for you. You’ll want to let them have as few details as possible about
your internal structure and users, but you’d want to allow them to talk with your
services and make sure that they’re authenticated.

What you need is an efficient and secure way to handle authentication and authoriza
tion within a federated and distributed system.

How can you have an efficient authorization and authentication scheme in
an SOA?

The first question that comes to mind is, “Wouldn’t the Secured Infrastructure pat
tern (from section 4.2) solve this?” Well, no. The Secured Infrastructure pattern takes
care of the channel, but how do you know you can talk with someone on that chan
nel? You can communicate over a secured infrastructure to establish the identity, but
you need something more.

 As I mentioned earlier, the naïve option of trying to manage the security for each
service on its own is a maintenance nightmare, as you’d need to do that work for each
service. You also run the risk of introducing coupling and point-to-point integration
for each new service consumer you introduce.

 Writing this code once and reusing it (such as with the Edge Component pattern
discussed in chapter 2) will only work if you or your team owns all the services. Also,
you still have a management and maintenance problem, because each running
instance has to be updated when a new service consumer is introduced.

 Introducing an external party to handle the authorization and authentication is a
step in the right direction, as you can centrally manage who is authorized to do what.
But you still have to solve a few issues.

One is that most SOA implementations are sessionless, so you need to make sure
that this external party won’t become a performance bottleneck when each and every
request has to be authenticated and authorized with it.

 The second is that you don’t want to couple your services to this external party, but
each service does need to know somehow that it’s talking to the right external party
and not to some malicious impersonator.
www.it-ebooks.info

http://www.it-ebooks.info/

93Identity Provider pattern
SOLUTION

We need to take the “external party in charge of authentication and authorization” to
the next level.

Implement the Identity Provider pattern to get single sign-on for the service
consumer’s authorization.

The Identity Provider pattern, illustrated in figure 4.11, is an evolution of the central
identity repository mentioned in the previous section. Before we look at how the pat-
tern solves the problems left unanswered by the other options, let’s explore the com-
ponents of the pattern and their roles.

 The Identity Provider pattern is composed of two major components, provisioning
and the token server.

 Provisioning—This component is responsible for creating identities, privilege
levels, and the like, and for storing these identities and supplying them to ser-
vices. It is also responsible for revoking credentials when needed. The provi-
sioning component can also audit and save any “identity” created, updated, or
revoked.

 Token server—The token server is responsible for verifying claims for identities
or privileges and for providing the proof that these claims are correct. It’s also
responsible for converting the token format. Format conversion is necessary
because different services, especially if they belong to different organizations,
don’t necessarily understand the same tokens. Suppose the Customer service in
figure 4.10 can use X.509 certificates, and the Promotions service, which may
belong to an external PR agency, might use SAML assertions (more on that in

�

Signed
token

Identity provider

Service
In

Signed
certificate

Provision

Audit

Issue tokens

Check
identity

Provision

Token server

Verify iden�ty

Revoke

Service

Convert
tokens

Relation

Key
SOA component Pattern component

Concern/attribute

Iden�ty
data store

Figure 4.11 The Identity Provider pattern has two main components. One manages
the identities (provisioning) and another is in charge of authentication (the token
server). When a service wants to validate an identity, it passes a request to the
identity provider, which returns a signed token to the service verifying the identity.
If the service trusts the identity provider, it can also trust the verified identity.
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4 Security and manageability patterns
the technology mapping section). In these cases, the token server can convert
between the formats while maintaining the verified identity.

How does the identity provider work? The core concept is trust, and the mechanics
for using it build on previously successful infrastructures like PKI. A service consumer,
which has gone through provisioning with an identity provider at some time in the
past, tries to access a service. When sending a message, the service consumer makes
some assertions about its identity, its capabilities, or both. If the service trusts the iden
tity provider, it can ask the identity provider if the claims made by the service con
sumer are genuine, and if they are it can accept the service consumer’s request.

 If this interaction seems confusing, just think about the lumberjack and the choir
in the “Lumberjack Song” by Monty Python. The lumberjack has two assertions: “I’m a
lumberjack and I’m OK,” and the choir, acting as an identity provider, confirms that,
“He’s a lumberjack and he’s OK.”

 If we return to the journal subscription agency scenario presented in the problem
description, the authentication and authorization can follow the steps in figure 4.12.
The Proposals service gets ready to send a request to the Customer service to get a list
of discounts for a customer. It will then digitally sign this request as a proof that it has
credentials in the identity provider. The Customer service can then check this claim
with the identity provider, which will return a token or a certificate that verifies that
the Proposals service is entitled for this service. The identity provider signs this certifi
cate with its private key. The Customer service can then verify that the identity pro
vider signed the certificate, and because it trusts the identity provider, it can honor
the certificate and return the list of discounts to the Proposals service.

 The identity provider is an external party, so services, like the Customer service
and others, don’t have to figure out how to authenticate callers. This process also
solves the coupling problem by only requiring the Customer service to know the

<<service>>
Proposals

<<service>>
Customer

Prepare message

Get customer discounts

Request token for
Proposals

Return token

Identity provider

Figure 4.12 Acquiring a
security token. The Proposals
service sends a request and
signs it with its private key.
Then the Customer service
checks the Proposals’
credentials against the identity
provider, which returns a
certificate for the Proposals
service signed by the identity
provider. The Customer service,
which trusts the identity
provider, can then process the
Proposals service’s request.
www.it-ebooks.info

http://www.it-ebooks.info/

95 Identity Provider pattern
identity provider’s private key and to trust it. The Customer service isn’t tied to a spe
cific implementation of that provider.

 One problem is how to prevent the identity provider from becoming a bottleneck.
You could use tokens that don’t expire immediately and then have the services cache
them for the next calls. Another option is to preissue tokens during idle or low-traffic
times and prevent the identity provider from being flooded in peak-load times.
Figure 4.13 illustrates how preissued tokens would work.

Now the Proposals service requests a token from the identity provider and caches
the signed token. Whenever the Proposals service wants something from other ser
vices (and as long as the token is valid) the Proposals service just sends the token
along with the request. The Proposals service still has to sign the request to make sure
no one else uses this token.

 The identity provider can be used together with the Secured Message or Secured
Infrastructure patterns (both discussed earlier this chapter) to ensure communica
tions between the services and the identity provider are secured. Additionally, it can
be beneficial to use the Active Service pattern (see chapter 2) to proactively make sure
a service has a valid token—either cached or in the identity provider.

 The Identify Provider pattern takes care of authentication, because the distributed
nature of SOA promotes the need for federated identity. A security solution will most
likely require additional components that aren’t SOA-specific, like an access
management component or entitlement component where you can set authorization

<<service>>
Proposals Identity provider

[Whenever token expires]

<<service>>
Customer

Prepare message

Get customer discounts

Send token

Request token

Figure 4.13 With a preissued token, the Customer service can process the call, providing
the assertions made by the Proposals service were signed by a trusted identity provider.
www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 4 Security and manageability patterns
policies, policy enforcement points to enforce these policies, and an identity reposi
tory (most likely an LDAP directory of some sort).

 It’s important to note that you need both a secured implementation of the Identity
Provider pattern and a secured protocol and format to pass both credentials and
assertions back and forth. The next section discusses these issues in more depth.

TECHNOLOGY MAPPING

As mentioned earlier, the way the Identity Provider pattern works resembles the way
PKI works. This isn’t a coincidence, because PKI infrastructures are both proven and
successful.

 As always, you can choose to implement the Identity Provider pattern by yourself,
but building a scalable and secure server that will also allow cross-enterprise single
sign-on scenarios isn’t an easy feat. I would only recommend going down this path if
you have specific needs and don’t need to cater to the general cases (such as the cross-
enterprise single sign-on).

 There are quite a few solutions that implement this pattern for you, including
Shibboleth, which is an open source implementation by Internet2, Oracle Identity
Server, IBM Tivoli Access Manager, and Ping Identity’s PingTrust. The identity data
store can be internal to the product or it can reside on LDAP or Active Directory.

It isn’t enough to have a secure sever for provisioning and token management; you
also need the secure tokens themselves and a protocol for communicating the identity
information. If you don’t use a secure protocol, an impersonator could assume a
token that is destined for an authorized party and use it to launch attacks or acquire
sensitive information.

 There are many ways to transport security tokens, and the most common are
X.509 certificates, Kerberos ticket, and Security Assertion Markup Language (SAML).
X.509 certificates are more worthwhile to keep, as they’re relatively long-lived (as
compared to Kerberos tickets, for example). But the more interesting technology is
SAML now in version 2.0. SAML is much more than a security token—it’s also a proto
col for requesting and transmitting identity information. The basic building block of
SAML is the assertions, which are comprised of statements such as authentication
statements and attribute statements. Authentication statements contain the informa
tion that a requestor was authenticated and which authentication methods were used
to do that authentication. Attribute statements are the basis for authorization and
contain information on roles, groups, and any other information that exists in the
identity data store.

 The last part of the puzzle is a protocol to convert the token formats. This is sup
ported by another WS-* protocol called WS-Trust. WS-Trust allows a service consumer
to request an identity provider to exchange one token it already has for one in
another format. As mentioned earlier, different services within an SOA may not all
understand a single type of token. By using WS-Trust, a service consumer can talk to a
service that requires tokens in a different format.
www.it-ebooks.info

http://www.it-ebooks.info/

97 Identity Provider pattern

 This listing shows a request to exchange an X.509 certificate for a SAML token.

Listing 4.7 SOAP body of a request to exchange a token from one format to another

<wstrust:RequestSecurityToken>

 <wstrust:TokenType>SAML</TokenType>

 <wstrust:RequestType>ReqExchange</RequestType>

 <wstrust:OnBehalfOf>

 <ws:BinarySecurityToken id="originaltoken" ValueType="X.509>

 sdfOIDFKLSoidefsdflk ...

 </ws:BinarySecurityToken>

 </wstrust:OnBehalfOf>

</wstrust:RequestSecurityToken>

The identity provider would authenticate that the request is genuine, and the most
common way to do that is to send this request as a WS-Security signed or encrypted
request (see the Secured Infrastructure pattern earlier this chapter). If the credentials
are OK, it will produce a matching SAML token.

 These are a lot of protocols and technologies, and utilizing them all isn’t easy—the
next section reminds us why it’s worth going through all this trouble.

QUALITY ATTRIBUTES

The Identity Provider pattern is more important for management and maintainability
than for security, or more precisely it’s for management and maintenance of security-
related issues. By relying on trust and certificates, the identity provider enables you to
solve some of the latency issues usually related to adding a security layer.

 Table 4.5 identifies a few scenarios where it’s beneficial to use the Identity Provider
pattern.

Table 4.5 Identity Provider pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Maintainability Adding service Configuring the security for a new service will take less
than a half day’s work for a single developer.

Performance Latency The cost of authenticating all requests won’t exceed
100 msec.

Security SSO The system should support single sign-on for all service
and human interactions.

Security Authentication During normal operations, a revoked right will be
updated in the system within five minutes.

Security Federated identity Under normal operations, the system should be able to
support authenticating external services (services man
aged by third parties).

Security Auditing At all times, the system should keep track of any
changes to authentication or authorization rules.
www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 4 Security and manageability patterns
As you can see in the last few quality attribute scenarios in table 4.5, the Identity Pro
vider pattern also helps with security concerns. Table 4.6 expands on the security
aspects of the pattern.

Table 4.6 Threat categories that implementations of the Identity Provider pattern can mitigate

Threat Actions

Spoofing Add security tokens to ensure that only authorized requests are handled by a
service

Elevation of privilege Ensure that a service consumer doesn’t assert any privileges it doesn’t have

The next pattern called Service Monitor. Like the Identity Provider pattern, the Ser
vice Monitor pattern is a combined manageability and security pattern, although the
security aspect of the Service Monitor is secondary.

4.5 Service Monitor pattern
An important aspect of deploying SOA across an enterprise is governance. If you don’t
ensure that all the different services comply with the guidelines set out by the enter
prise architect, you might not be able to capitalize on the interoperability promises of
SOA, and you might encounter all sorts of performance and security problems.

 On top of governance, there’s the matter of the ongoing operations of the enter
prise. Each service is a small independent system, and you need to find a way to man
age that and make sure it all works.

 The Service Monitor pattern helps solve both problems. But before we go into
details of the solution, let’s clarify the problem by introducing two sample scenarios.

PROBLEM

I mentioned that governance is very important for an enterprise. To demonstrate this,
let me tell you about the time a very large organization invited me and a fellow archi
tect to save their skins.

This organization, which we’ll call LargeCorp (to protect the guilty), deployed a
new version of a very important, mission-critical, 24 x 7 system. Shortly thereafter, the
users of the system started complaining about poor performance, to the point that
LargeCorp management stopped most of the development and assigned all its top
developers to solve the system’s problem. When we arrived, we found quite a mess, not
only in regard to performance but also in issues pertaining to security and reliability,
among others. We found that there were a lot of servers whose network cards were set
to 10 Mbit instead of 100 Mbit. We found that sensitive information was being copied
to end-users’ machines and only then was the system checking whether the user was
authorized to access the information. And so on. The amazing thing was that the orga
nization already had guidelines and procedures to prevent this fiasco. It didn’t have
the means to make sure the procedures were followed.
www.it-ebooks.info

http://www.it-ebooks.info/

99 Service Monitor pattern
 In a typical SOA initiative, it’s paramount that you pay attention to governance.
Each service is a (relatively) independent and autonomous entity that may utilize a lot
of resources, like databases and servers. If you can’t achieve some control over that at
the enterprise level, you may very well end up like LargeCorp.

 Another even more important aspect of governance and the management of an
SOA initiative is monitoring the ongoing operations. Once a system is deployed, you
need a way to make sure quality of service commitments are met, to identify security
problems, to verify the liveliness of services, and so on.

 Figure 4.14 shows services that are likely to be found in a typical e-commerce sys
tem. The system has an Ordering service that handles the shopping cart until an order
is finalized. It then interacts with an Invoic
ing service, which processes credit cards
and other payment methods. The Ordering
service also interacts with the Warehouse
service to secure items or order them from
suppliers and a Shipping service that moni
tors the activity until a package is ready. The
Shipping service also interacts with the
Warehouse service and with a Tracking ser-

Tracking
(service)

Figure 4.14

Warehouse
(service)

Shipping

Invoicing
(service)

Ordering
(service)

(service)

Typical services in an
vice that verifies an order is fulfilled against e-commerce system.

multiple shipping companies.
 Looking at the relations depicted in figure 4.14, you can see that the Tracking ser

vice isn’t essential in completing an ordering cycle, but if one of the other four ser
vices fails or malfunctions, you won’t be able to fulfill orders in this system. If you had
some way to know when a service was in trouble, you could attend to it and make sure
the business gets back on track.

Remember that the scenario illustrated in figure 4.14 is a simplified version of
what you’d usually find in any decently sized enterprise. In this scenario there are 5
services, and if each of them has 99.9 percent reliability, the overall reliability is 99.5
percent. Reliability decreases as the number of components grows. If you have 50 ser
vices with the same 99.9% reliability, your overall reliability will deteriorate to 95.1 per
cent (more than 400 hours of unavailability a year). You need a way to identify
problems and fix them quickly. You need a way to take a bunch of scattered services
and make sure you can maintain an operating enterprise.

How can you identify problems and faults in services, and then attend them, to ? ensure the overall business’s availability?

One thing you can do is increase the reliability and availability of each service. This
can be done by applying patterns like Service Instance or Virtual Endpoint (both dis
cussed in chapter 3). Using these patterns will help make each service more available,
but there’s still a chance that something will go wrong, and then what? An even more
important problem is that a service is rarely truly isolated. Services usually need to
interact with other services, so the reliability of each service is also affected by the reli
ability of the services it has to interact with.
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4 Security and manageability patterns
 To try to solve this dependency problem, you can try to increase the service’s
autonomy—an example is the Active Service pattern in chapter 2. Nevertheless, the
service needs to know if the services it depends upon are down. While an autonomous
service can still operate for a while, it will eventually be updated with data from the
services it depends upon.

 The next level is to augment the services with internal monitoring and possibly
add self-healing capabilities (see the Service Watchdog pattern in chapter 3). But this
still leaves a few problems unresolved, such as making sure several services follow the
same guidelines, identifying problems in the services’ interconnecting infrastructure
(the network that lets the services communicate), ensuring there are no system-wide
security problems, and controlling and fixing problems in other services—especially
those that are external to the organization.

SOLUTION

There’s a limit to what can you achieve in the scope of each service, and as in other
areas of enterprise management, there’s no escaping centralized management.

Apply the Service Monitor pattern, and deploy a centralized management point
that will monitor services’ security, networks, QoS, policies, and any other
governance-related issues.

As illustrated in figure 4.14, the Service Monitor pattern is composed of three main
components.

 The basis for everything is the collection component, whose role is to collect and
store incoming statuses as well as to provide reports and summaries. The service mon-
itor can gather many types of statuses, including performance, faults, number of calls,
and data transferred.

 The second component continuously monitors the data collected. It can execute
different rules to validate and monitor the behavior of the services and make sure
they’re in order. For instance, the monitor can check performance figures against the
promised quality of service. It can make sure that security policies like “channel
encryption” are met.

�

Status

Service monitor
Edge/service

Commands

Policy
governance

Security
monitoring

Fault
monitoring Repor�ng and

dashboarding

Control

Edge/service

Status

Monitor Act

Collect

No�fy

Relation

Key
SOA component Pattern component

Concern/attribute

Metrics
collec�on

Figure 4.14 The Service
Monitor pattern. A centralized
component, the service
monitor receives statuses
from all the services in the
system. The service monitor
uses that information to infer
policy violations, security,
performance, or other failures
and to allow system operators
to deal with problems.
www.it-ebooks.info

http://www.it-ebooks.info/

101 Service Monitor pattern
 Once a problem has been identified, the third component of the service moni
tor goes into action and notifies the operators. It can also send commands to the
monitored services, either automatically or through the actions of operators; an
operator may choose to restart a faulty service, change the policy for a running ser
vice, and so on.

 The Service Monitor pattern isn’t a replacement for the service self-management
and increased autonomy options mentioned previously. It does help solve issues these
options can’t by handling cross-service problems like cyclic dependencies, cross-enter
prise policies, the entire service dying, and so on—problems that can only be identi
fied by looking at the complete picture. The downside of applying the Service
Monitor pattern is added complexity, but the gain in system reliability and manage
ability make it, in my opinion, essential for all but the simplest systems.

 To help the Service Monitor pattern get an overall picture of the services in the sys
tem, consider combining it with a service registry where the service monitor will be
able to find information about the services.

 If you implement the Orchestration pattern (see chapter 7) and you add monitor
ing with the Service Monitor pattern, you may also want to enhance the Service Moni
tor with a business process view of the system. Then you’d be able to gain monitoring
benefits such as setting and enforcing policies at the process level.

 The service monitor, which is already a central hub for service interactions, can
also serve as a central logger and help with auditing and debugging.

 The service monitor isn’t a new concept in the sense that there already are solu
tions based on similar concepts for non-SOA systems, with the most popular ones
being CA Infrastructure Management, the IBM Tivoli suite, and open source packages
like Nagios. The SOA-specific tools add a few SOA-specific features that traditional
monitoring tools lack, such as the ability to handle a service’s policies.

TECHNOLOGY MAPPING

Implementing the Service Monitor pattern is a relatively big task and, in my opinion,
it isn’t cost effective to implement it by yourself unless, maybe, you’re using some non
standard communication technology in your SOA implementation. As a result, I’ll
focus here on off-the-shelf technologies that already implement the patterns and on
how to use them.

 Many companies produce SOA monitoring and governance solutions, ranging from
SOA-specific players like SOA Software to more general, larger companies like IBM and
Oracle. Most of the solutions provide several layers of monitoring, starting with the
basic network view, which is very similar to general-purpose monitoring solutions.

 Figure 4.15 shows the Network Overview tab of Progress Actional’s Looking Glass
SOA-monitoring tool. This general view isn’t too different from what you’ve likely seen
in other monitoring suites. SOA monitoring tools provide additional traditional capa
bilities like auditing and logging. Note that even in the Network Overview, you can get
some SOA-specific information, like statuses on calls and performance as well as infor
mation about dependencies and cycles.
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4 Security and manageability patterns
Figure 4.15 The Network Overview tab of one of the dedicated SOA service management tools (by Progress
Actional). In this tab you can see an overview of the services’ state and their relations, along with summary-level
metrics about the services.

On top of the basic monitoring features I’ve mentioned, SOA monitoring tools add a
few SOA-specific capabilities, like monitoring processing time, discovering services,
setting and enforcing policies, and so on. Figure 4.16 shows the monitoring screen-
shot from Oracle’s AmberPoint. You can see both the throughput and faults of the
DemoManufacturerService as well as the option to examine the WSDL (contract) of
the service.

 You’ve just seen how current technologies utilize the Service Monitor pattern and
let you increase the manageability of your services. I also mentioned that the Service
Monitor pattern can help with security. Let’s see how it all connects.

QUALITY ATTRIBUTES

The main reason to employ the Service Monitor pattern is to get central management
and to help combine a bunch of services into a working enterprise, but that isn’t the
only reason. The Service Monitor pattern can also help you test services before you
deploy them, make sure the quality of services is kept once they’re deployed, ensure
compatibility between services by making sure their policies match, and identify secu
rity problems like man-in-the-middle attacks.
www.it-ebooks.info

http://www.it-ebooks.info/

103 Service Monitor pattern
Figure 4.16 Displaying real-time statistics of a service using the Developer edition of AmberPoint. In
this screenshot you can see detailed performance counters, including trends for a specific service.

Table 4.7 lists a few scenarios where it’s beneficial to use the Service Monitor pattern.

Table 4.7 Service Monitor pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Reliability

Manageability

Testability

Security

Security

Mean time to repair (MTTR)

Reporting

Performance

Governance

Auditing

Under normal operations, the time to discover a
faulty service will be less than two minutes.

At all times, managers will be able to gain an
overall view of the status and problems in han
dling business requests.

During stress tests, you need to be able to time
the performance of each service in the system.

During development and operations, the enter
prise architecture team will be able to ensure that
all services use secured channels.

At all times, the system should keep an audit trail
for requestors and their requests.
www.it-ebooks.info

http://www.it-ebooks.info/

104	 CHAPTER 4 Security and manageability patterns
As you can see in table 4.7, the Service Monitor pattern also helps with security con
cerns. Table 4.8 expands on the security aspects of the pattern.

Table 4.8 Threat categories that implementations of the Service Monitor pattern can mitigate

Threat Actions

Tampering Verify that all services utilize signatures for their messages

Information disclosure Scan outgoing messages for sensitive content

Identify man-in-the-middle attacks by watching incoming and outgoing traffic
on configured routes

Denial of service Compare both performance and the number of requests against the regular
or average loads or each service to identify denial of service attacks

Elevation of privilege Ensure different security policies for internal services and external ones

The Service Monitor pattern is the last pattern in this “Security and manageability pat
terns” chapter, and appropriately it handles both issues. Let’s take a final look at all
the patterns covered in this chapter.

4.6 Summary
This chapter took us through several patterns needed to secure SOA implementations.
Two of the patterns also management and maintainability aspects even though they
also relate to security.

 Secured Message—Encrypts, decrypts, and signs individual messages or message
fragments to secure them when you interact with two or more parties in a
conversation

 Secured Infrastructure—Uses or creates a secure communication infrastructure
that’s shared by the services in an organization

 Service Firewall—Inspects all incoming and outgoing messages using software or
an appliance and helps protect your services from several classes of attacks

 Identity Provider—Uses centralized provisioning and certificate-based authentica
tion and authorization to efficiently manage identity in a federated environment

 Service Monitor—Monitors and manages services from a centralized location to
gain timely access to the status of your enterprise

While these patterns are, in my opinion, very useful and valuable for securing and
making your SOA more maintainable, you should keep in mind that making an SOA
solution (or any solution) secure and maintainable goes well beyond these patterns.
The patterns listed here deal mainly with the interfaces of your SOA; you still need to
make sure the business logic you write is both secure and maintainable, especially if
the service is distributed internally. For instance, when you log errors or messages or
persist data in the database, you should pay attention not to log sensitive information.
www.it-ebooks.info

http://www.it-ebooks.info/

Further reading 105
 I highly recommended you take the time to explore the sources in the further
reading section, which includes books like SOA Security by Ramarao Kanneganti and
Prasad A. Chodavarapu (Manning, 2007) and the OWASP site, both of which cover
additional aspects of security (see the next section for more info on both).

 Chapters 2, 3, and 4 took a look at patterns related to building services and their
interfaces. The next chapters will take a look at the interactions of services with their
consumers—be they other services or humans.

4.7 Further reading
OWSAP: The Open Web Application Security Project, www.owasp.org.

The home page of the Open Web Application Security Project has a lot of information on
threats and preventive measures.

Michael Howard, David LeBlanc, and John Viega, 24 Deadly Sins of Software Security: Programming
Flaws and How to Fix Them (McGraw-Hill Osborne, 2009).
This book discusses common security problems and their solutions. It isn’t specific to SOA
but it does provide general guidance.

Ramarao Kanneganti and Prasad A. Chodavarapu, SOA Security (Manning, 2007).
This book discusses security in the context of SOA. Note that the book mostly talks about
SOAP-based services.

SECURED MESSAGE

Bilal Siddiqui, “Exploring XML Encryption, Part 1: Demonstrating the secure exchange of
structured data,” IBM developerWorks, www-128.ibm.com/developerworks/xml/library/
x-encrypt/.
This article is a primer on XML encryption, which is one way to implement the Secured Mes
sage pattern.

Apache Santuario, http://xml.apache.org/security/.
You can use Apache Santuario to implement the Secured Message pattern.

SECURED INFRASTRUCTURE

The OpenSSL Project, www.openssl.org/.
The OpenSSL project, as its name implies, is an open source SSL implementation. SSL is
one of the options for implementing the Secured Infrastructure pattern.

Harold Lockhart, “Demystifying SAML,” Oracle Technology Network www.oracle.com/technetwork
/articles/entarch/saml-084342.html.
SAML is an authorization standard commonly used in SOAP-based SOA implementations.

OAuth 2.0, http://oauth.net/2/.
OAuth is an authentication standard commonly used in REST-based systems and REST-based
SOA implementations.
www.it-ebooks.info

www-128.ibm.com/developerworks/xml/library/x-encrypt/
www-128.ibm.com/developerworks/xml/library/x-encrypt/
http://xml.apache.org/security/
www.openssl.org/
www.oracle.com/technetwork/articles/entarch/saml-084342.html
www.oracle.com/technetwork/articles/entarch/saml-084342.html
http://oauth.net/2/
http:www.owasp.org
http://www.it-ebooks.info/

Message exchange patterns

In this chapter
 Interaction between services and consumers

 Correlated messages

 Event's time to live

Chapters 2 and 3 looked at patterns that can help you build services and their inter
faces, like Edge Component and Service Instance. Chapter 4 covered ways of pro
tecting and monitoring your services. Chapter 5 is the first of three that covers the
different aspects of service interactions. After all, getting services to interact and
enable business processes was the reason for using SOA to begin with.

 As figure 5.1 illustrates, this chapter’s focus is on the interaction of services with
their “customers”—the service consumers. A service consumer is any component or
piece of code that interacts with a service. The patterns in this chapter deal with the
basics—the message exchange patterns. Chapter 6 looks at service consumers and
chapter 7 takes a look at patterns related to service composition and integration.

 The SOA definition in chapter 1 says that “each service exposes processes and
behavior through contracts, which are composed of messages at discoverable
addresses.” This makes service interaction very simple—you just send a message in
and get a message back, right? Why do we need a whole chapter, or even two, on
service interactions?
106

www.it-ebooks.info

http://www.it-ebooks.info/

107
Service

Describes

Endpoint Exposes

Messages Sends/receives

Contracts

Binds to

Service
consumer Implements

Policy Governed by

Sends/receives

Adheres to

Component
Relaton

Key

Understands

Serves

Figure 5.1 This chapter focuses on connecting services with user interfaces.
It’s the first chapter in this book that takes a look at the service consumers.

It’s true that messages are the basic building blocks of service interactions, but there
are many ways to interact using these building blocks. People similarly use sentences
as the building blocks for communications and interactions. When you call a sales rep,
several interactions are possible:

 You can ask a specific question and get a reply (the Request/Reply pattern in
section 5.1).

 You can leave a message with a question and a telephone number, and the sales
rep will get back to you later (the Request/Reaction pattern in section 5.2).

 The sales rep can call you and let you know about new products (the Inversion
of Communications pattern in section 5.3).

 You can have a long correspondence with the sales rep, sending emails back
and forth until your issue is resolved (the Saga pattern in section 5.4).

What’s true in real life is also true for services.
 Unlike most of the other patterns in this book, these core interaction patterns

existed before SOA was even conceived—what this chapter will do is look at these
interaction patterns from the perspective of SOA and SOA’s quality attributes. We’ll
look at what it takes to make an interaction pattern like asynchronous communication
work in a way that both complies with the SOA principles and retains the SOA benefits.

 The following patterns are discussed in this chapter:

 Request/Reply—Enable a service consumer to interact with a service simply
 Request/Reaction—Temporally decouple the request from a service consumer

and the reply from the service
 Inversion of Communications—Handle business events in an SOA

 Saga—Reach a distributed consensus between services without transactions

Let’s start with the most basic communications form—synchronous communications.
The pattern is called Request/Reply.
www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 5 Message exchange patterns
Replier

Service
(replier)

Consumer
(requestor)

Requestor

5.1 Request/Reply pattern
Request/Reply is probably the oldest, and most described, pattern in computer sci
ence. Gregor Hohpe and Bobby Woolf offer a good description of Request/Reply in
Enterprise Integration Patterns (Addison-Wesley Professional, 2003), where they describe
the pattern as answering the following question: “When an application sends a mes
sage, how can it get a response from the receiver?”

The idea behind Request/Reply in SOA is not very different. The reason to discuss
the pattern in this book, however, is that there are still a few issues worth emphasizing
when using Request/Reply with SOA. I’ll talk about them as part of the solution dis
cussion. First let’s look at the problem.

PROBLEM

When you develop single-tier software that runs inside a single process in a single
memory space, it’s relatively easy to get components to interact. When a requestor
component wants something from another component (a replier), it can easily gain a
reference to that replier, such as by instantiating it. The requestor can then invoke a
method on the replier and get the reply as a reference or an address in memory
where the reply resides.

 In SOA, which is an architectural style for distributed systems, the other compo
nent is generally in another memory space and more likely than not on another
machine—see figure 5.2.

Objects in a process Services

Process

Same address space

Requestor

Replier

Computer A

Computer B

Process A

Process B

Consumer
(requestor)

Network

Service
(replier)

Figure 5.2 Objects instantiated within a process versus services.
With a local object, making a request from one component to another
is simple—you get a reference to the other component and you make a
request by calling it. In SOA, the requestor and consumer aren’t in a
single address space. They’re also likely not to be on the same
computer, and maybe not even on the same LAN. Making a request
under these conditions is a lot more complicated.
www.it-ebooks.info

http://www.it-ebooks.info/

109Request/Reply pattern
NOTE Remote calls have been technologically solved before SOA—but for
other architectural styles. Most of these technologies can also be used for
SOA—the difference is how you use them. I’ll discuss this later in this pattern.

The first thing you want to do is find a way for services to interact with their consumers.

How can you enable a service consumer to interact with a service simply?

There are several alternatives for service interactions detailed in this chapter: asyn-
chronous Request/Reply (Request/Reaction pattern), long-running interactions
(Saga pattern), or events (Inversion of Communications pattern). They’re all more
powerful than the Request/Reply pattern, but that extra power comes with a price—
they’re all more complex than Request/Reply both to implement and to support.

SOLUTION

There’s a place for sophistication, but sometimes you want to have a simple synchro-
nous interaction between two remote components.

Send a request message from the consumer, handle the request synchronously,
and send a reply message from the service. Both the request and the reply belong
to the receiving service.

The Request/Reply pattern, illustrated in figure 5.3, is the most basic interaction pat-
tern, so there aren’t any special components needed to make it happen. What you do
need is a piece of logic that accepts a request, processes it synchronously, and returns
a reply or a result. One thing to pay attention to is that both the request and reply
messages belong to the contract of the service and not the service consumer (which is
a common error for SOA novices).

 The Request/Reply pattern only covers the message exchange; a complete interac-
tion also needs communications infrastructure. You could utilize the Service Bus pat-
tern (discussed in chapter 7), which handles exposing services on reachable (or even
discoverable) endpoints as well as routing replies.

 The roles of the request and reply are rather obvious. The request holds the inten-
tion or the task that the service is expected to perform, along with the input needed
to perform it. The reply holds the results of performing the task.

 The main problem with the Request/Reply interaction style is that it’s suspiciously
reminiscent of remote procedure calls (RPCs)—that DCOM/CORBA, distributed-

?

�

Service

EndPoint

Synchronous
processing

1. Request
2.

3. Reply

Service consumer

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Figure 5.3 The Request/Reply pattern
defines request and reply messages in
the service’s contract. When the
service gets a request in the
appropriate format, it processes it
synchronously and returns the reply
message to the service consumer.
www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 5 Message exchange patterns
object stuff. You should be wary of modeling the services’ contracts on the RPC mind-
set—this can have several unfortunate effects on your SOA, ranging from poor perfor
mance to completely nullifying SOA. Instead of using the RPC approach, you should
try to model your contracts on a document-centric approach. What in the world is a
“document-centric approach”? Good question.

 In a nutshell, document-centric means that the message contains enough information
to represent a complete unit of work and doesn’t instruct the service on how to handle
the message. In contrast, RPC calls tend to be command-oriented and geared toward
sending just the parameters needed to perform the action; they have some stateful
expectations from the service side as well as implicit expectations about what’s going to
happen on the consumer side. Document-centric messages don’t make these assump
tions; having a complete unit of work means that the service has enough information
or context in the message to understand all the state it needs. This also means that doc
ument-centric messages are usually more coarse-grained than their RPC counterparts.

NOTE There’s a third message type called event messages. We’ll discuss it in the
Inversion of Communications pattern in section 5.3.

The following table outlines three ways document-centric messages can contain more
context.

 Two things to note are that the message can combine more than one type of con
text, and the same document can be exchanged back and forth between a service and
its consumers, possibly adding detail as it moves, to allow complete business processes.

Table 5.1 Options for providing context within a document-centric message

Context Explanation

History The message can contain the interactions up to this point, sort of like bread-
crumbs in the Hansel and Gretel tale. In an ordering scenario, if the first step
was to get customer data and the current step is to set the order (each step
being performed by another service), the message would contain the customer
information when it goes to the ordering service.

Future The message can include the options the consumer can take to complete the
interaction. If you think about an ordering scenario, if the previous step was to
reserve the order (see the Reservation pattern in chapter 6), the return mes
sage could include the information needed to confirm the reservation.

Complete future Another way to provide context is for the message format to contain the com
plete details needed for the interaction. For the ordering example, this would
mean that the message would have a skeleton to support all the order and
related details, and the parties involved would fill in the blanks as the interac
tion progresses.

TECHNOLOGY MAPPING

The technology mapping for the Request/Reply pattern is rather trivial. All the tech
nologies I can think of enable you to implement the Request/Reply pattern in one
form or another.
www.it-ebooks.info

http://www.it-ebooks.info/

111 Request/Reply pattern

 Most technologies make it extremely easy to expose objects remotely, which
encourages RPC style-interactions; they make it hard to get to document-centric inter
action. The code in listing 5.1 is an excerpt from the New Project wizard for the WCF
service library in Microsoft’s Visual Studio 2010. The sample code shows a developer
how to take a simple class and expose its methods as web services.

Listing 5.1 Code from the New Project wizard for creating a WCF service

namespace WCFServiceLibrary1

{

 [ServiceContract()]

 public interface IService1

 {
[OperationContract]

Exposes method
as web service

string MyOperation1(string myValue);
[OperationContract]
string MyOperation2(DataContract1 dataContractValue);

 }

 public class service1 : IService1

 {

public string MyOperation1(string myValue)

{

 return "Hello: " + myValue;

}

public string MyOperation2

➥(DataContract1 dataContractValue)
{

 return "Hello: "

➥+ dataContractValue.FirstName;
}

 }

 [DataContract]

 public class DataContract1

 {

string firstName;

string lastName;

[DataMember]

public string FirstName

{

 get { return firstName; }

 set { firstName = value; }

}

[DataMember]

public string LastName

{

 get { return lastName; }

 set { lastName = value; }

}

 }

Accepts document
(data contract) as
parameter

Handles document in
an RPC way (doesn’t
return document)

Defines basic
document (missing
links to related data)

On the surface, this code may seem like a good example for the Request/Reply pat
tern (except maybe for the naming). A service consumer can send the MyOperation1
www.it-ebooks.info

http://www.it-ebooks.info/

112	 CHAPTER 5 Message exchange patterns
message with a string in it and get the “Hello” concatenated to the string as a reply.
But the MyOperation1 implementation is a classic RPC interaction.

 The situation is a little better for the second method (MyOperation2). Here a sim
ple document is passed to the method. But the sample code handles that document in
an RPC way too, and doesn’t return a document as a reply.

 This approach isn’t unique to .NET—as another example you can consider the
REST style. Whereas the REST principles promote the document-centric approach, the
basic HTTP verbs are PUT, GET, POST, and DELETE, which again make novices think
about CRUD interfaces.

 A document-oriented approach results in richer messages that contain some con
text if not the whole of it. Consider the XML excerpt in listing 5.2.

Listing 5.2 A sample document-centric reply

<feed xmlns='http://www.w3.org/2005/Atom'

 xmlns:gd='http://schemas.google.com/g/2005'>

<id>http://www.google.com/calendar/feeds/johndoe@gmail.com

➥/private-0c1e3facdd1a4252aad07effeb7d68cc9/full</id>
 <updated>2007-06-29T19:22:12.000Z</updated>
 <title type='text'>John Doe</title>
 <link rel='http://schemas.google.com/g/2005#feed'

➥	 type='application/atom+xml'
 href='http://www.google.com/calendar/feeds/johndoe@gmail.com

➥/private-0c1e3facdd1a4252aad07effeb7d68cc9/full'></link>
 <link rel='self' type='application/atom+xml'

 href='http://www.google.com/calendar/feeds/johndoe@gmail.com/

➥private-0c1e3facdd1a4252aad07effeb7d68cc9/full'></link>
 <author>

 <name>John doe</name>

 <email>johndoe@gmail.com</email>

 </author>

 <generator version='1.0' uri='http://www.google.com/calendar/'>

 CL2

</generator>

 <gd:where valueString='Neverneverland'></gd:where>

 <entry>

 <id>http://www.google.com/calendar/feeds/johndow@gmail.com

➥/private-0c1e3facdd1a4252aad07effeb7d68cc9/full/

➥aaBxcnNqbW9tcTJnaTT5cnMybmEwaW04bXMgbWFyY2guam9AZ21haWwuY29t</id>
 <published>2007-06-30T22:00:00.000Z</published>
 <updated>2007-06-28T015:33:31.000Z</updated>
 <category scheme='http://schemas.google.com/g/2005#kind'
 term='http://schemas.google.com/g/2007#event'></category>

 <title type='text'>Writing SOA Patterns</title>

 <content type='text'>shhh…</content>

 <link rel='alternate' type='text/html'

 href='http://www.google.com/calendar/event?eid=

➥aaBxcnNqbW9tcTJnaTT5cnMybmEwaW04bXMgbWFyY2guam9AZ21haWwuY29t'
 title='alternate'></link>
 <link rel='self' type='application/atom+xml'

 href='http://www.google.com/calendar/feeds/johndoe@gmail.com/

➥private-0c1e3facdd1a4252aad07effeb7d68cc9/full/
www.it-ebooks.info

mailto:href='http://www.google.com/calendar/feeds/johndoe@gmail.com
mailto:id>http://www.google.com/calendar/feeds/johndow@gmail.com
mailto:href='http://www.google.com/calendar/feeds/johndoe@gmail.com
mailto:href='http://www.google.com/calendar/feeds/johndoe@gmail.com
mailto:id>http://www.google.com/calendar/feeds/johndoe@gmail.com
http://www.it-ebooks.info/

113 Request/Reply pattern

➥aaBxcnNqbW9tcTJnaTT5cnMybmEwaW04bXMgbWFyY2guam9AZ21haWwuY29t'>

➥</link>
 <author>

 <name>John Doe</name>

 <email>johndoe@gmail.com</email>

 </author>

 <gd:transparency

 value='http://schemas.google.com/g/2005#event.opaque'>

 </gd:transparency>

 <gd:eventStatus

 value='http://schemas.google.com/g/2005#event.confirmed'></

gd:eventStatus>

 <gd:comments>

 <gd:feedLink

href='http://www.google.com/calendar/feeds/johndoe@gmail.com/

➥private-0c1e3facdd1a4252aad07effeb7d68cc9/full/

➥aaBxcnNqbW9tcTJnaTT5cnMybmEwaW04bXMgbWFyY2guam9AZ21haWwuY29t

➥/comments/'>
 </gd:feedLink>

 </gd:comments>

 <gd:when startTime='2006-08-14T20:30:00.000Z'

 endTime='2012-03-28T22:30:00.000Z'></gd:when>

 <gd:where></gd:where>

 </entry>

</feed>

This listing shows the result of requesting a full calendar from Google Calendar. In
addition to the calendar details (title, update date, owner name, title, and so on) you
get all the listings with their full details as well as a pointer to get each calendar entry
directly. The result uses Google’s GData protocol, which in turn builds on the Atom
Publishing Protocol (APP). Note that the contract for accepting this XML is also sim
pler than that in listing 5.1, because you just need to handle a single XML parameter.
The consumers aren’t bound to specific operations that can change over time.

 To sum up this section, the Request/Reply pattern is supported by all the technol
ogies that allow remote communications. The choice between RPC and document-
centric approach is a design decision that isn’t enforced by the technologies. That has
to be done by the developers or architects of the solution.

QUALITY ATTRIBUTES

The Request/Reply pattern is a simple pattern that connects a service consumer with
the service that it wants to interact with. As a basic pattern, it doesn’t solve a lot of
quality attribute concerns, except for providing the functionality needed (getting the
consumer and the service to interact).

 One quality attribute that can be important is simplicity. Because Request/Reply is
a simple pattern, it’s easy to implement and support and thus helps reduce the com
plexity of the solution.

 Table 5.2 lists sample scenarios in which you might consider using Request/Reply.
www.it-ebooks.info

mailto:href='http://www.google.com/calendar/feeds/johndoe@gmail.com
http://www.it-ebooks.info/

114 CHAPTER 5 Message exchange patterns

Table 5.2 Request/Reply pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Time to market

Testability

Development ease

Coverage

During development, exposing a new capability
(already developed) in a service should take less
than half a day to implement and test.

During development, each capability of a service
should have 100 percent test coverage.

I mentioned earlier that Request/Reply is the basic synchronous communications pat
tern. The next interaction pattern takes a look at implementing asynchronous com
munications under the SOA constraints and principles.

5.2 Request/Reaction pattern
Synchronous communication, as described in the Request/Reply pattern (in the pre
vious section), is very important, but it isn’t enough. The synchronous nature of
Request/Reply means that the service consumer needs to sit and wait for the service
to finish processing the request before the consumer can continue with whatever it
was doing. There are situations where the service consumer doesn’t want or can’t
afford to wait but is still interested in getting a reply when it’s available.

 Clear as mud? Let’s take a look at a concrete example so I can better explain.

PROBLEM

In contemporary border-control systems, when travelers get to the immigration offi
cer, the officer searches for the traveler’s details in the system (swipes the passport,
types in the password number, and so on) and then looks at the passport and tries to
match the face to the passport holder. In the last few years, countries around the
world have begun the move to e-passport systems. E-passports contain several ele
ments, including an RFID chip, machine-readable code, and a couple of biometric
samples (usually a photo of the face and fingerprints).

 Figure 5.4 shows a high-level view of the flow for issuing an e-passport.
 As you can see, one of the steps in the flow is to enroll the person in the biometric

database (which is part of the Biometric service). While it isn’t apparent from just
looking at the interaction, the enrollment task can take quite some time to complete
because internally the Biometric service also checks for duplicates, which is essential
in ensuring the integrity of the database and preventing mistakes as well as intentional
impersonations. This step involves comparing each sample (each face, for example)
against every other sample already in the database, which could contain hundreds of
millions of records (the population of the country).

 Making this type of request using the Request/Reply interaction pattern is prob
lematic because the wait time between the request and the reply is too long. It may be
even worse if you decide to do the duplicate checks in a nightly batch.
www.it-ebooks.info

http://www.it-ebooks.info/

115 Request/Reaction pattern
E-passport system

UI E-passport Biometric service RFID Ministry of
Internal Affairs

Issue passport

Enroll

Provision

Enroll

Figure 5.4 An enrollment process. When the UI asks the e-passport service to issue a passport, the
service has to interact with several other services to fulfill the request.

This situation isn’t unique to e-passport systems. Similar situations occur in other sys
tems. When you buy shares in a trust fund, for example, the transaction doesn’t hap
pen immediately, but you probably want to know when it’s been completed. Another
example is requesting a travel-planning system to locate the best deal for your next
vacation. Here’s the problem:

How can you temporally decouple the request from a service consumer and the ? reply from the service?

One option is to solve the temporal coupling on the client side. To do this, you spawn
a new thread before you send a request to the service; you then let that thread wait for
the reply while the rest of the UI stays responsive. .NET has a component called
BackgroundWorker that performs this separation and allows the UI to dispatch long-
running work without blocking the UI thread.

 This solution has its drawbacks. For one, the “waiting” isn’t resilient—if the service
consumer happens to crash, the reply would be lost when the consumer wakes up
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 5 Message exchange patterns
again. Plus, the thread takes up resources on the consumer—what would happen if
the request takes hours or days? Additionally, it’s a matter of responsibility. The service
is the one that has a task that’s time-consuming—it should be the service’s responsibil-
ity to solve the matter and not throw it at the consumers.

 Another approach to solving the temporal decoupling is to circumvent it and
break the interaction. When you order an item online, for example, you don’t sit and
wait until the system ships the item to you. Instead, the system lets you know that the
item was ordered. Registering the order takes much less time than fulfilling the order.

 The downside here is that you don’t know if the item has shipped unless you check
the order status from time to time. Again, as in the previous approach, it’s your
responsibility as the service consumer to solve the shortcomings of the service.

 There are interaction solutions that support complex interactions, like the Saga
pattern (which we’ll discuss in section 5.4). Implementing the Saga pattern will solve
this issue, but it’s like killing a fly with a cannon. It’s overkill when all you really need is
a delayed replay.

SOLUTION

When Saga is overkill, breaking the integration works, but it hurts the service consum-
ers, and you want to avoid client-side integration because of its bad implications. What
you really want to do is somehow implement asynchronous communications over
SOA, and do that in the simplest manner possible. This is what you need to do:

Introduce the Request/Reaction pattern and implement asynchronous
communication between service consumers and the service. Implement the
message exchange as two one-way messages—a request from the consumer and
a reply from the service side.

The idea behind the Request/Reaction pattern, illustrated in figure 5.5, is to have
two distinct interactions between the service consumer and the service. The first
interaction sends the request to the server, which may return an acknowledgment, a
ticket, or an estimate for finishing a job to the consumer. Once the processing is com-
plete, the service has to initiate an interaction with the service consumer and send it
the reply or reaction.

NOTE The service has to manage the knowledge about where to return the
reply—we’ll discuss that later.

�

Service

Endpoint

Package
reac�on

1. Request
2.

5. Reac�on

Service consumer

Send
reac�on

3.

Process
request

4.

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Endpoint

Figure 5.5 The Request/Reaction
pattern defines both request and reply
messages in the service’s contract.
When the service gets a request, it
processes it and prepares a reaction.
When the reaction is ready, the
service sends the request back to the
consumer.
www.it-ebooks.info

http://www.it-ebooks.info/

117 Request/Reaction pattern
 The Request/Reaction pattern is more aligned with the basic premise of messaging
because it lifts the time coupling. In contrast, Request/Reply is more aligned with RPC.

 Figure 5.6 shows the use of the Request/Reaction pattern with the biometric ser
vice. Now when the biometric service receives an enrollment message, it reacts with an
“enrolling” message notifying the client that the request has been received. Once the
service finishes the enrollment either successfully or with an error, it will prepare an
enrollment reply with the enrollment records and send it to the client.

NOTE In the scenario illustrated in figure 5.6, it makes sense to use the Saga
pattern (discussed in section 5.4) to roll back the other services if the duplica
tion check in the biometric service finds a duplicate identity.

The Request/Reaction pattern is used in the Decoupled Invocation pattern (dis
cussed in chapter 2). The difference between the two patterns is that Request/Reac
tion decouples the response from the request; the Decoupled Invocation pattern also
decouples the processing of the message.

E-Passport system

UI E-Passport Biometric service

Issue passport

Enroll

Enrolling

Provision

Enrolled

RFID

Enroll

Ministry of
Internal Affairs

Figure 5.6 The passport-issuing process using the Request/Reaction pattern. Now the biometric
service returns two messages. First it returns an acknowledgment that it is processing the message;
then, when the process is finalized, it returns a status.
www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 5 Message exchange patterns
 The interaction semantics of the Request/Reaction pattern are limited. If the e-
passport scenario included the possibility of canceling the enrollment (if, for exam
ple, the RFID provisioning failed), it would be problematic coordinating this with a
bunch of requests and reactions. In these long-running interactions, you may want to
consider more advanced patterns, such as the Saga pattern described in section 5.4.

The Request/Reaction pattern offers more flexibility than the Request/Reply pat
tern, but this flexibility comes with a price. The Request/Reaction pattern is more com
plicated than Request/Reply, and it requires more work on the service (or edge) side.

 Let’s look at some of the implementation details that you’ll need to take care of.

TECHNOLOGY MAPPING

The basic way of implementing the Request/Reaction interaction pattern is to use two
one-way messages. If you’re using web services, it would mean two HTTP channels. If
you’re using messages, you’d need a queue (endpoint) for each of the involved parties.

 The first hurdle is the temporal decoupling. Because the request and the reaction
(reply) are separated in time, other messages can get in between. This means that you
need to provide a way for the service to know where to send the reaction. It also means
that both the service and the service consumer need a way to correlate the request and
reaction messages—see the “correlated messages” sidebar for more details.

Correlated messages
One challenge of asynchronous messaging comes from the fact that the reaction
message and the request aren’t directly related. The reaction can arrive quite some
time after the original request was sent. What you need in this case is a way to iden
tify that the two messages are related.

The mechanism that solves this problem is known as a correlation identifier, and as
the name implies, it involves adding a token to messages that the service consumers
and services can use to identify related messages. This isn’t very far from the idea
of session cookies in a web application. The correlation identifier can include a mes
sage ID, a token for the conversation, and so on.

Correlation is supported by a wide variety of the WS-* standards. For instance, WS-
Addressing has a relationship message ID header that can be used for correlation.
Another example is WS-BPEL, which has even better support for correlation by letting
developers define multiple correlation sets and the content of those sets.

Both Java and .NET offer solutions to deal with one-way messages. The Apache Axis2
Java library even provides the infrastructure to implement the complete Request/
Reaction pattern out of the box. The following listing shows the consumer-side code
needed to send an asynchronous message.
www.it-ebooks.info

http://www.it-ebooks.info/

119 Request/Reaction pattern

Listing 5.3 Client code sending a message using the Request/Reaction pattern

boolean useTwoChannels = true;

...

OMElement messageBody = helper.FormatmMessage(data,type);

Call msgSender = new Call();

msgSender.setTo(

new EndpointReference(AddressingConstants.WSA_TO,

 "HTTP://www.example.org/ServiceName));

msgSender.setTransportInfo(Constants.TRANSPORT_HTTP,

 Constants.TRANSPORT_HTTP, useTwoChannels);

Callback callback = new Callback() {

public void onComplete(AsyncResult result) {

 //code to handle the Reaction goes here

}

public void reportError(Exception e) {

 //code to handle errors..

}

};

msgSender.engageModule(new Qname("addressing"));

msgSender.invokeNonBlocking("MessageName", messageBody, callback);

From the architectural point of view, the reaction is a message that’s sent by the ser
vice. From the implementation point of view, though, it can also be implemented by
pulling from the service consumer.

 Implementing Request/Reaction on top of Request/Reply isn’t too complicated.
Figure 5.7 illustrates the steps. When the service consumer sends a request, it will get
as a reply the address of the reaction (the URI in this case). The consumer will also get
a time token designating when the answer will be expected. Once that time has
elapsed, the consumer will make a second request to the service, this time asking for
the reply (for example, using the GET command).

NOTE You can use the Active Service pattern, discussed in chapter 2, in the
consumer to keep track of time.

The time to go down this path (of using pull instead of push) is when you can’t create
an active independent endpoint on the consumer side. Again, the preferred approach
is to get the Request/Reaction pattern right. If you can’t do that, you can implement
the pull approach and still conform to the general idea behind the pattern, which is to
offer flexibility and temporal decoupling.

QUALITY ATTRIBUTES

I’ve mentioned that temporal decoupling and the flexibility it brings are the main
quality attributes that drive using the Request/Reaction pattern. The pattern can also
help with the performance quality attribute. When sending a message to the service
doesn’t block the consumer, it allows the consumer to allot CPU cycles to other
www.it-ebooks.info

HTTP://www.example.org/ServiceName
http://www.it-ebooks.info/

120 CHAPTER 5 Message exchange patterns
Service consumer Service

POST http://example.org/Request

http://example.org/Reaction ETA

GET http:

//example.org/Reaction

(sometime after the

ETA)
 Figure 5.7 Implementing Request/Reaction

on top of Request/Reply. The request’s return
message explains where to find the reaction Reaction
the estimated time or arrival (ETA). Sometime
after the ETA, when the Service Consumer
isn’t busy, it can go to the Reaction address
on the Service and obtain the reaction itself.

problems (such as handling requests from other services). Compare that with the
blocking Request/Reply pattern, which holds resources on the consumer side while it
waits for the reply.

 Table 5.3 presents a couple of sample scenarios where Request/Reaction is more
applicable than other patterns.

 The Request/Reply pattern demonstrates synchronous communications between
service consumers and services. The Request/Reaction demonstrates asynchronous
communication. What we need to do now is check whether we can communicate
using an event-driven architecture without violating any SOA constraints and
assumptions.

Table 5.3 Request/Reaction pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Flexibility

Performance

Temporal coupling

Responsiveness

Under normal conditions, the system should notify the
ordering party about order shipment within two hours of
shipping the package.

Under normal conditions, the UI won’t hang while long
operations are performed (such as searches and course
recalculations).

5.3 Inversion of Communications pattern
The Request/Reply and Request/Reaction patterns are geared toward interactions
where the consumer wants to get information or an action from a service. In order to
get the action or information, the service consumer is willing to pay the coupling
www.it-ebooks.info

http://example.org/Reaction
http://example.org/Request
http://www.it-ebooks.info/

121 Inversion of Communications pattern
AIRPORT STATUS INFORMATION

provided by the FAA’s Air Traffic Control System Command Center

Dallas/Ft Worth International Airport (DFW) Real-time Status

The status information provided on this site indicates general airport conditions; it is not

flight-spedific. Check with your airline to determine if your flight is affected.

Delays by Destination: No destination-specific delays are being reported.

General Departure Delays: Traffic is experiencing gate hold and taxi delays lasting 15 minutes

or less.

General Arrival Delays: Arrival traffic is experiencing airborne delays of 15 minutes or less.

This information was last updated: Jun 21, 2007 at 1:54 PM GMT+00:00

Figure 5.8 Arrival and departure delays information as provided by the FAA
(http://www.fly.faa.gov/flyfaa/usmap.jsp). This can be a source of
information for an airline traffic control system.

price associated with knowing about the other service, its service capabilities, and the
protocol (contract) it uses to expose these capabilities.

 But what happens when the potential consumers don’t know that they need to go
and ask a service for new information? Will the service let them know? Will the service
be willing to pay the coupling price?

 This situation may at first sound unlikely to happen, but let’s look at a few exam
ples. You’ll see that it’s a common enough business situation, and may be the norm.

PROBLEM

Suppose you wanted to create a service for
an airline that will proactively take care of
delayed flights. When a flight is expected to
arrive late, you’d want to find new flights for
passengers who won’t make their connec
tions, free up their places in their current
connecting flights, and adjust the rates for
these flights.

 To do that, you’d have to interact with
several services—some of them would be
part of your system (such as a service that
tracks all the active flights), and some
would be external to your system (such as
services that provide weather reports and
airport statuses). Figure 5.8 shows delay
information that you can get from the FAA
in the United States.

 Figure 5.9 shows a Delays service and a
few of the services it can consume to work

Weather

Reservatons

Delays

Operatonal
Picture

Airports

Schedules

Figure 5.9 Some of the services that a Delays
service would need to interact with. The Delays
service drives some of the services directly
(such as Reservations and Schedules) but it’s
driven by data coming from the other services
(Weather, Operational Picture, and Airports).

its magic.
www.it-ebooks.info

http://www.fly.faa.gov/flyfaa/usmap.jsp
http://www.it-ebooks.info/

122 CHAPTER 5 Message exchange patterns
?

NOTE If you do an internet search for business events, you’ll notice that air
line examples are quite popular but there are many other more down-to
earth (pardon the pun), run-of-the-mill IT examples. Just think about some
one wanting to know when stock prices reach a certain level, or someone who

needs to know every time an order larger than a certain value is placed. Simi
larly, an inventory system will need to know to order new parts when the sup
ply gets below a certain threshold, and dashboarding and business activity

monitor (BAM) solutions need to know about problems they should be

reporting on.

While SOA seems to be rooted in Request/Reply, you’ll also need to find a way to sup
port business events within the SOA constraints and tenets. In other words,

How can you handle business events in an SOA?

One option is to stick with the base SOA approach and have the service that generates
the event actively send a message to all interested services. Note that the source ser
vice has to know about all the interested services, which would include understanding
their contracts, to support this scenario. This is problematic because it introduces
needless coupling between the event source and other services. In the previous exam
ple, the Weather service would have to know about the Delays and Operational Pic
ture services. Similarly, if the Airport service wants to know about the weather so that
it can update the airport status, you’d have to change the Weather service to notify
that service as well. You need to keep in mind that unlike a classical Request/Reply
scenario, the source service here doesn’t care about the target services.

 Another option is to allow the interested services to poll for updates. Every event
basically has a time to live when it’s still available in the current state of the providing
service. An interested service can poll the event-generating service and find out about
the interesting events. The advantage of this approach over the previous option is that
now the dependency direction is correct. The services that do the polling are the ones
interested in the information. The problem with polling is that if the polling interval
is too long, you’ll miss important events, and if it’s too short, you’ll cause unnecessary
network loads. (You can overcome this problem—I’ll talk about this as a variation on
the solution.)

 You can alleviate the service’s coupling problem in the polling option by external
izing the relationship from the services. One way to do this is by using the Orchestra
tion pattern (discussed in chapter 7), which involves an external workflow engine.
The event source can then have a single dependency on an endpoint of the workflow
engine. The workflow engine knows about all the interested parties and forwards the
messages to them.

 This is a step in the right direction because the services aren’t coupled and it’s easy
to make changes to the workflow and add additional services. The downside is that it
federates the logic between the services and the workflow.

We’ve considered three different solutions, and each has some advantages, but
maybe we can do better? I think we can.
www.it-ebooks.info

http://www.it-ebooks.info/

123Inversion of Communications pattern
SOLUTION

The solution to handling business events has been there in the background all the
time. If you want to add events, why not adopt an architectural style that’s built
around events and incorporate that into SOA? As it happens, we don’t have to reinvent
the wheel—there is already such an architectural style, and it’s called event-driven
architecture (EDA).

 An event is any significant change that happens within the event generator or
within a component that’s observed by the event generator. Event specifications in
EDA are structured entities akin to SOA contracts and messages. An event specification
consists of a header and a body, where the header contains the metadata and the body
contains the actual information about the event. Unlike traditional messages, events
don’t have a specific destination.

EDA is similar to publish/subscribe, but it also has several differences such as the
historical perspective that’s gained by treating events as streams instead of isolated
occurrences.

 To accommodate an event-like message exchange pattern within SOA, you can do
the following:

Implement the Inversion of Communications pattern by supplementing SOA with
EDA—you can allow services to publish streams of events that occur in them
instead of calling other services explicitly.

The Inversion of Communications pattern, illustrated in figure 5.10, basically reverses
the direction of the information flow. Instead of the service consumers calling on the
service to get information, the service reaches out to the consumers with updates.
This change in roles requires two components within the service, or rather within the
edge (because they aren’t really business-oriented).

�

Edge

Service consumer

Service consumer

Service consumer

Event/no�fica�on

Event propaga�on

Package
events

(Subscrip�ons)

Route

Event handler

Dispatch

Relevancy
filter

Service

Request

Reply

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Endpoint

n
Event/

o�fica
�on

Event/no�fica�on

Figure 5.10 In the Inversion of Communications pattern, the service’s
edge accepts and filters incoming events in addition to “standard” requests.
When the service has some reply or reaction to an event ready, the edge
also packages and dispatches it as an event to service consumers.
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 5 Message exchange patterns
The first component is for event propagation. Events should be packaged in the for
mat agreed upon for the SOA initiative (or, if there is no common contract, according
to the service’s contract) and distributed (the following technology mapping section
discusses this).

 The second component, the event handler, enables the service to act as a service
consumer for events sent by other services. The first task for the event handler is to fil
ter incoming events for relevancy. This is important, because many of the events
received might not be relevant, especially if the infrastructure between services isn’t
smart enough to route or manage subscriptions. The second role of the event handler
is to route the relevant events to the components of the service that can react to the
events—the components that in a Request/Reply model would get the new informa
tion as requests.

 One thing you’ve probably noticed is that even though the Inversion of Communi
cations pattern talks about events, it doesn’t include a subscription-management com
ponent on the edge. That’s because subscriptions management requires too much
effort that isn’t really related to the services, like routing and persistent subscriptions.
An alternative to subscriptions on the service is to move the responsibility to the con
sumer or infrastructure (or both). To do that, you can provide known names (URIs,
queues, and the like) where events can be found, and then have any interested ser
vices listen to them.

 Let’s look at the Delays service mentioned in the problem description. Figure 5.11
shows that now the Airports, Weather, and Operational Picture services push their
changes to the Delays service instead of the other way around. This has a positive effect
on network traffic, because the Delays service no longer has to worry about missing an
important change in the three services it monitors. Also note that applying the Inver
sion of Communications pattern does not mean you have to move all your interactions
to events. In this example, the Delays service still has Request/Reply interactions with
the Schedules and Reservations services. If the Delays service identifies a delay, it can
try to reserve places on later flights for people who would miss their connections.

Events

Request/
reply

Delays

Operatonal
Picture

Airports

Reservatons

Weather

Schedules

Figure 5.11 The relations between the
services shown in figure 5.9 when using the
Inversion of Communications pattern. Now
the Weather, Airports, and Operational
Picture services push their changes to the
Delays service.
www.it-ebooks.info

http://www.it-ebooks.info/

125 Inversion of Communications pattern
 One thing to note when you combine the Inversion of Communications pattern
with the Request/Reaction or Request/Reply patterns is that in addition to replying
to the service consumer (or as an alternative to doing this), the service should also
raise an event informing listeners of the effects of handling the request, so that other
subscribed services can handle the effects of the change.

 Inversion of Communications is about implementing EDA on top of SOA. Up to
now, we’ve looked at the simple side of that, which involves handling sporadic or iso
lated events. But a very strong concept that EDA defines is event streams. This means you
don’t look at each event on its own, but rather at a chain of related events over time.
Event streams can give you both trends and a historical perspective. Used well, this can
give you real-time business intelligence and business-activity monitoring. The Aggre
gated Reporting pattern discussed in chapter 7 shows an application of this capability.

 Another pattern you can combine with Inversion of Communications is the Paral
lel Pipelines pattern (discussed in chapter 3). This combination can be used to pro
vide an SOA implementation of a staged event-driven architecture (SEDA). In a
nutshell, SEDA can provide a way to increase the concurrency and throughput of a
solution in a relatively simple way.

 The downside of using Inversion of Communications is the added complexity of
designing the whole system using events. The way to deal with this problem has
already been mentioned—don’t use Inversion of Communications exclusively; rather,
combine it with the other message-exchange patterns mentioned in this chapter.

 One other thing to watch out for and avoid when using the Inversion of Communi
cations pattern is a vicious event circle, where an event triggers a chain of events that
gets back to the original event source and causes it to refire the same or a similar
event. I haven’t yet seen it happen in real business scenarios, but the possibility exists.
The way to handle this problem is logging and monitoring, such as by using the Ser
vice Watchdog pattern discussed in chapter 3.

 Moving to Inversion of Communications also makes it more complicated to debug
processes. When something goes amiss, you need to trace the problem back to the
butterfly whose wings initiated the chain reaction that led to the problem. The way to
counter this is via centralized logging throughout the development process (and pos
sibly in production) that enable you to replay the system. This is more complicated
than following a direct call stack.

 Another challenge of moving to Inversion of Communications is adding it in the
middle of an SOA initiative, when you already have services deployed that utilize sim
pler message-exchange patterns. I can’t provide general guidance on the interaction
remodeling because it’s very situation-specific, but as with the SOA initiative itself, the
secret here is to perform the transition gradually.

 The other set of challenges related to the Inversion of Communications pattern
has to do with the implementation details. After all, many SOA infrastructures (most
obviously HTTP) don’t support events or multicasts. Let’s see if we can clear up these
obstacles.
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 5 Message exchange patterns

TECHNOLOGY MAPPING

There are several technology mapping options for implementing the Inversion of
Communications pattern.

 The first option, which is also the most natural fit, is to use an ESB. Most ESB imple
mentations can accommodate all of the common message-exchange patterns, includ
ing publish/subscribe. The next listing shows how you could configure a subscription
on Apache ServiceMix (an open source ESB). To configure the subscription, add a
subscriptions section (sm:subscription) in the configuration section of a component
(sm:activationSpec).

Listing 5.4 Configuration excerpt including subscription for a “picture” component

<sm:activationSpecs>

 <sm:activationSpec componentName="sub" service="foo:Subscriber">

...

 <sm:subscriptions>

 <sm:subscriptionSpec service="cop::picture"/>

</sm:subscriptions>

 </sm:activationSpec>

</sm:activationSpecs>

When you want to implement the Inversion of Communications pattern with an ESB,
you delegate the responsibility of passing the events and of managing subscriptions to
the infrastructure, and you can concentrate on planning the events and the other
business activities.

 You can get even looser coupling by using a messaging infrastructure (or ESB) that
supports topics, even though this isn’t a common service infrastructure for SOA. Top
ics are more loosely coupled because the subscribers don’t know who the publisher
is—they just know about the topic that they find interesting. The problem with that
approach is that the subscribers don’t know who the publisher is, so the infrastructure
needs to make sure only authenticated and authorized services can post events.

 Now let’s consider the more problematic infrastructures, like HTTP (RESTful ser
vices) and plain TCP. There are two options here.

 The first option is to write the necessary infrastructure as part of the edge compo
nent of each service. In other words, develop your own logic to persist subscriptions
and actively send each generated event to all the interested subscribers. Although it’s
technically feasible, I don’t recommend going down this path unless you’re a middle-
ware vendor. It’s better to focus on your core business and business value for your
solution and not try to develop a delicate piece of infrastructure you aren’t likely to
get right on the first try.

 The second option, which I find more interesting, has to do with a push (well,
actually pull) application that you probably use daily—blogs and blog newsreaders.
When I publish a new event (post) in my blog, it isn’t immediately sent to my blog sub
scribers. In fact, it’s never actively sent. Instead, the new event is added to an events
stream (RSS or Atom feed) that contains the most recent events. The subscribers, who
www.it-ebooks.info

http://www.it-ebooks.info/

127 Inversion of Communications pattern

manage the subscription on their side without any regard to me (loose coupling),
decide how often they need to poll my event steam so that they don’t miss important
events. That decision is based on how many items I keep in my feed, the frequency of
new events, and the latency they can afford in handling the events. Note that consum
ers who need low latency from event occurrence to notification will probably need the
online event notification and won’t be able to use this method.

 As you’ve seen in the Request/Reply pattern (section 5.1) the Atom Publishing
Protocol is a popular choice for formalizing collection in RESTful web services, as are
the JSON versions, like OData and GData.

An event’s time to live
Whether you use feeds or a queue-based approach for publishing events, you need
to consider the event’s time to live (TTL). By TTL, I mean the time during which the
event should be available to consumers before it becomes irrelevant.

When you use events in a programming language, the TTL is inherent (“You snooze,
you lose”). If a consumer isn’t there when the event is raised, that’s the consumer’s
problem. In SOA, it’s wiser to allow temporal decoupling between the time the event
was raised and the time it’s consumed. This temporal decoupling allows increased
autonomy and loose coupling for both the event generator and the event consumer.
The flip side is that you now have to consider the TTL of events to prevent the pro
cessing of obsolete information, too much latency, and performance problems.

The TTL changes depending on the business meaning of the event, so there aren’t
any firm rules. Two rules of thumb I can give are that the TTL for cyclic events, like
stock price updates, is usually the cycle frequency, and the TTL for one-time events,
like a new order, tends to be much longer.

One point mentioned briefly in the previous section was that the EDA part of the
Inversion of Communications pattern allows you to treat events as a stream rather
than as isolated instances. Event streams can enhance your solutions even more if you
add additional architectural concept known as complex event processing (CEP). As its
name implies, CEP involves taking a look at event streams and examining them for
complex patterns. This is probably best explained through an example.

 Listing 5.5 shows a sample query in an embeddable CEP engine I wrote a few years
ago (it was based on C# LINQ). The query examines a stream of login events and
raises an alert whenever there are three failed logins in a row from the same user.

Listing 5.5 A continuous query to raise an event on three consecutive failed logins

 var loginRecords = engine.GetEventSource<Login>();

engine.AddQuery(() => from names in loginRecords.Stream

 group names by names.Name

 into logins

 from login in logins

 let next = logins.FirstOrDefault(

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5 Message exchange patterns

➥t => t.LoginTime > login.LoginTime)

 let nextNext = null == next ? null

➥ : logins.FirstOrDefault(t => t.LoginTime
➥> next.LoginTime)

 where

 !login.Successful &&

➥(null != next && !next.Successful) &&

➥(null != nextNext && !nextNext.Successful)

 select login, HanleAlert);

There are many commercial CEP engines from companies like SAP, TIBCO, and IBM,
as well as few open source options like Esper from EsperTech.

 The Inversion of Communications pattern presents a good opportunity to intro
duce CEP to a project, but that isn’t the main reason to use the pattern. As usual, we’ll
finish our discussion of the pattern by exploring some of the motivations for using it.

QUALITY ATTRIBUTES

Inversion of Communications is a powerful pattern. Events-based interaction greatly
helps increase the autonomy and composability of a system, and the reuse within a sys
tem. This is great news for SOA, so much that Gartner called EDA and SOA “Advanced
SOA.” While it’s important to remember the challenges involved in the implementa
tion of Inversion of Communications, like complicated debugging and the added
work of designing events, it’s an important pattern to have in your toolkit because all
of its benefits.

 Table 5.4 identifies some scenarios that might make you think about using the
Inversion of Communications pattern.

Table 5.4 Inversion of Communications pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Flexibility

Reuse

Changeability

Decoupling

Interfaces

Add feature

Services should know as little as possible about each
other.

All services should support some common service APIs in
addition to any specific requests they may serve.

Assuming the development for a new capability is done, you
should be able to integrate it into the system in three
weeks or less.

The Inversion of Communications pattern wraps up the basic message-exchange pat
terns by showing how you can do eventing or publish/subscribe within SOA. The last
message exchange pattern we’ll cover in this chapter is the Saga pattern, which
enables you to get transaction-like behavior between services.
www.it-ebooks.info

http://www.it-ebooks.info/

Saga pattern 129
5.4 Saga pattern
In chapter 2, we talked about the Transactional Service pattern as a way to make a ser
vice handle requests in a reliable manner. But using the Transactional Service pattern
only solves one part of puzzle. Let’s take another look at the scenario that we looked
at in chapter 2 and see what we still need to do.

Figure 5.12 shows an Ordering service that processes an order. The interesting
issue here is in steps 2.3 and 2.4. Within the internal transaction of handling the
request, the Ordering service has to interact with two other services: it requests a bill
from an internal Billing service, and it orders something (parts or materials) from an
external Supplier system.

Ordering management system

<<service>>
Ordering

2.7

2.6

2.5 Commit

2.4 Request billing

2.3 Place order

2.2 Process order

2.1 Receive message

2.0 Begin transaction

1.1 Enqueue request

<<service>>
Billing

Service consumer

E-commerce front-end

1.0 Place order

1.2 Ack

2.8 Confirm order

<<system>>
Supplier

External systems

Figure 5.12 Sample message flow in an e-commerce scenario (talking to an Ordering service). The
front end sends an order to an ordering service, which then orders the parts from a Supplier service
and asks a Billing service to bill the customer. Note that all the handling of the Place Order message
(step 1.0) is done within a single local transaction (steps 2.0 to 2.5).
www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 5 Message exchange patterns
There are two major problems lurking here. Consider what will happen if instead of
committing the internal transaction at step 2.5, the Ordering service decides to abort
its (internal) transaction. Also, consider how the ordering service would go about get
ting some commitment from the other services so that it could continue its work
based on that commitment. You may want to get a confirmation from the supplier that
the ordered items have been secured before you confirm the order to the customer.

PROBLEM

The obvious solution to the two problems mentioned in the previous section is to
extend (or flow) the Ordering service’s internal transaction into the other services.
This extended transaction is known as a distributed transaction.

 Using distributed transactions, the ordering service would have to call both the
Billing service and the Supplier system as part of a single transaction, and if all the ser
vices agree to commit, the whole transaction is committed and completed together.
This sounds really, really great, and we even have the technology to do that—technol
ogy that predates SOA by many years.

But, and there’s always a but, what if the supplier can only complete its part of the
transaction after a senior manager authorizes the deal? Can you hold all your internal
locks while you wait for that manager to return from vacation in the Bahamas some
time next week? Probably not. And what if the supplier also happens to be a competi
tor. It might prolong the transactions to disrupt your business—you’re holding locks
on internal resources while you wait for the supplier to complete the transaction.

 This specific scenario might be too far-fetched, but the point is that you can’t make
assumptions about how other services operate. This is especially true for services you
don’t own. You can read about other reasons to avoid cross-service transactions in the
Transactional Integration antipattern (in chapter 8).

 Even if you think that cross-service transactions aren’t problematic as a concept,
you’ll probably agree that long transactions aren’t very good. The more conversational
the interaction between the services gets, the more you need to think about alternatives
to atomic transactions. In figure 5.12 there are two messages going out from the Order
ing service, which might be borderline in terms of the number of interactions. But busi
ness processes can sometimes involve much more elaborate conversations.

 A lot of messages flowing back and forth between services isn’t recommended,
because it increases latency and the chances of failure. Nevertheless, few and sparse
interactions aren’t realistic either. Services rarely live in complete isolation; interoper
ability is one of the reasons for using SOA in the first place. This means you need a way
to handle complex service interactions in a reliable way without bundling the whole
thing in one lengthy atomic transaction.

 To sum up the problems,

How can you reach distributed consensus between services without transactions? ?
I think by now it’s clear that using a single transaction isn’t an option. If all the ser
vices involved are under your control, you might want to break the long process into
www.it-ebooks.info

http://www.it-ebooks.info/

Saga pattern	 131
multiple steps and run each step in its own transaction. Smaller distributed transac
tions are definitely a step in the right direction, but you’re still bound by cross-service
transactions, and because everything isn’t bounded by one single transaction, you
have problems like canceling the effect of a first step if something fails in the third or
fourth step.

 Another option is to model the contract so that you’ll never need this kind of com
plex interaction. You can minimize interactions between services if you increase the
granularity of the services. But there’s also a limit to how large you want your services
to be—you don’t want to end up with a single monolithic service that does everything.
And just like objects, services need to be cohesive and adhere to the Single Responsi
bility Principle. When you do that, you can contain some interactions within the ser
vice boundary, but you still need to handle cross-service interactions to implement
business processes.

The option you’re left with is to break the service interaction—the business pro-
cess—into a set of smaller steps, and model that into a long-running conversation
between the services.

SOLUTION

The Saga interaction pattern is about providing the semantics and components to
support the long-running conversation mentioned at the end of the previous section.

Implement the Saga pattern and break the service interaction (the business

� process) into multiple smaller business actions and counteractions. Coordinate

the conversation and manage it based on messages and timeouts.

Hector Garcia-Molina and Kenneth Salem defined the term “saga” in 1987 as a way to
solve the problem of long-lived database transactions. Hector and Kenneth described
a saga as a sequence of related small transactions.1 In a saga, the coordinator (a data
base in their case) makes sure that all of the involved transactions are successfully
completed. Otherwise, if the transactions fail, the coordinator runs compensating
transactions to amend the partial execution.

 What made sense for databases makes even more sense for service interactions in
SOA. Figure 5.13 illustrates how you can apply the saga notion to SOA. You can break a
long service interaction into individual actions or activities and compensations (in
case there are faults or errors).

 The first component to notice in figure 5.13 is the initiator. The initiator triggers
the Saga pattern by creating the context, which is the reason for the interaction. It
then asks one or more other services (participators) to perform some business activi
ties. The participators can register for coordination (depending on how formal the
Saga implementation is). The participants and initiator exchange messages and
requests until they reach some agreement or they’re ready to complete the interaction.

1 Hector Garcia-Molina and Kenneth Salem, “Sagas,” in SIGMOD '87: Proceedings of the 1987 ACM SIGMOD Inter
national Conference on Management of Data (1987), 249–59.
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 5 Message exchange patterns
This is when the coordinator requests all the participants (including the initiator) to
finalize the agreement (prepare to commit) and commit.

 If there was a problem during either the interaction or the final phase, the activi-
ties that occurred have to be undone. In regular ACID transactions you can roll back,
but in a saga you have to perform a counteraction, called compensation, which may not
be the exact opposite of the activity that must be undone. If the result of the original
activity caused the service to cross some threshold, it may not wish to undo the action
it took. Or it may be impossible to undo the effect, such as if canceling the action
requires something from the service that requested the action in the first place
(maybe a cancellation fee) or if too much time has passed which makes it impossible
to undo the effect. As another example, if the result of a saga was to launch a missile,
the compensation would be to abort the mission and blow up the missile in midair—
you can’t just pull the missile back into the pod.

 The Saga pattern is sometimes also referred to by the name “Long-Running Trans-
action.” It’s true that you can conceptually think of a saga as a single logical unit of
work and that it does make use of transaction semantics. But a saga doesn’t really
adhere to the transaction tenets like atomicity or isolation, mostly because the interac-
tion is distributed both in time and space. For instance, when you call a compensa-
tion, it might be too late to undo the original action, so that there might be
consequences like cancellation fees or partial deliveries. The “Saga” term better
reflects the fact that the interaction is lengthy and that the messages are related.

 Let’s take a look at what the ordering scenario in figure 5.12 might look like when
you utilize the Saga interaction pattern. Figure 5.14 demonstrates a scenario where
the supplier is out of stock of the ordered items. In this case, both the ordering and

Coordinator*

Prepare/commit/undo

Service consumer

Protocol

Rela�on

Key
SOA component Pa�ern component

Concern/a�ribute

Registra�on

Perform
ac�vity

Compensate

Create
context

Ini�ator
Service

Par�cipator

Perform
ac�vity

Compensate
Prepare /
commit /
undo

Register

Ac�vi�es and replies

Ac�vi�es and replies

Figure 5.13 In the Saga pattern, a service consumer and one or more
services hold a long-running conversation within a single context (a saga).
Once the parties reach some consensus, the conversation is committed. If
there are problems during the conversation, the interaction is aborted, and
the involved parties perform corrective steps (compensations). (* The
coordinator may be a component on its own, external to the consumer.)
www.it-ebooks.info

http://www.it-ebooks.info/

Saga pattern 133
billing need to be canceled. You also need to notify the front end that there was a
problem and let the supplier know that you closed the interaction.

 In this Saga pattern version of the ordering scenario, all the services involved
(Ordering, Billing, and the Supplier system) send notifications about their ability to
complete the saga or not. For instance, the Supplier system emits a fault message to let
the Ordering service know that it had a problem processing the “place order” request.
When the coordinator component inside the Ordering service gets the fault message,
it requests that the other parties (the Ordering service itself, and the Billing service)
compensate, and once that’s done it notifies the Supplier that the interaction has
completed handling the fault.

Service consumer Ordering managment system External system

E-commerce front-end

<<service>>
Ordering

Place order

Request billing

Place order

Completed

Compensate

Fault

Compensate

Compensated

Compensated

Order failed—Out of stock

Order suppressed

Handle order

<<service>>
Billing

<<system>>
Supplier

Figure 5.14 The e-commerce scenario from figure 5.12 remodeled using the Saga pattern.
The interaction with the Billing service and the Supplier system is now coordinated in a
saga. The Ordering service can handle problems in a more robust way by canceling the order
and notifying the front end instead of hoping for the best.
www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 5 Message exchange patterns
 The front end is notified about the failure during the compensation of the Order
ing service. It isn’t a task of the coordinator.

 The interaction in figure 5.14 has the service consumer and services controlling
the interaction internally. One good way to do this is to use the Workflodize pattern
(discussed in chapter 2) so that each service has an internal workflow that follows the
sequence and different paths of the interaction. Another pattern related to the Saga
pattern is the Reservation pattern (see chapter 6).

Another approach you can take to implement the Saga pattern is to use an exter
nal coordinator for the conversation—see the Orchestration pattern in chapter 7 for
more details. The semantic difference between an internally coordinated Saga imple
mentation and an externally coordinated Saga implementation is that with external
coordination the coordinator holds the “big picture” of what the saga is trying to
achieve, whereas with internal coordination you can get coordination without any one
service having the complete picture. Internal coordination is more flexible, but it’s
harder to manage.

 The main effort involved in implementing the Saga pattern is deciding on the busi
ness activities and compensations. You can use techniques such as business process
modeling to determine what these activities might be (Business Process Modeling and
Notation, BPMN, is discussed in the section on the Orchestration pattern in chapter 7).

 Even though the main effort in implementing the Saga pattern is on the business
side, modeling business processes and activities that will support long-running conver
sations, there are also a few technological aspects that have to do with the messages
and protocols—let’s take a look at them.

TECHNOLOGY MAPPING

At a minimum, the Saga pattern requires you to add compensation messages to any
state-altering message that can participate in a saga. Again, it’s important to empha
size that the compensation may not be able to undo the original activity, but it does
have to try to minimize the effects of the activity.

The internal processing of the compensation messages varies depending on what
needs to be done to cancel the effect of the original message. It’s usually better to set
statuses to canceled rather than to delete records, especially at the database level,
because the original action might have triggered other business processes and actions
that rely on those records. For instance, if as a result of a message you added an order,
another service might have produced a bill. Chances are that the billing also occurred
within the same saga, but you might not know or control that within the Ordering ser
vice. Making a change that leaves traces behind it (like setting a status to canceled) is
better than deleting a record because it allows you to resolve problems manually if the
need arises. Note that in some industries, like banking, you’re required by law to regis
ter cancellations as new changes rather than to delete or amend the original records.
(See Pat Helland’s “Accountants Don’t Use Erasers” article in the further reading sec
tion for more about not deleting records.)

 Another message type that’s important for the Saga pattern is the failure message.
When you have a simple point-to-point interaction between services, the reply or
www.it-ebooks.info

http://www.it-ebooks.info/

Saga pattern	 135
reaction that a called service sends is enough to convey the notion of a problem. The
calling service consumer, which understands the service’s contract, can understand
that something is amiss and act accordingly. When you implement the Saga pattern,
however, you may have more than two parties involved, and you also have a coordina
tor. The coordinator isn’t as business-aware as the service’s business logic, but it does
define control messages in order to understand the status of the interactions.

 As you probably know (or have noticed by now) web services are considered the
primary technology for implementing SOA, and the Saga pattern isn’t any different.
The WS-* stack of protocols has produced the WS-BusinessActivity protocol as part of
WS-Coordination.

 WS-BusinessActivity has two variants:

 Business Agreement with Coordinator Completion —The coordinator decides and
notifies the participants when to complete their roles within the activity. This
approach is a little more ordered.

 Business Agreement with Participant Completion —The participants decide when to
complete their roles within the activity. This approach is a little more loosely
coupled, with the cost being increased chances for compensation.

WS-BusinessActivity defines an orderly protocol and states for both the participating
services and the coordinator. WS-BusinessActivity also defines two coordination types:

 AtomicOutcome—All the participants have to close (commit) or compensate.
 MixedOutcome—The coordinator treats each participant separately.

Figure 5.15 shows the state transitions for a participating service using WS-Business-
Activity with participant completion.

Closing

Cancel

Ended

Completed

Faultng

Canceling

Exit

Fault

Completed

Canceled

Close

Compensate

Closed

Fault

Compensated Faulted

Exited

Actve

Compensatng
Exitng

Figure 5.15 State diagram from the point of view of a participating service using the
completion-by-participants variant of the WS-BusinessActivity protocol. The state transitions
can be either the result of decisions by the service (the dotted lines) or by messages from
the coordinator (the solid lines).
www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 5 Message exchange patterns
 Another important technology option for implementing the Saga pattern is to use
BPEL (Business Process Execution Language) or its WS-* implementation known as
WS-BPEL (or BPEL4WS in previous versions). Additionally, you can also use a non
BPEL-compliant orchestration engine. These technology mappings all fall under the
external coordinator mentioned previously and are covered in more depth as part of
the Orchestration pattern in chapter 7.

QUALITY ATTRIBUTES

The main reason to employ the Saga pattern is to increase the integrity of the system.
As I’ve mentioned in the previous sections, transactions are problematic when it
comes to distributed environments in general, and they’re even more so when using
SOA. Nevertheless, you’ll still want to be able to coordinate the behavior of services
and have meaningful interactions. By coordinating the behavior and failure handling,
you can introduce reliable, predictable, long-running conversations.

 In a distributed environment, it’s relatively hard to know what the outcome of a
complex interaction will be, and this is especially true if you use other patterns, like
Inversion of Communications (discussed in section 5.3). The Saga pattern introduces
some control into the interactions and verifies that the outcome of a complex interac
tion will be along known paths (either completed or compensated).

 The outcome of increased predictability is also increased correctness. When you
know how the system is going to behave, it’s easier to construct system tests to verify
that the desired outcome indeed happens.

 Table 5.5 presents sample scenarios for the preceding quality attributes.

Table 5.5 Saga pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Integrity

Integrity

Reliability

Correctness

Predictability

Handling failure

Under all conditions, an order processed by the system
will be billed.

Under normal conditions, the chances of a customer
getting billed for a canceled order shall be less than 5
percent.

When resuming from a communications disconnection,
all the processes that were interrupted shall remain
consistent.

Writing compensation logic is relatively complicated. As the timeline advances, the
number of changes in the service can get rather large, which makes it harder to
achieve predictability when you try to undo an early change. One way to try to cope
with that is to implement the Reservation pattern, which you’ll read about in the next
chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

137 Further reading
5.5 Summary
One distinct characteristic of all the patterns in this chapter is that none of them are
new. All the interaction patterns predate SOA by many years. Nevertheless, I’ve spent
more than 30 pages discussing them with you, instead of just pointing you to Hohpe
and Woolf’s excellent Enterprise Integration Patterns book, which covers these patterns
as well. The reason for this is that although these patterns seem relatively simple and
well known, each has some aspects that makes them a little complicated when you try
to implement them and adhere to SOA principles:

 Request/Reply—This pattern talks about synchronous communications, but in
SOA it’s better to use document-based interactions. That’s in contrast to RPC-
based interactions, which are the norm in traditional distributed architectures
for synchronous communications.

 Request/Reaction —This pattern implements asynchronous communications.
Again, it’s a simple pattern, but it can be tricky to implement when you use con
sumers that don’t support callbacks.

 Inversion of Communications —This pattern implements eventing, but with a few
twists such as implementation on transports that don’t support eventing.
Another interesting aspect is providing event streams.

 Saga—Sagas are a way for services to reach distributed consensus without rely
ing on distributed transactions.

The next two chapters will look at less basic interaction patterns. Some of them are
complementary to the patterns discussed here, such as the Reservation pattern in
chapter 6, which complements the Saga pattern, or the Aggregated Reporting pattern
in chapter 7 that uses the Inversion of Communications pattern. The other patterns
we’ll look at have to do with aspects of interactions and aggregations beyond the
underlying message exchange patterns, such as the Composite Front End pattern in
chapter 6.

5.6 Further reading
Gregor Hohpe and Bobby Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions (Addison-Wesley Professional, 2003).
This book discusses fundamental integration patterns in a general context, and many of
them are applicable to SOA as well.

Google Data APIs, http://code.google.com/apis/gdata/overview.html.
Google’s Google Data Protocol (GData) is an example of a document-centric protocol for
interacting with services.

INVERSION OF COMMUNICATIONS

Arnon Rotem-Gal-Oz, “Bridging the Gap Between BI & SOA,” www.infoq.com/articles/
BI-and-SOA.
This article shows an application of the Inversion of Communications pattern (as well as
Aggregated Reporting).
www.it-ebooks.info

http://code.google.com/apis/gdata/overview.html
www.infoq.com/articles/BI-and-SOA
www.infoq.com/articles/BI-and-SOA
http://www.it-ebooks.info/

138 CHAPTER 5 Message exchange patterns
INVERSION OF COMMUNICATIONS

Matt Welsh, “SEDA: An Architecture for Highly Concurrent Server Applications,”
www.eecs.harvard.edu/~mdw/proj/seda/.
Combining the Inversion of Communications pattern with the Parallel Pipelines pattern
gives an SOA implementation of SEDA.

SAGA

Pat Helland, “Accountants Don’t Use Erasers,” PatHelland's WebLog, http://blogs.msdn.com/b/
pathelland/archive/2007/06/14/accountants-don-t-use-erasers.aspx.
Pat Helland explains the merits of retaining prior states.
www.it-ebooks.info

www.eecs.harvard.edu/~mdw/proj/seda/
http://blogs.msdn.com/b/pathelland/archive/2007/06/14/accountants-don-t-use-erasers.aspx
http://blogs.msdn.com/b/pathelland/archive/2007/06/14/accountants-don-t-use-erasers.aspx
http://www.it-ebooks.info/

Service consumer patterns

In this chapter
 UI integration patterns

 Portlets

 Role of hosts

The previous chapter focused on the basics of service interactions—the message
exchange patterns. This chapter also focuses on the interactions of services with
their consumers but it covers a wider range, looking at patterns that support these
interactions. Like chapter 5, this chapter’s focus is on the service consumer in the
SOA components model (see figure 6.1).

 Service consumers aren’t necessarily other services (though that’s common as
well). One important type of nonservices that are service consumers are UIs. It’s
important to talk about connecting UIs to services, because SOA, in itself, doesn’t
really pay attention to the needs of UIs. SOA separates business concepts into differ
ent services, whereas users working with a UI want a unified view.
139

www.it-ebooks.info

http://www.it-ebooks.info/

140	 CHAPTER 6 Service consumer patterns
Service

Describes

Endpoint Exposes

Messages Sends/receives

Contracts

Binds to

Service
consumer Implements

Policy Governed by

Sends/receives

Adheres to

Component
Relaton

Key

Understands

Serves

Figure 6.1 This chapter’s focus is about connecting services with service

consumers in the levels and layers beyond the basic message exchange patterns.

The following patterns are discussed in this chapter:

 Reservation —Efficiently provide a level of guarantee in a loosely coupled man
ner while maintaining services’ autonomy and consistency

 Composite Front End—Interact with multiple services, get an integrated, cohesive
UI, and still preserve SOA principles and modularity benefits

 Client/Server/Service —Connect an SOA to UIs where integration is problematic
(such as when the client side isn’t SOA-aware or it uses incompatible
technologies)

The first we’ll look at is the Reservation pattern, which is closely related to the Saga
pattern discussed in the previous chapter. The Reservation pattern also exists in its
own right to allow a service to give partial commitments to service consumers.

6.1 Reservation pattern
The Reservation pattern is an SOA-friendly way for services to provide partial commit
ments and guarantees. To better understand why that’s needed, let’s look at transac
tions and distributed systems.

 When you use transactions in “traditional” n-tier systems, life is relatively simple.
When you run a transaction and an error or fault occurs, you abort the transaction
and roll back any changes, getting back your system-wide consistency and peace of
mind. This is possible because a transaction isolates changes made within it from the
rest of the world. One of the base assumptions behind transactions is that the time
that elapses from the beginning of the transaction until the end is short. Under that
assumption, you can afford the luxury of letting the transaction hold locks on your
resources (such as databases) and prevent changes by others while the transaction is
in progress. Transactions provide four basic guarantees—atomicity, consistency, isola
tion, and durability—usually remembered by the acronym, ACID.

 Unfortunately, in a distributed world (SOA or otherwise), it’s rarely a good idea to
use atomic short-lived transactions (see the discussion of the Transactional Integration
www.it-ebooks.info

http://www.it-ebooks.info/

141 Reservation pattern
antipattern in chapter 8 for more details). The fact that cross-service transactions are
discouraged is one of the main reasons for using the Saga pattern in the first place.

 One of the obvious shortcomings of sagas is that you can’t perform rollbacks. The
two conditions mentioned earlier, locking and isolation, don’t hold in sagas, so you
can’t provide the needed guarantees. Still, because interactions, and especially long-
running interactions, can fail or be canceled, sagas offer the notion of compensations.
Compensations are cool; you can’t have rollbacks, so instead you reverse the interac
tion’s operations and have a pseudorollback. If you added 100 (dollars or units or
whatnot) during the original activity, you can just subtract the same 100 in the com
pensation. Easy, right? Wrong. As you probably know, it isn’t easy.

PROBLEM

There are a number of problems with compensations, arising from the fact that,
unlike ACID transactions, the changes made by the Saga activities aren’t isolated. This
lack of isolation means that other interactions with the service may operate on the
data that was modified by the saga, rendering the compensation impossible. To give
an extreme example, if a request to one service changes the readiness status of a mis
sile to “all-set,” and another service caused the missile to launch based on that status, it
would be a little late for the first service to try to reverse the “all-set” status now that
the bird has flown the coop. A more down-to-earth (pardon the pun) business sce
nario is any interaction where you work with limited resources, such as ordering from
a limited stock.

 Look at the scenario in figure 6.2. A customer orders an item, and the Ordering
service requests the item from the warehouse, as it wants to ship the item to the cus
tomer (probably by notifying another service). Meanwhile, on the Warehouse service,
the item order causes a restocking threshold to be hit that triggers a restocking order
from a supplier.

 Then the customer decides to cancel the order—now what? Should the restocking
order be canceled too? Can it be canceled under the ordering terms of the supplier?

<<service>>
Warehouse

<<service>>
Ordering

1: Order item

1.1: Get item

2: Cancel order

1.1.1: Check
stock level

1.1.2: Restock

Customer Supplier

Figure 6.2 A simple ordering scenario where the customer changes their mind
and cancels the order after the order has already created additional actions on
the ordering system
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 6 Service consumer patterns
And what about customers who request the item between the ordering and cancella-
tion—they might get an out-of-stock notice that would send them off to the competi-
tion. This can be especially problematic for orders that are prone to cancellations, like
hotel bookings, vacations, and so on.

 Another limitation of compensations and the Saga pattern itself is that a coordina-
tor is required. Involving a coordinator means services are trusting an external entity
(one outside most of the services involved in the saga) to set things straight. This is a
challenge for some of the SOA goals because it compromises autonomy and intro-
duces unwanted coupling to the external coordinator.

 This, then, is the problem:

How can you efficiently provide a level of guarantee in a loosely coupled manner
while maintaining the autonomy and consistency of the services?

I’ve mentioned a couple of challenges of compensations. Another risk of using com-
pensations is that the external coordinator may fail or the compensation request
might get lost, which might result in the service getting to an inconsistent state.

 I’ve also mentioned that distributed transactions aren’t the answer because they
lock internal resources for too long (a saga might go on for days) and they put excess
trust in services that may be external to the organization. So what’s the solution?

SOLUTION

This seems like a quagmire of sorts, but fortunately real life has already found a way to
deal with a similar need for fuzzy, half guarantees—reservations! (See figure 6.3.)

Implement the Reservation pattern and have the services provide a level of
guarantee on internal resources for a limited time.

The Reservation pattern has an internal component in the service that will handle the
reservations. It has three responsibilities:

 Reservation—Making the reservation when a message that’s deemed “reserving”
arrives. When an order arrives, in addition to updating durable storage (such as
a database), the component needs to set a timer or an expiration time for the
order confirmation. Alternatively it can set some marker to indicate that the
order isn’t final.

 Validation—Making sure that a reservation is still valid before finalizing the pro-
cess. In the ordering scenario, this step would involve making sure that the
items designated for the order have not been given to someone else.

?

�

Service

Reservation

Valida�on

Reserva�on

Service
consumer

Reserving
message

Confirming
message

Expira�on

Figure 6.3 A service that implements the
Reservation pattern considers some
messages as “reserving” messages, and it
tries to secure an internal resource and
sends a confirmation if it succeeds. When a
message considered to be “confirming” is
received, the service ensures that the
reservation still holds. In between, the
service can choose to expire the reservation
based on internal criteria.
www.it-ebooks.info

http://www.it-ebooks.info/

143 Reservation pattern
 Expiration—Marking invalid reservations when the conditions change. If a VIP
customer wants a reserved item, the system can assign it to the VIP and invali
date an existing reservation, so that when the non-VIP client tries to claim it, the
system will know it’s gone. Expirations can also be timed, as in, “we’re keeping
the book for you until noon tomorrow.”

Reservations can be explicit (the scenario in figure 6.2 would also have a Reserve item
action) or implicit. In the case of an implicit order, the service decides internally what
will be considered a “reserving” message and what will be considered a “confirming”
message. An action like placing an order might trigger the internal reservation and an
action like making a payment could serve as the confirming message. When the reser
vation is implicit, the service consumer implementation will probably be simpler
because the consumer designers are likely to treat reservation expirations as simple
failures, whereas when the reservation is explicit, the service consumer is expected to
have specific behavior to handle the reservation state (reserved, expired, overbooked,
and so on).

Reservations happen in business transactions every day. The most obvious example
is booking a hotel. You send in a request for a room (initiating a saga) saying you’ll
arrive on a certain date and check out on another date (performing an action within
the saga). The hotel says “OK, we have a room for you (a reservation), provided you
confirm your arrival by a set date (a limited time). Even if everything goes well, you
may still arrive at the hotel and find out that your room has been given to another per
son (a limited guarantee).

 The idea of the Reservation pattern is to copy this behavior to the interaction of
services so that services that support reservations offer a sort of “limited lock” for a
limited time and with a limited level of guarantee. A limited level of guarantee means
that, like in real life, services can overbook and then resolve the overbooking by vari
ous strategies such as first come, first served; serving VIPs first; and so on.

It’s easy to understand the Reservation pattern being applied to services that han
dle real-life reservations as part of their business logic, such as ordering services for
hotels or airlines. But reservations are also suitable for a lot of other scenarios where
services are asked to provide guarantees on internal resources. In one system I worked
on (discussed at length in chapter 9), we used reservations as part of the saga initia
tion process. The system used the Service Instance pattern (discussed in chapter 3)
where some services needed to be stateful. Naturally, services have limited capacity to
handle consumers—an instance can handle a limited number of concurrent sagas or
events. Because of the statefulness of instances, the services needed to know which ser
vice instances were allocated to a saga. As long as a single service instance initiates
sagas, everything is fine. But when two or more services (or instances) initiate sagas
concurrently, they may both try to allocate the same service instance to their particu
lar sagas (and given enough load and time, they will).

 In figure 6.4 you can see that both Initiator A and Initiator B want to use Partici
pant A and Participant B. Participant A has a capacity of 2, so everything is fine for
www.it-ebooks.info

http://www.it-ebooks.info/

144	 CHAPTER 6 Service consumer patterns
Initiator A

Initiator B
Participant B
Capacity : 1

Participant A
Capacity : 2

Figure 6.4 A situation that can
benefit from the Reservation pattern

both initiators. Service B, however, has limited capacity, so at least one of the sagas will
have to fail the allocation and not start.

 The Reservation pattern enabled us to manage this resource allocation process in
an orderly manner by implementing a two-pass protocol (somewhat similar to a two-
phase commit). The initiator asks each potential participant to reserve itself for the
saga. Each participant tries to reserve itself and notify back whether it’s successful, so
in the scenario in figure 6.4, Participant A would say yes to both requests and Partici
pant B would say yes to one of them. If the initiator gets an OK from all the involved
services (within the timeout) it tells all the participants the specific instances within
the saga (initiating the saga). The participants only reserve themselves for a short
period of time. Once an internally set timeout elapses, the participants remove the
commitment independently.

NOTE The initiator and other saga members can’t assume that a participant

will be there just because it’s officially part of the saga. The system still needs

to handle the various failure scenarios. In the preceding example, the Reser
vation pattern is used only to prevent overallocation; it doesn’t provide any

transactional guarantees.

A reservation is somewhat like a lock, so it introduces some of the risks distributed
locks present. These risks aren’t inherent in the Reservation pattern but can easily sur
face if you don’t pay attention during implementation (such as if you use database
locks to implement reservations). Let’s look at the risks:

 Deadlock—Whenever you start reserving anything, especially in a distributed
environment, you introduce the potential for deadlocks. If both participants in
figure 6.4 had a capacity for single saga, and Initiator A first contacted Partici
pant A and then Participant B, and Initiator B used the reverse order at the
same time, you’d have had a potential deadlock.

There are several mechanisms that can prevent this sort of deadlock. The
first is inherent in the Reservation pattern—allowing the participants to release
the lock themselves. But if there is a retry mechanism to reinitiate the sagas
when they fail after the timeout, the same resources would be reallocated over
and over, and there might be a deadlock after all.

 Denial of service—DoS, whether caused maliciously or as a byproduct of misuse,
can result from similar reasons as a deadlock; if you incur a deadlock you also
www.it-ebooks.info

http://www.it-ebooks.info/

145 Reservation pattern

have a DoS. Another way for DoS to occur is by exploiting the reservations by
constantly re-reserving. Depending on the reservation timeout, regular firewalls
might fail to detect the DoS, so you may want to consider using the Service Fire-
wall pattern (discussed in chapter 4) to help mitigate this threat.

 Additional network calls—When you introduce the Reservation pattern, you’re
likely to add additional network calls. You might, for example, introduce
another call to tell saga members which instances are involved in the saga.

In addition to the Service Firewall pattern, mentioned in the discussion of DoS,
another pattern related to Reservation can be the Active Service pattern (see
chapter 2). The Active Service pattern can be used to handle reservation expiration
when it’s implemented with timeouts.

NOTE Sometimes it’s better, resource-wise, to handle expiration passively

and not actively. See the discussion of implementation options in the next

section.

TECHNOLOGY MAPPING

Unlike a lot of the patterns in this book, the Reservation pattern is more a business
pattern than a technological one. This means there isn’t a straight one-to-one technol
ogy mapping you can use. On the other hand, code-wise, the pattern is relatively easy
to implement.

 One thing you have to do is to keep a live thread in the service to make sure that
when the lease or reservation expires, something will be there to clean up. One way to
ensure this is to use the Active Service pattern and to use technologies that support
timed events that provide the wakeup service. If you’re running in an EJB 3.0 server,
you can use single action timers (timers that only raise their event once) to accom
plish this. The following listing shows a simple code excerpt that sets a timer to go off
based on the time received in the message. When the timer expires, the reservation
can be validated again, and if it’s still valid, perform the action in the message. Other
technologies provide similar mechanisms to accomplish the same effect.

Listing 6.1 Setting a timer-based Reservation (using JBoss)

public class TimerMessage implements MessageListener {

 @Resource

 private MessageDrivenContext mdc;

 ...

 public void onMessage(Message message) {

Retrieve entity ObjectMessage msg = null;

from message try {

 if (message instanceof ObjectMessage) {

msg = (ObjectMessage) message;

TimerDetailsEntity e = (TimerDetailsEntity) msg.getObject();

TimerService timerService = messageDrivenCtx.getTimerService();

// Timer createTimer(Date expiration, Serializable info)

www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 6 Service consumer patterns

Timer timer = timerService.createTimer(e.Date, e);
 }

Push entity
into timer

 } catch (JMSException e) {
 e.printStackTrace();
 mdc.setRollbackOnly();
 } catch (Throwable te) {
 te.printStackTrace();

 }
 }

...

Timer-based cancellations might be overkill if the reservation implementation is sim
ple. The Reservation pattern implemented in C# in the following listing, is used by
the participants, as was discussed in the Saga and Reservation example in the previ
ous section.

Listing 6.2 Simple, in-memory, nonpersistent reservation

public Guid Reserve(Guid sagaId)

{

 try

 {

 Rwl.TryWLock();

 var isReserved =

➥Allocator.TryPinResource(localUri, sagaId);
 if (!isReserved)

 return Guid.Empty;

 //Missing expiration logic

 return sagaId;

 }

 finally

 {

 Rwl.ExitWLock();

 }

}

Manage capacity
of service

Add code to manage
expiration here

Return saga ID on
successful reservation

Because the Reservation implementation in listing 6.2 doesn’t involve heavy service
resources (such as a database), you can implement passive handling of reservation
expirations, which will be more efficient than timer-based expirations. The following
listing shows a revised Reservation implementation, which removes timeout reserva
tion before it commits.

NOTE When using this code, an expired reservation can still be used if no
other reservation has since occurred or if the capacity of the service isn’t
exceeded.
www.it-ebooks.info

http://www.it-ebooks.info/

147 Reservation pattern

Listing 6.3 Passive reservation expiration handling added to listing 6.2

private readonly TimeSpan MAX_RESERVATION = new TimeSpan(0, 0, 0, 1, 0);

...

public Guid Reserve(Guid sagaId)

{

 try

 {

 Rwl.TryWLock();

 RemoveExpiredReservations();

 var isReserved =

➥Allocator.TryPinResource(localUri, sagaId);
 if (!isReserved)

 return Guid.Empty;

 OpenReservations[sagaId] =

➥DateTimeOffset.Now + MAX_RESERVATION;
 return sagaId;

 }

 finally

 {

 Rwl.ExitWLock();

 }

}

 private void RemoveExpiredReservations()

{

 var reftime = DateTimeOffset.Now;

 var ids = from item in OpenReservations

➥	 where item.Value < reftime select item.Key;
 if (ids.Count() == 0) return;
 var keys=ids.ToArray();
 foreach (var id in keys)

 {
 OpenReservations.Remove(id);

 Allocator.FreePinnedResources(id);

 }

}

Add method to
clean up expired
reservations

Record when
reservation
will expire

The preceding code listings show that implementing the Reservation pattern can be
simple, but implementations can be more complex, such as if you need to persist the
reservation or distribute a reservation between multiple service instances. At its core,
implementing the Reservation pattern shouldn’t be a heavy or complex process.

 Another implementation consideration is whether reservations should be explicit
or implicit. Explicit reservations employ a distinct “Reserve” message. This usually
means there will also be a “Commit” type message and that the service or workflow
engine that requests the reservation might find itself implementing a two-phase com
mit protocol, which isn’t very pleasant.
www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 6 Service consumer patterns
 The other alternative is implicit reservations, where the service decides internally
when to reserve and under what conditions to commit the reservation or reject it. As
usual, the tradeoff is between a simple implementation in the service or a simple
implementation for the service consumer.

QUALITY ATTRIBUTES

Because it’s a complementary pattern to Saga, the Reservation pattern also has similar
quality attributes.

 The main driver for using the Reservation pattern is the need for commitment from
resources. The Reservation pattern helps provide partial guarantees in long-running
interactions, so the quality attribute that points you toward it is integrity. Table 6.1 pro
vides a couple of quality attribute scenarios relevant to the Reservation pattern.

Table 6.1 Reservation pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Integrity

Integrity

Correctness

Predictability

Under all conditions, failure to receive payment within
five business days will cancel the order and shipping.

Under normal conditions, the chances of a customer
getting billed for a canceled order shall be less than
5 percent.

The Reservation pattern is a protocol-level pattern that involves the exchange of mes
sages between service consumers and services. The next couple of patterns take a look
at a component that may need to use reservations when it talks to services—we’re
going to look at the UI and how to tie it to services running at the back end.

6.2 Composite Front End (Portal) pattern
When you think about service consumers, the obvious candidates are other services.
But there are other software components that interact with services, such as legacy sys
tems, non-SOA external systems, and reporting databases. The Composite Front End
pattern deals with yet another type of service consumer—the UI.

 First, let’s clarify that UIs aren’t services. One reason is that they enable several
business areas to converge. For example, a UI might let you enter an order, look up
information about the customer, browse the product catalog, and view open invoices.

 In addition to convergence, UIs are data producers instead of data processors.

NOTE There’s one exception to this, where the UI is the front of a “human
service.” See the Orchestration pattern in chapter 7 for more details.

The main challenge caused by UIs comes from their main difference from services:
UIs try to aggregate or converge data from several services into a cohesive and useful
whole; services want to keep their data isolated from that of other services.
www.it-ebooks.info

http://www.it-ebooks.info/

149 Composite Front End (Portal) pattern
PROBLEM

To better understand the challenges involved in having UIs work with multiple ser
vices, let’s consider an example with just a single point of friction.

 In a project I worked on, we designed a C4ISR (Command, Control, Communica
tions, Computers, Intelligence, Surveillance, and Reconnaissance) system for an
Unmanned Naval Patrol Vehicle (UNPV). One of the services in the system was
dubbed “Common Operational Picture” (COP). The COP’s responsibility was to han
dle anything that’s detected by sensors: ships, planes, radar stations, and so on. One of
the main UI representations of the COP was a map that showed all the detections (see
figure 6.5). Clicking on a map icon presents some related information the COP has
about it, such as ID, nationality, and course.

 The system had a few other services in addition to the COP, including the UNPV
service. The UNPV service was responsible for anything related to the UNPV itself, such
as setting its course and turning it around. The UNPV service had several UI screens
that allowed the user to manage and monitor these functions. Another responsibility
of the UNPV service was to send the UNPV’s location to the COP (locations are the
COP’s responsibility, remember?), so in the COP UI, one of the icons on the map is the
UNPV.

When a user clicks on the UNPV icon on the map, the desired outcome is to display
a pop-up menu with options related to controlling the UNPV. In an object-oriented
model of the COP, everything that is detected by a sensor (ships, submarines, radar sta
tions, and so on) might be considered a “detection.” Under this model, the UNPV
might be a subclass of a detection, so it would accept the same events as any other
detection but respond in a more specialized way, as appropriate to its particular sub
class. Here, however, the COP and the UNPV are completely different services, devel
oped by two different groups and maybe even two different companies.

Figure 6.5 A simplified illustration of a front end for a COP service for a naval
command and control system. You can see a shoreline and some icons using
NATO symbology: a radar, two submarines, and a ship (the UNPV).
www.it-ebooks.info

http://www.it-ebooks.info/

150	 CHAPTER 6 Service consumer patterns
 You may be able to dismiss this specific example and solve it with a specific solu
tion: add an if statement somewhere to call up the correct commands and to interact
with the correct services. The problem is that this example is just the tip of the ice
berg. How do you handle security? Do you need to log in for each service separately?
How do you handle things that all the services need? SOA’s premise is that you’ll have
a sort of LEGO-like enterprise where you can compose different business processes
easily. Is there any way you can get that in the UI?

How can you interact with multiple services, get an integrated, cohesive UI, and ? still preserve SOA principles and modularity benefits?

One option is to write client-specific code, as mentioned previously. Using this
approach, an application is any specific composition of services. For the preceding
example, the application would include the two services (COP and UNPV) and a UI
that ties them together. The upside of this approach is that each application delivers a
consistent experience for the user. After all, a specific or tailored application can be
made to be very cohesive. Additionally there are many tried and tested ways to build
flexible UIs with a proper separation of concerns, such as using model-view-controller
(MVC) and its variations in a multitude of rich client and web technologies. You could
probably reuse some of the UI-side logic from application to application.

 Nevertheless, you do lose flexibility. Any service change that has UI aspects needs
to be modified for each of its UI instances (applications). Similarly, because the UI ties
multiple services together, changes in one service may cause another to malfunction
within the unified UI. You also lose on composability—the ability to replace services
and to create new business flows (relatively) easily. Overall, writing client-specific code
is a bad option in the long term, but it can be made to work as a short-term solution.

 A related option is to tie several services together, but instead of integrating the
services together on the client side you can integrate them on the server side. This
approach has the same pros and cons as the previous solution. Nevertheless, there are
specific circumstances where it does make sense to follow this approach, and you can
read about them in the next section on the Client/Server/Service pattern.

 You can have independent UI components for each service. This will overcome the
limitations I’ve mentioned because each service’s UI can evolve independently, and
you can cram as many of them together as you like to create an application. Unfortu
nately, this approach won’t solve problems like the one in the example. It won’t pro
duce a cohesive UI that works across services.

SOLUTION

What you need, essentially, is to provide mechanisms to glue services together as a
cohesive whole while still keeping them autonomous. That’s what the Composite
Front End pattern is about:

Apply the Composite Front End pattern to aggregate services while still providing

� them with unified client-side services like layout and theming, as well as
coordination services for client-side service integration.
www.it-ebooks.info

http://www.it-ebooks.info/

151Composite Front End (Portal) pattern
The Composite Front End pattern, illustrated in figure 6.6, is about taking the ideas
(and sometimes the technologies) behind web portals and applying them to SOA
services. Web portals provide unified access points that aggregate multiple web
pages. They also provide single sign-on and personalization. SOA interfaces need
that and more.

 The Composite Front End pattern is composed of two main components: the port-
let and the host.

Portlet
The portlets are the building blocks, the composites, that are fused together to form the
UI. The portlets are made of at least two components: the UI logic (views and control-
lers in MVC lingo) and the service proxy (or agent).

 The service proxy is the more interesting component from an SOA perspective—
it’s a client-side representation of a service. The proxy serves as the model for the UI
components. It’s usually recommended that you have a single proxy for each service,
just as it’s recommended that each service maintain its own data store. From a product
management perspective, the service proxy can be seen as part of the service itself.

Host

The host is the value-added part of the Composite Front End pattern. The host pro-
vides the glue that ties the different portlets into a cohesive whole. As such, the host
performs several roles:

 Provides the canvas or surface on which the portlets are displayed
 Controls the lifecycle of the portlets
 Provides capabilities like interportlet communications and single sign-on

Let’s revisit the problem discussed in the previous section. A right-click on a UI com-
ponent (the map) should produce a context menu with options from two services
(COP and UNPV). How would that work in the context of the Composite Front End
pattern?

 One option is that a click would be first intercepted by the host, which would then
dispatch it to any registered portlet. Another option, illustrated in figure 6.7, is for the

Composite Front End

Service B
Portlet

Proxy
Service
interac�on

Service A

Inter-portlet
communica�ons

UI host

UI Logic

Layout

Single sign-on

Portlet lifecycle

Main window/surface

Figure 6.6 The Composite
Front End pattern. Each
Service has a Portlet which
is a Service Agent combined
with a UI logic (most likely
Model in a MVC UI pattern).
The UI host provides
services for the different
portlets to weave them
together into a coherent UI.
www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 6 Service consumer patterns
1.1: Render menu

Figure 6.7 Sample event flow in a Composite
Front End. Events are intercepted by the UI

1: Right-click occurred

1.2: Render menu

Host <<portlet>> <<portlet>>
COP UNPV

2: Display menu
components of individuals portlets. The events
are transferred to the host which dispatches
them to registered portlets for handling. The
host can then render the results for display.

click to be intercepted by the first portlet (the COP in the earlier example), the COP
would then notify the host, and the host would ask all the portlets involved to render
the right-click menu. The COP portlet should pass enough information as part of the
event for the other portlets to do something meaningful with it. Both options are
valid; the second is usually simpler to implement because you don’t have to interfere
with the UI framework to ensure the host gets the events.

 The Composite Front End pattern is a service consumer pattern, so the proxy will
utilize the various service interaction patterns, like Saga, Request/Reply, and so on
(see chapter 5). It can also benefit from the service composition patterns, such as
Orchestration and Service Bus (see chapter 7).

 You’ve probably noticed that I’ve been using the term portlet to describe the service
agents, and you might be wondering why the pattern is named Composite Front End
rather than Portal. The main reason is that the pattern can also be used with rich-
client implementations and not just web implementations. We’ll explore that further
in the technology mapping section.

TECHNOLOGY MAPPING

Normally, you won’t be developing your own Composite Front End container. Instead
you’ll use existing products that provide the framework and usually also the tooling to
help build the portlets.

 The obvious examples are web portal frameworks. Modern enterprise web portals
usually support anything from JSR 168/286 (Java Portlet Specification) to WSRP (Web
Services for Remote Portlets) to open web standards like RSS, plain REST services, or
OpenSocial. There are a lot of products in this area, both commercial like IBM’s Web-
Sphere Portal Server and Microsoft SharePoint and open source like JBoss’s GateIn and
Liferay Portal. Figure 6.8 shows the layout of the UI host as it’s implemented in GateIn.

 Web portals aren’t the only option for implementing the Composite Front End
pattern. You can also implement the concept for desktop (rich client) applications.
An example is the Prism framework from Microsoft’s Pattern and Practices group.
Prism implements the Composite Front End pattern for both Silverlight and WPF
applications. It provides all the functionality of a UI host and lets you write portlets
that consume these capabilities.
www.it-ebooks.info

http://www.it-ebooks.info/

153 Composite Front End (Portal) pattern

Figure 6.8 The layout capability of a Composite Front End UI host as it’s implemented in JBoss’s
GateIn Portal.

The following listing demonstrates how you could use an EventAggregator facility
that allows interportlet communications (needed for the previous map component
example):

Listing 6.4 Sample use of Prism’s EventAggregator

[Export(typeof(SampleView))]

 public partial class SampleView : UserControl

 {

 [ImportingConstructor]

 public SampleView([Import] IEventAggregator eventAggregator)

 {

 InitializeComponent();

 eventAggregator.

 GetEvent<CompositePresentationEvent<ItemSelectedEvent>>().

 }
 Subscribe(OnItemSelectedReceived); Subscribe

to event

}

 public void ItemSelectedReceived(ItemSelectedEvent item)
 {

 //do something with item...
 }

In addition to using web portal frameworks and desktop frameworks, you can roll
your own implementation of Composite Front End. But it’s usually better to choose
one of the available options, because it’s quite an investment to get it right.
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 6 Service consumer patterns
QUALITY ATTRIBUTES

The main reasons to use the Composite Front End pattern are flexibility in adding
and changing services and the desire for a well-integrated UI. Table 6.2 provides
examples for both quality attributes.

Table 6.2 Composite Front End pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Usability

Flexibility

Operability

Changeability

Under normal system use, the end user wants to achieve
business tasks fluently. The system should reuse entered
data (like personal details) between different tasks.

Under normal conditions, changing the billing process to
support a new credit card clearance provider should take
less than one week.

The Composite Front End pattern is generally the preferred way to provide an SOA
UI. But there’s still the problem of integrating UIs that aren’t SOA-aware. What hap
pens when you have an existing UI that you want to expose to services? The next pat
tern will try to answer that question.

6.3 Client/Server/Service pattern
It’s always nice to work on “green-field” projects because they have fewer constraints.
There are no existing systems that you need to work with or around. Most projects
aren’t like that. You have systems in place and existing assets you need to integrate and
work with. This is especially true for SOA projects, which are usually large transition
projects that happen gradually over time—no one will stop the enterprise while you
get the system ready to ship.

In the discussion of the Composite Front End pattern in the previous section, we
looked at building a UI for SOA in a manner that’s akin to a green-field project, creat
ing a new UI, from scratch to consume newly developed services. In contrast, the Cli
ent/Server/Service pattern helps solve the problem of UI and SOA integration when
you already have a working system in place and you want to evolve it to SOA.

 As usual, let’s start with a scenario to get a better grasp on the problem.

PROBLEM

I worked on a project where the company had just finished converting its UI to a
three-tier solution, based on Microsoft Silverlight connected to an application back
end. Our team was tasked with building new services as well as replacing existing busi
ness capabilities with new services that added additional functionality. To help compli
cate things, the technology chosen for the new system was Java and related
technologies. Figure 6.9 shows a simplified illustration of the problem.

 On the left side of figure 6.9, you can see the current system, which has compo
nents for single sign-on (SSO) and some business logic to handle customers, orders,
and invoices. On the right side are the services that are going to be developed, with
www.it-ebooks.info

http://www.it-ebooks.info/

155 Client/Server/Service pattern
UI
(Silverlight)

Back end
(IIS)

Database

Single
sign-on

Customers
business logic

Orders
business logic

Invoice
business logic

Customers
(REST on Finagle)

Sales reps
(REST on Sinatra)

Orders
(REST on Finagle)

Figure 6.9 A three-tier system that
needs to integrate with new services.
Some of the capabilities of the three-
tier system will remain intact (such as
Invoice Business Logic), some will be
migrated and expanded (such as
Customers BL), and some new ones
will be added (such as Sales Reps).

Orders and Customers destined to subsume and expand the current implementations
and a new Sales Reps service that introduces new business capabilities.

 Our “dream” solution might be to use the Composite Front End pattern
(described in the previous section), where you have a portal-like UI that directly inte
grates all the new services. This is possible if the current architecture and technologies
of the current UI are compatible. In the project I’ve descried here, if the UI was based
on Prism and the back end services were based on ASP.NET, it would have been possi
ble to stitch the new services into the existing system. But most of the time that’s not
the case, and you’re left with this question:

How can you connect an SOA to UIs where integration is problematic (for example, ? the client side isn’t SOA-aware or it uses incompatible technologies)?

We’ve discussed the possibility of not compromising on the UI for the services and of
building the optimal service UI. Unfortunately this would require a major rewrite, and
there would be a long wait before the business users could use the new capabilities (a
long time to market). Not to mention that even in the simplistic example illustrated in
figure 6.9, it’s likely that not all the existing functionality is planned to move to SOA in
the near future, which can be another barrier for this kind of move.

 Another option is to integrate the services within the existing UI. The main prob
lem with that approach is that it’s hard to maintain a cohesive and unified user experi
ence when you’re integrating two UI concepts together. The secondary problem with
this approach is the difficulty of integrating technologies due to the different tools or
skillsets of the services and UI developers.

SOLUTION

We need to find a way to integrate the new functionality, begin the SOA transition, and
get a reasonable time to market. This is the answer in most cases:

Apply the Client/Server/Service pattern and use an intermediate server between

� the UI and the services.
www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6 Service consumer patterns
The Client/Server/Service pattern, illustrated in figure 6.10, is a simple one. It sug-
gests integrating existing UIs with new services on the server-side or back end of that
UI. Essentially, on the server you’d have a service agent that represents the service.
The service agent includes a proxy that’s used for communicating with the services.

 The existing service logic on the server must then be changed to integrate with the
new service. The recommended way to do that is to change all the writers to write
both to the existing implementation and to the new one, then get all the readers to
read from the new implementation, and finally retire the old readers. This way, you
can keep the application running and operational while you’re making changes.

 “Wait a minute,” you might say. “How is that different or better than integration on
the UI side?” The main reason integrating the new services on the server side is better
is that the communications mechanism from client to server needs increased security
as compared to server-to-server integration (inside the firewall). Switching security
contexts and maintaining single sign-on can be tricky across technologies. Addition-
ally, there is a wider selection of integration technologies for server integration than
for client-to-server integration. Finally, when it comes to smart clients, there are even
more reasons for server-side integration, such as the increased complexity of main-
taining a uniform look and feel when integrating different architectures.

 The Client/Server/Service pattern works well with the various service integration
patterns (discussed in chapter 7) and it utilizes the message exchange patterns (see
chapter 5). It can also make use of the Identity Provider pattern (see chapter 4) for
passing the security context between the existing system and the new services.

 Let’s take a look at how Client/Server/Service can be used to implement our
example scenario.

Server

Service B
Service agent

Proxy
Service
interac�on

Service A

Business
logic

Server logic

UI

Other
legacy systems

Services
adaptor

Figure 6.10 The Client/Server/Service pattern integrates new services on the
server side to minimize the impact on existing UIs and functionality.
www.it-ebooks.info

http://www.it-ebooks.info/

157 Client/Server/Service pattern

TECHNOLOGY MAPPING

Implementing the Client/Server/Service pattern doesn’t require any specific technol
ogy, although employing integration patterns can help. In particular, tools like ESBs
(see the Service Bus pattern in chapter 7) can help weave disparate technologies and
architectures together. Alternatively, you can integrate services and existing systems by
building on simpler concepts like REST.

 Let’s recap the example scenario. As illustrated in figure 6.9, there’s a Silverlight
service in a classic three-tier setup, and you need to integrate it with a few new ser
vices. This scenario identifies three new services: Customers, Orders, and Sales Reps.
Let’s look at a few code excerpts and see how you could introduce the Sales Reps ser
vice into the existing system.

 The first thing you need to change is the UI itself. Listing 6.5 shows a short excerpt
from the ViewModel of the sales rep page in an MVVM Silverlight UI implementation.

NOTE In case you’re not familiar with Silverlight, Silverlight applications gen
erally use a pattern called Model, View, ViewModel (MVVM). Listing 6.5 is an

excerpt from the ViewModel component. See the further reading section for

more information about MVVM.

Listing 6.5 Code excerpt with C# UI code calling to the server (via web service)

public class SalesRepPageViewModel : INotifyPropertyChanged

{

 private ISalesReps salesRepService;

 private ObservableCollection<Employee> salesReps;

 public ObservableCollection<Employee> salesReps

 {

get{return salesReps;}

set

{

 if (value != salesReps)

 {

 salesReps = value;

 RaisePropertyChanged("salesReps");

 }

}

 }

WCF proxy B

 [Inject] to SalesRep
 public PageViewModel(ISalesReps proxy) web service

{
salesRepService = proxy;
salesReps = salesRepService.GetCurrentShift(); C Web service call

}
}

You can see that the UI has a WCF proxy that exposes web services for the remote busi
ness logic B. You can see the call to retrieve the sales reps on the current shift C.
www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 6 Service consumer patterns

 The Sales Rep service, in contrast, uses a mix of a RESTful interface for setting and
getting state along with AMQP queues to push events out to subscribers, such as the
current shift is an event that’s pushed whenever a new shift starts. The following listing
shows an excerpt of the Ruby code that handles subscription registration and allocates
(binds) queues.

Listing 6.6 Code excerpt with a Ruby back end that handles the Sales Reps service

class Sub < Sinatra::Base

 def self.init

 @@registered_queues={}

 @@rabbit_wrapper=Bunny.new

 @@rabbit_wrapper.init

 …

 end

 put '/salesrep/subscribers/:name' do |n|

 if not @@registered_queues.key?(n)

@@registered_queues[n]=@@rabbit_wrapper.allocate_queue n

 end

 status 200

return hyperlinks to subscriptions and subscribers...

 end

 get '/salesrep/subscribers' do

 puts "Subscribers list"

 if not @@registered_queues.empty?

 @@registered_queues.each { |queue| puts queue }

 end

 end

 post '/salesrep/subscriptions/:name' do |n|

 request.body.rewind

 values=request.body.read.split(",").each do |agent_id|

@@rabbit_wrapper.subscribe_topic n, Topic+sales_rep_id+".#"

 end

 status 201

 #return ref to the subscription

 end

 end

To tie the Silverlight (C#) code with the AMQP messages received, you can use a proxy
on the business logic server that looks like a regular WCF service from one side, so that
the Silverlight client can interact with it, and that also uses REST and AMQP to commu
nicate with the service. The following listing shows an excerpt from the mediation
code, written in C#, that creates subscriptions for changes in sales reps.

Listing 6.7 Excerpt from the Sales Reps service proxy on the back end service

public static void Subscribe(string subscriberName, string s)

{

 var addr = new Uri(HOST_URI, SUBSCRIPTIONS + subscriberName);

 var req = CreateHttpRequest

www.it-ebooks.info

mailto:registered_queues[n]=@@rabbit_wrapper.allocate_queue
http://www.it-ebooks.info/

159 Client/Server/Service pattern

➥(addr, new TimeSpan(0, 0, 0, 30), WebRequestMethods.Http.Post);
 AddBody(req,s);

 var response = CallApi(req);

}

public static void AddSubscriber(String subscriberName)

{

 var addr = new Uri(HOST_URI, SUBSCRIBER+ subscriberName);

 var req = CreateHttpRequest

➥(addr, new TimeSpan(0, 0, 0, 30), WebRequestMethods.Http.Put);
 var response = CallApi(req);

}

Naturally, there’s a whole lot more code involved to provide the actual interface,
mediate between the service and the UI, and provide the business value. But the idea
is that by utilizing the Client/Server/Service pattern, you can deliver the quality attri
butes you need and get a working system.

QUALITY ATTRIBUTES

The main drivers for using the Client/Server/Service pattern aren’t technical. A pat
tern like Composite Front End is a technically superior way to provide services with a
UI. Nevertheless, when you want to migrate an existing system to SOA and you want to
get a faster time to market, or when you don’t want to make minimal changes to an
existing UI while introducing SOA, the Client/Server/Service pattern provides a good
solution.

 Table 6.3 provides two quality attribute scenarios for these two motivations.

Table 6.3 Client/Server/Service pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Usability

Business drivers

Efficiency

Time to market

When the user needs to learn to use new features, the expe
rience should be streamlined to ensure a minimal learning
curve.

The time to market of new changes should be less than six
months.

An additional reason for utilizing the Client/Server/Service pattern that isn’t directly
related to quality attributes is the specialization of your development teams. If you
have teams that are adept in different technologies, you may want to minimize the
interfaces between the teams. Providing a centralized access point by using the
Client/Server/Service pattern can help achieve that.

NOTE It’s important to remember that the Client/Server/Service pattern is

usually a transient pattern. In these cases, it’s a stepping-stone that’s used

while making the move to SOA from an existing system.

www.it-ebooks.info

http://www.it-ebooks.info/

160	 CHAPTER 6 Service consumer patterns
6.4 Summary
This chapter covered three patterns related to how service consumers can better inte
grate with services:

 Reservation —Deals with providing time-bound guarantees that allow consum
ers to work and coordinate with several services (while avoiding distributed
transactions)

 Composite Front End—Describes a pattern for integrating UIs with services in a
way that keeps the SOA premise for agile integration and adaptability

 Client/Server/Service —Shows a way to deal with the transition period of moving
from an n-tier architecture to SOA while avoiding large rewrites

Naturally, a lot of other patterns are relevant to service consumers. UIs have patterns
like Model-View-Controller (and related ones, like MVVM, MVP, and so on), but most
of these patterns aren’t directly related to SOA. One notable pattern (or concept) that
I recommend exploring is Command Query Responsibility Segregation (see the fur
ther reading section).

 In chapter 5, we looked at several patterns related to how services and service con
sumers communicate. In this chapter, we looked at how consumers integrate with ser
vices. The next chapter talks about service integration patterns to complete the
picture of how you can tie services together to deliver complete solutions.

6.5 Further reading
Martin Fowler, “CQRS” (Command Query Responsibility Segregation), http://martinfowler

.com/bliki/CQRS.html.
CQRS is an interesting pattern that focuses on information flow from the UI to services
and back to the UI. It can be used as a complementary approach for client-service
communications.

COMPOSITE FRONT END

OpenSocial, http://docs.opensocial.org/display/OS/Home.
OpenSocial is an open standard pioneered by Google that can be used to implement the
Composite Front End pattern with web technologies.

“Prism,” Microsoft Patterns & Practices, http://compositewpf.codeplex.com/.
Prism is a desktop implementation of the Composite Front End pattern developed as a refer
ence model by Microsoft.

“Project Silk,” Microsoft Patterns & Practices, http://silk.codeplex.com/.
Project Silk is a Microsoft project that implements the Composite Front End pattern for
(Microsoft-related) web technologies.

CLIENT/SERVER/SERVICE

“Model View ViewModel,” Wikipedia, http://en.wikipedia.org/wiki/Model_View_ViewModel.
This is an explanation of the MVVM pattern mentioned in the technology mapping section
of the Client/Server/Service pattern. MVVM is a common UI pattern for WPF/Silverlight
applications, as well as for the upcoming WinRT (Windows 8) applications.
www.it-ebooks.info

http://en.wikipedia.org/wiki/Model_View_ViewModel
http://silk.codeplex.com/
http://compositewpf.codeplex.com/
http://docs.opensocial.org/display/OS/Home
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/bliki/CQRS.html
http://www.it-ebooks.info/

Service integration patterns

In this chapter
 Service bus deployment architectures

 Orchestration vs. choreography

 BPMN and BPEL

The previous chapter looked at how service consumers integrate with services to
achieve their goals. This chapter takes a look at the higher-level integration of ser
vices to achieve goals that are beyond those of a single service, such as several ser
vices collaborating to create a complete business process or a report based on
information from multiple services. As illustrated in figure 7.1, integration patterns
involve all of SOA’s components.

 The following patterns are discussed in this chapter:

 Service Bus—Make services interact in a decoupled manner over different
protocols, dynamic configurations, and routing

 Orchestration—Make business processes agile and adaptable while using ser
vices based on the Request/Reply or Request/reaction interaction patterns

 Aggregated Reporting—Get efficient business intelligence and summary
reports spanning the business when the data is scattered and isolated in
autonomous services
161

www.it-ebooks.info

http://www.it-ebooks.info/

162	 CHAPTER 7 Service integration patterns
Service

Describes

Endpoint Exposes

Messages Sends/receives

Contracts

Binds to

Service
consumer Implements

Policy Governed by

Sends/receives

Adheres to

Component
Relaton

Key

Understands

Serves

Figure 7.1 This chapter’s focus is on service integration—connecting and making

services work together to achieve business goals.

The first pattern we’ll look at is the Service Bus pattern, which is a communication
building block that helps services integrate and collaborate with each other.

7.1 Service Bus pattern
Congratulations, you’re starting a new enterprise and you think that it would be a
good idea to model it using SOA. Since there aren’t any legacy systems around, you
choose to use your favorite technology, a messaging technology to match (perhaps
JMS, REST, or WS) and you are all set. You’ve got a heterogeneous environment. Each
of the services you develop can easily talk to the other services because they’re all built
using the same technology stack.

 Homogeneity may seem a reasonable assumption when you develop everything.
But as Peter Deutsch and a few others noticed early in the 1990s, assuming that the
“network is homogenous” is one of the fallacies of distributed computing.1 The eight
fallacies are assumptions that newcomers to distributed computing tend to make,
which prove wrong in the long run. One of these fallacies is that the “network is
homogenous.”

 The Service Bus pattern can help you mitigate the problem of heterogeneity, but
first let’s explore the problem.

PROBLEM

You can build your homogenous system, and it will hold for a while, but sooner or
later you’ll have to integrate with a third-party vendor, or maybe your company will
merge with another, or you’ll have to integrate a legacy system, or maybe the technol
ogy you’re using will be updated. In other words, regardless of your starting point,
you’re likely to find yourself in a situation similar to the one illustrated in figure 7.2.

1	 Peter Deutsch, “The Eight Fallacies of Distributed Computing,” https://blogs.oracle.com/jag/resource/
Fallacies.html.
www.it-ebooks.info

https://blogs.oracle.com/jag/resource/Fallacies.html
https://blogs.oracle.com/jag/resource/Fallacies.html
http://www.it-ebooks.info/

163 Service Bus pattern

WS

WS

REST

REST

Service 1 Service 2

Service 3

JMS

Service 4

?

?
Figure 7.2 In this Tower of Babel, services
using different protocols—WS-* web
services, REST, and messaging (JMS)—need
to be integrated. Some services may have
more than one endpoint, like Service 3, but
most won’t. Even if you choose to have two
endpoints for each service, what will you do
when a third technology or protocol appears?

You’ll have a bunch of services using different technologies, not all of them under
your control, and you’ll have to integrate them all.

 Your initial thought when this happens might be to add another endpoint. Service
3 does just that—it has both a WS-* endpoint and a RESTful one—so both Services 1
and 2 can interact with it. But this doesn’t solve Service 3’s own problem of consuming
Services 1 and 2 because it still needs to support the two protocols. Not to mention the
problem of integrating Services 1 and 2.

 Different communication protocols, as depicted in figure 7.2, are just one problem
you may encounter when trying to integrate services. Other examples include bridg
ing different security protocols, transforming messages (like XML to JSON), or han
dling big decimals on various platforms and technologies.

 Another related problem has to do with message routing, especially if you use the
Inversion of Communications pattern (discussed in chapter 5). If you use subscrip
tions and messages, having each and every service manage these subscriptions involves
overhead not unlike supporting multiple protocols in each service.

 To solve all these types of problems, you need to find a way to get different services
interacting, regardless of protocols, languages, and other differences.

How can you make services interact in a decoupled manner over different ? protocols, dynamic configurations, and routing?

Having multiple interfaces or endpoints for each service, as mentioned previously,
can be a good option if you want to make sure your service is usable from other ser
vices, but it isn’t a good path to choose for integration. You can’t control all the ser
vices; if you could, you’d be unlikely to have a problem getting them all to speak the
same protocol. In the best case scenario, multiple interfaces will only solve half of the
problem—other services could communicate with your services, but you’d still need
to figure out and write integration code for services you’d want to consume, and you’d
have to do that for each service. That’s precisely the point-to-point integration prob
lem SOA is supposed to avoid.

 The better solution is to use a central piece of software to perform the integration.
One such option is extract, transform, load (ETL) tools, but they’re batch-oriented,
and SOA messaging needs to be in real time or near real time.
www.it-ebooks.info

http://www.it-ebooks.info/

164	 CHAPTER 7 Service integration patterns
SOLUTION

You need the same concept that ETL provides (externalizing integration logic), but
you need it applied to SOA—you need a Service Bus:

Implement the Service Bus pattern and use a unified messaging infrastructure for

� message transformation, mediation, routing, and invocation.

The crux of the Service Bus pattern is abstracting away the communications between
services. To achieve that, the Service Bus pattern combines several enterprise integra
tion design patterns, including:

 Message bus—Connects the different services
 Message router—Determines what message to send where
 Channel adaptor—Converts formats and protocols

As illustrated in figure 7.3, the Service Bus pattern is composed of three main roles:

 Service registration —The bus needs to know where to find services so that it can
invoke them. It also needs to provide a facility to allow services to configure and
expose additional endpoints that other services can consume.

 Message handling —The service bus provides capabilities to invoke registered ser
vices using the endpoint they’ve defined on the bus. The bus also routes mes
sages to the registered service. The service bus also transforms protocols or
messages to make sure that the targeted service can handle the messages.

 Publish/subscribe —The bus provides subscription services (which can be thought
of as a type of registration). Then, when services publish messages, the service bus
can use routing, transformations, and invocation to call the subscribed services.

Service Bus

Service Bus

Service B
Route

Transform

Invoke
Subscribe

Publish

Register

Service C

Service A

Figure 7.3 In the Service Bus pattern, services can interact with each other
using the bus as an intermediary. For instance, Service A registers its endpoint
with the service bus and subscribes to messages such as ones published by
Service C. Both new messages from Service C and requests from Service B can
find their way to Service A, either directly or by being routed and transformed
before the actual invocation of Service A.
www.it-ebooks.info

http://www.it-ebooks.info/

165 Service Bus pattern
WSSWWW

WSSWSWWWWS

WSSWWW

WSSWSWWWW

An architectural diagram of a solution that
uses the Service Bus pattern will usually look
something like figure 7.4—a few services with
a central entity connecting them all.

 In reality, there are three deployment
options for the Service Bus pattern, as illus
trated in figure 7.5: hub and spoke, bus
(peer-to-peer), and federated (a mix of the
other two).

Service Bus

WSWSWSWS

WS

JMS

WS

WWWWWWSSSSSS
WS
W SSSSSS

REST

Figure 7.4 Typical representation of a
service bus—a single entity with all the
services connecting to it

Service Bus

WSWSWSWS

JMS

WS
WWWWWWSSSSSSS
WS
W W W SSSSSSS

REST

WSWSWSWS

WS

JMS

WS

WWWWWWSSSSSSS
WS
W SSSSSS

REST

Service
Bus

1 2

3

Service Bus

WSWSWSWS

JMS

WWWWWWSSSSSSS
WS
W W W SSSSSSS

REST

Service Bus

JMS

WS

REST

Service
Bus

Service
Bus

Service
Bus

Service
Bus

Figure 7.5 Three possible deployment topologies for the Service Bus pattern. First, a hub-and-spoke
setup with a central service B. Second, a bus where each service has a service bus (agent) nearby, and
the service buses themselves connect in a peer-to-peer manner C. Third, a federated setup, where each
service bus is a central service for a few services, but the buses also coordinate so that services can
communicate with services connected to remote buses D.
www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 7 Service integration patterns
The most common setup is hub and spoke, because it’s easier to deploy and maintain.
But the other two options do have some merits that you should consider. Naturally, each
option also has drawbacks. Table 7.1 contrasts the three deployment options.

Table 7.1 A comparison of service bus deployment architectures

Deployment Description Pros Cons

Hub and spoke
(option B
in figure 7.5)

Bus
(option C
in figure 7.5)

Federated
(option D
in figure 7.5)

There is one centralized server
(or two servers for availability)
that all the services connect to.

Each service has a bus or a bus
agent instance. Services com
municate with their local service
bus, and the service buses con
nect with each other so they
seem like a single network.

Multiple small hubs are inter
connected. You can have hub
and-spoke service buses at the
departmental level, and connect
them together in a federated
solution across the enterprise.

– Easy management
– Easy to debug

– Scalable
– Flexible
– High-availability

(with store and
forward)

– Scalable
– Simpler than the

bus option

The server is a
bottleneck (all traffic
goes through it)
Limited scalability (only
scale up)

Complex topology
Relatively hard to config
ure and debug

More complex than hub
and spoke

The Service Bus pattern adds a level of indirection, so it has an effect on the overall
latency of operations. On the other hand, it provides a lot of benefits in terms of flexi
bility and decoupling. You can choose not to use a service bus if you have a small sys
tem with just a few services, but in most cases you’d want a service bus of some sort in
your SOA implementation.

 Unlike most of the patterns in this book (but like most of the patterns in this chap
ter), you’re most likely to implement the Service Bus pattern by choosing an off-the
shelf product and integrating it into your solution, rather than implementing one
yourself (though that sometimes happens, as in the case study in chapter 9). Let’s take
a look at some of the options available today.

TECHNOLOGY MAPPING

Service Bus implementations come in three main flavors: message buses, pure service
buses, and ESBs. Table 7.2 provides a brief explanation of these types.

 Looking back at SOA projects I’ve reviewed or participated in, I’d say the most
common implementations of the Service Bus pattern use ESBs. The most likely reason
for that is that most vendors have ESBs and ESBs offer more features.

 The most common deployment model I’ve seen for the Service Bus pattern is hub
and spoke. That’s likely because this is the most common deployment model for ESBs
and it’s the most cost-effective in terms of licensing prices. (ESBs are usually priced per
server, so if you have a lot of them it can get costly.)
www.it-ebooks.info

http://www.it-ebooks.info/

167 Service Bus pattern
Table 7.2 Service Bus implementation types

Implementation
type

Details Sample products

Message bus

Service bus

ESB

Message-oriented middleware or solutions
built atop message-oriented middleware can
be used as service buses when your services
use messaging (see the Inversion of Commu
nications pattern in chapter 5).

In contrast to message buses, service buses
support SOA concepts like contracts. While
they can support publish/subscribe, they also
support the Request/Reaction and Request/
Reply patterns.

ESBs are service buses that also support
additional patterns or capabilities and are
packaged as single products.

– Java–Apache ActiveMQ,
MQSeries

– .NET–MassTransit
– Other—RabbitMQ, 0MQ

– Java—Apache CXF, Apache
Camel

– .NET—NServiceBus, Windows
Azure service bus

– Java—Mule ESB, Fuse ESB,
WebSphere ESB

– .NET—Neuron ESB

Nevertheless, when you evaluate Service Bus implementations, I recommend not dis
missing the bus implementation (option 2 in figure 7.5). Having Service Bus instances
running on each server goes a long way toward availability and flexibility.

DEFINITION Enterprise Service Buses (ESBs) are products that cover a lot of
service infrastructure aspects in addition to implementing the Service Bus
pattern. In addition to service mediation and routing, ESBs will usually add
capabilities like orchestration (see the Orchestration pattern in section 7.2),
provide management capabilities (see the Service Monitor pattern in chapter
4), help deliver some reliability features (such as the Virtual Endpoint pattern
in chapter 3), and so on. Additionally, ESBs usually come with a lot of connec
tors for easy integration with third-party systems and protocols.

As mentioned previously, you’re more likely to buy a service bus than to implement
one, but you still need to configure it. Sometimes that will be done using visual design
ers, sometimes with XML, and sometimes in code.

 The following listing shows Apache Camel’s Scala DSL (domain-specific lan
guage) being used to configure a simple route for routing messages according to the
tenant ID. (This assumes an earlier route authenticated the request so that the ten
ant ID is correct.)

Listing 7.1 Routing with Apache Camel

package com.rgoarchitects.camelDemo.routes

import org.apache.camel.scala.dsl.builder.RouteBuilder

class SlaRoute extends RouteBuilder {
 when (req=>RouteValidator.checkSlaLevel(req.in("TenantId"))==High)

➥ --> "http://betterServiceUri"
 otherwise --> "http://waitInLineUri"
}
www.it-ebooks.info

http://waitInLineUri
http://betterServiceUri
http://www.it-ebooks.info/

168 CHAPTER 7 Service integration patterns

Another example is shown in the next listing—it shows the XML configuration for
declaring a Jersey (REST -JAX-RS JSR-311 implementation) endpoint in Mule ESB. This
sample configuration file uses Mule’s Jersey connector (www.mulesoft.org/jersey).

Listing 7.2 Declaring a REST endpoint in Mule ESB

<?xml version="1.0" encoding="UTF-8"?>

 <mule xmlns="http://www.mulesource.org/schema/mule/core/2.2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 xmlns:jersey="http://www.mulesource.org/schema/mule/jersey/2.2"

 xmlns:vm="http://www.mulesource.org/schema/mule/vm/2.2"

 xsi:schemaLocation="http://www.springframework.org/schema/bean

 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

 http://www.mulesource.org/schema/mule/core/2.2

 http://www.mulesource.org/schema/mule/core/2.2/mule.xsd

 http://www.mulesource.org/schema/mule/jersey/2.2

 http://www.mulesource.org/schema/mule/jersey/2.2/mule-jersey.xsd

 http://www.mulesource.org/schema/mule/vm/2.2

 http://www.mulesource.org/schema/mule/vm/2.2/mule-vm.xsd">

 <model name="CategoriesResource">

 <service name="categoriesResource">

 <inbound>

 <inbound-endpoint address=

➥"jersey:http://localhost:8991/" synchronous="true"/>
 </inbound>

 <component class="com.rgoarchitects.sample.Categories"/>
 </service>

 </model>

 </mule>

The interesting lines in this listing start with the service tag, where you configure an
inbound endpoint and tell Mule to call the class (com.rgoarchitects.sample
.Categories). The result of this configuration is that the URL http://localhost:8991/
will go to a categories REST API defined in the class. Note that once you have the end
point set up, you’d probably wrap that with a route that will perform authentication
and authorization and expose it to the outside world.

Figure 7.6 shows a screenshot of NServiceBus (a .NET service bus implementation)
modeling tools for Visual Studio that can be used to design publishers, subscribers,
and messages for service-to-service interactions.

 To summarize, there are many Service Bus pattern implementations out there, and
they come in all shapes and sizes. Depending on your technology stack and needs, you
can likely find a solution that will work for you.

QUALITY ATTRIBUTES

The main reason to use the Service Bus pattern is the need for loose coupling of ser
vice interactions. The Service Bus pattern provides flexibility, openness, and contrib
utes toward the adaptability of SOA implementations.

 Table 7.3 presents a few quality attribute scenarios.
 Another integration pattern that’s geared toward flexibility is the Orchestration

pattern. Let’s explore that next.
www.it-ebooks.info

http://localhost:8991
http://www.mulesource.org/schema/mule/vm/2.2/mule-vm.xsd
http://www.mulesource.org/schema/mule/vm/2.2
http://www.mulesource.org/schema/mule/jersey/2.2/mule-jersey.xsd
http://www.mulesource.org/schema/mule/jersey/2.2
http://www.mulesource.org/schema/mule/core/2.2/mule.xsd
http://www.mulesource.org/schema/mule/core/2.2
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
www.mulesoft.org/jersey
http://www.it-ebooks.info/

169 Service Bus pattern

Figure 7.6 Designing message flows, subscribers, and publishers with NServiceBus tools
for Visual Studio. The designer shows two messages—a submit order command and an order
accepted event as well as a publisher service with two subscribing services.

Table 7.3 Service Bus pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Availability

Changeability

Flexibility

Interoperability

Effort to change—
deployment

Replace component
(vendors)

Interfaces

Integration

Under normal conditions, adding a server for scaling
purposes should take no longer than four hours (includ
ing installation, and configuration).

During development, replacing a credit card processing
gateway should take one week or less.

During development, adding a REST API to the system
should be supported.

During operations, integrating a new subsystem should
take less than two calendar months.
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 7 Service integration patterns
7.2 Orchestration pattern
Service Bus, the pattern presented in the previous section, enables services to commu
nicate in a decoupled manner. That’s a good start—it lowers the technical barriers to
getting services to talk to each other. The next challenge is the business processes.

 What’s a business process? As you know, services partition enterprise capabilities
into functional areas, but for the business to accomplish anything meaningful, ser
vices need to work together. Even a simple shopping cart scenario needs information
from the customer, orders, invoices, inventory, and so on. The sequence of related
messages between services required to achieve a business goal is a business process.

 The Orchestration pattern provides a way to build business processes in a flexible
way, but first things first. Let’s take a look at the problem that would make us want
something like this.

PROBLEM

One project I worked on was an e-commerce site for produce (fresh vegetables, fruit,
and dairy products). Once the produce was ordered, it was picked up from participat
ing farmers and grocers.

 Figure 7.7 shows the basic business flow once a shopping cart is submitted. The
user fills a cart from multiple shops and submits the cart, which creates an order. The
order is then billed, and a delivery person goes from grocer to grocer to pick up the
goods and fulfill the order (reporting back to the system about the items that were
delivered).

 This looks simple and clean, so let’s say you develop that. You now have a Cart ser
vice that calls the Orders service, which does its thing and then calls Billing.

 If you do that in real life, you’ll soon discover that the process is wrong. True, when
you order a carton of milk, the preceding process works. But you’re dealing with pro
duce here, so when you order a kilo of tomatoes, you might actually get 0.96 kilos or
1.051 kilos. Also, you’re dealing with small businesses here, so they might be out of a
certain product at the time of pickup. That means you need a new process: after regis
tering the order you secure the order amount with the credit card company, and dur
ing fulfillment you update the order and set the final billing. This means you’d need
to change your process so that orders can be updated from Fulfillment and not just
from the Cart. You’d also need Billing to be called twice (once to secure payment and
once to process the billing).

 Now let’s consider what will happen when you enter another market and find out
that the fulfillment works in some other way. Not to mention, sales processes where
you want to add promotions, coupons, and other options.

 Business processes are bound to change, either because you gain a better under
standing of the business or because business requirements change (perhaps a new

Cart Orders Billing Fulfillment
Figure 7.7 A basic e-commerce flow—
the user fills a shopping cart and places
the order. The user is then billed and the
order is sent to fulfillment.
www.it-ebooks.info

http://www.it-ebooks.info/

171 Orchestration pattern
competitor enters the market). You can’t go on hand-wiring services to other services
every time that happens—you need a way to make the business processes more flexible.

How can you make business processes agile and adaptable while using services ? based on the Request/Reply or Request/Reaction interaction patterns?

Obviously, hardcoding the interaction pathways as described previously won’t get you
very far. We looked at just one business process, and a solution would usually have
quite a few of those, and they’d be changing. Hardcoding would involve too much
work for several reasons:

 You’d have to create new versions of a service just to change the flow.
 The business process would be scattered about and hard to isolate.
 The services would be hard to change when the need arises.

Section 7.1 introduced the Service Bus pattern, which, among other things, provides
message routing, and you might be thinking you could use the flexibility it introduces
to help solve this problem. Routing at the Service Bus level will help with most of this
problem, particularly externalizing the routing logic and making it easy to change. In
reality, Service Bus implementations lack the sophistication needed to implement
complex business processes. They’re more suited to mediating between services than
controlling their interactions. Not to mention situations where the complete process
includes human workflow (steps that require human interactions).

 In many cases, especially when the business processes are simple, the Inversion of
Communications pattern (chapter 5) can be enough. The problem with events is that
they limit the visibility of the complete business process, making it hard to understand
what’s happening and why. (See the sidebar on orchestration vs. choreography in the
next section for some further discussion.)

 To get all the properties we want, you need something different—you need
Orchestration.

SOLUTION

Implement the Orchestration pattern to externalize business processes from the

� services and allow these processes to be governed, controlled, and changed
dynamically.

The Orchestration pattern, illustrated in figure 7.8, is relatively simple—in essence,
it’s about adding a workflow engine that’s external to the services. You model the dif
ferent business processes as flows of service interactions, and let the engine execute,
monitor, and manage them to carry out the process.

 The main component is the workflow engine. It manages workflows, providing
users with the means (usually visual) to define, edit, and delete workflows. The work
flow engine also hosts workflow instances and monitors their progress.

 Each process is instantiated as a workflow instance that can schedule and manage
the process itself. The workflow instance is capable of forking (sending requests in
parallel), joining (waiting for replies or reactions from multiple services), and han
dling failures. A workflow can be a short-lived process, but in most cases it will be a
longer running process.
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 7 Service integration patterns
Initiate business process

Workflow
engine

End Point

Workflow instance

Manage
Process

Route
Request

Host
workflows

Schedule

Service

End Point

Service

Manage
workflows

Monitor
workflows

Invoke services

Invoke services

Figure 7.8 In the Orchestration pattern, an external workflow engine activates a
sequence (simple or compound) of services to provide a complete business service.

We’ve already covered a pattern for long-running processes—the Saga pattern (chap
ter 5). In a sense, the Orchestration pattern is a particular implementation of the Saga
pattern where the coordinator is external to all the participants. The Saga pattern is
more generic, as it can also be implemented without a central component that knows
what steps need be done and when to complete the business process. This has the
advantage of keeping services more autonomous, with emergent and flexible pro
cesses, but the cost is a lack of clarity as to what constitutes a business process and
resulting difficulties in monitoring and understanding the current state of those busi
ness processes.

 Note that most workflow engine implementations don’t hold the workflow
instance live as it’s running but rather save its state between calls and retrieve it when
a new message arrives (a process called dehydration and hydration).

Orchestration vs. choreography
The problem statement for the Orchestration pattern specifically mentions using the
Request/Reply and Request/Reaction communication patterns, which begs the
question, “Why not use publish/subscribe or event-based communications (such as
the Inversion of Communications pattern in chapter 5) with the Orchestration pat
tern? It turns out that Orchestration isn’t a good fit in this situation.

Orchestration is a metaphor for a conductor telling each service what to do. Events
lend themselves to another arts-related metaphor—choreography: each service plays
its part, independently publishing events that occur within it and subscribing to
events it needs to perform its role. The resulting “dances” are the different business
processes of the organization.

Choreography isn’t described as a pattern in this book because it’s more an emer
gent property of using events than a deliberate pattern. Choreography provides even
greater flexibility than the Orchestration pattern does, and it allows for emergent busi
ness processes and behaviors not planned in advance.
www.it-ebooks.info

http://www.it-ebooks.info/

173 Orchestration pattern
On the downside, choreography lacks the explicitness of business processes that the
Orchestration pattern provides. To compensate for that and ensure that the system
will be correct, services should be developed to be as autonomous as possible (see
the Active Service pattern in chapter 2) to keep the problem each solves as localized
as possible. Also, it’s recommended that you externalize the events into an event cat
alog to allow for both reuse and system-wide governance (see the further reading sec
tion for an article I wrote on event ownership).

Notations like BPMN 2.0 (Business Process Model and Notation) support the design
of choreographies in addition to workflows.

Figure 7.9 shows the revised flow of order handling in the produce e-commerce solu
tion described in the problem description. As mentioned previously, the process
needs more coordination between the different services than the original flow in fig
ure 7.7 showed.

 You can study the figure for the details of the flow, but the more important point
here is that it’s modeled as a workflow with several decision points that can alter the
process. You can abort the whole ordering process depending on your ability to secure
the funds for the order B. Changing the workflow will change the business process

O
rd

er
 c

om
pl

et
io

n O
rd

er
s

C
ar

t
B

ill
in

g
Fu

lfi
llm

en
t

Finalize cart

Prepare initial
order

Secure funds

Update actuals

Update order
Finalize order

Process biling

Update delivery
status

Cancel order

li

2

1

Parallel
gateway

Approved

Timeout

Event-based
gateway

Timeout

12 hours since order

Finished

Start event
Signal catch
Interrupting

Figure 7.9 An updated workflow for processing produce orders. This flow is much more complex than the initial
naïve version. When initializing the order, you need to secure the maximum order value with an external credit
card processing company, and only when the order is finalized and you know the exact amounts do you calculate
and bill the actual value.
www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 7 Service integration patterns
and, depending on the capabilities of the services involved, it may not require any
code changes. A timeout on delivery causes the whole process to be aborted C; this is
a new requirement.

 Used properly, the Orchestration pattern can add a lot of flexibility to SOA as well
as keep you from losing sight of the forest for the trees—the many services you may
have in your system. The main risk you run when using the Orchestration pattern is to
overuse it, which can result in SOA antipatterns like Nanoservices (discussed in chap
ter 8). To help avoid this problem, you can partition the workflows between the exter
nal flow (Orchestration) and internal flows (the Workflodize pattern in chapter 2).

 Orchestration also works well with the Service Bus pattern discussed in the previ
ous section.

TECHNOLOGY MAPPING

Like the Service Bus pattern, you’re most likely to implement the Orchestration pat
tern by choosing an off-the-shelf implementation rather than creating one from
scratch. Orchestration is implemented by two classes of tools: ESB engines that also
provide some orchestration capabilities, and business process management (BPM) sys
tems that are built for handling orchestration and workflows.

 The choice of one type of tool over the other depends on the complexity of your
processes, the performance you need, and other factors. Table 7.4 provides some gen
eral guidelines for these two classes of tools (specific products can be more versatile
than the table may indicate).

Table 7.4 ESB versus BPM tools as orchestration engines

ESB BPM

Main purpose

Workflow

Performance

Human workflow

Saga support (long
running interactions)

Integration and virtualization of
services

Basic workflows

Built for high message flows

Not supported

Suitable for supporting sagas in
event-based systems by provid
ing store and forward services

Running and monitoring business
processes

Extensive support including loops and
rules

Built for complex processes

Supported by some implementations

Suitable for supporting sagas by keeping
track of and following the state of long-
running interactions

Note that you can combine both product types by having the ESB invoke processes that
are managed by the BPM, as well as having the ESB virtualize the endpoints of the ser
vices used in the BPM processes.

 Another option is to use more basic workflow engines and build your own service
orchestration on top. In most cases that’s not the best option, because it wastes a lot of
effort. There are open source options (like jBPM) available at no cost.
www.it-ebooks.info

http://www.it-ebooks.info/

175 Orchestration pattern
Figure 7.10 A sample BPEL diagram in Oracle JDeveloper. Notice the detail level here on a simple flow as
compared to the high-level view in the BPMN diagram in figure 7.9.

There are two main notations used by the various workflow and BPM tools:

 Business Process Execution Language (BPEL)
 Business Process Model and Notation (BPMN)

An example of a BPMN diagram was shown in figure 7.9. BPEL is a more technical,
developer-oriented approach to describing interactions. Figure 7.10 shows a simple
BPEL process on a commercial designer (Oracle JDeveloper).

 Both BPMN and BPEL are common notations. Some tools use one or the other and
some tools support both. Table 7.5 provides a short comparison of the two formats.

 When using tools that support both notations, you can combine the notations so
that BPMN is used by business analysts to describe the process at high level, and these
processes are then expanded by more technical people using BPEL.

 Regardless of the specifics of the technology used, all Orchestration implementa
tions externalize the process from the services and provide flexibility to a SOA. There
are few other quality attributes that Orchestration promotes, and we’ll examine them
in the next section.
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 7 Service integration patterns
Table 7.5 Comparing BPEL and BPMN

BPEL 2.0 BPMN 2.0

Notation
characteristics

Strengths

Human workflow

Standard

REST support

Developer oriented

– Includes low-level concepts like com
pensation, fault handling, and so on

– Built for integration with WS-*
standards

Not supported

WS-BPEL by OASIS

No—requires WSDL 1.1 contracts

Business oriented—more abstract

– Easy to model complex interactions
(higher level of abstraction)

– Greater readability

Supported

Visual notation defined by OMG

Possible

QUALITY ATTRIBUTES

The main motivation for choosing the Orchestration pattern is flexibility, allowing the
business to respond quickly to changing business needs, both at the macro level and
at the practical technical level.

Flexibility isn’t the only quality attribute promoted by the Orchestration pattern. It
also permits increased runtime governance (by monitoring flows in progress), as well
as increasing the chances to reuse services in multiple processes.

 Table 7.6 identifies a few quality attributes scenarios to demonstrate these quality
attributes.

Table 7.6 Orchestration pattern quality attributes and scenarios

Quality attribute Concrete attribute Sample scenario

Manageability

Changeability

Flexibility

Flexibility

Understanding the system’s
health

Replacing components
(vendors)

Business flows

Composability

Under error conditions, an administrator will be
able to understand the problem and performance
bottlenecks of different business flows.

During development, replacing a credit card pro
cessing gateway should take one week or less.

During development and operations, adding time-
outs to all ordering processes will take less than
one week.

During development, a developer will be able to
find and reuse services in multiple business
processes.

The next pattern also deals with integration—it takes a look at how you can get an
integrated view of the data needed for reporting, despite SOA encouraging each ser
vice to hold its own data internally.
www.it-ebooks.info

http://www.it-ebooks.info/

Aggregated Reporting pattern	 177
Voice
interactons

Customers

Reps

Orders

Classificatons

7.3 Aggregated Reporting pattern
Getting an SOA system right is hard, not so much

because of the technical problems but because

it’s hard to understand a business and figure out

how to effectively partition it into services. Let’s

assume that you somehow have managed that

and have your business logic neatly divided into

services. You then develop your business logic

and business processes, and you’re almost done.

All that’s left is to produce a few reports.

Well, maybe more than a few. Perhaps dozens Figure 7.11 Services in a call center

and dozens of reports. Assuming you did a good system. Customers make orders and
then call a call center to complain and job of partitioning your business into services,
resolve problems. The customer’s

many of these reports will fall within the boundar- interactions with the call center
ies of your services. But you’ll need the Aggre- representatives are recorded and

analyzed. gated Reporting pattern to deal with the rest of

the reports—those that require data from several services.

PROBLEM

Let’s try to visualize the problem. One project I worked on involved an analytics plat
form for call centers. The real-life system had a lot of services, but to illustrate this
problem we’ll examine just five of them.

 These are the five services in figure 7.11:

 Voice Interactions—Stores all the past and current calls customers have made to
the call center as well as data relating to calls, such as call transcripts (after
speech-to-text processing), emotions detected, phone numbers, and so on.

 Customer—Provides access to all the data about a customer. Most of this data is
imported from other systems, such as the CRM system. The Customer service
also does identity resolution (for example, given a cell number, it can find the
user ID).

 Reps—Provides access to information about the call center representatives. Data
comes here from the operational system that the sales reps use when they inter
act with customers.

 Orders—Provides access to information about customer’s orders.
 Classifications—Classifies calls according to business-driven criteria, such as calls

by VIP customers that canceled their service. Classifications occur in real time
(on incoming calls). It’s task-driven, so any knowledge it has about customers or
interactions is transient; it only stores the category definitions.

Management wants to know if there are any correlations between sales reps’ perfor
mance and the loss of business in general and the loss of VIP customers specifically.

 All the information you need is in the system. The Voice Interactions service con
tains all the calls’ classifications as well as the customer and sales rep IDs—you can
www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 7 Service integration patterns
?

find out which representatives handled which customers from there. The Customer
service has the information about which customers are VIPs and which aren’t, plus it
will allow you to access orders to find out how much business was generated by each
customer.

 All that’s left to do is to build the SQL query that takes all this data and produces
the desired report, right? Unfortunately, there are two problems with this approach.

 One problem is the assumption that all services use an RDBMS as persistent stor
age. A few years ago, that might have been a reasonable assumption, but today with
the rise of NoSQL databases, that may not be the case.

The other, more important, problem with the “use SQL to generate the report”
approach is that it introduces a lot of coupling between the different services. By
using a single SQL query to solve the problem, you need to know and understand the
internal structures of each service. You constructed services with API-level integration
to avoid this very problem.

 The question, then, is how to generate reports in a way that doesn’t violate SOA
principles on the one hand, and that produces the reports efficiently on the other.

How can you get efficient business intelligence and summary reports spanning the
business, when the data is scattered and isolated in autonomous services?

One possible solution would be to create the report at the consuming end (in the UI).
The consumer would call each service to get its part of the data, and perform all the
grouping, crosscuts, and so on in the UI. This solution is rarely a good idea. It puts the
burden of understanding the data and of optimizing the query on the shoulders of
each report consumer. In this case, the consumer would first need to go to the Cus
tomer service to find out which of them are VIPs and then go to get their total orders,
but how would you connect that data to each rep’s performance? Which order of per
forming these queries would run faster—should you call Customers or Reps first? And
that’s just a single report.

 Another option is one we’ve already discussed—going straight to the data. For
example, create an SQL query that will go into all the services’ databases, join the data,
and get all the relevant bits. You’ve seen why that’s not a good idea.

 Maybe the answer is “aggregation services,” also known as “entity aggregation.”
This is a notion that appeared in the early days of SOA, and the idea is that when the
granularity is such that the view of an entity is spread over multiple services (meaning
the granularity was wrong), you can create a single service that creates a holistic view
of that entity. The same idea can be applied to creating an aggregated entity for the
purpose of each report type, and you can copy over some data from the relevant ser
vices (so you won’t have the problem mentioned for the consumer-side reports). It
turns out that aggregation services is a bad idea for its original purpose, and it isn’t a
great idea here either. Who would be the master of the data? Does each entity aggre
gate have its own copy of the data? Is the data federated from each service? What do
you do when data changes? If you can make it work, how many of these entity aggre
gates will you need to properly provide reporting capabilities?
www.it-ebooks.info

http://www.it-ebooks.info/

179Aggregated Reporting pattern
The answer is that you can have one aggregated service, and to make it work it needs
to follow specific guidelines. I call this the Aggregated Reporting pattern.

SOLUTION

Use the Aggregated Reporting pattern to create a service that gathers immutable
copies of data from multiple services for reporting purposes.

Before we delve into the differences between “aggregated reporting” and “entity
aggregation” and why aggregated reporting is a good idea, let’s first look at exactly
what this pattern is. Unsurprisingly, the Aggregated Reporting pattern is about aggre-
gating data from the services and providing reporting facilities above the data to make
it useful.

 As illustrated in figure 7.12, the pattern consists of two main components: a service
and a data back end.

 The service component is the SOA endpoint of the Aggregated Reporting pattern,
and by “SOA,” I mean it utilizes standard SOA technologies like web services or messag-
ing. The service exposes two types of endpoints:

 An output endpoint that provides reports or queries that other services and ser-
vice consumers can use

 An input endpoint that collects data from other services, either by subscribing
to their events or by allowing other services to push data

The second component, the data back end, is the core component of the Aggregated
Reporting pattern. This component has three data stores:

 A landing area where data from external interfaces is temporarily stored. This is
done mainly for security purposes and to isolate the SQL input endpoint from
the raw data.

�

data

Data back end

Out

Load

Ingest

Clean

Join

Transform

Transpose

Produce
reports

Report

Raw data

ODS/DM

SQL endpoint

SQL endpoint

Landing area

Service

Endpoint

Report

Request

Subscribed/
pulled

Pull data

Endpoint

Figure 7.12 Aggregated Reporting pattern. Data is collected passively and
actively from all the services, it’s aggregated, and then it’s exposed to
external reporting tools.
www.it-ebooks.info

http://www.it-ebooks.info/

180	 CHAPTER 7 Service integration patterns
SQL

 A raw data store. This can be a temporary storage area to coordinate data that
arrives asynchronously or a long-term data store that can be used as the basis for
advanced analytics (answering questions you don’t yet know you need to ask).

 A reporting data store where data is kept in a reporting friendly structure—
most likely an RDBMS.

The main active functionality of the data back end component is the Transformation
service (which you can think of as an implementation of the Active Service pattern dis
cussed in chapter 2). The Transformation service’s responsibility is to rearrange all
the incoming data in a way that’s useful for reporting. An Aggregated Reporting
implementation will have extensive transformation components that will sift through
the raw data, clean it, aggregate it, and build useful representations of it.

The data back end also has two endpoints: an input endpoint for importing data
and a reporting endpoint that allows for querying of data. These endpoints are
unique, because they use SQL and not technologies usually associated with service ori
entation. The main reason for this is that standard tools for both importing data and
for business intelligence and reporting over data have been built on top of SQL for
decades, and forcing them to use other technologies is usually not practical (in terms
of effort versus benefit). You have to treat these endpoints as bona fide SOA end
points, isolating them from internal data structures, providing contracts, and so on.
We’ll discuss this in more depth shortly.

 There are a lot of components that play together here, so let’s take a look at the
pattern from another perspective. Figure 7.13 illustrates how data can flow into the
Aggregated Reporting implementation.

Aggregated Reportng

 endpoint

Listening endpoint
(event queue)

1

2

3

Listening

ETL

SQL4

Figure 7.13 Data sources for an Aggregated Reporting implementation. The
illustration shows four ways you can get data into an Aggregated Reporting
implementation: actively going to the data B, listening to events C, SQL
push by other services D, and SQL push by ETL tools E.
www.it-ebooks.info

http://www.it-ebooks.info/

181 Aggregated Reporting pattern
 Essentially there are four ways to get data into an Aggregated Reporting
implementation:

 Actively calling other services—The Aggregated Reporting implementation can use
other services’ contracts to sample them for new data. This is probably the worst
way to go about getting data because the Aggregated Reporting implementation
has to know about all the other services to be able to do that. Also, all the ser
vices’ contracts should be expressive enough to export all the needed data.

 Passively getting data from services—There are two subtypes here. First, services
can call the Aggregated Reporting server with data they wish to expose to
reports, such as by submitting a CSV file with exported data to the Aggregated
Reporting service API. The second variant is to have the Aggregated Reporting
implementation subscribe to events published by other services.

 Service SQL push—Where services export a view of internal data, the services can
establish a connection to the Aggregated Reporting landing area, create their
own tables, and save data for reporting there.

 ETL SQL push—This is similar to the preceding option, but the responsibility of
getting data from services and getting it to the Aggregated Reporting imple
mentation is on an external tool. This isn’t recommended because the ETL tool
is likely to violate the services’ autonomy to get the data. From the Aggregated
Reporting side, though, it’s still OK because the ETL tool doesn’t know the
internal implementation or representation of data within the service.

Once you have the data in, what happens next? Figure 7.14 illustrates the process that
the data goes through once it arrives at the Aggregated Reporting service. In essence,
what happens now is the transform and load process.

 The first step is getting the data into the Aggregated Reporting implementation.
It’s recommended that the SQL endpoint use a landing area that’s separate from the
raw data store to provide a security buffer.

Landing

Raw data

DW/ODS

Views

Transformaton
service

1

1

2

3

4

5

Load
service

2

Report
service

Figure 7.14 Data processing
within the Aggregated Reporting
pattern. First you accept the data
from external sources B. Then you
save it to a raw data store C,
process it and prepare it for
reporting D. The data is then
saved into a data mart or an ODS
E and exposed F via a reporting
interface or views or both.
www.it-ebooks.info

http://www.it-ebooks.info/

182	 CHAPTER 7 Service integration patterns
The next step is to get the data into the raw data store. There are two options here.
Either you keep the files the way they arrived at the landing zone, or you can aggre
gate data from multiple files into entities. Both options hold data before transforma
tion, but the second option makes the next step easier (at the cost of more
complication in the raw data store)

 The next step is to process, cleanse, aggregate, and prepare the data for reporting,
creating star schemas, building cubes, and so on.

 The fourth step is to store the data in a form ready for reporting. You can make a
choice between longer-term and shorter-term solutions. If you opt for a shorter-term
solution, you can make the reporting data store an operational data store (ODS)—a
database that’s structured like a data mart (containing denormalized data) but with
short retention. The second option is to create a data mart for reporting. It’s more
common to store the raw data for the long term when choosing to use a data mart for
reporting.

 The last step is to expose the reports. This is done in two ways:

 Via a service interface for queries and predefined reports
 Via SQL endpoints that expose views that serve as a contracts and edge compo

nents to isolate the internal data mart structure from consumers

You should now have a better understanding of what Aggregated Reporting is, but
there are still a few open questions we need to address:

 How is aggregated reporting SOA-friendly?
 How does aggregated reporting differ from direct access to each service’s inter

nal database?
 How is aggregated reporting different from entity aggregation?
 What are the drawbacks of using aggregated reporting?

Let’s take these questions one at a time.

How is aggregated reporting SOA-friendly?

How can an Aggregated Reporting implementation get data from several, if not all, of
the services and not violate SOA principles? What makes Aggregated Reporting a ser
vice is that the data it holds is immutable, and the Aggregated Reporting service isn’t
the owner of changes in the data. It holds a representation of unchanging data for use
in its reporting service it provides. In this regard, it’s recommended that data kept by
an Aggregated Reporting service be idempotent (versioned) so that the relations it
expresses will always be true (for the versions involved). In any event, the source of the
“truths” is the original services whose data is mirrored.

 On the structural level, the Aggregated Reporting service is SOA-compatible
because it externalizes its capabilities via well-defined interfaces. The incoming SQL
endpoint needs to be configurable via the regular service API—a service should con
tact the service API to request an allocation of space, and it will then be guaranteed
connection credentials to its own landing area. The implementation specifics can vary,
www.it-ebooks.info

http://www.it-ebooks.info/

183 Aggregated Reporting pattern
but the idea that the interaction with the incoming SQL endpoint is to be controlled
via a contract should hold.

 As for the output SQL endpoint, the separation of internal data structures and the
notion of a contract should be implemented by a layer of views. The views represent
the external agreement, and the internal implementation doesn’t have to match and
can vary from the external one.

How does aggregated reporting differ from direct access to each service’s internal database?

First, as already mentioned, the internal structure of a service might not be an RDBMS.
 Second, exposing SQL at each and every service increases the risk that this won’t be

done correctly—either by exposing internal data structures or mangling security, and
so on.

 The real benefit of using the Aggregated Reporting pattern (instead of directly
accessing each service’s internal database) is that the Aggregated Reporting service’s
internal structure is built for reporting. It will likely provide much better performance
than accessing even a single service directly, because the service’s internal data stores
are transaction-oriented (OLTP) and not reporting-oriented. That’s even more true
for reports that need data from multiple services.

How is aggregated reporting different from entity aggregation?

They both have the word aggregation in their names, but the similarity ends there. The
Aggregated Reporting pattern means building a service that keeps data ownership
with the different services. It isn’t focused on a single entity, it’s built on immutable
data, and it’s geared only toward reporting. Entity aggregation has none of these
traits, as was discussed in the problem section.

What are the drawbacks of using Aggregated Reporting?

I personally believe Aggregated Reporting is the best way to handle reporting in SOA.
But like every design pattern, it comes with its own tradeoffs.

 The main tradeoffs here are the relative complexity of the solution (as compared
to reporting on the service consumer side and reaching out for data from other ser
vices as needed for each report). These tradeoffs translate to longer time to market,
increased latency in terms of freshness of data (data has to be processed before it’s
available), and increased storage costs resulting from duplication of data.

 The benefits, as I’ve already mentioned, are high performance of reports, a cohe
sive view of the data, the separation of responsibilities, and retaining SOA’s flexibility
benefits. Additional non-SOA benefits of the Aggregated Reporting pattern include
the promotion of concepts such as command-query responsibility segregation (CQRS)
and master data management (MDM); resources on both are pointed out in the fur
ther reading section.

TECHNOLOGY MAPPING

You’ve seen the structure of the Aggregated Reporting pattern in the previous section,
and you’ve seen that it has a lot of functionality. That means there are plenty of ways
to implement it and plenty of technologies that can play the various parts.
www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 7 Service integration patterns
 As usual, the point of this technology mapping section isn’t to provide an exhaus
tive list of implementation option but rather to provide a taste of what’s available. One
of the interesting options, which has grown in popularity in recent years, is to imple
ment Aggregated Reporting as a big data store. (Big data, as it relates to SOA, is dis
cussed in chapter 10.)

 Recent systems I worked on used Hadoop and a conventional data mart together
as the Aggregated Reporting implementation. The Hadoop system was used as a data
warehouse for the long term, never deleting any of the historic data coming from all
the services. The data from the services was saved in almost raw form in Hadoop’s dis
tributed filesystem (HDFS) as it arrived, and it was processed at later intervals to pro
vide data useful for reporting. An ETL process took recent months’ data and exported
it to a star schema in a conventional data mart (Oracle).

An interesting scenario in this regard is the case where the data exported to the
data mart is summary data and not the detailed data. Returning to the example from
the beginning of this chapter, you could have the sales reps’ monthly performance
data in the data mart and their call-by-call performance data remaining in the data
warehouse. The benefit of this approach is that the data load on the data mart is
reduced, which provides for better performance and reduced costs. (Hadoop uses
commodity hardware and is a lot cheaper than traditional databases.)

 Figure 7.15 illustrates how a drill-through from data mart data to Hadoop data can
occur.

 The first step in figure 7.15 occurs when the summary data is calculated B. The
map/reduce job that calculates the summary and exports the data to the data mart
also saves the source data for each calculation C in HBase (HBase is a Hadoop-based
NoSQL solution that supports high-throughput random read/write).

 When a report is processed, it runs against the data mart D, E, F.
 When a user asks to see how the summary data was calculated G, the reporting tool

makes a REST call H to a service (which would be part of the Aggregated Reporting

Report tool

Datamart

4

3

Raw data
(HDFS)

Aggregation
map/reduce

HBase

ETL
(map/reduce+

ETL)

Drill through
REST API

Details Aggregates

1

2

2

5

6

7

8

9

10

Figure 7.15 Drilling
through from summary data
in a data mart to a Hadoop
based data warehouse
www.it-ebooks.info

http://www.it-ebooks.info/

Summary	 185
implementation) that gets the details from HBase I and provides it J to the reporting
tool, which in turn notifies the user 1).

Note that the Aggregated Reporting implementation includes both the compo
nents on the Hadoop side as well as the data mart (which is the SQL endpoint for
reporting). Also, the diagram doesn’t include all the components of the solution
(such as the landing zone).

 The scenario in figure 7.15 is one possible implementation. In another, smaller
project, we used an operational data store to hold the latest data in a start schema
without retaining a long-term historic view of the data. The details change, but the
architectural principles stay the same.

 The last thing to discuss about the Aggregated Reporting pattern is quality attri
butes, where things are a little different from other patterns in this book.

QUALITY ATTRIBUTES

The Aggregated Reporting pattern is probably the only architectural pattern in this
book whose main drivers are functional requirements rather than architectural quali
ties. The reason the Aggregated Reporting pattern is still architectural is that its impli
cations are solution-wide (or system-wide) and not local. As mentioned previously, the
Aggregated Reporting pattern provides a functional solution that still retains SOA’s
architectural benefits, and that’s its strength.

NOTE The Aggregated Reporting pattern does promote desirable quality
attributes like flexibility and maintainability, but it isn’t driven by them. Its
motivation is functional, not nonfunctional.

7.4 Summary
This chapter’s goal was to highlight the main integration patterns that enable services
to work together and become a system, rather than a bunch of services or an unmain
tainable knot (see the Knot antipattern in the next chapter).

 The chapter covered the following patterns:

 Service Bus—Allows services to connect in a loosely coupled manner.
 Orchestration—Describes how to externalize business process flows from

services to a centralized components. Orchestration promotes flexibility and
governance.

 Aggregated Reporting—Provides an SOA-friendly way to solve the reporting
conundrum.

That’s the end of part 1 of this book. The next part takes a look at some aspects of imple
menting SOA in the real world. The next chapter will take a look at some of the com
mon pitfalls, or antipatterns, that can ruin a fledging SOA implementation at the start.
www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7 Service integration patterns
7.5 Further reading
SERVICE BUS

Gregor Hohpe and Bobby Woolf, “Message Bus,” Enterprise Integration Patterns,
www.eaipatterns.com/MessageBus.html.
This is a great book on communications patterns in general. I specifically suggest reading
about the Message Bus pattern, which is the base pattern for the Service Bus pattern.

ORCHESTRATION

Arnon Rotem-Gal-Oz, “SOA—Contracts, Events and Ownership”, Cirrus Minor (blog), http://
arnon.me/2010/09/soa-contracts-events-ownership/.
This article discusses which party, the service consumer or the service, should own the mes
sages and event contracts.

AGGREGATED REPORTING

Martin Fowler, “CQRS” (Command Query Responsibility Segregation), http://martinfowler
.com/bliki/CQRS.html.
Martin Fowler’s site provides a good explanation of the CQRS concept.

CQRS is a complimentary approach for aggregated reporting, which, as its name implies,
suggests that data for commands (such as updates) is sent to one source, whereas the data
for queries arrives from a different source. Usually the context for CQRS should be within
services, but if you implement the Aggregated Reporting pattern, you can use it as the source
for queries in a CQRS system and even provide wider reporting capabilities (with data origi
nating from multiple services.

“Master data management,” Wikipedia, http://en.wikipedia.org/wiki/Master_data
_management.
Master data management (MDM) is an important approach for managing multiple facets
of entities. MDM can be used as a complementary approach for the Aggregated Reporting
pattern.
www.it-ebooks.info

www.eaipatterns.com/MessageBus.html
http://arnon.me/2010/09/soa-contracts-events-ownership/
http://arnon.me/2010/09/soa-contracts-events-ownership/
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/bliki/CQRS.html
http://en.wikipedia.org/wiki/Master_data_management
http://en.wikipedia.org/wiki/Master_data_management
http://www.it-ebooks.info/

Part 2

SOA in the real world

In part 1 we looked at patterns for solving SOA challenges. Patterns are a pow
erful medium for explaining solutions, at least in part because the discussion of
each problem is focused and isolated. This is also a weakness, because the real
world is rarely like that. Part 2 of this book takes a look at what happens in differ
ent aspects of SOA when you try to implement services and apply patterns.

 Chapter 8 talks about antipatterns you may encounter when you implement a
service. Like patterns, antipatterns discuss problems in context, with the differ
ence being that antipatterns look at common mistakes and how to solve them, as
opposed to patterns, which look at solutions.

 Chapter 9 offers a case study and demonstrates how patterns can be used
together to build a complete solution.

Chapter 10 takes a look at what other technologies mean for SOA. Specifi
cally, it examines the relationships between SOA and REST, the cloud, and big
data.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Service antipatterns

In this chapter
 Pitfalls when moving to SOA

 Refactoring the knot

 Granularity of services

We’ve spent several chapters looking at SOA patterns. Antipatterns are the other
side of the equation—instead of contexts and solutions, this chapter discusses com
mon pitfalls you’re likely to stumble upon and how to avoid or refactor them. This
complementary view is important, because it’s easy to make these mistakes when
you’re starting out with SOA, even if you follow guidance such as the patterns we’ve
already looked at.

 Antipatterns, like patterns, are about contextual wisdom. A discussion of anti-
patterns needs to talk both about when a behavior is a problem and when that
behavior might be acceptable. The following sections will introduce each antipat
tern and then focus on the following topics:

 Consequences—Why the antipattern is a problem.
 Causes—Why the antipattern occurs.
 Refactoring—How you can change the design to avoid the problems the anti-

pattern causes.
189

www.it-ebooks.info

http://www.it-ebooks.info/

190	 CHAPTER 8 Service antipatterns
 Known exceptions—When using the antipattern might be acceptable.
The following antipatterns are discussed in this chapter:
 Knot—Where the services are tightly coupled by hardcoded point-to-point inte

gration and context-specific interfaces
 Nanoservice—Where a service is too fine-grained, and its overhead (communica

tions, maintenance, and so on) outweighs its utility
 Transactional Integration—Where transactions extend across services boundaries

(instead of being isolated inside services)
 Same Old Way—Where you dress whatever you did before in SOA clothing

The first antipattern we’ll take a look at is the Knot. It’s an antipattern of SOA
naiveté, but you must understand its root causes so that you don’t repeat it, even as
an SOA veteran.

8.1 Knot antipattern
Everything starts so well. You embark on a new SOA initiative, and the whole team feels
as if it’s pure green field development. The first service is designed—it’s got all sorts of
bells and whistles, and it’s even using XML, so it must be good. Then you design the sec
ond service, and the two services talk to each other. Then comes a third service, and it
has to talk to the other two. The fourth service only talks to a couple of the previous
ones. The twelfth talks to nine of the others, and the fourteenth has to contact them
all—yep, your services are tangling up together in an inflexible, rigid knot.

 This scenario might sound wacky and improbable—why would anyone in their
right mind do something like that? Let’s take another look, with a concrete example
this time, and see how the road to hell is paved with good intentions.

 Figure 8.1 shows a vanilla ordering scenario. An Ordering service sends the order
details to an Inventory service, where the items are identified in inventory and marked
for delivery. Then the details are sent to a Delivery service, which talks to external
shipping companies.

 You’ll see that when an item is missing from the inventory, you’ll probably have to
talk to external suppliers, order the missing items, and wait for their arrival, so the
whole process isn’t necessarily immediate. Because the process takes time, it seems
reasonable to cancel the process if an order is canceled.

This means there are two options (see figure 8.2): either the Ordering service will
ask the two other services to cancel processing related to the order, or the two services

Ordering Inventory Delivery DHL/FedEx
etc.

Figure 8.1 An Ordering service sends the order to an Inventory
service. When the goods are provisioned, the details pass to a
Delivery service, which is responsible for coordinating with a
shipping company that will send the products to the customer.
www.it-ebooks.info

http://www.it-ebooks.info/

191 Knot antipattern
Ordering

Inventory Delivery DHL/FedEx
etc.

External
suppliers

Accounts
payable

Figure 8.2 A more realistic version of the ordering
scenario from figure 8.1. Now you also need to
handle missing items in the inventory, canceled
orders, and paying external suppliers. In this
scenario, the services are more coupled. The
Ordering service is now aware of the Delivery
service and not just the Inventory service.

will call the Ordering service before they decide what to do next. Naturally, the system
wouldn’t stop here. You’d want to introduce more services and more connections, such
as an Accounts Payable service that interacts with external suppliers, the Inventory ser
vice, and the Delivery service (because you also need to pay shipping companies).

 With each new service, you end up drawing more lines from service to service, and
with each new service you update the other services’ business logic with the new busi
ness rules and knowledge of the other services’ contracts.

CONSEQUENCES

Lines going from service to service are normal, aren’t they? If the services won’t talk to
each other, they won’t be very useful, will they? Isn’t that the whole point of SOA?

Well, yes—and no. It’s normal for services to connect to each other. Creating a sys
tem in an SOA is all about connecting services together. As for the “no” part, the prob
lem lies in the way these integrations are developed. If you aren’t careful, it’s easy to
get the integration lines into a big ugly mess—a Knot.

A Knot is an antipattern where the services are tightly coupled by hardcoded point! to-point integration and context-specific interfaces.

Consider what happens when you want to reuse the ordering service discussed earlier.
The Knot prevents you from reusing it without hauling in the rest of the baggage—all
the other services (Inventory, Delivery, and so on). If the new context isn’t identical in
its ordering processes, you can’t use it without adding one-off interfaces (specific mes
sages for the new context and all sort of if statements to distinguish between the old
and new behavior). Another option might be to alter the messages in the existing con
tract of the Ordering service. Unfortunately, this is usually either not possible or it
would force you to make sure the other services (Inventory, Delivery, and others) are
still functioning. In any event, it’s a big mess.

 You moved to SOA to get flexibility, increase reuse within your systems, and prevent
spaghetti point-to-point integration, but what we’re looking at here isn’t flexible, it’s
hard to maintain, and it looks like we’re back at square one after having invested gazil
lions of dollars to get here.
www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 8 Service antipatterns
CAUSES

How can a wonderful, open standard, distributed, flexible SOA solution deteriorate
into an unmanageable knot?

 It’s tempting to dismiss the Knot as the result of inadequate planning. If you only
planned everything in advance, you wouldn’t be in this mess now, would you? Trying
to plan everything ahead of time is an antipattern in itself (an organizational antipat
tern that isn’t in the scope of this book). But even if you could plan everything, there’s
still a good chance you’d get to the Knot anyway, because the problems are inherent
in the way businesses work.

In chapter 1 we looked at an integration spaghetti scenario (section 1.2.2, and
shown again in figure 8.3). You can see that the Knot was there as well, when business
processes evolved and you needed to interact with information from other parts of the
system. The flow of a business process expands to supply that needed information or
service, and thus the Knot grows.

From the technical perspective, there are two forces working here to push a sys
tem into a Knot. One is the granularity of the services, and the other is the business
processes.

 In terms of granularity, services are sized so that a business process requires several
of them to work together, but they aren’t small enough that they are end-nodes in the
process, with other services only calling the service to obtain a result. This isn’t a bad
thing in itself; after all, if each process were implemented by a single service, you’d
have silos not unlike the ones you’re trying to escape by using SOA, and if you made

Department ETL integraton
DB integraton
File-based integraton
Online integraton

Server

DB

Figure 8.3 The Knot antipattern is similar in both effect and origin to the spaghetti
integration in non-SOA environments.
www.it-ebooks.info

http://www.it-ebooks.info/

Knot antipattern 193
the services too small, you’d fall into another trap (see the Nanoservice antipattern
later in this chapter). The bottom line is that while the granularity is a force that
drives us toward the Knot, there’s not a lot we can do about it without getting our
selves into worse problems.

 The second, stronger, force is the business process itself. Because the process flows
through the services, the services need to be aware of the flow and call other services
to complete the flow. In order for a service to call another service, it has to know
about its contract and its endpoint. When another business flow goes through that ser
vice, you not only add new contracts and endpoints but also the contextual knowledge
of which other services need to be called depending on the process. And that’s where
the trouble arises—as you implement more business processes and flows, the services
start to tie themselves to each other more and more.

 But SOA should have solved all that, shouldn’t it? Surely there’s something we can
do about it—or isn’t there?

REFACTORING

As you’ve seen, most of the problem is caused by having the services’ code determine
where to go next and what to do with the results of the services’ processing. If there
was only a way to pry these decisions away from the services’ greedy hands.

 As you’ve probably guessed, there is such away. In fact, there are several such ways.
 One option is to be very mindful about the communication patterns of services,

and make sure that services only care about their immediate connections, and not
about any dependencies of services they interact with. Michael Poulin calls this
“Knight Rules of Ownership.”1 Limiting dependencies and managing the scope of ser
vices’ knowledge helps solve the knot by keeping the number of connections low.
Sometimes, however, services do need to interact with lots of other services, so we
need additional measures.

 There are three other possibilities for refactoring the knot that I’ll discuss in this
book: the Workflodize pattern (chapter 2), Orchestration (chapter 7), and Inver
sion of Communications (chapter 5). Let’s look at each of these patterns and see
how they help.

 The Workflodize pattern suggests adding a workflow engine inside the service to
handle both sagas (long-running operations; the Saga pattern is discussed in
chapter 5) and added flexibility. The “added flexibility” is the key point here. When
you express the connections as steps in the workflow, they aren’t part of your services’
business logic. They’re also easier to change in a configuration-like manner. Both of
these points are big pluses.

 Still, a better way to solve the service-to-service integration problem is to use an
external orchestration engine. The idea of using the Orchestration pattern is to
enable business process management—a way for business analysts and IT to control

1 Michael Poulin, “Knight Rules of Ownership in Service-Oriented Ecosystem,” EBizQ (June 2012),
www.ebizq.net/blogs/service_oriented/2012/06/knight_rules_of_ownership_in_service-oriented
_ecosystem.php.
www.it-ebooks.info

http://www.ebizq.net/blogs/service_oriented/2012/06/knight_rules_of_ownership_in_service-oriented_ecosystem.php
http://www.ebizq.net/blogs/service_oriented/2012/06/knight_rules_of_ownership_in_service-oriented_ecosystem.php
http://www.it-ebooks.info/

194 CHAPTER 8 Service antipatterns
and verify that the processes are carried out as intended (you don’t have to use an
orchestration engine for that, but it helps). In the context of solving or avoiding the
Knot antipattern, the Orchestration pattern is better than the Workflodize pattern
because it centralizes and externalizes all the interactions between services, effectively
removing all the problematic code from the services themselves.

NOTE There’s a fine line between externalizing the flow and externalizing
the logic itself. See the discussion of the Orchestration pattern in chapter 7.

The third pattern you can use to refactor the Knot is Inversion of Communications.
Inversion of Communications means modeling the interactions between services as
events rather than as calls. Inversion of Communications is, in my opinion, the stron
gest countermeasure to the Knot. The Workflodize and Orchestration patterns bring
a lot of flexibility in routing the messages between the services, but the Inversion of
Communications pattern also helps the message designers remove specific contexts
from the messages, because when the service’s status is raised as an event, it isn’t
addressed to any other service in particular. Note that using Inversion of Communica
tions doesn’t negate using either of the two other patterns; once the event is raised,
you still need to route it to other services, and using a workflow engine is a good
option for that. Another implementation option is to use an infrastructure that sup
ports publish/subscribe (see Inversion of Communications pattern in chapter 5 for
more details.)

 Let’s return again to the ordering scenario we discussed earlier in this section.
When we left it, the services were growing with needless knowledge of specific busi
ness processes. The ordering service had to
know both about the Inventory and the Delivery
services. When it’s refactored with the Inver
sion of Communications pattern, the same
Ordering service doesn’t have to know about
any of the other services. In figure 8.4 you can
see that the Ordering service sends two business

Figure 8.4 The Ordering service using events (new order, canceled order) and the
the Inversion of Communications pattern.

routing of these messages is no longer the Now the service doesn’t know about or
responsibility of the service. depend on other services directly. It’s

only aware of two business events—new Refactorings aside, one question you still
order and canceled order—which are

need to think about is whether there are any cir relevant to the business function that the
cumstances where having a Knot is acceptable. service handles.

KNOWN EXCEPTIONS

In a sense, the Knot is a distributed version of an antipattern described by Brian
Foote and Joseph Yoder as “Big Ball of Mud”—spaghetti code where different types
of the system are tied to each other in unmanageable ways. My reason for mentioning
this connection is that “Big Ball of Mud” might be considered a pattern rather than
an antipattern. When “you need to deliver quality software on time, and under

Ordering

New order
event

Canceled
order event
www.it-ebooks.info

http://www.it-ebooks.info/

195 Nanoservice antipattern
budget ... focus first on features and functionality, then focus on architecture and
performance.”2

 Starting on a large project, such as moving an enterprise to SOA, is difficult. You
can’t figure out everything in advance, and you need to deliver something, so as the
Nike slogan goes, you “just do it.” Get something done. You need to be prepared to let
go and redesign further down the road.

 In the current system I’m working on—a visual recognition/search engine for
mobile, we went with a Knot approach for the first release. The simplicity of the imple
mentation—less investment in infrastructure, ad hoc integration, and so on—enabled
us to deliver a first working version in less than six months. These six months also
helped us understand the domain we’re operating in much better, and more impor
tantly allowed us to get to market with the features the business needed inside the
schedule the business wanted. We spent the next six months rewriting the system,
including applying the Inversion of Communications pattern.

 To sum up, coding the integration code into services is likely to produce a Knot.
It’s acceptable to go down this path for a prototype or first version to show quick
results. But you do need to plan for and take the time to refactor the solution so you
don’t get stuck down the road.

 One of the forces that contributed to forming the Knot was the granularity of ser
vices. The next antipattern talks about another granularity-related problem: Nanoser
vice. Sometimes size does matter.

8.2 Nanoservice antipattern
Getting the granularity of services right is one of the toughest tasks involved in design
ing services. There’s a lot to balance: the communications overhead, the flexibility of
the system, the reuse potential, and so on. I can’t give you an exact recipe to follow to
get service granularity right, because what is “right” depends on the context, the envi
ronment, and other decisions the service designers take. It’s easier to define what
shouldn’t be a service than what should. For instance, you should definitely not call all
of your existing ERP system a single service. The Nanoservice antipattern talks about
the other extreme—the smaller services.

 Consider the Calculator service that appears in all sorts of code examples (I’ve
seen examples in .NET, Java, PHP, C++, and a few more). A basic desk calculator, as we
all know, supports several simple operations like add, subtract, multiply, and divide,
and sometimes a few more.

Implementing a Calculator service isn’t very complicated. The next listing comes
from an Apache example. It shows part of a WSDL file for a Java Calculator service that
accepts two numbers and adds them.

 Brian Foote and Joseph Yoder, “Big Ball of Mud,” www.laputan.org/mud/. 2
www.it-ebooks.info

www.laputan.org/mud/
http://www.it-ebooks.info/

196 CHAPTER 8 Service antipatterns
3

Listing 8.1 Excerpt from a WSDL file for a stateless Calculator service3

<wsdl:types>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://jws.samples.geronimo.apache.org"

 targetNamespace="http://jws.samples.geronimo.apache.org"

 attributeFormDefault="unqualified"

➥ elementFormDefault="qualified">

 <xsd:element name="add">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="value1" type="xsd:int"/>

 <xsd:element name="value2" type="xsd:int"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="addResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="return" type="xsd:int"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </wsdl:types>

 <wsdl:message name="add">

 <wsdl:part name="add" element="tns:add"/>

 </wsdl:message>

 <wsdl:message name="addResponse">

 <wsdl:part name="addResponse" element="tns:addResponse"/>

 </wsdl:message>

 <wsdl:portType name="CalculatorPortType">

 <wsdl:operation name="add">

 <wsdl:input name="add" message="tns:add"/>

 <wsdl:output name="addResponse" message="tns:addResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="CalculatorSoapBinding" type="tns:CalculatorPortType">

 <soap:binding style="document"

➥ transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="add">

 <soap:operation soapAction="add" style="document"/>

 <wsdl:input name="add">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="addResponse">

Apache Geronimo, “jaxws-calculator—Simple Web Service with JAX-WS,” https://cwiki.apache.org/
GMOxDOC21/jaxws-calculator-simple-web-service-with-jax-ws.html. © 2003-2010, The Apache Software
Foundation, licensed under ASL 2.0.

3
www.it-ebooks.info

https://cwiki.apache.org/GMOxDOC21/jaxws-calculator-simple-web-service-with-jax-ws.html
https://cwiki.apache.org/GMOxDOC21/jaxws-calculator-simple-web-service-with-jax-ws.html
http:targetNamespace="http://jws.samples.geronimo.apache.org
http:xmlns="http://jws.samples.geronimo.apache.org
http://www.it-ebooks.info/

197 Nanoservice antipattern

4

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="Calculator">

 <wsdl:port name="CalculatorPort" binding="tns:CalculatorSoapBinding">

 <soap:address location=

➥"http://localhost:8080/jaxws-calculator/calculator"/>
 </wsdl:port>

 </wsdl:service>

As you can see, that’s a lot of code (and overhead) for a simple function.
 Calculator services can be more advanced and have memory—the next listing is

taken from an MSDN example, and it shows the interface definition for such a calcula
tor in .NET. It’s a WCF example that uses workflow services and accepts a single value at
a time.

Listing 8.2 A service contract definition for a stateful calculator service4

[ServiceContract(Namespace = "http://Microsoft.WorkflowServices.Samples")]

public interface ICalculator

{

 [OperationContract()]

 int PowerOn();

 [OperationContract()]

 int Add(int value);

 [OperationContract()]

 int Subtract(int value);

 [OperationContract()]

 int Multiply(int value);

 [OperationContract()]

 int Divide(int value);

 [OperationContract()]

 void PowerOff();

}

Both versions of this calculator service are very fine-grained—all they can do is accept
numbers and return the sum. Hopefully the Calculator examples are just oversimpli
fied services designed to demonstrate SOA-related technologies (JAX-WS in the first
excerpt and WCF and WF in the second). The problem is when you see this level of
granularity in real-life services.

CONSEQUENCES

Why is fine granularity a problem? Isn’t SOA all about breaking monolithic silos into
smaller reusable services? The finer grained a service is, the less context it carries. The
less context a service carries, the more reuse potential it has. And reuse is one of the
holy grails of SOA, isn’t it? The Calculator service seems like the epitome of a reusable
service. There’s no doubt you can reuse it over and over and over.

 MSDN, “Calculator Client Sample,” http://msdn.microsoft.com/en-us/library/bb410782(v=vs.90).aspx. ©
2007 Microsoft Corporation. All rights reserved.

4

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/bb410782(v=vs.90).aspx
http://Microsoft.WorkflowServices.Samples
http://www.it-ebooks.info/

198 CHAPTER 8 Service antipatterns
Reuse is indeed a noble goal. The culprit of fine-grained services, however, is the
network. Services are consumed over networks—both local (LANs) and remote (extra
nets, WANs, and the like). The result is that services are bound by the limitations and
costs incurred by communicating over those networks (the time it takes to send mes
sages, the bandwidth needed, and so on). Trying to disregard these costs is exactly
what ailed most, if not all, RPC distributed system approaches that predated SOA
(Corba, DCOM, and so on). The calculator service and other similarly sized services
are nanoservices.

Nanoservice is an antipattern where a service is too fine-grained. A nanoservice is ! a service whose overhead (communications, maintenance, and so on) outweighs
its utility.

So how can nanoservices harm your SOA? Nanoservices cause many problems, the
major ones being poor performance, fragmented logic, and overhead. Let’s look at
them one by one.

 Every time you send a request to a service, you incur a few costs, such as serializa
tion on the caller, moving the caller process to the OS network service, converting the
messages to the underlying network protocol, traveling on the network, moving from
the OS network service to the called process, deserializing the message back on the
called process—and that’s before adding security (encryption, firewalls, and the like),
routing, and retries. Modern networks and servers can make all this happen rather
quickly, but if you have a lot of nanoservices running around, these numbers add up
to a significant performance nightmare.

 Nanoservices cause fragmented logic almost by definition. As you break what
should have been a meaningful cohesive service into miniscule steps, your logic is scat
tered between the bits that are needed to complete the business service. The fact that
you need to use a bunch of services to accomplish something meaningful also means
increased chances of running into the Knot antipattern.

 A proliferation of nanoservices also causes overhead. The initial upfront cost for
developing a service of any size is relatively high—just look at the amount of WSDL
code needed to define the Calculator service in listing 8.1, and for what? A service that
adds a couple of numbers. Additionally, each service, regardless of size, incurs man
agement overhead. This includes things like keeping track of the service in a service
registry, making sure it adheres to policy, writing the cruft (things you have to write
around the business logic) for configuring it, and so on. Having nanoservices around
means you have to do this more often per service compared with having fewer coarser-
grained services.

 The point of overhead outweighing utility, mentioned in the Nanoservice antipat
tern definition, is subtle but important. Whether or not a service is a nanoservice isn’t
always obvious.

 If a contract doesn’t have a lot of operations, you should make sure you don’t have
a nanoservice, but it doesn’t automatically mean that you do. A fraud-detection service
contract might only accept transaction details and decide whether to authorize the
www.it-ebooks.info

http://www.it-ebooks.info/

199 Nanoservice antipattern
transaction, deny it, or move on to further investigation. This may sound simple, but
the innards of this service involve complex processes such as running the details
through a rule engine checking for fraudulent behavior patterns, matching blacklists,
and so on.

On the other side of things, a comprehensive contract doesn’t guarantee that a ser
vice isn’t a nanoservice. I once helped develop a resource management service. It sup
ported some very nice operations like getting the status of all the services in the
system, running sagas, and allocating services. Allocating services meant that when
ever an event occurred that needed a new service instance to handle it, we had to call
the resource manager to get one. This provided for centralized management and also
created a performance bottleneck that slowed the whole system. The utility of the
resource management (easy management of running sagas) was not worth the over
head associated with the service (the number of calls and the performance hit on the
system). It was a nanoservice.

NOTE To solve that performance bottleneck, we went with distributed
resource management, but that’s beyond the scope of this discussion.

CAUSES

From a more technical point of view, you get to nanoservices by not paying attention
to at least a couple of the fallacies of distributed computing. Mentioned in chapter 1,
the fallacies of distributed computing are a few false assumptions that are easy to
make and that prove to be wrong and are costly down the road. Specifically, I’m talk
ing here about two assumptions:

 Bandwidth is infinite —Even though bandwidth keeps getting better and better,
it’s still not infinite within a specific setup. In one project I worked on, we were
sending images over the wire and distributing them to computational services
(using map/reduce—the discussion of the Gridable Service pattern in chapter
3 covers such a scenario). Things were working OK when we sent small images,
but when we sent larger images we saw that the system didn’t work as expected.
Further investigation showed we were sending the images as bitmaps, which is a
wasteful format, and not as JPEGs or some other compressed format. This gen
erated too much load on the backbone of our switches.

 Transport cost is zero—Every over-the-wire call incurs a lot of costs as compared to
a local call (see figure 8.5). The cost of the transport can be considered in two
ways: the amount of time it take to make each of these calls, or the real dollar
value attached to making sure you have enough bandwidth (connection/rout
ers, firewalls) to handle the traffic.

Another reason beginners might end up with nanoservices is poor examples. As noted
earlier, the Calculator services in listings 8.1 and 8.2 are taken from real examples pro
vided by vendors. SOA newcomers or people without a lot of distributed systems devel
opment experience can easily take these samples at face value and go about
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 Service antipatterns
Figure 8.5 Local objects can “afford” to have intricate interactions with their
surroundings. Similar functionality delivered over a network is more likely to cause poor
performance because of the network-related overhead.

implementing services with similar granularity. The fact that web service frameworks
mostly map service calls to object method calls makes this even more tempting.

 Nanoservices are also an inherent risk when applying the Orchestration pattern.
Adding an orchestration engine that’s capable of controlling flow and is external to
services tempts you to use it to drive all flow, as small as that flow may be. Couple this
with the fact that the smaller the services are, the more reusable they are, and, again,
you may end up with a lot of nanoservices on your hands.

 Because the line between nanoservices and appropriately sized services is fuzzy,
behaviors that may look promising at design time can prove to be nanoservices when
they’re implemented (like the resource manager example I mentioned). This can be
acceptable if your SOA is developed iteratively (see the exceptions discussed in
section 8.2.4) but it still means that you’ll have to come up with ways to refactor
nanoservices.

REFACTORING

There are two main ways to solve the Nanoservices antipattern problem. One, which is
relatively easy, is to group related nanoservices into a larger service. The second
option, which is more complicated, is to redistribute a nanoservice’s functionality
among other services. Let’s take a look at these options in turn.

 I worked on one project where we needed to send out notifications to users and
admins via SMS messages. The software component that did the actual SMS dissemina
tion was a third-party application, so we decided to create a simple service (not unlike
an OO adapter) that accepted requests for SMS and talked to the third-party software.
A nanoservice was born, and it even got a nice little name: Post Office Service.

 Why is this a nanoservice? It really doesn’t do much—it would be even simpler to
package this as a library that other services can use. Also, as mentioned earlier, it has
all the maintenance overhead of any other system service.

 The way we redesigned it was to add similar functionality to the Post Office service
to make it more meaningful. Thus, it learned to send emails, tweets, MMSs, and the
like. A serendipitous effect of this approach was that instead of sending a request like
www.it-ebooks.info

http://www.it-ebooks.info/

201 Nanoservice antipattern
TweetMessage or SendSMS to the Post Office service, we could raise more meaningful
events, such as SystemFailureEvent, and have the service make decisions about how to
alert administrators based on the severity of the problem. By combining the related
functionality, we made the Post Office service even more meaningful.

 Unfortunately it isn’t always possible to find another suitable services (nano- or
right-sized) that can assimilate the functionality of a nanoservice. In those cases, get
ting rid of a nanoservice is more of an exercise in redesign than it is a refactoring. I
worked on a project that had a services allocation service (SAS). The SAS’s role was to
know about other services’ locations, health statuses, and utilization, and upon
request to decide what service instances should be used (such as at the beginning of a
saga—see chapter 5 for a discussion of the Saga pattern). The service also provided
reporting capabilities for active sagas, service utilization, and so on. This might not
sound like a nanoservice, and at first we thought it wasn’t, but as the project pro
gressed, we found that because the SAS was a central hub, as shown in figure 8.6, the
SAS became a performance bottleneck. It incurred additional costs (in latency) on a
lot of the calls and interactions made by other services. The utility of the SAS was
being diminished by the cost. It was a nanoservice after all.

 To solve the SAS problem, we had to put in quite a lot of work. The solution, essen
tially, was to move to distributed resource management, so that each service had some
knowledge of what the world looks like, so that it could decide which service instance
to talk to by itself.

 To sum up this section, sometimes it’s easy to notice that something is a nanoser
vice, and in those cases, chances are that it will also be easy to take the functionality
and group it with related functionality in another service. Other times, the fact that a
service provides too little benefit isn’t as apparent, and that only becomes clear as you
move along. In those cases it’s also harder to fix the problem.

 One question we still need to cover is whether there are any situations where you’d
use a nanoservice even if you know it’s one at the outset.

3G VAS

SAS

SIP listener

RTP extractor

Alg. worker

Dispatcher

Web connector

Web renderer
Figure 8.6 Sometime nanoservices
can provide important services, but
the cost of that functionality is more
than their usefulness. This
synchronization service became a
bottleneck for performance because
everything goes through it.
www.it-ebooks.info

http://www.it-ebooks.info/

202	 CHAPTER 8 Service antipatterns
KNOWN EXCEPTIONS

When is it OK to have nanoservices? It’s OK when you’re starting out. When your
approach to SOA is evolutionary, and you don’t plan everything in advance, there’s a
good chance that the first versions of services you build won’t show a lot of business
benefit, but they will need the full overhead of a service. The Post Office service dis
cussed earlier is a good example of that—when it started out, it only dealt with a single
type of message, and it didn’t do a whole lot with it either.

 The Post Office service is also a good example of another reason you might want a
nanoservice: when you want to build an adapter or bridge to other systems, whether
they’re legacy systems or third-party ones. In these cases, you need to weigh the advan
tage of using a service against building the same functionality as a library that can be
used within services. In many cases, keeping the flexibility and composability of SOA is
worth the overhead associated with having an additional service to manage.

Keep in mind that Nanoservice is a rather soft antipattern. The value of a small ser
vice can radically change from system to system or even within a system as time and
requirements progress. It’s worthwhile questioning your assumptions and looking at
your services from time to time to ensure the usefulness of what you’re building.

 Now let’s look at the Transactional Integration antipattern.

8.3 Transactional Integration antipattern
Suppose you have an ordering system (say the one from the Knot antipattern—
figure 8.1) and the business representatives say they want to confirm an order with the
user only if the item has been secured in the inventory. From the technical point of
view, two separate services are involved—one handles the orders and the other han
dles inventory (figure 8.7). Now what?

 This sounds like a textbook case for using transactions, but in reality it isn’t. I’ll
explain why shortly, but before we go there let’s recap transactions and distributed
transactions.

 Transactions build on four basic tenets:

 Atomicity—The transaction is “all or nothing,” meaning that once a transaction
ends, the state is either completely done (commit) or undone (abort).

 Consistency —The actions included in the transaction are done together so the
state is kept consistent. If you were to remove an item from inventory and add it
to a shipment in the same transaction, you won’t have a situation where the
item was removed from inventory and not added to a shipping list.

 Isolation—While the transaction is in progress, logic that isn’t part of the trans
action won’t see the world in an inconsistent form.

 Durability—The consequences of the transaction are saved to persistent storage
so that they’re available after a system restart.

Ordering Inventory
Figure 8.7 A vanilla ordering scenario. An Ordering
service needs to confirm that the item is available
before confirming the order with the customer.
www.it-ebooks.info

http://www.it-ebooks.info/

203 Transactional Integration antipattern
The simplest way to create transactions is using “pessimistic locking.” In this case, a
writer can only write to a specific piece or block of data if no other resource is reading
or writing from it, and a reader can only read if no other resource is writing. On top of
that, to ensure ACIDness you need to write the data twice: once where you want it to
end up, and then to a log file. This double bookkeeping ensures that if a crash occurs
before the transaction is finalized (committed or aborted) you can check to see that
both copies match, and if not either (re)apply the log data or roll back the data. (This
is necessarily a simplistic overview. See the further reading section for more thorough
explanations.)

 Unfortunately pessimistic locks rarely work in real-life scenarios, so more advanced
ways of locking and still maintaining ACIDness have been developed. But all the mech
anisms hold resources for the transactions, and all locking mechanisms build on the
assumption that the time spent inside the transaction is short.

 The plot thickens further when it comes to distributed transactions. Now you have
at least two transactional resources, and not only does each of them have to handle
the transaction, but you also need to coordinate the state between them because if
one commits the transaction and the other rolls it back, the overall transaction is
incomplete. Still computer scientists were smart enough to come up with several solu
tions to achieving distributed consensus, and they gave us two-phase commits, three-
phase commits, paxos commits, and so on. Case closed. You can use transactions in
SOA, and life is beautiful.

Or is it?

CONSEQUENCES

Transactions, even distributed ones, aren’t a problem in themselves. Chapter 2 intro
duced the Transactional Service pattern to allow the handling of incoming messages
in a reliable manner. The problems begin when the transaction scope involves more
than one service.

Transactional Integration is an antipattern where transactions extend across ! service boundaries (they’re not isolated inside services).

So what sorts of problems can Transactional Integration introduce into your SOA solu
tion? Quite a few, with the main three being performance problems, security threats,
and rigidity. Let’s take a look at them one by one.

 With all the goodness transactions offer, they also introduce temporal coupling—
the need for all the involved actions to finalize on or about the same time. Even if the
locks held while the transaction continues are permissive (optimistic), the coordina
tion that’s needed to ensure consistency needs to be synchronized. When you develop
a solution, you may be able to take all the performance considerations into account at
design time and make sure the system behaves. But I’d say distributed transactions
aren’t highly recommended even then, because the rigidity of the consistency needed
to achieve a distributed consensus can still mean holding locks for a long time in cases
of partial failures.
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 Service antipatterns
 The situation is much worse in an SOA solution because each service can and will
evolve independently, both in terms of deployment and functionality. What will hap
pen when the Inventory service moves to another data center (for example, when it’s
ported to the cloud)? What if the designers of the Inventory service decide that when
the inventory level hits a threshold, the service will automatically order new supplies
in a transaction? Now you can’t secure an item in the inventory until new supplies are
ordered. All of a sudden, your transaction has expanded and now includes the Order
ing service, the Inventory service, and a supplier’s service. As you can see, one risk of
Transactional Integration is that designers of services participating in your transaction
will extend the transaction to handle business rules they need to comply with.

Another risk highlighted by the preceding scenario is related to security. If the sup
plier’s services are added into your transaction, you now run the risk that external sys
tems will hold locks on your system. This may happen maliciously or by neglect, but it
can effectively create a denial of service scenario on your services. A service bound-
ary—its edge—should also be a trust boundary. Externalizing transactions to third
parties might be far-fetched, but externalizing them to other teams within the organi
zation who work on their own services with their own priorities isn’t, and the same risk
applies there.

 The last risk related to this example is connected directly to the Knot antipat
tern. Having transactions between services increases the coupling between them,
and increased coupling increases the risk of ending up with a Knot, which effec
tively kills SOA.

You could argue that most or even all of these are hypothetical situations, and that
when you design your SOA solution, you can take the real constraints into consideration
and plan for them. Isn’t that what you have enterprise architects for? Though the sce
narios are oversimplified to illustrate the problems clearly, real-life scenarios manifest
the same problems in subtler ways. The main point is that evolvability and flexibility are
the hallmarks of SOA. That’s why you want an SOA solution in the first place—so that
you can evolve the IT of the organization to better match the changing needs of the busi
ness. The end result is that regardless of how you plan it at on the outset, it’s hard to
control who participates in the transactions in the long term, which means that adding
distributed transactions to the mix is an accident waiting to happen.

CAUSES

The main reason Transactional Integration happens has been mentioned—when you
start out and design your SOA, you have a relatively good grasp of the enterprise’s
business, and it’s easy to build the system to suit that understanding.

 When approaching a new project, you might think the best approach is setting
up a multimonth (or multiyear) project to document and design the overall archi
tecture and services, and only then to begin the transition to the new architecture.
But an SOA solution isn’t static, nor is your understanding of the business. Even if
you do have a good initial understanding of the business flows, that understanding
can change pretty quickly. It isn’t just that business requirements change over time—
www.it-ebooks.info

http://www.it-ebooks.info/

205 Transactional Integration antipattern
an even greater force of change is your increasing understanding as to exactly what
is needed.

 No, the more realistic and cost-effective approach is to do some upfront design but
to also begin developing real services and work them into the existing software portfo
lio. This is somewhat like building a new intersection where you also have to build
detours to keep some of the lanes open—anything to keep the traffic going. When
you work on an SOA project in this manner, the rework, your growing understanding
of the business, and the changing requirements mean you can expect a lot of evolu
tion to happen, and the Transactional Integration will work against that evolution.

Other forces pushing you toward the Transactional Integration antipattern are the
marketing organizations of technology vendors. Whenever there’s a new buzzword,
these marketing organizations take whatever technology they currently have and slap
the buzzword on it. The end result is a lot of confusion regarding which products and
features are really related to the buzzword (SOA, in our case) and which aren’t.

 Take Microsoft’s Windows Communication Foundation (WCF), which is a unified
infrastructure for remote communications between components. WCF offers message-
based communications along with support for named pipes, it’s built to replace RPC
technologies like remoting, and it provides support for SOAP (WS-*) web services,
some support for REST-style services, and so on. Yet WCF is by and large marketed as
an “SOA foundation.” This isn’t to say you can’t use WCF for SOA, but it does a lot
more—it also does transactions. Other vendors follow the same path. The use of trans
actions for cross-service integration is, unfortunately, just one example of this effect.

 If transactions aren’t the way to go, what can you do instead?

REFACTORING

There are several ways to get around the problem, using the Orchestration, Saga, or
Inversion of Communications pattern, or others, to achieve eventual consistency.

 But what exactly is the problem we’re trying to solve? We’re trying to achieve dis
tributed consensus and consistency in the data and business picture, as seen by several
services. Let’s look at the business scenario presented earlier. You have an ordering
system, and the business only wants to confirm an order with the user if the item is
already secured in the inventory for that order.

 One way to solve this would be to externalize both the transaction scope and the
business flow to an orchestration engine (see the Orchestration pattern in chapter 7).
The advantage of using an orchestration engine over transactions directed from
within the services is that the orchestration engine has the full picture of which ser
vices are involved (and their various trust levels) and of which services call to which
services, so there’s more control over who does what and when. Still, the participating
services need to be transaction-aware and need to retain internal locks for external
constraints, so use this approach with caution.

 Another alternative is to use sagas (see the Saga pattern in chapter 5). Sagas are
basically long-running interactions (where messages are related and belong to the
same conversation), but they don’t hold the same transactional guarantees as ACID
www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 Service antipatterns
transactions. In the case of an inventory problem, the ordering service will have to
perform a compensating action to handle the problem. In order for this to work in a
reasonable manner, the services may need to hold some data about the world, such as
some data about inventory levels, so it can make a reasonable decision on its own.

 Sagas can be augmented by the Inversion of Communications pattern to make the
services send events based on their actions and subscribe to other events to create cho
reography scenarios (choreography is described in chapter 7 as part of the Orchestra
tion pattern). In our ordering example, the Ordering service would publish that it has
a new order that needs handling, and the Inventory service would listen to that. Once
the Inventory service secures the items, it would publish an event stating that, and the
Ordering service could notify the customer that the order is ready. (In a real-life sce
nario, there would be additional steps, like shipping the product.)

 Both the Saga and Inversion of Communications patterns implement an eventually
consistent system—you basically relax the temporal constraints on decision making by
the various services. This can, and usually does, translate into how the business works
in general. In the ordering example, it may mean that it would be better to send an
additional notification to the customer stating that the order was received when the
order service processes the order.

KNOWN EXCEPTIONS

I can’t think of many SOA solutions that would benefit from cross-service transactions.
Transactional Integration is usually a bad idea for most distributed systems for the rea
sons mentioned in the previous sections.

 A rare exception to this rule might be for a closed solution (a system, not an orga
nization) that’s built on SOA principles. In a closed environment where everything is
controlled, it might be possible to pull it off without suffering from the rigidity and
performance problems induced by Transactional Integration. But even in these rare
cases, it would still be preferable to control the transaction scope outside of the ser
vice by using an orchestration engine. Using Orchestration means that at least the
scope of the transactions and the general flow of the business processes will be han
dled in the same place.

 I would be wary of going down this path, because even closed systems tend to
evolve over time, so be forewarned.

 A related antipattern that bears some resemblance to Transactional Integration is
the Same Old Way antipattern.

8.4 Same Old Way antipattern
Every time a new concept makes headway, technology vendors’ marketing depart
ments run amok rebranding their current offering with the shiny new buzzword.
We’ve seen this phenomena occur over and over, with Agile, Cloud, Big Data, and
even SOA. Savvy developers that we are, we’re mostly smart enough to know that the
first incarnation of a product on the hype cycle is just that. But it’s harder for us to
notice when we do pretty much the same thing with our designs.
www.it-ebooks.info

http://www.it-ebooks.info/

207 Same Old Way antipattern
Data
service

SouthBreeze

Enttes

Customer
service

Account
service

Service
interface

Create

Read

Update

Delete

 The Same Old Way is probably the most generic antipattern. It can occur any time
you want to apply a new technology or architecture and you struggle with what it
means to implement it in the real world.

 Let’s look at a simple example. Figure 8.8 shows a sample “SOA”-based architec
ture. On the left hand is a data service—a database wrapped in web-service or RESTful
clothing. In the middle are entities, where the business logic of handling customers
and accounts happens. On the right is the CRUD service interface. What’s missing is
an additional tier, which would be a UI con
suming these so-called services, though it
would likely only see the service interface
and not the other types.

 The next thing to do is take a look at
what’s wrong with this picture. The problem
is that figure 8.8 doesn’t describe an SOA. It’s
an n-layer/n-tier architecture. Sure, the mon
iker “service” is thrown displayed over the
place, but if you examine it more closely, you
can identify the layers. There’s the data layer,
which is most likely a tier (layers are logical, Figure 8.8 This isn’t an SOA. There are

several components that have “service” tiers are physical). The entities and the ser
names (data service and customer service)

vice interface most likely reside on the appli but the distribution of logic and components
cation server tier and will be two layers within doesn’t follow SOA principles.

the business logic.

NOTE You may think that I’ve just built a straw man here, so that it’s easy for
me to destroy it, but these examples are based on things I’ve actually seen in
systems I’ve reviewed.

CONSEQUENCES

An n-tier architecture was called an SOA. What’s the big deal?
 If, indeed, the only thing wrong in the example was the wrong names, there’s no

harm done (except maybe to SOA’s name). Unfortunately, these layers and tiers are
often implemented as services—that is, they have separation between contracts and
implementations, they may run as autonomous services, and so on.

 The problem, then, can be summed up as follows:

Same Old Way is an antipattern where you implement non-SOA architectures with ! SOA tooling and overhead, paying the SOA tax without reaping the SOA benefits.

Let’s clarify this. Not reaping SOA benefits means that because it isn’t an SOA solution,
you don’t get the flexibility you wanted, or you didn’t simplify your system by breaking
the solution into smaller, more manageable, pieces.

 The SOA tax refers to the fact that you have to invest more in both design time and
runtime. SOA involves increased latency, for example, because there are additional
layers like serialization and deserialization, communications, and so on. If instead of
www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 Service antipatterns
two services you could manage using objects that
would talk to each other in the same memory space,
you’d have none of that overhead. The SOA tax can
also refer to the increase in local complexity of each
component. The implementation for the data service
as discussed previously was something like figure 8.9.
You have a service hosted in a web server sporting a
rich REST API that enables queries and the other
CRUD operations, instead of just having the data
access layer you’d have used otherwise. This service
would also involve extra effort in testing, deploying,
and monitoring.

 For all the work the data service needed, the bene-
fit you get from using it over a simple data access layer
is nothing.

 To look at all this from a broader perspective, when
you have a Same Old Way antipattern on your hands,
the constraints of the real architecture hinder your ability to utilize SOA properly, and
the constraints of SOA hinder your ability to use the real underlying architecture effec-
tively. That’s not a good place to find yourself in.

CAUSES

The Same Old Way antipattern is primarily caused by a lack of SOA understanding.
This ignorance is aided by confusion that may have originated with a vendor pushing
SOA-related technologies as SOA itself.

 The most obvious misunderstanding about SOA is the wrong direct association
between web services and SOA services. Sure, SOA services can be implemented using
web services, but services can also be implemented with myriad other technologies—
you can use a messaging API in conjunction with EDA (see the Inversion of Communi-
cations in chapter 5), or you can use a REST API, or use the Thrift API, and so on. Not
only that—most, if not all, of these other ways are better than web services in many
scenarios. Slapping a few web services on whatever architecture you have doesn’t turn
it into an SOA system.

 You might also end up with the Same Old Way antipattern if you have a system in
transition from another architectural style to SOA. In this case, it’s probably not an
occurrence of the antipattern so much as an interim state if the architects are aware of
the situation.

REFACTORING

The main trick with refactoring this antipattern is noticing it in the first place and
acknowledging that you’re forcing whatever you used to do into SOA clothing. To help
identify the problem, you can think about the fallacies of distributed computing (see
section 1.1.3 of chapter 1). If you find that what you call “SOA” assumes one or more
of them, that’s a smell that what you have might not really be SOA.

REST API

Data service

Data access layer

EastBreeze
(RDBMS)

H�p host (web server)

Figure 8.9 Structure of a data
service. A web-based service host,
hosting a service exposing a rich
REST API for querying and
updating an underlying RDBMS.
www.it-ebooks.info

http://www.it-ebooks.info/

Summary	 209
Unfortunately, it isn’t easy to refactor this antipattern. Not only will solving the prob
lem most likely require a redesign rather than a refactoring, there’s no straight recipe
to get there. In essence, you need to get a better understanding of SOA, its principles,
and its constraints, and redesign accordingly. Hopefully this book can help with that.

 If we look back at our oversimplified scenario in figure 8.8, the data service could
be OK if it’s the API for your implementation of the Aggregated Reporting pattern
(see chapter 7). As for the entities, they are probably right in the domain, but you’d
want them to handle their own data, isolate the data from other services, and replace
the CRUD API with domain-oriented messages such as “upgrade customer status” or
“add address” for the customer service entity.

KNOWN EXCEPTIONS

Unlike the other antipatterns, I can’t think of any situations where the Same Old Way
antipattern would be acceptable.

 The main symptom of the Same Old Way antipattern is a lot of friction in your
development, resulting from the fact that you’re not actually implementing SOA. If
whatever architecture you are using is viable for your problem and serves you well,
then use it. On the other hand, if you’ve turned to SOA because your original architec
ture was problematic, don’t expect repeating it using new tooling and technologies to
solve the problem.

It’s important to note that the three-tiered architecture mentioned earlier is a via
ble architecture. There are many successful deployments of three-tiered solutions. If
it’s a good fit for your project, don’t feel the need to call it SOA or to overload it with
SOA-related technologies just for the heck of it. SOA has a lot of advantages, but it’s
not the solution for every problem.

8.5 Summary
This chapter introduced some of the common pitfalls you’re likely to make when
moving to SOA.

 Knot—Services are tightly coupled with point-to-point integration
 Nanoservice —Services are made too small, resulting in an unmanageable soup

of services
 Transactional Integration —Transactions cross service boundaries and couple ser

vices together
 Same Old Way —You into using your previous architecture, mistakenly thinking

it is SOA

I mentioned at the beginning of this chapter that this second part of the book takes a
look at different aspects of SOA in the real world. Now that we’ve finished looking at
antipatterns, next we’ll look at another aspect of real-world SOA, which is that real prob
lems are so big and complex that a single pattern can’t solve them. We’ll go over a case
study of an end-to-end solution that integrates several patterns into a greater whole.
www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8 Service antipatterns
8.6 Further reading
KNOT

Brian Foote and Joseph Yoder, “Big Ball of Mud,” www.laputan.org/mud/.
This is a very good paper discussing pragmatic situations. Among them, it explains when it is
valid to have a mess of an architecture (“a big ball of mud”).

TRANSACTIONAL INTEGRATION

Leslie Lamport, Robert Shostak, and Marshall Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems, vol. 4, no. 3 (July 1982), http://
research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf.
This is a seminal paper that explains the challenge of distributed consensus.

Roger Sessions, “Shootout at the Transaction Corral; BTP versus WS-T,” ObjectWatch Newsletter,
no. 41 (October 3, 2002), www.objectwatch.com/newsletters/issue_41.htm.
This is a good paper by Roger Sessions from 2002(!) that explains why transactions between
services are bad.

Christophe Bare, “Transactional Processing Cheat Sheet” (September 2005), www.cbare.org/
writing/Transactions/transactions.html.
Christophe’s paper provides a thorough explanation of transactions (in general).
www.it-ebooks.info

http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
www.objectwatch.com/newsletters/issue_41.htm
www.cbare.org/writing/Transactions/transactions.html
www.cbare.org/writing/Transactions/transactions.html
www.laputan.org/mud
http://www.it-ebooks.info/

Putting it all together—
a case study
In this chapter
 Implementing business services

 Providing identification by email

 Using the patterns introduced in earlier chapters

This book details a lot of different patterns, and each pattern handles just one
aspect of building a solution, like security, scalability, and integration. But real sys
tems have lots and lots of different challenges that need to be resolved. It’s interest
ing to see how the patterns can combine to provide a single cohesive solution—
that’s what this chapter is about.

 The case study discussed in this chapter is divided into two parts: background
presenting the problem, and a solution. The problem introduction describes the
system that was developed as well as the quality attributes of that project. The sec
ond part, which takes up most of the chapter, presents the solution and the pat
terns that were used in it.

 This chapter demonstrates how you can combine multiple patterns to create a
larger whole. It also shows how patterns fit into the development lifecycle, demon
strating how to choose appropriate patterns based on the requirements, and
211

www.it-ebooks.info

http://www.it-ebooks.info/

212	 CHAPTER 9 Putting it all together— a case study
offering a glimpse into the implementation of the patterns in that project. (Note that
the implementation here is one of many way you can implement this book’s patterns.)

9.1 Problem
To present a real-world solution that integrates several patterns in a meaningful way,
we need a good-sized project. To that end, I’m going to present a system I worked on a
few years ago, where a lot of the patterns discussed in the book were implemented. It’s
also the system that delayed this book for three years (taking up all my time), so it
seems fair it should serve as an example.

 We’ll start by looking at the general characteristics of the system, then at some of
the architectural requirements, and finally at the mapping to relevant patterns.

SYSTEM REQUIREMENTS

The system we’ll look at allows you to perform a visual search, which is an interest
ing way to explore the world. The idea is simple enough: you see something of inter
est, take a picture of it with your mobile phone’s camera, send the photo to a
service, and get back relevant information. Google Goggles is a public solution that
performs this function. The system we’re looking at does essentially the same thing
with two key differences:

 The system supports multiple ways to send in images—via video phone call,
SMS, email, and apps on various platforms. (Goggles can only be used via apps.)

 The system is an OEM white-label solution for content providers—it’s a software
as a service (SaaS) solution that provides visual

search.

Figure 9.1 shows the main business services involved
in the system. The system has four services for provid
ing visual search, each of which is a different business
offering. It also has a service for managing interac
tions, where the clients can design the experience
users will get when a search yields a result; a service
for managing advertising campaigns; and other stan
dard services like billing and reporting.

The business services give us a high-level overview
of the intended functionality of the system and pro
vide hints toward partitioning the solution into ser
vices. When designing an SOA solution, the next step
would usually be to understand and analyze the busi
ness processes in order to gain insights into what mes-

Figure 9.1 Some of the business
sages and contracts are needed. We’ll look at some of services the image search system
the results of such an analysis when we get to the solu- exposes. The services include

several ways to perform a visual tion (the analysis itself isn’t in the scope of the book).
search (via email, app, video call,

 Before that, we need to take a look at some of the and SMS), billing, interactions
system’s quality attributes. management, and so on.

3G video
call

image
search

App image
search

Email
image
search

SMS image
search

BillingCampaigns

Interactons Etc...
www.it-ebooks.info

http://www.it-ebooks.info/

Problem	 213
What’s the difference between service orientation and SOA?
Differentiating between service orientation and SOA is beyond the scope of this
book. But it’s important to discuss it in the context of this case study for two main
reasons:

 Service orientation is a stepping-stone toward deciding which services an SOA
will include.

 SOA services and business-level services (services originating from service
orientation analysis) are related but may not necessarily have a one-to-one
relationship.

So, what is service orientation?

In a nutshell, service orientation is an approach to analyzing some of the aspects of
enterprise architecture—specifically functional decomposition, business processes,
and data architecture. Applying service orientation means focusing on breaking down
business capabilities and functions into business-level services. The business level
services are logical components whose composition and interactions provide the
business’s processes.

SOA, as explained in the first chapter, is an architectural style (a software concept)
concerned with building interconnected coarse-grained components. SOA focuses on
flexibility and composition. The resemblance between the “service oriented architec
ture” and “service orientation” names isn’t accidental. SOA is a good fit for imple
menting service orientation.

In a sense, the business services and business processes identified at the service
orientation level are the requirements that are fed into the architecture, technology
mapping, and implementation at the software level, where SOA plays.

QUALITY ATTRIBUTES

Quality attribute scenarios help us understand how to design a solution. Quality attri
bute scenarios, as explained in appendix A and demonstrated throughout the book,
provide a good way to describe architectural requirements.

 Expressing quality attributes as scenarios carries many additional benefits: they can
help you gain a better understanding of the requirement, allow you to build tests to
demonstrate the quality, serve as a means to prioritize and evaluate an architecture,
and so on.

 Table 9.1 lists some of the system’s quality attributes and scenarios, along with can
didate patterns that could handle the scenarios.

Now that we have an understanding of the functionality and some of the quality
attributes needed, we can move on to the more interesting part— the solution.
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 9 Putting it all together— a case study
Table 9.1 A few of the case study’s quality attributes and patterns used to tackle them

Concrete quality attribute Scenario Relevant patterns

Adaptability/changeability
(add/remove feature)

Unplanned downtime

Time to repair/detect

Deployment

Scalability

Cost

During development and operations, a
change in a component will only affect
the direct components (for development
and production).
Once in production, a change in an inter
face will be compatible at least one ver
sion back.

Under normal conditions, a failure in a
single component won’t result in call ter
mination.

Under normal conditions, the system will
detect a failure in a component in less
than 5 seconds.

Under normal conditions, the system
won’t require manual configuration to
work.
Under normal conditions, deploying a
new version will be done by xcopy.

Under all conditions, adding additional
hardware units (deployment units) will
enable linear growth in image database
capacity.

The cost of a deployment unit shall not
exceed $1000.

Edge Component
(chapter 2)

Service Watchdog
(chapter 3)
Service Instance
(chapter 2)

Service Monitor
(chapter 4)

Inversion of Communications,
(chapter 5)
Reservation
(chapter 6)

Gridable Service
(chapter 3)

Gridable Service
(chapter 3)

9.2 Solution
The system that was constructed to handle the system’s requirements evolved over
time. Initially, the system only had to handle identification in 3G video calls and small
numbers of links. Then the business added requirements for SMS and email, followed
by a demand to handle large numbers of links and to open the platform for mobile
apps and general internet use.

 As you can probably guess, we decided to build the system based on SOA princi
ples. That helped us meet the system’s requirements, but more importantly it helped
us constantly adapt the system to the changing requirements. SOA’s flexibility allowed
us to add more components (services) as well as evolve the internal structure of exist
ing services while keeping the system working.

We’ll look at a few of the SOA patterns that were used to make this happen. Let’s
start with a look at some of the services that the system contains (depicted in figure
9.2). These services will be used to demonstrate how the patterns were implemented:
www.it-ebooks.info

http://www.it-ebooks.info/

Solution	 215
Match worker
Match worker

IdentficatonPhone Client

MMS Gateway

Email Gateway

Statstcs
Collector

Reportng

Third -Party
3G Video Call

Gateway

SIP Listener RTP Listener Player

MMMMMMMMMMMMMMMMMMMM atttchhhhh workkkkke r
MM aattcchh

ww
wwoorrkk

ee r
eerrIdentficaton

Workers

Interactons

Billing

Campaigns

Liveliness
Monitor

Monitor

Call Flow Call Recovery Watchdog

Figure 9.2 Some of the services in the system that implement business
services. Providing identification by email involves several services: the
Email Gateway, Identification (with its ID Workers), Watchdog, Statistics
Collector, Monitor, and Billing. The discussion of the solution will use these
services in different contexts to demonstrate different patterns.

 Email Gateway, MMS Gateway, and Phone Client—These are adaptor services that
translated external protocols to internal ones (discussed in section 9.2.1).

 SIP Listener, RTP Listener, Player, Call Recovery, and Third-Party (3G Video Call)
Gateway—These services handle different aspects of 3G video calls (discussed in
sections 9.2.1 and 9.2.2).

 Billing, Interactions, and Campaigns—These are B2B-oriented services. One han
dles billing, one handles the interactions (what end users see when a link is
identified), and the last handles advertising campaigns.

 Liveliness Monitor, Monitor, and Watchdog—These are technical services in charge
of keeping the system running (discussed in section 9.2.3).

 Statistics Collector, Reporting—These services are responsible for collecting all the
information passed through the system (from logs to what end users do while
interacting with the system) and turning that into data for reports (not dis
cussed in this chapter, but the discussion of the Aggregated Reporting pattern
in chapter 7 covers some details).

 Identification and ID Workers—These services form the image identification sub
system (discussed in section 9.2.1).

I mentioned that identifiable business services can serve as a guide to partitioning of
services in SOA, and that mapping isn’t necessarily one to one. Table 9.2 shows the map
ping of business services to the SOA services that enable them. Section 9.2.2 on the use
of the Inversion of Communications pattern will expand more on how a sample busi
ness service is implemented by the interaction and coordination of several services.
www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 9 Putting it all together— a case study
Table 9.2 Business services and the services used to implement them

Business service Services involved

App image search Phone Client, Identification, Identification Workers, Watchdog, Billing,
Statistics Collector, Campaigns

Email image search Email Gateway, Identification, Identification Workers, Watchdog, Billing,
Statistics Collector, Campaigns

MMS search MMS Gateway, Identification, Identification Workers, Watchdog, Billing,
Statistics Collector, Campaigns

3G video call search SIP Listener, RTP Listener, Player, Call Recovery, Identification, Identifica
tion Workers, Watchdog, Billing, Statistics Collector, Campaigns

Billing Billing, Reporting

Campaign management Campaigns, Reporting

Interactions Interactions, Reporting, Campaigns

We have a bunch of SOA services, but a bunch of services doesn’t make a system. A sys
tem is created when components, or services in our case, cooperate and work together
toward fulfilling a purpose. The following sections will look at how SOA patterns help
weave the different services into a system.

STRUCTURE (EDGE COMPONENT, GRIDABLE SERVICE, PARALLEL PIPELINES)

We’ll start off by looking at the structure of the system and at some of the patterns that
were applied there.

 The first pattern we’ll look at is also the first pattern that appears in the book
(chapter 2). Edge Component is a basic pattern, and as an architectural pattern it can
be applied on many levels. As a reminder, here’s how the Edge Component pattern is
defined:

Add an edge component to the service implementation to add flexibility and ! separate the business logic from other concerns (such as contacts, protocols,
technology choices, and additional cross-cutting features).

When working on the system, we implemented this pattern on multiple levels. First,
you can see the Edge Component pattern at the architectural level where the differ
ent ways to send an image for identification and search (smartphone apps, MMS, and
3G video calls) are separated from the business logic performing the actual identifica
tion and search. Conceptually, this implementation can be thought of as a single ser
vice performing image search with the different gateways serving as edge
components, as illustrated in figure 9.3.
www.it-ebooks.info

http://www.it-ebooks.info/

Solution	 217
Match worker
Match worker

Identficaton

Phone Client

MMS Gateway

Email Gateway

MMMMMMMMMMMMMMMMMMMM atttchhhhh wo rkkkkke r
MMaattcchh

ww
wwoorrkk

ee r
ee rr

ID workers

Internal Service

Edge Components

Figure 9.3 Application of the Edge
Component pattern at the architectural
level. Edge services translate external
protocols into the system’s internal
protocols. The Email Gateway works with
IMAP protocols to get emails, extract the
images from them, and call the
Identification service to perform a search.

Can an Email Gateway be considered a service?
An interesting consideration is whether the different gateways mentioned in this sys
tem can be considered services. We all know that SOAP web services are services,
right? But email? MMS?

I’ll first say that using SOAP and web services doesn’t automatically mean you have
an SOA and a service. You could take any object you have in the system, wrap it with
a SOAP-enabling technology like WCF or JAX-WS, and you’d just get a fancy way to do
RPC.

A component is a service if it adheres to the definition of a service. Let’s take another
look at the definition of SOA from chapter 1:

Service-oriented architecture (SOA) is an architectural style for building systems
based on interactions of loosely coupled, coarse-grained, and autonomous compo
nents called services. Each service exposes processes and behavior through con
tracts, which are composed of messages at discoverable addresses called
endpoints. A service’s behavior is governed by policies that are external to the ser
vice itself. The contracts and messages are used by external components called
service consumers.

The different gateways do meet this definition. Let’s take the Email Gateway as an
example:

 Course-grained and autonomous—The component lives on its own. It can handle
everything that’s related to email, and it communicates with other services to
provide business functions. If the image search service isn’t available, the Email
Gateway doesn’t fail (it can still return an email reply that the system is unavail
able)—it’s the system as a whole that fails, in this case, to provide the business
value.

 Use of a contract and messages at a discoverable address—The contract is based
on a known protocol (IMAP) where the message structure is an email that must
have an image attachment in one of supported formats and where the email is
addressed to a specific mailbox (the endpoint).
www.it-ebooks.info

http://www.it-ebooks.info/

218	 CHAPTER 9 Putting it all together— a case study
(continued)

 Governed by policies—The policies that can be set include the origin of emails
accepted, that the origin email address are verifiable (by using protocols such as
DomainKeys Identified Mail (DKIM), that messages are signed or not, and so on.

Services can come in different shapes and sizes, and can use different protocols and
technologies. What makes something a service is the way it’s constructed and the
way it interacts and is used within a system.

We also implemented the Edge Component pattern at the code level. The following
listing shows simple WCF data and operation contracts, which define an external inter
face (something other services can use) for sending MMS messages.

Listing 9.1 Simple WCF contract for sending an MMS message

[ServiceContract]

public interface IHandleSendMms

{

 [OperationContract]

 int SendMms(SendMmsRequest eventOccurred);

}

[DataContract]

public class SendMmsRequest : ImEvent

{

 /// <summary>

 /// end user's number. should be in international

➥	 format: +[country-code]number. Example: +491737692260
 /// </summary>
 [DataMember]
 public string ToNumber { get; set; }

 /// <summary>

Declare
IHandleSendMms
as a contract

Declare SendMms
as a message

Specify SendMms
message structure

 /// service's number, usually a short-code. Example: 84343

 /// </summary>

 [DataMember]

 public string FromNumber { get; set; }

 /// <summary>

 /// Text, as byte array. Use Encoding classes to do it.

 /// </summary>

 [DataMember]

 public byte[] TextAsByteArray { get; set; }

 /// <summary>

 /// Image, as byte array. Can be: jpg, gif, png, bmp. (jpg rulez!!)

 /// </summary>

 [DataMember]

 public string ImageExtension { get; set; }

 /// <summary>

 /// the mms message should have a subject. just put something there.

 /// </summary>

 [DataMember]

 public string Subject { get; set; }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Solution	 219

The following listing shows one of the methods of an Edge Component in the service
that fulfills the preceding contract for sending out the MMS messages.

Listing 9.2 Converting external contract to an internal construct in an Edge component

public int SendMms(SendMmsRequest eventOccurred)

 {

var eventContext = eventOccurred.ToString();

if (log.IsDebugEnabled)

 log.Debug("inside 'SendMms', event context = ["

➥ + eventContext + "]");
var fromNumber = eventOccurred.FromNumber;
var sender = mmsSenderFactory.Get(fromNumber);
if (null == sender)
{
 if (log.IsWarnEnabled)
 log.Warn("cannot get mms sender derived from '"

➥+ (fromNumber ?? "null") + "'");
 return 0;

}

IMmsSubmitResponse response;

try

{

 var extension= GetImageExtension

➥(eventOccurred.ImageAsByteArray);
 var mmsMessageDetails = new MmsMessageDetails

➥ 	 (eventOccurred.ToNumber,
 eventOccurred.TextAsByteArray,
 eventOccurred.ImageAsByteArray,

 extension),
 eventOccurred.Subject);

 response = sender.Submit(mmsMessageDetails);

}

catch (Exception ex)

{

 log.Error("cannot send mms message, context =

➥ [" + eventContext + "]", ex);
 return -1;

}

if (log.IsInfoEnabled)

{

 var responseMessage = (null == response) ?

➥	 "null" : response.ToString();
 log.Info("sent mms with event context =

Accepts
external
message
from wire

Adds missing
information
used internally

Converts to
internal
structure

Calls
internal
service with
internal
message
structure

➥	 [" + eventContext + "], response = [" + responseMessage + "]");
}
return 0;

 }

You can see that the method in this listing translates the external message into the
internal data structure used within the service. You can also see that it adds missing
information that doesn’t appear in the external contract. In this example, the file
extension (the type) of the image that’s being sent via the MMS is needed internally.
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 9 Putting it all together— a case study
The edge component looks at the image and infers its type so that the business logic
can concentrate on sending messages and not on image parsing.

 The Edge Component pattern helped us build individual services. We also needed
a way to tie services together to fulfill the business services. This was especially chal
lenging for video calls. Performing image search for video calls is a clientless service—
the client-side application is the video call provider (a closed application developed by
the phone manufacturer), and it creates a two-way video channel and passes DTMF
tones (keystrokes). This means that a lot of the handling of video calls requires state
ful services to handle the incoming video stream, generate the outgoing video stream,
and maintain the state of the client.

 To solve this problem we applied the Parallel Pipelines pattern, which was
described in chapter 3 as follows:

Implement the Parallel Pipelines pattern, where you break the process into ! subtasks, add a queue between them, and make each subtask an independent
component.

Figure 9.4 shows an excerpt from the process of handling videos calls and demon
strates how the Parallel Pipelines pattern was put to use. Each service implements just
one subtask related to handling the video call visual search, and the results are passed
from service to service to complete the overall business process.

 Specifically, the RTP Listener accepts an incoming RTP (Real-Time Transport Pro
tocol) video in H.263 format and keystrokes from the user (each video call gener
ates a distinct stream of video and keystrokes). Depending on what was decoded
(image or keystroke) the RTP Listener sends the data to either the Identification ser
vice, which performs the image search, or the Call Flow service, which decides what
needs to be shown to the user, such as instructions on what to do next or a result.
The player takes care of displaying information to the user, based on the decisions of
the Call Flow service.

Using the Edge Component and Parallel Pipelines patterns helped make the sys
tem tick, but to solve the core problem of the system—searching based on images—we
needed another pattern: the Gridable Service pattern (see chapter 3):

Figure 9.4 An implementation of the Parallel
Pipelines pattern. The RTP listener takes on the
subtask of decoding RTP and sends the results to the
Call Flow and Identification services. Identification
takes the subtask of performing the visual search,
and Call Flow takes the subtask of understanding
what’s happening and deciding what the user needs
to see (instructions, the results of the search, or
something else). The Player service performs the
subtask of providing video to the end user. All
together they perform the business service of visual
search over video call.

Player

Identficaton

RTP Listener

Callflow
www.it-ebooks.info

http://www.it-ebooks.info/

221Solution
Introduce grid technology to the service, via the Gridable Service pattern, to
handle computationally intense tasks.

You can take it from me that visual search is a “computationally intense task.” In a nut-
shell, it involves building an identifier or signature for each image in the database
(something done offline), and when you receive a new image, you build a signature
for that image and compare the results. You can disqualify some of the results based
on different aspects of the image; for example, application icons have different fea-
tures from general images. On top of that, you can use all sorts of metadata to narrow
the search; for example, if you have a client with a magazine in Germany and another
with a newspaper in the United States, you can decide not to check some images
based on the location where they were taken. All of this is rather complicated and
involves math that’s well beyond the scope of the book (and me, to be honest).

 I do know a bit more about software architecture, so let’s focus on that. Figure 9.5
illustrates how the Gridable Service pattern was utilized in the system. The Identifica-
tion service is the grid root, and it distributes a search to different machines that regis-
ter on the grid. Within each machine, there’s an instance of the Identification Worker
service, which contains a local database that contains part (a shard) of the overall data-
base (we used Cassandra for that) and computational agents—the Identifier Node and
Worker components, that work against the database to perform the image search.

 You might argue that this is more of a computation cluster than a grid, but we did
have some grid traits in the sense that nodes in the cluster were added and removed
dynamically in various scenarios, such as in cases of node failure, and when we needed
to cope with larger databases. On a later version of the product, we added the ability to
grow and shrink the cluster elastically (when we worked on adding support to deploy-
ing the system to Amazon’s cloud). Thus, one of the roles of the root node (the Iden-
tification service) is to periodically check whether new servers have joined the gird
(crashed or failed servers are removed when a call to them fails). In listing 9.3, you can
see the code that checks the current worker count. The HandlersRefresher B accepts

�

DB

Iden�fier
Node MatcherMMaattcchheerr

ID Worker

MatcherMM hM
Matcher

MMMMMMMMMMMMMMMMMMMMMMMaaaaaaaattttttttcccccccchhhhhhhheeeeeeeerrrrrrrr
MMaattcchh

eer
eerr

ID Worker

MatcherMM hM
Matcher

MMMMMMMMMMMMMMMMMMMMMMMMaaaaaaaatttttttttcccccccchhhhhhhheeeeeeeerrrrrrrr
MMaattcchh

eer
eerr

ID Worker

Machine1

Machine2

Machine N

DB

Sharded
database

Iden�fica�on

Iden�fier
Node

Iden�fier
Node

Ma

Ma

Distribu�ng
search

DB

Figure 9.5 An application of the
Gridable Service pattern. The
Identification service is the grid’s
root, distributing the search to
various machines. Each machine
has an instance of the
Identification Worker service,
which is comprised of Identifier
Node and Worker. The Identifier
Node is a local manager that
employs the Workers, which are the
computation engines. The Workers
perform the actual search on a
fragment of the image database.
www.it-ebooks.info

http://www.it-ebooks.info/

222	 CHAPTER 9 Putting it all together— a case study

a thread (the dispatcherFiber parameter) of execution from Retlang (a .NET open
source library for Erlang-style concurrency1) and uses it C to schedule a timed event
to recheck for new servers that are available within the grid.

Listing 9.3 A class to check for current workers (handlers) that are active in the grid

public class HandlersRefresher

{

 private readonly IFiber dispatcherFiber;

 private const int HandlersUninitializedValue = -1;

 private int idealNumberOfHandlers = HandlersUninitializedValue;

 private static readonly ILog log =

➥ 	 LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);
 public const int RefreshIntervalInMs = 30*1000;
 public const int TimeToFirstCheckInMs = 10*1000;
 private readonly Action<bool> refreshMatchersAction;
 private ITimerControl timerControl = null;

 public HandlersRefresher(
 Get execution B
IFiber dispatcherFiber,
 thread to check

 Action<bool> refreshMatchersAction)
 for new workers
{

if (dispatcherFiber == null)

 throw new ArgumentNullException("dispatcherFiber");

if (refreshMatchersAction == null)

 throw new ArgumentNullException("refreshMatchersAction");

this.dispatcherFiber = dispatcherFiber;

this.refreshMatchersAction = refreshMatchersAction;

 }

 public int CurrentIdealNumberOfHandlers

 {

get { return this.idealNumberOfHandlers; }

 }

 public void InspectHandlers(IFrameHandler[] handlers)

 {

var numberOfHandlers = handlers == null ? 0 : handlers.Length;

ScheduleRefreshIfNotAlreadyScheduled();

if (numberOfHandlers > 0

➥ && numberOfHandlers >= idealNumberOfHandlers)
{

log.DebugFormat("Setting the ideal number of handlers

➥to {0}", numberOfHandlers);

 idealNumberOfHandlers = numberOfHandlers;

}

 }

 private void CancelRefreshSchedulingIfExists()

 {

 Yes, Erlang and Scala actors are much better, but we didn’t know that at the time. 1
www.it-ebooks.info

http://www.it-ebooks.info/

Solution	 223

if (timerControl == null)

 return;

log.Debug("Stopping scheduled handlers refresh");

timerControl.Cancel();

timerControl = null;

Schedule }	 C
new check
event private void ScheduleRefreshIfNotAlreadyScheduled()

 {

if (timerControl != null)

 return;

log.DebugFormat("Scheduling handlers refresh every

➥{0} ms.", RefreshIntervalInMs);

timerControl = dispatcherFiber.ScheduleOnInterval(

 () => refreshMatchersAction(false),

 TimeToFirstCheckInMs,

 RefreshIntervalInMs);

 }

}

}

If you want to understand how the refreshMatchersAction B does its magic, and
how messages travelled between all the services, you need to take a deeper look at the
communications mechanisms in the system and the patterns they use.

NOTE In .NET an Action<T> type is a delegate (a pointer to a function or
method) for a method that accepts a single parameter of type T and does not
return a value.

COMMUNICATIONS (INVERSION OF COMMUNICATIONS, SERVICE BUS, SAGA, RESERVATION)

At the heart of the communications mechanism of the system lies a software compo
nent called eventBroker. As implied by the name, it implements the Inversion of
Communications pattern (see chapter 5):

Implement the Inversion of Communications pattern by supplementing SOA with

� event-driven architecture (EDA)—you can allow services to publish streams of
events that occur in them instead of calling other services explicitly.

The system’s use of event semantics extends both to events notifying that something
happened (such as the Frame-Arrived event emitted when a new image is made avail
able for identification in a video call) and to asynchronous requests (such as the Send
Coupon-Request event sent from the Call Flow service).

 The following listing shows how the eventBroker is used from the consumer side.
The SendCoupon method prepares a request with all the needed data and then calls
the eventBroker’s RaiseEvent method to dispatch the message to another
(unknown) service that will send the actual SMS with the coupon inside.
www.it-ebooks.info

http://www.it-ebooks.info/

224	 CHAPTER 9 Putting it all together— a case study

Listing 9.4 Code from the Call Flow service raising an event

public void SendCoupon(string title, String targetUri)

{

var recipient = callerPhoneNumber.Value;

Logger.DebugFormat("sending sms to '{0}', title is '{1}',

➥ content is '{2}'", recipient, title, targetUri);
SendCouponRequest evt = new SendCouponRequest()
 Prepares

{
 an event
 Recipient = recipient,
 (coupon
 Content = new Uri(targetUri),
 request)
 Title = title

 };
 Emits the event
eventBroker.RaiseEvent<SendCouponRequest>(evt);
 on the bus
}

The eventBroker name is a bit misleading because the eventBroker is actually a bus
(an agent on each server, and not a centralized node or broker). It implements the
Service Bus pattern (discussed in chapter 7):

Implement the Service Bus pattern and use a unified messaging infrastructure for

� message transformation, mediation, routing, and invocation.

The eventBroker isolates the business logic from any information related to the tar
get or targets of the event, as well as from the implementation details of how messages
are sent (the actual messages were sent over HTTP using WCF). Sometimes an event is
sent to multiple subscribers, sometimes it’s sent to different subscribers based on con
text (more on that later), sometime it’s broadcast. The eventBroker also encapsulates
failures, performing retries, ignoring cyclic messages if there’s a timeout, skipping
failed recipients if they are optional, and so on.

 You can see another interesting capability of the eventBroker in the following list
ing. This code shows another method from the Call Flow service that sends a request
to play a movie to a video-call end user.

Listing 9.5 A method from the Call Flow service raising a saga event

public void PlayMovie(

String mediaLocation,

bool loop,

string interactionID)

{

 var playMovReq = new PlayMovieRequest(SessionId, mediaLocation,

➥	 loop, interactionID);
 if (Logger.IsDebugEnabled)
 {

 Logger.Debug("in saga [" + playMovReq.SessionID + "]

➥ about to play movie '" + mediaLocation.ToString()

➥ + "', loop = " + loop.ToString() + 	 RaisesB
saga ➥ " interaction ID = '" + interactionID + "'");
event eventBroker.RaiseSagaEvent(playMovReq);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Solution	 225
Player

RTP Listener

Callflow

1

2 Identficaton

Overall, this method is very similar to the SendCoupon method in listing 9.4. The main
difference lies in the last row of the code B. While the event in listing 9.4 isn’t related
to other events and stands completely alone, the event in snippet 9.5 is raised as part
of a saga—the event is sent as part of a series of related events that are a part of a sin
gle business process.

 Here’s a reminder of the definition of the Saga pattern as it appears in chapter 5:

Implement the Saga pattern and break the service interaction (the business

� process) into multiple smaller business actions and counteractions. Coordinate
the conversation and manage it based on messages and timeouts.

Why did we need to use the Saga pattern? One reason is that we also used the Service
Instance pattern, and we wanted to make sure related calls would be sent to the same
instance (see section 9.2.3 for more details). Another reason is to take care of failure
scenarios. You don’t want to bill a client who didn’t receive the product or service
you’re billing for. When there’s a problem with one of the services involved in the saga
(whether it’s a communications or a business logic problem) it can throw a Saga-Fault
event, and some other service or services will try to handle the failure.

 Let’s revisit the Parallel Pipelines scenario we discussed in figure 9.4 to demon
strate what happens in failure scenarios. In figure 9.6, you can see the RTL Listener
raising an event that needs to go to the Call Flow service B, which in turn fails.
Because this is a communications problem, the eventBroker will raise the Saga-Fault
event without the business logic intervention. The Call Recovery service subscribes to
the Saga-Fault event and will get the notification when it occurs C. The Call Recovery
service will then try to handle the failure by allocating another Call Flow instance to
the saga so calls can be completed.

 The initiator of a saga sets the context for that saga, and the bus (the eventBro
ker) then routes events based on that context. To illustrate this, consider this simple
scenario: All the different gateway services (Email Gateway, MMS Gateway, and Phone
Gateway) send out the same event when they have a new image ready for identifica
tion, and the result of the search needs to go back to the right gateway. The Identifica
tion service will emit an Identification-Found event regardless of where the request

Call
Recovery

Figure 9.6 The eventBroker in the RTP
Listener tries to send an event to the Call
Flow service B. When it fails, the RTP
Listener raises a Saga-Fault event, and the
Call Recovery service C listens to it and tries
to contain the failure.
www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 9 Putting it all together— a case study

originated. You don’t want the service to know about the recipient—that’s the whole
point of having a bus. Similarly, you don’t want to broadcast the result because it’s not
scalable and creates needless load. Instead, we employed context-based routing.

 Each service contract includes a list of the events that the service listens to, as well
as a list of contexts where these messages are applicable. The following listing shows
the list of contexts—the different Participate attributes (or annotations in Java
speak)—that the Identification service listens to. In this case, these contexts are the
different ways to perform an image search.

Listing 9.6 Contract listing the events and contexts where these messages are relevant

[ServiceContract]

[BroadcastStatus]

[Participate(Contexts.3rdParty)]
 Identifies contexts the
[Participate(Contexts.VidCall)]
 service participates in
[Participate(Contexts.Client)]

[Participate(Contexts.Mms)]

[Participate(Contexts.Email)]

public interface ImIdentifier : ImContract,

 IHandleNewImageInSequence,

 IHandleCallStarted,
 Identifies
 IHandleCallEnded,
 events
 IHandleCallAborted,
 handled by
 IHandleSearchStarted,
 the service
 IHandleInteractionStarted,

 IHandleReadyForSearch,

 IHandleImageIdentification,

 IHandleReshardingOccurred

 {}

When a new event is raised, the eventBroker needs to find out what types of services
are subscribed and notify them, and it needs to notify other members of the saga
(because each member holds its own instance of the eventBroker). Because some of
the services had limited capacity and needed to be verified as participants, we also
implemented the Reservation pattern (discussed in chapter 6):

Implement the Reservation pattern and have the services provide a level of

� guarantee on internal resources for a limited time.

The eventBroker basically tries to connect to what it thinks is a free service and retries
until it secures all the services it needs (or maxes out on retries).

 Listing 9.7 shows the code for handling the reservation in the eventBroker. It basi
cally sets a time limit (a timeout) for all the reservations to be done, and then it tries to
reserve each of the candidates. If some of the services deny the reservation, the process
tries to find new candidates. Once all the needed services are reserved, the eventBro
ker tries to commit the reservations with all the services. Services can fail during a com
mit or after the saga is in use—the Saga-Fault event handles these situations.
www.it-ebooks.info

http://www.it-ebooks.info/

Solution 227

Listing 9.7 Code used to reserve instances when new members are added to the saga

private IEnumerable<Uri> Reserve(IEnumerable<ProxyWrapper> wrappers)

{

 var timeToComplete = DateTimeOffset.Now + TIMEOUT;

 var uris=Reserve(wrappers,
 Initiate reservations

MAX_RETRIES,

 new List<Uri>(),
 Return

reservations timeToComplete);

for saga return FinalizeReservation(uris)

}

private IEnumerable<Uri> Reserve(IEnumerable<ProxyWrapper> wrappers,

int retries,

ICollection<Uri> failedUris,

DateTimeOffset timeToComplete)

{

Get URIs of var success = true;

services for saga var newUris = GetCandidateUris(wrappers, failedUris);

if (null == newUris) return null;

if (newUris.Count == 0) return newUris;

failedUris = TryReserveNewMembers(newUris);
 Try to reserve
if (failedUris.Count>0)
 services
 success = false;

if (DateTimeOffset.Now>timeToComplete)

 success = false;

if (!success && retries==0)

 return null;

if (!success && retries > 0)

 return Reserve(wrappers,

 retries - 1,
 Retry
reserving failedUris,

failed URIs timeToComplete);

return newUris;

}

private ICollection<Uri> TryReserveNewMembers(IEnumerable<Uri> newUris)

{

 var notifier = new SagaNotifier(Id,

 Route,

 newUris,

 OptionalMembers,

 LocalUri,

 Allocator);

 var failedUris = notifier.ReserveAll();

 return failedUris;

}

The instances of the ProxyWrapper class encapsulate the communications to specific
services (one wrapper per service). In order for the eventBroker to be able to allocate
services to a saga, it has to know where to find these services so it can create valid
proxy wrappers for them. It needs to know where the active service endpoints are.

 To understand how we did this, let’s take a look at a couple of other patterns
implemented in the system: Service Watchdog and Service Instance.
www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 9 Putting it all together— a case study
AVAILABILITY (SERVICE INSTANCE, SERVICE WATCHDOG)

While most of the services, like Billing and the different gateways, are stateless, some
aren’t, especially the different services that provide visual search over 3G video calls.
In that setup, a user calling the system doesn’t install any client, which means that the
system has to maintain state on behalf of the user. It also needs to constantly stream
relevant videos to the user (instructions, results of searches, and so on). We chose to
implement these stateful services using the Service Instance pattern (chapter 3):

Implement the Service Instance pattern by deploying multiple instances of the
service business logic.

The main reason for this choice was availability and failure-handling concerns.
Figure 9.7 illustrates the problem solved by using Service Instance.

 Video calls are carried on E1 lines, each of which can handle up to 30 concurrent
calls. Let’s say we have one such line, and it’s connected to a single Call Flow service.
The service in stateful (hydrating/dehydrating state takes too much time), so a failure
in one call may cause the whole Call Flow service to fail and take with it all 30 calls,
resulting in dissatisfied customers and a loss of business. Using one Call Flow per
caller provides better isolation—a failure affects only one caller. It also makes the ser-
vice much simpler to program, as there are fewer multithreading and multitenancy
issues to worry about.

 We also implemented the Service Instance pattern for the individual computation
instances (Identification Worker service), as part of the identification grid (shown ear-
lier in figure 9.5). This was done to provide better isolation in cases of failure as well as
to bring computations closer to the data for greater speed.

 We’ve already talked about two components that were used to handle failures: the
Saga-Fault event that services can raise when something is wrong, and the Service
Instance pattern. The third measure taken against service failure that we’re going to
discuss is the implementation of the Service Watchdog pattern in the system.

�

E1 line =
30 concurrent video

calls

Call Flow
ChannelCall Flow

ChannelCall Flow
Channel

wwwwwwwwwwwwwwwwwwwww

Call Flow
Channel

Call Flow

Call Flow

Call Flow

eeeellllllllloowwow
nnneeelll

wwwwwwww

Call Flow
ChannelCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCChhhhhhhhhhhhaaaaannnnnnnnnneeeeelllllllll

Call Flow

Call FlowCCCCCCCCCCCCCCCCCCCCal

Call Flow

CCCCCCCCCCCCCCa
Call Flow

Call Flow

owwwwwwwwwww

FFlloooooooooooooooooooooooooooooooooooooowwwwwwwwwwwwwwwwwwwww

Call Flow

CCaallll FFCall F
Chhannn

C ll Fl

FFFlloooFFFFlllooo
nnnnnnnnnnnnnnnn

CCall Flow

ooooooooooowww
Call Flow

ellee Flelllee FFllooooooooooooooooooooooooooooooooooowwwwwwwwwww
aaaaaaaaaaaaaaaaannneeeeeooww

CCaallll FFllooww
CCChhhaaaC ll FaaannnnnneeelllCCnnannlleellee FFFlFFllowC aa e

CChhanneCnn eeChanneCCnnaallee

CCCCCCCCCCCCCCaallllllllll FFFCCCCCCCCCCCCCCCCCCCCCCChhhhhhhhhhhhhhhhhhhhhhhhFFFFFFFCCCCCChhhhhhhhllllllhhhhhhhhhhhhoooooCCCCCCCCCCCCCaaaaaaaaaaaaaaaallllllllllllllllll FFFFFFFFFllllllllloooooowwwwwwCCCCCCCC

Call Flow

Call Flow
service

Figure 9.7 Using the Service
Instance pattern to minimize the
effect of failure. An E1 line can
transfer 30 concurrent video calls.
When you connect them to a single
Call Flow service, a problem with one
call may bring down the whole
service, cutting off 30 users. If each
Call Flow service handles only one
call at a time, a failure will affect only
a single caller.
www.it-ebooks.info

http://www.it-ebooks.info/

Solution	 229

The Service Watchdog pattern is defined (in

chapter 3) as follows:

Implement the Service Watchdog

� pattern, where the service actively
monitors its internal state, acts on
potential trouble, tries to heal itself, and
continuously publishes its status.

Let’s take another look at the failure scenario

we discussed earlier in regard to the Saga-Fault

event (see figure 9.8).

 The RTP Listener service raises a saga event Figure 9.8 The advantage of using the
that is supposed to get to the Call Flow service,	 Service Watchdog pattern. When the RTP

Listener can’t raise an event B to the Call which it can’t raise. The RTP Listener then tries
Flow service, an external observer (the to raise a Saga-Fault event, but how do you know watchdog) can figure out if the problem is

what the problem is? Here are few options: with the publisher, the subscriber, the
network, or any combination of the three.

 The Call Flow service is down.
 The RTP Listener (actually, the eventBroker within it, in this case) is failing

somehow.
 The network is down.
 The whole computer that hosts the Call Flow service (and most likely other ser

vices) is down.
 There is a combination of the preceding problems.

The Service Watchdog, as an external observer, is able to discern what the states of the
local machine and services are and expose those states to other components (services
and service instances). In order for the watchdog to understand what’s happening, it
uses small agents that run inside each service. The following listing shows the watch
dog class that manages the agents (there was one instance per agent). We deployed
one watchdog instance per logical (virtualized or real) server.

Watchdog

Agent

Callflow
Agent

RTP Listener

1

Listing 9.8 Watchdog’s proxy class used to manage its agents running in services

public class WatchedServiceAgentProxy : IWatchedServiceAgent, IDisposable

{

 internal readonly Uri agentAddress;

 private IWatchedServiceAgent agentProxy = null;

 private int failures = 0;

private static readonly ILog log =

➥ LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType);

private const int MAX_FAILURES = 3;

private readonly ResourceContractInfo resourceContractInfo;

public WatchedServiceAgentProxy(

 ResourceContractInfo resourceContractInfo,

 int instanceIdentifier)

{

 this.resourceContractInfo = resourceContractInfo;

www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 9 Putting it all together— a case study

 agentAddress = AgentAddressProvider.GetAddress(

➥ resourceContractInfo, instanceIdentifier);
}
public Uri Address
{
 get { return agentAddress; }

}

 public void Dispose()

{

 if(this.agentProxy != null)

 ((ICommunicationObject)agentProxy).Abort();

}

void EnsureAgentProxy()

{

 if (agentProxy == null)

 agentProxy =

 ChannelFactory<IWatchedServiceAgent>.CreateChannel(

 new NetNamedPipeBinding(),

 new EndpointAddress(agentAddress));

 }

}

void RenewFaultedAgentProxy()

{

 if(agentProxy != null)

((ICommunicationObject)agentProxy).Abort();

 agentProxy = null;

 EnsureAgentProxy();

 }

 public LivelinessResult IsAlive()

 {

 try

 {

 EnsureAgentProxy();

 var isAlive = agentProxy.IsAlive();

 return isAlive;

 }

 catch(CommunicationException ex)

 {

 throw new ServiceCommunicationException

➥ ("Call to IsAlive failed", ex);
 }

 }

 public string GetName()

 {

 EnsureAgentProxy();

 return agentProxy.GetName();

 }

 public void Shutdown()

 {

 EnsureAgentProxy();

 agentProxy.Shutdown();

 }

Create named pipe
to communicate
with agent

Check liveliness
of service

Request services to
exit on shutdown
www.it-ebooks.info

http://www.it-ebooks.info/

Summary 231

Update services
with current

public void AcceptResourcesStatusBroadcast

➥(ServiceStatus[]
status info resourcesStatus)

{

 try

 {

EnsureAgentProxy();

agentProxy.AcceptResourcesStatusBroadcast(resourcesStatus);

 Interlocked.Exchange(ref failures, 0);

 }

 catch(CommunicationException ex)

 {

if (resourceContractInfo.IsOptional)

{

 log.Info(string.Format("optional resource '{0}'

➥cannot be reached, ignored",

➥resourceContractInfo.ContractName));
 return;

 }

 if (failures > MAX_FAILURES)

 {

 log.WarnFormat("Could not reach the watch

➥ dog agent on pipe '{0}' for {1} times in a row.
➥ Renewing the agent proxy,

➥exception={2}", agentAddress, MAX_FAILURES + 1,ex);

 RenewFaultedAgentProxy();

 Interlocked.Exchange(ref failures, 0);

 }

 Interlocked.Increment(ref failures);

 }

 }

}

As you can see, the agent proxy creates a named pipe channel to the service, through
which it periodically asks about the health of the service and provides a liveliness
report about other services. It also uses the channel to ask services to shut down when
there is an orderly shutdown of the logical machine.

 The service watchdogs also form a network between themselves and discover new
servers waking up and going down. This enables you to use the watchdog as a poor
man’s service registry, in the sense that it provides endpoint management capabili
ties—a way to discover and locate available service endpoint across the whole system
and provide some reporting capabilities. But it was far from a real service registry
because it lacked governance capabilities, such as the ability to manage versioning,
SLAs, assets, and so on.

9.3 Summary
In this chapter, you’ve seen that in order to achieve a desirable architecture, you need
to use several patterns together. This is also true when you’re building a whole system.

 Let’s take another look at the patterns we’ve looked at in this case study:
www.it-ebooks.info

http://www.it-ebooks.info/

232	 CHAPTER 9 Putting it all together— a case study
 Edge Component (chapter 2)—Separates business logic from technical concerns
 Parallel Pipelines (chapter 3)—Increases throughput of handling requests by

breaking the process into steps
 Gridable Service (chapter 3)—Solves a computationally intensive problem
 Inversion of Communications (chapter 5)—Adds flexibility in changing the way a

system behaves
 Service Bus (chapter 7)—Provides location transparency and communications
 Saga (chapter 5)—Ties together related events
 Reservation (chapter 6)—Secures instances to a saga
 Service Instance (chapter 3)—Breaks a service into multiple instances to increase

overall availability
 Service Watchdog (chapter 3)—Monitors health of local resources and reporting to

a central monitor

We also used a few other patterns when we built the system, such as these:

 Aggregated Reporting (chapter 7)—Builds reports by listening to events already
being raised in the system

 Active Service (chapter 2)—Allows some services to have their own thread of con
trol (and not just react to requests)

 Service Host (chapter 2)—Shares code to ensure that services have some standard
facilities (such as the watchdog agent)

The point of this chapter isn’t to show off how many patterns I know, or how many we
implemented in this case study. The point of this chapter is to provide you with a
glimpse into how the patterns in this book can be implemented. The patterns in this
book are architectural, and as such they can be interpreted in different ways. The
technology mapping section for each pattern only touched on implementations
briefly; this chapter has shown a little more detail about what’s involved.

 This chapter has also demonstrated how you can move from requirements to ser
vices. I’ve just touched on the process, but I hope it has given you some insight into
what’s involved. I think it’s also important to show the differences and relations
between business services and the architecture that’s built to support them.

 Finally, this chapter has demonstrated how using multiple services together
increases their overall usefulness and enables you to create a system. The system illus
trated here is just one example of how you could compose the services. Other require
ments will require a different set of patterns with a different set of relations and
ultimately different architectures and designs. The important point is that patterns
can work together to provide a cohesive whole.

 The next, and final, chapter takes a look at another aspect of SOA meeting the real
world—how SOA works with other important and common architectures and technol
ogies (REST, the cloud, and big data).
www.it-ebooks.info

http://www.it-ebooks.info/

SOA vs. the world
In this chapter
 Constraints of REST

 SOA and the cloud

 SOA and big data

In this part of the book, we’ve looked at antipatterns, discussing some of the things
that can go wrong, and we’ve looked at a case study, exploring how different pat
terns can interact with and complement each other. This chapter takes a look at the
impact of other architectural styles and trends on SOA. We’re going to cover:

 REST—What is the relationship between REST and SOA? Are they friends?
Foes? Can they work together?

 Cloud—Is SOA a good fit for cloud-based deployments? How does the cloud
affect SOA?

 Big data—NoSQL is starting to mature, with offerings from the big vendors
both in the advanced analytics front (IBM and EMC offer distributions of
Hadoop; Microsoft, Oracle, and others provide Hadoop integration) as well
as solutions for big data in real time (such as IBM InfoSphere Streams and
SAP HANA). How does SOA fit in?

Let’s start by looking at the REST architectural style, which many see as an alterna
tive to SOA.
233

www.it-ebooks.info

http://www.it-ebooks.info/

234	 CHAPTER 10 SOA vs. the world
10.1 REST vs. SOA
In recent years, the REST architectural style has become very popular, with a lot of
companies building RESTful APIs (such as Twitter and Facebook) and a lot of other
companies building value-added services, called mashups, by using these APIs.

 Wikipedia defines mashups as:

In Web development, a mashup is a Web page or application that uses and com
bines data, presentation or functionality from two or more sources to create
new services. The term implies easy, fast integration, frequently using open
APIs and data sources to produce enriched results that were not necessarily
the original reason for producing the raw source data.

The main characteristics of the mashup are combination, visualization,
and aggregation. It is important to make existing data more useful, moreover
for personal and professional use.1

This makes mashups sound a little like SOA, so to help clarify things I’ll explain the
differences between REST and SOA and what a RESTful SOA is. But first, let’s look at
what exactly REST is.

10.1.1 What is REST anyway?

REST is short for REpresentational State Transfer, and it’s an architectural style
defined by Roy T. Fielding in 2000 to describe the architectural style of the web.
REST’s basic component is the resource, which is addressable at an endpoint called a
URI. Figure 10.1 illustrates the constraints the REST style defines.

 Let’s look at the constraints one by one:

 Layered system—The layered architectural style defines a hierarchy of compo
nents (layers) so that each layer can only know one level down. This promotes
simplicity and the ability to enhance capabilities by adding middle layers (such
as a firewall for added security).

REST

Client/
server

Uniform
interface

Virtual
machine

Layered
system

Replicated
repository

Code on
demand

Stateless Cacheablecomm.

Figure 10.1 The REST architectural style
is derived from five base architectural
styles: layered system, client/server,
replicated repository, uniform interface,
and virtual machine

Wikipedia mashup definition: http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid). 1
www.it-ebooks.info

http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://www.it-ebooks.info/

REST vs. SOA	 235
 Client/server—The client/server architectural style introduces a separation of
concerns between consumers and the providers.

 Stateless communications—This constraint means that each request made from
the client to the server should have enough context (state) for the server to fig
ure out what to do with it. This is why there are cookies that carry the session
state from browser to server.

 Replicated repository—The idea behind this constraint is that it is OK to have
more than one process provide a particular service in order to achieve scalabil
ity and availability of data.

 Cacheable—The cacheable constraint means that messages can specify whether
it is OK to cache them and for how long. This constraint is an application of the
replicated repository constraint to the message level, and it helps save on server
round-trips, improves performance, and decreases server loads.

 Uniform interface—Probably the most distinct characteristic of REST is the use of
a limited vocabulary. HTTP, the most prevalent REST implementation, offers just
eight methods (GET, POST, PUT, DELETE, and the lesser known OPTIONS, HEAD,
TRACE, and CONNECT). The uniform interface makes it relatively easy to integrate
with RESTful services, and it also has a lot of impact on how you model RESTful
services (as compared to non-RESTful services).

 Virtual machine—Virtual machine or interpreter is the ability to run scripted
code. This is a prerequisite to the next constraint, “code on demand.”

 Code on demand—This is an optional constraint that allows you to download code
to the client for execution (such as JavaScript that runs in a browser). Code on
demand makes integration easier, because clients can get code to handle the
data they need instead of having to write code to handle the data themselves.

Another important aspect of REST is the use of Hypermedia as the Engine of Applica
tion State (HATEOAS). HATEOAS means that replies from a REST service should pro
vide links (URIs) to the available options, which are based on the server’s state, for
moving forward from the current point. If a request to place an order was made, the
reply can contain a URI for tracking the order, a URI for canceling the order, a URI for
paying for it, and so on. HATEOAS is an outcome of using a uniform interface, and
provides a map of the way to fulfill business goals when working with REST.

 That’s a view of REST from 50,000 feet, but even so, we can see some similarities to
and differences from SOA.

10.1.2 How REST and SOA are different

REST shares a couple of constraints and components with SOA. Client/server and the
notion of a layered system are basic building blocks of SOA, as they are for REST. On
the other hand, constraints like uniform interface and virtual machine are very for
eign to SOA.
www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 10 SOA vs. the world
SOA vs. REST

REST SOA

Pipes and
Filters

Client
Server

Uniform
Interface

Virtual
Machine

Distributed
Agents

Layered
System

Replicated
Repository

Code On
Demand

Stateless
Comm. Cacheable

Figure 10.2 A comparison of
REST and SOA architectural
constraints

You can see the whole picture in figure 10.2, which illustrates SOA’s influences as com
pared to REST’s.

 In addition to the layered system and client/server constraints, you can see two
other REST constraints that are optional in SOA: stateless communications and
cacheable. One of the optional constraints in SOA is the cacheable style.

 In terms of the latter, we talked in chapter 5 about message exchange patterns and
the benefits of sending immutable (versioned) data in messages. Immutable messages
are SOA’s way to specify cacheable messages; explicitly specifying cacheabilty, like in
REST, is also an option.

 The Service Instance pattern from chapter 3 is supportive of the replicated reposi
tory constraint. Similarly, while stateless communication is not a must in SOA, it is
highly recommended (see the discussion on document-centric messaging in the
Request-Reply pattern in chapter 5).

SOA’s benefits over REST include governance and planned reuse as well as high
security standards and a wealth of supporting components and message patterns
(such as publish/subscribe). REST’s advantages (especially REST over HTTP) include
the ubiquity of the browser and the serendipity of reuse.2

 The virtual machine constraint is very foreign to SOA, and fortunately it and its
derived constraint (code on demand) are optional for REST. This means you can com
bine REST and SOA to enhance SOAs reuse with REST reuse serendipity.

10.1.3 RESTful SOA

I find that RESTful SOA is beneficial when you want to have a dual API. In most other
cases, it’s usually better to choose either SOA or REST (based on your specific needs)
and stick with it.

Steve Vinoski, “Serendipitous Reuse,” IEEE Internet Computing, volume 12, issue 1 (January 2008), 84–87,
http://steve.vinoski.net/pdf/IEEE-Serendipitous_Reuse.pdf.

2
www.it-ebooks.info

http://steve.vinoski.net/pdf/IEEE-Serendipitous_Reuse.pdf
http://www.it-ebooks.info/

REST vs. SOA	 237
 How can you enrich SOA with REST? There are basically two approaches:

 Build a RESTful service and extend it to be an SOA one
 Take an SOA service and extend it to be a RESTful one

I recommend the latter approach, because SOA offers more flexible ways to connect
services and has better tooling support. Also, it’s likely that in enterprise environ
ments SOA-related APIs will be more prevalent. That said, you’ll often want to add
REST to allow third-party integration and to allow mobile clients to interact and con
sume services directly (somewhat like the Composite Front End pattern in chapter 6).

NOTE The Edge Component pattern (discussed in chapter 2) is a good
approach for adding a REST API on top of, or in addition to, an existing SOA
API. You can even use technologies like Apache Camel, which enable flexible
routing from external interfaces to internal ones.

The REST and SOA APIs will look radically different. REST comes with a hierarchical
noun-oriented API, and SOA has a shallow verb-oriented API (both for event-oriented
and web service-oriented APIs). Nevertheless, I find that mapping between the two is
more straightforward than you might expect.

Mapping REST to SOA
Mapping REST to SOA is not an automatic task. But while you will have to put some
thought into it, it’s more than doable. The following list contains a few tips or things
to remember when building a REST-to-SOA mapping:

 Different resources can map to a single service. If you have Order and Product
resources, the Order resource may have a GET /orders/<order id> URI to see
order details, and a GET /products/orders/ URI to see the different orders a
product participates in. Both might be mapped to an Order service with two mes
sages in its contract, such as ListOrderDetails and GetProductOrders.

 Different REST URIs can point to the same message in a service. Both POST /
orders/, which creates an order where the server allocated the key, and PUT /
orders/<order id>, which creates an order where the client sets the order, ID
can map to the same CreateOrder message, which accepts an XML message
that may or may not have an order ID.

 As REST is new to most SOA practitioners, it is important to avoid common REST
mistakes, like forgetting all the HTTP verbs and building a GETful architecture
(where only the GET method is used), neglecting to use hypermedia, the error of
using verbs as URIs (such as /createOrder/), and so on.

 If you have a proper REST API that utilizes HATEOAS and properly implements the
OPTIONS verb to allow checking for next steps, a contract for the REST API isn’t
needed. Remember that the SOA API already has a more formal contract (event
list or WSDL) and that the REST API is supplementary.
www.it-ebooks.info

http://www.it-ebooks.info/

238	 CHAPTER 10 SOA vs. the world
SOA and REST can be made to work together, and this combination can be beneficial,
especially if you plan to expose an API for consumption by UI applications directly,
and not limit it to being consumed by other applications. If you build your services
properly and employ REST practices, using stateless communication and making
results cacheable, you can add REST as an additional API (or as the only API for new
services) and still get SOA’s benefits.

That’s enough about REST. Let’s see how SOA matches up with another hot
trend—the cloud.

10.2 SOA and the cloud
Cloud computing is an important IT trend, taking virtualization to the next level by
using a large pool of virtualized hardware to provide utility computing capabilities. It
provides an electricity-like model, where computational resources are available on
demand (usually with pay-as-you-go billing) and with the ability to elastically grow and
shrink your resource use as needed.

 We’ll take a look at how this relatively new playground affects SOA, but let’s first try
to make sense of the different cloud-related terms out there.

10.2.1 The cloud terminology soup

Cloud computing sounds a lot like many other virtualization and hosting solutions
that have come around before. But while cloud technologies share concepts with pre
vious solutions, there are several characteristics that differentiate cloud computing.

 The U.S. National Institute of Standards and Technology published a formal defi
nition of cloud computing (see the further reading section) in which it defined five
essential characteristics:

 On-demand self service —The ability for cloud users to add capabilities (such as
virtual machine instances or storage, and so on).

 Rapid elasticity—The ability to add or remove resources on demand.
 Measured service —The cloud service provider collects, controls, reports on, and

optimizes resources (bandwidth, CPU usage, and so on). Users’ consumption of
these resources is usually the basis for service charges.

 Resource pooling —Resources are shared by multiple consumers transparently.
Users do not know where the resources are located or what other tenants may
be using them.

 Ubiquitous network access—Capabilities are accessed via heterogeneous networks.3

Cloud computing can be delivered as a “public cloud” where anyone can register and
use the resources. Examples include Amazon Web Services (AWS) and Windows
Azure. There are pros and cons to public cloud computing:

3	 NIST, The NIST Definition of Cloud Computing, Special Publication 800-145, http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf.
www.it-ebooks.info

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.it-ebooks.info/

239 SOA and the cloud
Pros	 Cons

 Low barrier to entry Increased latency Increased latency

 No up-front investment Can be costly for steady-state usage

 A convenient pay-as-you-go model Vendor lock-in (though this might
be a temporary issue) Virtually infinite scalability

An alternative to public clouds is the “private cloud,” which involves deploying a cloud
onsite for internal use by a single company. This can be done by building a solution
based on OpenStack or using VMware vFabric. The pros of this approach include
improved performance and latency, familiarity of tools and technologies (for the clus
ter managers), and privacy and security. The cons include greater up-front invest
ment, limited resources, and reduced scalability.

 There’s also the option of “hybrid clouds”—using both a public and private cloud
as a single solution. Hybrid clouds have the advantage of providing a good balance
between flexibility and performance. On the other hand, hybrid clouds mean more
complexity and security challenges, and the costs savings are there only if you opti
mize the cloud usage; otherwise it can prove to be more costly than the other options.

 Cloud capabilities are delivered over the network “as a service.” There are three
main types of service delivery:

 Infrastructure as a Service (IaaS) —This type of service is usually provided by com
panies such as Amazon (AWS). The cloud capabilities are basic building blocks
like virtual machines, storage, network bandwidth, and so on.

 Platform as a Service (PaaS) —In this type of cloud computing service, the pro
vider delivers infrastructure software components such as databases, queues,
and monitoring. Windows Azure is an example of this type of service.

 Software as a Service (SaaS) —These services are usually provided by smaller com
panies that deliver complete business capabilities. An example is Sales
force.com, which delivers a CRM solution as a service.

Now that we’ve got the vocabulary sorted out, let’s take a look at the architectural
implications of the cloud.

10.2.2 The cloud and the fallacies of distributed computing

I mentioned Peter Deutsch’s fallacies of distributed computing several times in this
book, and for a good reason. The fallacies are base architectural requirements that
you have to account for when designing distributed systems. The cloud does not get a
free ticket here.

 Table 10.1 shows that cloud computing doesn’t solve distributed computing prob
lems, but it helps in making some of the fallacies more apparent, so you’re less likely
to assume they’re not there.
www.it-ebooks.info

http:force.com
http://www.it-ebooks.info/

240	 CHAPTER 10 SOA vs. the world
Table 10.1 Fallacies of distributed computing and their relevance in cloud setups

Fallacy What does it mean in the cloud

The network is reliable No change—this is still a problem, especially in hybrid cloud solutions. If
you have a real mission-critical app, you still need a disaster recovery plan
(a backup in a secondary cloud provider).

Latency is zero Latency has not decreased in the cloud, but by deploying in data centers
near your end users, you can lower it. The cloud introduces another
latency-related problem.

Bandwidth is infinite In private clouds, this hasn’t changed from traditional systems. In public
clouds, it depends. For internal communications between deployed serv
ers, bandwidth has been transformed into a cost problem. For clients con
necting to your cloud application, bandwidth is same old problem.

Topology doesn’t change If you assume this in a cloud solution, you’ll have a real problem. The
whole notion of elasticity means there’s no way the topology stays the
same.

There’s one administrator This is still a fallacy in the cloud—just one that it’s hard to believe some
one would make.

Transport cost is zero Transport cost is still a problem. The dollar costs of moving data in and
out of the cloud are more apparent than in noncloud environments
because cloud services come with a price list. The additional costs (per
formance, latency) on transforming data structures, encryption, and so on,
can still be hidden.

The network is
homogeneous

The network is not homogenous, but you don’t need to care as much
because you can define the types of machines you need and get virtual
ized copies that match your needs.

The flip side is that the cloud brings with it a couple of new fallacies to watch out for:

 Nodes are fixed—This point builds on the “topology doesn’t change” fallacy, and
it means you can’t assume too much about the node you are running on. Not its
IP address, not that items you copied to it will be there on the next boot, and so
on. Don’t assume anything. Any meaningful state should be persisted elsewhere
on attached or connected storage.

 Latency is constant—This point builds on the “latency is zero” fallacy. The fact
that latency isn’t constant means that if you send messages asynchronously, you
can’t assume they’ll arrive in order. If you connect with UIs, you need to under
stand the variance and plan for it so that users will get an appropriate experi
ence. For instance, in the visual search service mentioned in chapter 9, we
sometimes saw 5 to 15 seconds of latency when establishing communications
with the server. To get a reasonable identification time, we had to think about
sending images and videos in the background, before the user chose which
image to identify.

Fine, but how does all this relate to SOA?
www.it-ebooks.info

http://www.it-ebooks.info/

241 SOA and the cloud
Nodes are fixed? A real-world example
On one project I worked on, we had a service hosted in Windows Azure in two distinct
setups: staging and production. We used a Windows Azure feature that allows you to
do a virtual IP switch to move the staging servers to production and it worked great—
except the new production (former staging) service was still pointing to the staging
data store and using the staging certificate store.

We solved this by orchestrating the switch from another service that also sent events
to synchronize the whole move. But we learned our lesson: in the cloud, nodes aren’t
fixed and you can’t assume anything.

10.2.3 The cloud and SOA

SOA is probably the best architectural style to enable a transition to cloud computing,
especially for hybrid and public cloud scenarios.4 Table 10.2 shows SOA’s traits and
how they’re a good fit for the cloud.

Table 10.2 SOA traits that are good fit for the cloud

SOA trait How is good for the cloud

Partitioning of the enterprise/
system into business
components

A service is a good-sized unit to move to the cloud (as it is for mov
ing to an external vendor). An SOA component presents a complete
business function. Service boundaries already take into account
the fallacies of distributed computing and already internalize the
handling of messages.

Using standards-based message
and contract communications

Encapsulating internal representations rather than relying on
shared data means that services moved to the cloud will be able to
operate in isolation from the rest of the world, communicating only
via the messages defined in their contracts.

Treating service boundaries as
trust boundaries

When you want to move functionality to a public cloud, it greatly
helps if your software already assumes that anything foreign is hos
tile and should be authenticated, validated, and so on.

Keeping services autonomous Autonomy better equips services to survive on their own. It also
helps them to keep operating when other services go out.

A lot of the patterns in this book are very relevant to cloud deployments and even
more so for the transition to the cloud:

See the following articles: Andrew Oliver, “Long Live SOA in the Cloud Era”, InfoWorld (June 2012),
www.infoworld.com/t/application-development/long-live-soa-in-the-cloud-era-196053; Joe McKendrick,
“SOA, Cloud: It’s the Architecture that Matters,” ZDNet (Oct. 2011), www.zdnet.com/blog/service-oriented/
soa-cloud-its-the-architecture-that-matters/7908; and David Rubinstein, “SOA (the Term) is Dead, but SOA
(the Architecture) Lives On,” SD Times (April 2012), www.sdtimes.com/content/article.aspx?ArticleID
=36566&page=3, (see particularly the “Without SOA, There Is No Cloud” section).

4
www.it-ebooks.info

www.infoworld.com/t/application-development/long-live-soa-in-the-cloud-era-196053
www.zdnet.com/blog/service-oriented/soa-cloud-its-the-architecture-that-matters/7908
www.zdnet.com/blog/service-oriented/soa-cloud-its-the-architecture-that-matters/7908
www.sdtimes.com/content/article.aspx?ArticleID=36566&page=3
www.sdtimes.com/content/article.aspx?ArticleID=36566&page=3
http://www.it-ebooks.info/

242	 CHAPTER 10 SOA vs. the world
 Service Bus (chapter 7)—Helps in providing location transparency and service
registration (so services will know where to find other services). Location trans
parency is very beneficial in the cloud because new services might be spawned
in a new node with new IP address or be consolidated to a single node based on
load.

 Identity Provider (chapter 4)—An identity provider is a crucial component when
services are spread across the enterprise and a cloud, and users expect a single
sign-on experience. This is even more important if you add REST to the mix,
and you need to interleave WS-Trust and OAuth services.

 Request/Reaction and Inversion of Communications (chapter 5)—Asynchronous com
munication is more resilient than plain RPC, and that’s a big plus in hybrid
cloud setups.

 Service Monitor and Service Watchdog (chapters 4 and 3 respectively)—These patterns
are always relevant, but they’re even more important when you don’t control
the hardware.

 Service Instance (chapter 3)—This is another pattern that can help with elasticity
and scaling out.

 Virtual Endpoint (chapter 3)—When running in the cloud, the endpoint in which
services are delivered will most likely be a virtual endpoint, whether or not you
like it.

In summary, SOA principles and patterns are a very good match for the cloud. The
division of business capabilities into autonomous components fits well both for grad
ual transitioning to public clouds as well to hybrid cloud setups.

10.3 SOA and big data
There’s an interesting video called “Shift Happens” (or sometimes “Did You Know?”)
that includes all sorts of interesting trivia on the rate at which the world is changing in
the digital age.5 Version 6 of this video includes an estimation that 40 exabytes (4.0 *
10^19) of unique information will be generated in 2012 (which is more than in the
previous 5000 years combined). Most of us don’t have to deal with these amounts of
data, but there’s no denying that the amount of data enterprises have to process and
amass every year continuously grows. A TDWI research report from September 2011
states that a third of the organizations surveyed had more than 10 terabytes of data
and that the number of larger sets (100s of terabytes) will triple in 2012.6

5	 Karl Fisch, Scott McLeod, and Jeff Brenman, Shift Happens 3.0, www.youtube.com/watch?v=cL9Wu2kWwSY.
For more information on versions of the video, see the shifthappens web page: http://shifthappens.wikispaces
.com/.

6	 Phillip Russom “Big data analytics, Fourth Quarter 2011,” TDWI Research, http://tdwi.org/research/2011/
09/best-practices-report-q4-big-data-analytics.aspx.
www.it-ebooks.info

www.youtube.com/watch?v=cL9Wu2kWwSY
http://shifthappens.wikispaces.com/
http://shifthappens.wikispaces.com/
http://tdwi.org/research/2011/09/best-practices-report-q4-big-data-analytics.aspx
http://tdwi.org/research/2011/09/best-practices-report-q4-big-data-analytics.aspx
http://www.it-ebooks.info/

243 SOA and big data
 Most research organizations (like TDWI or Forrester Research) agree that big data
evolves around different Vs, like velocity, volume, variety, and variability. Personally, I
think the major drivers are just the first two Vs—the velocity at which you have to
ingest data, along with the latency until it’s usable, and the total volume of data you
have to store and do something with. If you have a high peak load of messages for a
couple of hours a day, and you don’t need to see that data until a day later—that’s not
a big data problem. The same goes for terabytes of archival data you don’t need to
analyze, and are just storing for some regulatory reason.

 Big data has a lot of implications, starting with changing the way we think about
data and producing new professions like data science. It also has technical implica
tions, which is what we’ll take a look at next.

10.3.1 The big data technology mix

According to Gil Press, the first big data problem occurred in the 1880s (yes, you read
that right).7 In the late 1800s, the processing of the U.S. census was beginning to take
close to 10 years. Crossing this mark was meaningful, as the census runs every 10 years
and the population, and thus the amount of information, was increasing—the out
look wasn’t very good. In 1886, Herman Hollerith started a business to rent machines
that could read and tabulate census data on punch cards. The 1890 census took less
than 2 years to complete and handled both a larger population (62 million people)
and more data points than the 1880 census. (Hollerith’s business merged with three
others to form what became IBM.)

 Today we find ourselves in a similar position when we try to solve big data prob
lems with the traditional tools we have at hand, like our trusty RDBMSs or OLAP cubes.
Those tools aren’t going away, but we need additional tools—our own Hollerith
machines to cope with the scale. The good news is that a lot of these new tools are
emerging. The bad news is that a lot of these new tools are emerging.

 Figure 10.3 shows some of the main categories of solutions for big data storage that
have emerged in the market, and a few examples of tools in each category. For
instance, there’s the relational category, which is divided between NewSQL solutions
(sharding solutions over regular RDBMSs) and massively parallel solutions. The mas
sively parallel solutions are then divided into column-oriented solutions and row-
oriented ones. On the other side of things are key-value stores, which are divided
between in-memory and column-oriented solutions. The diagram is not exhaustive,
but it does demonstrate the wide range of options and suboptions available. It also
indicates that there’s no single good solution—otherwise there’d be fewer options
and everyone would standardize around the best solutions (as happened with RDBMSs
30 years ago).

Gil Press, “The Birth of Big Data,” The Story of Information (June 15, 2011), http://infostory.wordpress.com/
2011/06/15/the-birth-of-big-data/.

7
www.it-ebooks.info

http://infostory.wordpress.com/2011/06/15/the-birth-of-big-data/
http://infostory.wordpress.com/2011/06/15/the-birth-of-big-data/
http://www.it-ebooks.info/

244	 CHAPTER 10 SOA vs. the world
NewSQL

Columnar

a grid

mm

RavenDB

In memory

Data grid
Columnar

Graph

Indexing

Caching

mory

Dat

Grap

Col umnarng

e

NewSQL

hbase

hypertable

neo4j

solr attivio

indexTank

cassandra

MongoDB

CouchDB

scalebase

VoltDB

Amazon RDS

HP Vertica

EMC Greenplum
IBM Netezza

Microsoft PDW

Aster data

ParAccel

memcached gigaspaces
redis Gridgain

Oracle coherence

IBM eXtreme scale

Pregel

Hama

SAP Hana Oracle exadata

accumulo

RRRaaavvveeennnDDDBBB

Document
relational

Analytics/MPP

Key-value store
Hadoop

GlusterFS

Figure 10.3 The big data storage space. There are several classes of solutions; some based on the
relational paradigm and others remove database capabilities to get massive scale at cheap prices.

With this almost endless list of options to choose from, we need selection criteria in
order to pick the best solution for a given project. Here are some of the criteria I
find useful:

 Type of organization —Enterprises will likely be drawn to the more established
vendors (for support, regulatory compliance, and so on). Startups will most
likely gravitate toward the cheap, open source options.

 Data access patterns—Will you have mostly reads versus mostly writes, access
based on the primary key or a lot of ad hoc queries. If you need to traverse rela
tions back and forth (like walking a social graph), graph databases can be a
good option.

 Type of data stored—Structured data is a good fit for relational models, semistruc
tured data (XML/JSON) is a good fit for document and column stores, and
unstructured data is good for file-based options like Hadoop.

 Data schema change frequency —Is your schema mostly fixed or constantly chang
ing? Relational options are better with fixed schemas; document and name-
value solutions handle open schemas better.

 Required latency—The faster you need the data, the more you’ll want (or need)
an in-memory solution.
www.it-ebooks.info

http://www.it-ebooks.info/

245 SOA and big data
Apache Hadoop
There are a lot of interesting technologies in the big data space, but one that stands
out is Apache Hadoop. Hadoop is an open source implementation of Google’s filesys
tem and map/reduce paradigm. Hadoop is interesting, not because it’s necessarily
the best solution for big data, but because it has gained massive backing from many
of the major IT vendors. Oracle, IBM, EMC, Microsoft, and Amazon all offer a Hadoop
distribution or service.

I’ve included a few sources about Apache Hadoop in the further reading section of
this chapter. Or you can go straight to the Hadoop web page: http://hadoop
.apache.org/.

At this point, you might be thinking that big data sounds interesting, but where’s the
place for SOA in all this. How can you fit SOA into all of this?

10.3.2 How SOA works with big data

How can SOA work with big data? If we accept the premise that more and more enter
prises are finding that they need to handle big data, SOA should be able to work with
big data, or it should be replaced with a more appropriate architecture.

 One way to deal with big data within SOA is for services to use big data-related tech
nologies within the services. A service that needs to handle semistructured data can
use a document database store, and a service that needs to handle event data in near
real time can use a data grid or an event-stream processing solution. Like with cloud
technology, the advantage of SOA is the separation and isolation of the various services
from one another. The isolation allows for gradual adoption in the enterprise, where
only services that need these technologies adopt them, and other services can stay
with their current technologies.

One related pattern here is the Gridable Service (discussed in chapter 3), which
describes taking a computationally intensive task and dividing it between multiple ser
vices—something you can achieve with both data-grid solutions as well as big data
stores that support map/reduce.

 When it comes to the analysis of big data, we should distinguish between situations
where the analysis can be made within the boundaries of the service and those where
the analysis requires data from multiple services.

 For the second type of big data analysis, where a cross-service view is needed, the
ideas described in the Aggregated Reporting pattern (see chapter 7) still apply. You
can get the data from all the services in a way that does not violate SOA principles as
long as you make the data immutable and you know where the ownership lies. The
processes that perform the actual analysis can sometimes be considered services them
selves, such as a recommendation service for e-commerce solutions.

When the analysis can be handled within the boundaries of a specific service, the
implementation is a matter of utilizing big data-related technologies as part of the
service.
www.it-ebooks.info

http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.it-ebooks.info/

246 CHAPTER 10 SOA vs. the world
 In a system I recently worked on, we had to categorize multichannel interactions
(voice, email, chat, and so on). The categorization service had a subscription for
incoming interactions, which arrived both in batches and in real time. The same busi-
ness logic that categorized data in real time was also used in the batch. The real-time
categorization had a web service and messaging endpoints, and the batch processing
used map/reduce on top of Hadoop—two parts of the same business service using the
same business logic to do their work. Figure 10.4 provides an illustration of this service.

 In addition to the specifics around big data, you can see the application of some of
the patterns described in this book within the illustration. An implementation of the
Service Host pattern (chapter 2) hosts the service with its two endpoints, each of
implements the Edge Component pattern (chapter 2). Note that one of the end-
points is a RESTful one, as discussed earlier in this chapter. Additionally, you can see
the Service Watchdog pattern (chapter 3) in use, and that the service is deployed mul-
tiple times (the Service Instance pattern from chapter 3).

 In summary, you’ve seen that services can be used with big data. Big data emphasizes
the need to make services coarse-grained (see also the discussion of the Nanoservices

Service host

Map Reduce

Categories Service
(instance)

Distributed storage ETL endpoint

AMQP endpoint REST endpoint

Categoriza�on logic

Categoriza�on logic

Watchdog

Batch Data

Metadata

Categories
Defini�ons

Category
Results

Figure 10.4 A categorization service that incorporates big data map/reduce
handling with online handling. The service has three endpoints: an ETL endpoint
that ingests large batches of updates, a REST endpoint that accepts small batches
and online requests, and an AMQP endpoint for low-latency requests. The same
categorization logic is used in the map/reduce batch processes and the online/
real-time processes.
www.it-ebooks.info

http://www.it-ebooks.info/

Further reading	 247
antipattern in chapter 8), and what you learned about building services is still applica
ble. Nevertheless, big data is changing the way enterprises handle and think about data.
For SOA to stay relevant as an architectural style, it should, and can, adapt and utilize
the new technologies that solve big data problems.

10.4 Summary
There are, of course, other architectural styles and technologies that are related to
SOA. We discussed event-driven architecture (EDA) and SOA as part of the Inversion of
Communications pattern in chapter 5. Another relevant style is domain-driven design,
which isn’t as popular as the three trends discussed in this chapter, but it can comple
ment SOA as a way to design individual services.

 These are the three styles we did cover in this chapter:

 REST—An alternative architectural style that can be merged with SOA. If you
build RESTful SOA, you can benefit from both and use either SOA-style or REST-
style APIs for your services (or both).

 Cloud—A complementary IT trend that shares its principles with SOA, and for
which SOA is a very good fit.

 Big data—An increasingly common reality in a lot of enterprises, and to which
SOA has to adapt.

Congratulations on finishing the book. You should now be able to understand the
main challenges and common pitfalls of building distributed systems in general and
service-oriented ones in particular. You should also have an arsenal of architectural
concepts that will help you cope with these challenges and build solid systems.

 The focus of this book, is on using SOA as a way to solve distributed systems chal
lenges, so naturally this chapter’s coverage of other architectural styles only scratched
the surface. You can take a look at the next section for resources that will expand on
the topics mentioned here.

10.5 Further reading
REST

Roy Thomas Fielding, “Architectural Styles and the Design of Network-Based Software Architec
tures,” (PhD thesis, 2000), www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
Roy Fielding’s dissertation is where the REST architectural style was defined, and it’s still one
of the best sources for learning about it.

Jim Webber, Savas Parastatidis, and Ian Robinson, “How to GET a Cup of Coffee,” InfoQ,
www.infoq.com/articles/webber-rest-workflow.
Jim, Savas, and Ian take a simple, down-to-earth example (ordering a coffee) and use that to
provide a good explanation of REST principles, including HATEOAS.

Leonard Richardson and Sam Ruby, RESTful web services (O’Reilly, 2007).

This is probably the best book on REST.

www.it-ebooks.info

www.infoq.com/articles/webber-rest-workflow
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.it-ebooks.info/

248 CHAPTER 10 SOA vs. the world
THE CLOUD

Jothy Rosenberg and Arthur Mateos, The Cloud at Your Service: The When, How, and Why of Enter
prise Cloud Computing (Manning, 2010).
Jothy’s and Arthur’s book provides a good all-round introduction to cloud concepts and
technologies.

Peter Deutsch, “The Eight Fallacies of Distributed Computing,” http://blogs.oracle.com/jag/
resource/Fallacies.html.
James Gosling (the father of Java) concisely lists Peter Deutsch’s eight fallacies on his blog.

Arnon Rotem-Gal-Oz, “Fallacies of Distributed Computing Explained,” www.rgoarchitects.com/
Files/fallacies.pdf.
This paper explains the fallacies in some detail.

OpenStack, http://openstack.org/.
OpenStack is an open source cloud implementation that’s trying to provide an alternative to
closed source implementations like Amazon’s and Microsoft’s.

ReaderWriterCloud, www.readwriteweb.com/cloud/.
ReadWriterWeb is a news and information site on internet-related technologies. Reader-
WriterCloud is its channel dedicated to cloud computing.

BIG DATA

Alex Holmes, Hadoop in Practice (Manning, 2011).
This book provides a relatively up-to-date view of Hadoop and related technologies.

Lars George, HBase: The Definitive Guide (O’Reilly, 2011)
Lars is one of the contributors to HBase, and his book is currently the best one on HBase.

Phillip Russom, “Big data analytics, Fourth Quarter 2011,” TDWI Research, http://tdwi.org/
research/2011/09/best-practices-report-q4-big-data-analytics.aspx.
This is TDWI research group report and overview of the big data landscape.

NoSQL Databases, http://nosql-database.org/.
This site links to a lot of NoSQL databases (segmented by type). The site also provides links
to articles related to NoSQL.

Curt Monash, DBMS2 (blog), www.dbms2.com/.
Curt Monash’s site provides good information and insights on databases (SQL and NoSQL)
and related technologies.

Alex Popescu, myNoSQL (blog), http://nosql.mypopescu.com/.

Alex’s blog rounds up articles and news related to NoSQL.

Marco Seiriö, Marco on CEP (blog), http://rulecore.com/CEPblog/.
Marco on CEP is a good blog covering complex event processing technologies.
www.it-ebooks.info

http://rulecore.com/CEPblog/
http://nosql.mypopescu.com/
www.dbms2.com/
http://nosql-database.org/
http://tdwi.org/research/2011/09/best-practices-report-q4-big-data-analytics.aspx
http://tdwi.org/research/2011/09/best-practices-report-q4-big-data-analytics.aspx
http://blogs.oracle.com/jag/resource/Fallacies.html
http://blogs.oracle.com/jag/resource/Fallacies.html
www.rgoarchitects.com/Files/fallacies.pdf
www.rgoarchitects.com/Files/fallacies.pdf
http://openstack.org/
www.readwriteweb.com/cloud/
http://www.it-ebooks.info/

appendix
From quality attributes

to patterns
This appendix provides a cross-reference from quality attributes and sample scenarios
to individual patterns discussed in this book. As mentioned in chapter 1, quality attri
butes and quality attribute scenarios provide a good way to describe architectural
requirements. In order to help you make better use of the mapping from quality attri
butes to patterns, I’ll begin by introducing quality attributes in general.

A.1 Introduction to quality attributes
There are two types of requirements for software projects: functional and
nonfunctional.

Functional requirements describe what the solution must do (usually expressed as use
cases or stories). The functional requirements are what the users (or systems) that
interact with the system do with the system (fill in an order, update customer details,
authorize a loan, and so on).

Nonfunctional requirements are attributes the system is expected to have or manifest.
These usually include requirements in areas such as performance, security, availabil
ity, and the like. A better name for nonfunctional requirements is “quality attributes.”

 The following are formal definitions for quality attributes and related concepts
from the IEEE 1061 standard, “Standard for a Software Quality Metrics Methodology”:1

 Quality attribute—A characteristic of software, or a generic term applying to
quality factors, quality subfactors, or metric values.

 Quality factor—A management-oriented attribute of software that contributes to
its quality. In this book, the term “quality attribute” is used instead of “quality
factor,” as it is a more common way to refer to it.

 Quality subfactor—A decomposition of a quality factor or quality subfactor to its
technical components. I refer to “quality subfactors” as “concrete attributes”
throughout this book, as I think it conveys the meaning better.

IEEE, 1061-1998 IEEE Standard for a Software Quality Metrics Methodology. 1
249

www.it-ebooks.info

http://www.it-ebooks.info/

 250	 APPENDIX From quality attributes to patterns
 Metric value—A metric output or an element that is from the range of a metric.
 Software quality metric—A function whose inputs are software data and whose out

put is a single numerical value that can be interpreted as the degree to which
software possesses a given attribute that affects its quality.

Most of the requirements that drive the design of a software architecture come from a
system’s quality attributes. That’s because the effect of quality attributes is usually sys
tem-wide. (You wouldn’t want your system to have good performance only in the UI—
you want the system to perform well no matter what). This is exactly what software archi
tecture is concerned with. Note that a few requirements might still come from func
tional requirements. The question is how do we find out what those requirements are?

 The answer to that is also in the software architecture definition. The source for
quality attributes is the stakeholders. So what or who are these “stakeholders”? A stake
holder is just about anyone who has a vested interest in the project. A typical system
has a lot of stakeholders, starting with the (obvious) customer, the end users (those
people in the customer’s organization who will actually use the software), and going
on to the operations personnel who will have to keep the solution running, the devel
opment team, testers, maintainers, and management. In some systems, the stakehold
ers can even be the shareholders or even the general public (imagine that you’re
building a new dispatch system for a 911 center).

 One of the architect’s roles is to analyze the quality attributes and define an archi
tecture that will deliver all the functional requirements while supporting the quality
attributes. As you might expect, sometimes quality attributes are in conflict with each
other—the most obvious examples are performance versus security or flexibility ver
sus simplicity, and the architect’s role is to strike a balance between the different qual
ity attributes (and the stakeholders) to make sure the overall quality of the system is
maximized.

 Contextual solutions (patterns) can be devised to solve specific quality attributes’
needs. But saying that a system needs to have “good performance” or that it needs to
be “testable” doesn’t really tell you what to do. In order to be able to discern which
patterns apply to specific quality attributes, you need a better understanding of what
the formal definition of the quality attributes means; you need something that is more
concrete.

 The way to get that concrete understanding of the effect of quality attributes is to
use scenarios. Scenarios are short, story-like statements that demonstrate how a qual
ity attribute is manifested in the system using a functional situation.

 Quality attribute scenarios originated as a way to evaluate software architectures.
The Software Engineering Institute developed several evaluation methodologies, like
Architecture Tradeoff Analysis Method (ATAM),2 which builds on scenarios to contrast
and compare how the different quality attributes are met by candidate architectures.

Paul Clements, Rick Kazman, and Mark Klein, Evaluating Software Architectures: Methods and Case Studies
(Addison-Wesley Professional, 2002).

2
www.it-ebooks.info

http://www.it-ebooks.info/

251 From quality attributes to patterns
Stimulus

When you perform a database operation ,

under normal conditions, it should take less than 100 milliseconds.

Figure A.1 Components of
Context Response a quality attribute scenario

The scenarios can be used as inputs to make sure the quality attributes are actually
met. Furthermore, you can identify which strategies or patterns will make the scenar
ios possible (and thus ensure the quality attributes are met) within the system.

ATAM (and similar evaluation methods like LAAAM, which is part of MSF 4.0) sug
gests building a utility tree that represents the overall usefulness of the system. The
scenarios serve as the leaves of the utility tree, and the architecture is evaluated by
considering how the architecture makes the scenarios possible.

 I’ve found that using scenarios and the utility tree approach early in the design of
the architecture can greatly enhance the quality of the architecture that is produced.
When you examine the scenarios, you can also prioritize them and better balance con
flicting attributes.

 The tree representation helps present the whole picture, but the important bits
are the scenarios. Scenarios are expressed as three-part statements containing a stimu
lus, a context, and a response. The stimulus is the action taken (by the system, user,
other system, or any other person); the response identifies how the system is expected
to behave when the stimulus occurs; and the context specifies the environment or con
ditions under which you expect to get the response. Figure A.1 identifies the three
parts of a scenario.

 It’s usually best to use this sort of three-part statement to describe quality attribute
scenarios because it makes the scenarios more verifiable and complete. But structur
ing scenarios this way is a guideline, not a commandment, and if a scenario feels more
natural in another form, don’t feel obligated to force it into this template.

 Now that you know the importance of quality attributes to software architecture
and how to write them up, you can think again about the architectural requirements
in your projects. Once you do that, you can use the table in the next section to look
for patterns that are relevant to the challenges you need to solve.

A.2 From quality attributes to patterns
When you’re looking at the architectural requirements of your project, you can use
table A.1 as a reference for finding applicable patterns.

 Please keep in mind that the list is not exhaustive. There are additional uses for
each pattern. Nevertheless, the table still provides a good starting point.

NOTE One pattern is missing from this table—the Aggregated Reporting pat
tern from chapter 7. That pattern is derived from functional requirements
and not quality attributes.
www.it-ebooks.info

http://www.it-ebooks.info/

 252 APPENDIX From quality attributes to patterns
Table A.1 Quality attributes to patterns cross-reference

Quality attribute Concrete attribute Sample scenario
Relevant
pattern

Chapter

Availability Uptime Even disconnected from the WAN, the
service can still produce internal results.

Active
Service

2

Availability Reduced system
downtime

Upon a server crash, the system will
remain operational.

Service
Instance

3

Availability Hardware failure
resiliency

Upon a server crash, the system will
remain operational.

Gridable
Service

3

Availability Hardware failure
resiliency

When only one server crashes, the sys
tem will continue to operate with no less
than 50 percent of its original capacity.

Service
Instance

3

Availability Hardware failure
resiliency

Upon a server crash, the system will
resume operations within two minutes.

Virtual
Endpoint

3

Availability Improved failure
detection

Upon a failure or degraded performance,
the system will alert the administrator
(via SMS) within a well-defined amount of
time.

Service
Watchdog

3

Availability Effort to change
(deployment)

Under normal conditions, adding a server
for scaling purposes should take no lon
ger than four hours (including installa
tion, configuration, and so on).

Service
Bus

7

Budget Contain hardware
costs (TCO)

The grid allows you to spread load over
less-expensive hardware.

Gridable
Service

3

Business drivers Time to market The time to market of new changes
should be less than six months.

Client/Server/
Service

6

Changeability Add feature Integrate a new capability into the sys
tem in three calendar weeks or less.

Inversion of
Communica
tions

5

Changeability Replace compo
nent (vendors)

During development, replacing the credit
card processing gateway should take one
week or less.

Service
Bus

7

Changeability Replace compo
nent (vendors)

During development, replacing the credit
card processing gateway should take one
week or less.

Orchestration 7

Flexibility Extension points It is expected that the system will require
SOX compliance within the next year and
it will need auditing for all services.

Edge
Component

2

Flexibility Reduced
assumptions

For normal interactions, services are
invoked in a fire-and-forget manner.

Decoupled
Invocation

3
www.it-ebooks.info

http://www.it-ebooks.info/

253 From quality attributes to patterns
Table A.1 Quality attributes to patterns cross-reference (continued)

Quality attribute Concrete attribute Sample scenario
Relevant
pattern

Chapter

Flexibility Temporal coupling Under normal conditions, the ordering
party will be notified about order ship
ments within two hours of shipping the
package.

Request/
Reaction

5

Flexibility Decoupling Services should know as little as possi
ble about each other.

Inversion of
Communica
tions

5

Flexibility Interfaces During development, adding a REST API
to the system should be supported.

Service
Bus

7

Flexibility Business flows During development and operations, add
ing timeouts to all ordering processes
will take less than one week.

Orchestration 7

Flexibility Composability During development, a developer will be
able to find and reuse services in multi
ple business processes.

Orchestration 7

Flexibility Add new business
processes

Under normal conditions, adding a new
prepaid plan to the system and moving it
to production will take less than two
days.

Workflodize 2

Flexibility Changeability Under normal conditions, changing the
billing process to support a new credit
card clearance provider should take less
than one week.

Composite
Front End

6

Integrity Correctness Under all conditions, an order processed
by the system will be billed.

Saga 5

Integrity Predictability Under normal conditions, the chances of
a customer getting billed for a canceled
order shall be less than 5 percent.

Saga 5

Integrity Correctness Under all conditions, failure to receive
payment within five business days will
cancel the order and shipping.

Reservation 6

Integrity Predictability Under normal conditions, the chances of
a customer getting billed for a canceled
order shall be less than 5 percent.

Reservation 6

Interoperability Integration During operations, integrating a new sub
system should take less than two calen
dar months.

Service Bus 7

Maintainability Backwards
compatibility

As contracts evolve, the services should
be able to support consumers using
older versions of the contract.

Edge
Component

2
www.it-ebooks.info

http://www.it-ebooks.info/

 254 APPENDIX From quality attributes to patterns
Table A.1 Quality attributes to patterns cross-reference (continued)

Quality attribute Concrete attribute Sample scenario
Relevant
pattern

Chapter

Maintainability Add service Configuring the security for a new service
will take less than half a day’s work for a
single developer.

Identity
Provider

4

Maintainability Easier upgrades Individual service instances can be
upgraded without disrupting service
availability.

Virtual
Endpoint

3

Manageability Reporting At all times, managers will be able to
gain an overall view of the status and
problems in handling business requests.

Service
Monitor

4

Manageability Understand
system’s health

Under error conditions, an administrator
will be able to understand any problems
and performance bottlenecks in the dif
ferent business flows.

Orchestration 7

Performance Latency Evaluating the profitability of an offer suf
fers no delay from external service calls.

Active Service 2

Performance Eliminate data loss No message acknowledged by the sys
tem will be lost.

Decoupled
Invocation

3

Performance Decrease latency Handle incoming requests without
degrading latency, even under peak
loads.

Decoupled
Invocation

3

Performance Higher message
throughput

Under stress conditions, the system han
dles more than 10,000 requests per sec
ond.

Parallel
Pipelines

3

Performance Latency Under normal conditions, service
requests should complete in less than a
second for 99 percent of the cases and
less than two seconds for 100 percent of
the cases.

Gridable
Service

3

Performance Latency The cost of authenticating any request
will not exceed 100 milliseconds.

Identity
Provider

4

Performance Responsiveness Under normal conditions, the UI will not
hang while long operations are per
formed (such as searches, course recal
culations, and so on).

Request/
Reaction

5

Performance Deadline Under load and normal conditions, the
system can continue to update stock
prices at regular intervals.

Active Service 2

Portability Installation During installation, switching from one
environment to another should take little
to no time.

Service Host 2
www.it-ebooks.info

http://www.it-ebooks.info/

255 From quality attributes to patterns
Table A.1 Quality attributes to patterns cross-reference (continued)

Quality attribute Concrete attribute Sample scenario
Relevant
pattern

Chapter

Reliability Handle failure When resuming from a communications
disconnection, all the processes that
were interrupted shall remain consistent.

Saga 5

Reliability Reduce data loss A message acknowledged by the system
will not be lost.

Transactional
Service

2

Reliability Increase autonomy During normal operations, the system
will clear all its temporary resources con
tinuously.

Service
Watchdog

3

Reliability Mean time to repair
(MTTR)

Under normal operations, the time
required to discover a faulty service will
be less than two minutes.

Service
Monitor

4

Reusability Core module set
definition

Reuse 90 percent or more of the com
mon sales process activities for most
new plans.

Workflodize 2

Reusability Reduce
development time

During development, the environment for
a new service will be set up within min
utes.

Service Host 2

Reusability Interfaces All services should support common ser
vice APIs in addition to any specific
requests they may serve.

Inversion of
Communica
tions

5

Scalability Handle increased
loads

To handle increased loads, solve the
problem with additional servers with no
software changes.

Parallel
Pipelines

3

Scalability Scale out It should be possible to deal with
increased service loads with more hard
ware.

Gridable
Service

3

Scalability Ability to scale out It should be possible to deal with
increased service loads with more hard
ware.

Service
Instance

3

Security Spoofing When receiving messages before han
dling a message, the system should ver
ify signatures using the sender’s public
key to prevent impersonation.

Secured
Infrastructure,
Secured
Message

4

Security Spoofing Under all conditions, when sending and
receiving messages, the system should
add timestamps, sequence numbers, or
expiration times to messages (to cope
with replay attacks).

Secured
Infrastructure,
Secured
Message

4
www.it-ebooks.info

http://www.it-ebooks.info/

 256 APPENDIX From quality attributes to patterns
Table A.1 Quality attributes to patterns cross-reference (continued)

Quality attribute Concrete attribute Sample scenario
Relevant
pattern

Chapter

Security Repudiation During all communications, when send
ing messages the system should add
timestamps and require signatures on
messages (to prevent senders from
claiming they didn’t send a message).

Secured
Infrastructure,
Secured
Message

4

Security Information
disclosure

When sending sensitive information,
under all conditions, the system should
encrypt important information (or the
whole message) to prevent others from
reading sensitive data.

Secured
Infrastructure,
Secured
Message

4

Security Tampering During all communications, the system
should verify signatures and to make
sure no one changed the content of
request or a reaction. If a signature is
damaged, the system should log and dis
card the messages.

Service
Firewall

4

Security Tampering During all communications, the systems
should validate that messages are not
malformed, and discard and log bad
messages.

Service
Firewall

4

Security Information
disclosure

During all communications, the system
should scan outgoing messages for sen
sitive content and prevent sending it out.

Service
Firewall

4

Security Information
disclosure

When sending out messages, if a reply
message is targeted outside of the
known group, log and alert the adminis
trator.

Service
Firewall

4

Security Information
disclosure,
Elevation of
privileges

Under all conditions, before processing a
message, the system should inspect
incoming messages for XPath, SQL injec
tion attacks, and viruses, and notify an
administrator if a problem is identified.

Service
Firewall

4

Security Denial of service Under normal operations, when an
attacker tries to bombard the system
with requests, the system should identify
the attack, blocking known attackers,
ignore their requests, and notify an
administrator.

Service
Firewall

4

Security Elevation of
privilege

Under all conditions, before processing
an incoming message, the system
should validate contracts and sizes of
elements and alert an administrator of
any problems.

Service
Firewall

4
www.it-ebooks.info

http://www.it-ebooks.info/

257 From quality attributes to patterns
Table A.1 Quality attributes to patterns cross-reference (continued)

Quality attribute Concrete attribute Sample scenario
Relevant
pattern

Chapter

Security Authentication During normal operations, a revoked
right will be updated in the system within
five minutes.

Identity
Provider

4

Security Elevation of
privilege

Under all conditions, when authorizing a
user, the system should ensure that a
service consumer doesn’t assert any
privileges it doesn’t have.

Identity
Provider

4

Security Governance During development and operations, the
enterprise architecture team will be able
to ensure that all services use secured
channels.

Service
Monitor

4

Security Single sign-on
(SSO)

Under normal operations, when a user
has already authenticated with the sys
tem, the system should not require that
user to enter credentials again.

Identity
Provider

4

Security Federated identity Under normal operations, the system
should be able to support authenticating
external services (services managed by
third parties).

Identity
Provider

4

Security Auditing At all times, the system should keep
track of any changes to authentication or
authorization rules.

Identity
Provider

4

Security Spoofing At all times, when handling a message,
the system should verify that messages
arrived with security tokens and autho
rize access according to privileges.

Identity
Provider

4

Security Auditing At all times, the system should keep an
audit trail for requesters and their
requests.

Service
Monitor

4

Security Information
disclosure

During normal operations, the system
should look at message logs and try to
identify man-in-the-middle attacks by
comparing message traffic routes
against known and configured routes.

Service
Monitor

4

Testability Test coverage rate During development, for all critical
requirements, achieve 100 percent test
coverage.

Transactional
Service

2

Testability Performance During stress tests, it should be possible
to time the performance of each service
in the system.

Service
Monitor

4

Testability Increase isolation A service can be tested in isolation from
the services it interacts with.

Decoupled
Invocation

3
www.it-ebooks.info

http://www.it-ebooks.info/

 258 APPENDIX From quality attributes to patterns
Table A.1 Quality attributes to patterns cross-reference (continued)

Quality attribute Concrete attribute Sample scenario
Relevant
pattern

Chapter

Testability Increase
component
isolation

Testing small, individual components
helps to ensure their success when con
nected in a pipeline.

Parallel
Pipelines

3

Testability Coverage During development, each capability of a
service should have 100 percent test
coverage.

Request/Reply 5

Time to market Development ease During development, exposing a new
capability (already developed) in a ser
vice will take less than half a day to
implement and test.

Request/
Reply

5

Usability Operability Under normal system use, the system
should reuse entered data (like personal
details) between different tasks so that
end users can achieve business tasks
fluently.

Composite
Front End

6

Usability Efficiency When users need to learn new features,
the experience should be streamlined to
ensure a minimal learning curve.

Client/Server/
Service

6
www.it-ebooks.info

http://www.it-ebooks.info/

index

Numerics
2PC (two-phase commit) 33

3G Video Call Gateway service

visual search system 215

A
ACID properties 31, 140

active classes 25

Active Service pattern 24–29, 145

attributes of 28–29

quality attributes 252, 254

technology mapping for 28

active services 65

ActiveMQ 33

activities 36

actors 55

adaptability 9

adaptability/changeability attribute, visual

search system 214

Add feature attribute, Inversion of Communica

tions pattern 128

adding service, Identity Provider pattern 97

Administration function 20

Aggregated Reporting pattern 125, 177–185

attributes 185

big data 245

defined 161

drawbacks of 183

is SOA-compatible 182–183

overview 179–180

technology mapping for 183–185

vs. direct access to internal database 183

vs. entity aggregation 183

Akka actors 55

Alachisoft 63

Alchemi system console 59

Alexander, Christopher 12

AmberPoint 102–103

AMQP (Advanced Message Queuing Protocol)

50, 158

antipatterns 11

Knot antipattern 190–195

causes of 192–193

consequences of 191

exceptions for 194–195

refactoring for 193–194

Nanoservice antipattern 195–202

causes of 199–200

consequences of 197–199

exceptions for 202

refactoring for 200–201

Same Old Way antipattern 206–209

causes of 208

consequences of 207–208

exceptions for 209

refactoring for 208–209

Transactional Integration antipattern 202–
206

causes of 204–206

consequences of 203–204

exceptions for 206

refactoring for 205–206

Apache

ActiveMQ 50

Axis2 Java library 118

Camel’s Scala DSL 167

Felix 23, 44

Hadoop 245

JServ 63

Qpid 50

ServiceMix 23, 33, 126

APP (Atom Publishing Protocol) 113, 127

AppFabric 22, 44

asynchronous messaging, challenges of 118

259

www.it-ebooks.info

http://www.it-ebooks.info/

260 INDEX
atomic property 31

atomicity, Transactional Integration

antipattern 202

AtomicOutcome coordination type, WS-

BusinessActivity 135

availability 28

for visual search case study 228–231

increasing 67

Service Bus pattern 169

Azure Caching 63

B
BackgroundWorker component, .NET 115

backwards compatibility 43

bandwidth, nanoservices 199

benefits, of SOA 8–11

for business 11

big data 242–247

categories of solutions for 243–244

SOA with 245–247

solution selection criteria 244

technology for 243–245

Billing service 29–30, 32

visual search system 215

bindings 41

biometric engines 57–58

biometric service, Request/Reaction pattern

and 117

blacklist service 61–62

Blackwell 24

BPEL (Business Process Execution Language)

136, 175

vs. BPMN 175–176

BPM (business process management) vs. ESB as

orchestration engines 174

BPMN (Business Process Model and Notation)

134, 173

vs. BPEL 175–176

Budget attribute 60

bus (peer-to-peer) deployment option, Service

Bus pattern 165–166

Business Agreement with Coordinator Comple

tion, WS-BusinessActivity 135

Business Agreement with Participant Completion,

WS-BusinessActivity 135

business drivers attribute, Client/Server/Service

integration pattern 159

business events, handling in SOA 122

business processes

improving flexibility of 171

Knot antipattern and 193

Orchestration pattern and 170

business services, visual search system 212,

215–216

business, benefits of SOA for 11

C
C4ISR (Command, Control, Communications,

Computers, Intelligence, Surveillance, and

Reconnaissance) system 149–152

CA Infrastructure Management 101

CA Unicenter Agent SDK 71

cacheable constraint

REST 234–236

SOA 236

Calculator service, Nanoservice antipattern and

195, 197

Call Flow service, visual search system 220, 225,

229

Call Recovery service, visual search system 215,

225

Campaigns service, visual search system 215

causes

of Knot antipattern 192–193

of Nanoservice antipattern 199–200

of Same Old Way antipattern 208

of Transactional Integration antipattern

204–206

CEP (complex event processing) 127

changeability attribute

Composite Front End integration pattern 154

Inversion of Communications pattern 128

Orchestration pattern 176

Service Bus pattern 169

Channel adaptor pattern defined 164

Choreography pattern 172

circuit breaker mechanism 69

claims 84

client/server architectural style

REST 234–236

SOA 236

Client/Server/Service pattern 140, 154–159

attributes of 159

quality attributes 252, 258

technology mapping for 157–159

cloud computing 238–242

characteristics of 238

fallacies of 239–240

hybrid 239

private 239

public 239

terminology for 238–239

vs. SOA 241–242

clustering 66

code duplication 87

code on demand constraint, REST 234–236

collection component, Service Monitor

pattern 100

communication problems 66

communications in visual search case study

223–227

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 261
compensations

limitations of 141–142

overview 141

Saga pattern 132

complete future context, document-centric

messages 110

component isolation 56

Composite Front End pattern 140, 148–154

attributes of 154

host for 151–152

portlet for 151

quality attributes 253, 258

technology mapping for 152–153

concrete attribute, Identity Provider pattern 97

concurrency 52

Configuration function 20

consistency, Transactional Integration

antipattern 202

consistent property 31

contracts 5

in SOA 7

coordinators, required for compensations 142

COP (Common Operational Picture),

C4ISR 149–152

correctness attribute

Reservation pattern 148

Saga pattern 136

correlated messages 118

cost attribute, visual search system 214

CQRS (command-query responsibility

segregation) 183

credit card example 48, 52, 61

CRM (customer relationship management) 37

cross-service transactions 130

cryptographic service provider 78

CSRF (cross-site request forgery) 80

D
data

grid technologies 59

loss attribute 35, 51

data backend component, Aggregated Reporting

pattern 179

data denormalization problem 26

data sources, Aggregated Reporting pattern 180

data stores, Aggregated Reporting pattern 179

database

background 26

connection 10

deadline attribute 28

deadlocks, Reservation pattern 144

dead-message queue 34

Decoupled Invocation pattern 26–28, 47–51, 63

attributes of 51

quality attributes 252, 254, 257

Request/Reaction pattern and 117

technology mapping for 50–51

decoupling attribute, Inversion of Communica
tions pattern 128

decrypting messages 77

DELETE verb, HTTP 112

deleting logs 69

denial of service threat 74

implementing Service Firewall pattern to

avoid 90

implementing Service Monitor pattern to

avoid 104

See also DoS

Dependency Injection 22, 44

deployment attribute, visual search system 214

deployment options, Service Bus pattern 165

design by contract 36

Deutsch, Peter 162, 239

digital signatures 77

SOAP message, WS-Security 84

XDoS attacks and 86

direct access to internal database vs. Aggregated

Reporting pattern 183

dispatcher 48

dispatcherFiber parameter 222

distributed computing, nanoservices 199

distributed denial of service attacks 74

distributed transaction 130

DMZ network subnet 88

document-centric messages 110

DoS (denial of service), Reservation pattern 144

DSL (domain-specific language), Apache Camel’s

Scala DSL 167

durability, Transactional Integration

antipattern 202

durable property 31

E
EBSCO 24

e-commerce flow 33

EDA (event-driven architecture) 123

edge component 49, 65

Edge Component pattern 39–44, 49

attributes of 42

big data 246

quality attributes 252–253

RESTful SOA 237

Service Firewall pattern and 87–88

technology mapping for 41–42

visual search system 216, 218

efficiency attribute, Client/Server/Service inte
gration pattern 159

elevation of privilege threat 74

implementing Identity Provider pattern to

mitigate 98

www.it-ebooks.info

http://www.it-ebooks.info/

262 INDEX
elevation of privilege threat (continued)

implementing Service Firewall pattern to

avoid 90

implementing Service Monitor pattern to

avoid 104

Email Gateway service

gateways as 217

visual search system 215

EncryptedKey tag 80

encrypting messages 77

endpoints 5, 62

in SOA 7

entity aggregation 178

vs. Aggregated Reporting pattern 183

Environment function 20

e-passport system 114–115

ESB (enterprise service bus) 23, 66, 85

defined 167

for Secured Infrastructure pattern 85

Inversion of Communications pattern 126

Service Bus pattern 167

vs. BPM as orchestration engines 174

ETL (extract, transform, load) 10, 163

ETL SQL push, Aggregated Reporting

pattern 181

event handler component, Inversion of Commu

nications pattern 124

event propagation component, Inversion of Com

munications pattern 124

event streams

complex event processing 127

EDA 125

EventAggregator facility, Prism 153

eventBroker component 223–227

events

EDA 123

messages 110

time to live 127

exceptions

for Knot antipattern 194–195

for Nanoservice antipattern 202

for Same Old Way antipattern 209

for Transactional Integration antipattern 206

expiration, Reservation pattern 143

extension points 43

WCF 88

F
failed components 69

fail-fast mechanisms 69

failure detection 71

federated deployment option, Service Bus

pattern 165–166

federated identity, Identity Provider pattern 97

Felix 23

Fielding, Roy T. 234

file-based integration 10

five-nines availability 12

fixed nodes, cloud computing 240–241

flexibility attribute 39, 51

Composite Front End integration pattern 154

Inversion of Communications pattern 128

Orchestration pattern 176

Request/Reaction pattern 120

Service Bus pattern 169

Flux 37

Foote, Brian 194

Fowler, Martin 6

fragmented logic, nanoservices 198

fraudulent patterns 52

Fuse ESB 66

future context, document-centric messages 110

G
Garcia-Molina, Hector 131

GateIn Portal 153

GET verb, HTTP 112

getAll operation 41

getLast operation 41

GigaSpaces 55, 63

Google

GData protocol 113

Goggles 212

governance attribute, Service Monitor pattern 103

granularity

Knot antipattern and 192

Nanoservice antipattern 195, 197

grid

computing 59

infrastructure 58–59

root 57

scenarios 59

grid root 57

Gridable Service pattern 52–53, 56–62

attributes of 60–61

big data 245

quality attributes 252, 254–255

technology mapping for 59–60

visual search system 220, 223

Gridbus 59

GridGain 60

H
handler 48

HandlersRefresher 221

handling failure attribute, Saga pattern 136

HAProxy 63, 66

hardware

costs 60

failure resiliency 60, 64

HATEOAS (Hypermedia as the Engine of Appli
cation State) 235

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 263
Hazelcast 60

HDFS (Hadoop’s distributed filesystem) 184

headnode 59

high loads 48

history context, document-centric messages 110

Hohpe, Gregor 8, 108

Hollerith, Herman 243

host, for Composite Front End pattern 151–152

Howard, Michael 74

HP OpenView 70

HSM (Hardware Security Module) 78

HTTP 83

hub and spoke deployment option, Service Bus

pattern 165–166

I

IaaS (Infrastructure as a Service), cloud

computing 239

IBM 90, 243

IBM Tivoli 71

Access Manager 96

suite 101

idempotent messages 78

Identification service

gateways as 217

visual search system 215, 221, 225

Identification Workers service

gateways as 217

visual search system 215, 228

Identification-Found event 225

Identity Provider pattern 91, 93–98, 156

attributes of 97–98

authentications 95

cloud computing 242

defined 75

preventing bottleneck 95

quality attributes 97, 254, 257

technology mapping for 96–97

impersonation, protecting against

Secured Infrastructure pattern 81

Secured Message pattern 76

increased loads 56

information disclosure threat 74

implementing Secured Infrastructure pattern

to avoid 86

implementing Secured Message pattern to

avoid 80

implementing Service Firewall pattern to

avoid 90

implementing Service Monitor pattern to

avoid 104

initiator component, Saga pattern 131

integrity attribute

Reservation pattern 148

Saga pattern 136

integrity, protecting

Secured Infrastructure pattern 81

Secured Message pattern 76

Interactions service, visual search system 215

interfaces attribute, Inversion of Communications

pattern 128

internet protocols, SSL/TLS 82–83

Internet2 Shibboleth 96

interoperability attribute, Service Bus pattern 169

Inversion of Communications pattern 28,

120–128

achieving distributed consensus and consis

tency in data and business picture 206

attributes of 128

cloud computing 242

defined 107

downside of 125

implementing 123

Knot antipattern and 194

quality attributes 128, 252–253, 255

technology mapping for 126–128

visual search system 223

IoC (Inversion of Control) 21

IP address 63

isolated property 31

Isolation attribute 51

isolation, Transactional Integration

antipattern 202

J
Java

cryptographic service provider 78

one-way messages 118

JavaSpaces 55

JAX-RS 23

JAX-WS 23, 41

standard 82

JMS (Java Message Service) 50, 83

JMX MBeans 71

K
Kerberos ticket 96

Knot antipattern 190–195

causes of 192–193

consequences of 191

defined 190

exceptions for 194–195

refactoring for 193–194

L
latency

attribute 28, 51

cloud computing 240

Identity Provider pattern 97

Layer 7 company 90

www.it-ebooks.info

http://www.it-ebooks.info/

264 INDEX
layered architectural style

REST 234, 236

SOA 236

LeBlanc, David 74

Lifecycle function 20

limited level of guarantee 143

Liskov’s substitution principle 36

Liveliness Monitor service, visual search

system 215

LMAX architecture 49

load balancing 46, 57, 66

location transparency 47, 65–66, 72

Long-Running Transaction pattern 132

loose coupling, services, SOA promotion of 73

M
maintainability 9

attribute 43

Identity Provider pattern 97

malicious incoming messages, protecting service

against 87

manageability attribute

Orchestration pattern 176

Service Monitor pattern 103

man-in-the-middle attack 76

mashups, defined 234

MDM (master data management) 183

Message bus pattern, defined 164

message buses, Service Bus pattern 167

message exchange patterns 156

message handling, Service Bus pattern 164

message-level protocols, WS-Security 84

messages

routing integrating services and 163

SOA 8, 75

throughput 56

messaging API, Same Old Way antipattern

and 208

Microsoft Message Queue 50

Microsoft Operations Manager 71

Microsoft Silverlight 154–155, 157–158

misconceptions, about SOA 6

MixedOutcome coordination type, WS-

BusinessActivity 135

MMS Gateway service

gateways as 217

visual search system 215

Monitor service, visual search system 215

monolithic service 54

MSMQ (Microsoft Message Queuing) 83

MTTR (mean time to repair) attribute, Service

Monitor pattern 103

Mule 66

multimodal biometrics 57

multiple endpoints 62

multithreaded programming 52

MVVM (Model, View, ViewModel) pattern 157

MyOperation1 message, service consumer 111

N
Nagios 71, 101

Nanoservice antipattern 6, 195–202

causes of 199–200

consequences of 197–199

defined 190

exceptions for 202

refactoring for 200–201

Natiz, Yeffim V. 5

NCache 63

.NET

BackgroundWorker component 115

cryptographic service provider 78

one-way messages 118

network calls, Reservation pattern 145

Network Overview tab 101–102

n-layer/n-tier architecture 207

NLB Cluster 63

no man’s land, SOA messages 75

normal request loads 46, 48

NServiceBus tools, Visual Studio, designing mes

sage flows, subscribers, and publishers

with 168

O
OAuth 85

OCP (Open Closed Principle) 21

online integration 10

OOP (object-oriented programming) 6

operability attribute, Composite Front End inte

gration pattern 154

Oracle

AmberPoint 102–103

Identity Server 96

Orchestration pattern 101, 170–176

achieving distributed consensus and consis

tency in data and business picture 205

attributes 176

defined 161

externalizing business processes 171–172

Knot antipattern and 193

nanoservices and 200

quality attributes 252–254

Saga pattern and 172

technology mapping for 174–175

vs. Choreography pattern 172

Ordering service 29–30, 32

Knot antipattern 190–191

OSGi (Open Services Gateway initiative) 6

overhead, nanoservices 198

OWASP (Open Web Application Security

Project) 80

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 265
P
PaaS (Platform as a Service), cloud computing 239

Parallel Pipelines pattern 51–56, 62, 125

attributes of 55–56

quality attributes 254–255, 258

technology mapping for 55

visual search system 220

parsers, XDoS attacks and 86

patterns

language 14–16
solving SOA challenges with 11–16
structure of 12–13

peak request loads 46, 48

performance

Identity Provider pattern 97

nanoservices 198

performance attribute 28, 51

Request/Reaction pattern 120

Service Monitor pattern 103

pessimistic locking 203

Phone Client service

gateways as 217

visual search system 215

Ping Identity’s PingTrust 96

pinging services 67

pipeline components 54–55

Pipes and Filters architectural style 52

Player service, visual search system 215

point-to-point scenarios, Secured Infrastructure

pattern for 77

poison messages 34

policy, in SOA 8

polling services 68

portability attribute 24

portlet, for Composite Front End pattern 151

portlets 152

POST verb, HTTP 112

predictability attribute

Reservation pattern 148

Saga pattern 136

Prism framework 152–153

privacy, protecting

Secured Infrastructure pattern 81

Secured Message pattern 76

problem section overview 12

Progress Actional’s Looking Glass SOA-

monitoring tool 101

Progress SonicMQ 50

Proposals service 24–25, 27

protocols, integrating services and 163

provisioning component, Identity Provider

pattern 93

ProxyWrapper class 227

publishing messages role, Service Bus pattern 164

PUT verb, HTTP 112

Q
QoS (quality of service) 48, 50

quality attributes

Identity Provider pattern 97

overview 14

R
RabbitMQ 50

RaiseEvent method 223

raw data store, Aggregated Reporting pattern 180

recovering server 65

refactoring

for Knot antipattern 193–194

for Nanoservice antipattern 200–201

for Same Old Way antipattern 208–209

for Transactional Integration antipattern

205–206

refreshMatchersAction 223

reliability attribute 35

Saga pattern 136

Service Monitor pattern 103

replicated repository constraint

REST 234–236

SOA 236

reporting

attribute, Service Monitor pattern 103

concept 68

data store, Aggregated Reporting pattern 180

Reporting service, visual search system 215

repudiation threat 74

implementing Secured Infrastructure pattern

to avoid 86

implementing Secured Message pattern to

avoid 80

Request/Reaction pattern 114–120

attributes of 119–120

cloud computing 242

Decoupled Invocation pattern and 117

defined 107

quality attributes 120, 253–254

technology mapping for 118–119

Request/Reply pattern 47, 108–114

attributes of 113–114

defined 107

quality attributes 114, 258

technology mapping for 110–113

requeued messages 34

rerouting requests 66

Reservation integration pattern 140

Reservation pattern 140–141

attributes of 148

explicit reservations 143, 147

implicit reservations 143, 148

passive reservation expiration handling 147

quality attributes 253

responsibilities 142–143

www.it-ebooks.info

http://www.it-ebooks.info/

266 INDEX
Reservation pattern (continued)
risks 144–145
simple, in-memory, nonpersistent

reservations 146

technology mapping for 145–148

timer-based cancellations 145–146

visual search system 226

resetting watchdog device 69
resource locking 66
responsiveness attribute, Request/Reaction

pattern 120
REST (REpresentational State Transfer) 158

mapping to SOA 237
REST API, Same Old Way antipattern and 208
REST architectural style 234–238

defined 234–235

RESTful SOA 236–238

vs. SOA 235–236

REST principles 112
REST, mapping to SOA 237
restarting failed components 69
REST-based

services 23
systems 85

Restlet 41, 44
reusability 9

attribute 24
reusable service 197
reuse attribute, Inversion of Communications

pattern 128
reuse strategies 6
RPC (remote procedure call) 8, 109
RTP Listener service, visual search system 215,

220

S
SaaS (Software as a Service), cloud

computing 239
saga initiation process, Reservation pattern

143–144
Saga pattern 32, 34, 129–136, 141

achieving distributed consensus and consis
tency in data and business picture 205

attributes of 136
defined 107
Orchestration pattern and 172
quality attributes 136, 253, 255
solving temporal decoupling 116
technology mapping for 134–136
visual search system 225–226

Saga-Fault event 225–226
Salem, Kenneth 131
Same Old Way antipattern 206–209

causes of 208

consequences of 207–208

defined 190

exceptions for 209

refactoring for 208–209

SAML (Security Assertion Markup Language) 96
SAS (services allocation service) 201
Scala framework 55
scalability attribute, visual search system 214
scalability requirements 58
scalable services 62
scheduler 57
Schulte, Roy 5
Secured Infrastructure pattern 80–85

attributes of 85

defined 75

protecting against repudiation 76

technology mapping for 82–85

ESBs 85

SSL/TLS 82–84

WS-SECURITY 84–85

Secured Infrastructure, Secured Message pattern,
quality attributes 255–256

Secured Message pattern 75–80

attributes of 80

defined 75

security capabilities 77

technology mapping for 78–80

security
Identity Provider pattern 91, 97–98

attributes of 97–98

technology mapping for 96–97

Secured Infrastructure pattern 80–85

attributes of 85

technology mapping for 82–85

Secured Message pattern 75–80

attributes of 80

technology mapping for 78–80

Service Firewall pattern 86–91

attributes of 90–91

technology mapping for 88–90

Service Monitor pattern 103
security tokens

transporting 96

WS-Security 84

SEDA (staged event-driven architecture) 125

SEI (Software Engineering Institute) 5

self-healing concept 68

SendCoupon method 223

Service Bus pattern 109, 162–168

attributes 169
attributes of 168
cloud computing 242
combining enterprise integration design

patterns 164

defined 161

limitations of 171

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 267
Service Bus pattern (continued)

quality attributes 252–253

technology mapping for 166–168

visual search system 224

service component, Aggregated Reporting

pattern 179

service consumers 5

defined 106

in SOA 8

Service Firewall pattern 86–91, 145

attributes of 90–91

defined 75

quality attributes 256

technology mapping for 88–90

Service Host pattern 19–24

attributes of 23–24

big data 246

quality attributes 254–255

technology mapping for 21–23

Service Instance pattern 52, 61–64, 143

attributes of 64

big data 246

cloud computing 242

quality attributes 252, 255

technology mapping for 63

visual search system 228

Service Monitor pattern 64, 98, 100–104

attributes of 102–104

cloud computing 242

defined 75

quality attributes 102, 254–255, 257

technology mapping for 101–102

service orientation, SOA vs. 213

service proxy (or agent)

as component of portlets 151

Client/Server/Service integration pattern 156

service registration, Service Bus pattern 164

Service SQL push, Aggregated Reporting

pattern 181

Service Watchdog 26, 28

Service Watchdog pattern 67–71

attributes of 71

big data 246

cloud computing 242

quality attributes 252, 255

technology mapping for 71

visual search system 229, 231

service, in SOA 7–8

ServiceAuthorizationManager instance 89

ServiceMix 23

services

for visual search case study 216–223

gateways as 217–218

interacting with consumers 109

service-specific failures 67

Shibboleth 96

Single Responsibility Principle 87

SIP Listener service, visual search system 215

Skelta 37

SLA (service-level agreement) 8, 65

SNMP (Simple Network Management

Protocol) 70

SOA (service-oriented architecture) 6–11

and software architecture 4–5

benefits of 8–11

for business 11

challenges, solving with patterns 11–16

components model 140

contract 7

endpoint 7

Management System 71

message 8

policy 8

service 7

service consumer 8

service orientation vs. 213

tax 207

vs. Cloud computing 241–242

vs. REST architectural style 235–236

with big data 245–247

SOAP message, WS-Security 84

SOAP-based web services 23

software architecture 4–5

solution section, overview 13

spaghetti integration, Knot antipattern and 192

split brain problem 66

spoofing threat 74

implementing Identity Provider pattern to

mitigate 98

implementing Secured Infrastructure pattern

to avoid 86

implementing Secured Message pattern to

avoid 80

SQL injection 86

SQL Server’s Service Broker 33

SSL (Secure Socket Layer)/TLS (Transport Layer

Security) for Secured Infrastructure

pattern 82–84

SSO, Identity Provider pattern 97

standby services 65

stateful components 52

stateless communications constraint

REST 234–236

SOA 236

Statistics Collector service, visual search system 215

stovepipe systems 9

STRIDE security threats 74

SubmitOrder operation 51

subscription services, Service Bus pattern 164

subscription-management component, Inversion

of Communications pattern 124

www.it-ebooks.info

http://www.it-ebooks.info/

268 INDEX
substitution principle, Liskov 36

subtasks 52–53

summaries 60

synchronizer token pattern 80

synchronous communication, Request/Reply

pattern 114

system downtime 64

T
tampering threat 74

implementing Secured Infrastructure pattern

to avoid 86

implementing Secured Message pattern to

avoid 80

implementing Service Firewall pattern to

avoid 90

implementing Service Monitor pattern to

avoid 104

technical benefits, of SOA 11

technology mapping

for Active Service pattern 28

for Aggregated Reporting pattern 183–185

for Client/Server/Service pattern 157–159

for Composite Front End pattern 152–153

for Decoupled Invocation pattern 50–51

for Edge Component pattern 41–42

for Gridable Service pattern 59–60

for Identity Provider pattern 96–97

for Inversion of Communications pattern

126–128

for Orchestration pattern 174–175

for Parallel Pipelines pattern 55

for Request/Reaction pattern 118–119

for Request/Reply pattern 110–113

for Reservation pattern 145–148

for Saga pattern 134–136

for Secured Infrastructure pattern 82–85

ESBs 85

SSL/TLS 82–84

WS-SECURITY 84–85

for Secured Message pattern 78–80

for Service Bus pattern 166–168

for Service Firewall pattern 88–90

for Service Host pattern 21–23

for Service Instance pattern 63

for Service Monitor pattern 101–102

for Service Watchdog pattern 71

for Transactional Service pattern 32–34

for Virtual Endpoint pattern 66

for Workflodize pattern 37–38

overview 13–14

technology, for big data 243–245
temporal coupling

Request/Reaction pattern 120

Transactional Integration antipattern 203

temporal decoupling 115, 118

terminology, for Cloud computing 238–239

test coverage attribute 35

testability attribute 35, 51

Request/Reply pattern 114

Service Monitor pattern 103

Third-Party Gateway service, visual search

system 215

third-party solutions, Secured Infrastructure pat
tern and 81

threat modeling 74

threats, implementing Service Monitor pattern to

avoid 104

three-tiered architecture, SOA 209

Thrift API, Same Old Way antipattern and 208

TIBCO Rendezvous 39

time to market attribute

Client/Server/Service integration pattern 159

Request/Reply pattern 114

time to repair/detect attribute, visual search

system 214

timer-based cancellations 145–146

token server component, Identity Provider

pattern 93–94

tokens, security, WS-Security 84

transaction processing service 52

Transactional Integration antipattern 32, 34,

202–206

causes of 204–206

consequences of 203–204

defined 190

exceptions for 206

refactoring for 205–206

Transactional Service pattern 29–35, 44, 49

attributes of 34

quality attributes 255, 257

technology mapping for 32–34

transactions

distributed 140, 142

in n-tier systems 140

transform and load process, Aggregated Report
ing pattern 181–182

Transformation service, Aggregated Reporting
pattern 180

transport cost, nanoservices 199

TTL (time to live) 127

events 127

Turmeric SOA framework 42

U
UIs (user interfaces) 139

as component of portlets 151

integration with problematic working

systems 154–156

working with multiple services 148–151

uniform interface, REST 234–236

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 269
unplanned downtime attribute, visual search

system 214

UNPV (Unmanned Naval Patrol Vehicle) 149–

152

Upgrades attribute 67

uptime attribute 28

URI (universal resource identifier) 7

usability attribute

Client/Server/Service integration pattern 159

Composite Front End integration pattern 154

V

validation, Reservation pattern 142

vFabric GemFire 63

virtual endpoint 65–66

Virtual Endpoint pattern 64–67

attributes of 66–67

cloud computing 242

quality attributes 252, 254

technology mapping for 66

virtual machine

REST 234–236

SOA 236

visual search case study 211–232

attributes of 213

availability for 228–231

communications in 223–227

services for 216–223

Visual Studio NServiceBus tools, designing mes
sage flows, subscribers, and publishers

with 168

Vordel 90

W
watchdog agent concept 68

watchdog edge component 69

Watchdog service, visual search system 215

WCF (Windows Communication Foundation) 41,

50, 205

standard 82

web portals 152

WebLayers 71

WebLogic 23

WebSphere 23, 32, 38

WebSphere MQ 50

WF_ENGINE package 37

Windows Azure 241

Windows Communications Foundation 88

Wiring function 20

Woolf, Bobby 8, 108

Workflodize pattern 35–39, 55, 58

attributes of 39

Knot antipattern and 193

quality attributes 253, 255

technology mapping for 37–38

workflow engine, Orchestration pattern 171

WS-* stack 60

WS-AtomicTransaction 34

WS-BaseFaults protocol 60

WS-BusinessActivity 34

WS-BusinessActivity protocol 135

WSDL (Web Service Description Language) 70

WS-ReliableMessaging 34

WS-Resource protocol 60

WS-ResourceLifetime protocol 60

WS-ResourceProperties protocol 60

WSRF (WS-Resource Framework) 60

WS-SECURITY, for Secured Infrastructure

pattern 84–85

WS-ServiceGroup protocol 60

WS-Trust protocol 96

X

X.509 certificates 96

XDoS (XML denial-of-service) attack 86

XML encryption 79–80

XML, SOA messages 78

XPath injection 86

XSRF (cross-site request forgery) 80

Y
Yoder, Joseph 194

www.it-ebooks.info

http://www.it-ebooks.info/

Arnon Rotem-Gal-Oz

T
he idea of service-oriented architecture is an easy one to
grasp and yet developers and enterprise architects oft en
struggle with implementation issues. Here are some of them:

● How to get high availability and high performance?
● How to know a service has failed?
● How to create reports when data is scattered within
 multiple services?
● How to make loose coupling looser?
● How to solve authentication and authorization for service
 consumers?
● How to integrate SOA and the UI?

SOA Patterns provides detailed, technology-neutral solutions to
these challenges, and many others, using plain language. You’ll
understand the design patterns that promote and enforce fl ex-
ibility, availability, and scalability. Each of the 26 patterns uses
the classic problem/solution format and a unique technology
map to show where specifi c solutions fi t into the general pattern.

Written for working developers and architects building services
and service-oriented solutions. Knowledge of Java or C# is
helpful but not required.

Arnon Rotem-Gal-Oz has over a decade of experience building
SOA systems using Java and C#. He’s a recognized authority in
designing and architecting distributed systems in general and
SOAs in particular.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/SOAPatterns

$49.99 / Can $52.99 [INCLUDING eBOOK]

SOA PATTERNS

SOA/ENTERPRISE

M A N N I N G

“Documents a signifi cant
body of knowledge

on SOA.”
—From the Foreword by

Gregor Hohpe, coauthor of
Enterprise Integration Patterns

“An essential guide.”—Glenn Stokol
Oracle Corporation

“For people who actually
 have to ship code.”—Eric Farr

Marathon Data Systems

“Patterns are hard; this
 book makes them easy.”—Robin Anil, Google

“Brings structure to
 the wild SOA landscape.”—Rick Wagner, Red Hat

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	SOA Patterns
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code conventions
	Author Online

	about the author
	about the cover illustration
	Part 1 SOA patterns
	1 Solving SOA pains with patterns
	1.1 Defining software architecture
	1.2 Service-oriented architecture
	1.2.1 What SOA is, and is not
	1.2.2 SOA architectural benefits
	1.2.3 SOA for the enterprise

	1.3 Solving SOA challenges with patterns
	1.3.1 Pattern structure
	1.3.2 From isolated patterns to a pattern language

	1.4 Summary
	1.5 Further reading

	2 Foundation structural patterns
	2.6 Summary
	2.7 Further reading

	3 Patterns for performance, scalability, and availability
	3.5 Virtual Endpoint pattern
	3.7 Summary
	3.8 Further reading

	4 Security and manageability patterns
	4.3 Service Firewall pattern
	4.4 Identity Provider pattern
	4.5 Service Monitor pattern
	4.6 Summary
	4.7 Further reading

	5 Message exchange patterns
	5.4 Saga pattern
	5.5 Summary
	5.6 Further reading

	6 Service consumer patterns
	6.1 Reservation pattern
	6.2 Composite Front End (Portal) pattern
	6.3 Client/Server/Service pattern
	6.4 Summary
	6.5 Further reading

	7 Service integration patterns
	7.1 Service Bus pattern
	7.2 Orchestration pattern
	7.3 Aggregated Reporting pattern
	7.4 Summary
	7.5 Further reading

	Part 2 SOA in the real world
	8 Service antipatterns
	8.1 Knot antipattern
	8.2 Nanoservice antipattern
	8.3 Transactional Integration antipattern
	8.4 Same Old Way antipattern
	8.5 Summary
	8.6 Further reading

	9 Putting it all together— a case study
	9.1 Problem
	9.2 Solution
	9.3 Summary

	10 SOA vs. the world
	10.1 REST vs. SOA
	10.1.1 What is REST anyway?
	10.1.2 How REST and SOA are different
	10.1.3 RESTful SOA

	10.2 SOA and the cloud
	10.2.1 The cloud terminology soup
	10.2.2 The cloud and the fallacies of distributed computing
	10.2.3 The cloud and SOA

	10.3 SOA and big data
	10.3.1 The big data technology mix
	10.3.2 How SOA works with big data

	10.4 Summary
	10.5 Further reading

	11 From quality attributes to patterns
	A.1 Introduction to quality attributes
	A.2 From quality attributes to patterns

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

